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Convergence Behavior of Temporal Difference Learning 

Raj P. Malhotra 

The University of Dayton, Electrical Engineering Department 

Abstract-Temporal Difference Learning is an 
important class of incremental learning procedures 
which learn to predict outcomes of sequential 
processes through experience. Although these 
algorithms have been used in a variety of notorious 
intelligent systems such as Samuel 's checker-player 
and Tesauro 's Backgammon program their 
convergence properties remain poorly understood. This 
paper provides a brief summary of the theoretical basis 
for these algorithms and documents observed 
convergence performance in a variety of experiments. 
The implications of these results are also briefly 
discussed. 

INTRODUCTION 

Problems involving sequential processes are 
encountered in a wide variety of interesting 
engineering situations. In heuristic search applications 
one attempts to learn an evaluation function which 
predicts the utility of searching in a certain region of 
the search space. Game-like decision processes involve 
learning to predict outcomes based upon current state. 
Difficult modeling tasks and pattern recognition 
problems often involve learning process complexities 
through observing sequential behavior. The common 
thread in these involves learning to predict process 
outcomes and sequential behavior. Often, the goal of 
prediction is not an end in itself, but rather a 
prerequisite for effective control of some complex, 
sequential system. 

For problems in which aprior knowledge is limited, 
unreliable, or unavailable, Reinforcement Learning 
methods ([Klopf],[Sutton],[\Vatkins]) have received 

increasing attention as viable control mechanisms 
which can achieve near-optimal performance. 
Mathematically, these algorithmic methods may be 
viewed as a form of Iterative, Stochastic Dynamic 
Programming in which one attempts to approximate 
value iteration (or policy iteration) as process 
characteristics are learned through experience. The 
hallmark of reinforcement learning methods is their 
treatment of actual, experienced state transitions and 
rewards as unbiased estimators of the statistically true 
values. This provides for incremental calculations 
which have been shown to theoretically converge in the 
limit to optimal predictions. An important question 
which has to do with the nature of the convergence of 
these algorithms (e.g., convergence requirements and 
convergence behavior as a function of some 
appropriate parameter space). 

Temporal Difference Learning [Sutton] has received 
increased attention in recent years, as a type of 
reinforcement learning which learns to predict 
outcomes of markov processes with delayed and 
accrued rewards. The significance of this method is 
that it can learn to address the difficult temporal credit 
assignment problem in which one must assign credit 
(or blame) to decisions when the feedback is noisy and 
delayed. This is believed to describe many real-world 
situations in which more conventional, supervised 
learning methods are less efficient (or not viable) 
because of the reliance on the availability of accurate 
feedback at each decision point. In the absence of such 
feedback, the task of calculating optimal actions at 
each decision point becomes formidable--a requirement 
for farsighted. predictive considerations emerges. 
Whereas conventional prediction-learning methods 



assign credit (value of decisions) by means of the 
difference between predicted and actual outcomes, 
Temporal Difference Learning assigns credit by means 
of the difference between temporally successive 
predictions. This allows for more efficient learning. 

Although Temporal Difference Learning has been used 
in several famous machine intelligence systems 
([Samuel],[Tesauro]), their convergence properties 
remain poorly understood. In particular, proofs abound 
which show that Temporal Difference Learning 
converges to the optimal value function, but only given 
infinite training time. Of course, in practice one never 
has infinite training time. Therefore, a more cogent 
question for the practitioner is "what is the 
convergence behavior of temporal difference learning 
when training times are finite?" That is the question to 
which this paper is dedicated. 

We include several considerations in the term 
"convergence behavior": These include performance 
metrics such as the rate of the probabilistic 
convergence of predictions and the root mean-squared 
error of predictions at deterministic stopping times 
versus algorithmic, synthesis parameters involving 
learning update rate and an important eligibility 
horizon effecting the spread of credit or blame over the 
sequence of states. The interactions of these factors 
with system parameters including differing amounts of 
process noise, state transition and cost/reward 
variances will be briefly highlighted through 
simulation results. The intent of this presentation is to 
document general empirical results and to motivated 
further (more rigorous) studies. Before this is 
undertaken, however, a brief theoretical foundation 
shall be provided. 

THEORETICAL FOUNDATIONS 

The original motivation for the development of 
temporal difference learning methods involved the 
temporal credit assignment problem. There, one 
experiences a series of state transitions which terminate 
when an absorbing state is reached. There is a cost, z, 
associated with the terminal state; all other states (and 
transitions) are nominally assumed to have zero cost. 
The goal of the Temporal Difference Learner is to 
derive a sequence of predictions {Pi,P2,...,Pn} of the 
final outcome based upon a sequence of experienced 
states,{xi,x2,...} (as shown in figure 1). 

xl»x2v*xn>z 

 ^- 
Pl,P2v.,Pn 
 ► 

Figure 1 - Conceptual depiction of TDL 

The sequence of states is assumed to be a markov 
process in which state transition probabilities are 
dependent only upon the most recent state: 
p(xt+i|xt,xt_i,xt-2,.-,xi) = p(xt+i|xt). The learning 
agent is parameterized by a vector of weights, w, which 
control the sequence of outcome predictions based 
upon state trajectories. The goal is to find the 
appropriate weight settings so that the prediction values 
are optimized. The optimal prediction values are 
known to satisfy the Bellman Equation: 

/>*(*) = min/ max[Ä(x) + yY,p(x' \x)P*v(x)     (1) 
x' 

where R(x) is the incremental transition cost to leave 
state x, x' is the state transitioned to, P w is the 
weight-parameterized optimal prediction value, and y is 
a discount factor in (0,1). The learning procedure is 
expressed as a rule for updating w: 

m 
wO?+l) =M(n)+ £AH(0       (2) 

t=\ 
In practice the change in weights,Aw, may be accrued 
over a complete sequence, until a termination is 
reached. A typical supervised learning method would 
associate each state with the final outcome and perform 
gradient-descent based upon each pair separately: 

M0=«H)M   (3) 

where a is an update rate effecting the rate of 
convergence and the gradient, VWP?, is a vector of 

partial derivatives of P^ with respect to w. The 
difficulty with this approach is that the error terms, 
(z-Pt), can only be computed at the end of each 
sequence, when an outcome is achieved. This is 
computationally expensive. The temporal difference 
method is based upon equating the final prediction 
errors to a string of intermediate prediction errors 
which can be computed incrementally: 

m 
z-Pt=HPk+\-Pk^   E(z)*Pk+l    (4) 

k=t 



A key point is that the individual predictions serve as 
unbiased estimates of the final outcome, z. By 
substituting equation (4) into equations (3) and (2) we 
derive a new weight update equation: 

m 
w^w+YJa(z-Ptf7wPt 

t=\ 

m    ( m ^ 
(5) = w+^a   l(Pk+l-Pk)VwPt 

m t 
= w+2>(i>,+1-/})ivw/i 

t=\ k=\ 

where m represents the number of state transitions 
experienced in a particular Observation-Outcome 
Sequence (OOS)-this will in general be a random 
variable. Note the last summation term in (5); this is an 
eligibility term which assigns credit over a string of 
past states. Finally, note that (5) can be computed 
incrementally, after each state transition. Weight 
updates may either be performed after the OOS has 
completed {batch mode) or alternatively, after each 
individual state transition {on-line learning). 

The TD(A.) family of learning procedures modifies 
equation (5) by the inclusion of an exponential 
weighting factor on the eligibility, X 8 [0,1]. This 
results in a new weight update procedure in which the 
incremental weight changes are given by 

kw{t)=a(Pt+x-Pt)^-kVwPt 

k=\ 
(6) 

Equation (6) may be thought of as an error term for 
temporal credit assignment coupled with a gradient- 
descent mechanism for structural credit assignment. 
The last summation term can be thought of as a state 
eligibility factor, et, given by 

et+l =lX+l~kVwPk = V^+i +ZA'+1-*VwJfc 
Jfc=l k=\ 

=VwPf+1 + Aet (7) 

Note that this eligibility factor may also be computed 
recursively. 

Using the equations given above, we can now derive 
the TD(A.) learning algorithm: 

1. Initialize parameters; x, w, X, a 
2. Observe a state transition 
3. Compute new prediction, Pt=f(xt,wt) 

4. Compute the new eligibility, et+] 
5. Compute incremental weight update via (6) 
6. If xt is not an absorbing state, Go To step 2 

The incremental weight updates computed in step 5 
may either be immediately applied to the weights (in 
the case of on-iitie learning) or they may be summed 
and applied to the weights after the completion of an 
OOS (in the case of batch mode learning). 

As mentioned in several recent papers ([Bertsekas], 
[Jaakkola]), the convergence behavior of TD(A.) 
remains poorly understood. One way to begin to study 
the convergence of the predictions (or equivalently, the 
weights) to the optimal prediction, P*, satisfying 
equation (1), is to examine factors effecting the 
convergence through repeated statistical experiments. 
For a complete and rigorous analysis (a considerable 
undertaking), one would need to evaluate the 
performance of TD(X) over the complete parameter 
space which includes1: 

• Synthesis Parameters: exponential eligibility 
factor, X; learning update rate, a; function 
approximation method for Pt=f(xt,wt), and the 
internal state representation comprising xt 

• System Parameters: characteristics of state 
transition and cost/reward probability density 
functions (mean, variance, time-dependency, 
uniformity over the state space, etc.); 
dimensionality/cardinality of the "true" state space; 
nature of the markov processes (topology, number 
of absorbing states, etc.); initial state, etc.. 

There are several alternatives for studying the 
convergence behavior of temporal difference learning. 
In the remainder of this paper we shall document the 
results of high-level experiments which produce 
several interesting insights and conjectures. 

EXPERIMENTAL RESULTS 

In order to establish a top-level assessment of the 
significance of various factors upon the convergence of 
TD(?t), several experiments were conducted. These 
involved learning to predict the outcomes of a markov 

1 these lists are not exhaustive; the determination of the 
proper parameter space to study convergence over is 
worthy of extensive research in itself. 



process with 9 possible states, x',x2,...,x". The state 
space may be considered as a string in which the end 
states (xl,x9) represent two different outcomes 
(possibly winning and losing a game). As indicated in 
figure 2 below, the simulation nominally begins in state 
5 and progresses according to the state transition 
probabilities until a terminal state is reached. 

modified random walk example, TD(A.=1) is much 
more sensitive to variations in a than are the other X 
curves. 

©         o 
©        o g(Xi,X,)=l   Q 

©        o o 
(Ti\ p(xi.,ixi)= xi\^r\ o 

start ^(^Z^^X,\r\ ....   0 

spread w    P(x,+i|Xi)= "3 ^ o 
©        o o 
©        o g(Xi,x9)=0 O 

©        o 
^J)p(x,|x,)=l 

Figure 2 - 9-state, modified Random Walk 

This markov process is based upon the simpler random 
walk process described and studied in [Sutton]. The 
only important costs associated with the process are 
those given by the transition cost function going into 
the terminal states. The concept of "spread" , as 
illustrated in figure 2, is related to state transition 
variance. 

Experiment 1 

The first set of experiments involved learning to 
predict outcomes for the 9-state modified random walk 
with a variety of settings for the system parameters, X 
and a. Specifically, X was set at X=0, X=3, X=8, and 
X=\ while a was allowed to vary over a = 
{0,.1,.2,.3,.4,.5,.6}. The metric used to judge 
convergence was root-mean-squared error (RMSE) 
taken after all learning was completed. 

In figure 3 below we can view the average RMSE 
taken over 10 sets of simulations in which the 
temporal difference learner operated over 2000 state 
transitions. Note that the use of a fixed number of state 
transitions, rather than a fixed number of sequences 
(OOSs) allows for a more even comparison (since 
OOSs will have varying lengths). It is particularly 
interesting to note the erratic behavior of the TD(X=1) 
curve. This curve indicates that for the 9-state, 

Figure 3 - Results for Experiment 1 

Experiment 2 

A more interesting experiment entails observing 
changes in convergence behavior for cases where there 
is more (or less) uncertainty in state transitions. In 
particular we will examine cases where the spread (as 
indicated in figure 2; spread is related to state transition 
variance) is set to 3, 5, and 7. For each of these values 
the probability density is evenly spread among the 
possible transitions (as indicated in figure 2 for the 
spread=3 case). In figure 4 we plot the RMSE values 
averaged over all X (A=0,.3,.8,l). 

Figure 4 - RMSE for various "spreads 

It is interesting to note the improvement in going from 
a spread of 3 to a spread of 5. The RMSE values do not 



improve significantly when going to spread=7. This 
seems to indicate that an increased variance in state 
transition offers some benefit; the process becomes 
more volatile, and singular state transitions contain 
potentially more information. However, this benefit 
wanes as more volatility is introduced.  

weights over a shorter horizon would be superior. This 
is an interesting matter for further study. 

'> \' 

—■'- 
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Fig. 5a - RMSE, weight record curves for spread=3 

Fig. 5b - RMSE, weight record curves for spread=5 

Fig. 5c - RMSE, weight record curves for spread=7 

Experiment 3 

A third experiment was run in which the learner was 
allowed to partially converge for a given state 
transition probability set. Then the transition 
probabilities were changed and it was observed how 
well each of the learners could recover for different 
setting on a and X. The result was somewhat surprising 
and almost counter-intuitive. As shown in figure 6 
learning with large X values was superior after the 
sudden change in transition probabilities. These seems 
counter-intuitive, as one would expect that updating 

... 

\/ • 

/-- 

.3 B.4 

a lpha 

Figure 6 - Results from Experiment 3 

Experiment 4 

A final set of experiments was performed in which the 
learner was allowed to start in different states. Not 
surprisingly, convergence was sensitive to the starting 
state. In figure 7 below, the weights for lower states 
(physically, on the top of the graph), xj-x3, learn less 
rapidly than those for the higher-numbered states. This 
is because the process is started in state X7 and given 
the nature of the state transition probabilities 
(uniformly distributed, see fig. 2), the lower-numbered 
states will occur less frequently. 

Figure 7 - Weight changes (exp. 4) 

As shown in figure 8, the RMSE values are drastically 
different for this experiment than for some of the 
earlier ones. This would indicate that there is also some 
interaction between X and the starting state. 

9 
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[TESAURO] Tesauio, G., "Practical Issues in 
Temporal Difference Learning", Machine Learning, 
vol.8, pp257-277, 1992 

[KLOPF] Klopf, A. H., "A Neuronal Model of 
Classical Conditioning", Psychobiology, vol.16, pp85- 
125 1988 

Figure 8 - RMSE for experiment 4 

CONCLUSION 

In this paper we have briefly discussed some 
preliminary considerations for what may be a fruitful 
new thrust in the study of reinforcement learning 
algorithms. We have argued that convergence 
properties are not well understood and that they 
warrant further investigations. Several simple 
experiments were performed and documented in order 
to get a first look at the behavior of these important 
learning algorithms. 
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