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ABSTRACT 

This paper examines an infinite family of proximity drawings of graphs called open and 
closed ß-drawings, first defined by Kirkpatrick and Radke [15, 21] in the context of com- 
putational morphology. Such proximity drawings include as special cases the well-known 
Gabriel, relative neighborhood and strip drawings. Complete characterizations of those 

trees that admit open /^-drawings for 0 < ß < iz^f) and ^f) < ß < °° or closed 

/^-drawings for 0 < ß < ^J^ and ^E) < ß < oo are given, as well as partial 

characterizations for other values of ß. For the intervals of ß in which complete charac- 
terizations are given, it can be determined in linear time whether a tree admits an open 
or closed /^-drawing, and, if so, such a drawing can be computed in linear time in the real 
RAM model. Finally, a complete characterization of all graphs which admit closed strip 

drawings is given. 



1    Introduction and Overview 

A drawing of a graph G maps the vertices of G to distinct points in the plane and each 
edge (u, v) of G to a simple curve between the points associated with u and v. Graph 
drawing algorithms and tools usually adopt given graphic standards. A widely used 
graphic standard represents all the edges as straight-line segments. Drawings within this 
standard are called straight-line drawings. A limited list of work on straight-line drawings 
includes [11, 12, 13, 14, 23]. 

Increasing attention has been given recently to proximity drawings [2, 16, 10, 19, 9]; 
for a survey on proximity drawings the reader is referred to [5]. Loosely speaking, a 
proximity drawing is one in which adjacent vertices are drawn relatively close together and 
non-adjacent vertices are drawn relatively far apart. Many types of proximity drawings 
measure relative closeness by using a proximity region: Given two points u and v in the 
plane, a proximity region for u and v is a subset of the plane associated with u and v. 
A proximity drawing of G is a straight-line drawing such that: (i) for each edge (u,v) of 
(7, the proximity region of the points representing u and v is empty (does not contain 
any other vertex); and (ii) for each pair of nonadjacent vertices u, v of G, the proximity 
region of the points representing u and v is not empty. 

Several types of proximity regions have been investigated, each one chosen for partic- 
ular application purposes. Examples include 

1. the relative neighborhood region: the intersection of the two open disks centered at 
u and at v and with distance d(u, v) as radius; 

2. the Gabriel region: the closed disk having u and v as antipodal points; and 

3. the closed strip region: the infinite closed strip having u and v on the boundary and 
width d(u,v). 

For example, in Figure l.a we show the proximity drawing of a tree T where the 
proximity regions are relative neighborhood regions. Observe that T contains edge (x,z) 
and the proximity region of the pair x, z is empty; conversely edge (w, v) is not in T and 
the proximity region of w,v contains x ({x,w,v} were chosen to make angle Lwxv the 
smallest of the five angles). Tree T has no proximity drawing such that the proximity 
regions are Gabriel regions. Figure l.b shows a proximity drawing of another tree T", using 
Gabriel regions. Figure l.c shows that the same drawing is also a closed strip proximity 
drawing of T". 

In this paper we study the proximity-drawability testing problem: the problem of decid- 
ing whether a graph has a proximity drawing with a given type of proximity region. In par- 
ticular we study the proximity-drawability of trees. We consider an infinite parametrized 
family of proximity regions, first introduced in [15, 21], that includes several of the most 
well-known proximity regions from the literature. 

We consider two types of proximity region: 

Definition 1.1 Given a pair x,y of points in the plane, the open ß-region of x and y, 
and the closed ß-region of x and y, denoted by R(x,y,ß) and R[x,y,ß] respectively, are 
defined as follows: 



(a) O) (c) 

Figure 1: Three proximity drawings. 

1. For 0 < ß < 1, R(x,y,ß) is the intersection of the two open disks of radius 
d(x,y)/(2ß) passing through both x and y. R[x,y,ß] is the intersection of the 

two corresponding closed disks. 

2. For 1 < ß < oo, R(x,y,ß) is the intersection of the two open disks of radius 
ßd(x,y)/2 and centered at the points (1 -ß/2)x + (ß/2)y and (ß/2)x + (1 -ß/2)y. 
R[x,y,ß] is the intersection of the two corresponding closed disks. 

3. R(x,y, oo) is the open infinite strip perpendicular to the line segment xy and 
R[x, y, oo] is the closed infinite strip perpendicular to the line segment xy. 

4. Finally, R{x,y,0) is the empty set and R[x,y,0] is the line segment connecting x 

and y. 

Figure 2 illustrates some [/?]-regions of a pair of points {x, y} for different values of ß. 
In Figure 1, R(x, z, 2), R[u, y, 1], and R[w, v, oo] are examples of the relative neighborhood 
region, Gabriel region, and closed strip region, respectively. 

1.1     Applications 
The problem of testing whether a tree has a proximity drawing and, if so, of constructing 
such a drawing has applications in the area of graph drawing. The design of algorithms 
for straight-line drawings of trees is a field of growing interest given the ubiquity of trees 
as models. For a small sample of papers that show algorithms for straight-line drawings 
of trees see [8, 7, 2]. Proximity drawings of trees have several interesting characteristics 

for visualization: 

1. Neighbors of a given vertex cluster around that vertex; 

2. The angles between consecutive edges are "large" (each angle is at least 7r/3); and 

3. Proximity drawings of trees, as we will see later, are related to minimum spanning 
trees, another well studied class of tree-drawings [19, 9]. 



R[x,y,°°l 
Rlx,y,2] 

Figure 2: A set of proximity regions R[x,y,ß] 

Note that the problem of constructing drawings with large angles (high-resolution 
drawings) has been studied in [17, 6]. For an up to date overview on graph drawing 
problems, applications, and algorithms, the reader is referred to [4]. 

Finally, proximity drawing problems may be viewed as visibility problems: two points 
are mutually visible if a certain region between them contains no other point. From this 
point of view, the results in this paper deal with the problem of determining whether a 
tree can be realized as the visibility tree of a set of points. 

1.2     Results 

Let T(ß) {T[ß}) be the class of trees that have a proximity drawing where the proximity 
region is the open (closed) /^-region. We denote with Tk the set of all fmite_trees of 

maximum vertex degree at most k. Class T is defined in Section 5 and class T are the 
so-called "forbidden" graphs defined in [2]. The results presented in this paper are listed 
below. Table 1 summarizes the characterization results and compares them with previous 
results, showing how the set of drawable trees changes as ß changes. Columns of the 
table labelled "new" describe results of this paper; Columns labelled "previous" describe 
known results. A citation indicates that the result either first appeared in—or is a simple 
consequence of results appearing in—the cited papers. 

• We give a complete characterization of T(ß) for all ß values such that 0 < ß < 

l-cos(^) 
1.45 or such that 3.23 ~ —ISFT < ß < oo.  Also, we give a complete cos(^) 

characterization of T[ß] for all ß values such that 0 < ß < 1_\%JL^ or such that 

< ß < oo.   For all ß values not in the above intervals, we give a partial 
cos(f) 
characterization: we show that all trees in % and only trees in % belong to T(ß) 

and T[ß]. 



• For any ß in the intervals mentioned above, we can in linear time decide membership 

in T(ß) or T[ß}. 

• We describe linear time algorithms (in the real-RAM model), which, given any ß 
in the intervals mentioned above, and any tree T € T{ß) (or T]ß]), construct a 
proximity drawing of T with proximity region the open (or closed) /^-region. Fur- 
thermore, we can produce in linear time such a proximity drawing for any tree in 

% and any value of ß such that 1.45 < ß < 3.23. 

• We discuss the relationships between the proximity drawings presented in this paper, 
Delaunay triangulations, and minimum spanning trees and exploit these relation- 

ships in our proof techniques. 

• Furthermore, we show that the class of graphs that can be drawn with proximity 
region Ä[x,y,oo] consists of all binary forests. To date, this is the first complete 
characterization of a class of proximity drawable graphs. 

ß                     T{ß) previous T[ß] previous              T(ß) new               T[ß] new 

1 ß = 0 — — r(ß) = {KuK2) riß] = r2 

2 0<ß<^ — — riß) = % res] = r2 

3 ß = ^ — — riß) = r2 r[/3] = r3-r 

4 ^<ß<l — — r(ß) = % T[)9] = T3 

5 ß = l T(ß) = % [2] riß) = %-r [2] — — 

6 1    - '?.   -         1 % C T(ß) [3, 15] % C riß] [24, 15J riß) = % r\ß] = % 
1  ^ P ^   l-cos(^) 

7 —5 r     s 
T3 C T(ß) [3, 15] r3 c riß] [24, i5j riß) = % % C T\ß\ c r5 

P ~   l-cos(äJL) 

8 Tz±m<ß<2 % C Tiß) [3, 15J % C riß] [24, 15] % c riß) c % r4 c riß] c r5 

9 ß = 2 T(ß) = % [2j riß] = % [2] — — 

10 2<ß<-^f) — — % c riß) c r5 7i C T[/3] C r5 

11 ß ~ cos(^) 
— — r4 c r()9) c % r\ß] = % 

12 zd¥)<ß<0° 
— — riß) = % riß] = r4 

13 /3 = oo — — % c riß) c % r\ß] = r3 

Table 1: Summarizing the characterization results 

The paper is organized as follows. Section 2 contains basic terminology. Geometric 
properties of proximity drawings adopting (/?)- and [/?]-proximity regions, as well as their 
combinatorial relationships to minimum spanning trees and Delaunay triangulations are 
discussed in Section 3. Section 4 presents proximity drawing algorithms for different 
classes of trees. All the described algorithms produce drawings with the property that for 
any two non-adjacent vertices u, u, the /^-region of it and v contains some vertex along 
the path from it to v. A further contribution of Section 4 is to show that for 1.45 < 
ß<2 there exist trees in % that do not admit proximity drawings having such property. 
Characterizations of representable trees for different values of ß are given in Section 5. 



Graphs that admit a closed strip proximity drawing are characterized in Section 6. Finally, 

Section 7 discusses conclusions and open problems. 

2    Preliminaries 

We assume familiarity with the basic terminology of graph theory and computational 
geometry (see also [1], [20]). Let T be a tree, v a vertex of T, and x a neighbor of v; Tx{v) 
denotes the connected component of T - {v} which contains x. A rooted tree (T,r) is a 
tree T along with a distinguished vertex r (called the root of T). Vertices adjacent to r 
are called children of r and r is the parent of those vertices. Each child x of r is in turn 

the root of Tx(r). 
Any closed sector of a disk with center p and radius p of angle ^ < 2?r is denoted by 

S\p,</>,d,p], where d is a vector with origin p, which bisects the angle <f> of the sector. A 

sector having angle <j> is called an ^-sector. 
Given a rooted tree (T,r), a ß-drawing of {T,r) is a S^-drawing if all the vertices of 

the drawing are contained in an (/»-sector having r drawn at the apex. Note that the radius 
of the sector is irrelevant; if (T,r) has some ^-drawing, it can be drawn in any ^sector 

of any positive radius. 
Let S, X and Y be any three sets of points in the plane. We say that S separates X 

and Y if, for each x € X and each y € Y, where x^y, there is a point in S which lies in 
the proximity region of x and y. Thus if 5" is a set of points that contains S, x € X f"l S' 
and y E Y f) S', then a proximity drawing whose vertices are the points of S' will not 
contain the edge between x and y. Some of our algorithms will proceed by representing 
disjoint subtrees of a tree inside sectors that are separated from each other by some set 

of points. 
An open ß-drawing (or (ß)-drawing) of a graph G is a proximity drawing of G such 

that for each pair of points x,y the proximity region is R(x,y,ß). Analogously, a closed 
ß-drawing (or [ßj-drawing) of G is a proximity drawing of G such that for each pair of 

points x,y the proximity region is R[x,y,ß]. 
A graph is (ß)-drawable if it has a (/3)-drawing. A class of graphs is (ß)-drawable 

if each graph in the class is (/3)-drawable. A class of graphs is not (ß)-drawable if it 
contains at least one graph that is not (/Ö)-drawable. Similar terminology and notation is 
used for closed /3-drawings. When it is clear from the context or when it is not necessary 
to distinguish between open and closed proximity regions, we will simplify the notation 
by talking about ß-drawings and ß-drawable graphs and classes. For brevity, we will 
sometimes use the term ß-graph instead of /?-drawable graph. 

Given a set P of points in the plane, we denote by G(P,ß) the graph whose vertices 
correspond to the points of P and such that there is an edge (x, y) between two vertices 
corresponding to points x and y iff R(x, y, ß) fl P = 0. It is easy to see that G(P, ß) has a 
(ß)-drawing that is obtained by connecting with straight-line segments the points of P that 
correspond to adjacent vertices of G(P, ß). Hence, G(P, ß) is a (/3)-graph. For convenience 
we denote, where this does not cause ambiguity, by G(P, ß) both the graph and its (/?)- 
drawing and by P both the set of vertices and the points representing them in the drawing. 
Analogously, we denote by G[P, ß] the graph whose vertices correspond to the points of P 
and such that there is an edge between two vertices x and y iff R[x, y, ß]f)(P- {x, y}) = 
0.   Clearly, G[P, ß] has a [/?]-drawing that is obtained by connecting with straight-line 



segments the vertices of P that correspond to adjacent vertices. Hence, G[P, ß] is a [/?]- 
graph. Also in this case we will sometimes denote by G[P,ß] both the graph and its 

drawing. 
An induced subgraph of a graph G which is obtained by repeated removal of leaves 

(i.e. vertices of degree one) is called a pruning of G. Let G be a graph which admits 
a ^-drawing T and let G' be a pruning of G obtained by removing a set of vertices V. 
Let I" be obtained from T by removing the points corresponding to the set V. If for all 
prunings G' of G, V is a ^-drawing of G', then T is a stable ^-drawing of G. 

Property 2.1 In a stable ß-drawing of a tree, for any pair of non-adjacent vertices x 
and y there is a vertex v on the (unique) path between x and y such that v is contained 
in the proximity region of x and y. 

Figure 3.a and 3.b show two different [2]-drawings of the same tree. The first drawing 
is [2]-stable, the second drawing is not [2]-stable. 

T— 

(a) 

w u 

0>) 

Figure 3: (a) A stable [2]-drawing and (b) a non-stable [2]-drawing of the same tree. 

To analyze /3-drawings we will frequently use two angles a(ß) and 7(/3), defined as 
follows. 

1. a(ß) = M{lxzy || z € R[x,y,ß\}. See Figure 4.a. 

2. 7(/?) is only defined for ß > 2, and 7(2) = f. For ß > 2, let z ± y be a point 
on the boundary of R[x,y,ß] such that d(x,y) = d(x,z). Then 'y(ß) = Lzxy. See 
Figure 4.b. 

Note that cv(0) = TT, and that the value of ot{ß) decreases as ß increases; for example, 
a(l) = 7r/2, a(2) = 7r/3, and a(oo) = 0. Conversely, 7(/5) increases from 7r/3 to 7r/2 as ß 
increases from 2 to 00. 

When the value of ß is understood, we will often write a and 7 instead of <x(ß) and 
f(ß). The following property shows how ß is related to a and 7 and can be proved by 
means of elementary geometric arguments. 

Property 2.2 

1. ß = sin a for 0 </?<!. 



(a) (b) 

Figure 4: angles a(ß) and j(ß). 

2. 0 = r-1— for 1 < ß < oo. ^        1— cos a J — ^  — 

3. ß = -L~ for 2 </3<oo. " cos 7 •" — '     — 

A Delaunay triangulation of P, denoted by DT(P), is a planar graph whose ver- 
tices correspond to the points of P and whose edges are defined as follows. Construct a 
triangulation of P such that each interior triangle has the property that the open disk 
circumscribing the triangle contains no other point of P. The edges of DT(P) are the 
edges of the triangles. A set P may admit more than one Delaunay triangulation, but 
only if P contains four or more co-circular points. Obviously, the described triangulation 
of P is a planar straight-line drawing of DT(P). We will sometimes denote by DT(P) 
both the graph and the drawing. 

A minimum spanning tree of P, denoted by MST(P), is a spanning tree of P of 
minimum total edge length. In general, a set P may have many minimum spanning trees 
(for example, if P consists of the vertices of a regular polygon). Again we will sometimes 
denote by MST(P) both the graph and the drawing. 

3    Points, Graphs, and Drawings 

Here we study some basic properties of /3-graphs and /^-drawings, and their relation to 
minimum spanning trees and Delaunay triangulations. In the following P denotes a finite 
set of points in the plane. 

3.1    Properties of /?-drawings 
For a given ß > 0, the open ^-region is strictly contained in the closed one. Therefore, 
every edge in G[P,ß] is also an edge of G(P,ß). Also, an open (and closed) /3-region is 
strictly contained in every other /^'-region for which ß' > ß. Thus, every edge in G{P,ß') 
is also an edge in G[P,ß]. We summarize this in the following property. 



Property 3.1 7/0 < ßx < ß2 < oo then G[P,ß2] Q G(P,ß2) C G[P,ßi] C G{P,ßi). 

Figure 5 shows a set of points P and some different graphs G(P, ß) as ß ranges from 

0 to oo. 

0<ß<0.51 0.51<ß<1.45 1.45<ß<3.23 
3.23<ß<°° 

Figure 5: Different G(P,ß) as ß varies. 

Property 3.2 For ß > 1, G(P,ß) and G[P,ß] are planar; also, G[P,1] is planar, but 
G(P,1) is not necessarily planar. For ß < 1, G(P,ß) and G[P,ß] are not necessarily 

planar. 

Proof: The first part easily follows from the planarity of G[P, 1] that is proved in [18] and 
from Property 3.1. The second part is proved as follows. Suppose P consists of exactly 
six points and that they are placed at the vertices of a regular hexagon (see Figure 6.a). 
Clearly, G(P, 1) is a K3t3; from Property 3.1 the statement follows. □ 

(a) (b) 

Figure 6: (a)G(P, 1) is non-planar; (b) G[P, 2] is disconnected. 

Property 3.3 Forß < 2, G(P,ß) andG[P,ß] are connected. Also, G(P,2) is connected, 
but G[P, 2] is not necessarily connected. For ß > 2, G(P, ß) and G[P, ß] are not necessarily 

connected. 

Proof: The first part easily follows from the connectivity of G(P, 2) that is proved in [22] 
and from Property 3.1. The second part is proved as follows. Suppose P consists of 
six points placed at the vertices of a regular hexagon plus a seventh point at the center 



of the hexagon (see Figure 6.b). Clearly, G[P,2] is disconnected; from Property 3.1 the 

statement follows. 

The following lemma deals with the /?-drawability of trees. It gives a tool to extend 
the result on the /3-drawability of a tree for a given value of ß to infinitely many other 

values of ß. 

Lemma 3.1 Letß be such thatO <ß<2. IfG{P,ß) is a tree, then G(P,ß') = G[P,ß'] = 

G(P,ß) for all ß<ß'<2. Also, G(P,2) = G(P,ß'). 

Proof: We prove that G(P,ß') = G{P,ß); the proof that G[P,ß'} = G{P,ß) is analogous. 
Property 3.1 implies that G(P,ß') C G{P,ß). Since G(P,ß) is a tree and G(P,ß') is 
connected by Property 3.3, G{P, ß') is also a tree, and so is equal to G{P, ß). □ 

3.2    /3-drawings and Delaunay Triangulations 

Property 3.4 For ß > 1, G(P,ß) and G[P,ß] are subgraphs ofDT(P). Also, G[P,1] is 

a subgraph of DT(P). 

Proof: The fact that G[P, 1] is a subgraph of DT{P) is proved in [18]. The rest follows 

from Property 3.1. 

From Property 3.2 and from the planarity of DT(P) it follows that for ß < 1 the 

above property, in general, does not hold. 
Lemma 3.2 and Theorem 3.1 generalize to infinitely many values of ß similar results 

that have been given in [2] for ß = 1. Since the proofs are based on an analogous reasoning 

as in [2], we only briefly sketch them. 

Lemma 3.2 Let 0 < ß < 1 and let (u,v) be an edge of DT{P). Edge (u,v) <E G[P,ß] if 
and only if for each triangle Auxv in DT(P), Luxv < a(ß). The same result holds for 

G{P,ß) but with luxv < a{ß). 

Proof: We consider only the case of G[P, ß] when (u, v) is shared by two triangles Aucv 
and Audv of DT{P). Assume that (u,v) is in G[P,ß]. Since R[u,v,ß] is empty, for all 
x G P, we have Luxv < a. Conversely, if Lucv and Ludv are both less than a, since ß < 1 
we have that R[u,v,ß] is contained in the union of the two disks circumscribing Aucv 
and Audv. Thus R[u, v,ß] is empty and so (u, v) is in G[P,ß]. D 

Theorem 3.1 Let 0 < ß < 1. IfG[P,ß] is a tree, then for each cycle C of DT(P) there 
exists an edge (u, v) € C not in G[P, ß] such that for some point p G P, Aupv is a face 
of DT(P), Aupv lies inside C, and Lupv > a(ß). The same result holds for G(P,ß) but 

with lupv > a(ß). 

Proof: We show the proof for [/?]-regions. The reasoning for open regions is analogous. 
Consider any two cycles C and C' in DT(P). We will say that C is contained in C' if 
the region bounded by C' contains the region bounded by C. This gives a partial order 
on the cycles of DT(P). Since G[P,ß] is a tree, any cycle C must contain an edge that 
is not in G[P,ß]. Consider then the set of all cycles which do not satisfy the conclusion 
of the theorem. If this set is empty, then we are done; otherwise this set contains a cycle 



C which is maximal with respect to containment, i.e. there does not exist another cycle 
in the set that contains C. Consider an edge (u,v) on C which is not in G[P,ß]. By 
Lemma 3.2 it must lie on a triangle Aupv of DT(P) such that Lupv > a(ß). Since (u, v) 
does not satisfy the conclusion of the theorem, Aupv must lie outside C. Let C be the 
smallest (in terms of containment) cycle of DT{P) which contains both C and Aupv.^ 
Then the edges of C consist of edges of C and at least one of (u,p) and (v,p). Thus C 
violates the conclusion of the theorem, since the edges (u,p) and (p, v) do not satisfy the 
conclusion of the theorem {Aupv is a triangle of DT(P) that lies inside C", where the 
angle with apex u and the one with apex t; are both less than a{ß) since, by Property 2.2, 
a(ß) > 71-/2 when 0 < ß < 1). This, however, contradicts the maximality of C. □ 

3.3    /3-drawings and Minimum Spanning Trees 

We now discuss the relation between minimum spanning trees and /^-drawings. The 
implications of this relationship are useful for the analysis of /?-drawability. 

Theorem 3.2 

1. MST(P) C G(P,ß) and MST{P) C G[P,ß] for 0 < ß < 2.   Also MST(P) C 

G(P,2). 

2. There exists a set P such that for all ß such that 2 < ß < oo, G[P,2] = G[P,ß] = 

G{P,ß) = G(P, oo) is a tree but is not MST(P). 

Proof: The first part of Statement 1 is a consequence of Property 3.1; the second part 
is proved in [22]. To prove Statement 2, consider the drawing in Figure 7. Observe 
that this is a /^-drawing for any 2 < ß < oo and that it is both a [2]-drawing and 
a (oo)-drawing. Vertices y,z,u form an equilateral triangle. Vertices x,z,w lie on a 
(horizontal) line parallel to the line determined by vertices y, u so that the triangles x, y, z 
and u, w, z are right triangles. Vertices v, s,t, q,p are far enough vertically above vertices 
x,y,z,u,w, respectively, so that none of them are in either R(x,y, oo) or R{u, w,oo). 
Clearly d(y, u) < d(x, u), so the drawing is not a minimum spanning tree. O 

The relationship between G[P, oo] and MST(P) is discussed in Section 6. Further- 

more, the following property is proved in [15]. 

Lemma 3.3   [15] For each edge e G G(P,oo), there exists a minimum spanning tree of 

P containing e. 

The relationship between /^-graphs and minimum spanning trees can be exploited to 
give a lower bound for the minimum angle between consecutive edges in a ^-drawing of a 

tree. 

Lemma 3.4 Assume G(P, ß) is a tree.  For any value of ß, the angle between any two 
consecutive edges of G{P,ß) is greater than a(ß).  If 2 < ß < oo, this angle is at least 

-riß)- 
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Figure 7: The drawing T in the proof of Theorem 3.2. 

Proof: We start by proving the latter part of the lemma. For 2 < /?, consider any two 
consecutive edges (u,z) and (z,v) of G(P,ß). Suppose that (u,z) is at least as long as 
(z,v). If Luzv < j(ß), then v is in R(u,z,ß), contradicting the assumption that, (u,z) is 
an edge of G(P,ß). Since 'y(ß) > a(ß) for all ß > 2, we need only consider values of ß 
such that 0 < ß < 2 in order to complete the proof. 

We proceed by contradiction. Suppose v,x,y are vertices in P such that (v,x), (v,y) 
are in G(P,ß) and Lxvy < a{ß). Let Tx and Ty be the subtrees, containing x and y 
respectively, obtained by removing v from G(P,ß). 

Let x' G Tx and y' G Ty be two vertices such that 

d{x',y') < d(x,y),Vx G Tx and Vy G Ttf. 

R(x',y',ß) does not contain any points of Tx or Ty since for ß < 2, if z G R(x'y',ß): 

then either d(z, a;') < d(a;', t/') or rf(z, y') < d(x'y') contradicting the minimality of d(x', y'). 
It must, however, contain some point z in G(P,ß) —Tx — Ty since there is not an edge 
between x' and y' in G(P, ß). G(P, ß) is a tree, thus there must be a unique path from v to 
z, denoted by P(v, z). This path contains no vertices of Tx or Ty, since z is in a connected 
subgraph of G(P, ß) — v different from both Tx and Ty. We can therefore conclude the 
following: 

1. Since G(P,ß) is a minimum spanning tree, by Theorem 3.2 and since P(v,z) U 
P(v,x') U x'z forms a cycle where every edge is contained in G(P,ß) except for 
(x',z)i we have that d(x',z) > d(x,v). 



2. d(y'i z) > d(y, v) by the same argument as above. 

3. d(x',y') < d(x,y) by the relation between x' and y'. 

4. Lx'zy' > a(ß) since z is contained in R(x',y',ß). 

The above four inequalities, along with the fact that ß < 2, allow us to conclude that 
point v lies inside R(x,y,ß), which implies Lxvy > a(ß), a contradiction. □ 

With similar reasoning we can prove: 

Lemma 3.5 Assume G[P,ß] is a tree. For all values of ß, the angle between any two 
consecutive edges of G[P,ß] is at least a(ß).   If 2 < ß < oo, the angle is greater than 

-riß)- 
Lemmas 3.4 and 3.5 imply the following theorem on the maximum vertex degree of 

/^-drawings of trees. 

Theorem 3.3 

1. If G{P,ß) is a tree then the maximum vertex degree ofG(P,ß) is at most 

(a) \^]-HfO<ß<2, 

2. If G[P, ß] is a tree then the maximum vertex degree of G[P, ß] is at most 

(b) \fä\-lif2<ß<oo. 

From Property 2.2 it follows that a(ß) > TT/3 for 0 < ß < 2, and that f(ß) > TT/3 for 
2 < ß < oo. Hence, the above theorem has the following consequence. 

Corollary 3.1 For all values of ß, ß-trees do not have vertices of degree greater than 
five. 

This corollary allows us to restrict our attention to the /?-drawability properties of 
classes of trees % with k < 6. 

4    Classes of /?-trees 

Given any positive value of ß, one can always construct a /^-drawing of any path (i.e. any 
element of class T-i) by representing the vertices of the path as points ordered on a line. 
Clearly, this construction is also a [0]-drawing of the path. It is worth noting that no tree 
on three or more vertices is (O)-drawable, since G(P, 0) is a clique for any set P of points. 
This discussion is summarized in the following theorem. 

Theorem 4.1 Class % is (ß)-drawable for all values of ß > 0 and is [ß]-drawable for all 
values of ß. Class % is not (0)-drawable. 

In the rest of the section we show intervals of representability and drawing algorithms 
for the classes T3 and T4; we also present negative results on the /3-drawability of class T5. 



4.1    The Class % 

Lemma 4.1 Let T be any tree in % and let ß' be such that ^ < ß' < oo. There exists 
a set P of points in the plane such that for each ß, ß' < ß < oo, G(P,ß) is a stable 
(ß)-drawing ofT and G[P,ß] is a stable [ß]-drawing ofT. 

Proof: The proof is by induction on the number of vertices in T. Let ß' be such that ^ < 
ß' < oo. It is clear that both the tree consisting of a single vertex and the tree consisting 
of a vertex of degree three and three leaves can be drawn satisfying the lemma. Assume 
that T G % admits a set of points P satisfying the lemma and let z £ P correspond to 
a leaf of T. We show how to add two points x and y to T, so that G(P U {x, y},ß') is a 
drawing of Tö {{x,z),(y,z)} and G{PU {x,y},ß') = G{Pl){x,y},ß) = G[Pü{x,y},ß] 
for all ß such that ß' < ß < oo. In what follows, z' is the unique neighbor of z in T. To 
add a single point x, instead of a pair of points, the same method can be used. 

The following two properties will be used in determining the positions of x and y. 

Property 4.1 There exists a disk D\ centered at z such that, for every point p 6 D\ and 
every v G P — {z}, if R(z,v,ß') contains a point of (P — {z,v}), then so does R(p,v,ß'). 

Property 4.2 There exists a disk D2 centered at z such that, for every point p £ D2 and 
every {u,v} C P — {z}, if z g" R[u, v,oo], then p g" R[u,v, oo}. 

The first property ensures that if x and y are chosen from within D\, then, for all 
ß such that ß' < ß < oo, the edge sets of G(P U {x,y},ß) and G[P U {x, y},ß] will be 
subsets of T U {(x, y), (x, z), (y, z), (x, z'), (y, z')}. The second property ensures that if x 
and y are chosen from within D2, then for all ß such that ß' < ß < oo, the edge sets of 
G{P U {x,y},ß) and G[P U {x,y},ß} will contain T. 

Let D = D\ D D2. We will choose x and y from within D. All that remains is to 
show that x and y can be positioned within D so that the edges {(a;, z), (y, z)} are in both 
G(P U {x,y},ß) and G[P U {x,y},ß] for each ß such that ß' < ß < oo, and the edges 
{(x, y), (x, z'), (y, z')} are in neither. To guarantee that the edges {(x, z), (y, z)} exist, it 
suffices to ensure that the closed strips R[x,z, oo] and R[y,z, oo] contain no point of P 
other than z. To guarantee that the other three edges mentioned do not exist, choose x 
and y so that Lxzy > max{7r/2, a(ß')}, Lxzz' > 2TT/3, and Lyzz' > 27r/3. TO see that 
this is possible, consider rays r\ and r2 emanating from z such that the angle between r± 
and r2 is greater than m&x{ir/2,a(ß')}, and both the angle between rj and (z,zf) and 
that between r2 and (z, z') are greater than 2TT/3. See Figure 8. Note that ri and r2 can 
be rotated slightly about z so that the lines they determine contain no points of P — {z} 
and that the angle constraints still hold. Now x and y can be positioned along r\ and r2 

so that the strips R[x, z, oo] and R[y, z, oo] contain no point of P other than z. □ 

Theorem 4.2  Class T3 is (both open and closed) ß-drawable for all ß such that ^ < 

ß < 00. Furthermore, given a T G Tz and a ß such that ^ < ß < 00, a stable ß-drawing 
of T can be computed in linear time in the real RAM model. Class T3 is not ß-drawable 
for any ß such that 0 < ß < ^ 
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Figure 8: Illustration for Lemma 4.1. 



Proof: The first part of the theorem follows immediately from Lemma 4.1. The drawing 
procedure described in the Lemma requires at most linear time with a real RAM model, 
since the disks £>i and D2 can each be computed in linear time. To prove the last part 
consider the tree T of Figure 9.a consisting of two adjacent vertices of degree 3. To see 
that T is not [^]-drawable, first note that if it were, then all angles between consecutive 
edges would have to equal 2n/3. Now it suffices to note that, no matter what lengths the 

edges have, R[z,u,&] contains none of {x, y,v,w}, contradicting the fact that T does 

not contain the edge (z,u). By Lemma 3.1, since T has no [^-drawing, it can have no 

(^)-drawing (or [/?]-drawing) for any ß < & D 

(a) (b) (c) 

Figure 9: (a) A non-^-drawable graph; (b) a non-(oo)-drawable graph; (c) a non-(cos(
1ia-))- 

drawable graph. 

4.2    The Class % 

Lemma 4.2 Let T be any tree in TA and let ß' and ß" be such that 1 < ß' < ß" < oo. 
There exists a set P of points in the plane such that, for each ß, ß' < ß < ß", G(P, ß) is 
a stable (ß)-drawing ofT and G[P,ß) is a stable [ß]-drawing ofT. 

Proof: This proof is similar to the proof of Lemma 4.1 and is by induction on the 
number of vertices of T. Observe that both a tree consisting of a single vertex and a 
tree consisting of a vertex of degree four and four leaves can be drawn satisfying 1 and 
2. Given a tree T G T4 which admits a set of points P satisfying 1 and 2, and a point 
z G P corresponding to a leaf of T, we show how to add three new points w, x and y to 
P so that for each ß such that ß' < ß < ß", G(P U {x, y, w}, ß) = G[P U {x, y, w}, ß] is a 
drawing of T U {(x, z), (y, z), (w, z)}. As in the proof of Lemma 4.1, we choose disks D\ 
and Di centered at z such that 

• For every point p G D\, and every v £ P — {z}, if R(z,v,ß') contains a point of 
P — {z,v}, so does R(p,v,ß') (see Figure 10.a); and 

• For every point p £ D2, and every u,v G P - {z}, if z g" R[u,v,ß"], then p $ 
R[u,v,ß"\ (see Figure lO.b). 
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Figure 10: Illustration for Lemma 4.2. 

This guarantees that for any points x,y,w £ D = Dt C\ D2 and for any ß such that 
ß' < ß < ß'\ the edge sets of G(P U {x,y,w},ß) and (7[P U {z,y,u;},/?] will contain T 
and contain no edges with one point in {x, y, w} and the other in P — {z, z'}. By placing 
x, y and w in D so that the angles Iz'zy, lyzw, Lwzx, Lwzz' are all right angles, the only 
edges containing x, y, or w will be (x,z), (y,z) and (w,z). Thus G(P U {a;,y, z},ß) and 
G[PU{a;,y,io},/?] are both drawings of Tö{(x,z), (y,z), (to, 2)}. Again, as in Lemma 4.1, 
this technique will also work if only one or two vertices are to be attached to z. □ 

Theorem 4.3 Class % is ß-drawable for all ß such that 1 < ß < 00. Furthermore, given 
a T 6 T4 and a ß such that I < ß < 00, a ß-drawing ofT can be computed in linear time 
in the real RAM model. Class T\ is not ß-drawable for any other value of ß. 

Proof: The first statement follows from Lemma 4.2; the second from the observation 
that disks D\ and i)2 as in the proof of the lemma can be found in linear time. To prove 
the last statement, consider the tree T of Figure 9.b consisting of two adjacent vertices of 
degree 4. The characterization of Gabriel trees from [2] shows that T is not [l]-drawable. 
Therefore, by Lemma 3.1, T has no (/?)-drawing (or [/?]-drawing) for any ß < 1. T has 
no [oo]-drawing, since by Theorem 3.3, the minimum angle between any two consecutive 
edges must be greater than 7r/2. Finally, to see that T has no (oo)-drawing, first note 
that all angles between consecutive edges would have to equal n/2 and therefore, since 
R(z,u, 00) = R{x,y, 00), T would have to have either both of (z,u) and (x,y) as edges, 
or neither. D 



4.3    The Class % 
The range of values of ß for which % is /?-drawable is as yet unknown. In [2], it is shown 
that % is both (2)- and [2]-drawable. As immediate consequences of Theorem 3.3, no 

trees having any vertices of degree 5 can be /3-drawn for any ß < jz^f) or for any 

If we'restrict our attention to either open or closed stable /^-drawings of trees, then it 
is possible to prove that there exist trees in % that do not admit a stable /3-drawable for 

i ^   < ß < 2.  The proof is based on showing that there always exists a tree whose 
1 —cos 
stabler-drawing would violate Theorem 3.3. We start with a geometric lemma. 

Lemma 4.3 Let G(P,ß) be a stable (ß)-drawing of a tree and let jzd^pj < ß < 2- 

Assume G{P,ß) contains a path II = xuvy such that lxuv < TT/2 and x and y lie on the 
same half plane defined by the lint through u and v. Then Lyvu > TT/2 - lxuv + a(ß). 

Proof: Since G(P,ß) is stable, the region R{x,y,ß) contains at least one of the two 
vertices u and v. Suppose that u G R{x,y,ß) (see Figure ll.a); this implies that Ixuy > 
a{ß) and that Lyuv < lxuv-a{ß). Also, since y £ R(u, v, ß) and ß > 1, point y is outside 
the disk Ä(u,u,l), which implies lyvu > TT/2 - lyuv > TT/2 - lxuv + a(ß). Consider 
now the case that v £ R{x,y,ß) (see Figure ll.b); this implies that lyvx > a(ß). Also, 
since x £ R(u,v,ß) and ß > 1, point x is outside the disk Ä(u,t>,l), which implies 
Ixvu > TT/2 - lxuv. It follows that lyvu = lyvx + Ixvu > TT/2 - lxuv + a(ß). O 

With an analogous proof, we can prove the same result for [/?]-stable drawings. 

Lemma 4.4 Let G[P,ß) be a stable [ß]-drawing of a tree and let jz^f) < ß < 2- 

Assume G[P, ß] contains a path Tl = xuvy such that lxuv < TT/2 and x and y lie on the 
same half plane defined by the line through u and v. Then lyvu > n/2 - lxuv + a(ß). 

Theorem 4.4  There always exists a tree T € % which admits no stable ß-drawing for 

TzdW)<ß<2- 
Proof:   We first show how to construct a tree T € % that does not admit a stable 
(#Vdrawing for  h^r, < ß <2. Then we prove that T has no stable [^-drawing. 

1—cos("5") 1 1 /-I • J 
We begin by letting T consist of a vertex v of degree five and its neighbors. Consider 

any stable (/3)-drawing of T. Let (y,v), {x,v), and (z,u) three consecutive edges encoun- 
tered in this order when going clockwise around v (see Figure ll.c), such that the angle 
£j = iyVZ is £j < 27r~a(/3). That such three edges exist is a consequence of the fact that the 
minimum angle between any two consecutive edges is greater than a(ß) (Theorem 3.3). 
Since ß < 2, by Property 2.2 a(ß) > | and both lyvx and Ixvz are less than TT/2. 

We now add to T four new vertices each of which is a neighbor of x. Let x' and x" be 
the two neighbors of x such that in the clockwise ordering of the vertices around x they 
appear as x",v,x'. Since a{ß) > f and deg{x) = 5, x' and x" must lie in opposite half- 
planes with respect to the line through v and x in any stable (/?)-drawing of T. Therefore, 
we can apply Lemma 4.3 to both path x'xvy and path x"xvz and obtain the following 

inequalities. 

1. Ix'xv > TT/2 - lyvx + a(ß), and 
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Figure 11: Illustration for Lemma 4.3 and for Theorem 4.4. 



2. Ix"xv > 7r/2 - Lzvx + a(ß). 

Consider now the vertices adjacent to x.  There exists an angle £2 defined by three 

consecutive edges incident on x such that 

£2 < 2ir-lx'xv-lx"xv-a{ß) < 2ir-n + lyvx + Lzvx-2a(ß) - a{ß) = 6-(3a(/J)-7r). 

Since a(ß) > f, we have that 6 - 6 > M'ß) ~ *"> which is a Positive constant for a 
given value of ß. By iterating this process of adding degree five vertices to T, we can 
obtain an arbitrarily long sequence of angles &,&,...,&« such that for each k < m, 
£fc_j - £fc > 3a(/3) - 7T. Thus, eventually £m becomes negative, a contradiction. 

The proof is now completed by observing that inequalities 1 and 2 can be also obtained 
by applying Lemma 4.4 to a stable ^-drawing of T; thus if T does not admit a stable 

(ß)-drawing, it does not admit a stable ^-drawing either. D 

5     Characterizing Representable Trees 

In this section we prove the correctness of the claims in Table 1. Much of the content of 
the Table is based on what we have presented in the previous sections, but other results 
are still necessary. We thus begin by characterizing those trees which admit a [oo]-drawing 

and those which admit a [^-drawing. 

Theorem 5.1 A tree T is [ooj-drawable if and only ifT£%. 

Proof: By Theorem 4.2, every tree in T3 has a [oo]-drawing. To show that these are the 
only trees that have such drawings, it suffices to observe that, because of Theorem 3.3, 
the angle between consecutive edges in a [oo]-drawing of a tree must be greater than 7r/2; 

thus there can be no vertices of degree greater than 3. D 

The characterization of [^]-drawable trees requires some more effort. We first give an 
upper bound to the maximum vertex degree of such trees and then we study the geometric 
properties of [^-drawings. Theorem 3.3 and Property 2.2 imply the following. 

Lemma 5.1 A [&]-drawable tree cannot have a vertex of degree greater than three. 

To complete the characterization, we exploit the relationship between the Delaunay 

triangulation and ß - drawings, as described in Section 3. 

Lemma 5.2 If G[P, &] is a tree and if (a,6) and (b,c) are two edges ofG[P,&] such 

that labe = 2£, then Aabc is in DT(P). 

Proof: First observe that G[P, ^] is a subgraph of DT(P) since G[P, % = G[P, 1] by 
Lemma 3.1 and since G[P,1] C DT(P) by Property 3.4. Thus (a,6) and (b,c) are in 
DT(P), so we need only show that DT(P) also contains (a,c). If (v,a) and (v,b) are 
two edges in any triangulation of P, then there exists a path from a to b which does not 
contain v and such that every vertex on the path is adjacent to v. Hence, DT(P) contains 
a path n from a to c not including b such that every edge on that path is adjacent to b. 
n, along with edges (a, b) and (6, c) form a cycle. By Theorem 3.1, some edge (x, y) on II 
must be such that Lxby > **. But Lobe = ^, thus (x,y) is the edge (a,c) and so Aabc 

DT(P). a is m 



Corollary 5.1 A [&]-drawable tree cannot have two adjacent vertices of degree three. 

Proof: (By contradiction). Suppose, that there were a [^]-drawable tree T with two 

adjacent vertices of degree three (see Figure 9). Then, in any [^-drawing of T there 
would be a path II = zxyu such that Lzxy = f and Lxyu = ** Because of Lemma 5.2, 
the edge (z,y) is in DT(P) as is the edge (x,u). This, however, contradicts the planarity 

of DT(P). D 

The characterization is now completed by showing that all trees with maximum vertex 
degree at most three and no two adjacent vertices of degree three are [^]-drawable. We 
exhibit a drawing algorithm based on the following lemma. 

y     Pi 
S[p1,l1,dvP1]   \3 

Figure 12: Illustration for Lemma 5.3. 

Lemma 5.3 Let P = {p,Pi,p2} be a set of points in the plane such that Lpxpp2 = -f and 
d(p,pi) = d(p,p2). There exist angles & > 0, £2 > 0, vectors du d2, and radii px > 0, 
p2 > 0 such that P separates Si = S\pi, 6, dx, pi] and S2 - S\p2,£2, d2, p2]. 

Proof: See Figure 12. Let /,-, r,-, and s; be three vectors emanating from pi (i = 1,2) 

external to Appip2 such that 

1. li is collinear with ppi, forming an angle 7,- with pip2. 

2. ri forms an angle 0; with plpj such that ^ < 8i < 7;. 

3. Si and r, form an angle £,-, such that 0; > £,■ > -f- 

Let & = 7; - 6i > 0. Choose d,- as the bisector of angle &. Denote the points at which 
si intersects r2 and l2 by x2 and y2 respectively. Similarly, denote by xi and yx the points 
at which s2 intersects rx and Za. Choose pi such that sector S; = S[p,-,£i,di,pi] is inside 
ApiXiyi. Let u be any point in Si and u be any point in S2; since L(upiv) > 81 > -f and 

D L{yp2u) >o~2>Yi we can conclu(ie *üat -P separates S\ and S^- 

Lemma 5.4 LetT e% be such that no two adjacent vertices ofT have degree three, and 

let u be a leaf of T. (T,u) can be {^-S^-drawn for any <£ > 0. 



procedure Draw[&]{T,u,<f>,g,d,p) 

Draw u at g. 

Let v denote the neighbor of u. 

Case: degx{v) = 1. 
Choose p' < p so that for p = q + (p - p'K %,£,<*,/"'] lies in the interior of 

S[q,<f>,d,p]. 
Draw a segment from q to g'. 

Draw[^}(Tv(u),v,<j>,p,d,p') 

Case: degr(v) = 2. 
Let zh, t^2 denote the neighbours of v other than u. 

Choose p' < p so that p = g + (p - p')d lies in the interior of S[q, <f>, d, p). 

Draw a segment from g to p. 

Draw v at p. 
Choose pup2 in the interior of S[q,<f>,d,p], so that Lpxpp2 = ^f and d(p,pi) = 

d(p,P2)- 
For i = 1,2 draw a segment from p to p,-. 
Let  &,di,pi be chosen as  described in Lemma 5.3  and such that  5,-   = 

Sfri, 6, <£, Pi] is contained in the interior of sector S[q, <p, d, p\. 

For i = 1,2: Draw[&]{TVi{v),vit{i,pi,di,pi). 

end Procedure. 

Figure 13: Procedure Draw[&]{T,u,<l>,q,d,p). 

Proof: Since T G 7^, it has maximum vertex degree at most three. Given a point g in the 
plane, angle <j) > 0, a vector d and a radius p > 0, procedure Dratu^] (see Figure 13), 

will produce a [^-drawing of (T, u) in 5[g, <£, d,p]. 
The proof of correctness is by induction on the size of T. We adopt the notation 

of Figure 13. Observe first that Draw[&] is only invoked on subtrees of (T, u) where 

degT{u) is at most two. If T has a single vertex, Draw[&] produces the correct type of 
drawing. Suppose that the procedure works correctly on all trees with maximum vertex 
degree at most three, no two adjacent degree three vertices, and having fewer than n 
vertices. Assume now that Draw\^} is invoked on a subtree (T0,u0) of (T,u) having n 
vertices and let v be the neighborhood of u0. There are two cases to consider. 

If degT(v) = 1, then a sector S\p, <j>, d, p'] is found which lies in the interior of S[q, <f>, d, p\. 
By induction, (Tv(u0),v) will be drawn inside this smaller sector, guaranteeing an Sj,- 

drawing of (T, u) in S[q, <f>,d,p\. 
If degT(v) = 2, let v\ and v2 denote the neighbors of v other than u. Since T does 

not have two adjacent vertices of degree three both ux and v2 have degree two in T. Now, 
points P = {p,PuP2}, are selected from the interior of S[g, <£, d,p] so as to satisfy the 
hypotheses of Lemma 5.3. This allows sectors Si = S[p, &,<*,-,/£>] to be found such that 
both Si and S2 are in the interior of S[q,<f>,d,p] and such that {p} separates Si and S2. 
Each subtree (TVi(v), u,-),« = 1,2 is then recursively drawn correctly in the sector 5,-.    O 



Observe that the drawing procedure of the preceding lemma takes linear time using 
the real RAM model of computation, and produces a stable drawing of the input. The 
results of Corollary 5.1 and Lemma 5.4 are summarized in the following theorem. 

Theorem 5.2 A tree is [&}-drawable if and only if it has maximum vertex degree at 
most three and no two adjacent vertices have degree three. Furthermore, in the real RAM 
model, a stable [^-drawing of a re-presentable tree can be computed in time proportional 

to the size of a tret. 

We are now in a position to verify Table 1. 

Theorem 5.3 As ß ranges from 0 to oo, the sets T(ß) and T[ß] change as shown in 

Table 1. 

Proof: There are twenty-two statements to be proved. We refer to statements in the 
Table as follows: 5(/fa) refers to the statement of row k and column T(ß) new; similarly, 
5[/fa] refers to the statement of row k and column T[ß] new. We prove the statements in 
order of decreasing value of k. Recall that by Corollary 3.1, we need not consider trees 

containing vertices of degree greater than five. 
The proof of statement 5[13] is just Theorem 5.1. To show 5(13), observe first that by 

Theorem 4.2, % C T(oo). Now note that the tree consisting of a single vertex of degree 
4 and its neighbors is (oo)-drawable and the tree in Figure 9.b is not (see Theorem 4.3). 

By Theorem 4.3, both T(ß) and T[ß] contain T4 for the values of ß in rows 6 to 12 
of the Table. Thus, statements S[12] and S[ll] hold by Lemma 3.5 and statement 5(12) 

holds by Lemma 3.4. 
To verify the containments in 5(11), first observe that the tree consisting of a single 

vertex of degree 5 and its neighbors is (^^-drawable. Now consider the tree T of 

Figure 9.c consisting of two adjacent vertices of degree 5. To see that T is not [^sy]- 

drawable, first note that if it were, then all angles between consecutive edges would have 
to equal 2TT/5 and all edges would have to have the same length. Now it suffices to note 
that since R(x,y, oo) contains no other vertices of T, neither does Ä(x,j/,^^y).  This 

contradicts the fact that T does not contain the edge (x,y). 
To verify statements 5[10] to 5(8), it suffices to observe that the tree consisting of a 

single vertex of degree 5 and its neighbors is both (/?)- and [/5]-drawable for these ranges 

of/?. 
The proof of statement 5[7] is similar to that of 5(11); statements 5(7) down to 5(6) 

follow from Lemma 3.4. 
Lemma 3.1, along with the results on T(l) of [2], imply the truth statements 5(4) and 

5[4]. Statement 5[3] is just Corollary 5.1. 
Theorem 4.1 and Theorem 3.3 directly imply statements 5(3) down to 5[1]. Finally, 

statement 5(1) can be proved by observing that every graph which is (O)-drawable is a 
clique, and the only trees which are cliques are the trees on 1 and 2 vertices. □ 

6    A Characterization of G[P, oo] 

We begin by describing a relation between G[P, oo] and minimum spanning trees of P. 



Lemma 6.1 For each finite set P of points in the plane, G[P, oo] is a subgraph of the 
intersection of all minimum spanning trees of P.  Thus G[P, oo] is a forest. 

Proof: Consider an edge (x,y) of G[P, oo]. Suppose there exists a minimum spanning 
tree T of G[P, oo] not containing (x, y). Consider the path in T between x and y. Some 
edge (u, v) of the path must cross R[x, y, oo], but neither u nor v are in R[x, y, oo]. This 
implies that (u,v) is longer than (x,y), a contradiction. D 

An interesting consequence of Lemma 6.1 is the following: 

Corollary 6.1 For every P, G[P, oo] is a stable drawing. 

Proof: Consider a non-edge (u, v) of an [oo]-drawing of a tree T. Every edge on the path 
between u and v in T is shorter than d(u,v), thus some point on the path must be in 
R[u,v,oo]. n 

Theorem 6.1 A graph G is [oo]-drawable if and only if every connected component of G 
is in Tz and G is not one of the following graphs: two non-adjacent vertices, a vertex and 
a non-adjacent edge, or a pair of non-adjacent edges. 

Proof: By Theorem 3.3, G can have no vertices of degree greater than three. Also, it 
can easily be checked that none of the three graphs mentioned in the theorem are [oo]- 
drawable. All that remains is to show that any other forest each of whose components is in 
Tz is [oo]-drawable. We do this by describing two constructions for creating [oo]-drawings: 
the first will be used when the forest has at least three components, the second when the 
forest has exactly two components. If there is only one component, the construction of 
Lemma 4.1 can be used. 

Suppose that T has at least k > 3 components. Choose a set C of k points such that 
for each pair x,y £ C, R[x,y,oo] contains some point z (E C — {x,y} in its interior (for 
example, one can suitably choose C as a subset of the vertices of a triangular grid). For 
each p € C, one can define a disk Dp having center p and with the following property: 
For each pair of points x,y € C, there exists a z 6 C — {x,y} such that for every 
x' G Dx and y' 6 Dy, R[x', y', oo] contains Dz. Using the construction of Lemma 4.1, 
the components of T can be drawn one in each of the disks D and there will be no 
edges between components. By correct positioning and scaling of the drawing of each 
component, it can be guaranteed that no vertex of any component lies in the infinite strip 
of an edge in any other component. See Figure 14.a. 

Now assume that T has exactly two components, T" and T", such that, without loss of 
generality, T" contains at least two edges. Use the construction of Lemma 4.1 to produce 
a [oo]-drawing of T", let z be a leaf of T" and let z' be the neighbor of z. As in the proof of 
the Lemma, there exist disks D\ and £>2 centered at z having Properties 4.1 and 4.2. Let 
D = D\ n £>2- If there exists a non-neighbor v of z such that v is not collinear with the 
edge (z, z'), then there exists a disk D' C D such that no point of D' is in R[z, z', oo] and 
for every point p G D', R\p,z, oo] contains v (see Figure 14.b). It is now possible to draw 
T" inside D', obtaining a [oo]-drawing of T. The existence of such a v can be guaranteed 
by a slight modification to the construction in Lemma 4.1. D 
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Figure 14: How to draw closed strip drawable graphs. 

7    Conclusions and Open Problems 

This paper provides characterizations of which trees are /?-drawable, for infinitely many 
values of ß. These characterizations give rise to linear time recognition and drawing 
algorithms for each type of proximity tree. Furthermore, a complete characterization of 
all proximity drawable graphs when the proximity region is the closed infinite strip is 
given. To date, this is the first complete characterization of proximity drawable graphs. 

For <ß< ^(f /3-trees are only partially characterized.  In this interval, 

we prove that all trees with maximum vertex degree at most four are both (ß)- and [/?]- 
drawable. In [2] it is shown that all trees of class T5 admit both (/?)- and [/^-drawings 
when ß = 2. We provide a negative result for the stable /?-drawability of % when 

< ß < 2.   It would be interesting to close the gap by answering the following ^W) 
question. 

Question 7.1 For ß ^ 2 such that — Wf <ß< ^(¥T- which trees are ß-drawable?. 

We have used /^-stability as a basic tool for both characterizing and drawing graphs. 
Observe that all the /^-drawings produced by the algorithms of this paper are stable. 
Considering the results presented in Subsection 4.3, a question whose answer might be 
very helpful in closing the gap is the following. 

Question 7.2 Does every ß-tree admit a stable ß-drawing?. 

To date, little work has been done on the problem of characterizing families of ß- 
drawable graphs other than trees. Lubiw and Sleumer [16] show that maximal outerplanar 
graphs admit both [l]-drawings (Gabriel drawings) and (2)-drawings (relative neighbor- 
hood drawings). They also prove that all biconnected outerplanar graphs are (2)-drawable. 
It is easy to see that a triangulated planar graph is not ^-drawable for ß > 2. However, 
for smaller values of ß one is led to ask: 

Question 7.3 For ß < 2, which triangulated planar graphs are ß-drawable?. 
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