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In this paper we consider the class of directed acyclic graphs (DAGs), and present the results of an 
experimental study on four drawing algorithms specifically developed for DAGs. Our study is conducted 
on two large test suites of DAGs and yields more than 30 charts comparing the performance of the 
drawing algorithms with respect to several quality measures, including area, crossings, bends, and aspect 
ratio. The algorithms exhibit various trade-offs with respect to the quality measures, and none of them 
clearly outperforms the others. 

"Research supported in part by the National Science Foundation under grant CCR-9423847, by the U.S. Army Research 
Office under grant DAAH04-96-1-0013, by the ESPRIT Long Term Research of the European Community under Project no. 
20244 (ALCOM-IT), by the NATO-CNR Advanced Fellowships Programme, and by a gift from Tom Sawyer Software. 



1    Introduction 
Motivated by applications to information visualization, a large body of graph drawing algorithms has been 

developed in the last decade. See, e.g., [3, 8, 33]. 
Many graph drawing papers show sample outputs from prototype implementations and some also 

provide limited experimental results on small test suites (with fewer than 100 graphs). See, e.g., [7, 16, 18, 
24, 25, 26] and the experimental papers in [3, 33]. However, only extensive experimentations can assess the 
practical performance of graph drawing algorithms in real-life applications. While few studies of this type 
have been performed in the past, there is now fast growing interest in the important subject of experimental 
comparative studies of graph drawing algorithms. 

1.1 Previous Experimental Work in Graph Drawing 

The performance of four planar straight-line drawing algorithms is compared in [22]. The standard devi- 
ations in angle size, edge length, and face area are used to compare the quality of the planar straight-line 
drawings produced. Since the experiments are limited to randomly generated maximal planar graphs, this 
work gives only partial insight on the performance of the algorithms on general planar graphs. 

Himsolt [21] presents a comparative study of twelve graph drawing algorithms. The algorithms selected 
are based on various approaches (e.g., force-directed, layering, and planarization) and use a variety of 
graphic standards (e.g., orthogonal, straight-line, polyline). Only three algorithms draw general graphs, 
while the others are specialized for trees, planar graphs, Petri nets, and graph grammars. The experiments 
are conducted with the graph drawing system GraphEd [21]. Many examples of drawings constructed by 
the algorithms are shown, and various objective and subjective evaluations on the aesthetic quality of the 
drawings produced are given. However, statistics are provided only on the edge length, and few details on 
the experimental setting are provided. The charts on the edge length have marked oscillations, due to the 
small size of the test suite (about 100 graphs). This work provides an excellent overview and comparison 
of the main features of some popular drawing algorithms. However, it does not give detailed statistical 
results on their performance. 

Di Battista et al. [9, 10] present an extensive experimental study comparing four general-purpose graph 
drawing algorithms. The four algorithms take as input general undirected graphs and construct orthogonal 
grid drawings. The test graphs are generated from a core set of 112 graphs used in "real-life" software 
engineering and database applications. The experiments provide a detailed quantitative evaluation of the 
performance of the four algorithms, and show that they exhibit trade-offs between "aesthetic" properties 
(e.g., crossings, bends, edge length) and running time. The observed practical behavior of the algorithms 
is consistent with their theoretical properties. 

Brandenburg, Himsolt, and Rohrer [4] compare five "force-directed" algorithms for constructing 
straight-line drawings of general undirected graphs. The algorithms are tested on a a wide collection 
of examples and with different settings of the force parameters. The quality measures evaluated are cross- 
ings, edge length, vertex distribution, and running time. They also identify trade-offs between the running 
time and the aesthetic quality of the drawings produced. 

Jünger and Mutzel [23] investigate crossing minimization strategies for straight-line drawings of 2-layer 
graphs, and compare the performance of eight popular heuristics for this problem. 

1.2 Our Results 

In this paper we consider the important class of directed acyclic graphs (DAGs), and compare the per- 
formance of four drawing algorithms specifically developed for them. DAGs are commonly used to model 
hierarchical structures such as PERT diagrams in project planning, class hierarchies in software engineer- 
ing, and is-a relationships in knowledge representation systems. 

The contributions of this work can be summarized as follows: 

• We have developed a general experimental setting for comparing the practical performance of graph 
drawing algorithms for DAGs. Our setting consists of: (i) two large test suites of DAGs, one obtained 



"from the collection of directed graphs submitted to the e-mail graph drawing service at Bell Labs [28], 
and the other randomly generated by a program that simulates a PERT project planner; (ii) a set 
of quality measures for drawings of DAGs derived from [9]. 

• Within our experimental setting, we have performed a comparative study of four popular drawing 
algorithms for DAGs: two of them are based on the layering paradigm [27, 30], while the other two 
are based on the grid paradigm [12, 14]. 

• Our comparison highlights how more than ten years of research in this field have produced a com- 
plex landscape. Namely, the four algorithms exhibit various trade-offs with respect to the quality 
measures, and none of them clearly outperforms the others. The sometimes surprising findings of 
our investigations include: 

- Some algorithms construct very compact drawings at the expense of a relaxed resolution rule 
that does not consider crossing-crossing and vertex-crossing distances. Other algorithms produce 
drawings that distribute vertices and crossings with great regularity at the expenses of a larger 
area requirement. 

- Concerning bends, an algorithm with good theoretical worst-case bounds performs in practice 
worse than algorithms for which no theoretical bounds are available. 

- Concerning crossings, grid-based algorithms tend to perform worse than layering-based algo- 
rithms, where part of the geometry of the drawing is decided at the very first step. 

- The performance of a drawing algorithm on planar DAGs is not a good predictor of the perfor- 
mance of the same algorithm on nonplanar DAGs 

- Algorithms with a topological foundation tend to distribute the bends and the lengths of the 
edges more evenly. 

• Our analysis of the performance of the four algorithms has motivated us to develop a new hybrid 
strategy for drawing DAGs, which uses a layering-based method to perform the initial planarization 
and a grid-based method to compute the final drawing. The new strategy performs quite well in 
practice. 

• Any application developer that has to select a drawing algorithm for a given family of DAGs can 
compare the requirements of the application with our charts and have guidelines to decide which is 
the best suitable algorithm for his/her purposes. 

• We also propose our setting and our experimental results as a workbench to evaluate future algorithms 
in this field. 

1.3    Organization of the Paper 

The rest of the paper is organized as follows. In Section 2, we overview the drawing system used for our 
study. The four algorithms being compared are described in Section 3. Details on the experimental setting 
are given in Section 4. In Section 5, we summarize our experimental results in 30 charts, and perform a 
comparative analysis of the performance of the four algorithms. In Section 6, the new hybrid strategy is 
described and its performance is discussed by means of 6 charts. Open problems are addressed in Section 7. 
Details on the algorithmic paths used are given in the Appendix. 

2    The Graph Drawing Workbench 
Our graph drawing tool is GDW [5], a system for prototyping and testing graph drawing algorithms. It 
is the natural evolution of the Diagram Server system [11] toward the realization of an extensible and 
parametric platform for experimental research on graph drawing. 

The user interacts with GDW through a multimedia interface. GDW presents the algorithms to the 
user through a taxonomy of classes of graphs [2]. The most general class of graphs in the taxonomy is 
Multigraph: a multigraph is a graph that has both directed and non-directed edges. All the other classes 



in the taxonomy are subclasses of Multigraph. Each class is provided with a set of methods that map an 
object of a class into an object of another class. A method is a layout functional step, taken from an 
existing algorithm. A drawing algorithm A is a sequence of methods that is visually represented on the 
taxonomy as a path (algorithmic path); the edges of the algorithmic path describing A are the methods of 
A and the vertices are the classes of the taxonomy the methods are associated to. For each method the 
system can provide one or more bibliographical references. 

GDW offers several facilities for randomly generating classes of graphs, such as directed, undirected, 
and planar graphs. Also, it allows the user to execute an algorithmic path on a given set of graphs and to 
generate statistics about its behavior with respect to a preselected set of requirements. 

3    The Drawing Algorithms Under Evaluation 
We have tested four different algorithms for producing drawing of DAGs. These algorithms can be classified 
into two categories on the basis of their approach to constructing drawings. 

Layering-Based: These algorithms construct layered drawings, i.e., drawings where the vertices and edge- 
bends are placed at integer coordinates on a set of horizontal layers, and each edge is drawn as a 
curve monotonically increasing in the y-direction. Note that in such drawings, even though vertices 
and edge bends are placed at integer coordinates, the edge crossings can be arbitrarily close to each 
other or to the vertices and edge bends. These algorithms accept as input directed graphs without 
any particular restriction (the input directed graph can be planar or not, acyclic or cyclic). For 
constructing drawings, they generally follow the methodology of Sugiyama et al. [30], which consists 
of the following three steps: 

Step 1 Assign vertices to layers heuristically optimizing some criteria, such as the total edge length. 

Step 2 Reduce the crossings among edges by permuting the order of vertices on each layer. 

Step 3 Reduce the number of bends by readjusting the position of vertices on each layer. 

Because of their generality and conceptual simplicity, these algorithms are very popular among the 
designers of practical graph drawing systems. Several layering-based algorithms have been designed 
(see [8] for a detailed bibliography). The above steps have also been investigated separately, and 
various heuristics have been proposed for each of them [8]. 
In this paper, we have evaluated and compared the performance of two layering based algorithms: 
Dot and Layers. 
Dot is a highly optimized algorithm, developed by Koutsofios and North [27] as a successor to 
Dag [17, 18]. Dot first constructs a polyline layered drawing of the input directed graph and then, as 
a final step, converts the polygonal chains representing the edges into smooth curves using splines. 
An implementation of Dot is available at ftp://ftp.research.att.com/dist/drawdag/, and this 
is the implementation we used. However, since all other algorithms considered in this study represent 
edges as polygonal chains, we decided to analyze the polyline drawing produced by Dot and not the 
final drawing with curved lines. 
Layers is the original algorithm by Sugiyama, Tagawa and Toda [30]. For our study we have used 
the implementation of Layers available in GDW [5]. The corresponding algorithmic path is given in 
the Appendix. 

Grid-Based: These algorithms accept, as input, a planar si-graph, i.e., a planar DAG with exactly one 
source and one sink, and construct an upward grid drawing of it. In an upward grid drawing the 
vertices, the edge-bends and the edge-crossings are all placed at integer coordinates, and each edge is 
drawn as a curve monotonically increasing in the y-direction. Although the requirement of having just 
one source and one sink may appear too restrictive, such directed graphs occur in several practical 
applications, such as activity planning (where they are called PERT graphs), network flows, etc. 
These algorithms are also called numbering-based algorithms because they typically construct a num- 
bering of the vertices and faces of the planar st-graph, and compute the coordinates of the vertices 



Figure 1: Four drawings of the same North DAG. From left to right, the drawings are produced by 
Layers, Dot, Visibility, and Lattice, respectively. Dot converts the polylines to smooth Bezier curves in a 
postprocessing phase. To facilitate comparison, we have shown here its drawing prior to this smoothening. 
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Figure 2: Four drawings of the same Pert DAG. From left to right, the drawings are produced by 
Layers, Dot, Visibility, and Lattice, respectively. Dot converts the polylines to smooth Bezier curves in a 
postprocessing phase. To facilitate comparison, we have shown here its drawing prior to this smoothening. 

and bends using this numbering. 
The grid-based algorithms have two advantages: first, their performance on planar planar si-graphs 
has been theoretically analyzed, and second, their running times are usually low. The disadvantage 
is that a nonplanar DAG needs to be converted into a planar si-graph, before it can be drawn using 
these algorithms. This is done by introducing a fictitious vertex for each crossing between two edges. 
These fictitious vertices are assigned a position on the grid, but are not represented in the final 
drawing. The simple planarization method we have used for our study is the one described in [12]. 
The grid-based algorithms that we evaluated and compared fall under two categories: 

Visibility Representation-Based: These algorithms use a two-step process for constructing drawings [12, 
13]. In the first step, they construct a visibility representation of the input planar si-graph. (In 
a visibility representation, vertices and edges are represented as horizontal and vertical line- 
segments, respectively; two vertices are connected by an edge if and only if they are visible to 
each other.) In the second step, they construct a polyline drawing of the planar si-graph from 
the visibility representation; this is done by replacing each vertex-segment with a point and by 
approximating each edge-segment with a polygonal line containing at most two bends. 
The visibility representation is constructed using two numberings [15, 31]: a topological num- 
bering of the vertices of the planar si-graph, and a topological numbering (in the dual graph) 
of the faces of the planar si-graph. A topological numbering of a DAG is such that for every 
directed edge (u, v), v is assigned a higher number than u. 
We have evaluated the performance of an algorithm, called Visibility, which follows this ap- 
proach, and of three variations of it, called Barycentric Visibility, Long Edge Visibility, and Me- 
dian Visibility. For our study we have used the implementations of these algorithms available in 
GDW[5]. The corresponding algorithmic paths are given in the Appendix. The differences be- 



tween Algorithms Visibility, Barycentric Visibility, Long Edge Visibility, and Median Visibility 
are in the strategy they use for substituting the vertex and edge-segments of the intermediate 
visibility representation with the points and polygonal chains of the final drawing; they put the 
vertex in the middle point of the vertex-segment, in the barycenter of the endpoints of the in- 
cident edge-segments, on the endpoint of the longest incident edge-segment, and on the median 
of the endpoints of the incident edge-segments, respectively. 

Poset-Based: These algorithms view planar si-graphs as covering graphs of partially ordered sets 
(posets). They exploit the relationship between the upward planarity of DAGs and the order- 
theoretic properties of planar lattices (see, e.g., [20, 29]). 
In our study we have evaluated the performance of one poset-based algorithm: the dominance 
drawing algorithm of [14]. This algorithm computes two topological numberings of the vertices of 
the input planar si-graph; one numbering gives the ^-coordinates of the vertices and bends, and 
the other gives the y-coordinates. These numberings are obtained by scanning the outgoing edges 
of each vertex of the planar si-graph in the left-to-right and the right-to-left order respectively. 
For this reason, this algorithm is also known as the left-right algorithm. In this paper we have 
referred to this algorithm as Lattice. For our study we have used the implementation of Lattice 
available in GDW[5]. The corresponding algorithmic path is given in the Appendix. 

Examples of drawings produced by layering-based algorithms and grid-based algorithms are shown in 
Figs. 1 and 2. 

4    Experimental Setting 
4.1     Quality Measures Analyzed 

The following quality measures of a drawing of a DAG have been considered: 

Area: area of the smallest rectangle with horizontal and vertical sides covering the drawing; 

Cross: total number of edge-crossings; 

TotalBends: total number of edge-bends; 

TotalEdgeLen: total edge length; 

MaxEdgeBends: maximum number of bends on any edge; 

MaxEdgeLen: maximum length of any edge; 

UnifBends: standard deviation of the number of edge-bends; 

UnifLen: standard deviation of the edge length; 

Screen Ratio: deviation from the optimal aspect ratio, computed as the difference between the width/height 
ratio of the best of the two possible orientations (portrait and landscape) of the drawing and the 
standard 4/3 ratio of a computer screen. 

ResFactor: Inverse of the minimum distance between two vertices, or two edge-crossings, or an edge-crossing 
and a vertex. 

It is widely accepted (see, e.g., [8]) that small values of the above measures are related to the perceived 
aesthetic appeal and visual effectiveness of the drawing. 

The issue of resolution of a drawing has been extensively studied, motivated by the finite resolution 
of physical rendering devices. Several papers have been published about the resolution and the area of 
drawings of graphs (see, e.g., [1, 6, 14, 19]). The resolution of a drawing is defined as the minimum distance 
between two vertices. The grid-based algorithms consider edge-bends and edge-crossings as "dummy" 
vertices for computing the resolution. The layering-based algorithms, however, do not consider the edge- 
crossings as dummy vertices for computing the resolution. Since the measures Area, TotalEdgeLen and 
MaxEdgeLen of a drawing depend on its resolution, two drawings can be compared for these measures only 
if they have the same resolution. ResFactor allows us to scale a drawing Di produced by a layering-based 



algorithm so that it has the same resolution as that of a drawing D2 produced by a grid-based algorithm; 
the scaling factor is equal to Ri/R2, where Rt and R2 are the value of ResFactor for Bx and D2 respectively. 

4.2    Test Suite 
The experimental study was performed on two different sets of DAGs, both with a strong connection to 
"real-life" applications. We considered two typical contexts where DAGs play a fundamental role, namely 
software engineering and project planning. 

The first set of test DAGs are what we call the North DAGs. They are obtained from a collection 
of directed graphs [28], that North collected at AT&T Bell Labs by running for two years Draw DAG, 
an e-mail graph drawing service that accepts directed graphs formatted as e-mail messages and returns 
messages with the corresponding drawings [27]. 

Originally, the North DAGs consisted of 5114 directed graphs, whose number of vertices varied in the 
range 1.. .7602. However, the density of the directed graphs with a number of vertices that did not fall 
in the range 10.. .100 was very low (see also the statistics in [28]); since such directed graphs represent a 
very sparse statistical population we decided to discard them. Then we noted that many directed graphs 
were isomorphic; since the vertices of the directed graphs have labels associated with them, the problem is 
tractable. For each isomorphism class, we kept only one representative directed graph. Also, we deleted the 
directed graphs where subgraphs were specified as clusters, to be drawn in their own distinct rectangular 
region of the layout, because constrained algorithms are beyond the scope of this study. This filtering left 
us with 1277 directed graphs. 

Still, 491 directed graphs were not connected and this was a problem for running algorithms imple- 
mented in GDW (they assume input directed graphs to be connected). Instead of discarding the directed 
graphs, we followed a more practical approach, by randomly adding a minimum set of directed edges that 
makes each directed graph connected. Finally, we made the directed graph acyclic, where necessary, by 
applying some heuristics for inverting the direction of a small subset of edges. 

We then ran a first set of experiments and produced the statistics by grouping the DAGs by number 
of vertices. Although the comparison among the algorithms looked consistent (the produced plots never 
oddly overlapped), each single plot was not satisfactory, because it showed peaks and valleys. We went 
back to study the test suite and observed that grouping them by number of vertices was not the best 
approach. In fact, the North DAGs come from very heterogeneous sources, mainly representing different 
phases of various software engineering projects; as a result, directed graphs with more or less the same 
number of vertices may be either very dense or very sparse. 

Since most of the analyzed quality measures strongly depend on the number of edges of the DAG (e.g. 
area, number of bends, and number of crossings), we decided that a better approach was to group the 
DAGs by number of edges. After some tests, we clustered the DAGs into nine groups, each with at least 

North DAGs Distribution Pert DAGs Distribution 

Figure 3:  Distributions of DAGs: the x-axis shows the number of edges. 



40 D'AGs, so that the number of edges in the DAGs belonging to group i, 1 < i < 9, is in the range 
lOi.. .1(K + 9 (see Fig. 3). The resulting test suite consists of 1158 DAGs, each with edges in the range 
10...99. 

The second set of test DAGs are what we call the Pert DAGs. Although such DAGs have been randomly 
generated by one of the facilities of GDW, their construction is based on refinement operations typical of 
project planning. 

First, we generated a set of skeleton planar DAGs consisting of a small number of vertices to simulate 
the initial models of the projects. This was done by randomizing an ear-composition for each DAG. 
Second, we performed a random sequence of typical planning-refinement steps, i.e., expanding an edge into 
a series and/or a parallel component and inserting new edges between existing vertices. The inserted edges 
represent precedences between activities that were not captured by the starting skeleton projects. 

The resulting test suite contains 813 DAGs with edges in the range 10 .. .150 and vertices in the range 
10 ... 100. As for the North DAGs, we grouped the Pert DAGs by number of edges, so that the number of 
edges in the DAGs belonging to group i, 1 < i < 14, is in the range lOi... lOi + 9 (see Fig. 3). 

The Pert DAGs are generally denser than the North DAGs and they are single-source single-sink. As 
shown in the next section, there are some quality measures for which the relative performance of the 
algorithms is different for the North DAGs and the Pert DAGs. Also, the plots obtained for the Pert 
DAGs are in general smoother, reflecting the relative uniformity of the statistical population. 

5    Analysis of the Experimental Results 
Algorithms Dot, Layers, Visibility (with its variations Barycentric Visibility, Long Edge Visibility, Median 
Visibility), and Lattice were executed on every North DAG and every Pert DAG, and the data for all 
ten quality measures were collected. Because of the different nature of the two test suites, we compared 
the performance of the algorithms for the North DAGs and the Pert DAGs separately. In addition, since 
the quality measures Area, TotalEdgeLen, and MaxEdgeLen depend upon the resolution of the drawings, 
we compared the layering-based and grid based algorithms separately for these three quality measures. 
The other seven quality measures do not depend upon the resolution, so we compared all four algorithms 
together for them. This gave us a total of 30 comparison charts. Figures 4- 7 display the comparison 
charts showing the average values for the quality measures; the left column of these figures contains the 
charts for the North DAGs, and the right column contains the ones for the Pert DAGs. The z-axis of each 
chart shows the number of edges. The average is computed over each group of DAGs with number of edges 
in the range 10 ... 19, 20 ... 29, etc. 

We started the experimental analysis by comparing the behavior of Visibility and its variations Barycen- 
tric Visibility, Long Edge Visibility, and Median Visibility. As a result, we found that the behavior of the 
visibility representation-based algorithms is almost identical for all the quality measures, with Algorithm 
Visibility performing slightly better than the others. An example of this phenomenon is given in the 
bottom charts of Fig. 5, which show the behavior of the four visibility representation-based algorithms 
for the measure Total Bends. In order to improve the readability of the other charts and to simplify the 
presentation of the experimental results, we have used Algorithm Visibility as the representative visibility 
representation-based algorithm. 

The analysis of the performance of the four algorithms for each quality measure, and for each set of 
input DAGs is summarized below: 

Area: (see Fig. 4) Dot performs better than Layers, and Lattice performs better than Visibility for both the 
North DAGs and the Pert DAGs. While for the North DAGs, the plots grow linearly for #edges in 
the range 10 .. .60, for the Pert DAGs they show quadratic growth in the entire range. Also observe 
that the difference in the performance of the two grid-based algorithms is significant for DAGs with 
more than 75 edges, whereas the two layering-based algorithms perform about the same in the entire 
range. 
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Figure 4:   Comparison charts: the x-axis shows the number of edges. 
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Figure 5:  Comparison charts: the rc-axis shows the number of edges. 
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Figure 7:  Comparison charts: the x-axis shows the number of edges. 

ResFactor: (see Fig. 4) Not surprisingly, ResFactor is equal to one for the grid-based algorithms in the entire 
range. On the other hand, the layering-based algorithms tend to have a non-constant ResFactor. This 
reflects the fact that they do not take edge-crossings into consideration for defining the resolution. 
The bottom charts of Fig. 4 show a comparative study of the area of the drawings produced by the 
four algorithms. Note that there are two plots for each layering-based algorithm. They show two 
different measures for the area: one takes ResFactor into account, and the other does not. Note that 
the plots that take ResFactor into account are comparable with the plots of the grid-based algorithms. 

Cross: (see Fig. 5) Since Lattice and Visibility use the same planarizer (Method MakeSTPlanar of GDW), 
the drawings produced by them have the same number of edge-crossings. All the algorithms have 
quadratic behavior for both sets of DAGs. Dot has the best performance among the four. The 
difference between the performance of the layering-based and the grid-based algorithms reduces 
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considerably for the Pert DAGs. Also observe that the slope of the plots is steeper for the Pert 
DAGs. This reflects the fact that the Pert DAGs are in general denser than the North DAGs and 
that the number of edge-crossings tend to increase with the ratio #edges/#vertices. 

TotalBends: (see Fig. 5) The performance of Visibility is unsatisfactory. For the North DAGs, the plots 
of the other three algorithms grow almost linearly for #edges up to 65. After that, Dot is clearly 
the best. The experimentation with the Pert DAGs produced a surprising result. Namely, Lattice 
outperforms the layering-based algorithms while VisibÜityhas still the worst behavior. As for measure 
Cross, the slope of the plots is steeper for the Pert DAGs. Note, however, that the behavior of Lathee 
seems to be quite independent from the density of the input DAG, at least for DAGs with up to 75 

edges. 
Screen Ratio- (see Fig. 5) Lattice seems to be the algorithm of choice with respect to this quality measure. 

All the algorithms have a better performance for the Pert DAGs. We believe that this a consequence 
of the relative density of the Pert DAGs; the drawings tend to spread in both the x- and y-dimension. 

TotalEdgeLen and MaxEdgeLen: (see Fig. 6) These two measures are dependent on ResFactor. Therefore, we 
compared the performance of the layering-based and grid-based algorithms separately. Dot performs 
better than Layers, and Visibility performs better than Lattice for both the North DAGs and the 

Pert DAGs. 
MaxEdgeBends: (see Fig. 7) Quite interestingly, the plots grow linearly for the Pert DAGs for all four 

algorithms. While Dot has the best performance for the North DAGs, Lattice is the best for the Pert 
DAGs. The overall performance of the algorithms is much better for the North DAGs than for the 
Pert DAGs. Again, we believe that this is because the North DAGs are in general sparser. 

6    Cross-Fertilization of Grid- and Layering-Based Algorithms 
The analysis of the experimental results of Dot, Layers, Visibility, and Lattice clearly shows that the 
layering-based algorithms {Dot and Layers) produce drawings with fewer crossings than the grid-based 
algorithms {Visibility and Lattice). This indicates that the crossing reduction step of the layering-based 
algorithms is more effective than the simple planarization strategy [12] used in Visibility and Lattice. On 
the other hand, Visibility and Lattice perform well with respect to other quality measures (see Section 5). 

The above considerations suggest the development of a hybrid strategy that substitutes the original 
planarization step of Visibility and Lattice with the crossing reduction step of Layers (we choose Layers 
over Dot for simplicity of implementation). More specifically, we first execute the crossing reduction step of 
Layers and then visit the resulting drawing, replacing each crossing with a fictitious vertex. This planarizes 
the input graph. Finally, we execute the remaining algorithmic steps of Visibility and Lattice. The new 
drawing algorithms so obtained will be called VisibilityLayers and LatticeLayers, respectively. 

The charts in Fig. 8 compare algorithms Dot, Layers, Visibility, Lattice, VisibilityLayers, and Lattice- 
Layers with respect to quality measures Area, TotalBends, and MaxEdgeBends: the left column of the figure 
contains the charts for the North DAGs, while the right column contains the charts for the Pert DAGs. 

Algorithms VisibilityLayers and LatticeLayers always perform better than their "parent algorithms" 
Visibility and Lattice, respectively. In particular, we observe the following: 

Area: (see Fig. 8) The improvement of VisibilityLayers and LatticeLayers over Visibility and Lattice is 
especially significant for the North DAGs, where it ranges between 30% and 50%. 

TotalBends: (see Fig. 8) Again, the improvement is especially significant (about 50%) for the North DAGs. 
Also, while Layers is always better than Lattice, we have that LatticeLayers is slightly better than 
Layers for the North DAGs with more than 70 edges. 

MaxEdgeBends:  (see Fig. 8) Analogous considerations to those for TotalBends apply. Also, the improvement 
of VisibilityLayers over Visibility is substantial. 

The analysis of the charts for the other quality measures shows similar trends. 
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Figure 8:  Comparison charts: the z-axis shows the number of edges. 

We conclude this section by observing that the performance of the grid-based algorithms (Visibility 
and Lattice) is strongly influenced by the number of crossings introduced in the planarization step. 

7    Open Problems 
Our experiments lead to many interesting theoretical and practical questions: 

• The angular resolution of a drawing is the magnitude of the smallest angle between any two edges in- 
cident on a vertex. The readability of a drawing can be improved by increasing its angular resolution. 
Unfortunately, not much is known either theoretically or empirically about the angular resolution of 
drawings of directed graphs. This issue is worth exploring. 
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• Dot in a final step converts the polylines into Bezier curves using splines. This has a dramatic 
impact on the quality of the drawing. Similarly, we believe that the performance of several algo- 
rithms, such as Visibility, can be improved by a postprocessing "beautification" step. For example, 
it would be interesting to study bend-stretching techniques [32] that reduce the bends by doing local 
transformations. 

• Similarly, the role of the preprocessing step should also be studied. In particular, the performance of 
grid-based algorithms can be improved by using a more sophisticated planarizer. 
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A    The Algorithmic Paths 
In this appendix we give the algorithmic paths in GDW th&t we used for our study. 

A.l     Algorithmic Path Layers 

Layers = multigraph > IsDirected > digraph > IsAcyclicDigraph > acyclicdigraph > 
MakeKLayered > klayered > MakeProperKLayered > properklayered > Layers > straightLine > 
DoPolygonal > polygonal 

In the algorithmic paths language of GDW, IsDirected is a step that tests if a multigraph is directed 
and, in case, maps it into a digraph. Also, MakeKlayered maps an acyclic digraph to a k-layered graph 
by assigning a layer to each vertex. A proper k-layered graph is k-layered and such that each edge spans 
exactly two layers. 

A.2    Visibility Representation-Based Algorithmic Paths 

Visibility = multigraph > IsDirected > digraph > IsAcyclicDigraph > acyclicdigraph > 
MakeSTDigraph > stdigraph > MakeSTPlanar > planarstdigraph > MakeDirVisibilityRepr > 
directedvisibilityrepresentation > MakePolygonalPmed > polygonal 

Barycentric Visibility = multigraph > IsDirected > digraph > IsAcyclicDigraph > 
acyclicdigraph > MakeSTDigraph > stdigraph > MakeSTPlanar > planarstdigraph > 
MakeDirVisibilityRepr > directedvisibilityrepresentation > MakePolygonalBaryc > 
polygonal 

Long Edge Visibility = multigraph > IsDirected > digraph > IsAcyclicDigraph > 
acyclicdigraph > MakeSTDigraph > stdigraph > MakeSTPlanar > planarstdigraph > 
MakeDirVisibilityRepr > directedvisibilityrepresentation > MakePolygonalLongedge > 
polygonal 

Median Visibility = multigraph > IsDirected > digraph > IsAcyclicDigraph > 
acyclicdigraph > MakeSTDigraph > stdigraph > MakeSTPlanar > planarstdigraph > 
MakeDirVisibilityRepr > directedvisibilityrepresentation > MakePolygonalMedian > 
polygonal 

The MakeSTPlanar step is needed to convert the input graph to a planar si-graph. Observe that 
the four paths differ in the MakePolygonal step. Namely, in the four algorithms, MakePolygonalPmed, 
MakePolygonalBaric, MakePolygonalLongedge, and MakepolygonalMedian put the vertex in the middle 
point of the vertex-segment, in the barycenter of the endpoints of the incident edge-segments, on the 
endpoint of the longest incident edge-segment, on the median of the of the endpoints of the incident 
edge-segments, respectively. 

A.3    Algorithmic Path Lattice 

Lattice = multigraph > IsDirected > digraph > IsAcyclicDigraph > acyclicdigraph > 
MakeSTDigraph > stdigraph > MakeSTPlanar > planarstdigraph > MakeReducedSTdigraph > 
reducedplanarstdigraph > StraightLineDraw > StraightLine > DoPolygonal > polygonal 

Note the MakeSTPlanar step, which is needed to convert the input graph to a planar graph and the 
MakeReducedSTdigraph step that breaks the transitive edges into two edges and a dummy intermediate 
vertex; such a dummy vertex will result in a bend of the final drawing. 
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