
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

Aug 96 
3. REPORT TYPE  AND DATES COVERED 

4. TITLE AND SUBTITLE 

Simulation of Droplet Evaporation In Supercritical 
Environments Using Parallel Molecular Dynamics 

6. AUTHOR(S) 

Jeff ery K. Little 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Pennsylvania State University 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

96-061 

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
DEPARTMENT OF THE AIR FORCE 
AFIT/CI 
2950 P STEET, BLDG 125 
WRIGHT-PATTERSON AFB OH 45433-7765 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

154 
16. PRICE CODE 

17.   SECURITY CLASSIFICATION 
OF REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19.   SECURITY CLASSIFICATION 
OF ABSTRACT 

20. LIMITATION OF ABSTRACT 

lii-.il \ NSN 7540-01-280-5500 >TIC QTJAIJTY INSPE Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 



GENERAL INSTRUCTIONS FOR COMPLETING SF 298 

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important 
that this information be consistent with the rest of the report, particularly the cover and title page. 
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet 
optical scanning requirements.   

Block 1. Agency Use Only (Leave blank). 

Block 2.   Report Date. Full publication date 
including day, month, and year, if available (e.g. 1 
Jan 88). Must cite at least the year. 

Block 3. Type of Report and Dates Covered. 
State whether report is interim, final, etc. If 
applicable, enter inclusive report dates (e.g. 10 
Jun87-30Jun88). 

Block 4.   Title and Subtitle. A title is taken from 
the part of the report that provides the most 
meaningful and complete information. When a 
report is prepared in more than one volume, 
repeat the primary title, add volume number, and 
include subtitle for the specific volume. On 
classified documents enter the title classification 
in parentheses. 

Block 5. Funding Numbers. To include contract 
and grant numbers; may include program 
element number(s), project number(s), task 
number(s), and work unit number(s). Use the 
following labels: 

C 
G 
PE 

Contract 
Grant 
Program 
Element 

PR 
TA 
WU 

Project 
Task 
Work Unit 
Accession No. 

Block 6. Author(s). Name(s) of person(s) 
responsible for writing the report, performing 
the research, or credited with the content of the 
report. If editor or compiler, this should follow 

the name(s). 

Block 7. Performing Organization Name(s) and 
Address(es). Self-explanatory. 

Block 8. Performing Organization Report 
Number. Enter the unique alphanumeric report 
number(s) assigned by the organization 
performing the report. 

Block 9. Sponsoring/Monitoring Agency Name(s) 
and Address(es). Self-explanatory. 

Block 10.   Sponsoring/Monitoring Agency 
Report Number. (If known) 

Block 11. Supplementary Notes. Enter 
information not included elsewhere such as: 
Prepared in cooperation with...; Trans, of...; To be 
published in.... When a report is revised, include 
a statement whether the new report supersedes 
or supplements the older report. 

Block 12a. Distribution/Availability Statement. 
Denotes public availability or limitations. Cite any 
availability to the public. Enter additional 
limitations or special markings in all capitals (e.g. 
NOFORN, REL, ITAR). 

DOD 

DOE - 
NASA- 
NTIS   - 

See DoDD 5230.24, "Distribution 
Statements on Technical 
Documents." 
See authorities. 
See Handbook NHB 2200.2. 
Leave blank. 

Block 12b. Distribution Code. 

DOD 
DOE 

NASA 
NTIS 

Leave blank. 
Enter DOE distribution categories 
from the Standard Distribution for 
Unclassified Scientific and Technical 
Reports. 
Leave blank. 
Leave blank. 

Block 13. Abstract. Include a brief (Maximum 
200 words) factual summary of the most 
significant information contained in the report. 

Block 14. Subject Terms. Keywords or phrases 
identifying major subjects in the report. 

Block 15.  Number of Pages. Enter the total 
number of pages. 

Block 16.  Price Code. Enter appropriate price 
code (NTIS only). 

Blocks 17.-19. Security Classifications. Self- 
explanatory. Enter U.S. Security Classification in 
accordance with U.S. Security Regulations (i.e., 
UNCLASSIFIED). If form contains classified 
information, stamp classification on the top and 
bottom of the page. 

Block 20. Limitation of Abstract. This block must 
be completed to assign a limitation to the 
abstract. Enter either UL (unlimited) or SAR (same 
as report). An entry in this block is necessary if 
the abstract is to be limited. If blank, the abstract 
is assumed to be unlimited. 

* U.S.GPO: 1993-0-336-043 
Standard Form 298 Back (Rev. 2-89) 



The Pennsylvania State University 

The Graduate School 

Department of Aerospace Engineering 

SIMULATION OF DROPLET EVAPORATION 

IN SUPERCRITICAL ENVIRONMENTS 

USING PARALLEL MOLECULAR DYNAMICS 

A Thesis in 

Aerospace Engineering 

by 

Jeffery K. Little 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Doctor of Philosophy 

August 1996 

19961212 031 



DISCLAIMER NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

COLOR PAGES WHICH DO NOT 

REPRODUCE LEGIBLY ON BLACK 

AND WHITE MICROFICHE. 



The Pennsylvania State University 

The Graduate School 

Department of Aerospace Engineering 

SIMULATION OF DROPLET EVAPORATION 

IN SUPERCRITICAL ENVIRONMENTS 

USING PARALLEL MOLECULAR DYNAMICS 

A Thesis in 

Aerospace Engineering 

by 

Jeffery K. Little 

Submitted in Partial Fulfillment 
of the Requirements 

for the Degree of 

Doctor of Philosophy 

August 1996 



We approve the thesis of Jeffery K. Little. 

Associate Professor of Aerospace Engineering 
Thesis Adviser 
Chair of Committee 

KiAM fuk 
Robert G. Melton 
Associate Professor of Aerospace Engineering 

Date of Signature 

TJr   If  IffC 

JJL /(,, im 

Michael M. Micci 
Associate Professor of Aerospace Engineering 

James B. Anderson 
Evan Pugh Professor of Chemistry 

Dennis K. McLaughlin 
Professor of Aerospace Engineering 
Head of the Department of Aerospace Engineering 

J^ n} (<?9C 



Ill 

ABSTRACT 

The complete evaporation of three-dimensional submicron droplets under both 

subcritical and supercritical conditions has been modeled using molecular dynamics 

(MD). This work represents a first step toward an accurate analytical modeling of 

combustion in supercritical environments. In this initial study the two-phase simu- 

lations consist entirely of argon atoms distributed between a single droplet and its 

surrounding vapor. The inter-atomic forces are based on a Lennard-Jones 12-6 poten- 

tial, and the resultant atomic displacements are determined using a modified velocity 

Verlet algorithm. Linked cell lists in combination with Verlet neighbor lists allow 

efficient modeling of the large and diverse simulations. A non-cubic periodic bound- 

ary, specifically a truncated octahedron, is used to minimize periodicity effects. A 

unique method, using the linked cell structure, streamlines the associated boundary 

computations. The linked cells are also used as domains for density, temperature 

and surface tension computations. This allows a contouring of these properties. The 

surface tension measure is a unique development. 

All of these techniques are incorporated into a message passing code for use 

on the IBM SP2 parallel computing platform. A particle decomposition technique 

successfully provides nearly perfect load balancing across any desired number of pro- 

cessors. The resultant code was compared to the best known timings of other MD 

models on single and multiple processor computers. It proved quite capable when run- 

ning a bulk liquid benchmark simulation. Only 24 processors were required to surpass 

the best vectorized serial performer. The capability on 32 processors of the SP2 also 

approached 50% of the speed documented for similar simulations on 256 processors 

of the Cray T3D and 512 processors of the Intel Paragon parallel machines. 

Six simulations were performed as part of this work. The first four involved the 

evaporation of a 5,600 atom drop suddenly exposed to assorted surroundings. The 

final two are duplicates of the fourth, a supercritical case, but with 27,000 atoms and 

100,000 atoms respectively in the initial drop. These were used for scaling studies. 

Contour property imaging was performed for each case, and evaporation rates were 
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measured using an area factor based on local density levels. Each system was initial- 

ized by independently modeling the environment and the drop and then fusing them 

together. The fuse technique uses vector algebra to allow a smooth combining of any 

droplet shape into an equilibrated environment. Additionally it ensures the retention 

of the equilibrated surface energy. This is believed to be a unique approach. 

The first two of the small drop diffusions were subcritical runs. They provide 

validating information and insight into the diffusion process. The first, at an envi- 

ronment state point close to the vapor curve, reveals a slow quasi-equilibrium process 

due to the relatively low thermal and density gradients. The second environment 

was at an elevated temperature but subcritical pressure. The resultant low density 

allowed the droplet to retain a strong surface energy, but the large thermal gradi- 

ents enhanced the evaporation rate. A D2 evaporation analysis was performed with 

reasonably good agreement obtained (within 20%). 

The next two cases, a near-critical and a supercritical simulation, both provide 

interesting results for review and analysis. The near-critical case was set at the 

critical density and just over the critical temperature. The high density caused the 

surface energy to dissipate immediately. Low thermal gradients, though, significantly 

reduced the surface diffusion. In fact, the contour images imply that a cloud-like 

mixing overshadowed the diffusion rate as a result. The supercritical case is very 

interesting. At a state point of 1.3 Tc and 1.5 Pc, where the c subscript denotes 

the critical state, the surface tension still dissipated quickly. A diffusion layer at the 

critical temperature was established, and a non-spherical evaporation of the droplet 

ensued. This case was also the basis for the supercritical scaling study. 

The successful scaling of this run and the 27,000 atom droplet diffusion to the 

large simulation of the 100,000 atom drop at the same conditions verified that the 

supercritical diffusion operates as a purely surface effect. In other words, the three 

cases revealed equivalent evaporation rates occurring at similarly regressing surface 

profiles. This implies that the microscopic evaluations can be extended and applied 

to macroscopic applications. 
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Chapter 1 

INTRODUCTION 

Diffusion flames are found in many modern combustion devices driving numerous 

aerospace vehicles. Characterized by initially separate fuel and oxidizer regions, the 

rate of this combustion is driven by the mixing rate. In fact the chemical reaction rate 

can often be neglected entirely by comparison [1]. When a fuel droplet is exposed to 

an oxidizer environment at low temperatures and pressures, this mixing rate is very 

slow. Above the thermodynamic state termed the critical point, however, the fuel 

and oxidizer combine very rapidly. Rapid mixing results in cleaner, more stable, and 

more complete combustion, primary goals of any combustor design. So a thorough 

understanding of supercritical combustion is very desirable. 

The supercritical region, depicted in figure 1.1 [2] [3], is defined as any state 

above the critical temperature and pressure [4]. Under these conditions a fluid can not 

be compressed into a liquid. Due to the lessening of the demarcation between liquid 

and gas phase densities, a fuel droplet exposed to this environment will experience a 

significant decrease in its surface energy. Also, the high temperature oxidizer consists 

of energized atoms moving at high velocities. The combination of the resultant high 

speed collisions and the lower surface energy generates the desirable rapid mixing. 

Current rocket motors, gas turbines, diesel engines, and many projected ad- 

vanced combustor designs operate supercritically. While concepts are well established 

from theory and experiment for subcritical conditions, there are no acceptable theo- 

ries to fully describe the physics at and above the critical point [5]. This leaves many 

questions unanswered in the minds of combustion engineers as they attempt to design 

efficient mixing of subcritical fluid droplets into supercritical environments. The re- 

tention of a spherical structure is often assumed for the droplets during combustion. 

The reduction of the surface tension when exposed to supercritical conditions, how- 

ever, places this assumption in question. Under the influence of such a high pressure 

and temperature environment, one might also question the approach of defining the 
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Figure 1.1. Argon Pv diagram. The shaded area represents the supercritical region. 

diffusion as a surface phenomena. Instead the droplet may change to a supercritical 

phase within its interior prior to the completion of diffusion. To help clarify such 

design considerations, a code to model on the molecular level the diffusion process of 

saturated liquid droplets in supercritical environments was developed. The results of 

initial investigations utilizing the code are detailed in this paper. 

1.1    Problem Definition 

Simply stated, an analytical means of studying the diffusion process which oc- 

curs when a fuel droplet is exposed to a supercritical environment is desired. Exper- 

imental investigations of such a dynamic process in high temperatures and pressures 

are difficult. Classic analytical techniques, such as continuum-based computational 

fluid dynamics, require far reaching assumptions and depend on suspect property 



data. The path chosen to achieve the desired analysis therefore involves molecular 

dynamics algorithms. The reason for this choice will soon become apparent. 

Molecular dynamics (MD) is a term used to describe the modeling of individual 

molecular motions due to intermolecular forces. The evaluation of aggregate and in- 

dividual particle positions and velocities allows the computation of macroscopic prop- 

erties. Comparisons of MD-generated property values to those based on established 

theory are used for code verification, but MD has much greater utility. Intermolecular 

forces in soft sphere MD models (the type used in this work) are computed based on 

assumed intermolecular potential functions. The intermolecular potentials are based 

on the atomic interactions of unbalanced electron charges [6]. They are microscopic 

interactions which exist regardless of the macroscopic state. Therefore, an MD code 

can be used to model situations where macroscopic properties are, to date, undefined 

or, at best, ill-defined. One such case is the modeling of supercritical phase changes. 

Traditionally, the phases of matter are thought of as distinctly different in form 

and properties. The solid phase consists of molecules which vibrate about fixed 

locations. The atomic positions are still based on the potential forces previously 

mentioned, but the atoms have settled into a lattice structure. They remain in relative 

fixed positions because they do not have enough energy to break away from their 

neighbors. Gaseous phase molecules, by contrast, display no order. They have high 

energy levels and move in and out of the potential fields like billiard balls. Liquids, 

as expected, represent a transition phase. Many of the atoms are clustered together 

in solid-like structures, but these clusters move quite freely; they have broken away 

from the solid lattice (melted). This breaking away is a result of atoms occasionally 

reaching speeds high enough to break through the potential well. Figure 1.2 depicts 

these concepts and shows in the radial distributions that liquids have short-range 

order, while solids are infinitely ordered and gases completely random [7] [6]. 

Above the critical point, however, every atom has enough energy to break the 

potential field. No matter how close the molecules are packed, they will continue to 

exhibit the gas-like interaction of breaking through the potential well. The molecules 

are also very tightly spaced, however, and will continuously be affected by neighbor 

potentials.   This combination of gas and liquid related interactions is what makes 
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Figure 1.2. Classic phases of matter. The images are for demonstration only. Actual solid and liquid 
structures are more closely packed in 3-D structures. 

evaluating the supercritical region so difficult. Molecular dynamic modeling effectively 

eliminates the problems by directly incorporating the potential field interactions. 

Analytical evaluations are therefore possible. There is one limitation for such studies, 

however: system size. 

As mentioned, subcritical liquids display short-range order while gases show no 

order at all. One might suspect that supercritical liquids would demonstrate very 

short-range order. Unfortunately, this is not the case. Instead, the closely packed 

molecules demonstrate a long order (evidenced in a radial distribution plot by a wide 

single peak). At the critical point this order approaches infinite proportions. So 

modeling phase transitions through the critical region appears beyond reach. Cum- 

mings [8] however, notes that such simulations are possible due to the dominance of 

short-range solubilites compared to the long-range critical order. Care must still be 

taken to ensure large enough systems are modeled to include the complete structural 

orders in the simulation domain. Further details concerning this are provided in the 

literature review section of this chapter. 



Until recently, computer capabilities limited molecular dynamic models to sys- 

tems on the order of a few thousand particles. Existing massively parallel archi- 

tectures can model millions of particles. The continued improvements in parallel 

computing platforms will allow sophisticated analytical modeling of the supercritical 

phase. This project, for example, involves systems large enough to perform scaling 

studies. The scaling of small simulation results to represent large physical systems 

is the necessary link to ultimately allow the modeling of actual combustor designs. 

There are possible drawbacks associated with parallel computing, however. Unfortu- 

nately, molecular dynamics codes are especially susceptible. 

Parallel computers are essentially many processors linked together and set to 

operate concurrently. If a given computational task is shared evenly among the pro- 

cessors, the task can be efficiently accomplished. This job sharing is analogous to 

two men painting a room. Assuming they are equal in ability, they will complete 

the project the quickest if they have an equal number of walls to paint. Not all 

projects are so easily divided, however. Suppose the same two men are writing a 

book together. They cannot simply perform their tasks independently; they must 

communicate information back and forth to allow the book to make sense. Suppose 

ten people are trying to collaborate on the writing of a book. The communications 

could be so great as to significantly increase the complexity of the task. Many work- 

ers could take longer than a few. Programming parallel architectures requires similar 

considerations. Even division of the computational workload and minimal communi- 

cation between processors are both important factors in generating efficient parallel 

code. 

The even division of computational work is termed load balancing. Molecular 

dynamic codes are especially sensitive to load imbalances. Finite difference grids will 

see a linear increase in computations due to the density of the grid network. For a 

given geometric space, the number of grid points is directly proportional to density. 

Molecular dynamic systems, however, have a workload which is proportional to the 

square of the density. Not only are there more atoms to evaluate, there are also more 

neighboring atoms contributing to the inter-atomic forces. Since we are modeling a 
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dense mass (a liquid) in a lower density environment (even critical point densities are 

less than half the liquid densities) load balancing is an important concern. 

Careful coding of parallel molecular dynamics was therefore the approach chosen 

for the model detailed herein. This tool was envisioned to provide an informative and 

physically accurate simulation of a droplet diffusing into a supercritical environment. 

The parallel architecture would also allow larger evaluations for scaling studies. Before 

detailing the work further, a brief review of related work is provided. 

1.2    Literature Review 

At this point the reader should appreciate that the work detailed herein is mul- 

tifaceted. It involves the combining of combustion related fluid dynamics, molecular 

dynamics, and the high speed capabilities of parallel computers. Molecular dynam- 

ics, the study of substances based on modeling molecular displacements and interac- 

tions, has traditionally been utilized by chemists. Today this relatively new science 

is gaining ground in a wide variety of disciplines, including aerodynamics. The full 

background review for this thesis, therefore covers a wide array of topics. 

1.2.1    Combustion 

In 1928, Burke and Schumann [9] first introduced the concept of diffusion flame 

theoretical modeling. Their theory was very useful, although somewhat flawed, but 

did not apply to high pressure environments. Spalding [10], in 1959, and later Rosner 

[11], in 1967, addressed theoretical errors associated with many of the modeling as- 

sumptions when applied to high pressure combustion. These errors mainly stemmed 

from the erroneous assumption of quasi-steady combustion in this environment. Sav- 

ery and Borman [12] showed experimentally while Manrique and Borman [13] detailed 

numerically that steady state conditions cannot be met at the critical point. In effect, 

these early researchers detailed the breakdown in combustion theory for critical and 

supercritical environments. This lack of knowledge continues today. 

Yang et al. [14] provide a very impressive attempt at filling the void of infor- 

mation concerning supercritical diffusion in their 1994 paper. The authors describe 



a detailed analysis of the vaporization of liquid oxygen droplets into supercritical hy- 

drogen environments. Their work is based on continuum physics and the solution of a 

complete set of conservation equations. This is essentially analogous to the develop- 

ment of the classic D2 law which successfully models subcritical droplet evaporation. 

The strength of their research, however, rests on using an advanced equation of state 

which allows modeling from a compressed liquid to a dilute gas with a single property 

evaluation scheme. When supercritical diffusion begins in their model, a single phase 

analysis is used. The droplet surface is then defined as the point where the critical 

mixing temperature occurs. 

This impressive work is not, in the opinion of this author however, an accurate 

description of the diffusion dynamics. The assumption of a finite spherical control 

volume where thermodynamic phase equilibrium is maintained for the life of the 

process is a questionable premise. Subcritical droplets exist as nearly perfect spheres 

because they are minimizing the relatively large surface tension present. The tension 

exists because of the significant density variations across the droplet and surroundings 

interface. In supercritical diffusion this surface energy is very small; the droplet 

cannot be assumed to remain a sphere. Also, the authors admit that much of the 

property estimations they are using would be better met by rigorous intermolecular 

model studies. They used a more heuristic approach since the rigorous studies did 

not yet exist. As a result, future collaborative work between this paper's molecular 

dynamic research and Yang's work is very likely. 

As a close to this section, a recent review of top combustion engineers revealed 

the import they hold for attaining knowledge concerning supercritical effects. In 

the 25th anniversary edition of Combustion Science and Technology, Glassman asked 

experts in the field to predict future challenges and successes. Williams [15], Smyth 

[16], and Brezenski [17] all mention the requirement for significant advances in near- 

critical and supercritical theories. Williams includes the topic in his 'top ten' list of 

significant developments for the next 25 years. Smyth calls for a joining together of 

chemist and fluid mechanicians, and Brezenski calls 'further, enduring research' into 

supercritical thermodynamics a 'timely necessity.' 



1.2.2    Molecular Dynamics 

Evans and Hoover [18] highlight in a 1986 article that Fermi began Molecular 

Dynamics studies in 1955 with 16 particles, but by 1984, a 'world record' simulation 

of 161,604 particles was performed. Just ten years later, Beazley and Lomdahl [19] 

modeled 600 million particles (but for only a few time steps). While this sounds very 

impressive, the time to run such a simulation is still extraordinary. Large systems are 

on the horizon, but many important smaller studies should not be overlooked. 

Molecular dynamics has been used to support chemistry and biology research 

for many years. In 1994, Cummings [8] discussed the work he was aware of in the 

fields of near-critical and supercritical MD modeling of fluids. All of his references 

involved dilution studies of a small number of solutes in a relatively large near-critical 

solvent. The solute models were on the order of single particles while the solvents 

were modeled with approximately a thousand. The solvent populations were large to 

appropriately model the long range effects present at the critical point. 

Cummings recommended using model sizes at least twice the size of the cor- 

relation length, the length of significance on the radial distribution plot (see figure 

1.3). To estimate this size he also recommended Sengers and Levelt Sengers [20] 

approximation of 

£ = £o|AT*r (1.1) 

where the dimensionless parameter, AT*, is defined as 

T     . 
AT* = 

T c 

and for Argon 

fo = 0.14 x 10~9 meters 

v = 0.63 

This formulation is based on the theory of universality (all substances behave identi- 

cally at the critical point), and the assumption that along a critical isochore, p = pc, 

power law expansions of thermodynamic properties can be set as functions of AT*. 
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Figure 1.3. Correlation length. The correlation length is the distance to the point where the structure 
shows no order. This plot is indicative of the long orders of near-critical structures [20]. 

The term v is a critical exponent of the power law expansion while £0 is the ampli- 

tude of the asymptotic power law for £. Equation 1.1 is considered valid only for 

0.9 < J < 1.0. 

Note, the correlation length, £, is undefined at the critical temperature. This 

seems to imply that going through this point would require infinite MD model sizes. 

But Cummings notes that his own work on aqueous systems have shown that these 

long-range effects due to nearness to criticality are secondary to the short-range sol- 

ubilities. So while the long correlation lengths near the critical point require careful 

modeling of sufficiently large environments, they do not negate the utility of molecular 

dynamics for this study. 

Chemists have also simulated droplets through MD. Most notably, Thompson 

et al.[21] have investigated droplet curvature effects at both Cornell and Oxford. 
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The two studies both involved small simulations (58-2048 atoms) modeled using the 

Lennard-Jones potential at subcritical conditions. A useful concept was used by 

Thompson, however, to define liquid structures during the simulation. The Cornell 

study defined their droplets using a computationally expensive clustering algorithm, 

but the Oxford study tracked the number density within the cutoff radius for each 

atom. Both methods yielded very similar final results. This is important because the 

near atoms number technique is relatively inexpensive to implement. An interesting 

sidelight, the study group also used a boundary condition of a closed spherical shell 

with externally applied repulsive walls. 

Maruyama [22] essentially duplicated Thompson's work, but used the Oxford 

droplet definition technique exclusively and included a droplet model of water. Mat- 

sumoto et al. [23] and Ohara and Aihara [24] are two more recent similar works. All of 

these studies were performed within the subcritical regime for surface investigations 

and used relatively small models. 

Koplick and Banavar [25] are physicists who just last year, 1995, published a 

work detailing several areas of interest in MD simulations, including droplet modeling. 

Again, the scales were relatively small, however, and based on subcritical models. 

William G. Hoover from the Department of Applied Science at UC-Davis, has 

been driving engineers toward MD simulations since the early 1960's. His areas of 

interest lie mainly in MD simulation of gas flows, but a short description of his work 

[26], written in 1992, relates some interesting perspectives. His current direction is 

geared toward the 'combining of atomistic and continuum mechanics.' He plans to 

utilize MD in appropriate model areas and Lagrangian mechanics elsewhere. 

As detailed in this section, a great deal of supercritical MD simulations and sub- 

critical MD droplet studies are in progress. There are no sources, however, detailing 

the study of droplet evaporation in supercritical environments. 

1.2.3    Parallel Methods for MD 

Molecular dynamics simulations are valuable tools, but they are computation- 

ally demanding. Also, as noted, the study of supercritical diffusion requires models 

which are large enough to avoid an overlapping of critical point long range structures. 
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As a result, this study requires efficient coding on powerful computer architectures. 

Specifically, the capabilities of the IBM SP2 parallel computing platform were utilized. 

One of the requirements for efficient parallel operations is the even loading of 

the computations across all the processors. Even with the relatively high densities of 

supercritical environments, the load imbalance on the various parallel processors due 

to density variations can become significant. As mentioned, the computational load 

is proportional to the square of the density. For a typical case, the density of the 

droplet is five times greater than the surrounding environment. So, for this example, 

the computational load in the liquid region is twenty-five times greater than in the 

surroundings. In response to this significant imbalance a load balanced parallel code 

was developed. 

The algorithm described in this thesis was developed based on particle parti- 

tioning. Literature searches have uncovered several groups which developed this same 

concept over the past few years. Sato et al. [27] developed the concept on the Fujitsu 

AP1000 in 1992. They detail in their paper the load balancing advantages and the 

communications costs associated with the technique. They also predict the lack of 

scalability for large numbers of processors. Several papers by Brown et al. [28] [29] 

[30] detail the development of both particle and spatial decomposition algorithms. 

They, also, use the AP1000. Much of their work involved polymer modeling, and the 

inherent density variations in such structures made the particle decomposition model 

attractive. Kalia et al. [31], like the Brown group, developed both types of models. 

They preferred the spatial decomposition model, although for their small systems, 

both worked equally well. Their preference is based on predicted scalability. 

Beazley and Lomdahl [19] discussed the utility and scalability of the spatial 

domain decomposition approach. They have modeled very large systems (from 1 to 

600 million particles) with nearly perfect scalability on the CM-5. They do allude, 

however, to the problem of inefficiencies due to lack of load balancing for asymmetric 

problems. Also the modeling of such large systems is still a prohibitively slow process. 

Plimpton [32] reviews both the particle and spatial decomposition techniques 

in his 1995 article.   He provides an excellent description and details several other 
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research efforts conducted since 1988 utilizing various forms of the particle decom- 

position approach. He also proposes a new method called "force decomposition". 

Combining the load balance capabilities of the particle decomposition approach and 

better scaling capabilities for large numbers of processors, the force decomposition 

technique looks promising. For the resources readily available on the SP2, however, 

the particle decomposition approach proved the most useful. Further comparisons of 

these approaches will be provided later. 

As noted, a great deal of work has been performed in the areas of supercritical 

combustion, molecular dynamic modeling of droplets, and parallel coding of molecular 

dynamics. The modeling, however, of supercritical combustion utilizing molecular 

dynamics has, to the author's knowledge, never before been attempted. Also, the 

study of systems large enough to substantiate scaling of the results to physically 

meaningful sizes is without precedence. The present work represents a first step 

toward a reliable and accurate model of supercritical and near critical combustion 

processes. In light of the call by combustion engineers for increased understanding 

and modeling capabilities in this area, the research detailed here appears quite timely. 

1.3    Thesis Scope 

The complete modeling of the combustion of real fuels in supercritical environ- 

ments is presently beyond any single work. As previously mentioned, the diffusion 

of the fuel into the oxidizer environment drives the rate of combustion. So, the first 

step toward meeting this challenge of modeling supercritical combustion consists of 

developing an understanding of the evaporation in the high temperature and pressure 

environment. To this end, the research scope in this paper is limited to investigating 

the evaporation process. To simplify the study, yet still provide an important base 

for future research, the simulation is also limited to modeling the diffusion of a liq- 

uid droplet into a variety of subcritical and supercritical environments of the same 

monatomic element. The element chosen for study is argon. Having a molecular 

weight similar to an actual fuel, oxygen, and also having been extensively studied 

using molecular dynamics in the past, this is a natural choice. 
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The dynamic process of supercritical diffusion is poorly understood. To maxi- 

mize the reliability of the results generated by this work, a minimum of simplifying 

assumptions are included. Three-dimensional molecular dynamic codes were devel- 

oped for the transient studies. Periodic boundaries are utilized but to avoid boundary 

induced effects, the more spherically shaped truncated octahedron boundaries are in- 

corporated. Also, since the surface tension is an important consideration, significant 

care is taken to ensure a proper initial condition of an equilibrated droplet in a su- 

percritical environment. Details of the means of achieving this are provided later. 

While a great deal of effort was expended to provide an accurate simulation of 

the droplet diffusion, the size limitations due to the large computational load allowed 

only the simulation of micro-scale droplets. The diffusion process is typically assumed 

as a surface phenomena. Since the surface energy of a droplet has been found to exist 

within only a few atomic diameters, the driving physics should still be present even in 

micro-scale investigations. To substantiate the validity of the work for large systems, 

a scaling study was also performed. 

Before proceeding with the detailing of the work performed to meet the scope 

just defined, a review of molecular dynamics is provided. The following chapter covers 

fundamental concepts which were utilized to develop the simulation codes. Emphasis 

is placed on the description of techniques required to efficiently model large spherically 

symmetric systems. 

More detailed molecular dynamic coding requirements are presented in Chap- 

ter 3. The implementation of parallel molecular dynamic algorithms is discussed. 

Also, details of an efficient coding of a spherically shaped boundary and a description 

of the informative code output are both provided. A unique method of dynamically 

tracking droplet surface energies is introduced here. 

Chapter 4 provides a review of the unique aspects involved in the simulation of 

the supercritical diffusion process. Included is the previously mentioned explanation 

of the initializing process. This involves the independent modeling of droplets and 

environments to equilibration and then carefully fusing them together to retain the 
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surface energy. The chapter concludes with a description of a thermal control imple- 

mented during the long diffusion simulation. This is required to counter the latent 

heat effect of the evaporation process. 

The results chapter begins with a review of code performance statistics. Com- 

pared to some of the best molecular dynamics codes on a variety of supercomputing 

architectures, the code developed for this supercritical study proved quite capable. 

This chapter continues with an analysis of both subcritical and supercritical diffu- 

sion simulations. The results show anticipated processes for the subcritical cases and 

very insightful patterns for supercritical diffusion. Promising results from the scaling 

research are included in this chapter as well. 

As mentioned, this study is a first step toward an overlying goal of analyzing 

supercritical combustion. The final chapter, therefore, outlines both the work detailed 

herein and some related on-going efforts. The anticipated future direction of the 

research is also discussed. 
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Chapter 2 

MOLECULAR DYNAMICS 

The research supported by the codes presented here involves the molecular 

dynamic modeling of liquid droplets evaporating in gas environments. Reed and 

Flurchick [33] highlight the inefficiencies associated with using continuous potential 

(also termed soft sphere) molecular dynamics to model the gas phase. The problems 

stem from the low incidence of collisions. In environments near and above the critical 

point, however, the gas phase is very dense and the collision frequencies are much 

greater than in typical gas evaluations. For this reason, the codes were developed 

using soft spheres exclusively. This section of the report will correspondingly review 

continuous potential molecular dynamics. 

2.1    Displacement Equations 

The displacement of each atom in a molecular dynamic simulation is simply 

based on Newtonian particle dynamics. The atomic accelerations are a direct func- 

tion of inter-atomic forces. These forces are conservative (non-dissipative) and are 

therefore computed as the negative gradient of the potential energy function between 

two atoms. 

Py = -Vtiö = -^fy (2.1) 

In other words, any removal of potential energy, -du, is transferred without dissipa- 

tive losses to work performed on the atoms, F • dr. So knowledge of the potential 

between two atoms allows the analytical measure of atomic displacements. 

The dashed line plot in figure 2.1 is the potential function as recommended by 

Maitland and Smith [34] for two argon atoms; no other atoms are present. Of course 

an atom within a liquid has numerous neighboring atoms influencing the potential 
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field at any given instant; the interactions are not simply limited to colliding pairs. 

Under these conditions the pairwise potential would seem to be inadequate. 

The solution stems from a common simplifying assumption for soft sphere inter- 

actions: the potentials are considered 'pairwise additive' [35]. This means the force on 

an atom, due to interactions with surrounding neighbors, can be computed by sum- 

ming the interactions with each neighbor alone. In other words, the force between 

two particles is considered independent of any other particles present. In essence, the 

problem is solved by merely assuming it away. In practice, however, a more scientific 

approach is applied. 

To enhance simulation accuracy the potentials chosen for liquids are modified. 

The pairwise assumption is applied in the codes presented in this work by using an 

'effective' Lennard-Jones 12-6 potential. The solid line in figure 2.1 is the effective 

potential for argon recommended by Allen and Tildesley [36]. As shown, this effective 

potential is adjusted slightly from the best estimate for pure pairwise interactions. 

This shifting is based on empirical liquid studies and is an attempt to account for 

multiple neighbor effects on the potential. 

This potential, first introduced by J.E. Lennard-Jones in 1924 [35], is analytically 

represented by 

uy"(ry) = 4e[(a/ry)ia - {a/r^f} (2.2) 

where 

ry = 1^-^-1 (2.3) 

is the separation distance between atoms i and j. The potential equation contains 

both short-range repulsion and long-range attraction elements. The exponent of six 

is based on dispersion theory and the twelve is simply chosen to match observed 

behavior. The value of a is the separation distance at zero potential (approximately 

equal to the atomic diameter) and e is the depth of the well on the plot. The values 

ofe/kb — 120-K" and a = 0.34nm, as just indicated, are based on reaching agreements 

with experimental liquid argon studies. 
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Figure 2.1. Argon pair potentials. 

As mentioned, the force on one atom due to another is the gradient of the 

potential function. Applying this to the Lennard-Jones potential (equation 2.2) yields 

24e 
Fij = —[2(a/rij)

l2-(a/rij)
6]Tij (2.4) 

' ij 

and noting that 

Ltj 

LIJ 

'*j 

(2.5) 

allows the forces to be computed as 

24e 
Fy = -3-[2(a/ry)u-(ff/ry)6]ry (2.6) 

i] 
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Lennard-Jones Pair Potential and Force 

interatomic pair potential 
interatomic pair force 

Figure 2.2. Lennard-Jones potential and force. 

Pairwise additivity is assumed, and the resultant force on atom i is simply the sum 

of all the pairwise forces due to the surrounding j atoms. 

N 

Fi = £ Fy (2.7) 

The relationship of the force to the potential is shown in figure 2.2 from Haile 

[35]. The reader should note that at a separation distance of \f2o the inter-atomic 

force shifts from a relatively weak attraction to a very strong repulsion. This is the 

mathematical representation of the energy well where the atoms in a solid lattice will 

reside. Many of the atoms in a liquid structure will also be found at this inter-atomic 

distance. 

Focusing back on the displacement formulations, the reader is reminded that 

Newtonian particle dynamics is used to determine the atomic motions. The force on 
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each atom is found from equations 2.6 and 2.7. Utilizing Newton's Law, F = ma, 

allows the computation of the acceleration of each particle directly from the force 

components. Assuming this acceleration is constant across a given time increment 

(on the order of 10-15 seconds), simple explicit finite differencing yields 

«£+1=«£ + At.a£ (2.8) 

At2 

ri^
l=ri

n
x + At-vi

n
x + — -ai

n
x (2.9) 

where r^, V{x and a^ represent the ^-components of position, velocity and accel- 

eration for each displacing atom. Identical equations would result for the y and z 

components. These can be used to update each atom's velocity and position respec- 

tively over the time increment, At. Once the displacement is computed, the entire 

process of computing inter-atomic forces and the particle displacements can be re- 

peated for the next time step. So a deterministic model of molecular motions can be 

developed using these fairly straight-forward equations. 

The last paragraph is actually an oversimplification. Using such a simple finite 

differencing of Newton's law will often result in a non-stable molecular dynamics code. 

Allen and Tildesley [36] discuss the relative merits of three algorithms all designed 

for stability. The one selected for this work is a modification of the velocity Verlet 

algorithm, the one most highly recommended by Allen and Tildesley. 

The velocity Verlet detailed by Allen and Tildesley is 

At2 

TiT1 = r£ + At-v£ + — - a£ (2.10) 

UIX Ulx   >     o lx 

At 
2 

„n+l _ ...  n+i   ,   A^        n+1 vix       — vix      2 + ^T    a%x 

where /(r^+1) refers to the force computation function of equation 2.7. This finite 

difference form adds stability by making the velocity computation semi-implicit. Half 
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of the velocity update is computed using the acceleration at the previous time step. 

This is an explicit formulation. The solution of the velocity is completed, however, 

using the updated acceleration value. This step-wise solution of the velocity makes 

the algorithm very stable, but still quite simple. 

The modification used in the present work is simply a reordering of the steps to 

remove the necessity to save acceleration information between time steps. Assuming 

the initial position is at time step n +1 and the initial velocity is at n+ \, the formula 

details as follows 

a. n+l    ff^n+l f(r?n (2.11) 
At 

?..n+l _ „.  n+i   ,   ±±i .     n+l 
uix —  UIX ^     O %* 

At2 
_ n+2 _     n+l   ,   A/ .     n+l   ,   til. . n.n+l rix       — rix      + /Al    Vix      +     9 lx 

3 „_,_,        At n+4 _ ,, n+l _,_ ^ . „ n+l 
2 "5 = ViT + -7T * a>* 

This does not change the accuracy or stability of the algorithm; the computations 

are identical. The change simply reduces the memory requirements and array access 

workloads since the acceleration is discarded between time steps. 

2.2    Numerical Efficiency 

Regardless of the specific displacement algorithm chosen, the bulk of the model 

computations will be found in the force evaluations. At the elementary level, each 

atom will see a pairwise contribution from every additional atom in the system. This 

equates to an order of N2 computations (0(N2)), where N is the number of particles 

in the system. For models of more than a few thousand atoms, this level quickly 

exceeds the capabilities of the largest supercomputers. Fortunately, there are several 

simplifying assumptions and techniques available to reduce the 0(N2) workload. 

Close inspection of figure 2.2 reveals that the attractive force reduces asymp- 

totically to zero. For argon, the force becomes negligible at distances of just 2.5 a. 

At a liquid density, the number of neighbors which fall within this cutoff radius is 
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on the order of fifty. So, even for a dense system, the force computation reduces to 

O(50iV). This alone appears to solve our problem, but there is still a factor driving 

the force computations to 0(N2). 

The efficiency of the force cutoff just mentioned can only be applied if the 

neighboring atoms are identified. The computations required for this are 

rijx=rix-rjx (2.12) 

rijy = riy ~ riv (2-13) 

Tijz = riz - rjz (2.14) 

^ = 4+4+4 (2-15) 

where if, can be compared to the square of the cutoff radius. While there are only 

eight operations here, they still must be applied for all pairs of atoms. Therefore this 

0(N2) distance check will dominate the computation load. 

Verlet proposed in 1967 a neighbor list approach [37] where the 0(iV2) search 

is performed to generate an array set containing neighbor identifications. This set 

consists of a pointer array, with an element for every atom, and a list containing the 

complete set of neighbors for every atom. The pointer values direct the search to 

the starting locations in the neighbor list of a set of atoms within an enlarged cutoff 

radius, rust (see figure 2.3). This list array requires significant memory resources, 

but it remains useful until an atom traverses the gap between the cutoff and the list 

radii. During this period the 0(N2) computations are avoided by using the list as an 

alternate source for neighbor candidates. 

A large list sphere appears desirable; the number of time steps elapsed before 

an atom passes through the list gap is greater. But every step still requires a cutoff 

check. If the list radius is too large, the sampling cost becomes prohibitive. For 

simulations of monatomic liquids, a value of 2.8a yields the best performance with 

an update frequency of around twenty steps. In short, while the technique reduces 

the workload, the 0(N2) problem remains, and the size of the neighbor list array can 

become problematic regarding computer memory requirements. 
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Verlet Neighbor List 
The additional volume 
defined by the outer 
radius allows the 
generation of a list 
to replace the N2 search 
over several time steps. 

Figure 2.3. Verlet neighbor list. 

In 1975, Quentrec and Brot [38] reduced the problem to O(N) by griding the 

spatial domain into cells whose sides are equal in length to the cutoff radius. The 

particles are then tagged in a set of cell arrays based on their computed locations. 

Figure 2.4 shows the grid concept. The generation of the cell arrays, headO and 

llistO, for an m x m x m grid is performed as follows 

msq = m*m 
mcube = m*msq 
rm = real(m) 

do 10 icell=l,mcube 
head(icell) = 0 

10 continue 

do 20 i=l,N 
icell = 1 + int(rx(i)*rm/boxlength + rm/2) 

+ int(ry(i)*rm/boxlength + rm/2) * m 
+ int(rz(i)*rm/boxlength + rm/2) * msq 
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Figure 2.4. Linked list grid structure. The grids are numbered in ascending order along x, y and 
z coordinates respectively. The cutoff sphere for the atom in cell 44 is fully covered using the 
highlighted 27 cell substructure. 

llist(i) = head(icell) 
head(icell) = i 

20 continue 

The boxlength is the length of a side of the computational domain and the int() 

function uses the conventional rules of Fortran 77 integer truncation. This is an 

O(N) task, and, once performed, limits the search pattern to a particle's cell and the 

twenty-six surrounding cells. 

This technique is designated 'linked list' by Allen and Tildesley [36]. The termi- 

nology refers to the linking of the list array with the head array during the neighbor 

search. The head array, with an element for every cell, contains the largest atom 

number within each cell (or zero if there are no atoms). The list has N elements and 

acts as a self-pointer to the next lower atom number. If there are no atoms left in 

the cell, the list value will be zero. This search technique is illustrated in figure 2.5. 

As evidenced by the relatively small array pair, an additional benefit associated with 

this approach is the efficient use of memory to track the neighbor locations. 
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Figure 2.5. Linked list array set. The header gives the first atom number in the cell and points 

to the location in the list of the next atom number. The list then acts as a self-pointer for the 

remaining atoms in the cell. 

While the linked list is a significant enhancement over the Verlet neighbor list, 

it does have a drawback. The size of the inspection volume for cutoff checks is 

Vunked = (3rcut)   = 27r( 
list 

3 
cut (2.16) 

The cutoff volume, however, is only 

Vcutoff -irr, cut 4.2r cut (2.17) 

So the inspection volume is six times larger than necessary. By contrast, the in- 

spection volume for the optimal monatomic Verlet list is 5.9r;?uf, only 40% greater 

than the cutoff volume. As mentioned, however, the neighbor list concept requires an 
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0(N2) update. For large systems, the linked list approach is therefore superior, but 

one further refinement is still available. 

The solution to the drawbacks of both the linked list and the Verlet neighbor 

list is interestingly found by combining them. The linked list cells can be set to the 

size of rust (~ 1.12rcut). This increases the inspection volume to 38r^ut, nine times 

larger than desired. But the generation of a Verlet list during the initial pass delays 

the update of the linked list for twenty steps. Also, for liquid structures, this linked 

list workload is O(450iV). So for systems of 500 atoms or greater, the inclusion of the 

linked list removes the 0(N2) search of the neighbor list. 

Since the systems modeled herein range in size from 20,000 to over 350,000 par- 

ticles, this combined approach is utilized. The inclusion of the neighbor list, though, 

for these large cases presents a memory management challenge. The parallelization of 

the technique provides the solution; details of this are provided in the next chapter. 

So the handling of large simulations on parallel processors appears attainable. 

The simulation size does, of course, have a limit, and this limit is still very small from 

a physical standpoint. The inclusion of simulation boundaries which allow the most 

efficient use of simulation volume is, therefore, very important. The following section 

details both general MD boundary conditions and a more unique boundary chosen 

for the work presented herein. 

2.3    Boundary Conditions 

The study of droplet diffusion does not require the evaluation of solid bound- 

aries. In fact, to reduce the effects on the diffusion simulation, a solid wall would 

require a larger domain (by as much as twenty atomic diameters [35]). Instead, a 

common boundary condition used in molecular dynamics is the periodic boundary. 

This boundary technique is utilized throughout the work presented herein. 

Figure 2.6 demonstrates how this approach models a system as an infinitely 

repeating physical domain. If a molecule is close to the right side of the domain, it 

will see the molecules on the left side as neighbors. Also, if a molecule leaves the 

physical domain, it will re-emerge on the opposite side. This approach does not, 

however, remove the need for systems large enough to model the long-range order of 
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Figure 2.6. Periodic cubic boundaries. 
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supercritical fluids. If the long-range order wraps over upon itself the simulation will, 

of course, be invalid. 

For the large systems required, periodic boundaries can become costly. The 

determination of the re-imaging of the displaced atoms is relatively cheap; this is 

performed outside of the force loop. We are not so fortunate, however, with respect 

to the inter-atomic distance corrections. The required logic is simply 

' IJz 

'%3, 

'*3z 

'Vx 

' *J* 
Jbox 

Tijx T L'box 

= < 

'l3y 

box *3y 

.   rijy   '   Libox 

fijz 

'Vz L, box 

Tijz "r i-ibox 

II 2    b°x       ^"iJz 2    b°x 

if    -hLi 
Vx 

2*Jbox ^ ^"ijx 

"■ 2    box ^ ^~ijy       "■" 2    box 

if      +2Lbox < fijy 

n 2    b°x       ^~ijy 

if    -\Lhox < rijz < +\Li 

if      +öLbox < rii. 

'box 

II        ~2~lJb0X > T; l3z 

(2.18) 

(2.19) 

(2.20) 

The coding is straight forward, but this check must be applied to all pairs prior to 

computing the force interactions. It is part of the step where the potential cutoff 

determination is made. As noted in the previous section, just a few operations during 

this highly repetitive section are very costly. The logic in equations 2.18 to 2.20 

is equivalent to about thirty operations on the SP2 for every inter-atomic distance 

check. So removing this load from the simulation, or at least reducing its impact, is 

highly desirable. 

A partial solution to this problem has been developed and incorporated into the 

codes presented herein. Each code includes a cell map which allows the logic to be 

cell aware. All cells on the boundary include the costly logic, but elsewhere the steps 

are left out. Since the cells are at least the dimension of the potential cutoff radius, 

interior cell atoms will not experience a cross boundary interaction.  In effect, the 
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Figure 2.7. Truncated octahedron computational domain. 

additional logic normally required in the interior cells is determined and included in 

advance in the cell map. 

Before leaving this section, there is one more concern to cover. The periodic- 

ity demonstrated in figure 2.6 is for the most common boundary used in molecular 

dynamics, the cube. Since the work presented herein involves a process which pre- 

dominantly occurs on the droplet surface, spherical periodicity is preferred. This 

would allow an even distance between the droplets and therefore balance any image 

effects. Also, this shape would maximize the droplet image distances (and therefore 

minimize image effects) for a given environment volume. Unfortunately a sphere is 

not a periodic shape (i.e. cannot be used to tile a 3-D space). There are other 

boundaries which are available, however. 

A boundary condition termed the truncated octahedron comes much closer then 

the cube to representing the desired shape.  The truncated octahedron is shown in 
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figure 2.7. The included sphere in a cube accounts for only 52% of the cube's volume. 

So nearly half of the environment volume is wasted additional simulation. For a 

truncated octahedron, the included sphere requires 68% of the simulation volume. 

Perhaps even more important, the truncated octahedron has a much more desirable 

image ratio. This term refers to the ratio of the largest to the shortest distance 

between periodic images. The optimum value to reduce the effect of the periodicity 

on the simulation is one. For a cube this is the ratio of the cross-diagonal to the 

length of a side, 1.73. The truncated octahedron has an image ratio of just 1.29, by 

far the best of all the known periodic boundary candidates [39]. 

The periodics of the truncated octahedron shape, however, are not as easily 

understood as the cubic periodics. This latter form places the drops in a cubic 

lattice orientation in space. The truncated octahedron places them instead in a 

body-centered layout. Figure 2.8 shows the honeycomb three-dimensional pattern 

of the body-centered periodic images by displaying four images on top of a layer of 

nine. The shapes are still periodic on all six axis faces. This fact is more clearly 

seen when only one layer of the honeycomb is viewed in figure 2.9. When an atom 

crosses a hexagon plane, however, it must enter the next layer of the honeycomb. 

Figure 2.10 represents this by detailing only the movement of the atoms from the 

back layer (solid lines) to the next layer (dashed lines). The atom, of course, does 

not actually move outside the domain when it crosses the hexagon plane; instead it 

re-images cross-diagonally. (Further details of this re-imaging are provided in the 

next chapter.) 

This periodic boundary also has an even more adverse affect on the computa- 

tional load. The logic to correct the inter-atomic distances is a two step process [40]. 

The first is identical to the cubic boundary where the interactions crossing the axis 

planes are checked using equations 2.18 through 2.20. The additional step involves 

the correction across the hexagon planes. The required logic is 

if {hjj + \rijy\ + \rijz\} > \Lbox then (2.21) 



30 

Figure 2.8. Truncated octahedron periodic structure. 
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Figure 2.9. Truncated octahedron axial periodics. The particles still re-image across planes perpen- 
dicular to the x, y and z axes. 
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Figure 2.10. Truncated octahedron cross-quadrant periodics. Atoms which cross the hexagon planes 
of the periodic shape re-image in the opposite quadrant. 
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The Fortran sign function can be used to reduce some of this logic as follows 

if((abs(rxij)+abs(ryij)+abs(rzij)).gt.(.75*boxlength)) then 
rxij = rxij - sign(.5*boxlength,rxij) 
ryij  = ryij  - sign(.5*boxlength,ryij) 
rzij  = rzij  - sign(.5*boxlength,rzij) 

endif 

But this is still an additional workload added to the expensive force loop. 

An effective work-around of this additional computational load has been devel- 

oped as part of this research. Cell aware coding is again utilized, but the solution is 

also based on the ability to include both the main truncated octahedron boundary 

and all of the cross diagonal image volumes within a single cubic shape. The linked 

list array can then contain image data in addition to the primary information. Details 

of this unique approach are reserved for the next chapter. 

This has been a brief introduction to the concepts associated with molecular 

dynamics modeling. In short, the primary computation workload is associated with 

determining the force on each molecule. Periodic conditions remove wall effects, but 

do not remove the need for systems large enough to include any long-range orders 

present. Also, special techniques, such as the linked list sorting, have successfully 

reduced the computational requirements to O(N); thus allowing larger scale evalua- 

tions. No mention has been made of parallel molecular dynamic coding. This subject 

and other detailed concepts directly related to the problem at hand are pursued next. 
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Chapter 3 

CODE DEVELOPMENT 

There are numerous established codes available to perform molecular dynamic 

simulations. Most of these are very complex programs utilized mainly by chemists 

to investigate molecular structures and interactions of complex molecules. Amber 

[41], for example, is actually a series of programs which includes a detailed force field 

library. Containing recently updated fields for proteins and nucleic acids, the code is 

intended for biomolecular dynamics. Such complicated force fields are unnecessary for 

the present work; the potential functions for argon are well established and straight- 

forward. There are challenges, however, associated with this research for which the 

solutions were not well versed. Properly handling the spherical geometry of the 

initial droplet condition, dynamically visualizing the shape and temperature profile, 

and determining the effect of the supercritical environments on the droplet surface 

tension were all challenges of this nature. In pursuit of their solutions, an in-house 

code development ensued. 

This chapter details the unique approaches which were included in the resultant 

code. From the start, parallel strategies were utilized to provide enhanced speed for 

large systems. A discussion of a variety of parallel techniques is therefore presented. 

The previous chapter discussed the solution of using truncated octahedron boundaries 

to properly model the spherical nature of the diffusion. The discussion is continued 

here with a description of the means of efficiently implementing such boundaries in the 

simulation code. This chapter concludes with a detailing of property computations. 

A variety of information is generated. Among the highlights is the ability to track 

the interior droplet structure during the simulation. Also a dynamic measuring and 

visualizing of the density, the temperature and the surface tension provided important 

insight concerning the diffusion process. The measuring of the surface tension is, as 

far as the author is aware, a unique method. 
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3.1    Parallel Aspects 

Molecular dynamics simulations involve very large computation loads. Every 

atom in a liquid simulation interacts with an average of fifty neighboring atoms at 

each time step. Also, the accurate modeling of the collision dynamics is an essential 

ingredient required for simulation accuracy. Since these collisions occur over very 

small time frames, the temporal discretization requires step sizes on the order of 

only a few femtoseconds (10~15 seconds). The large loads, both incremental and 

overall, would seem to make molecular dynamics a very good candidate for parallel 

computations. The unstructured nature of MD, however, significantly complicates 

the achievement of efficient performance. 

Many traditional computational models of fluid flow are established from the 

Eulerian view. In other words, the flow is investigated from a series of fixed com- 

putational windows as it moves through the simulation. This allows the setting of a 

stationary series of discretized points in space for the evaluation. If there is a high 

density point of interest, the discretization is compressed here, but the points are still 

predetermined. When such evaluations are structured for parallel coding the natural 

decomposition of the workload is spatially based. This allows an even loading of the 

computations with the spatial zones assigned equal numbers of grid points. An added 

benefit from this division also results. The communications between processors are 

proportional to simulation areas. This will be shown shortly to be very beneficial. 

One approach to parallel molecular dynamics is based on the same spatial de- 

composition, or at least almost the same. Fixed simulation volumes are selected as 

computational boundaries. Denser regions, as before, can be split into more numerous 

zones. But now each atom represents a modeling point, and these points are floating 

through the simulation. Not only are the MD grid points, the atoms, communicated 

as neighbors across the computational boundary, they also can actually move into 

a new processing volume. This complicates the coding but does not eliminate this 

decomposition approach as a viable parallel tool. The communications are still area 

based and a study by Plimpton [32] shows this approach to have the greatest poten- 

tial efficiency for MD modeling. There are two other approaches, however, that have 

more desirable characteristics for the problem detailed herein. 
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The other decomposition strategies are termed "atom decomposition" and "force 

decomposition" by Plimpton. Within this paper, atom decomposition will also be 

called particle decomposition interchangeably. As just mentioned, the spatial decom- 

position approach offers the most promise for efficient parallel computations. The 

code developed within this paper, however, does not use spatial decomposition since 

it would have poor load balancing. 

The computational load for molecular dynamics has already been established 

in the previous chapters as proportional to the square of the atomic density. So, 

unless the system is uniformally dense, processors cannot simply share the same size 

geometries to evenly share the load. Setting variable geometries to ensure the same 

number of atoms in each space is not enough; the average density in each region must 

be the same. Even if an initial balance is established, just a small shift in density 

profiles can be seriously detrimental. Remember the load is not simply density based, 

it is proportional to the square of the density. Since the problem at hand consists 

of a dynamically changing density profile, alternatives to the spatial decomposition 

approach were investigated. 

Particle decomposition was the technique ultimately used. Although originally 

envisioned as a unique approach, the first chapter noted that many other researchers 

have independently begun using essentially identical decompositions. Perhaps the 

reasons for this spontaneous development are twofold: load balancing is achieved and 

the technique is easy. The following paragraphs review the approach. 

In an attempt to develop an evenly loaded code, the balancing of the average 

density for each processor for the life of the simulation was pursued. As a first step, 

each processor was assigned an equal number of atoms for displacement computa- 

tions. As mentioned, this alone is not sufficient. If, however, the initial assignment 

is performed with a uniformity of atoms across all density profiles, the configuration 

ensures balance. This concept is depicted in figure 3.1. A central slice of data from 

an actual simulation run is presented. As shown, the average density profiles across 

the processors are nearly identical. The similarity ensures an even computational 

balance since the squares of each partition's density are essentially equal. 
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Figure 3.1. Atom decomposition. The central image is a slice of data from a simulation of a 27,000 
atom drop in a 64,000 atom environment. The simulation is modeled across eight processors and 
evenly balanced as shown. 
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Figure 3.2. Cell map order. The progression from the dense center outward allows the setting of the 
initial load balance. 

The initial balance could be set using a random selection, but the cell map 

structure mentioned in the previous chapter provides a more certain method. Figure 

3.2 shows the order in which atom displacements are computed for the truncated 

octahedron shape. The linked list cells are stepped through an expanding staircase 

structure from the dense interior of the simulation outward to the low density sur- 

roundings. Using this same order, the initial atoms can be assigned evenly across the 

processors by a simple distribution. An additional benefit is the ability to reload a 

simulation onto a different processor set level if desired. A run begun on eight nodes, 

for example, could be restarted on thirty-two and still be perfectly balanced across 

the expanded set. 

This balance could also be initially set for spatial decomposition algorithms as 

well by using variable sized geometries. The strength of the new approach, though, 

is that as the simulation progresses, the average density profile is maintained by the 

chaotic nature of the atomic motions. If statistically high enough numbers of atoms 

are assigned to each processor, the profiles will remain similar for each partition. In 

other words, there is no driving atomic force which would cause one processor to see, 

on average, any different profile than the others. 

The particle decomposition technique therefore solves the problem of load bal- 

ancing with apparent ease. There is still a challenge, however, associated with this 

approach. If the atoms assigned to each processor consist of a set that are found 

uniformally across the entire physical domain of the simulation, then the atomic 
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neighbors also reside throughout the system. The location of these neighbors are 

required for the simulation. Determining upon which processor each neighbor resides 

is seemingly an insurmountable problem. There is, however, a simple solution for this 

as well. 

If each processor contains the complete global set of atomic positions then the 

problem disappears. The determination of which processor displaces a neighbor is 

irrelevant; only the location of the neighbors is required. After each time step, the 

algorithm therefore communicates atomic positions across all the processors. This sets 

the global position array and readies the simulation for the next series of displacement 

computations. The communication loads associated with this step, however, generate 

a cost which is not so easily avoided. 

The logic required to perform the communication is actually quite simple. Global 

message passing tools are available to achieve in just a few lines of code the required 

process. The Message Passing Library (MPL) found on the IBM SP2 provides the 

following concat command 1 

call mp_concat(rx,grx,npr8,allgrp) 
call mp_concat(ry,gry,npr8,allgrp) 
call mp_concat(rz,grz,npr8,allgrp) 

These three simple lines of code transfer the local position arrays, rx, ry and rz, into 

global arrays, grz, gry and grz, which are then communicated across all processors. 

The npr8 variable communicates to the system the size of the arrays and allgrp is 

a processor group designation. This is graphically represented in figure 3.3. 

This division of local and global arrays is also easily incorporated into the linked 

lists and Verlet neighbor lists. For the linked list, local head and list arrays are 

generated using the rx, ry and rz local arrays while global linked list arrays are 

generated using grx, gry and grz. The displacing atom coordinates are found using 

the local lists while the neighbor candidates are determined using the global linked list 

set. The Verlet list is even easier. In fact, the inherent memory saturation problem of 

this list is actually resolved by the parallel technique. The neighbor list is generated 

*An equivalent call in the parallel standard Message-Passing Interface (MPI) library is the all- 
gather operation [42]. 
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Processor.. 
...1 ...2 ...3 ...4 

rxl rx2 rxS rx4 

CALL MP_CONCAT(rx,grx,npr8,allgrp) 

8rxi 8rx2 8r
x3 8rx4 

rx, rxl rx, rxl 

Vx2 rx2 rx2 rx* 

rx3 rx3 ''I 
rx3 

rx4 Tx4 Vx4 rx4 

Figure 3.3. The concat command. A collective communication tool in the Message Passing Library 
on the IBM SP2. 

identically as before but is automatically divided evenly among all of the processors 

since the pointer elements are likewise separated. 

The cost, then, is not complicated coding. In fact, this technique can be im- 

plemented on existing serial MD codes quite easily. The cost refers to the fact that 

the communications at every time-step involve every atom in the simulation. This 

means the amount of communications is directly related to N, the total number of 

atoms, and therefore proportional to the simulation volume. If a problem is divided 

among additional processors, the simulation volume, and therefore the communica- 

tion loads as well, remain constant. The computations are reduced, but eventually 

the communication costs dominate the requirements. Since areas grow more slowly 

than volumes with increasing problem size, the spatial decomposition approach, by 

contrast, scales both the communication costs and the computation loads. 

A solution that provides both load balancing and scalable communications is the 

third decomposition approach, force decomposition. This concept is very new, first 
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Figure 3.4. Force decomposition approach. 

presented by Plimpton's 1995 article in the Journal of Computational Physics [32]. 

The approach is based on the same uniform preselection of atoms for displacement 

computations as found in the atom decomposition technique. The load balancing 

is therefore based on a similar premise. The difference lies in the fact that only a 

subset of atomic positions need to be communicated to each processor for each time 

step. This size of the subset scales down with increasing numbers of processors, so 

the communications scale accordingly. 

Figure 3.4 shows how this technique is implemented. The computational domain 

is divided among y/P x y/P processors. Each processor contains an alpha and a beta 

array of atom sets. The alpha array consists of all of the atoms displaced by the 

processors along the same row while the beta array consists of those displaced by 

processors along the same column. The force computation is then performed for 

all of the atoms in the alpha array with the beta array used as the source for the 
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neighbors. Once this is performed on all of the processors, the force information is 

communicated and summed from the alpha processors. Since the arrays with which 

these other processors computed force interactions collectively contain all the atom 

pairs in the system, a global force computation is still successfully performed. Each 

processor, however, required N/\/P atoms in the alpha and beta arrays rather than 

the entire set of N. The additional communication cost of the forces at each step is 

also limited to this reduced size. The communications are therefore proportional to 

3N/\/P. So if the number of processors exceeds nine, the cost of the communications 

are theoretically reduced below those required by particle decomposition. 

A slightly altered approach is also presented by Plimpton in which Newton's 

third law allows a reduction in the computation load. This law simply states 

Fy = -Fji (3.1) 

and reveals that a redundant operation is performed in the previous methods. Serial 

codes implement this law by only computing pairs where i > j. In the parallel 

techniques this would result in a severe imbalance; the first processor has only low 

i values while the last processor has only high i values. Instead a logic where the 

forces are computed for i > j only if the ij sum is even, and for i < j if the ij sum 

is odd, will retain balance and implement the law. The full atom pair contributions 

to the force vectors are now collected by communicating and summing from both the 

alpha and beta array processors. The new communication cost is 4N/\/P due to the 

additional beta force components. The computations, however, are theoretically cut 

in half thereby justifying the 25% communication cost increase. 

This approach was tested for the simulation of the droplet diffusion on the 

SP2. Linked lists and Verlet neighbor lists were still used to limit the neighbor 

search; they were simply applied to both the alpha and beta arrays. The force 

arrays, which were eliminated by the reordering of the velocity Verlet algorithm, 

were now required and reinstated. Additional logic steps to implement the third law 

computation savings were also included. The added steps reduced the efficiency such 

that the computation savings were only 20% instead of the desired 50% level. Also, the 

force communications, requiring a slightly different logic, were slower than the position 
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array communications. Initial results indicated that the total of these communication 

loads did seem to scale with increasing processors, but a disappointingly high number 

were required to realize the simulation time savings over the particle decomposition 

approach. 

The resources readily available to this researcher on the SP2 did not warrant 

further use of the force decomposition technique. It holds promise, however, for 

future work on larger platforms. One caution, however, is warranted. The atom 

decomposition approach gains in relative scalability with increasingly complicated 

computation requirements; the communications remain small by comparison for in- 

creasingly larger processor sets. The project is anticipated to move in the direction 

of increased computational complexity (more complex molecules and chemical reac- 

tions). So the simpler, more easily modified atom decomposition technique should 

not be abandoned too eagerly. 

3.2    Truncated Octahedron Boundaries 

Cubic boundary conditions were applied during the initial development of the 

diffusion code. As detailed in the last chapter, there were some undesirable char- 

acteristics of this common approach. In an attempt to provide the most accurate 

simulation, alternate boundaries were therefore investigated. The truncated octahe- 

dron was ultimately selected as the best periodic for the simulation of the droplet 

diffusion. The additional boundary logic, however, threatened to slow the simulation. 

Fortunately, a solution was found. This section provides the details of that solution. 

This more spherically shaped boundary is depicted once again in figure 3.5. 

The reader should note the shape fits completely within a cubic structure. Also, the 

hexagon planes are mathematically defined simply as 

\x\ + \y\ + \z\ = -Lbox (3.2) 

where Lb0X is the length of one of the cube's sides. This means these planes are sym- 

metrically placed within each quadrant of the three dimensional coordinate system. 
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Figure 3.5. Truncated octahedron periodic boundaries. 

As previously mentioned, the periodics of this geometry are set as a honeycomb struc- 

ture where these planes connect cross-diagonally. All of these characteristics lead to 

a convenient and efficient concept for coding: a complete set of primary atoms and 

their images perfectly fit within the enclosing cube. Figures 3.6 and 3.7 highlight this 

fit by depicting the imaging of the (-x, -y, -z) quadrant into the remaining half of 

the (+x, +y, +z) quadrant. The small cubes depicted here are linked list cells. The 

dark, staircase shaped outer elements are cells which contain both primary and image 

atoms. 

A simplistic approach to avoiding the image checks across the hexagon planes 

is to simply re-image all the primary atoms. Both the primary and image positions 

could be included in the linked list array since the images completely fit within the 

enclosing cube. This duplication of atoms would be applied to the global array; the 

local array would still only contain the atoms to be displaced on the local processor. 
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Figure 3.6. Truncated octahedron cross-quadrant periodicity. 
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Figure 3.7. Truncated octahedron cross-quadrant meshing. 
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Figure 3.8. Image plane for truncated octahedron boundaries. 

The computations could then proceed as before since the doubled global array would 

remove the required search across the hexagon planes. 

The re-imaging of the complete set of atoms is certainly not necessary, however. 

Most of the images lie far outside any primary atom's cutoff radius. The expense 

of re-imaging would not only be prohibitively expensive but also very wasteful. The 

solution to avoiding this excessive cost is the utilizing of the linked list cell structure 

and presetting in a cell map those cells which contribute atomic images within the 

cutoff distance. This concept is depicted in figure 3.8 

Reducing the imaging load down to those atoms located in the cells included in 

the cutoff distance is a significant benefit. There are, however, two more techniques 

used in the code to finely tune this enhancement. The first entails the definition of 

an image plane to reduce the number of image atoms down to an absolute minimum. 

The second is a means of inexpensively appending the image atoms onto the linked 
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list. Both of these techniques are relatively simple, but they are described here to 

clarify the complete technique. 

The normal to the hexagon plane is shown in the highlight section of figure 3.8 

as running cross-diagonally through the cubic structure. So the definition of the plane 

which exists a distance of rcut inward from the boundary plane is simply 

3 
\x\ + \y\ + \z\ = -Lbox - 3LC (3.3) 

where Lc represents the coordinate distances between the planes. Figure 3.9 shows 

this offset geometry and details that 

3LC = V3rcut (3.4) 

Therefore, the image plane can be defined as 

\x\ + \y\ + \z\ = -Lbox - VSrcut (3.5) 

When the image cells are reviewed using the linked list, image candidates are checked 

to see if they fall outside the image plane defined using equation 3.5. Those meet- 

ing this requirement are appended as additional particles in the global array. The 

resultant increase in this array is now set at an efficiently minimal level. 

The linked list used during the image checks is the global list since the image 

atoms are potential neighbors, not displacing atoms. Once the image atoms are 

appended to the global array, the global list must also be updated to allow boundary 

neighbor sorting. A simple update would involve a repeat of the linked list generation 

for the new global array. Much of this operation, however, would be redundant; the 

primary particles are already sorted into the global list structure. Fortunately, the 

list generating logic allows a more efficient technique. 

The global linked list is generated using the following lines of code. 

C 
C          global linked list   
C 

do 10 icell = l.mcube 
ghead(icell) = 0 
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Figure 3.9. Image plane computation. 

10 continue 
do 20 i=l,na 

icell = 1 + int(grx(i)*rmboxinv+rmq2) 
& + int(gry(i)*rmboxinv+rmq2)*mc 
& + int(grz(i)*rmboxinv+rmq2)*msq 

glist(i) = ghead(icell) 
ghead(icell) = i 

20 continue 

Here the total number of atoms in the simulation is designated by the variable na, 

and mc represents the number of cells across one length of the cubic domain. The 

other variables are initialized outside the temporal loop as follows: 

msq = mc*mc 
mcube = msq*mc 
rmboxinv = real(mc)*boxlength 
rmq2 = real(mc)/2 

The resultant arrays of gheadO and glistO constitute the global linked list set. 

Since the lists are generated sequentially by atom number, the additional image 

atoms can be appended by simply continuing the linked list steps. In fact, the adding 
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of the image atoms to the global position arrays can be performed concurrently with 

the linked list updates. This process is detailed in the following lines of code. 

C 
C — global images — 
C 

ii = na + 1 

do 31 j-1,8,1 
do 32 n=l,icperq 

ic = (j-l)*icperq + n 
m = image(ic) 
icell = m - quad(j) + quad(9-j) 
reimage(ic) = icell 
i = ghead(m) 

33    if(i.eq.O) goto 32 
if(i.le.na) then 

x = grx(i) 
y = gry(i) 
z = grz(i) 
if((abs(x)+abs(y)+abs(z)).ge.iplane) then 

grx(ii) = x - sign(boxdq2,x) 
gry(ii) = y - sign(boxdq2,y) 
grz(ii) = z - sign(boxdq2,z) 
glist(ii) = ghead(icell) 
ghead(icell) = ii 
ii = ii + 1 

endif 
endif 
i = glist(i) 

goto 33 
32  continue 
31 continue 

The image () array is the predetermined map of the cells holding potential image 

particles. The variable icperq represents the number of these cells in each quadrant. 

The image cell number, as a function of the primary cell location, is simply 

icell = m - quad(j) + quad(9-j) 

where icell and m are the image and primary cell numbers respectively, and the 

quad(j) and quad(9-j) variables are the first cell numbers in each respective quad- 

rant. This information is saved in a small cell map, reimageO, for use during later 
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image updates. As shown, the global position vector is compared to the previously 

determined image plane value in accordance with equation 3.5. If the image check 

is met, the global position array and the linked lists are both appended accordingly. 

The only additional logic required here is the starting of the image particle numbers 

at one greater than the total simulation value and the checking of image candidates 

to ensure they are not already images. This is required since the global link list is 

dynamically updated and will contain image candidates as the appending progresses. 

These techniques, therefore, efficiently set the global array as both the entire 

set of atomic positions and the required image positions across the hexagon planes. 

During a force computation, the only cells requiring boundary checks are the side 

facing cells. The order of the cell map used during the simulation is depicted in figure 

3.10 (only the first quadrant is shown for clarity). The side facing cells are reserved 

as the last cells in the array. So up to the first call of a side cell, all of the force 

computations are performed without boundary condition complications. The force 

loop cost of this enhanced boundary is therefore greatly offset. 

The enhancements incorporated into the code with this more appropriate bound- 

ary resulted in a fairly efficient tool. The truncated octahedron code was timed at 

about a five percent slower rate than a similar cubic code with the same number of 

atoms. Two considerations, however, made the new approach the logical choice. As 

mentioned in the previous chapter, 48% of the cubic boundary volume falls outside 

the largest included sphere. By comparison, only 32% of the truncated octahedron 

volume falls in this undesirable category. Also, the effects of periodic images on the 

diffusion model are significantly reduced by the new conditions as evidenced by mov- 

ing the image ratio 60% closer to the optimum spherical value. So a five percent 

penalty on the modeling of the environment is easily offset by the required volume 

reduction and the enhanced simulation physics. 

One final point is warranted before closing this section. These timing compar- 

isons were performed on codes which incorporated linked list search techniques only; 

the Verlet neighbor lists had not been added. When the beneficial effects of the 

combined approach were realized, the Verlet list was desired as part of the truncated 

octahedron code. At first this appeared difficult. The Verlet list purposefully avoids 
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Figure 3.10. The side facing cells are saved as the final elements. 



53 

updating the linked list to achieve greater neighbor searching efficiency. But the iden- 

tification of image particles was set as part of this update. The images still needed 

to be properly represented between list updates to accurately model the boundaries. 

A very easy solution, implemented in the existing code, consists of simply de- 

laying the reimage process until a linked list update is required. The image plane 

is defined based on the list radius instead of the cutoff radius to validate the use 

of a fixed set of image candidates during neighbor list loops. Also, the position of 

the image atoms during these steps are updated from the associated primary atomic 

positions. The identification of these global position elements is set during the image 

checks in yet another small pointer array. The updating of the image coordinates is 

therefore very efficient. So this simple solution allowed the inclusion of the Verlet list 

into the truncated octahedron code. Chapter five will show that this resultant code 

competes very well with existing cubic based molecular dynamic codes. 

3.3    Property Computations 

The evaluation of atomic motions during the simulation runs proved insightful 

but still too limiting to answer many of the questions associated with supercritical 

diffusion. In an attempt to track the physics of the process, an array of thermody- 

namic properties were computed from the atomic data. A means of measuring the 

radial distribution function was modified from standard techniques to allow dynamic 

tracking of the droplet interior structure. Density and temperature measures based 

on established theory were also performed. A surface tension measure, however, was 

uniquely developed to fill the desire to track this important droplet property. This 

section details the computations employed to produce these properties. Also, us- 

ing the linked list cell structure, an informative contour plot display of the data is 

reviewed as the close of the chapter. 

3.3.1    Radial Distributions 

The radial distribution function results from the evaluation of the diffractions of 

X-rays, neutrons or electrons during experimental studies. The shape of this function 

is distinctly different for the three phases.  Tabor [6] describes the function as the 
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Figure 3.11. Pair distribution function for argon. Plotted from simulated liquid structure at 85 K 
and 2.14 x 1028 atoms/m3. 

average number of molecules present in constant volume spherical shells emanating 

from a randomly selected molecule. This can be measured in molecular dynamic 

simulations. The method consists of averaging the densities based on pair separation 

distances and dividing by the average density of the entire system. An example of 

the resultant plot, termed the pair distribution function, is shown in figure 3.11. 

This is a typical shape for a liquid and matches the experimentally derived radial 

distribution. The peaks are located where higher density regions are found in the low 

energy wells. A solid structure would display constant value spikes at these locations 

due to the continuous lattice structure. Even a gas shows a weak collection at the first 

peak, but the random nature eliminates the remaining spikes. The liquid, as shown, 

displays a short-range order over several atomic diameters. Beyond this distance, the 

function approaches unity indicating a random order similar to a gas. So a display of 

the pair distribution helps to determine the phase of the system. 
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Allen and Tildesley detail the coding which allows the computation of the pair 

distribution for a bulk liquid simulation. First the number of particles which fall 

within a spherical shell gap, delr, around another particle are saved in an array 

termed hist(). 

do 100 i=l,N-l 
do 99 j=i+l,N 

...  calculate minimum image distances  ... 
(rxij.ryij.rzij) 

rijsq = rxij*rxij + ryij*ryij + rzij*rzij 
rij  = sqrt(rijsq) 
bin = int(rij/delr) + 1 
if(bin.le.maxbin) then 

hist(bin) = hist(bin)  + 2 
endif 

99 continue 
100 continue 

The variable maxbin is used to ensure the distribution is not performed beyond the 

periodicity of the simulation. 

The actual pair distribution function can then be computed using the histO 

array. Since the array includes pair data from all the atoms, it actually represents an 

average over N particles. Also, the loops above can be performed over numerous time 

steps to help expand the statistical average. In the code below, this value is termed 

nstep. 

const = 4.0*pi*rho/3.0 
do 10 bin=l,maxbin 

rlower = real(bin-l)*delr 
rupper = rlower + delr 
nideal = const*(rupper**3 - rlower**3) 
gr(bin) = real(hist(bin)) / real(N*nstep) / nideal 

10 continue 

Here the pair distribution is normalized by the number of atoms which would exist 

in the spherical shell defined by rlower and rupper if the density were equal to the 

average system density. This procedure sets the previously mentioned asymptotic 

trend toward unity as the order of the system becomes essentially random. 
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The system comprised of the evaporating droplet and its surroundings is cer- 

tainly not homogeneous, but it is very large. Attempting to use the standard approach 

to computing the pair distribution would be very slow (an order iV2 computation) 

and would provide an average of the dual phases of no practical use. A simple adjust- 

ment, however, provides a means of efficiently computing the distribution for only the 

center of the droplet. Instead of looping over all atom pairs, only the atoms within a 

core set of cells are used. The linked list structure is used to find the atoms within 

a requested set of cells. This is a very easy procedure since the cell map emanates 

from the center of the simulation. The pairs are determined by looping through the 

surrounding 125 cells (allowing a separation distance of about five atomic diameters). 

So the computations are no longer N2. 

This modified code is shown below 

do 102 im = l.mcore 
mdp = gocell(im) 
k = head(mdp) 

101      if(k.eq.O) goto 102 
x = rx(k) 
y = ry(k) 
z = rz(k) 
i = nskip + k 
ntau = ntau + l.dO 
do 103 ic = -2,2,1 

do 104 jc = -2,2,1 
do 105 kc = -2,2,1 

m = mdp + ic + jc*mc + kc*msq 
j = ghead(m) 

106 if(j.eq.O) goto 105 
if(i.eq.j) goto 107 

rxij = x - grx(j) 
ryij = y - gry(j) 
rzij = z - grz(j) 
rsq = rxij**2 + ryij**2 + rzij**2 
rij = sqrt(rsq) 
bin = int(rij/delr) + 1 
if(bin.le.maxbin) then 
hist(bin) = hist(bin) + 1 

endif 
107 j = glist(j) 

goto 106 
105       continue 
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104     continue 
103    continue 

k = list(k) 
goto 101 

102 continue 

Other than the linked list sorting, only minor changes are required. The adding of one 

to the hist () array instead of two is one of these. This is required since the ij pairs 

are redundantly determined in this new procedure. The additional savings of parallel 

computations greatly outweigh this limitation. Also, minimum image lengths are 

ignored since the core is assumed to be significantly far removed from the boundaries. 

The maxbin variable is retained to limit the search to a predetermined radius (this is 

limited, as just mentioned, to 2 x celliength by the 125 cell search pattern). Finally, 

the normalizing density must now be a value determined from the core set of cells, 

not the entire system. This is easily performed by utilizing the pair counts and the 

known core volume. Chapter five will show that this technique proved very valuable 

in determining the phase structure present in the droplet interior during the very 

dynamic diffusion process. 

3.3.2    Temperature 

The measurement of the temperature profile during the simulation was also 

based on a standard approach. Allen and Tildesley, again, provide a description, but 

this can be found in many other molecular dynamic texts as well. The temperature 

is simply a function of the kinetic energy of the atoms in a system. An instantaneous 

kinetic temperature, T is defined by Allen and Tildesley for monatomic systems as 

T = 2)CßNkb = -i- £ miVi
2 (3.6) 

where K, is the kinetic energy of the entire set of atoms, N, and kb is the Boltz- 

mann constant. This function is time-averaged to determine the temperature of bulk 

systems. 

A bulk average is output by the code developed herein along with the kinetic 

and potential energy profiles.   Table 3.1 is an example of the tracking.  This is of 
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minor importance, however. The more informative measures of temperature involve 

utilizing the linked list cells once again as small system domains. A running tracking 

of the droplet core and the surrounding environment temperatures are output by 

presetting a collection of core and environment cells. Also, saving each cell's averages 

allows the development of a three dimensional thermal contour. Both of these display 

formats are discussed at the close of this section. 

3.3.3    Density 

The density profiling utilizes a technique first utilized by Thompson et al. [21] 

and further refined by Maruyama [22]. It is quite simple and also very efficient. 

The number of neighbors found within the cutoff sphere for each atom are tabulated 

and represent what is termed herein as a local atomic density. This value can be 

compared to an atomic number density by simply dividing by the volume of the 

cutoff sphere. The efficiency of the technique is obvious; the cutoff neighbors must 

already be determined as part of the inter-atomic force computations. 

The original work of Thompson et al. used the technique to define an equili- 

brated droplet cluster. The atoms which had a local density greater than a set average 

between saturated liquid and vapor values were defined as droplet atoms. Maruyama 

extended the concept to define the actual surface of his equilibrated droplets by com- 

paring the local densities to a narrow band centered between the saturated points. 

While both of these works were the genesis of the utilization herein, the concept is 

expanded further. The definition of an equilibrated droplet entering a supercriti- 

cal environment and the setting of cell based data sets are both dependent on the 

technique. The droplet initialization will be discussed in the next chapter, and the 

contour profile development will be reserved as the closing of this chapter. The core 

and environment region computations are, however, presented at this time. 

Table 3.2 shows the output format of the previously mentioned core and envi- 

ronment regions. As shown, both the temperature and density values were averaged 

over these domains. Additionally, a curve-fit based on molecular dynamic data from 

Nicolas et al. [43] allows the computation of the environment pressure as a function 

of the density and temperature.   This data was collected over a set value of time 
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Temperature and Energy Tracking 

...and elapsed time (minutes) and list updates between info writes. 

Iter# TOO Kinetic Potential Total Time List 
0 170.6 0.6874D-16 Updates 

500 170.7 0.6879D-16 -.6082D-16 0.7970D-17 1.116 53 
1000 169.5 0.6830D-16 -.6053D-16 0.7769D-17 1.136 52 
1500 168.9 0.6804D-16 -.5968D-16 0.8364D-17 1.174 53 
2000 170.0 0.6851D-16 -.5923D-16 0.9283D-17 1.185 52 
2500 171.2 0.6897D-16 -.5859D-16 0.1038D-16 1.205 54 
3000 170.7 0.6877D-16 -.5777D-16 0.1101D-16 1.207 54 
3500 171.5 0.6911D-16 -.5738D-16 0.1173D-16 1.214 52 
4000 171.6 0.6915D-16 -.5692D-16 0.1224D-16 1.217 51 
4500 170.2 0.6858D-16 -.5598D-16 0.1260D-16 1.228 54 
5000 169.3 0.6822D-16 -.5536D-16 0.1286D-16 1.224 52 
5500 169.6 0.6832D-16 -.5491D-16 0.1341D-16 1.241 53 
6000 168.8 0.6801D-16 -.5449D-16 0.1352D-16 1.236 52 
6500 168.8 0.6801D-16 -.5407D-16 0.1394D-16 1.253 51 
7000 169.2 0.6817D-16 -.5358D-16 0.1459D-16 1.286 53 
7500 169.2 0.6819D-16 -.5317D-16 0.1502D-16 1.240 52 
8000 169.3 0.6820D-16 -.5272D-16 0.1548D-16 1.240 52 
8500 168.8 0.6803D-16 -.5245D-16 0.1558D-16 1.249 53 
9000 168.9 0.6807D-16 -.5209D-16 0.1598D-16 1.264 56 
9500 170.0 0.6850D-16 -.5186D-16 0.1664D-16 1.259 54 
10000 170.8 0.6882D-16 -.5153D-16 0.1729D-16 1.264 55 

Table 3.1. Bulk temperature and energy tracking output. 
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steps prior to each write. Typically fifty time steps were utilized to allow a statistical 

averaging without smoothing over the simulation dynamics. Plots generated from 

this information are presented in chapter five. 

The reader may note the absence of the droplet interior pressure values. The 

dynamic measure in this high density region proved unsatisfactory. This caused some 

initial concern over the ability to dynamically measure the surface tension. Classical 

approaches utilize the pressure differential for this measure. Fortunately a unique 

method was devised. 

3.3.4    Surface Tension 

The surface tension computation is based on the molecular interpretation pre- 

sented by Tabor [6]. The following is the excerpt that led to the development. 

The free surface energy of a liquid lends itself to a very simple molecular 
interpretation. Molecules in the bulk are subjected to attraction by sur- 
rounding molecules; the field is symmetrical and has no net effect. At the 
surface, however, the surface molecules are pulled in towards the bulk of 
the liquid. Apart from a few vapor molecules there is no attraction in the 
opposite direction. Consequently if we wish to increase the area we have 
to pull molecules up to the surface from the bulk against this one-sided 
attraction. This accounts for the surface energy. 

This concept is shown pictorially in figure 3.12. The attraction forces within the 

interior of the drop are greater due to the increased density and average proximity of 

neighboring atoms. The accumulation of the force vectors, however cancel the force 

effect in both the drop and the environment; only a surface, where a density gradient 

exists, will generate a net force. The pulling against this force when expanding the 

surface is the energy described by Tabor. 

The structure of a drop results directly from the minimizing of this energy. Since 

the forces exist only on the droplet surface, their sum is lowest for the shape with 

a minimal surface area per volume. This shape is the sphere. If a drop is exposed 

to relatively low density surroundings (such as a subcritical environment), the one- 

sided forces remain and the spherical structure is retained. When exposed to a high 

density region (such as a supercritical environment), however, the attractive forces 
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Property Computation Results 

Core Environment 
( 32 cells) ( 872 cells) 

Density Temperature Density Temperature Pressure 
iter# (atoms/m~3) (K) (atoms/m~3) (K) (MPa) 

500 1.8469D+28 102.96 3.6444D+27 198.83 7.5575 
1000 1.8640D+28 100.73 3.4248D+27 191.13 6.7386 
1500 1.8306D+28 99.94 3.4259D+27 193.01 6.8575 
2000 1.8040D+28 103.30 3.3944D+27 198.21 7.1314 
2500 1.7714D+28 108.83 3.4458D+27 195.80 7.0611 
3000 1.7454D+28 107.70 3.3273D+27 191.87 6.6456 
3500 1.7669D+28 117.40 3.3655D+27 194.87 6.8831 
4000 1.6988D+28 111.31 3.3646D+27 194.03 6.8303 
4500 1.6271D+28 110.25 3.4361D+27 186.75 6.4793 
5000 1.6482D+28 116.91 3.4516D+27 190.53 6.7384 
5500 1.6048D+28 119.92 3.4404D+27 190.69 6.7327 
6000 1.5899D+28 120.97 3.4344D+27 184.70 6.3486 
6500 1.5788D+28 120.61 3.5056D+27 186.41 6.5468 
7000 1.5004D+28 117.85 3.4909D+27 190.15 6.7678 
7500 1.5400D+28 120.91 3.5399D+27 186.94 6.6248 
8000 1.4580D+28 116.33 3.5684D+27 182.64 6.3772 
8500 1.4729D+28 123.65 3.6050D+27 184.71 6.5581 
9000 1.5182D+28 128.60 3.5788D+27 183.52 6.4474 
9500 1.4603D+28 129.54 3.6863D+27 187.28 6.8308 
10000 1.4497D+28 125.76 3.6312D+27 186.26 6.6940 

Table 3.2. Represented in tabular form for a collection of core and environment cells. 
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Figure 3.12. The tension on the surface of a droplet is proportional to the imbalanced attraction 
force. Atoms in the dense droplet interior and the lower density surroundings experience offsetting 
forces. 

outside the drop become significant. This reduces the one-sided nature of the forces 

at the surface. The droplet surface energy is then very low and the spherical nature 

of the drop less likely to be retained. Additionally, the low surface energy results in 

surface elements which are much more likely to be broken free of the drop when hit 

by high speed atoms from the surroundings. This is why supercritical evaporation is 

so effective. 

Focusing back on the means of measuring this important droplet property, the 

measuring of forces on each atom is already performed in the simulation. The simple 

description by Tabor seems to imply that each atom's forces could be tabulated and 

presented as the surface tension. As with the other properties, this would result in a 

statistically insufficient technique. Instead the sum of the force vectors on the atoms 
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are maintained for each cell.  At the end of the time averaging period, the average 

force on each atom in this cell can be computed simply as 

(füY , ((fiv)Y , fifuY ,,7) 
^3~\\Nicell)   +\NiceU)   +\Nicell) V'n 

The Niceii value represents a summation of all atoms found in the cell over the spec- 

ified time averaging period. Therefore, the time and atomic averaging is performed 

concurrently when dividing by this single value. 

The importance of tabulating the force components as opposed to just the inter- 

atomic force magnitudes cannot be overemphasized. The seemingly random atomic 

interactions do have a directional nature on the surface. The computing of this effect 

requires both magnitude and direction. The summing of just magnitudes results in 

an apparent surface tension throughout the liquid structure, but the surface tension 

in a bulk fluid is known to be inconsequential. The cancelling of the large forces only 

occurs when the directional nature of the interactions are retained. This same direc- 

tional nature gives the surface cells significantly larger force results by comparison. 

One more important modification must be addressed before moving on. Steele 

[44] noted that the implementation of the force tabulation method would probably 

fail due to the significance of the repulsive forces. The surface tension is an indication 

of the one-sided forces due to attraction imbalances, but repulsive forces can easily 

dominate a force summation. Cell averaging of the data diminishes this problem. 

High level collision forces, equal and opposite in direction between the associated 

atoms, cancel when summed within the same cell. During the tabulation, however, a 

collision which occurs at a cell boundary (such that the forces are tabulated within 

different cells) will still overshadow the relatively weak attraction forces. To counter 

this problem, the code computes the forces using the following approach. 

rsqinv = l.dO/rsq 
sqr2 = sigsq*rsqinv 
sqr6 = sqr2*sqr2*sqr2 
sqrl2 = sqr6*sqr6 
fqr =  (2.d0*sqrl2-sqr6)*rsqinv 
if(rsq.lt.rcsqa) then 

...repulsive force 
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fxr = fxr + fqr*rxij 
fyr = fyr + fqr*ryij 
fzr = fzr + fqr*rzij 

else 
...attractive force 

fxa = fxa + fqr*rxij 
fya = fya + fqr*ryij 
fza = fza + fqr*rzij 

endif 

The filtering variable, rcsqa, is set during the initialization of the code as {■a {2a))2. 

This is determined by setting the force to zero in the force computation (equation 

2.6). 

The forces required for atomic translation computations are then determined 

using 

fx = fxa + fxr 
fy = fya + fyr 
fz = fza + fzr 

The filtered set of attraction only forces are available, though, for the surface tension 

tabulations when desired. 

So, to summarize the technique, the attraction force components on each atom 

are summed for all atoms in each linked-list cell. Along with the summing of these 

forces, the cell based number of contributing atoms to this sum is recorded. If re- 

quested, this sum can be continued over several time steps to provide time averaging 

of this data. After the requested time period is complete, the force components are 

averaged by dividing the sums by the number of contributions. This now gives the 

average force vector on each atom in the cell. Within bulk regions, these values 

approach zero, but on the droplet surface, the one sided forces are readily apparent. 

3.3.5    Contour Displays 

The representation of this surface tension force in a tabular form was not very 

informative. The sum total of the system surface tensions did drop during the diffu- 

sion process, but a more detailed visualization of the effect was desired. This need 

helped push the development of a volumetric contour representation of the data. This 
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Figure 3.13. A representation of density, temperature and surface tension central contours during a 

simulation of 27,000 atoms evaporating into a 200 K and 7.5 MPa supercritical environment. 

proved very beneficial not only for the display of the surface tension, but also in the 

dynamic tracking of the temperature and density profiles. 

The representation of all three properties is shown in figure 3.13. The depiction 

shows a central slice of the beginning of a 91,000 atom simulation (27,000 atom drop 

evaporating into a 64,000 atom environment). The value of such a tool will become 

evident in Chapter 5 when an assortment of simulations are reviewed. The remainder 

of this section will detail the code output and post processing that generate these 

contour images. 

The evaporation code outputs cell based data at requested times during the 

simulations. The data consists of six property values per cell collected over a speci- 

fied number of time-steps prior to the output process. This allows both spatial and 
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temporal averaging of the data. The properties collected are the local atomic den- 

sity, (picdi), the velocities squared, (v2
icell), the attractive force components, (fxicell), 

(fyiceii)' anc* (fziceidi and the count of the number of atoms associated with each of 

these accumulations, Niceu. The brackets, ( ), are used to indicate that each of these 

properties is actually a cell-based sum over both time and space. Before detailing the 

computations which convert these properties into the inputs for the contours shown 

in figure 3.13, a data smoothing technique is reviewed. 

Each of the cell-based values consist of many samples for the cells located in 

the liquid structure, but significantly less in the environment. This is simply a result 

of fewer atoms in the low density regions contributing to the statistical averaging. 

To compensate for the resultant noise which occurs in the contours each cell can be 

represented as a supercell as follows 

26 

(Picell) = (Picdi) +Wp   J2   (Picell) (3.8) 
jcell=l 

26 

Nicell = NiceU + Wp   J2    Njcell (3.9) 
jcell=l 

where {piCeii) represents one of the collected data variables and Niceu the associated 

accumulation count. The variable wp is a weighting factor. If this factor is set to 

0, then equations 3.8 and 3.9 leave the accumulation sets unchanged. If, however, 

a factor of 1 is used, the computations set each cell-based variable to a super-set of 

data from the primary cell and the surrounding 26 cells. Weights in between allow the 

information from the primary cell to attain greater significance during the averaging. 

The closer the weighting factor gets to 0, the more dominant the primary cell data 

becomes. 

This smoothing process is applied to the simulation output as a post process- 

ing computation. Each of the variables can be smoothed independently. Typically 

weighting values of 10% to 20% applied to the velocity and force field values yield 

good images for the temperature and tension data respectively. The density profiles 

are already somewhat smoothed by the nature of the cutoff sphere tabulation and 

therefore do not typically use this technique. 
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The conversion from the collected cell-based values to contour property values is 

fairly straightforward. The density values represent a summation of the local atomic 

densities for every sample. So an average value for the contour is simply 

Picell = ~TT  (3.10) 

Similarly, the velocity squares represent a summation which is directly proportional 

to the kinetic energy found in each cell over all the samples. Using the kinetic tem- 

perature function (equation 3.6), the average temperature of each cell is therefore 

j     = m{v2
iceii) 

3Niceukb 

The surface tension measure has already been developed in the previous section in 

equation 3.7. The supercell data is applied directly as cell-based data. 

As shown, the truncated octahedron code has been developed to be efficient and 

provide useful information. Before detailing the results of several simulations using 

this code, a review of the techniques utilized to initialize the simulation systems is 

provided. This is the basis of the next chapter. 
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Chapter 4 

SIMULATION DESCRIPTION 

As noted in Chapter 1, the scope of the research presented herein is limited to 

the evaluation of the associated physics of an equilibrated droplet suddenly exposed 

to a quiescent, high temperature and high pressure environment. The initialization 

of a simulation to achieve the goals of this research proved challenging. Standard 

molecular dynamic approaches to set equilibrated systems were readily available. But 

an established method of starting the unique two phase system of a droplet diffusing 

into highly energetic surroundings did not exist. Initial attempts yielded insightful 

but unsatisfactory results. This chapter details the evolution of a series of techniques 

which proved quite successful. 

4.1    Initialization 

Both Haile [35] and Allen and Tildesley [36] outline a fairly universal standard 

to initialize liquid and gas structures for molecular dynamics. A face-centered cubic 

lattice is established, a Gaussian distribution is applied to initialize the velocities, 

and the simulation is allowed to run to an equilibrated state. During this run the 

lattice 'melts' into a physically real structure, but care must be taken to ensure the 

desired state point is reached. To better understand the melting process, a review of 

the potential function is warranted. 

The Lennard-Jones potential shown in Chapter 2 (figure 2.2) and the radial 

distribution function discussed in Chapter 3 both indicate a natural collecting of 

atoms at the energy well location. A sparse lattice initially has very little potential 

interactions. The relaxing to a real system results in a collection of atoms tending to 

reside in the potential well, at least momentarily. Since total energy remains constant 

in a closed system, the resultant increase in the negative value of the sum of the 

potentials can only occur if the kinetic energy correspondingly increases. By contrast, 

a dense lattice initially sets the inter-atomic spacing such that the sum negative 
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potential energy is rather high. The relaxing of the lattice results in momentary sub- 

structures of solid-like particles. The potentials within these groups are significant, 

but not between them. The net effect is a reduction in the potential effect, or an 

increase in the potential energy. Now the conservation of energy requires that the 

kinetic energy drop. So, in short, the system kinetic energy will rise when a sparse 

lattice equilibrates, but will drop during the relaxing of a dense lattice. 

So the initial temperature, directly proportional to the kinetic energy, will shift 

during equilibration. Determining the magnitude and direction of the shift a priori 

is difficult and unnecessary. A thermal control technique is more easily incorporated. 

This is the approach used in all the initializing codes to compensate for the melting 

effects. It enables the setting of fairly precise state points. 

This control alone, however, is insufficient to initialize system. Attempts at 

setting the two phases of the droplet and supercritical environments concurrently in 

the same computational domain proved untenable. While a relaxing of the lattice 

structures of the two phases certainly occurred, equilibrium could not be established 

in the presence of the inter-phase thermal and density gradients. Even when assuming 

quasi-equilibrium states, the required fine tuning to establish the desired phases was 

overwhelmed by the dynamic exchanges. As a result, two independent equilibrations 

are utilized: one for the droplet and another for the surrounding environment. 

4.1.1    Environment 

The term environment refers to the surroundings into which the droplet evap- 

orates during the simulation. Since the environment is simply a bulk system, the 

establishing of this initial structure closely follows standard approaches. This sec- 

tion details these methods, including the previously mentioned thermal control. The 

control enables the setting of the environment at a desired initial thermodynamic 

state. 

The face-centered cubic (F.C.C.) lattice is universally recommended as the initial 

structure for molecular dynamic simulations. This is established by setting a series of 

sub lattice sets of four atoms at evenly spaced points (see figure 4.1). The periodicity 

is automatically provided in cubic simulations with this technique by using a spacing 
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Figure 4.1. Face-centered cubic structure. The sub-lattice of the four shaded atoms can be used to 

generate the full lattice. 

evenly divisible into the domain length. Using the truncated octahedron boundaries, 

this same periodicity is set by filling only the left half of the simulation cube. Half 

the cube length is correspondingly set to be evenly divisible by the spacing. The 

octahedron structure is established by re-imaging atoms where appropriate into the 

right side of the simulation. This concept is depicted in figure 4.2. 

Two more points should be noted before proceeding. The full lattice structure 

contains AI3 particles, where / is an integer value. The resultant density of this 

structure is 4/a3, where a is the length of the lattice spacing. These factors make 

attaining a precise density level for a desired domain size difficult. This is overcome in 

the code by initializing the full lattice and then uniformally erasing atoms as necessary 

to attain the desired density. One more lattice adjustment recommended by Schofield 

[45] is also utilized. The melting process is further enhanced by shifting each particle 

slightly from the lattice positions.  The adjustment is performed unevenly (using a 
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Figure 4.2. Initializing the truncated octahedron lattice. The left half of the F.C.C. lattice in the 
containing cube is re-imaged to ensure proper periodics. 

random number generator from Press et al.   [46]) and therefore presets a desired 

randomness into the simulation. 

The velocities of equilibrated systems can be set in a Maxwellian distribution 

[35]. 

f(vx)dvx = 
N(vx)dvx m 

exp(—mvx
2 /2kbT)dvx 

N V 27rkbT 

This is a Gaussian about zero with a specific standard deviation of 

(4.1) 

a = JkbT/m (4.2) 

Utilizing a Gaussian subroutine from Press et al. [46], the code assigns the velocity 

components in accordance with this distribution. Before proceeding with the equili- 

bration procedure, however, a system drift correction is performed. 

The Gaussian routine should set an average velocity of zero. This is desired to 

establish the quiescent environments. Since random numbers are utilized in the Gaus- 

sian, this is not a certainty. With the large simulation sizes investigated herein, the 
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statistical averaging admittedly results in very small system drifts. But the correcting 

procedure is quite simple, so the velocity components are reset using 

viar
w = vix

M-jj'Evi*M (4-3) 
i 

<™ = VM-^E<W (4-4) 

VizneW = v.zOld_l_Y/Viz°
ld (4.5) 

i 

The environment simulation is now ready to run. The atoms are set into their 

lattice positions and the Maxwellian velocity distribution established. As mentioned, 

simply running to equilibration will result in an unpredictable property setting. A 

thermal control is therefore applied during the beginning of the process. There are 

many sophisticated methods to run constant temperature simulations. A very basic 

technique from Allen and Tildesley [36] is used instead. The purpose of the control is 

to simply counter the kinetic energy shift due to the relaxing of the lattice structure. 

The control is not needed for the duration of the simulation. It is removed once the 

lattice melting is complete. Any imperfections in the simulation are quickly smoothed 

thereafter. 

The control is based on adjusting the kinetic energy after each time step to a 

level associated with the desired temperature. The components of the velocity are 

regulated using 

Vi,™ = J%^ vix
M (4.6) 

new _    \3>TdeskbN        oid 

^ne™=v *Srv (47) 

,,    new _       STdesfoN        M .       . Viz ~i~ü^rViz (4-8) 
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where K0u is the pre-adjusted system kinetic energy. The temperature is now set to 

the desired level, 7des, for the next time step. The validity of this statement can be 

shown by noting from the kinetic temperature function (equation 3.6) 

m    N 

TneW = 3^£[(^neU02 + (ViyneW? + (^"f ] (4-9) 

Substituting equations 4.6, 4.7, and 4.8 into 4.9 yields 

T - m STdeshN 2K,old _ 
3Nkb 2/CoW m 

The thermal adjustment is therefore performed at very little computational cost. The 

component multiplier is simply a fixed constant times a tabulated total kinetic energy 

value. This is applied uniformally throughout the velocity field at the end of each time 

step. Also, the control logic automatically adjusts the temperature up or down as 

required. So a directional determination of the relaxing of the lattice is not necessary. 

The results of an equilibration run for an environment domain are shown in 

figure 4.3. This shows the tracking of the system energy levels through 10,000 time 

steps. Thermal control is applied during the first 5,000 steps and then removed. 

The kinetic energy, and therefore the system temperature as well, remains steady 

throughout the run. The control ensures this at first, and then the equilibrated state 

point is evident in the remainder of the plot. The change in the potential energy 

indicates the melting process of the lattice. Since the initial structure is sparse, the 

potential energy drops. Without the control this would be transferred into kinetic 

energy. This particular system would equilibrate to 245K instead of the desired 200K 

as a result. 

The reader may note from figure 4.3 that the 5,000 step control period is overly 

cautious. The procedure to initialize the droplet structure uses a similarly careful 

approach. The next section details the associated techniques. Simulation results are 

also shown, and they reveal the extended control period is no longer so cautious for 

this case. 
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Figure 4.3. Environment equilibration. Thermal control removed at time step 5000. 

4.1.2    Droplet 

The initial concepts for establishing a droplet structure were based on equi- 

librating a bulk liquid structure and then fusing the results into the supercritical 

environment. The surface tension of the liquid would theoretically form the spherical 

droplet structure relatively quickly during the beginning of the diffusion process. This 

failed. When the equilibrated liquid structure was placed into the lower density envi- 

ronment, the density gradient provided the desired surface tension. But this tension 

was not present in the equilibrating phase of the bulk liquid because the boundaries 

were periodic. The fused liquid quickly collapsed under the sudden appearance of the 

inward directed forces. The simulation still progressed, but the core pair distribu- 

tion function and temperature tracking showed an initial meta-stable state. In other 
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words, rather than simulating the diffusion of a liquid drop, the code was initially 

modeling the sublimation of a nearly solid structure. 

So a new approach was necessary. Literature from Thompson et al.[21] and 

Maruyama [22] covering equilibrated droplet investigations provided the necessary 

insight. They established their systems by placing the initial lattice structure into a 

larger open domain. The definition of the vapor pressure states that when a liquid 

is exposed to a vacuum, evaporation will occur until this rate equals the rate of 

condensation. The pressure exerted by the surrounding vapor at this equilibrium 

condition is the saturation vapor pressure [6]. When the initial lattice structures 

are placed in the larger domains, they likewise evaporate until surrounded by the 

equilibrated vapor phase. In addition, the inwardly directed surface forces cause the 

lattice to form into a minimum energy shape, the sphere. The surrounding domain 

must be large enough to avoid boundary effects on the droplet structure, but not so 

large as to require significant evaporation (this would be very time consuming). 

The concept is successfully employed for the truncated octahedron initializing 

code by simply setting a gap between the lattice and the bounding periodic walls. 

With this space properly set, the simulation results in a droplet floating in saturated 

vapor (see figure 4.4). Actually, acknowledging the periodics, the model is an infinite 

number of such droplets. An occasional re-centering of the center of mass of the 

system maintains the droplet structures at the center of each computational domain. 

The focus of this discussion will therefore remain on only one such image. 

The initial thermal control in this simulation is very important; without it the 

droplet would collapse and freeze into a meta-stable solid-like structure. This effect 

is not only due to the previously discussed lattice melting effect, but also due to the 

latent heat of vaporization. When the atoms in the drop separate due to evaporation, 

the absolute level of potential energy drops. But this means the actual value of the 

potential increases toward the zero level. Since, once again, energy must be conserved 

in a closed system, this shifting of the potentials can only occur as a result of the 

kinetic energy dropping. So the temperature of the system will correspondingly drop 

as the diffusion progresses to equilibrium. 
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Figure 4.4. Droplet initial lattice and equilibrated state. 

Figures 4.5, 4.6 and 4.7 reveal the relative success of the thermal control in es- 

tablishing an equilibrated drop. The plots present energy, density and thermal profiles 

respectively for a 7,300 atom system. Unlike the overly cautious bulk environment 

runs, the droplets must be simulated long enough to establish the previously men- 

tioned vapor pressure. Figure 4.6 reveals that this is achieved only after 15,000 time 

steps have elapsed. Also, the extended thermal control is required to compensate for 

the latent heat. Figure 4.5 shows that even after 5,000 time steps, the kinetic energy 

drops slightly due to this effect. The impact on the droplet temperature past the 

control point is not significant, however, as shown in the thermal profile of figure 4.7. 

Interestingly, this figure also shows that the thermal control actually super-heats the 

vapor phase. This effect diminishes, however, as the vapor population increases and 

vanishes after the control is removed. 

Figure 4.6 also shows the liquid core and surrounding vapor densities settling at 

apparently respective ends of the saturated spectrum. These values should be fairly 
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Figure 4.5. Energy profile of a droplet equilibration. The thermal control is removed at 5000 steps. 

The slight drop in the kinetic energy thereafter is due to the latent heat effect. 

close to saturated vapor and liquid levels at 100K. Comparisons to values tabulated 

in Vasserman et al. [2] show that the droplet core is 5% of the saturated density span 

from the liquid level, while the environment reading is only a 2% shift from saturated 

vapor. These results provide confidence in both the equilibration procedure and the 

chosen values of the Lennard-Jones parameters used in the potential functions. 

4.2    Fusing of Droplet into Environment 

The equilibrating of the droplet and the surrounding environment at desired 

state points does not complete the necessary initialization process. The two systems 

must be fused together. The proper approach to handle this challenge proved initially 

elusive. Fortunately a combination of the previously defined local atomic density in 

conjunction with a geometrical viewing formula yields satisfactory results.   Before 



78 

Pdrop 

(atoms/m3) 

2.0x10" 

1.5x1021 

1.0x10" 

5.0x102 

0.0x10° 

I I I 

P«™,-» 0.06x10* 

Droplet Initialization 

equilibrated to 100K 

7,300 atoms 

rvapor 

(atoms/m3) 

1.0x1027 

- 8.0x10" 

- 6.0x10" 

4.0x10ZI 

2.0x10" 

.I  I -I^.IM -I— -.1,. —J- 

4000 8000 12000 
time step 

(At = .01 psec) 
J ' ' 1-J 0.0x10° 

16000 

Figure 4.6. Density profile of a droplet equilibration. The establishment of the equilibrated vapor 

pressure is indicated by the progression and leveling of the surrounding vapor density. 

detailing this technique, however, a short review of the lesser approaches is provided 

for comparative purposes. 

The first attempt involved simply placing the entire droplet simulation into an 

equivalently sized space in the center of the environment. The environment atoms 

in this region were removed to provide the opening. This was fairly successful, but 

the saturated vapor density was lower than the surrounding supercritical density. 

This created what was termed a halo effect of low density between the drop and the 

environment. The rapid dynamics of the simulation caused concern that this region 

could effect the initial and critical stages of the diffusion process. To correct this, 

the droplet was assumed spherical and only those atoms within the assumed radius 

were fused. The visualization of the surface tension, however, revealed a flaw. The 
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Figure 4.7.   Thermal profile of a droplet equilibration.   The vapor phase is super-heated by the 

thermal control. 

technique cut into the surface and improperly distorted the surface energy. A means 

of fusing the actual shape of the droplet into the environment was therefore desired. 

The means of defining the actual droplet was found in Thompson's Oxford 

studies [21]. The local atomic density is used to filter out those atoms that fall below 

a set level. A value of 0.35 x 1028 atoms/m2 has proven quite useful as a cutoff to 

remove the vapor phase from the equilibrated droplet. Once this filtering is complete, 

the drop is ready to be placed into the environment. Before this can occur, however, 

an opening must be formed in the environment. 

The reader should realize that the equilibrated droplet shape based on local 

density filtering is not a perfect sphere. When filtering the droplet atoms, however, 

the radius of the outermost particle can be retained. When fusing the two systems, 

any environment atom which exists outside this outermost droplet particle radius can 



80 

s 1 

A 
o 

Figure 4.8. Fusing geometry. If the environment atom 'sees' a droplet atom within a preset view 

angle, the atom is erased. 

be automatically retained; they fall outside the droplet structure. If the remaining 

environment atoms could be made to geometrically view their surroundings then the 

problem is solved. Any environment atom, when looking outward from the center 

of the simulation, which 'sees' a liquid atom can be assumed to reside within the 

intended droplet shape. Such atoms would be removed to form the required fuse 

space. The cosine law from basic trigonometry provides the necessary logic. 

Figure 4.8 shows an environment atom 'looking' at a nearby atom from the fused 

droplet. The cosine law states 

(J^drop |(rdr0p-rem,)| cos(0) (4.11) 
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So the coordinates of the environment and the droplet atom can be used to determine 

the view angle with respect to the line emanating from the origin to the environment 

atom. 

env       "^env   '   Uenv   '   zenv \^-^^) 

//j\   \%env%drop   >   Venvl/drop ~r Zenv^drop)       1env (A I Q\ 

Y ^envlK^drop ~ %env)     '   XUdrop ~ Venv)     i   \zdrop      zenv) J 

The values surrounding the circle on figure 4.8 are the resultant cos(ö) values at the 

respective locations. As shown, this value attains a maximum of one at a view angle 

of 0° and decreases uniformally to negative one for a view angle of 180°. So if 

cos(0) > cos(9view) (4.14) 

where 9View is a preset view angle, then the droplet atom is within the 'view' of the 

environment atom. If this occurs, the environment atom is assumed to be located 

inside the liquid structure of the droplet and erased. If, however, all of the droplet 

atoms within the neighborhood of this atom are outside of the view angle, then the 

environment atom is retained. 

The fusing process is performed by a post processing routine. Appendix B is a 

listing of this code. As just detailed, the droplet is defined first by filtering the vapor 

phase atoms using the local density comparisons. A second pass removes atoms which 

lie outside of the droplet but were previously part of a dense group in the vapor phase. 

The environment atoms are then checked for overlapping with the droplet. If they 

lie outside the maximum droplet atom position, they are retained and the next atom 

reviewed. If they fall within the potential droplet region, a linked list of the droplet 

atoms is utilized to limit the liquid atom view checks to those within two cell lengths. 

This is a straight-forward review, periodic boundary complications are not present 

since the droplet is significantly far from the environment boundaries. Once all of the 

environment atoms are reviewed the fusing is complete. 
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At the end of this procedure, the code allows the writing of the droplet and 

environment atoms into a Tecplot file for visualization 1 . The atoms are sorted by 

category of whether they were retained or not. Figure 4.9 shows a central slice of data 

from an actual procedure. The left-most image is of the environment atoms prior to 

the view checking. The gap shown in the right-most image results from the viewing 

process. The image in the center shows the placing of the filtered droplet structure 

into the open space. As shown, the droplet fits quite nicely. 

The simulations using this fusing technique as an initializing step provide the 

desired initial model. There is a short period of adjustment required due to the re- 

moving of atoms from each simulation, but this appears to occur quickly and without 

undue consequences. These observations can be seen in figure 3.13 at the end of 

Chapter 3. The surface tension is clearly retained in a uniform fashion, and the halo 

effect in the density profile is not present. The diffusion process is therefore ready to 

proceed. 

4.3    Diffusion 

The diffusion simulation has been discussed in some detail in the preceding 

chapters of this report. A modeling of the diffusion of a saturated droplet into a 

variety of surrounding environments is desired. The combined linked list and Verlet 

neighbor list search techniques significantly reduce the workload of the force compu- 

tations. Also, the truncated octahedron periodic boundaries are utilized to reduce 

the boundary effects and enhance the efficiency of the environmental volume. Parti- 

cle decomposition based parallel coding allows load balanced modeling, an important 

capability for the two phase system. Finally, a cell aware structure and cell based 

outputs yield insightful property data in both tabulated and contour formats. There 

is one more concept, however, that should be covered. The latent heat of evaporation 

required during the long diffusion simulation seriously erodes the driving potential 

of the high temperature environment. This section details the approach utilized to 

overcome this effect. 

1 Tecplot is a registered trademark for a data visualization program by Amtec Engineering, Inc. 
Version 6 was used for the imaging performed in support of this thesis. 
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Figure 4.9. Droplet fusing into an equilibrated environment. Central slice of particles shown here. 
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The technique is actually quite simple, but appears to work well. The ther- 

mal control applied to the systems during the initializing runs is selectively utilized 

throughout the diffusion run as well. The latent heat effect was discussed previously 

in the detailing of the droplet initializations. This is simply the absorption of kinetic 

energy due to the relaxation of the droplet structure. The resultant reduction in the 

thermal driving potential can therefore be averted by bumping the system energy 

gradually upward. 

The reader may note at this point that a thermal control of the entire sys- 

tem would seem to induce a non-physical diffusion model. The resulting simulation 

output would be simply a function of this control. The author agrees. Instead the 

thermal control is applied only to a fully encasing volume located at the computa- 

tional boundary (see figure 4.10). The velocity components of the atoms which exist 

within this zone are adjusted at each time step to maintain the original environment 

temperature. The rest of the simulation is left to run freely with only the inter-atomic 

potentials and momentum transfers influencing the model. In other words, a thermal 

heat source is established at a significant enough distance from the diffusion dynamics 

to retain the simulation physics. This source also, however, provides the necessary 

energy to sustain the driving potential of the hot surroundings. 

The coding required to establish this selective heating is performed by taking 

advantage of the atomic image array already established. This array defines the 

atoms which lie at a distance of rcut from the hexagon boundaries. This encompasses 

most of the desired thermal control set; only the atoms in the side facing cells remain 

unspecified. The cell map order allows these particles to be easily appended since the 

final elements in the map are these side cells. Once the array of controlled particles 

is determined, their velocities are scaled using the same logic as before 

Vi™ = JST™kf^d VixOlä (415) 
V troold 

„,   new _      ° IenvW*heated „,   old (Aia\ 
viy        ~\   7^ viy (4-16) 
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Now, however, K0u is the total kinetic energy of this select group of Nheated atoms, and 

Tenv is the temperature of the original surrounding environment. These adjustments 

are applied at every step to sustain the thermal condition and to limit any resultant 

computational instabilities. 

The reader should now be familiar with the assortment of both standard and 

unique approaches utilized to provide a viable simulation of the supercritical diffu- 

sion process. The simulation of a droplet diffusing into assorted high temperature and 

pressure environments is initialized by independently modeling the two phases. This 

separation allows the use of careful controls to reach desired conditions for both. The 

fusing of the two simulations is performed in a manner to retain the surface integrity 

of the drop. The technique also exposes this surface immediately to the diffusion driv- 

ing environment. The thermal blanket surrounding the domain boundaries counters 
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the dampening effects of the heat of vaporization. This allows a complete diffusion 

simulation. Quite interesting results were obtained when running these carefully de- 

vised models of both subcritical and supercritical processes. The next chapter details 

these results. 
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Chapter 5 

RESULTS AND DISCUSSION 

This thesis is intended to provide initial insight into the supercritical diffusion 

process through the development and use of a molecular dynamic tool. The previous 

chapters detailed the generation of the tool. An assortment of two subcritical and two 

supercritical environment conditions were simulated to provide the desired insight. 

Figure 5.1, a copy of figure 1.1 from Vasserman [2] and Reynolds [3], shows these four 

simulation points. These are the environmental conditions which drive the diffusion 

of the droplet. The droplet initial conditions are also shown on the figure along 

the saturated liquid line at a pressure of .32MPa. The subcritical cases, running 

in regimes which are already well understood, were performed to provide validation 

of the simulation. The droplets for these two and the two supercritical runs were 

all initialized to a temperature of 100 K and contained approximately 5,600 atoms. 

The supercritical run at 200 K and 7.5 MPa was also repeated for drops of 27,000 

and 100,000 initial atoms. These runs reveal encouraging scaling possibilities. This 

chapter provides details and numerous visualizations concerning all of these cases. 

Before these details are presented, however, this chapter begins with a review of code 

validation and performance comparisons. 

5.1    Code Performance 

The code utilized to support the research was a continually evolving tool. The 

validation and performance measures presented here are results from the most recent 

version of the code. This includes truncated octahedron boundary conditions with 

cell aware coding, linked lists, and Verlet neighbor lists. The validation is limited 

to a review of the simulation algorithm's ability to properly model a bulk liquid 

simulation. This is measured by comparing a pair distribution plot generated by 

the code to results provided by Allen and Tildesley [36].  Further validation of the 



88 

0.000 0.005 0.010 0.015 

Specific Volume (m3/kg) 

0.020 0.025 

Figure 5.1.  Simulation Conditions.  The four gas phase points show the range of simulated envi- 
ronments.  All of the drops were set at saturated conditions at 100 K (and therefore .32MPa) [2] 

[3]. 

simulation process is provided by the subcritical run results. The follow-on section 

details these. 

The performance measures begin with a series of comparisons to runs performed 

by Plimpton [32]. He provides a detailed array of performance measures from a cubic 

simulation on both serial and parallel platforms. Since his measures are based on 

simulations of bulk liquid argon, the performance comparisons detailed herein are 

likewise limited to bulk liquid simulations. The section ends with a discussion of the 

parallel performance of the code when running the actual diffusion simulation. The 

success of the load balancing particle decomposition technique is very apparent, but 

so are the limitations. All of these are discussed. 
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5.1.1 Validation 

Figure 5.2 shows the comparison of a locally generated pair distribution plot 

to published results from another molecular dynamic simulation. The baseline, as 

mentioned, is from Allen and Tildesley [36] and was generated by a leap-frog Verlet 

algorithm. The two results are very close. The new version of the velocity Verlet, 

re-ordered to remove the acceleration array, is therefore validated. Also, the code 

appears free of any boundary defects as these should appear as anomalies as well. 

5.1.2 Performance Comparisons 

The truncated octahedron code developed for the diffusion simulations is com- 

pared here to cubic boundary codes developed by Plimpton [32]. Chapter 4 discussed 

the various parallel concepts presented by Plimpton, but this same article also con- 

tains a benchmark timing of a bulk liquid simulation on a wide array of computer 

architectures. The liquid structure has a reduced density of p* = 0.8442 and a re- 

duced temperature of T* = 0.72. Argon is simulated here with a force cutoff of 2.5<r. 

A combination linked list and Verlet list with a list radius of 2.8<r is implemented to 

provide optimal performance on large systems. The time step used is 10 femtoseconds, 

and the Verlet list is updated at a constant value of 20 steps. An atom decomposition 

technique is used in the parallel runs, while a vectorized serial algorithm from Grest 

et al. [47] is used on the single processors of the Cray Y-MP and Cray C90. The 

parallel runs were performed on the Cray T3D, the nCUBE 2, the Intel iPSC/860, 

and the Intel Paragon [32]. 

Figure 5.3 shows the comparison of the performance of the truncated octahedron 

code on the IBM SP2 to Plimpton's serial runs on the Cray Y-MP and Cray C90. As 

shown, the parallel code beats the Cray Y-MP performance on just 8 processors, while 

the stronger Cray C90 performance is surpassed with the 24 processor set. Plimpton 

states that these performance values of the serial code are the fastest known to date 

for the molecular dynamics simulations on conventional vector supercomputers. Since 

the article was updated in June 1994, these comparisons reveal that the SP2 code 

performs quite well. 
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Figure 5.3. Code performance compared to best serial codes. 

The benchmark problem was also run on various parallel architectures. The 

timings for a particle decomposition code are shown in figure 5.4. The present code 

performance on the 32 processor IBM SP2 is also included in the plot. Again, the 

truncated octahedron code performs fairly well. The linear scaling with problem size 

evidenced by the benchmark runs is matched by the SP2 case. Also, the simulation 

rate is consistently double the rate of the 512 processor nCUBE 2 and nearly four 

times faster than the 32 processor Intel iPSC/860. Only the 512 processor Intel 

Paragon and the 256 processor Cray T3D show better performance. However, these 

machines have peak speeds of 

512 processor Intel Paragon:    38 Gflops 

256 processor Cray T3D: 38 Gflops 

32 processor IBM SP2: 8 Gflops 
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Figure 5.4. Parallel code performance comparisons. Code performance on the IBM SP2 compared 

to optimized codes on other parallel architectures. 

So while the Cray and Intel machines are 5 times faster (theoretically) than the IBM, 

they only run about 2 times faster. 

This poor performance is partially due to the poor communications scaling as- 

sociated with the atom decomposition technique. Plimpton also shows that a force 

decomposition algorithm run on these large processor sets can reduce these times by 

another 25% for the Cray T3D and 40% for the Intel Paragon. Also, doubling the 

processor sets for the benchmark runs reveals virtually no improvements using the par- 

ticle decomposition technique, but the more scalable force decomposition code shows 

promising results. A 512 processor Cray T3D and a 1024 processor Intel Paragon 

yield additional savings of nearly 40% and 25% respectively. These timings provide 

incentive to expand the droplet diffusion research onto these more massively parallel 
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platforms with a force decomposition code. But the strong computational perfor- 

mance on each processor of the SP2 reveals this platform is still very competitive. 

As mentioned, all of these benchmark comparisons are for bulk liquid simula- 

tions. The diffusion problem consists of distinctly varied density profiles. The droplet 

requires significantly more computations than the lower density surroundings. The 

reader is reminded that this load is proportional to the square of the density, so even 

the relatively compact near-critical environment displays this load imbalance across 

the geometries. The particle decomposition technique was specifically developed to 

meet this challenge. 

Figure 5.5 shows the success of the technique. The data plotted here is from 

500 time steps of the simulation of the large droplet diffusion. This 367,000 atom 

system is partitioned over 16 processors. The code provides efficient and independent 

timings of the various workloads associated with the simulation on each processor. 

As shown, the computations and communications are level, and the waiting periods, 

indicative of load imbalances during each time step, are almost non-existent. The 

particle decomposition code therefore provides the load balancing desired for the 

modeling of the diffusion process. 

Chapter 3 of this report details that communications scalability is the price 

associated with the achieving of this balance. The results from the same problem 

performed on 32 processors are shown in figure 5.6. The same excellent load balancing 

is shown, but also the communication loads are nearly identical to the 16 processor 

performance. In fact, only the parallel computations show significant decreases in 

simulation times. The other workloads are essentially processor independent and 

will dominate the simulation time over large processor sets. This is also the reason 

why the particle decomposition performance on the Cray T3D and the Intel Paragon 

changed very little when the processor levels were doubled. 

One more limitation to scalability should also be understood before completing 

this performance section. The computations scale fairly well with the even loading 

across larger processor sets, but this scaling is not perfect. The force computations 

in the simulation are all based on sampling across the full physical domain on each 

processor. While the number of displaced atoms handled by each processor is evenly 
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Figure 5.7. Computation times for the large supercritical simulation. The cost of the loop structure 

is a constant and becomes more important over increasing processor levels. 

divided, the loop structure associated with the neighbors is independent of processor 

levels. As a result, the number of cache misses and other loop structure workloads are 

additional limiting factors to scalability. This characteristic is displayed for the large 

simulation run in figure 5.7. As shown, over a minute of the anticipated computational 

savings for the 500 time steps is consistently required to cover these computation 

efficiency losses. Since three minutes in savings represents the perfect scaling level 

from 32 to 64 processors, a one minute penalty certainly becomes significant. 

The diffusion code utilized in this thesis therefore sees very limited performance 

gains beyond 32 processors. The reader should be aware, however, that monatomic 

simulations result in relatively small computational loads. The future research will 

involve more detailed computations of increasingly complex molecules. The required 

loop structures and communication loads will, however, increase only slightly.   So 
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the results detailed herein show a worst case scenario with regards to code scala- 

bility. While the force decomposition technique may become warranted, the particle 

decomposition code will likely remain an important building block for future research. 

5.2    Simulation Results 

This section details the simulation results corresponding to the diffusion of a 

5,600 atom droplet into four different environment conditions. The droplet, equili- 

brated to saturated conditions at 100 K, is shown on the property chart of figure 5.1 

as the data point located on the saturated liquid line. The pressure at this point 

is 0.32 MPa. The four environment conditions are split into two subcritical and two 

supercritical cases. Further details associated with these simulations are provided in 

their respective subsections. Details of the simulation output parameters are provided 

in the remainder of this introduction of the simulation results. 

Subcritical droplet evaporation can be approximated using an approach termed 

the D2 evaporation law [1]. The D refers to the droplet diameter. The law states that 

the square of the diameter will diminish linearly during the diffusion process. This 

occurs because the drop retains a spherical structure throughout the process. The 

surface area, exposed to the energetic surroundings, is therefore 

As = 4nrs
2 = TTDS

2 (5.1) 

where rs is the droplet radius. The thermal and mass concentration gradients are 

steady and they generate constant fluxes at the droplet surface. Therefore the diffu- 

sion of the droplet into the surrounding environment is proportional to the surface 

area, and a plot of the square of the droplet diameter is a straight line. A similar dif- 

fusion rate presentation is desired for the molecular dynamic simulations. This would 

provide a means of comparing D2 law rates to computational simulation results. 

Measuring the diameter of the droplets during the molecular dynamic diffu- 

sion simulations was initially performed by defining a surface using a technique by 

Maruyama [22]. He measures the local atomic density for each atom using the cutoff 

sphere as the sampling domain. Any atom whose resultant density value is within a 
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range of 25% to 75% of the droplet interior density is defined as a surface particle. 

Since the droplets are periodically centered about the computational origin in the 

MD simulations, the droplet radius can be measured as simply the average radial 

position of these surface atoms. This technique proved useful for the subcritical sim- 

ulations, but was ineffective for the supercritical tracking. During these cases the 

droplets quickly loose their spherical geometry due to the surface tension reduction. 

The measuring of an average radial position is then misleading. 

An alternative means which both matched the subcritical radius tracking and 

provided a logical means of following the supercritical progress was developed to 

counter the problem. Instead of using a measured surface radius, the volume of the 

liquid structure is tracked as the enumeration of atoms whose local densities exceed 

a given level. This value, termed Ndrop, can be regarded as an indicator of droplet 

volume since the drop is simply the total collection of these particles. Modifying the 

parameter further to Ndr0p2/3 provides a similar indicator of surface area. 

The utility of this parameter when evaluating subcritical diffusion is easily 

demonstrated. Assuming the droplet interior is at a relatively uniform density dur- 

ing the diffusion, Ndrop
2/3 is proportional to D2 during a subcritical run. Since the 

drop retains spherical symmetry, D2 can be approximated using the spherical volume 

formula as follows. 

Vdrop = irr.3 = ^D3 » ^ (5.2) 
o 0 Pdrop 

as 

D2 = /6AUV|2/3 = /_6_\2/3 2/8 (5 3) 

Here Vdrop is an estimate of the droplet volume based on the tabulated Ndr0p and an 

assumed uniform droplet density, pdrop. This allows the comparison of the Ndrop
2'3 

values from a series of times in the diffusion simulation to a D2 law computation of 

the evaporation rate. 

The Ndrop2/3 also provides a parameter for tracking the progress of the non- 

spherical supercritical diffusion.   Since the ultimate goal of the simulation is the 
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modeling of droplet combustion, the determination of the liquid structure based on 

density rather than geometry is a natural choice. The combustion process will proceed 

only when there is a nearly stoichiometric mix of the fuel and the oxidizer. For 

subcritical diffusion, this mixing point occurs at the spherical surface. With the 

supercritical case, however, the burning would occur at the convoluted surfaces, and 

Njrop2/3 remains an area factor associated with this shape. It is no longer quantifiable 

as a fixed geometry, but the parameter does give a means of tracking the diffusion 

process. 

The results from the four simulation runs are presented using a combination 

of the Ndrop2^ regression factor and the contour plot visualizations introduced in 

Chapter 3. Density, temperature, and the qualitative surface tension measure are all 

presented. Also, the pair distribution function of the droplet core is used to provide 

added insight. Before continuing with the presentation of the results, however, a 

clarification of the contour imaging is provided. 

While three dimensional data is available for the contours, the most informative 

profiles are found along a central plane in the computational domain. Since the 

droplets are periodically re-centered in all of the simulations, the central plane images 

show a symmetric slice of the diffusion process. Figure 5.8 shows the central plane 

geometry. Since the plotted data is averaged using the linked cell structure, contours 

extend beyond the truncated octahedron shape. The images outside of this shape are 

simply represented as zero value fields. Also shown in this figure is the variable focus 

utilized for the four simulation presentations. The environment dimensions are based 

on limiting their density increase during the evaporation process to less than 30%. 

As a result, the lower density simulations comprise much larger simulation volumes. 

To keep the contour images of the diffusing droplets at the same relative scale, the 

magnification of the image is adjusted accordingly. 

5.2.1    Subcritical Diffusion 

The critical point for argon is defined as 151K and 4.9 MPa [7]. A supercritical 

environment, therefore, must exceed both of these property values. The simulation 

of the subcritical evaporation of the 5,600 atom droplet consisted of two different 
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Figure 5.8. Simulation contours. As shown, the contour results for the assorted simulations represent 

central plane data. 

cases. The first, with the surrounding conditions set at 140 K and 3.0 MPa, provides 

insight into the diffusion with the surroundings below both the critical temperature 

and pressure. In the second case, however, an environment below the critical pressure, 

but significantly above the critical temperature is used. The thermal and pressure 

conditions are 300 K and 3.0 MPa respectively. Both of these simulations provide 

encouraging levels of insight and simulation validity. 

The first subcritical simulation, with the low thermal condition of 140 K, was 

the slowest diffusion simulation. The Ndrop
2^ regression plot (figure 5.9) shows the 

complete evaporation process requires nearly 2000 psec (and 200,000 time steps). The 

plot also reveals a straight line regression which qualitatively matches expectations. 

The small thermal gradients make comparisons to quantitative D2 theory difficult. 
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Figure 5.9. Subcritical regression plot. 

The surface temperature of the droplet is within a degree of the environment tem- 

perature. This is simply too close for any hope of accuracy in the D2 computations. 

Additional analysis of this process, however, does reveal further matches with antici- 

pated thermodynamic behavior. 

As previously mentioned, the evaporating droplet is initially set to saturated 

conditions at 100 K and 1200 kg/m3. The pressure in the drop is therefore assumed to 

match the saturated level as well at 0.32 MPa. When this drop is exposed suddenly 

in the simulation to the higher pressure environment at 3.0 MPa, it should adjust 

accordingly to saturated conditions at this new pressure. Once this adjustment is 

reached, the droplet properties will remain essentially constant, and the energy from 

the hot surrounding gas will contribute exclusively to the diffusion process. This 

droplet property shift is depicted in figure 5.10. The evaporating surface exists as a 

narrow band of rapidly changing density from the saturated liquid to the saturated 
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Figure 5.10. Subcritical simulation conditions. The droplet quickly adjusts to the 3.0 MPa environ- 
ment and the diffusion occurs across the saturation line. 

vapor states at 3.0 MPa. The temperature here will correspondingly match the satu- 

rated level (138.8 K), while the droplet interior will exist as slightly sub-cooled. The 

density in the interior, however, will remain very close to the saturated liquid value 

of 960kg/m3. 

Figure 5.11 shows the tracking of the core pair distribution profile at three 

different periods in the simulation. As shown, the core retains a decidedly liquid 

structure. The slight compression of the second and third plots as compared to the 

first is due to the increased temperature and reduced density. The progression of the 

core properties is also shown for these three time periods. These values explain why 

the second and third distribution profiles match so closely; the core has reached the 

saturated point in accordance with the 3.0 MPa environment. The sub-cooled interior 

temperature is here shown to reach a value of 123 K. 
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Figure 5.11. Subcritical liquid core tracking. The pair distributions show the anticipated liquid core 

and the densities match the saturated liquid state at the environment pressure. 

The contour profiles for this case are shown in figure 5.12. They show a time 

series of four image sets during the full evaporation process. This and subsequent 

contours are presented in color to clearly provide the associated details of these plots. 

The attainment of the saturated density in the droplet core is indicated by the reduc- 

tion of the density level from red to a mix of yellow and orange (a reduced density of 

0.55 correlates to the saturated liquid condition at 3.0 MPa). The series of thermal 

images are not very informative. The environment temperature is simply too low to 

allow statistically viable imaging of the thermal gradients. The surface tension visual 

is more useful. The initial density of the subcritical environment is 159kg/m3. Even 

though the condition is subcritical, the close proximity to the vapor curve at the 

elevated pressure (see figure 5.10) results in this relatively high environment density. 

The contour image shows the surface tension reduces to a low level during the run as 
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Figure 5.12.   Low temperature Subcritical diffusion contours.   A 5,587 atom drop equilibrated to 

100 K and 1200kg/ur' is placed into a 140 K. 3.0 MPa, and 159kg/ma subcritical environment. 
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a result. The lower surface tension, in turn, causes the droplet to deviate somewhat 

from the anticipated spherical structure. 

The second subcritical environment was specifically chosen to eliminate many 

of the evaluation problems which were present in the first simulation. The high 

temperature, yet low pressure, system of 300 K and 3.0 MPa has a density of only 

49kg/m3. Figure 5.13 shows four sets of contours generated when simulating the 

5,600 atom droplet diffusion in these surroundings. The droplet should, once again, 

shift in response to the 3.0 MPa surroundings. The images reveal both this adjustment 

and many other interesting results. 

The drop structure is clearly imaged in figure 5.13 with spherical symmetry 

much more readily maintained than in the previous simulation. This is because the 

low density in the environment allows the surface tension to reach a steady and 

relatively strong level after the anticipated initial adjustment. The yellow and orange 

mix attained in the droplet density profiles is once again indicative of the saturated 

density level at 3.0 MPa. The reader may notice that the color for this case, however, 

is slightly more intense at the interior than in the previous subcritical simulation. This 

is because the stronger surface tension causes this interior to exist at a slightly higher 

pressure level and therefore slightly more dense. This premise is further supported 

by the fact that the droplet density profiles match the images in the interior of the 

surface tension rings. This run also shows a thermal layer approaching the saturated 

temperature surrounds the droplet. The thermal color map is normalized by the 

saturated temperature of 139 K. The saturated thermal layer is therefore depicted by 

the thin green contour. The remainder of the droplet is only slightly sub-cooled, again 

matching expectations. Interestingly, the saturated thermal ring closely matches the 

surface tension profile and they both exist at the outermost edge of the density image. 

This indicates the evaporation begins relatively deep into the droplet structure. The 

vapor temperature is reached only after the surface forces diminish. 

The strong thermal and concentration gradients also provide a diffusion profile 

which strongly matches the theoretical. Figure 5.14 indicates the evaporation is 

quite rapid compared to the previous subcritical case, but the linearity is even more 

pronounced.  The density cutoff factor in these plots is purposely chosen relatively 
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Figure 5.14. Subcritical regression comparisons. 

close to the saturated liquid levels at 3.0 MPa. This results in an inclusion of the more 

uniformally dense inner profile in the Ndrop enumeration. Since this shape is clearly 

defined and nearly spherical due to the increased surface tension, the regression plot 

can be assumed to closely profile the surface area. This then can be compared to a 

computed regression from the D2 evaporation law. 

For the relatively simple self diffusion problem modeled here, the D2 regression 

rate can be computed as [1] 

d(D2) 
dt 

where the evaporation coefficient, ßv, is 

■ßv (5.4) 

\ Pdrop ) 
(5.5) 
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and the transfer number, B, can be determined using 

B = Cp (T7 " Ts) (5.6) 
hfg 

In these equations, Tenv and penv are the temperature and density, respectively, of 

the surrounding environment, in this case 300 K and 49kg/m3. Since the product 

of density and mass diffusivity, psVs, can be assumed independent of temperature, 

the environment based penvVenv can be used as a direct replacement. The self dif- 

fusivity, Venv, is interpolated from experimental data at atmospheric pressure from 

Hirschfelder et al.[48] and extrapolated to the high pressure condition using a tech- 

nique suggested by Bird et al. [49]. The resultant value for argon at 300 K and 

3.0 MPa is 0.6 x 10_7m2/sec. The specific heat, cp, of argon at these conditions was 

interpolated from data presented by Lide [50] as 0.56kJ/kgK. Ts represents the sur- 

face temperature which, as previously shown, exists at the saturated condition of 

139K. The latent heat of vaporization, h/g, at the 3.0 MPa condition is provided 

by Vasserman et al. [2] as 90.0kJ/kg. Collecting all of this data and applying to 

equations 5.4 through 5.6 yields 

dm 
= -1.8 x KTW/sec (5.7) 

dt 

As previously mentioned, equation 5.3 can be used to determine a simulation 

based evaporation rate. Applying the temporal derivative to this equation gives 

d(D*) = f    6    \2/3 d(Nd^) 

dt \KPdrop) dt 

The density of the drop is assumed constant at a core observed average level of 

1.5 x 1028 atoms/m2. This is slightly higher than the saturated level at 3.0 MPa due 

to the increased pressure from the surface tension. The rate on the right side of 

equation 5.8 is simply the slope of the Ndrop2 regression. Inspection of figure 5.14 

yields —.55 atoms2//3/psec for this value. The simulation based evaporation rate is 

therefore 
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^p- = -1.4 x lCrW/sec (5.9) 

This represents a 22% slower rate than the prediction from the D2 evaporation law. 

Considering all of the assumptions associated with each computation, however, this 

is considered a close match. 

So the subcritical cases successfully provide both perceptive information and 

simulation validations. Subcritical evaporation, however, is a process already suc- 

cessfully modeled with simpler techniques. The next section details the results from 

the supercritical simulations. These analytical observations provide perspectives un- 

available prior to this study. 

5.2.2    Supercritical Diffusion 

In a manner similar to the subcritical studies, the supercritical simulations con- 

sist of two simulations. The first, the diffusion of the 5,600 atom droplet into a 

near-critical environment, reveals initial insights into the supercritical process. As a 

diffusion study, however, the simulation is inadequate. An explanation will be de- 

tailed shortly. The second simulation consists, once again, of immersing the 5,600 

atom droplet into a supercritical environment, but during this run the 200 K and 

7.5 MPa surroundings provide sufficient gradients to reveal a very effective and inter- 

esting diffusion process. 

The near-critical environment was initialized by setting the system at the critical 

density and just above the critical temperature. This resulted in a condition at 

533kg/m3, 160 K and 6.8 MPa. The associated ratios to critical properties are 1.00, 

1.06 and 1.4 respectively. When exposed to these conditions, the droplet still must 

adjust accordingly. In the subcritical case, the diffusion surface reaches a saturated 

state correlating with the environment pressure. At supercritical pressures, however, 

there is no saturation state at which the evaporating surface can reside. Mass and 

thermal continuity principles still must be met, however. The visualizations of the 

simulation provide insight to help clarify this issue. 

A series of contours generated by the simulation are presented in figures 5.15 

and 5.16.   The first series shows image sets at 10, 30, 50 and 70 picoseconds.   At 
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these very early points, nearly immediate removal of the surface energy is readily 

apparent. Also, the droplet quickly reaches a thermal condition just under critical. 

Due to the lack of surface energy, the geometry of the liquid phase rapidly digresses 

from the initial spherical structure. An apparent diffusion surface, however, at the 

critical temperature surrounds the irregular density profile. This is demonstrated 

further in the second series of images in figure 5.16, based on data at 10, 100, 200 

and 600 picoseconds. The diffusion process is overshadowed, however, by a cloud-like 

dispersion. This is the reason why this simulation does not provide a useful basis 

for diffusion tracking. In fact, attempts at regression plots reveal no discernable 

evaporation rate. 

Before moving on to the second supercritical investigation, one more observation 

should be addressed. This is associated with the previously mentioned state discon- 

tinuity question. Dispite the nearly uniform thermal images and the completely non- 

spherical density profiles, the liquid region appears to retain a relatively high density 

level. Figure 5.17 shows where this author believes the state points of the droplet 

exist during the process. When the droplet initially adjusts to the high pressure and 

high temperature conditions, it moves up the saturated liquid line. Since a satura- 

tion point is not reached, the structure continues to adjust to the high pressure by 

rising up just to the left of the critical isotherm. Once the pressure equilibrates, the 

diffusion occurs between this subcooled state and the supercritical environment. The 

critical isotherm shifts slightly in the direction of lower specific volume (and therefore 

higher density) with increasing pressure, so the liquid density rests fairly close to the 

saturated level at 3.0 MPa observed previously. The figure also displays the close 

proximity based on both the thermal and density levels of the adjusted droplet to 

the environment. These low gradients cause the diffusion to be overshadowed by the 

cloud-like mixing. 

A similar adjustment of the droplet interior can be observed in the second su- 

percritical simulation. This time the liquid must adjust to a slightly higher pressure 

of 7.5 MPa, so the resultant subcooled structure is correspondingly more dense. The 

difference is very slight, however, since the critical isotherm is nearly vertical at this 

point.   The temperature of the new supercritical surroundings is now set to 200 K 
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Figure 5.15.  Near-critical contours: Initial images.  A 5.587 atom drop equilibrated to 100K and 

1200 kg/m3 is placed into a 160 K, 6.8 MPa. and 530kg/m3 near-critical environment. 
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Figure -5.16. Near-critical contours: Full evaporation. A 5,587 atom drop equilibrated to 100 K and 

i200kg/ma is placed into a 160 K. 6.8 MPa, and 530kg/ma near-critical environment. 
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Figure 5.17. Supercritical simulation conditions. The droplet adjusts close to the saturated liquid 

profile and then just to the left of the critical temperature isotherm when exposed to the supercritical 

temperatures and pressures of the third and fourth simulation environments. 

with a resultant density of 236kg/m3. Due to this lower environment density and 

higher temperature, the thermal and concentration gradients are now stronger. As a 

result, the supercritical diffusion process can be observed. 

A double presentation of contour series, similar to those shown in the previous 

supercritical discussion, are provided in figures 5.18 and 5.19. The short time span 

series is now set at 10, 40, 70 and 100 picoseconds. The surface energy still dissipates 

rather quickly and the spherical geometry breaks down as a result. This effect is not 

as strong as in the near-critical simulation, however, since the environment is not as 

dense. The cloud-like dissipation is correspondigly reduced. Instead, a clear diffusion 

boundary at the critical temperature is apparent. This surrounds the density profile 

in a manner very similar to the high temperature, subcritical run. Figure 5.19, with 
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Figure 5.18.  Supercritical contours:  Initial images.   A 5,587 atom drop equilibrated to 100 K anc 

1200 kg/nr is placed into a 200 K. 7.5 MPa. and 236kg/m3 supercritical environment. 
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Figure 5.19. Supercritical contours: Full evaporation. A -5,-587 atom drop equilibrated to 100 K and 

1200 kg/m3 is placed into a 200 K, 7.5 MPa. and 236kg/m3 supercritical environment. 
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Figure 5.20. Supercritical and subcritical regressions. Comparison of the iV3 regression of the 5,600 

atom droplet in the 200 K, 7.5 MPa supercritical environment to the regression in the 300K, 3.0 MPa 

subcritical surroundings. 

images from 10, 100, 200 and 300 picoseconds, reveals that while this diffusion contour 

becomes rather irregular, it continues surrounding a subcooled structure throughout 

the process. 

The non-spherical liquid structure, as just mentioned, is a result of the surface 

tension reduction. In the near-critical simulation significant mixing occurs as a re- 

sult. In this second simulation, an additional benefit is derived. Figure 5.20 shows 

a comparison of the regression profile of this 200 K supercritical diffusion to that of 

the 300 K subcritical run. The scale is expanded to more clearly compare these two 

rapid processes. Interestingly, the supercritical case also achieves a linear profile after 

a short adjustment. This indicates that although the shape is irregular, an apparent 
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steady surface diffusion is progressing. In fact this diffusion into the 200 K environ- 

ment occurs more rapidly than the subcritical evaporation into the higher temperature 

surroundings. One explanation is that although the atoms in the subcritical case are 

hitting the droplet with higher speeds, the frequency is less corresponding to the lower 

density. One more enhancement, however, is present here, the lower surface energy. 

In other words, there is a much lower net attractive force pulling the surface atoms 

towards the droplet structure. Not only are the surface collisions in the supercritical 

case occuring more often, they are also more likely to discharge surface elements as a 

result. These results were the genesis of the surface tension description provided in 

Chapter 3 which detailed the benefits of supercritical environments. 

5.3    Scaling Studies 

The previous results were very informative, but the 5,587 atom droplet, the 

evaporating subject in all four simulations, is far from a representative drop in a 

combustion chamber. With a diameter on the order of just 9 nanometers, this drop 

is microscopic. Investigations of its evaporation would seemingly be of little use for 

any practical engineering work. To address this significant problem, two additional 

simulations were performed. Both were set at the same conditions as the supercritical 

simulation presented in the last section. The drops were equilibrated to 100 K and 

then fused into supercritical environments at 200 K and 7.5 MPa. The difference in 

these new runs is size. The first uses an initial drop of 27,109 atoms while the second 

uses a 100,570 atom drop. The associated diameters are approximately 16 and 23 

nanometers respectively. The results from these larger simulations are important. If 

a scaling parameter reveals the smaller runs can approximate larger simulations, then 

the results can be of practical use after all. 

Scaling is not a new concept in molecular dynamic simulations. Many references 

mention the application of small scale studies for macroscopic work. Haile [35] defines 

the thermodynamic limit using 

lim   (simulation results)N/Vjixed ~ (macroscopic results) (5.10) 
V —tlarge 
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As long as the system density remains fixed, the simulation results can be used 

to approximate the macroscopic system. This is actually an oversimplification and 

assumes the microscopic simulation is set at the same thermodynamic state as the 

desired macroscopic system. With the density set to equivalent levels by fixing N/V, 

the state can be defined by ensuring similar energy levels. 

In the simulations performed for this thesis the system densities are certainly 

not uniform. Also, the energy levels in the simulations vary significantly due to 

both the density and thermal profiles. So scaling cannot be performed by simply 

extending a bulk system concept. Instead, a local density must be considered, and 

the relative properties must be set appropriately. In other words, if the system is 

split into subsystems each of which consist of essentially uniform densities and energy 

levels, then these small pieces can be scaled as noted above. So two simulations, 

mapping the same relative density and temperature (or kinetic energy) profiles, can 

be considered scaled representations of identical systems. 

The two additional simulations are established based on this scaling principle. 

Each environment is sized by applying the relative dimensions of the droplet profiles. 

The droplets are equilibrated in identical fashions and therefore represent scaled den- 

sity profiles. Also, by setting the same initial temperatures in the environment and 

the drops, the simulations begin with scaled thermal profiles as required. One point 

could be argued here, however; the equilibrated drops have the same surface depths. 

Figure 5.21 shows cross sectional images of the three scaled drops. As seen, the depth 

of the density gradients at the surfaces are equal, not scaled. This view, however, 

highlights an important concept in this specific problem. 

The results from the 5,600 atom run show that the diffusion process appears to 

remain a surface effect. So the proper scaling of this simulation should ensure that 

the surfaces are matched. In other words, rather than ensuring the entire system 

is an ensemble of small volumes, the elements from the droplet surface are set as 

the collection. Figure 5.21 depicts this concept by noting that scaled drops should 

be considered collections of equivalent surface elements. The larger systems simply 

contain more elements, and macroscopic systems contain very large sets. This concept 

can be presented in a fashion similar to Haile's representation of bulk scaling as 
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Scaling: 
Larger drops simply 
consist of more surface 
element sets. 

Figure 5.21. Scaling premise. 

lim    (simulation results) N/Vtixed ~ (macroscopic results) (5-11) 
Vfl—tlarge 

where Ns and Vs refer to the number of atoms and the volume respectively of the 

droplet surface. Once again, this representation assumes an equivalent energy profile 

for this region. Additionally, for the droplet diffusion simulation, the environment 

and interior droplet volumes should be set using the bulk concept to ensure scaled 

sources exist to drive the surface simulation. 

The two larger simulations meet these scaling requirements and should therefore 

match the supercritical run previously presented. The resultant regression plots are 

compared to the original smaller case in figure 5.22. The two additional runs generate 

very encouraging results. The profiles are nearly identical in shape; they appear as 
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Figure 5.22. Ns regression plots for increasingly larger simulations. 

simply larger representations of the same simulated system. The problem which 

remains is to determine the scale factor which allows the extrapolation of smaller 

runs to larger simulations. The contour images give additional information to help 

meet this challenge. 

Early contour profiles from these runs are displayed in figures 5.23 and 5.24. 

The first is a series of images at 10, 40, 70 and 100 picoseconds for the evaporation of 

the 27,109 atom drop into the 64,235 atoms comprising the supercritical environment 

initially set at 200 K and 7.5 MPa. The second set of images are selected from the same 

times for the evaporation of the 100,570 atom drop into the 266,278 atom environment. 

Careful comparison of these figures to figure 5.18 reveal that the surfaces do indeed 

seem to simulate similar effects. Most notably, the surface tension dissipates at the 

same rate. This results in the irregularities of the density profiles appear to be 

generated at the same rate as well. Finally, the thermal profile cooling is progressing 
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at the same depth for each time period. The reader should note that these similarities 

are not relative rates and depths; they are absolute measures. They do support the 

scaling concept, however. By envisioning unwrapping the surface images, duplicating 

according to the relative scaling of the perimeters, and then comparing, one can see 

the very close similarities. 

This visualizing concept also helps postulate the desired scaling factor. Since 

the surfaces appear to be progressing at very close simulation rates, a measure of 

these surfaces should provide the answer. In other words, the rate of change of the 

surface areas, As, is a constant for all three simulations. 

dA 
constant (5.12) 

This equation reveals that the times in the regression plots should be scaled identically 

as the surface area to retain the constant rate value. Since the Ndrop
2^ factor is used 

as an indicator of this area, it should correspondingly provide the scale factor as 

follows 

N,      2/3 

scale ^ ^^3 (5.13) 

where the subscripts si and s2 refer to any two scaled simulations. This scale can 

now be used as a multiplying factor for both the regression and the time variables for 

the s2 regression plot. 

The application of this concept is depicted in figure 5.25. By assuming the initial 

values of the A^r0p2 parameters are appropriate for the determination of the scale 

factor (from equation 5.13), the regression plots were scaled up to the large simulation 

case. The results of this attempt are very apparent in the figure. The two smaller 

runs accurately depict the large run progression. By simply using the ratio of the 

initial A^rop
2'3 parameters, the entire profile scales quite well. 

The contour images of the full diffusions in these larger runs are shown in figures 

5.26 and 5.27. The time series are selected to scale appropriately with those displayed 

in the smallest case in figure 5.19. They verify the close profiling of the three runs 

using the scaling concept. These images also tend to explain how the volume of the 
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Figure 5.23. Scaling level 1: Initial images. A 27.109 atom drop equilibrated to 100 K and 1200 kg/nr5 

is placed into a 200 K. 7.5 MPa. and 236kg/rnJ supercritical environment. 
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Figure 5.24.    Scaling level 2:   Initial images.    A  100,570 atom drop equilibrated to 100 K and 

12()()kg/mJ is placed into a 200 K, 7.5 MPa, and 236kg/m3 supercritical environment. 



123 

2000 

1500 - 

CO 
o w 
X 

^L 1000 
g 

500 

-i—i—i—i—i—i—i i 

5,587 atom drop (scale = 6.87) 
27,109 atom drop (scale = 2.40) 
100,570 atom drop (scale = 1.00) 

scale s 
(100,570f 

-J I I L 

500 1000 1500 2000 

time (psec) x scale 

2500 3000 

Figure 5.25. Scaled TV 3 regression plots. Scales based on initial droplet sizes as shown. 

drop can be ignored as a scaling parameter. (Volume effects would counter the purely 

surface scaling assumptions.) They show the droplet interior quickly reaches steady 

thermal and density conditions. In other words, the heating of the droplet volume is 

rapid compared to the surface diffusion rate. The volume therefore can be considered 

negligible as a scaling parameter. 

The success of both simulating and scaling the diffusion process in the super- 

critical environment provides strong incentives to continue to pursue this modeling 

development. The next chapter provides a brief synopsis of the work detailed herein, 

and also details some of the anticipated future efforts. 
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Figure 5.26.   Scaling level 1:   Full evaporation.    A 27,109 atom drop equilibrated to 100K and 

1200kg/m* is placed into a 200 K. 7.5 MPa, and 236kg/m3 supercritical environment. 
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Figure 5.27.   Scaling level 2:   Full evaporation.   A 100,570 atom drop equilibrated to 100 K and 

1200 kg/m3 is placed into a 200 K. 7.5 MPa, and 236kg/m3 supercritical environment. 
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Chapter 6 

CONCLUSIONS 

Combustion in a supercritical environment is a highly efficient, and therefore 

desirable, means of transferring fuel energy for rocket and turbojet propulsion. This 

thesis represents a first step toward the development of an evaluation tool to better 

understand this important process. The scope of the work is limited to evaluating 

a simple monatomic structure evaporating into high temperature and pressure sur- 

roundings. Real fuels are at least diatomic in structure and evaporate into complex 

and varied oxidizer environments. In addition to the associated requirement for more 

fine tuned inter-atomic potentials, the potentials between a large assortment of dis- 

similar elements are required. As the reader may note at this stage, the stepping from 

the evaporation model detailed in this thesis to an actual combustion process is a large 

step indeed. This chapter briefly reviews the successes of the work detailed herein 

and provides descriptions of other on-going associated work all performed ultimately 

to approach the goal of combustion simulations. 

The response of an evaporating droplet in supercritical environments is a chal- 

lenging process to evaluate. The lack of a saturated vapor condition, at which the 

droplet surface can reside, forces a near-critical point balance instead. The critical 

point for any substance is naturally unstable. Developing analytical models which 

include this region is therefore difficult. Molecular dynamic simulations, however, 

avoid many of the critical point pitfalls by modeling the atomic actions from the first 

principle of inter-atomic potentials. The work detailed herein showed that, indeed, 

a critical boundary could be simulated and droplet evaporation investigated. The 

discovery of a surface based diffusion was enlightening and allowed a theoretical scal- 

ing to very large systems. One point of caution, however, is warranted here. The 

entire simulation hinges on the inter-atomic potentials. This function provides the 

important first principles from which all the resulting physics evolve. If the potential 

is inaccurate, the simulation is not to be trusted. 
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The potential utilized in this study was simply a liquid-based, Lennard-Jones 

effective potential. Certainly the wide range of environments simulated during the 

study should be placed in question as a result. A project which is near completion [51] 

provides insight into the appropriate level of concern which should be applied. 

The study is a duplication of the 6,000 atom droplet diffusion simulations us- 

ing 3-body forces instead of the pair-wise effective forces. Multiple body potentials 

remove the necessity for adjustments due to density. In other words, they model the 

gas phases as accurately as the liquid with a single potential. Unfortunately, the 

3-body force computations are significantly more complex and require a full order of 

magnitude greater processing time than the computations required for pairwise sim- 

ulations. This author has reviewed the initial data from the 3-body simulations and 

encouraging results were seen. The high temperature, subcritical run (with an envi- 

ronment at 300 K and 3.0 MPa) differed the most. This would be expected since the 

gas phase in this environment is very dilute. The difference for this case, however, is 

only about 10% when comparing A^rop
2,/3 regression rates. Also, the supercritical run 

showed only a slight shift. Apparently, the high density supercritical environments 

are simulated very well by the liquid based effective potential. Interestingly, the 3- 

body evaporation rate more closely matches the D2 evaporation calculation. But the 

associated assumptions used in regards to property data cause the D2 evaporation 

law rates to be as much in question as the simulation rates. 

So the simple monatomic model investigated herein appears to have been a 

valid one. No fuels, however, exist as monatomic substances. In pursuit of real 

fuel evaporation insights a similar model is already in active use to investigate the 

evaporation of diatomic elements [52]. The initial results are encouraging in this area. 

The oxygen self diffusion appears to closely match the results from the argon study, at 

least qualitatively. The surface tension dissipates in a similar manner and a resultant 

scaling ability is expected to be found. 

The simulation of an oxygen drop evaporating into a supercritical oxygen envi- 

ronment is a precursor, however, to the first 'real world' investigations. The model 

which simulates the oxygen evaporating into oxygen vapor will be adapted to simu- 

late oxygen evaporating into hydrogen, a real fuel and oxidizer combination used in 
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many rocket motors. The major challenge here concerns the proper potentials not 

only for oxygen and for hydrogen, but also for the interactions between these two 

elements. Once again, the entire process hinges on the proper selection and use of 

these potentials. 

Another related simulation in very early development stages is the modeling of 

injector flows. Many of the supercritical applications for future aerospace vehicles 

involve the heating of the fuel to supercritical temperatures and pressures before 

even interacting with the reacting environment. The concept is based on using the 

fuel as a coolant for the aircraft structures in transonic and potentially hypersonic 

environments. Such a highly energized flow should combust quite readily, but much of 

the actual physical understanding associated with this proposal is missing. Molecular 

dynamics promises to provide the insight desired for this problem in a similar manner 

to the insight derived in this thesis. 

The property measures, performed on a linked cell basis, provided much of the 

insightful information in this thesis. They only included density, temperature and 

the qualitative surface tension, however. These properties are among the easiest to 

measure in molecular dynamics. Research is currently progressing to expand the cell- 

based property concept to the more detailed measures of transport coefficients [53]. 

The self-diffusivity, the shear viscosity and the thermal conductivity all can be trans- 

ferred directly to continuum-based models to combine the first principle accuracy of 

molecular dynamics with the large scale capabilities of continuum analysis. With 

proper potentials, this work could significantly extend the validity of many standard 

droplet analysis techniques. Additionally, the MD analysis could allow the tabulation 

of thermodynamic and transport properties for complex molecules. The applications 

are then very broad-ranged. 

In conclusion, the research performed in this thesis was productive and insight- 

ful. A parallel code for modeling droplet diffusion was developed which performs at 

an even level with some of the best developed to date. The investigations provided 

contour imaging of the highly energetic reactions to supercritical environments. Also, 

a verification of surface diffusion in these environments was made. The ability to 

scale the results helped prove the surface-based physics as well as provided validity 
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for the molecular dynamic code as an engineering tool. Future improvements in par- 

allel architectures will only enhance the value of the code and molecular dynamics in 

general. 
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Appendix A 

TRUNCATED OCTAHEDRON CELL MAP 

This appendix gives the listing of the subroutine used to generate the cell maps 

for the truncated octahedron boundary code. 

C 

C *** Subroutine to set cell interaction structures *** 

c 
Subroutine cellgen(mc) 

C 
include 'evapto.inc' 

C 
integer mc2,msq2,mcq4,1,im3,im4,im5,im6,im7,im8, 

& imagehexp,di sphexp,mface,mtotal,int c, 
& ilf,irf,ibf,itf,iff,iaf,iq,xsign,ysign,zsign,mcface, 
& Ifcells(20000),rfcells(20000),bfcells(20000), 
& tfcells(20000),ffcells(20000),afcells(20000), 
& imagel(100000),image2(100000),image3(100000),image4(100000), 
& image5(100000),image6(100000),image7(100000),image8(100000) 

C 
logical iwrite 

C 
common/celldat/vexO,vexl,vex2, 

&    lastin,imface,icperq,cnlast,lasthexp, 
&    Ifacel,lface2,rfacel,rface2,bfacel,bface2, 
&    tf ace 1, tf ace2, f f acel, f f ace2, af acel, af ace2, 
&     quad,cellact.gocell,image 

C 
rm = dble(mc) 
mc2 = 2*mc 
msq = mc*mc 
msq2 = 2*msq 
mcube = msq*mc 

C 
if(mod(mc,4).eq.0) then 
mcq2 = mc/2 
mcq4 = mc/4 
lasthexp = mcq2 + mcq4 
imagehexp = lasthexp - 3 
disphexp = lasthexp - 2 
mface = (mc+4)*(mc+8)/8 
imface = (mc-8)*(mc-4)/8 
mtotal = mcube/2 + (3*msq)/2 
mcface = mc/2 - 1 
vexO = (10.d0/3.d0)*dble((mcq2+mcq4)*(mcq2+mcq4+l) 

&        -3*mcq4*(mcq4+l))+dble(mc) 
vexl = (2.d0/3.d0)*dble((mcq2+mcq4-l)*(mcq2+mcq4) 

&        -3*mcq4*(mcq4+l)) 
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vex2 = O.dO 
else 
mcq2 = mc/2 
mcq4 = (mc+2)/4 
lasthexp = mcq2 + mcq4 
imagehexp = lasthexp - 4 
disphexp = lasthexp -2 
mface = (mc+6)*(mc+10)/8 
imface = (mc-6)*(mc-2)/8 
mtotal = mcube/2 + (9*msq)/4 - 5 
mcface = mc/2 - 1 
vexO = (47.d0/12.d0)*dble((mcq2+mcq4)*(mcq2+mcq4+l) 

fc        -3*mcq4*(mcq4+l))+dble(3*(mc+2))+.5d0*dble(mcq4-l) 
vexl = 2.d0*dble((mcq2+mcq4-l)*(mcq2+mcq4) 

&        -3*mcq4*(mcq4+l)) 
vex2 = (I.d0/12.d0)*dble((mcq2+mcq4-2)*(mcq2+mcq4-l) 

&        -3*(mcq4-l)*(mcq4)) 
endif 

C 
lfacel = mtotal - 6*mface + 1 
lface2 = lfacel + mface - 1 
rfacel = lface2 + 1 
rface2 = lface2 + mface 
bfacel = rface2 + 1 
bface2 = rface2 + mface 
tfacel = bface2 + 1 
tface2 = bface2 + mface 
ffacel = tface2 + 1 
fface2 = tface2 + mface 
afacel = fface2 + 1 
aface2 = fface2 + mface 
cnlast = mtotal 

C 
quad(l) = 1 
quad(2) = 1 + mc/2 
quad(3) =1      + msq/2 
quad(4) = 1 + mc/2 + msq/2 
quad(5) =1 + mcube/2 
quad(6) = 1 + mc/2       + mcube/2 
quad(7) =1      + msq/2 + mcube/2 
quad(8) = 1 + mc/2 + msq/2 + mcube/2 

C 
C********************************************************************** 
C    *** Setting neighbor cell assignment array *** 
C********************************************************************** 
C 
c   interior cells   
c 

ic = 1 
do 601 i=-l,l,l 

do 602 j=-mc,mc,mc 
do 603 k=-msq,msq,msq 

icell = i + j + k 
if(icell.eq.O) goto 
cellact(ic) = icell 
ic = ic + 1 

603 continue 
602 continue 
601 continue 

603 
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c 
C    — left face — 
C 

do 541 i=-l,l,l 
do 542 j=-mc,mc,mc 

do 543 k=-msq,msq)msq 
icell = i + j + k 
if(icell.eq.O) goto 543 
if(i.eq.-l) icell = icell + mc 
cellact(ic) = icell 
ic = ic + 1 

543  continue 
542 continue 
541 continue 

C 
C      right face   
C 

do 551 i=l,-l,-l 
do 552 j=-mc,mc,mc 

do 553 k=-msq,msq,msq 
icell = i + j + k 
if(icell.eq.O) goto 553 
if(i.eq.l) icell = icell - mc 
cellact(ic) = icell 
ic = ic + 1 

553  continue 
552 continue 
551 continue 

C 
C      bottom face   
C 

do 561 j=-mc,mc,mc 
do 562 i=-l,l,l 

do 563 k=-msq,msq,msq 
icell = i + j + k 
if(icell.eq.O) goto 563 
if(j.eq.-mc) icell = icell + msq 
cellact(ic) = icell 
ic = ic + 1 

563  continue 
562 continue 
561 continue 

C 
C     top face  
C 

do 571 j=mc,-mc,-mc 
do 572 i=-l,l,l 

do 573 k=-msq,msq,msq 
icell = i + j + k 
if(icell.eq.O) goto 573 
if(j.eq.mc) icell = icell - msq 
cellact(ic) = icell 
ic = ic + 1 

573  continue 
572 continue 
571 continue 

C 
C      fore face   
C 
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do 581 k=-msq,msq,msq 
do 582 i=-l,l,l 

do 583 j=-mc,mc,mc 
icell = i + j + k 
if(icell.eq.O) goto 583 
if(k.eq.-msq) icell = icell + mcube 
cellact(ic) = icell 
ic = ic + 1 

583  continue 
582 continue 
581 continue 

C 
C     aft face  
C 

do 591 k=msq,-msq,-msq 
do 592 i=-l,l,l 

do 593 j=-mc,mc,mc 
icell = i + j + k 
if(icell.eq.O) goto 593 
if(k.eq.msq) icell = icell - mcube 
cellact(ic) = icell 
ic = ic + 1 

593  continue 
592 continue 
591 continue 

C 

C    *** Setting cell loop order array *** 

c 
C      order is from inside out along hexagon planes   
C 

iwrite = .false. 

do 500 m=l,lasthexp 
if(m.eq.imagehexp) iwrite = .true, 
if(m.eq.disphexp) lastin = intc 
n = m-1 
do 501 iq=l,8 
xsign = 1 
ysign = 1 
zsign = 1 
if((iq.eq.l).or.(iq.eq.3).or. 

fe        (iq.eq.5).or.(iq.eq.7)) xsign = -1 
if((iq.eq.l).or.(iq.eq.2).or. 

k        (iq.eq.5).or.(iq.eq.6)) ysign = -1 
if((iq.eq.l).or.(iq.eq.2).or. 

fc        (iq.eq.3).or.(iq.eq.4)) zsign = -1 
do 502 j=0,n 

1 = n-j 
do 503 i=0,l 

k = 1-i 
if((i.gt.mcface).or.(j.gt.mcface).or. 

k (k.gt.mcface)) goto 503 
ic = i 
jc = j 
kc = k 
if(xsign.It.0) ic = mcface-i 
if(ysign.It.0) jc = mcface-j 
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if(zsign.lt.0) kc = mcface-k 

icell = quad(iq) + ic + jc*mc + kc*msq 
if(iwrite) then 

if(iq.eq.l) then 
iml = iml + 1 
imagel(iml) = icell 

elseif(iq.eq.2) then 
im2 = im2 + 1 
image2(im2) = icell 

elseif(iq.eq.3) then 
im3 = im3 + 1 
image3(im3) = icell 

elseif(iq.eq.4) then 
im4 = im4 + 1 
image4(im4) = icell 

elseif(iq.eq.5) then 
im5 = im5 + 1 
image5(im5) = icell 

elseif(iq.eq.6) then 
im6 = im6 + 1 
image6(im6) = icell 

elseif(iq.eq.7) then 
im7 = im7 + 1 
image7(im7) = icell 

elseif(iq.eq.8) then 
im8 = im8 + 1 
image8(im8) = icell 

endif 
endif 

if(i.eq.mcface) then 
if(xsign.lt.0) then 

ilf = ilf+1 
lfcells(ilf) = icell 

else 
irf = irf+1 
rfcells(irf) = icell 

endif 
goto 503 

endif 
if(j.eq.mcface) then 

if(ysign.lt.0) then 
ibf = ibf+1 
bfcells(ibf) = icell 

else 
itf = itf+1 
tfcells(itf) = icell 

endif 
goto 503 

endif 
if(k.eq.mcface) then 

if(zsign.lt.0) then 
iff = iff+1 
ffcells(iff) = icell 

else 
iaf = iaf+1 
afcells(iaf) = icell 

endif 
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goto 503 
end if 

intc = intc+1 
gocell(intc) = icell 

503 cont inue 
502 continue 
501 continue 
500 continue 

do 504 j=l,6 
do 505 i=l,mface 

intc = intc + 1 

505 

if(j.eq.l) gocell(intc) 
if(j.eq.2) gocell(intc) 
if(j.eq.3) gocell(intc) 
if(j.eq.4) gocell(intc) 
if(j.eq.5) gocell(intc) 
if(j.eq.6) gocell(intc) 

continue 

= lfcells(i) 
= rfcells(i) 
= bfcells(i) 
= tfcells(i) 
= ffcells(i) 
= afcells(i) 

504 continue 
c 

c 
lcperq iml 

507 
506 

do 506 iq-1,8 
do 507 i=l,iml 

if(iq.eq.l) then 
im = im+1 
image(im) = imagel(i 

elseif(iq.eq.2) then 
im = im+1 
image(im) = image2(i 

elseif(iq.eq.3) then 
im = im+1 
image(im) = image3(i 

elseif(iq.eq.4) then 
im = im+1 
image(im) = image4(i 

elseif(iq.eq.5) then 
im = im+1 
image(im) = image5(i 

elseif(iq.eq.6) then 
im = im+1 
image(im) = image6(i 

elseif(iq.eq.7) then 
im = im+1 
image(im) = image7(i 

elseif(iq.eq.8) then 
im = im+1 
image(im) = image8(i 

endif 
continue 

continue 

return 
end 
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Appendix B 

FUSE CODE 

This appendix is a listing of the code used to fuse an equilibrated droplet into 

an environment. There is an option to generate a binary data set for visualization 

using Tecplot. Utilizing this capability requires access to Tecplot libraries. The fusing 

portion of the code can be used independent of the Tecplot visualization. 

C FILE: fuse.f 
C DESCRIPTION: 
C       Code to fuse equilibrated liquid and gas models. 
C AUTHOR: Jeff Little 
C LAST REVISED: 02/13/96 
C********************************************************************** 

program fuse 
implicit none 

C 
real*8 vx(500000),vy(500000),vz(500000) 
real*8 rx(500000),ry(500000),rz(500000) 
real*8 x,y,z,u,v,w,rhodrp,rhoenv,drpboxd,envboxd,sigsqf 
real*8 sigma,sigsq,fcut,rcut,rhocut,rsqmax,rsqmin,rcut2 
real*8 rsq,rmboxinv,rmq2,nnbor,rjisq,voutlyinv,rhocuti 
real*8 rhocutq2,rcutsq,rsmax,rsmin,xji,yji,zji,rjimag,pi 
real*8 ridjiqm,coscut,cellqs,rm,envdincr,rho,rimag,rcut2sq 

C 
real*4 rhoi.boxinv.ivinv 
real*4 xtec(500000),ytec(500000),ztec(500000),ttec(500000) 
real*4 type(500000).size(500000) 

C 
integer i.ii, j,k,ndrp,nenv,na,nerase,egap,nodebal,nd,ndc,ne 
integer mc,icell,mcube,m,ic,j c,kc,nbor,j o,msq,nee,ntec 
integer head(300000).list(500000) 
integer Debug,TecIni.TecZne.TecDat.TecEnd 

C 

C 
logical  nodat 

character*1 answer,NULLCHR 
character*32 maintitle,zonetitle 

parameter (cellqs = 2.5d0) 
parameter (sigma = 3.405d-10) 
parameter (sigsq = sigma**2) 
parameter (rcut = 2.5d0*sigma) 
parameter (pi = 3.14159265359d0) 

rcut2 = 2.d0*rcut 
rcut2sq = rcut2*rcut2 
voutlyinv = I.d0/((4.d0/3.d0)*pi*((2.d0*rcut)**3)) 
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ivinv = 1.0/(0.5*sngl((4.d0/3.d0)*pi*(2.5d0*sigma)**3)) 
sigsqf = (2.d0**(l.d0/3.d0))*sigsq 
fcut = sqrt(sigsqf) 
rcutsq = rcut*rcut 
write(*,*) 
write(*,*) 'fcut/sigma =',fcut/sigma 
NULLCHR = CHAR(O) 
Debug = 1 

C 
OPEN(9,f ile='fuse.out',status='unknown',form='formatted') 
OPEN(11,f ile='r.evp',status='unknown',form='unformatted') 
OPEN(12,f ile='v.evp',status='unknown',form='unformatted') 
0PEN(14,file='r.drp',status='old',form='unformatted') 
0PEN(15,file='v.drp',status='old',form='unformatted') 
OPEN(16,file='r.env',status='old',form='unformatted') 
0PEN(17,file='v.env',status='old',form='unformatted') 

C 

C *** Setting fuse parameters *** 

c 
write(9,*) 
write(9,*) 'Fusing of droplet into surrounding environment' 
write(*,*) 
write(*,*) 'Fusing of droplet into surrounding environment' 
read(14) ndrp,rhodrp,drpboxd 
read(16) nenv,rhoenv,envboxd 

C 
rm = envboxd/(cellqs*sigma) 
mc = int(rm) 

C 
write(9,*) 
write(9,*) 'rhodrp ='.real(rhodrp) 
write(9,*) 'rhoenv =',real(rhoenv) 
write(*,*) 
write(*,*) 'rhodrp =',real(rhodrp) 
write(*,*) 'rhoenv =',real(rhoenv) 
write(*,*) 
write(*,*) 'Input the density cutoff value:' 
write(*,*) '  (enter 0 to use the environment density)' 
read(*,*) x 
write(*,*) 
write(*,*) '...and input the view angle for environment checks:' 
read(*,*) coscut 
coscut = cos((coscut/360.d0)*pi) 
write(*,*) 'cos(coscut) = '.coscut 

C 
if(x.eq.O) then 
rhocut = rhoenv 

else 
rhocut = x 

endif 
C 

write(*,*) 
write(*,*) 'Enter rhocuti to define inner surface radius:' 
read(*,*) y 
rhocuti = y 
write(9,*) 
write(9,*) 'rhocut = ' ,sngl(rhocut) 
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write(9,*) 'rhocuti = '.sngl(rhocuti) 
write(*,*) 
write(*,*) 'Enter the task balance value:' 
read(*,*) nodebal 
write(*,*) 
write(*,*) 'Do you wish to save the data (y/n)?' 
read(*,*) answer 

nodat = .true, 
if(answer.eq.'y') nodat = .false. 

write(9,*) 
write(9,*) 'task balance # = ',nodebal 
write(9,*) 
write(9,*) 'environment mc = ',mc,' (rm = ',sngl(rm),')' 

C 
C*********************************************************************^ 
C *** Erase liquid atoms in the vapor region based on rhocut *** 

c 
rsqmax = O.dO 
rsqmin = l.dlO 
k = 0 
ndc = 0 
do 111 i=l,ndrp 

read(14) x,y,z,rhoi 
rhoi = rhoi*ivinv 

c       if(mod(i.lOO).eq.O) write(*,*) 'rhoi(',i,') =',rhoi 
read(15) u,v,w 
if(rhoi.le.rhocut) then 
ndc = ndc + 1 
xtec(ndc) = sngl(x) 
ytec(ndc) = sngl(y) 
ztec(ndc) = sngl(z) 
ttec(ndc) =5.0 
goto 111 

end if 
rsq = x**2 + y**2 + z**2 

C      if(rsq.gt.rsqmax) rsqmax = r 
C  ...rsqmax determined after throwing out outlyers (see below) 

k = k+1 
rx(k) = x 
ry(k) = y 
rz(k) = z 
vx(k) = u 
vy(k) = v 
vz(k) = w 
type(k) =0.0 

if(rhoi.gt.rhocuti) goto 111 
type(k) =1.0 
if(rsq.It.rsqmin) rsqmin = rsq 

111 continue 
C 

if(rsqmin.gt.(1.0d9)) rsqmin = O.dO 
C 
C       droplet linked list   
C 

rmboxinv = rm/envboxd 
rmq2 = rm/2.d0 
msq = mc*mc 
mcube = msq*mc 
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do 97 icell = l.mcube 
head(icell) = 0 

97 continue 
do 98 i=l,k 

icell = 1 + int(rx(i)*rmboxinv+rmq2) 
ft + int(ry(i)*rmboxinv+rmq2)*mc 
& + int(rz(i)*rmboxinv+rmq2)*msq 

list(i) = head(icell) 
head(icell) = i 

98 continue 
C 
C      erase droplet outlyers   
C 

jo = 0 
rhocutq2 = 0.5d0*rhocut 

C 
do 201 m=l,mcube 
i = head(m) 

211 if(i.eq.O) goto 201 
x = rx(i) 
y = ry(i) 
z = rz(i) 
rsq = x*x + y*y + z*z 
if(rsq.lt.rsqmin) goto 224 
nnbor = 1.0 

do 221 ic = -2,2,1 
do 222 jc = -2,2,1 

do 223 kc = -2,2,1 
nbor = m + ic + jc*mc + kc*msq 

j = head(nbor) 
231       if(j.eq.O) goto 223 

if(j.ne.i) then 
rjisq = (rx(j)-x)**2 + (ry(j)-y)**2 + (rz(j)-z)**2 
if(rjisq.lt.rcut2sq) nnbor = nnbor +1.0 

end if 
j = list(j) 
goto 231 

223 continue 
222  continue 
221 continue 

C 
C      outlyers defined as any atom whose surrounding density 
C (within twice the cutoff radius) is less than 0.5*rhocut   
C 

rho = nnbor*voutlyinv 
if(rho.le.rhocut) then 

jo = jo+1 
ndc = ndc + 1 
xtec(ndc) = sngl(rx(i)) 
ytec(ndc) = sngl(ry(i)) 
ztec(ndc) = sngl(rz(i)) 
ttec(ndc) =3.0 
rx(i) = envboxd +1.0 

C      ...tagged as an outlyer 
end if 

224 i = list(i) 
goto 211 

201 continue 
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j = 0 
do 301 i=l,k 

if(rx(i).gt.envboxd) goto 301 

j = j+1 
rx(j) = rx(i) 
ry(j) = ry(i) 
rz(j) = rz(i) 
vx(j) = vx(i) 
vy(j) = vy(i) 
vz(j) = vz(i) 
ntec = ndc + j 
xtec(ntec) = sngl(rx(i)) 
ytec(ntec) = sngl(ry(i)) 
ztec(ntec) = sngl(rz(i)) 
ttec(ntec) = type(i) 
rsq = rx(j)**2 + ry(j)**2 + rz(j)**2 
if(rsq.gt.rsqmax) rsqmax = rsq 

301 continue 
C 

nd = j 
C 

rsmax = sqrt(rsqmax) 
rsmin = sqrt(rsqmin) 

C 
write(9,*) 
write(9,*) 'ndrp in =',ndrp 
write(9,*) ' ndrp rhocutted =',ndrp-k 
write(9,*) ' ndrp outlyers =',jo 
write(9,*) 'ndrp out = ',j 
write(9,*) 
write(9,*) 'surface radius = (',sngl(rsmin/sigma),' to ', 

& sngl(rsmax/sigma),')*sigma' 
C 

ndrp = j 
rsqmax = (rsmax + fcut)**2 

C 
C       update droplet linked list   
C 

do 497 icell = l.mcube 
head(icell) = 0 

497 continue 
do 498 i=l,ndrp 

icell = 1 + int(rx(i)*rmboxinv+rmq2) 
& + int(ry(i)*rmboxinv+rmq2)*mc 
& + int(rz(i)*rmboxinv+rmq2)*msq 

list(i) = head(icell) 
head(icell) = i 

498 continue 
C 
C    filter out environment atoms within droplet volume   
C 

k = ndrp 
nee = 0 
ne = 0 
do 501 i=l,nenv 

C 
read(16) x,y,z,rhoi 
read(17) u,v,w 
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rsq = x*x + y*y + z*z 
rimag = sqrt(rsq) 
if(rsq.lt.rsqmin) goto 503 
if(rsq.gt.rsqmax) goto 502 

C 
icell = 1 + int(x*rmboxinv+rmq2) 

& + int(y*rmboxinv+rmq2)*mc 
& + int(z*rmboxinv+rmq2)*msq 

C 
do 521 ic = -2,2,1 

do 522 jc = -2,2,1 
do 523 kc = -2,2,1 
nbor = icell + ic + jc*mc + kc*msq 

j = head(nbor) 
531       if(j.eq.O) goto 523 

xji = rx(j)-x 
yji = ry(j)-y 
zji = rz(j)-z 
rjimag = sqrt(xji*xji + yji*yji + zji*zji) 

if(rjimag.le.fcut) goto 503 
if(rjimag.Ie.rcut2) then 
ridjiqm = ((x*xji)+(y*yji)+(z*zji))/(rjimag*rimag) 
if(ridjiqm.ge.coscut) goto 503 

endif 
j = list(j) 
goto 531 

523    continue 
522  continue 
521 continue 

C 
C    if reach here, then save as environment atom   
C 

502 k = k + 1 
rx(k) = x 
ry(k) = y 
rz(k) = z 
vx(k) = u 
vy(k) = v 
vz(k) = w 
goto 501 

C 
C    tecplot data of erased environment atoms   
C 

503 nee = nee + 1 
ntec = ndc + nd + nee 
xtec(ntec) = sngl(x) 
ytec(ntec) = sngl(y) 
ztec(ntec) = sngl(z) 
ttec(ntec) =7.0 
if(rsq.lt.rsqmin) ttec(ntec) = 6.0 

501 continue 
C 

na = k 
C 

write(9,*) 
write(9,*) 'nenv in 

C 
j = nenv - na + ndrp 
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nenv = na - ndrp 

write(9,*) ' nenv erased =',j 
write(9,*) 'nenv saved =',nenv 

nerase = mod(na,nodebal) 
envdincr = (dble(na-nerase)/(0.5d0*(envboxd**3)))/rhoenv - l.dO 

if(nerase.eq.O) then 
egap = nenv+1 

else 
egap = nenv/nerase 

end if 
k = 0 
m = 0 
do 631 j=l,nenv 

i = ndrp + j 
if(mod(j,egap).eq.O) then 

k = k + 1 
if(k.le.nerase) then 
ntec = ndc + nd + nee + k 
xtec(ntec) = sngl(rx(j+ndrp)) 
ytec(ntec) = sngl(ry(j+ndrp)) 
ztec(ntec) = sngl(rz(j+ndrp)) 
ttec(ntec) = 8.0 
goto 631 

end if 
end if 
rx(i) = rx(j+ndrp) 
ry(i) = ry(j+ndrp) 
rz(i) = rz(j+ndrp) 
vx(i) = vx(j+ndrp) 
vy(i) = vy(j+ndrp) 
vz(i) = vz(j+ndrp) 
m = m+1 
ntec = nd + ndc + nee + nerase + m 
xtec(ntec) = sngl(rx(i)) 
ytec(ntec) = sngl(ry(i)) 
ztec(ntec) = sngl(rz(i)) 
ttec(ntec) =10.0 

631 continue 

nee = nee + k 
ne = m 

write(9,*) 
write(9,*) 'task balance erase =',nerase 
write(9,*) 'final nenv =',nenv-nerase 
write(9,*) 
write(9,*) 'final ntotal =',na-nerase 
write(9,*) 
write(9,*) 'Percent density increase due to evap:', 

& sngl(envdincr*100.) 
write(9,*) 

if(nodat) then 
write(9,*) 'NOTE: data files not updated' 
write(9,*) 
goto 998 
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else 
write(9,*) 'NOTE: data files updated' 
write(9,*) 
na = na - nerase 

C 
rewind(ll) 
write(11) na.envboxd 
do 401 i = l,na 
write(ll) rx(i),ry(i),rz(i) 
write(12) vx(i),vy(i),vz(i) 

401  continue 
C 

end if 
C 

998 continue 
write(*,*) 
write(*,*) 'Do you wish to view the data in Tecplot (y/n)?' 
read(*,*) answer 
if(answer.ne.'y') goto 999 

C 
write(*,*) 
write(*,*) 'Enter the title for the tecplot dataset:' 
read(*,*) maintitle 

C 
C    ****** Initialize the Tecplot binary file ****** 
C 

I = Teclni(maintitle//NULLCHR, 
& 'x y z type size'//NULLCHR, 
& 'fuse.pit'//NULLCHR, 
& '.'//NULLCHR, 
& Debug) 

C 
C    ****** Zones: dropcut,outlyers,drop,envcut,nodebal,env 
C 

boxinv = sngl(1.dO/envboxd) 
C 

zonetitle = 'dropcut' 
ii = ndc-jo 
I = TecZne(zonetitle//NULLCHR, 

& ii,l,l, 
& 'BLOCK'//NULLCHR) 

do 900 i=l,ii 
xtec(i) = xtec(i)*boxinv 
ytec(i) = ytec(i)*boxinv 
ztec(i) = ztec(i)*boxinv 
type(i) = ttec(i) 
size(i) = sigma*boxinv 

900  continue 
I = TecDat(ii,xtec,0) 
I = TecDat(ii,ytec,0) 
I = TecDat(ii,ztec,0) 
I = TecDat(ii,type,0) 
I = TecDat(ii,size,0) 

C 
if(jo.ne.O) then 
zonetitle = 'outlyer' 
I = TecZne(zonetitle//NULLCHR, 

& jo,1,1, 
& 'BLOCK'//NULLCHR) 
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901 

do 901 i=l 
xtec(i) 
ytec(i) 
ztec(i) 
type(i) 
size(i) 

continue 
I = TecDat 

= TecDat 
= TecDat 
= TecDat 
= TecDat 

jo 
= xtec(i+ii)*boxinv 
= ytec(i+ii)*boxinv 
= ztec(i+ii)*boxinv 
= ttec(i+ii) 
= sigma*boxinv 

endif 

(jo,xtec,0) 
(jo.ytec.O) 
(jo,ztec,0) 
(jo.type.O) 
(jo,size,0) 

902 

903 

zonetitle = 'drop' 
I = TecZne(zonetitle//NULLCHR, 

nd.1,1, 
'BLOCKV/NULLCHR) 

,nd 
= xtec(i+ntec)*boxinv 
= ytec(i+ntec)*boxinv 
= ztec(i+ntec)*boxinv 
= ttec(i+ntec) 
= sigma*boxinv 

ntec = ndc 
do 902 i=l 

xtec(i) ! 

ytec(i) : 

ztec(i) ; 

type(i) : 
size(i) : 

continue 
= TecDat 
= TecDat 
= TecDat 
= TecDat 
= TecDat 

(nd,xtec,0) 
(nd,ytec,0) 
(nd,ztec,0) 
(nd,type,0) 
(nd,size,0) 

zonetitle = 'envcut' 
li = nee - 
I = TecZne 

nerase 
(zonetitle//NULLCHR, 
ii.1,1, 
'BLOCKV/NULLCHR) 

ntec = ndc + nd 
do 903 i=l,ii 

xtec(i) = xtec(i+ntec)*boxinv 
ytec(i) = ytec(i+ntec)*boxinv 
ztec(i) = ztec(i+ntec)*boxinv 
type(i) = ttec(i+ntec) 
size(i) = sigma*boxinv 

continue 
I = TecDat(ii,xtec,0) 
I = TecDat(ii,ytec,0) 
I = TecDat(ii,ztec,0) 
I = TecDat(ii,type,0) 
I = TecDat(ii,size,0) 

zonetitle = 'nodebal' 
I = TecZne(zonetitle//NULLCHR, 

nerase,1,1, 
'BLOCKV/NULLCHR) 

ntec = ndc 
do 904 i=l 

+ nd + nee 
,nerase 

nerase 
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xtec(i) = xtec(i+ntec)*boxinv 
ytec(i) = ytec(i+ntec)*boxinv 
ztec(i) = ztec(i+ntec)*boxinv 
type(i) = ttec(i+ntec) 
size(i) = sigma*boxinv 

904 continue 
I = TecDat(nerase,xtec,0) 
I = TecDat(nerase,ytec,0) 
I = TecDat(nerase,ztec,0) 
I = TecDat(nerase,type,0) 
I = TecDat(nerase,size,0) 

zonetitle = 'env' 
I = TecZne(zonetitle//NULLCHR, 

& ne,1,1, 
& 'BLOCKV/NULLCHR) 

ntec = ndc + nd + nee 
do 905 i=l,ne 

xtec(i) = xtec(i+ntec)*boxinv 
ytec(i) = ytec(i+ntec)*boxinv 
ztec(i) = ztec(i+ntec)*boxinv 
type(i) = ttec(i+ntec) 
size(i) = sigma*boxinv 

905 continue 
I = TecDat(ne,xtec,0) 
I = TecDat(ne,ytec,0) 
I = TecDat(ne,ztec,0) 
I = TecDat(ne,type,0) 
I = TecDat(ne,size,0) 

I = TecEndO 

999 continue 
stop 
end 
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Appendix C 

EVAPORATION CODE FLOWCHART 

Equilibrate Droplet        Equilibrate Environment 

Fuse Systems 

Read positions 
and velocities 

Scatter data to processors 
establishing balanced local arrays 

(rx, ry, rz, vx, vy, vz) 

Concat positions 
establishing global position arrays 
 (grx, gry, grz)  

Initialize: 
Local linked lists 
Global linked lists 
Global images 
Thermal controls 

Time Step Loop 
(see next page) 

Write collected cell data 
to output file 

Using global linked list and cell map order 
write positions and collected velocities 

to output file 
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Enter Time Loop Time loop 
jt = jt1 to jt2 

klst = 0 
jlst = 0 

Displacement Loop 
(see next page) 

Hist = .true 

no 

Hist = .false. 

Reimage 'k' atoms 

Recenter system 
(per requested frequency) 

Concat rx, ry & rz into grx, gry & grz 

Recompute: 
Local linked list 
Global linked list 
Global images 
Thermal controls 

Collect property data 
from all processors 

write to file 
(per requested frequency) 

Collect energy data 
from all processors 

Apply thermal control 
along boundaries 

Update image atom locations 
using updated global arrays 
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Enter 
Displacement 

Loop 

/ 

no 
Loop through cell map 
ic = 1 to ic2 

Select atom 'k' 
(local linked list) 

i = k + nskip 
fx = fy = fz = 0 
klst = klst + 1 

...note: periodic 
computations applied 
at predefined cells 

Displace atom 'k' 
(velocity Verlet) 

point(klst) = jlst + 1 

j1 = point(klst) 
j2 = point(klst+1) 

Neighbor cell loop 
jc = 1 to 27 

Select atom 'j' 
(global linked list) 

jlst loop 
jlst = j1 to j2 

Compute pairwise 
force sums 
fx = f x + fxij 
fy = fy + fyij 
f z = f z + fzij 

Select atom 'j' 
(using nlist(jlst)) 

Compute if 



VITA 

Major Jeffery K. Little has served over fourteen years as an engineer and edu- 

cator in the U.S. Air Force. Entering in 1982 after completing a Bachelor's of Science 

in Mechanical Engineering at Auburn University, he was assigned as a turbine engine 

research engineer at NASA Lewis Research Center. At the completion of this spe- 

cial duty assignment in 1984, he became an operations engineer for the Engine Test 

Facility at the Arnold Engineering Development Center (AEDC) in Tennessee. Over 

a four year tour he worked a variety of positions involving operations monitoring, 

test and resource scheduling, and facility modernization and maintenance. In addi- 

tion, he earned a Master's of Science in Mechanical Engineering from the University 

of Tennessee Space Institute during his AEDC tour. In 1988 he was chosen as an 

AFROTC instructor and assigned to the University of Arizona in Tucson, Arizona. 

Here he taught history and was twice named the AFROTC Western Area instructor 

of the year. At the end of 1991, he was competitively chosen as an instructor by 

the Aeronautics Department at the USAF Academy in Colorado Springs, Colorado. 

He taught thermodynamics, heat transfer and energy conversion courses. In 1993 he 

was released early from the Academy assignment to pursue a sponsored doctorate in 

Aerospace Engineering at the Pennsylvania State University. This thesis represents 

the completion of this task. Major Little will follow this effort with an assignment 

at the sponsoring agency, the Aeronautics and Astronautics Department at the Air 

Force Institute of Technology. 


