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5    INTRODUCTION 

5.1    Nature of the problem 

The potential benefits of early diagnosis of cancer were recognized many years ago, before 

soft tissue imaging was available. This goal was behind the first efforts to apply ultrasound 

to the problem of the detection/diagnosis of breast cancer. Since then, many investigators 

have devoted effort to this problem because of the known advantages of ultrasound: it is 

non-ionizing, relatively inexpensive and uses widely available, portable, equipment. Today, 

with the success of x-ray mammography as an early screening tool, there is still room for 

improved methods, since there is disagreement regarding the use of ionizing radiation for 

screening, or routine exams. Also, the fibrous tissue of dense breasts gives poor results in 

conventional mammograms. 

Ultrasound is now available as an adjunctive modality in many breast clinics, where 

it is used to determine if masses with smooth borders are cystic or solid and to examine 

dense young breasts. Biopsy is still used often to determine malignancy. The cystic/solid 

determination can be a problem in borderline cases, because of the tendency of some 

ultrasonic systems to "fill in" the echo free space with artifactual echoes and thus make 

a cyst appear to be solid. There is a need for better ultrasound systems, as well as to 

have a more general-purpose imaging modality available than the x-ray, particularly if this 

modality had the advantages listed for ultrasound. 

Several factors have been identified in the literature as those contributing to poor res- 

olution of ultrasound images. In B-Scan images, finite signal bandwidth of the ultrasonic 

transducers is a major reason for low resolution in the temporal axis, whereas the non 

negligible beam width highly contributes to that in the lateral direction [18], [7], [14], [44], 

[21]. The resolution also depends on the frequency at which the imaging system operates. 

In addition to equipment limitations, there are factors originating from the nature of the 

tissue being imaged. Phase aberrations and velocity variations arising from acoustic in- 

homogeneity of tissues are two of the important causes, not only for low resolution but 

also for low contrast in images [39], [11], [6]. The observed ultrasonic image can, therefore, 

be considered as a distorted version of the true tissue image, where the axial distortion is 

dominated by the pulse-echo wavelet of the imaging system and the lateral distortion by 

the lateral beam profile. 



5.2    Background of previous work 

The problem of compensating for imaging distortions has been very active research area, 

underscoring the importance in improving diagnostic quality of ultrasonic images. There 

have been several approaches to cancel out the aberration effects, but there is no consensus 

as to the best way to achieve it [10], [26], [25], [38]. In [10] it was proposed estimating 

the differences in arrival times between two adjacent receiving element locations using 

cross correlation techniques; these results were used to modify phasing characteristics of 

the transducers for ensuing scans. In [25], using an idea adapted from optics, phasing 

characteristics were determined using speckle brightness as a measure of image quality. 

The availability of convolution models, such as in [17], [9], for ultrasound image for- 

mation and the wide availability of digital computers has given an added importance to 

discrete-time deconvolution methods, as a means of improving images beyond the capabil- 

ities of hardware. A few researchers have investigated the true 2-D deconvolution of RF 

images [9], [18], [32], whereas most of the published works are on 1-D techniques [44], [21], 

[23], [19], [14]. 

Since the resolution along the lateral direction was much worse than that along the 

temporal axis, a number of attempts were focussed on deconvolution of lateral image lines. 

In [44], a B-mode image was considered to be an ensemble of lateral lines corresponding 

to lateral slices through the envelope detected image, at given times (depth). Observing 

that the point-spread function of a typical pulse-echo imaging system is highly elongated 

along the lateral direction, they hypothesized that lateral image lines can be approximately 

described by a 1-D convolution model. Their model consisted of two 1-D terms: a signal of 

interest called the tissue reflectance and a blurring kernel in the lateral direction called the 

lateral point spread function. The latter function was defined to be the laterally varying 

component of the 2-D point spread function, whose axial variation had been approximated 

by a Dirac delta function. The problem of resolution enhancement was posed as one of 

extracting the the tissue reflectance from the observed image, assuming a perfect knowledge 

of the lateral point spread function. Using a Gaussian shaped hypothetical lateral point 

spread function, it was shown that at the best signal to noise ratio that can be expected 

from ultrasound images, deconvolution will lead to a resolution enhancement of no better 

than 2.0. The definition of the resolution was based on the reciprocal of the effective width 

of the lateral point spread function. However, the amount of improvement was also reported 

to be dependent on the exact shape of the lateral point spread function. These figures were 

found to be in agreement with the empirical numbers reported in [14]. Several others have 

reported results on 1-D lateral deconvolution [43], [33], [21] , where in [33] it was concluded 



that the computational effort on lateral deconvolution was wasted because of the very low 

resolution enhancement they could obtain at the expense of introducing more artifacts. 

The drawbacks of the lateral deconvolution techniques discussed above are the following. 

Although the quantity displayed on an ultrasound imager is the envelope of the received RF 

signal, the image formation process actually occurs in the RF domain. In [32] it is pointed 

out that in general the convolutional model of image formation in the RF domain does 

not hold for envelope detected signals. It is concluded that the 1-D lateral deconvolution 

on envelope succeeds only in the special case where no phase interference from nearby 

reflectors is present. 

All the papers, except [21], on lateral deconvolution mentioned above, relied on mea- 

suring the lateral beam profile to be used in computations. To obtain the true tissue image 

from the distorted observation, one requires quantitative information on the complex beam 

shape and acoustic velocity variations in-vivo, which are impossible to measure directly. In 

highly simplified situations such as measurements of wire targets under water, it is possible 

to get that information reliably. However, in the case of in-vivo tissue targets, such infor- 

mation is generally unavailable. The measurements done under water are not valid with 

clinical images, even when the imaging system used is the same, because of the effects of 

phase aberrations, nonlinearities and dispersive attenuation introduced by the tissues [21], 

[11], [39] , [6]. thus dramatically limiting the clinical applicability of those methods. 

In [21], a line-by-line lateral deconvolution technique which does not require the complex 

beam shape in tissue or phase information on adjacent lateral lines, was proposed. This 

method too, however, worked on amplitude detected B-scan images. It hinges on the key 

assumption that the transfer function of the imaging system along a lateral image line 

can be approximated by the smoothed Fourier transform of the lateral image line itself. 

A convolution relationship between the envelope of a lateral point spread function and a 

slowly varying envelope of the tissue response has been tacitly assumed. Thus this method 

is subject to all the limitations implied by the above assumptions. 

In spite of the fact that temporal resolution in an ultrasound image is much higher 

than the lateral resolution, axial deconvolution is still of importance. Besides the obvious 

advantage in improved axial resolution, the removal of the effect of the ultrasound pulse 

echo wavelet (through axial deconvolution) will tend to make the appearance of images more 

uniform over different subjects [16], thus simplifying the diagnosis procedures. As the shape 

of the pulse echo wavelet changes with propagation due to dispersive attenuation, a first 

step in axial deconvolution often involves the estimation of the pulse in tissue. Parametric 

modeling of speckle-only image lines has been proposed [37], [20], [16]. However, such 

approaches are limited by the problems such as the model order selection, associated with 
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parametric modeling. In [19] a Kaiman filter technique was applied to estimate pulse echo 

wavelets as well as to simultaneously improve the axial resolution. The success of the 

method was reported to be dependent on the SNR of the observations and the accuracy at 

which the observations could be modeled. A non-parametric approach for the estimation 

of the pulse was proposed in [15], where the minimum-phase equivalent of the pulse-echo 

wavelet was separated from the tissue response. However, quite often pulse-echo wavelets 

and lateral kernels are non-minimum phase signals, thus limiting the generality of this 

approach. 

5.3     Methods of approach 

In the past year we introduced a novel non-parametric framework for deconvolution of 

B-scan images [1], [2], [3], [4], [5]. We first developed a model for the rf image, and then 

reconstructed distortions using higher-order statistics of the measured image lines. Based 

on the estimated distortions we performed deconvolution of the corresponding images and 

demonstrated that the resolution of ultrasound images of tissue mimicking phantom as well 

as human tissue images was significantly improved. In the past, estimation of distortions 

has been carried out using exclusively second order statistics (autocorrelation). Autocor- 

relation, however, can recover only the minimum phase quivalent of the true distortions, 

because it is blind to phase. We also estimated distortions using second order statistics 

of the image lines. We showed that although these estimates did lead to resolution im- 

provement, the amount of improvement was less significant that the one obtained with the 

higher-order statistics based estimates. 

Image formation process in the RF-domain is described by a 2-D convolutional model, 

where the attenuation of the pulse-echo wavelet and beam aberration effects can be indi- 

rectly incorporated [17], [18], [16]. Two 1-D blurring kernels, corresponding to axial and 

lateral directions, is hypothesized to represent distortions along respective axes. The axial 

distortion kernel includes the blurring effects due to the finite bandwidth of the transducer, 

and dispersive attenuation of the pulse-echo wavelet in tissue. The lateral distortion kernel 

represents the convolutional components of lateral blurring due to the complex beam pat- 

terns. Formalizing a definition for resolution, we show that compensation for the effects of 

the blurring kernels improves the resolution of the image. 

The proposed method has the advantage of being able to estimate these kernels at 

each image line, axial and lateral, thus capturing the variations within the image. Since 

the estimations are based on higher-order statistics [24] of RF-data, the estimated kernels 

are robust to additive observation noise and also have correct phase.   To the best of our 



knowledge, the method we proposed [1] is the first one to in-vivo estimate the distortion 

kernels with their true phase, as opposed to conventional methods that estimate minimum- 

phase equivalent of kernels. 

6    BODY 

6.1    Modeling the rf image 

During an ultrasonic investigation, a three-dimensional pulsed pressure field is emitted 

into the tissue. The field interacts with the tissue and part of it is reflected, scattered, and 

subsequently received by the transducer. Under the assumptions of linear propagation and 

weak scattering, an expression for the received pressure field was derived in [17], using the 

first order Born approximation. Absorption effects were neglected. The equation has been 

expressed as a convolutional model in the following form: 

y(r2,t) = vpe(t) *t /(ri) *r hpe{ri,r2,t) + tu(r2,t), (1) 

where: 

• ri, T2 are vectors denoting the location of the scatterer and the transducer, respectively; 

• " *i " and "*" denote time and spatial convolution, respectively; 

• /(i"i) originates from the inhomogeneities in the tissue due to density and propagation 

velocity perturbations above their mean levels, giving rise to the back scattered signal (tis- 

sue response).; 

• vpe(t) is the pulse-echo wavelet that accounts for the transducer excitation and the im- 

pulse responses during emission and reception of the pulse; 

• hpe(ri, r2, t)is the modified pulse-echo spatial impulse response that relates the transducer 

geometry and the spatial extend of the scattered field. The computation of /ipe(ri,r2,i) 

is based on the approach described in [41], [35]. Convolutional components of aberrations 

and dispersive attenuation, which introduce spatially varying effects to the process, may 

be incorporated in this already spatially varying kernel. 

• w(r2,t) represents measurement noise and the unmodeled dynamics of the image forma- 

tion process. 

The problem of extracting the tissue response /(i"i) from the observation y(r2,t) is a 

deconvolution problem. Since a B-mode image is a mapping from the 3-D tissue space to 

the 2-D space of the display, the solution is not unique in general. This non-uniqueness 

should be obviated by making reasonable assumptions about the 3-D structure of the tissues 

being imaged [9]. An assumption implicit in cases where the deconvolution is done using 
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kernels confined to the imaging plane is that all image features in the imaging-plane extend 

perpendicular to the corresponding plane in the tissue space, so as to make the height of 

extension the effective height of the beam. 

The convolution model of (19) expresses the fact that the received signal at the trans- 

ducer site r2 is a result of linear spatio-temporal interaction between the signal of interest 

f(ri) and a distortion kernel. Thus, the measured signal contains a distorted version of 

the true tissue response /(ri). Deconvolving these kernels should improve image resolution 

and contrast. It should also remove aberration-induced artifacts that result from changing 

beam profiles inside the tissue. 

As discussed in the introduction, efforts to carry out this deconvolution have been 

hampered by the difficulties in measuring the modified spatial impulse response of the 

imaging system. Underwater measurements using simplified targets would not reveal any 

significant changes undergone by the interrogating beam in tissue. 

Our goal here is actually to identify the combination of vpe(t) and the spatially varying 

kernel hpe(ri,r2,t), and subsequently cancel it from the image in order to improve lateral 

as well as axial resolution. Let us combine both smoothing kernels vpe(t) and hpe(ri,T2,t) 

in one spatially and temporally varying kernel, ^(ri,r2,t), which we are going to refer to 

as the ultrasonic system impulse response. For discrete time, and for some fixed transducer 

location (19) is equivalent to the following two-dimensional convolutional model 

y(hii) = J2J2f(i'J)h(l-iin-J) + w(l,n), (2) 
*      3 

where y(l,n) represents the sample from the /—th A-line at discrete time n. The goal here 

is to identify the time varying ultrasonic system response h(l,n), and recover the tissue 

response, f(i,j), from the noisy measurement y(k,l). 

However, we will not attempt a true 2-D deconvolution in this paper. As is commonly 

done in ultrasound deconvolution literature [15], [23], [18], [19], we assume that an RF 

A-line can be expressed as a convolution between two 1-D axial terms: a hypothetical 

tissue response and a distortion kernel. This view is not unique to the image deconvolution 

literature; ultrasound Doppler systems and tissue attenuation estimation techniques tacitly 

depend on it [15]. Reducing the problem to a 1-D deconvolution is analogous to the original 

decomposition of the true 3-D deconvolution problem in to a 2-D one. 

10 



6.1.1    Assuming white tissue response:   In vivo distortion estimation using 

higher-order statistics ( HOS) 

In the following we will treat each image line (either in ateral or axial direction) separately 

assuming the 1-D model 

Vi{n) = hi(n) * fi(n) + w^n), » = 1,2,..., (3) 

where i is the A-line index; fi(n) is the axial or lateral tissue response; hi(n) is the axial or 

lateral distortion kernel; which describes the distortion associated with the i-th line; and n 

denotes discrete time. We assumed that: 

(Al) hi(n) is deterministic, possibly non-minimum phase, 

(A2) fi(n) is stationary, white, independent identically distributed (i.i.d.), zero-mean non- 

Gaussian, 

(A3) Wi(n) is white zero-mean Gaussian, and independent of /,-(ra). 

If we consider a region of the image that contains speckle only, these assumptions should 

hold reasonably well. In an image that contains inhomogeneities, however, the whiteness 

assumption about fi(n) will not be valid. 

The third order cumulant of the observation y,-(n) is defined as [24] : 

CVATIP) = E{yi(n)yi(n + T)yi(n + p)} (4) 

The bispectrum of the yi(n) is defined to be the Fourier transform of the third order 

cumulant. Under assumptions (Al) — (A3), the bispectrum of yi(n) is given by [24]: 

Cw(wi,w2) = C/j(wi,W2)fi,-(wi)/r,-(w2)^,*(wi + w2) + CWi(wi,u}2) (5) 

where Cji{ui^uj2) is the bispectrum of /;(n), Hi(u>) is the spectrum of fej(n) and CWi(uii,uj2) 

is the noise bispectrum. If the additive noise is zero-mean Gaussian, then CWi{uJi,u>2) — 0 

[24] and (4) becomes, 

Cyi{ui,Lü2) = C }i{ui,u2)Hi((X)i)Hi{uj2)H*{uji +o;2) (6) 

The bicepstrum is defined as the cepstrum of the bispectrum, from which we get: 

byi(m1,m2) = bfi(m1,m2) + chi(m1,m2), (7) 

where 6/;(mi,m2), c/l;(mi,m2) are the bicepstra of /»(n) and fej(n), respectively. 
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If fi(n) is stationary independent identically distributed (i.i.d.), its third order spectrum 

is flat and equal to the skewness, 7/;, of the process. Therefore, its bicepstrum will be an 

impulse located at the origin. In that case, using bicepstral values along the main axes 

except at the origin, we can reconstruct a scaled and shifted version of hi(n) as: 

hi(n) = F"1^".»}}, (8) 

where 
byi(m,0)      m > 0 

chi(m) = l   0 m = 0 (9) 
byi(—m,0)   m < 0. 

We assume that a similar 1-D model holds in the lateral direction of the RF-image. 

Then, a similar procedure can be followed to estimate lateral distortion kernels at each line. 

The kernels thus estimated will include the convolutional components of aberration as well. 

Therefore, axial deconvolution followed by lateral deconvolution, or various combinations 

thereof, should give us distortion compensated RF images which will have higher resolution 

and contrast. The ability to estimate and remove beam distortion effects (due to aberration) 

is seen as a major advantage of this method over other non-parametric techniques [15], [21]. 

The method proposed in [15], as is, can not estimate non-minimum phase signals, while 

that of [21] has been designed for envelope detected signals. 

6.1.2    Assuming non-white tissue response: In vivo distortion estimation using 

HOS 

As it was already mentioned the tissue response fi(n) will be non-white if variations in 

tissue structure occur. A detailed study of this case can be found in [2] (see also Appendix 

A). The most common way to model a non-white process is consider it as the convolution 

of a white noise term with a deterministic kernel. This kernel is referred to as the "color" 

of the process. It describes the correlation between the samples of the process, and can be 

used as an indication of the the deviation of the process from whiteness. 

If the process described in the previous Section is applied when the tissue response 

is nonwhite, the distortions reconstructed from each image line will contain as convolu- 

tional component the color of the tissue response. These distortions will be referred to as 

"combined kernels". 

Combined distortion kernels fcj(n) and kj(n) obtained at two different but closely spaced 

lines "i" and "j", can be written as: 

ki(n) = h(n)*ti{n) (10) 

12 



&» = %)**» (11) 

where h(n) denotes the true distortion kernel, which is assumed to be invariant between 

the two locations V and "j"; ts-(n) and tj(n) respectively represent the color of the tissue 

responses at "i" and "j". 

The true distortion h(n) and the colors U(n), tj(n) can be computed via the blind 

deconvolution method presented in [31]. 

6.1.3    Assuming white tissue response:   In vivo estimation of the minimum 

phase equivalent of distortion using second-order statistics (SOS) 

Using the model of eq. (3), second order statistics were also used to estimate imaging 

distortions [12], [13]. 

Transforming (3) in the autocorrelation domain (second-order statistic) we get: 

ryt(r) = E{yi(n)yi(n + r)} = 7* £ h^h^n + r) + 7<^(r), (12) Ji 
n 

where 7^ is the variance of fi(n), 7^ is the variance of the noise, and 6(T) is the unit 

impulse. The power cepstrum is defined as the inverse Fourier transform of the logarithm 

of the Fourier transform of the autocorrelation. Assuming that the noise level is low enough, 

in the power cepstrum domain we get: 

yi(k)~hi(k),   MO, (13) 

where hi(k) is the power cepstrum of the distortion kernel associated with the i—th line. 

From its power cepstrum, we can reconstruct the minimum phase equivalent of hi(n) [27] 

as: 

hi(n) = F-'iexpiFlU^wik)}}}, (14) 

where F[.] and -F_1[.] denote forward and inverse Fourier transforms, and 

1   0,   otherwise. 

6.2    Experiments 

The goals of our experimental work were to: 

1. Compare the axial distortions, estimated based on higher-order statistics (HOS-based 

distort ions), with experimentally obtained ones. Validate the imposeed assumptions. 
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2. Estimate HOS-based distortions from clinical ultrasound images. Deconvolve ultra- 

sound images using the HOS-based estimated distortions based on the whiteness 

assumptions about the tissue response (see Section 6.1.1). Quantify resolution im- 

provement. 

3. Estimate HOS-based distortions from clinical ultrasound images. Deconvolve ultra- 

sound images using the HOS-based estimated distortions based on the non-whiteness 

assumptions about the tissue response (see Section 6.1.2). Quantify resolution im- 

provement. Determine if there is any difference in the final deconvolution result 

depending on the assumption about the whiteness and non-whiteness of the tissue 

response. 

4. Deconvolve clinical images using distortions estimated based on second-order statis- 

tics (SOS-based distortions) as outlined in Section 6.1.3). Quantify resolution im- 

provement. 

5. Compare resolution improvement of deconvolution with HOS-based and SOS-based 

distortions. 

Towards the above goals we collected the following data: 

• Water-tank measurements: 

Experiment A 

We obtained B-Scan images of an ATS model 532 contrast resolution phantom 

which was positioned in a water tank. The target area consisted of the tissue 

mimicking background which had a scatterer density of 32 scatterers/mm3. The 

transducer we used was a model GE104682 curved device with a nominal center 

frequency of 3.5 MHz. The nominal focal zone of the transducer was 6-13 cm. A 

stepper motor with a step size 0.025ram controlled the position of the transducer 

under the guidance of a personal computer. Data acquisition was done through 

a LeCroy model 9450A dual channel digital oscilloscope connected to the PC by 

a GPIB interface. Transducer was moved across the scanning plane in steps of 

0.25mm, and RF echos were sampled at a 13.3 MHz rate. 

Experiment B 

A long piece of freshly peeled wire of diameter 0.812mm was placed underwater 

so that it was parallel to the transducer surface and perpendicular to the scan- 

ning plane.   It was kept inside the focal zone of the transducer, at a distance 
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8cm away from the transducer surface. The experimental setup used here is 

the same as in experiment (A). The wavelet reflected from the wire surface was 

recorded and taken to be an approximate estimate of the pulse-echo wavelet of 

the imaging system. 

• Measurements from Clinical Equipment: 

Experiment C 

To demonstrate the performance of our method on data from more realistic 

equipment, we imaged the same ATS532 phantom using a linear array sector 

scan transducer on a model UltraMark-9 clinical imaging system manufactured 

by Advanced Technology Laboratories, Seattle, U.S.A. The target area consisted 

of two cylinders with scatterer densities 4 and 8 scatterers/mm3, embedded 

in a tissue mimicking background of 32 scatterers/mm3. The nominal center 

frequency of the scanner was 3.5 MHz; the field of vision was 60°. Data were 

sampled at a rate of 12 MHz. No TGC was employed. 

Experiment D 

To demonstrate the performance of our method under clinical conditions, we 

obtained liver scans of patients imaged by ultrasonologists at the Thomas Jef- 

ferson University Hospital, Philadelphia, on the same imaging system described 

under experiment (C). The patients have been diagnosed with hypoechoic mul- 

tiple liver metastatic tumors. No T.G.C. had been applied; focus of the imaging 

system at transmission was set at 2cm, and dynamic focusing was employed 

with the receiving mode. 

Experiment E 

Clinical breast data consists of ultrasound images acquired by radiologists, from 

patients referred to the Department of Radiology, Thomas Jefferson Universi ty 

Hospital, Philadelphia 19107. The imaging system was an Ultramark 9 HDI 

system with RF data acquisition capabilities, provided to Thomas Jefferson 

University Hospital by Advanced Technology Laboratories. A flat, linear array 

transducer of center frequency 7.5 MHz was used to collect data (ÄF-echoes). 

The sampling rate of the data acquisition system was at 20 MHz. Five breast 

images (denoted as Patient 1- Patient 5) with tumors in them are considered 

here. 
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6.3    Results 

6.3.1    Water-tank experiments and the accuracy of our estimation method 

In order to demonstrate the validity of our kernel estimation procedure, we used the data 

from underwater measurements, i.e. experiments (A) and (B). A part of the RF image data 

that we gathered using the circular transducer in experiment (A) is shown in Fig. 1(a), 

where the logarithm of the envelope has been used for display purposes. 

Under the assumption that the axial blurring kernel of an image line does not signifi- 

cantly depend on the lateral location of the line, data from several nearby axial RF lines 

can be used to make a longer data vector, which will enable us to obtain better cumulant 

estimates. In order to minimize the effect of attenuation on our estimations, from each 

A-line i we considered data segments y,(k) of length not more than 2JV samples. The 

number of adjacent line segments yi(k) concatenated was in the range 2 = 1 — 10. In the 

axial kernel estimations, we used M = 10 and N = 64. 

Axial blurring kernels estimated with the method of Section 6.1.1 from different regions 

of the image in Fig 1(a) are shown in Fig. 2(a), in dotted lines. All of these kernels have 

been estimated from axial data obtained at the same depths of the image, but at different 

lateral locations. The mean axial blurring kernel, vm(t), which was computed as the average 

of estimated kernels, is indicated by the solid line while the measured pulse echo wavelet 

is indicated by the dashed line. 

It can be seen that all of the estimated kernels possess a similar structure, resembling 

a typical ultrasound pulse-echo wavelet. This is to be expected since the component due 

to the pulse-echo-wavelet (vpe(t)) dominates the axial blurring kernel [18]. The variation 

among the estimated kernels may be attributed to the statistical estimation errors, de- 

viation of the scatterer response from a statistically white response (which violates our 

assumption (A2)) and, contributions from the effects of the medium such as aberration 

and dispersive attenuation which have spatially varying characteristics. 

There is a reasonable match between the measured and average estimated kernels (Fig. 

2), within the limits of the accuracy of the experimentation. Looking at their spectra (see 

Fig. 2(b)) we can clearly see that the frequency spectrum of the estimated mean kernel 

has the salient features contained in the experimental pulse echo wavelet measured in 

experiment (B). The center frequency of the spectra fall very close to the nominal center 

frequency of the transducer, 3.5 MHz. The measured wavelet has a slightly narrower 

main lobe, probably due to the ringing introduced by the wire target used in experiment 

(B). However, it should be kept in mind that the measured kernel was obtained from 

simplified underwater experiments, which do not truly represent the situation inside the 
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tissue mimicking phantom. 

The differences between the average estimated kernel and the measured kernel can be 

attributed to: 

(El) the variance associated with the estimation of third order cumulants, 

(E2) the much higher dispersive attenuation and aberrations encountered inside the phan- 

tom in experiment (A), compared with those in experiment (B), 

(E3) the non-whiteness of the underlying scatter response of the phantom that violates 

assumption (A2), 

(E4) approximate realization of a point target by a line target, in experiment (B). 

Averaging techniques that we used with both the cumulant estimates of observations and 

estimated kernels themselves, make the contributions to total error from (El) small. The 

errors introduced by approximating a point target by a thin wire target does not introduce 

serious errors either; this method is being used in the testing of ultrasound transducers in 

research environments, [32], [21]. 

The major contribution to the differences in estimated and measured kernels are from 

(E2) and (E3). In fact, by virtue of modifying the frequency spectrum of the received 

signal, attenuations appear as one component contributing to the non-whiteness (color) of 

the scatterer response, and thereby affects the kernel estimation procedure. To minimize 

the effect of attenuations on the stationarity of our observations, we considered only short 

segments (eg. 64 or 128 samples at a 13.3MHz sampling rate) from each A-line of inter- 

est. Identifying and compensating for the color of the tissue response can be achieved by 

applying the blind deconvolution procedure proposed in [31] on different image lines [2]. 

The results we obtained support our model assumptions (Al) —(A3). It should be noted 

that (A2) actually contradicts the Gaussianity assumption, which is commonly made for the 

tissue response. However, non Gaussian models for the backscattered ultrasonic signals have 

been suggested and used in the past [42], [34], [29], [30]. In the method proposed here, if the 

tissue response were Gaussian, it would have been suppressed in the bispectrum domain, 

thereby rendering the estimation of an axial blurring kernel an impossibility. Hence, our 

success in the estimation supports the non Gaussianity assumption for RF ultrasound 

data. The structure of the measured kernel (experiment (B)) suggest that the axial kernel 

is indeed a non-minimum phase signal; the method proposed in this paper is capable of 

estimating non-minimum phase signals in contrast to existing techniques which can only 

estimate the minimum-phase equivalent of the true non-minimum phase signal. 
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We consider the agreement between the estimated and measured kernels satisfactory 

within the ability of underwater measurements (Measurement B) to match the situation 

inside the phantom. 

6.3.2 HOS-based distortion estimation and the deconvolution of B-mode im- 

ages assuming white tissue response (phantom data, human liver, human 

breast) 

A. Images of a tissue mimicking phantom obtained with a single element transducer. 

Having established the validity of our assumptions and the kernel estimation technique 

in the axial direction, we proceeded to estimate lateral distortion kernels from the image 

obtained in experiment (A), and to perform deconvolution. The lateral distortion kernels 

we estimated at locations covering a range of depths 6.58cm-9.42cm from the transducer 

surface can be seen in Fig. 3(a); their spectra are shown in Fig. 3(b). In these estimations, 

we used N = 32 and M = 10. Five adjacent lateral lines were used in each kernel estimation. 

In the lateral direction, the estimated kernels have characteristics similar to the lateral 

beam profiles of the imaging system. Unfortunately, there is no direct way to verify the 

results of our lateral estimations. In conventional transverse beam profile estimations, the 

experiments are usually done under water, and the pressure profiles are peak detected. This 

process masks instantaneous features of the beam, hence the results of such experiments 

can not be used in a verification. Moreover, it has been shown that in the presence of 

aberration, the lateral point spread function may undergo significant modifications [6], 

[39], possibly serious enough to change diagnoses in clinical situations [39]. Time histories 

of two dimensional instantaneous beam profiles at the focus, shown in [22], are in agreement 

with the observation that the lateral beam profile can depart heavily from the ideal in the 

presence of tissue inhomogeneities. These results suggest that, in principle, underwater 

experiments or theoretical formulae that do not take aberration in to account, can not be 

used in verifying lateral blurring kernels estimated from complex targets. Further, it should 

be noted that even though our lateral kernels are estimated at individual lateral image lines 

(i.e., at a fixed time) nearby lines contribute to the data at a given time by virtue of the 

spatio-temporal nature of Ultrasonic System Impulse Response defined earlier. 

Once the distortion kernels have been identified, retrieving the corresponding true tis- 

sue response becomes a typical deconvolution process. For the deconvolution, we used the 

constrained Wiener filter technique described in [40]. In performing the axial deconvolu- 

tion, we used the mean HOS-based axial distortion kernel, vm(t) shown in Fig. 2., which 

was obtained with the method of Section 6.1.1; in the lateral direction, the mean lateral 
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distortion kernel obtained as the average of the estimated kernels shown in Fig. 3 was used. 

Fig. 1(b) shows the logarithmically compressed envelope of the B-scan image, derived 

from the laterally deconvolved RF data corresponding to the original image shown in Fig. 

1(a). The axially deconvolved image is in Fig. 1(c) and the laterally followed by axially 

deconvolved image is in Fig. 1(d). Each image represents an area of 2.5cmX2.0cra in the 

true tissue space. For the sake of computational simplicity, we assumed that the lateral 

(and axial) blurring kernel do not vary significantly over different RF-image lines or different 

image depths in the amounts we are concerned with here. This allowed us to use a single 

blurring kernel, in each of the axial and lateral directions, to deconvolve the entire image. 

Using the average lateral kernel to laterally deconvolve a region of the image is justifiable 

by the fact that all the kernels estimated from the depth range covering the image shown 

here (6.58cm to 9.42cm) show a certain degree of similarity. This may be due to the fact 

that the transducer we used had a focal zone of 6-13cm, into which range the lateral image 

lines considered above belong. Moreover, the phantom we used in experiments had not 

been designed to simulate strong aberrating effects. As for the axial deconvolutions, the 

pulse echo wavelet (the major contributor to the axial distortion kernel) of the imaging 

system is known to stay fairly constant over different RF-lines across the image [18], [16]; 

our results shown in Fig. 2 also support that hypothesis. However, the method proposed 

here is still valid, if one needs to estimate kernels for localized regions or individual image 

lines. To capture fine details in the pass band of the spectrum, one may still require a line 

by line, or region by region, lateral deconvolution. 

Quantifying resolution improvement 

According to Fig. 1, the deconvolution in the RF-domain results in a significant reduc- 

tion in the size of speckles, suggesting a gain in resolution. In order to quantify the apparent 

increase in resolution, we defined a measure of resolution based on the 2-D auto-covariance 

function of the image. Auto-covariance function of an image was computed on the RF data 

corresponding to the image, with the peak value of autocovariance normalized to 1.0. The 

lateral slice, Loo, through the peak of the 2-D auto-covariance function was considered in 

defining the lateral resolution. The axial slice, Aoo, through the peak in defining the axial 

resolution. Similarly, the lateral resolution, Rd\ was defined as the reciprocal of the width 

of LQO, at d dB below the peak of the slice. Axial resolution was defined similarly except 

for the fact that the envelope of the absolute value of the slice Aoo was used. In this paper 

we used d = 5.00 and d = 10.00. Defining the resolution at two different dB levels allows 

us to get a better idea of the shape of the auto-covariance function. 

The reason for defining the axial resolution based on the envelope of absolute value of 
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Aoo is as follows. We define the resolution in terms of the width, l0, of the main lobe of the 

auto-covariance function because, l0 is a measure of the average "smallness" of the basic 

building elements of the image. In the axial direction, the representation of a point target is 

an oscillatory, time-limited signal. Therefore, even when the target is a point in space, the 

received signal would have an auto-covariance function which shows oscillatory behavior 

(eg. Fig. 4(d)). In this case, the central lobe conveying information on the average image 

element size is the envelope of the absolute value of the auto-covariance function. 

The resolution was defined in the RF domain, because our kernel estimation and decon- 

volution procedure was done entirely in the RF-domain. The process of envelope detecting 

itself introduces blurring leading to an inaccurate estimate of the potential resolution deliv- 

ered by deconvolution, thus making the envelope detected signal domain a less than ideal 

place to define resolution. Fig. 4(a) shows a 2D shaded mesh plot of the auto-covariance 

function of the RF-data corresponding to original image in Fig. 1(a). Fig. 4(b) shows 

the auto-variance function after lateral and axial deconvolutions. Absolute values of the 

auto-covariance function have been plotted for easy visualization. The slice Loo is shown in 

Fig. 4(c), where the solid line indicates the slice corresponding to the original image (Fig. 

1(a)) and the dotted line that of the laterally and axially deconvolved image (Fig. 1(c)). 

Corresponding plots of the axial slice A00 are in Fig. 4(d). 

The general decrease, in all directions, of the width of the main-lobe of the auto- 

covariance function due to deconvolution is obvious from Figs. 4(a) and 4(b). From Fig. 

4(c), we computed the lateral resolution gain, Gl
d, defined as: 

D('O) 

G? = -^y,    d = 5dB,10dB, (16) 

where Rd °' and Rd respectively represent lateral resolutions before and after deconvolu- 

tion. A similar definition holds for the axial resolution gain. The lateral resolution gain at 

d = bdB and d = lOdB levels, between the original (Fig. 4(a)) and the laterally followed 

by axially deconvolved image (Fig. 4(c)) was found to be 2.7 and 3.0 respectively. The 

corresponding figures for axial resolution gain, Gd , was 1.73 and 1.72 respectively. 

Our results indicate that the lateral resolution gain is higher than the axial resolu- 

tion gain. Coupled with the fact that, in the original image blurring was much higher in 

the lateral direction, we can conclude lateral deconvolution is mostly responsible for the 

improvement in overall resolution. 

To investigate the effects of deconvolution on "speckle noise" levels, we defined the 

signal-to-noise ratio as, SNR = (-), where JJL is the mean of the image and a2 is the variance. 

Since we performed our deconvolutions in the RF domain, our SNR calculations were also 
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done in the RF-domain, on absolute values of RF-data. Computed over the original image 

(Fig. 1(a)), SNR = 1.24; computed over the laterally and axially deconvolved image, 

SNR — 1.26. After only an axial deconvolution, (Fig. 1(c)), SNR = 1.25, and after only a 

lateral deconvolution (Fig. 1(b)), SNR = 1.23. Based on these numbers, we conclude that 

the deconvolution results in a gain in resolution, but does not significantly alter speckle 

noise levels. The results of SNR computations and resolution gains have been summarized 

in Tables 1 and 2. 

B. Images of a tissue mimicking phantom obtained with clinical equipment 

In order to investigate the performance of our technique with B-scan images taken from 

modern clinical equipment, we estimated axial and lateral distortion kernels from the RF- 

data collected in experiment (C). Fig. 5(a) shows the logarithmically compressed envelope 

of the original B-scan image. Average axial and lateral kernels estimated from the RF-data 

corresponding to Fig. 5(a) are illustrated in Fig. 6(a) and 6(b) respectively. These kernels 

indicate the average of 20 kernels estimated from the tissue mimicking background region 

of the phantom, between the two target cylinders (see Fig. 5). The spectra of the average 

axial kernel is shown in Fig. 6(c) and that of the average lateral kernel in Fig. 6(d). 

The result of lateral deconvolution is shown in Fig. 5(b); the result of lateral followed 

by axial deconvolution is shown in Fig. 5(c). Average estimated kernels shown in Fig. 6 

were used in both axial and lateral deconvolutions. Clearly, the deconvolution has resulted 

in a reduced speckle size and cleaner, better defined boundaries of the target cylinders. It 

is also evident that the attenuations associated with the imaging process show up much 

clearly in the deconvolved image. This may have significance in clinical imaging situations, 

where attenuation properties of tissue convey important diagnostic information. 

Fig. 7(a) and 7(b) illustrate the absolute value of the auto-covariance function of the 

RF-data corresponding to the original (Fig. 7(a)) image and the laterally and axially 

deconvolved image (Fig. 7(d)), respectively. Fig. 7(c) and 7(d) show the lateral and 

axial slices L0o and Aoo used to compute resolution gains. Based on data corresponding to 

Figs. 5 and 7, speckle SNR and resolution gains were computed and tabulated in Tables 

1 and 2. Figs. 5, 7 and Tables 1 and 2 lead to the conclusion that considerable resolution 

enhancement is possible with deconvolution, and that the process of deconvolution does not 

affect the speckle noise significantly. Once again, lateral resolution is found to be mostly 

responsible for the overall improvement in the image. 

C. Clinical images of a human liver 

To evaluate our method with clinical images, we obtained a B-scan of a liver image as 
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described in experiment (D), section 3.1. Figure 8(a) shows a part of the logarithmically 

compressed envelope of the original image. Fig 9(a) and 9(b) show the average axial and 

lateral distortions estimated from the RF-data corresponding to Fig. 8(a). Their spectra 

can be seen in Figs. 9(c) and 9(d). 

The results of lateral deconvolution is shown in Fig. 8(b); results of lateral followed by 

axial is in Fig. 8(c). In all cases, logarithmically compressed envelope of the images has 

been displayed. 

Again, to visualize the improvement in resolution, we plotted the auto-covariances of 

the original and deconvolved images. Fig. 10(a) and 10(b) illustrates the shaded 2-D mesh 

plot of the auto-covariances of RF-data corresponding to Figs. 8(a) and 8(c) respectively. 

Corresponding Loo and A0o slices are shown in Figs. 10(c) and 10(d). Slices corresponding 

to original image are shown in solid lines, whereas those of the deconvolved image are shown 

in dotted lines. 

The lateral resolution gain, G£' at d = 5dB and d = lOdB was found to be 3.0 and 2.5 

respectively. Corresponding numbers for the axial resolution gain were 1.7 and 1.5. Speckle 

SNR ratio computed for the original image (Fig. 8(a)) was SNR = 1.20; after lateral and 

axial deconvolutions (Fig. 8(c)) SNR = 1.33. Tables 1 and 2 summarize these results. 

These results suggest that considerable gain in resolution is possible with axial and 

lateral deconvolution of clinical images. 

Clinical ultrasound images of the breast 

Results obtained in experiment E described in Section 6.2 are shown here. 

Fig. 11(a) shows the B-scan breast image of Patient 1. The result of lateral followed 

by axial image deconvolution is shown in Fig. 11(b). In both cases, the logarithmically 

compressed envelope of the i?F-data has been used for display purposes. Each image 

represents an axial depth of about 2.5 cm in the true tissue space. 

According to Fig. 11, the deconvolution in the RF-domain has resulted in a significant 

reduction in the size of speckles, suggesting a gain in resolution. In order to quantify the 

apparent increase in resolution we computed the resolution gain for the image, before and 

after deconvolution. At the 10 dB and 5 dB levels, the resolution gains were found to be 

2.0 and 2.6 (see Table 3). The deconvolution process lead an improvement in the image 

speckle SNR ratio, from SNR = 0.68 to 0.997 (see Table 3). These objective measures 

suggest that the deconvolution deconvolution process is capable of improving the resolution 

of breast ultrasound images without compromising the speckle SNR. 

Similar results for the breast images of Patients 2-5 are shown in Figs. 11 to 15 and 

Tables 3,4. All these results consistently point to the fact that the deconvolution leads to 

an improvement in the resolution. 
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However, the real improvement/deterioration due to deconvolution can be fully appre- 

ciated only by trained end users, i.e. radiologists, who make diagnostic decisions based 

on the images. As a preliminary means of obtaining the radiologists response, we showed 

the original and deconvolved images to a radiologist at the Breast Imaging Center of the 

Thomas Jefferson University Hospital, Philadelphia. The responses are as follows: 

• The radiologist consistently preferred the deconvolved images over the unprocessed 

ones in all the cases, on the grounds that finer details can be easier to perceive from 

the deconvolved image due to its smaller speckle sizes (fine-grainess). 

• In the case of Patient 1, (see Fig. 11), the tumor (indicated by arrows in Fig. 11(a)) 

and its spread (boundaries) were easier to detect/determine from the deconvolved 

image. 

• In the case of Patient 3, (see Fig. 13), the deconvolution resulted in a better visu- 

alization of the jaggerdness of the tumor boundary, disclosing tumor infiltration to 

surrounding tissue and probably suggesting the malignant nature of the tumor. This 

detail was not easily perceived in the unprocessed image. 

• In the case of Patient 4 , (see Fig. 14), the smooth nature of the boundary of the 

tumor has become very easy to perceive, compared with the unprocessed image. 

Smooth boundaries may suggest a benign tumor. 

• In the case of Patient 5 , (see Fig. 15), the finer details have become easier to perceive 

in the deconvolved image. More importantly, deconvolution resulted in one region 

(indicated by arrows) becoming a suspected area. It was not very easy to judge in 

the first image. 

• Deconvolution, even though makes the image texture finer, does not lead to a dramatic 

change in the nature of clinical ultrasound images familiar to radiologists. As a result, 

it is not hard to get used to deconvolved images in diagnosis. 

• It would be very useful if the deconvolution can be done real-time. One of the major 

advantages of medical ultrasound is its real-time in nature, which results in dynamic 

images conveying more information than a still picture scan. 

Although these responses are preliminary, they are very positive and encourages one to 

conduct a systematic analysis into the advantages of image deconvolution in clinical diag- 

nosis. This can be attempted ones a large number of images are available for comparison. 

A large number of radiologists should also be involved in the process. 
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6.3.3    HOS-based estimated distortions and deconvolution of B-mode images 

assuming non-white tissue response 

To investigate the significance/implications of the whiteness assumption on the tissue re- 

sponse we attempted estimating lateral and axial kernels from a clinical B-scan image 

described in Section 6.2, Experiment D. A part of the image approximately 7craX2cm in 

size (in true tissue space) and containing a hypoechoic metastasis of the liver, is shown in 

Fig. 16(a). Logarithm of the envelope has been used for display purposes. 

Axial Distortion Kernels 

Some typical examples of the combined axial kernels fc"(n) estimated from the corre- 

sponding rf-image are shown in Fig. 17. In order to reduce the estimation variance we 

concatenated 3 adjacent rf A-lines in each case. The effect of non-stationarities was min- 

imized by considering short segments of data, 128 samples in this case, from each A-line. 

The kernels shown here correspond to a region of approximately 12mm2, in the original 

tissue space. Figs. 18(a) and (b) show two examples of the kernels estimated from within 

the tumor, i.e. kn(n), and Fig. 18(c) and (d) show two kernels estimated from outside the 

tumor, i.e. kio(n). The corresponding spectra are illustrated in Fig. 19; the spectra of the 

rf A-lines used in estimating the kernels and those of the kernels themselves are respectively 

shown by dotted and solid lines. 

Several observations are in order now: (a) Fig. 18 depicts that there is a good match 

between the spectra of combined kernels and corresponding rf data. Figs. 17(a) and(b) 

show that there is a similarity between combined kernels kf0(n) estimated outside the 

tumor; the same is true for combined kernels k^(n) estimated inside the tumor, and (c) 

k^0(n) are slightly different from kfj(n). 

The difference between kf^n) and k?0{n) can be attributed to the differences between 

color of the tissue responses occurring inside and outside the tumor. Since tumors change 

the structure of normal tissues by definition, indeed we expect to see a change in the color 

of tissue response. 

Applying the blind deconvolution scheme developed in [31] on the two combined axial 

kernels fc^(n) and k"0(n) which are shown in Figs. 17(a) and (c) respectively, we identified 

the color of the tissue responses inside the tumor (ixi(n)) and outside the tumor (^0(n)). 

Obtained color terms i"0(n) and t1j(n) are shown in Fig. 19, together with their spectra. 

It is evident that the color of the tissue response outside the tumor (Fig. 19(b),(d)) is 

different from the one inside the tumor (Fig. 19(a) and (c)). Apparently, this reflects the 

change in the tissue structure inside the tumor. 

Once we know the color of the tissue response t^(n), we can estimate the true axial 
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distortion kernel ha(n) from eq.(10) and (11), through a deconvolution process. We used 

the constrained Wiener filter technique described in [40] for this purpose.   Fig.   20(a) 

illustrates the resulting estimates for ha(n). The corresponding spectra are plotted in Fig. 

20(b). 

Lateral Distortion Kernels 

In Fig. 21, two of the typical combined lateral distortion kernels estimated inside and 

outside of the tumor are shown, together with their spectra. In Figs. 21(b) and (c), 

solid lines indicate the spectra of data which were used to estimate the distortion kernels, 

and dotted lines indicate the spectra of the kernels themselves. In order to account for 

depth related beam spreading, both kernels were estimated at the same axial depth, 5.0cm, 

in the true tissue space. As before, 20 adjacent lateral data lines in the rf-image were 

concatenated to form the basis for the estimations. Each lateral kernel represents an area 

of 17mm2 (approx.) in the original tissue space. From Fig. 21, we can see that the lateral 

distortion kernels estimated from inside and outside of the tumor assume two slightly 

different shapes. The same observation is true for the spectra of the rf-data lines used to 

estimate these kernels. 

Using the same procedure followed in the case of axial distortion kernels, we estimated 

the color of the tissue response (lateral direction), working on the lateral distortion kernels 

shown in Fig. 21. The resulting terms corresponding to the color of the tissue response 

are shown in Fig. 22, together with their spectra. It is clear that the color of the tissue 

response, t\(n) is different in the two regions of the image considered. 

Following the same procedure as in the case of axial distortion kernels, we estimated 

the true lateral distortion kernel. Resulting color-free lateral distortion kernels, h\n) and 

their spectra are shown in Fig. 23. 

Using the lateral distortion kernel hl(n) estimated above, we deconvolved the rf-data 

corresponding to the image shown in Fig. 16(a). The result of lateral deconvolution is 

shown in Fig. 16(b), where the logarithmically compressed envelope has been used for 

display purposes. The result of lateral deconvolution using the kernel hl(n), followed by 

the axial deconvolution using ha(n) estimated earlier, is in Fig. 16(c). Note that we used 

only a single lateral kernel to deconvolve the entire image. This may be justifiable as a first 

approximation, considering the depth (approx. 2 cm in the real tissue space) of the image 

involved. 

Deconvolution of the image was also performed using the combined distortion kernels. 

These kernels are basically the same kernels that would result under the white assumption 

about the tissue response. The deconvolution results were identical to the ones shown in 

Figs. 16(b) and (c). 
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Based on Fig. 16, we can conclude that there is a considerable resolution enhancement, 

especially after the lateral deconvolution, while the resolution improvement is the same 

for both combined and true distortion kernels. The latter observation leads us to the 

conclusion that tissue response can be safely assumed white for deconvolution purposes. 

Although there is some difference in the combined kernels inside and outside the tumor, or 

otherwise, when tissue structure variations occur, this difference is not significant to affect 

the deconvolution result. This difference, however, emerges as potential tissue signature [2]. 

If we are interested in detecting tissue structure changes, (e.g., changes between tumorous 

and tumor-free areas) the combined kernels can not be used. The distortion kernels are 

the dominant components in the combined kernels and mask the small contribution of the 

color of the tissue response which carries the discriminating information. The color of the 

tissue response as a tissue signature has been investigated in [2] (see also Appendix A). 

6.3.4    SOS-based estimated distortions and deconvolution of B-mode images 

From the images obtained at experiments A, C and D, SOS-based distortions were estimated 

with the method of Section 6.1.3. The images were subsequently deconvolved, and the 

deconvolution results are shown in Figs. 27, 28 and 29, respectively. The corresponding 

resolution gains and speckle SNR are shown in Tables 5 and 6. 

Comparing Tables 1 and 2 to 5 and 6, we can conclude that the resolution improvement, 

both axial and lateral, was consistently superior when deconvolution was performed with 

the HOS-based estimated distortions. Deconvolution with HOS-based estimates led to 

axial resolution improvement 1.15 - 1.9 times higher than deconvolution with SOS-based 

estimates. The improvement of lateral resolution when deconvolving using HOS based 

estimates was more dramatic; it was better than the SOS based deconvolution by a factor 

in the range 1.68-4.5. The superiority of the HOS-based deconvolution is also evident 

by comparing the corresponding images deconvolved with HOS and SOS-based distortion 

estimates. 

7    CONCLUSIONS/FUTURE WORK 

Processing ultrasound images with higher-order spectral operations we were able to identify 

the distortion introduced by the ultrasonic system and the medium. The proposed method 

makes it possible to estimate both axial and instantaneous lateral blurring kernels, working 

on B-mode RF data. Distortion identification and subsequent cancelling (deconvolution) 

operations were carried out on 1-D lines of the RF image, thereby obviating the theoretical 
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difficulties faced by earlier attempts at beam deconvolution on envelope detected images. 

The method is capable of estimating mixed phase distortion kernels, and is immune to 

additive Gaussian noise. 

Performing underwater experiments employing single element transducers, commercial 

tissue mimicking phantoms and simulated point targets, we showed that our kernel estima- 

tion procedure could be done with reasonable accuracy. The accuracy of the estimations 

were verified by measuring axial kernels underwater. 

Deconvolution results obtained with phantom data and clinical images indicate con- 

siderable resolution improvement. Lateral deconvolution contributes heavily to the gain 

in resolution, where the resolution was defined in terms of the dimensions of the auto- 

covariance function of the image. These results are significant because in unprocessed 

images, lateral distortions are known to be as much as 3-5 times severe than axial distor- 

tions, leading to a change in appearance in clinical images depending on the orientation of 

the scanner. Through lateral deconvolution, one can compensate for the lateral distortions 

and try to achieve consistent images independent from the angular position of the scanner. 

In the past, distortion estimation was carried out exclusively in the second-order statistics 

domain. We demonstrated that deconvolution based on HOS-based distortion estimates 

leads to superior axial and in particular lateral resolution improvement than the one with 

SOS-based estimates. 

Liver tissue is relatively homogeneous, thus the resolution improvement via deconvo- 

lution came at little surprise. The highly inhomogeneous nature of breast tissue, on the 

other hand, made the application of the proposed methodology to breast data a not at all 

straightforward task. It was really exciting to see that indeed the proposed methodology 

led to significant resolution gains when applied on human breast images. The resolution 

gains were quantified based on our standard mathematical measures, but most important 

based on the opinion of our medical collaborators at Thomas Jefferson University Hospital. 

Trained radiologists compared the images before and after processing and found that the 

processed images revealed fine details that were hidden in the original images, and which 

could be critical in determining the malignant or not nature of the tumor. Although more 

extensive studies need to be conducted, and on line processing should be considered, we 

view the obtained results as very encouraging. 

It has been reported that high transducer frequencies required for high resolution imag- 

ing actually lead to lower resolution in the presence of increased aberration in breast at 

higher frequencies [8]. In [36] it is pointed out that medium inhomogeneities are also impor- 

tant in systems where a larger aperture is used for higher lateral resolution. In general, the 

aberration correction is of fundamental importance in high resolution medical ultrasonic 
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systems. The ability of the proposed method to compensate for convolution components 

of aberration holds promise in improving the diagnostic value of B-mode breast images 

beyond the capabilities of hardware. 

Deconvolution, viewed as an image de-blurring/restoration operation, should reveal 

those small structures (such as early stage tumors) that had been hidden away from 

view due to imaging distortions (including convolutional components of aberrations), but 

otherwise would show up on a hypothetical, perfect imager. A deconvolved image also 

means access to a distortion-free tissue signal, which is largely independent of the imaging 

system. Therefore, tissue characterization schemes which ideally require imaging-system- 

independent data could be based on deconvolved RF images. In addition, the estimated 

distortion kernels themselves carry information on the statistical structure of scatterer field 

as manifested through the color of the scatterer response (tissue response), attenuations 

and, propagation non-linearities associated with the phantom (tissue). Indeed our prelimi- 

nary investigation suggested that the color of the tissue response is an excellent candidate 

as a tissue signature. 
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9    FIGURES/TABLES 

Table 1: Resolution gains due to deconvolution with HOS-based estimated distrotions 

Resolution Gains 
lateral axial 

5dB lOdB 5dB lOdB 

Experiment (A) 
Experiment (C) 
Experiment (D) 

2.7 
5.2 
3.0 

3.0 
4.2 
2.5 

1.7 
1.8 
1.7 

1.7 
1.9 
1.5 

Table 2: The effect of deconvolution with HOS-based distortions on the speckle SNR 
ratio 

SNR 
original deconvolved 

Experiment (A) 
Experiment (C) 
Experiment (D) 

1.24 
1.17 
1.20 

1.26 
1.10 
1.30 

Table 3: Resolution gains in breast images due to HOS-based deconvo- 
lution. 

Resolution Gains 
lateral axial 

5dB lOdB 5dB lOdB 

Patient 1 5.6 2.0 8.6 5.6 
Patient 2 4.8 4.0 1.9 1.8 
Patient 3 3.0 2.1 1.7 1.6 
Patient 4 2.2 1.8 2.1 1.9 
Patient 5 2.9 1.9 1.3 1.2 
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Table 4:  The effect of HOS-based deconvolution of breast images on the 
speckle SNR ratio. 

SNR 
original deconvolved 

Patient 1 
Patient 2 
Patient 3 
Patient 4 
Patient 5 

0.68 
0.46 
0.74 
0.51 
0.75 

0.99 
0.59 
0.84 
0.58 
0.84 

Table 5: The effect of deconvolution with SOS-based distortions on the speckle SNR 
ratio 

Resolution Gains 
lateral axial 

5dB lOdB 5dB lOdB 

Experiment (A) 
Experiment (C) 
Experiment (D) 

1.6 
1.85 
1.50 

1.35 
0.93 
1.44 

1.53 
1.48 
1.50 

1.20 
1.64 
1.23 

Table 6: The effect of deconvolution with SOS-based distortions on the speckle SNR 
ratio 

SNR 
original deconvolved 

Experiment (A) 
Experiment (C) 
Experiment (D) 

1.21 
1.2 

1.10 

1.24 
1.20 
1.17 
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Figure 1: A speckle-only part of the ultrasound image of the tissue mimicking phantom, 
obtained with a focused single element transducer experiment (A); (b) the result of late 
ral deconvolution; (c) the result of axial deconvolution and, (d) the result of lateral fol- 
lowed by axial deconvol ution. In all cases, the logarithmically compressed envelope is 
shown. Deconvolution was performed with the higher-order statistics based estimated 
distortions. 
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Figure 2: Underwater experiments (experiments (A) and (B)): (a) axial kernels estimated 
at various lateral positions in the B-mode image of the tissue mimicking phantom (dotted 
lines); average of the estimated kernels (solid line). The experimental kernel, measured 
as the reflection off a 0.812mm diameter wire surface, under water. The close agreement 
between the estimated and the measured kernels (with in limits of experimental errors), 
indicates the success of the estimation procedure, (b) Spectra of the average estimated 
kernel (solid line) and the measured kernel (dashed line). The center frequency of both 
kernels are compatible with the nominal center frequency of the transducer, 3.5MHz. 
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Figure 3: (a) Lateral distortion kernels estimated at various axial depths from the RF data 
corresponding to the image shown in Fig. 1(a). All the kernels are estimated within the 
focal zone of the transducer, 6 — 13cm. (b) Spectra of the lateral kernels shown in (a). 
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Figure 4: Shaded auto-covariance function of the RF-data corresponding to: (a) the origi- 
nal image shown in Fig. 1(a); (b) the laterally and axially deconvolved image shown in Fig. 
1(d). Absolute values of the auto-covariance functions have been shown for easy visualiza- 
tion, (c) The lateral slice L00 and (d) the axial slice AQQ of the auto-covariance function 
corresponding to: the original image (solid lines), the deconvolved image (dotted lines). 
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(a) (b) 

(c) 

Figure 5: (Experiment (C)): (a) The original image of the tissue mimicking phantom ob- 
tained with the linear array transducer on a clinical imaging system; (b) the result of lateral 
deconvolution and (c) the result of lateral and axial deconvolution. The logarithmically 
compressed envelope has been used for display. Deconvolution was performed with the 
HOS-based estimated distortions. 
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Figure 6: [Experiment (C))\ (a) The average of the estimated axial kernels from RF-data 
corresponding to image shown in Fig. 5(a), and (b) its spectrum, (c) The average of the 
lateral kernels estimated from RF-data corresponding to Fig. 5(a) and (d) its spectrum. 
These kernels were estimated from the region between the two cylindrical targets in Fig. 
5(a). 
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Figure 7: Shaded auto-covariance function of the RF-data corresponding to: (a) the origi- 
nal image shown in Fig. 5(a); (b) the laterally and axially deconvolved image shown in Fig. 
5(d). Absolute values of the auto-covariance functions have been shown for easy visualiza- 
tion, (c) The lateral slice Zoo and (d) the axial slice Aoo of the auto-covariance function 
corresponding to: the original image (solid lines), the deconvolved image (dotted lines). 
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(a) (b) 

(c) 

Figure 8: (Experiment (DJ): (a) A part of the clinical image of a human liver containing a 
tumor; (b) the result of lateral deconvolution and (c) the result of lateral and axial decon- 
volution. In all cases the logarithm of the envelope is shown. (HOS-based deconvolution is 
shown here). 
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Figure 9: (Experiment (DJ): (a) The average of the estimated axial kernels from RF-data 
corresponding to image shown in Fig. 8(a), and (b) its spectrum, (c) The average of the 
lateral kernels estimated from RF-data corresponding to Fig. 8(a) and (d) its spectrum. 
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Figure 10: Shaded auto-covariance function of the RF-data corresponding to: (a) the 
original image shown in Fig. 8(a); (b) the laterally and axially deconvolved image shown 
in Fig. 8(d). Absolute values of the auto-covariance functions have been shown for easy 
visualization, (c) The lateral slice Loo and (d) the axial slice Aoo of the auto-covariance 
function corresponding to: the original image (solid lines), the deconvolved image (dotted 
lines). 
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Figure 11: (Patient 1): (a) A part of the clinical image of a human breast containing a 
tumor; (b) the result of lateral followed by axial deconvolution. In all cases the logarithm 
of the envelope is shown. 
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Figure 12: (Patient 2 ): (a) A part of the clinical i mage of a human breast containing a 
tumor; (b) the result of lateral followed by axial deconvolu tion. In all cases the logarithm 
of the envelope is shown. 
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Figure 13: (Patient 3 ): (a) A part of the clinical image of a human breast containing a 
tumor; (b) the result of lateral followed by axial deconvolution. In all cases the logarithm 
of the envelope is shown. 
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(b) 

Figure 14: (Patient 4)' (a) A part of the clinical image of a human breast containing a 
tumor; (b) the result of lateral followed by axial deconvolution. In all cases the logarithm 
of the envelope is shown. 
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Figure 15: (Patient 5): (a) A part of the clinical image of a human breast containing a 
tumor; (b) the result of lateral followed by axial deconvolution. In all cases the logarithm 
of the envelope is shown. 
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Figure 16: Clincal image of a human liver, (a) Envelope of a part of the original image 
containing hypo-echoic liver metastasis tumor; (b) laterally deconvolved image; (c) laterally 
followed by axially deconvolved image, logarithm of the envelope is shown. 
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Figure 17:   (a),(b) Combined axial distortion kernels estimated from small regions inside 
the liver tumor; (c),(d) combined axial distortion kernels estimated outside the liver tumor. 
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Figure 18: (a),(b) Spectral of combined axial distortion kernels estimated from small regions 
inside the liver tumor; (c),(d) spectra of combined axial distortion kernels estimated outside 
the liver tumor. Solid lines indicate the spectra of estimated kernels and dotted lines those 
of the rf data based on which the kernels were estimated. 
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Figure 19: Color of the axial tissue response estimated from small regions (a) inside the 
tumor and (b) outside the tumor, (c) Spectrum of the kernel shown in (a); (d) spectrum 
of the kernel shown in (b). 
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Figure 20: (a) True axial distortion kernels reconstructed based on the combined distortion 
kernels estimated from inside (solid line) and outside (dotted line) the tumor, and (b) the 
corresponding spectra. 
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Figure 21: (a) Combined lateral distortion kernels estimated (a) inside the tumor, and (b) 
its spectrum. Combined lateral distortion kernels estimated (c) outside the tumor, and (d) 
its spectrum. Solid lines indicate the spectra of estimated kernels and dotted lines those of 
the rf data based on which the kernels were estimated. 
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Figure 22: (a) The color of the lateral tissue response estimated (a) inside the tumor and 
(b) outside the tumor, (c), (d) The spectra corresponding to (a) and (b). 
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Figure 23: (a) True lateral distortion kernels reconstructed from the combined kernels esti- 
mated from inside (dotted line) and outside (solid line) the tumor, (b) The corresponding 
spectra. 
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laterally deconvolved laterally and axially decon 

Figure 24: A speckle-only part of the ultrasound image of the tissue mimicking phan- 
tom, obtained with a focused single element transducer experiment (A); (b) the result of 
lateral deconvolution; (c) the result of axial deconvolution and, (d) the result of lateral 
followed by axial deconvolution. In all cases, the logarithmically compressed envelope is 
shown. Deconvolution was performed with the second-order statistics based estimated 
distortions. 
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Figure 25: (Experiment (C)): (a) The original image of the tissue mimicking phantom ob- 
tained with the linear array transducer on a clinical imaging system; (b) the result of lateral 
deconvolution and (c) the result of lateral and axial deconvolution. The logarithmically 
compressed envelope has been used for display. Deconvolution was performed with the 
second-order statistics based estimated distortions. 
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Figure 26: (Experiment (D)): (a) A part of the clinical image of a human liver containing 
a tumor; (b) the result of lateral deconvolution and (c) the result of lateral and axial 
deconvolution. In all cases the logarithm of the envelope is shown, (second-order statistics 
based deconvolution is shown here). 
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Blind Deconvolution of Ultrasound Images 

Udantha R. Abeyratne, Athina P. Petropulu* and John M. Reid 

Biomedical Engineering and Science Institute 

*Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia, PA 19104 

We address the problem of improving the resolution of ultrasound images using blind 

deconvolution. The transducer measurement that forms the ultrasound image can be ex- 

pressed as the convolution of two terms, the tissue response and the ultrasonic system 

response, plus additive noise. The quantity of interest is the tissue response, however, due 

to the convolution operation, we measure a blurred version of it, which obscures the fine 

details in the image. Our goal is to remove the blurring caused by the ultrasonic system, 

in order to enhance the diagnostic quality of the ultrasound image. Under the assump- 

tion that speckle behaves as an i.i.d. zero-mean non-Gaussian process, we were able to 

reconstruct the blurring kernel using bicepstrum operations on corresponding A-scan lines. 

Based on the estimated blurring kernel we performed deconvolution on the measured im- 

age. Preliminary results obtained from ultrasound images of a tissue mimicking phantom 

indicate significant resolution improvement. 

20th International Symposium on Ultrasonic Imaging and Tissue Characterization, Arling- 

ton, VA, June 1995. 

Estimating Imaging-Distortions and the Color of the Tissue Response From 

Ultrasonic Images 

Udantha R. Abeyratne, Athina P. Petropulu*, John M. Reid and Thomas Golas* 

Biomedical Engineering and Science Institute 

*Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia, PA 19104 

We address the problem of estimating imaging-distortions and modeling the tissue re- 

sponse from clinical B-scan ultrasound images, based on rf A-lines that form the image. We 
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model rf A-lines as: yi(n) = hi(n) * fi(n) + Wi(n),i = 1,2, • • •, where j/;(n) is the observed 

rf A-line, fi(n) is the tissue response, io;(n) is the observation noise and hi(n) is the ker- 

nel representing imaging distortions; the symbol V stands for the convolution operation. 

The fol- lowing assumptions are made: [Al] hi(n) is deterministic, possibly non- minimum 

phase, [A2] /;(n) is stationary, zero-mean non-Gaussian, modeled as the convolution of a 

white component et(n) and a deterministic part ti(n) corresponding to the statistical color 

of the issue response, [A3] iOj(n) is zero-mean, Gaussian, and independent of fi(n). A col- 

ored random process is taken as the model for the tissue response, considering the fact that 

under- lying scatterers need not be randomly and independently located. Applying higher 

order spectra based blind deconvolution on pairs of closely located rf A-lines, we identify 

the color of the tissue response as well as the distortion kernels. The color of the tissue 

response is independent of the imaging system and can be used in tissue characterization. 

We estimate distortion kernels and the color of the tissue response, from a B-mode image 

of a human liver, containing a tumor. The statistical color of the tissue response estimated 

inside the tumor has features that are distinctly different from those estimated outside the 

tumor. This may be attributed to the change in the tissue structures brought about by 

the tumor. Our kernel estimation and color identification process is based on data from 

regions as small as 12 mm2 (approx.) in the tissue space. The advantages of the proposed 

approach are:(a) since the estimations are carried out in higher order spectra domain, results 

are immune to additive Gaussian noise in observations, and (b) both minimum phase and 

non-minimum phase kernels can be estimated. We compare our method with existing non- 

parametric pulse estimation techniques and demonstrate relative strengths and weaknesses. 

IEEE Workshop on Nonlinear Signal and Image Processing, Neos Marmaras, Greece, June 

1995. 

Higher Order Spectra Based Deconvolution of Ultrasound Images 

Udantha R. Abeyratne, Athina P. Petropulu^, John M. Reid 

Biomedical Engineering and Science Institute 

t Electrical and Computer Engineering Department 

Drexel University, Philadelphia, PA 19104 

Our goal is to model and identify the tissue response based on the backscattered rf 

signal that forms the ultrasound image. We model the rf ultrasonic image, in both axial 

and lateral directions, as the convolution between an 1-D hypothetical tissue response and 
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the ultrasonic system response (distortion), plus additive Gaussian noise. We model the 

tissue response as a non-Gaussian, colored random process. Closely spaced axial (lateral) 

image lines contain as a common convolutional term the axial (lateral) distortion, whereas 

the noncommon terms are due to the tissue color. Applying blind deconvolution, we identify 

the color of the tissue response as well as the corresponding distortion kernels. The color 

of the tissue response is independent of the imaging system and can be used as a tissue 

characterization parameter. Estimated kernels are compared with experimentally obtained 

kernels, and the deconvolution of real ultrasound images is performed. 

Asilomar 1995 

«-Weighted Cumulant Projection: A New Tool For System Identification 

Udantha R. Abeyratne and Athina P. Petropulu* 

Biomedical Engineering and Science Institute 

*Department of Electrical and Computer Engineering, 

Drexel University, Philadelphia, PA 19104 

Summary 

It is well established that identification of a nonminimum phase non-Gaussian random 

process can be achieved based on its higher-order cumulants (order three or higher). We 

propose a computationally attractive approach for system identification, whose complex- 

ity remains constant as the order of the employed cumulants increases. We define the 

a—weighted nth-order cumulant projection of the process x(k) to be 

Pnfo <*) = E - E <(r> r2> •••> rn_i)aT+75+-+T»-1,   a : complex, \a\ = 1,        (17) 
T2 Tn_l 

where c£(-) denotes nth order cumulant. For the process 

x(k) = h(k)*e(k), (18) 

where e(k) is white non-Gaussian zero-mean, and h(k) is deterministic generally nonmini- 

mum phase, we prove that 

P*(z; cc) = cHia^zjHia^z-1), (19) 

where P*(z;a) is the Z-transform of P%(T;O), and c is a constant. ^From (19), it can be 

shown that by controlling a, H(z) can be identified for n > 2. If p*(k; a) and h(k) denote 
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the complex cepstra of p*(r; a) and h(k), respectively, we show that 

kt) = mi^^m,k>0 (20) 

*(-*) = -R(k^TA)>»>»> P») 
which leads to a scaled and shifted version of h(k) via inverse cepstrum operations. We 

show that we can always find a complex number a with unit magnitude to guarantee that 

the denominator in (20) and (21) is different from zero, and discuss the rationale behind 

choosing a particular value for a. 

Based on equation (19) a formula for the estimation of the Fourier phase of h(k) from 

the phase of the a-weighted cumulant projection is also derived. 

21st International Symposium on Ultrasonic Imaging and Tissue Characterization, Arling- 

ton, VA, June 1996. 

Higher-Order Statistics Based Approaches for Estimating Scatterer 

Periodicity and Correlation Structure of Tissue 

Udantha R. Abeyratne, Athina P. Petropulu*, John M. Reid, Ethan J. Halpern+ and 

Flemming Forsberg+ 

Biomedical Engineering and Science Institute 

* Electrical and Computer Engineering Department Drexel University, Philadelphia, PA 

19104 
+Dept. of Radiology, Thomas Jefferson University Hospital, Philadelphia. PA 19107. 

We model tissue as a collection of point scatterers embedded in a uniform media, and 

show that the higher- order statistics of the scatterer spacing distribution can be estimated 

from digitized RF scan line segments and be used in obtaining tissue signatures. We model 

the ultrasonic RF echo, y(t), by y(t)=h(t)*f(t)+w(t), where h(t) is the pulse-echo wavelet 

of the imaging system, w(t) is the zero-mean observation noise, and "*" is the linear con- 

volution operator. The quantity f(t), which we will call the tissue response, represents 

the underlying tissue structure, and is modeled as: f(t) = rd(t)-frm(t)+rr(t), where, rd(t) 

represents unresolvable diffuse scatterers leading to fully-developed speckle with Gaus- 

sian statistics [1], [2], rr(t) represents resolvable, coherent scatterers with long-range order 

(pseudo-periodicity).The quantity rm(t) represents unresolvable periodicity from structural 

scatterers, and, correlated non-periodic components of diffused and structural scatterers 

(short- range order). The terms rm(t), rr(t) (and their contributions to the RF-echo y(t)) 
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are non-Gaussian, due to contributions from periodic structures and/or scatterers of short 

range order. Based on our model for tissue micro structure, we develop methods for the 

estimation of resolvable periodicity via higher-order spectra of the RF observation y(t). 

Also, we propose a tissue signature, the color of the tissue response , that captures the 

correlation among non-periodic scatterers. The tools employed, i.e., higher-order statis- 

tics, were chosen as the most appropriate ones because they suppress Gaussian processes, 

such as the one arising from the diffused scatterers and observation noise. Higher-order 

statistics, unlike second-order statistics, also preserve the Fourier-phase of the color of the 

tissue response. Working on simulated and clinical data, we show that the proposed peri- 

odicity estimation technique is superior to the widely used power spectrum and cepstrum 

techniques in terms of the accuracy of estimations. We also show that even when there is 

no significant periodicity in data, we are still able to characterize tissues using signatures 

based on the higher-order cumulant structure of the scatterer spacing distribution. 

[1] K.D. Donohue, J.M. Bressler, T. Varghese and N.M. Bilgutay, "Spectral Correlation 

in Ultrasonic Pulse-echo Signal Processing", IEEE Tr. on Ultrasonics, Ferroelec, and 

Frequency Control, vol. 40, no. 4, pp.330-337, 1993. 
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On Modeling The Tissue Response From 
Ultrasonic B-scan Images 

Udantha R. Abeyratne, Athina P. Petropulu, John M. Reid 

Abstract— We model tissue as a collection of point scat- 
terers embedded in a uniform media, and show that the 
higher-order statistics (HOS) of the scatterer spacing dis- 
tribution can be estimated from digitized RF scan line seg- 
ments and be used in obtaining tissue signatures. We as- 
sume that RF echoes are non-Gaussian, on the grounds of 
empirical/theoretical justifications presented in works such 
as [25], [6], [3], [24] and [27]. Based on our model for tis- 
sue microstructure, we develop schemes for the estimation 
of resolvable periodicity as well as correlations among non- 
periodic scatterers. Using higher-order statistics of the scat- 
tered signal, we define as tissue "color" a quantity that de- 
scribes the scatterer spatial correlations, show how to evalu- 
ate it from the higher-order correlations of the digitized RF 
scan line segments, and investigate its potential as a tissue 
signature. The tools employed, i.e., higher-order statistics, 
were chosen as the most appropriate ones because they sup- 
press Gaussian processes, such as the one arising from the 
diffused scatterers. Higher-order statistics, unlike second- 
order statistics, also preserve the Fourier-phase of the signa- 
ture, the color of the tissue response. Working on simulated 
and clinical data, we show that the proposed periodicity 
estimation technique is superior to the widely used power 
spectrum and cepstrum techniques in terms of the accuracy 
of estimations. We also show that even when there is no sig- 
nificant periodicity in data, we are still able to characterize 
tissues using signatures based on the higher-order cumulant 
structure of the scatterer spacing distribution. 

Keywords—tissue modeling, tissue characterization, med- 
ical ultrasound, higher-order statistics, periodicity estima- 
tion 

I. INTRODUCTION 

ULTRASOUND is one of the widely used medical imag- 
ing techniques, due to its versatility, relative safety, 

low cost and the availability of portable units. It is com- 
monly used by radiologists as an adjunct modality in dif- 
ferentiating between cystic and solid masses, a crucial dis- 
tinction in diagnosing cancer. Despite decades of research 
leading to many technological advances, still the clinical di- 
agnoses are primarily based on qualitative evaluation of im- 
ages by expert observers. There have been many attempts 
at developing objective tissue characterization criteria on 
the premise that there is much more observer-independent 
information available from ultrasound than what is cur- 
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rently being used. These are rooted on the fundamental 
notion that the biological tissues are composed of charac- 
teristic structures whose ultrasonic properties often change 
due to diseases. The goal of tissue characterization is the 
extraction of signatures that assume distinct values in the 
presense of normal and diseased states of tissues, such that 
it is possible to differentiate between them. 

Although the exact identities of the physical structures 
responsible for ultrasound backscattering are generally un- 
known [22], [5], they can usually be characterized either 
as macroscopic or microscopic, compared with the wave- 
length of the interrogating ultrasonic beam. The tissue 
is often modeled as a collection of point scatterers, em- 
bedded in a uniform non-scattering medium. Considering 
the biological variabilities associated with tissues, the spa- 
tial distribution and the scattering strengths (scattering 
cross-sections) associated with these scatterers are usually 
described in statistical terms. The statistics of the inter- 
scatterer spacing distribution are commonly used as tissue 
signatures. 

In organs such as the liver the overall arrangement of 
the tissues consists of an organized repetition of a basic 
structural unit. This repeated structure is regarded to be 
providing resolvable, repeated scattering centers for the 
propagating ultrasonic pulse [10], [12], [13], [7]. It has 
been shown that a periodicity can be observed from the 
liver pulse-echo data, and the estimated periodicity can 
be linked to the mean-scatterer-spacing of the underlying 
tissue [10]. It was also shown that the mean scatterer spac- 
ing may be used as a feature for tissue characterization of 
diffuse liver diseases, such as cirrhosis and chronic active 
hepatitis [10],[13]. 

However, the success of some of these methods [10] was 
reported to be compromised by the presence of coherently 
reflecting structures such as blood vessels. In [26], the pe- 
riodicity detection was carried out in the power cepstrum 
domain. In [13], the liver tissue micro-structure has been 
described by a three component model: the first compo- 
nent (diffuse) represents randomly positioned scatterers 
of sufficient concentrations to generate circular-Gaussian 
statistics; the second component (regular) represents non- 
randomly distributed coherent scatterers with long-range 
order (pseudo-periodicity); the third component (short- 
range order) is due to organ boundaries and blood vessels 
etc. 

All of the above techniques are based on the auto- 
correlation/power spectrum of the observations, thereby 
neglect information contained in the Fourier-phase of the 
RF echo. In [28], [9] the RF echo was modeled as a cyclo- 
stationary signal, thus preserving phase information. The 
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embedded periodicity was detected in the frequency do- 
main. That approach seemed to perform better than con- 
ventional power-spectral density/cepstra based techniques 
in detecting periodicity. Both in the cyclo-stationarity ap- 
proach and the power cepstrum one it was assumed that 
the diffused scatterer spacings are uncorrelated. 

The scatterer spatial correlation has been used in 
the past to model ultrasonic properties of tissue 
[11],[15],[16],[8],[4] and was shown to lead to promising tis- 
sue signatures. In [16], it was shown that using power 
spectra, deterministic, membrane-like structures as well 
as structures consisting of random, diffuse structures can 
be characterized. In [17], effective scatterer sizes, concen- 
trations and acoustic impedances were investigated using 
power spectra, as potential tissue signatures. The effective 
scatterer size was reported to be the most important tissue 
feature sensed with the method of [17]. 

In this paper, we use a point scatterer model similar to 
the ones in [13] and [9] to describe tissue microstructure, 
with the exception that our model takes the correlations 
existing among both resolvable and non-resolvable scatter- 
ers into account. This enables us to also consider cases 
of coherent long-range scatterer distributions which have 
high variances associated with the inter-scatterer spacing, 
i.e. almost no periodicity, and, non-periodic echos resulting 
from correlated, non-periodic components of both diffused 
and structural scatterers. We assume that RF echoes are 
non-Gaussian, on the grounds of empirical/theoretical jus- 
tifications presented in works such as [25], [6], [3], [24] and 
[27]. Based on our model for tissue microstructure, we de- 
velop schemes for the estimation of resolvable periodicity as 
well as correlations among non-periodic scatterers. Using 
higher-order statistics of the scattered signal, we define as 
tissue "color" a quantity that describes the scatterer spatial 
correlations, show how to evaluate it from the higher-order 
correlations of the digitized RF scan line segments, and 
investigate its potential as a tissue signature. The tools 
employed, i.e., higher-order statistics, were chosen as the 
most appropriate ones because they suppress Gaussian pro- 
cesses, such as the one arising from the diffused scatterers. 
Higher-order statistics, unlike second-order statistics, also 
preserve the Fourier-phase of the signature, the color of the 
tissue response. 

Via computer simulations, we show that the proposed 
periodicity estimation technique is superior to the widely 
used power spectrum and cepstrum techniques in terms 
of the accuracy of estimations. We also preliminary evi- 
dence that even when there is no significant periodicity in 
data, we are still able to characterize tissues using signa- 
tures based on the higher-order cumulant structure of the 
scatterer spacing distribution. 

II. THEORY 

In the following, we use lower case characters to symbol- 
ize time domain quantities, and upper case ones to denote 
frequency domain quantities unless otherwise specifically 
specified. 

Assuming a narrow ultrasound beam, linear propagation 

and weak scattering in the tissue medium, we model the 
ultrasonic RF echo, y(t), by, 

y(t) = h(t)*f(t) + w(t), (1) 

where h(t) is the pulse-echo wavelet of the imaging sys- 
tem, w(t) is the zero-mean observation noise and "*" is the 
linear convolution operator. The quantity f(t) represents 
the underlying tissue structure and will be called the tissue 
response. 

A.  The tissue structure: 

Following [5],[13] and [9] we model the structures within 
tissue that are responsible for backscattered ultrasonic field 
by point-scatterers organized at different levels. Existing 
work such as [13] and [9] attempt to characterize liver tis- 
sue based on a two component point scatter model: (a) 
the diffused component, which represents [13] randomly po- 
sitioned scatterers of sufficient concentrations to produce 
echo signals with circular Gaussian statistics. The po- 
sitions of individual scatterers are assumed uncorrelated 
[13]; (b) the coherent component, which represents non- 
randomly distributed scatterers with long-range order [13], 

In this paper, we describe liver tissue by a three- 
component model, which in addition to (a) and (b) above, 
also takes into account the correlations existing among (i) 
diffused scatterer locations, (ii) resolvable and unresolvable 
pseudo-periodic scatterers leading to long range order, and 
(iii) collection of scatterers leading to short range order, 
but not strong enough to violate the conditions of weak- 
scattering or the stationarity of the RF echo in a significant 

We model the tissue response f(t) by, 

f(t)=rd{t) + rm{t) + rr(t), (2) 

where, 
t rd(t) = J2p=i ap6(t — Up) represents unresolvable dif- 

fuse scatterers leading to fully-developed speckle with 
Gaussian statistics, 

t rm(t) = Ylp=i bp6(t — Xp) represents the combined ef- 
fects of unresolvable periodicity from structural scat- 
terers, and, correlated non-periodic components of dif- 
fused and structural scatterers. 

• the term rr(t) = X^p=i vp&(t — 6p) represents the peri- 
odic, resolvable scatterers. 

Note that the terms rm(t) and rr(t) are non-Gaussian, due 
to contributions from periodic structures and/or scatterers 
of short range order. 

B.  The RF-echo: 

From (1) and (2), y(t) can be expressed as: 

y(t) = yd(t) + ym(t) + yr(t) + w(t), (3) 

where yd(t) = rd(t)*h(t), ym(t) - rm(t)*h(t) and yr(t) = 
rr(t) * h(t) are respectively called the diffused, mixed and 
resolvable-periodic   components of the RF echo y(t). The 
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observation noise w(t) is assumed zero-mean, Gaussian and 
uncorrelated with m(t), i = d,m,r. 

Let us assume an infinite extent tissue media, and 
Nd,Nm,Nr —»■ oo. The RF echo y(t) is assumed to be 
compensated for attenuation. In section 2.3, we discuss 
the effects of attenuation and finite-extent data on our es- 
timations. 

Assuming that the terms yi(t), i = d,m,r are zero- 
mean, mutually uncorrelated, the third-order cumulants 
c\{Ti,T2) [19] the process y(t) can be written as: 

cy
3(n,T2)    =    E {y(t)y(t + n)y(t + T2)} , 

=    cf{rur2) + cl-{TX,r2) 

+cyi(n,r2),        (4) 

where E{-} is the statistical expectation operator over the 
ensemble. The third-order cumulants c% (ri, T2) of the noise 
process w(t) vanishes under the hypothesis that w(t) is 
Gaussian. 

B.l The diffused component (DC): 

We model the diffused component yd(t) of the RF echo 
y(t) as a Gaussian process (See also [13]). As such the 
third-order cumulants sequence equals: 

oo    oo    oo 

6{t - Xp)S(t + Ti - \q)S(t + T2 - As 

-OO —oo —oo 

Nm  Nm  Nm 

p=l   qr=l   5=1 

X/m(*,t+Ti,t + T2). (9) 

Under the assumption (A2), the probability density func- 
tion fm(t,t + T\,t + T2) does not depend on the particu- 
lar t chosen. Thus, fm(t,t + ri,t + T2) can be written as 
fm(T\,T2). Therefore, from (7) and (9) we obtain: 

C3m(n,r2) = Kmfm(Ti,T2) * A,(TI,T2), (10) 

where Km is given by, 

cld(rur2) = 0,  VTUT2. (5) 

B.2 The mixed, non-Gaussian component (MC): 

The mixed component ym(t) of the RF echo y(t) is given 
by: 

' N„ 

MO= Ew'-^) *h(*)- (6) 

Let us assume: 
(Al) \{ is uncorrelated to bj, i,j = 1,2, • • -,Nm, 
(A2) \i,   i = 1, 2, • • •, form a stationary process, and, 
(A3) ym(t) is a zero-mean process. 
Under (A3) the third order cumulants of ym(t) equal, 

4m(n,r2)    =    E{ym(t)ym(t + T1)ym(t + T2)}, 

=    M3
r-(r1,r2)*4(r1,r2), (7) 

with, 

Nm Nm Nm 

Mr
3-(n,r2)   =  £]T$>{VA} 

p=l5=1s = l 

xE{6(t - Xp)5(t + TI - \q)8(t + r2 - As)} , (8) 

where (Al) has been used in obtaining (8). 
Let the joint probability density function (arbitrary) 

for the scatterer location triplets \p,Xq,\s be given by 
fm(\, \, As). Then from (8) we obtain: 

^^EEE^WJ-        (ii) 
p = l q=l r=s 

B.3 Resolvable periodic component (RPC): 

In the context of ultrasonic tissue characterization, the 
RPC component has been shown to be of great significance 
[10], [9]. To be classified as the resolvable periodic com- 
ponent, the scatterer separation should be regular enough, 
and the repeat distances should be large enough (compared 
to the length of the pulse-echo impulse response) to be re- 
solvable. The Gamma distribution has proven to be a par- 
ticularly useful tool in describing inter-scatterer space dis- 
tribution [14], [9], because of its versatility in producing 
scatterer locations ranging from almost periodic to clearly 
non-periodic. 

The general mathematical description of the RPC fol- 
lows directly from the expressions derived for the case of 
MC component. The resolvable periodic component, yr(t), 
can be written as: 

Vr(t) *h(t). (12) 
LP=I 

»»  Nm  N„ 

M: (ri,r2)     =     2EEB{W'} 

p=l   q=l   s = l 

Again, we assume: 
(Bl) 9{ is uncorrelated to Vj, i, j = 1,2, • • •, Nr, 
(B2) 0i,   i = 1,2, • • •, froms a stationary process, and, 
(B3) yr(t) is a zero-mean process. 
From (12) we can obtain as in the case of MC compo- 

nent, 

4r(n,r2)     =     Krfr(n,T2)*4(TUr2), (13) 
Nr   Nr   Nr 

Kr = EEE^vW.      (14) 
p=l q — l 5 = 1 

where the joint probability density function fr(T\, T2) now 
describes a (pseudo) periodic phenomenon, i.e. fr(ri, r2) is 
a two dimensional bed of spikes, whose separation is equal 
to the mean-scatterer-spacing. 
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In the following we derive an expression for fr{T\,T2), 
under the constraint that the resolvable periodic scatter- 
ers are separated by a constant time interval, T, i.e. the 
process is strictly periodic and the resolvable periodicity 
(unknown) is T. Then the periodic component rr(t) can 
be written as: 

rr(<) = £>,(*)«(<-pT), (15) 
P=I 

where vp(t) is the scatterer strength function,  and is a 
bounded function defined over the set of real numbers, 

'^■(—oo,co)' 

The Fourier transform Rr(oj) of rr(t) can be obtained as, 

C.  The proposed method for the estimation of periodicity 

From (18) and (22) we observe that the periodicity man- 
ifests itself in both bispectrum and the third order cumu- 
lant domains. In the cumulant domain, peaks are separated 
by the period T, while in the bispectrum domain the sep- 
aration is Y" rad/S. Let us form the weighted 3rd-order 
cumulant projection (see also [2],[1]) of (22) as follows: 

Hin, J2cl(n,r2)e
j^,   0<U,<2TT,      (23) 

=    P?(7-i,w)+^(ri,w). (24) 

„ .  .      2ir   x—■\   xr/        27T, 

k = — oo 

(16) 

where Vp{w) is the Fourier transform of vp(t). Let the 
region of support of the function vp(t) be {t : \t\ < B}. As 
B —* oo, V(w) —► 6(u>). As B —► oo the bispectrum [19] 
Clr(ooi, w2) of rr(t) is given by: 

C3r(u>1,u)2)    =    Är(wi)fir(w2)Är(-wi -w2), 

fci     k2    k3 

2TT, 
X8(-UJ2 -Wi - — fa). (17) 

(|)3EE%-^)^-^)' (18) 
ki     k2 

For the case V(u>) —► <5(w), from (12) and (18) we can 
obtain the bispectrum C%T(wi,w2) of yr(t) as: 

cr»'K,^)    =    (|!)*{C3
h(wl,^)535]5(Wl-y*i) 

X5(w2 - yfc2)}. (19) 

The third-order cumulant sequence C3
T
(TI,T2) of the 

RPC can be obtained from (19) through an inverse Fourier 
transform, i.e., 

Cy3(TUT2) = Ch
3{TUT2) * £ E^l - fclT)5(T2 - W 

(20) 
Comparing (14) and (20) we get: 

/r(T-1,7*) = ^^«(n - fciT)6(72 - *2T), (21) 

Based on (5), (10), and (13), eq. (4) becomes: 

C^(Tl,T2)        =        {Km}m(r1,T2) + A'r/r(Tl,T2)}*cJ(Tl,T2), 

=    {A'm/m(Tl,T2) +X]E'5(T1 ~ fclT)5(T2 - fc2T)} 
*1       *2 

*4(TI,T2),       (22) 

when the inter-scatterer spacing of the RPC component 
is a constant T. 

From (23), P\{TI,UI) can be viewed as the one-dimensional 
Fourier transform of c|(ri, T2) with respect to the variable 
T2. According to this interpretation, P™{TI,W) equals: 

p5*(r1)W)      =      ^{^(71,72)}, 

=      #mM/™(n, 7-2)* 4(71,72)},       (25) 

and also 

P5(n,u0     =     ^2{(cf(Tj,r2))}, 

= F^{c*(n,T2)}X)]£*(n-*iT)5(u;-|^a),       (26) 
fcl     fc2 

where i*V2{'} is the one-dimensional Fourier transform 
with respect to the variable r2, and C3m(ri,72) and 
Cgr(7i,T2) are given by (10) and (20). 

Based on (26) the periodicity can be estimated from the 
p|(ri,o>) as the separation T between peaks along the T\- 
axis. Along the w-axis, the peaks are separated by the 
amount 2TT/T. 

D.  The estimation of the color of the tissue response 

When the tissue under study shows no periodic varia- 
tions in ultrasonic properties, the periodicity will loose its 
significance as a tissue signature. In the following we define 
a new quantity, the color of the tissue response to supple- 
ment periodicity as a tissue signature. 

The contribution of the MC to the third-order cumu- 
lants of the RF echo is described by (10). The term 
Kmfm(Ti,T2) can be viewed as the third-order moment se- 
quence of the signal: 

s(t) = e(t)*g(t), (27) 

where e{t) is an i.i.d., non-Gaussian, zero-mean noise pro- 
cess, whose skewness is Km, and, g(t) is the signal whose 
third-order moment sequence is given by /m(ri, T2). 

We will refer to g(t) as the "color of the tissue response". 
The time domain equivalent of (10) becomes: 

z(t) = e(t) * u(t), (28) 

where u(t) = g(t) *h(t) will be referred to as the combined 
kernel. 

Assuming, that the support of the third-order cumulant 
sequence 03(71,72) of z(t) is contained in a square defined 
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by |nI, IT2I < T, where T is the resolvable periodicity, we 
can recover the term <%{T\, T2), from Cg(ri, T2) as: 

C|(TI,T2) = c|(ri,r2),   |nI, |r2| < Tc 0, (29) 

where To « T and T is the known or estimated period of 
the RF data. Note that a precise knowledge of T is not 
required. 

Applying methods of system reconstruction from higher- 
order spectra, [19], [2], [1], we can retrieve u(t) from 
Cz{Tx,T2) within a scalar and a time delay. In the work 
of this paper, we used the a-WCP based method of system 
reconstruction proposed in [2], exploiting its low computa- 
tional load. 

The color of the tissue response, g(t), compactly sum- 
marizes both phase and magnitude information available 
in the tissue response f(t). 

The quantities u;(t) and Uj(t) obtained from two differ- 
ent A-lines "i" and "j" can be written as: 

Ui(t) = h(t)*gi(t), 

uj(t) = h(t)*gj(t), 

(30) 

(31) 

where h(t), the pulse-echo impulse response of the imaging 
system, can be assumed to be invariant between the two 
locations "i" and "j"; gi(t) and gj(t) respectively represent 
the color of the tissue responses at "i" and "j". The quan- 
tities gk(t), k = 1,2,---, summarizes information about 
the tissue, and is also free from the effects of h(t), making 
it a good candidate for a tissue signature. 

Using (30) and (31) we form a tissue signature Sij(t), in 
the time domain, as follows: 

Sij(t)    =    «,-(<) *{«i(*)}_1, 
=    h(t)*gi(t)*{h(t)*gj(t)}-1, 

=    9i(t)*g^(t), (32) 

where {-}_1 denotes the convolutional inverse. 
If the estimations are from two regions with similar ul- 

trasonic properties, for instance from two healthy regions 
of a liver, Sij(t) will approach a Dirac delta-function. On 
the otherhand, if the two estimates are from two regions in- 
side and outside a tumor which has brought in a change in 
the inter-scatter spacing distribution, then Sij(t) and will 
depart from Dirac delta. Thus, the closeness of Sij to a 
Dirac delta performs as a relative tissue signature. We will 
estimate Sij from clinical images and validate its usefulness 
as a signature. 

The quantities gi{t) and gi(t) can individually be ob- 
tained from (30) and (31) using a blind deconvolution tech- 
nique [21], i.e. a technique through which the input to a 
system can be obtained when only its output is known. 
Preliminary results of a blind deconvolution approach to 
separate #;(£) and gi(t) have been reported in [4]. 

E.  The effects of attenuation and finite data lengths 

The results in Section 2 were derived under the assump- 
tion of an infinite tissue media.   However, in practice we 

have access to only finite-length data records. With such 
records, one can obtain, parallel to the situation in auto- 
correlation estimation from finite data, only a statistical 
estimate of the true higher-order cumulants of RF data. 
Expressions for the statistical properties of HOS estima- 
tors can be found in [19]. Similar to the power spectrum 
domain, in the bispectrum domain (and in p|(ri,w)), the 
finite data records limit the smallest period that can be 
detected. 

Attenuation represents all forms of energy loss experi- 
enced by a propagating pulse and is unavoidable in bio- 
logical media. The effects of attenuation on the pulse at 
the depth x = vto/2, where v is the ultrasonic propagation 
velocity and to is time, in tissue space can be represented 
as [18]: 

H(to,üj)=A{to,u,)H(u,), (33) 

where H(to,w) and A(to,u) are respectively the Fourier 
transforms of space-dependent pulse echo response and at- 
tenuation; H(LO) is the Fourier transform of the pulse trans- 
mitted. 

Eq.(33) can be written in the time domain as: 

h(t0,t) — a(t0,t)*h(t), (34) 

where h(to,t), a(to,t) and h(w) are the time domain equiv- 
alents of H(to,uj), A(to,u>) and H(w) respectively. 

For short data records, we can ignore the to-dependency 
of (34) and consider h(to,t) as a time-invariant quantity. 
Then the effect of attenuation on our period estimation 
techniques follows directly from (22), and (26) with the 
quantity 03(7-1, r2) replaced by the third-order cumulant 
sequence 03(7-1, T2) of h(to,t). 

In estimating the color of the tissue response, the com- 
bined kernels Ui(t) and Uj(t) (see (30) and (31)) now takes 
the form, 

Ui(t) = ai(t0,t)*gi(t)*h(t), (35) 

Uj(t) = a,j(t0,t)*gj(t)*h(t), (36) 

resulting in a tissue signature Sij given by, 

Sij(t)    =    Ui(t)*{uj(t)}-\ 

=    gi(t)*g]'1(t)*ai(to,t)*aj(t0,t)-
1.     (37) 

From (37) we note that the differences in attenuation 
characteristics at locations "i" and "j" are also captured 
in Sij. 

III. DATA COLLECTION 

A. Simulated data 

We simulated digitized ultrasound RF scan lines on a 
computer, using a model similar to the ones used in [14], 
[9] and [7]. Scatterers were modeled as a collection of 
points, distributed according to some probability density 
function. A uniform probability density function described 
both inter-scatterer spacings and the scattering strengths 
related to the DC component. The RPC scatterer spac- 
ings were described by a T-probability density functions, 
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because of the relative ease with which one can obtain inter- 
scatterer spacings ranging form almost periodic to uniform. 
Scatterer strengths were also modeled with a T-density 
function with a different set of parameters. The quantity j, 
where p is the mean and <J is the standard deviation, of the 
scatter-strength distribution was set to 0.35, so that we get 
a wide variation in strengths. The program also had the ca- 
pacity to simulate correlated scatteres contributing to the 
MC component, via another T-distribution. The correla- 
tions in the scatterer spacings were obtained by filtering 
them through a linear, time invariant system of arbitrary 
frequency response. 

Observation noise, which is unavoidable in any physical 
measurement, was modeled by a zero-mean Gaussian pro- 
cess as is commonly done. Observation noise was allowed 
to be a colored process. 

The center frequency of the transducer was i.2MHz; 
the pulse envelope followed a Gaussian shape and its 3dB 
bandwidth was 2.5MHz. The sampling frequency of the 
data acquisition was selected to be 20MHz. 

B.  Clinical data 

To demonstrate the performance of our method under 
clinical conditions, we used liver scans of healthy volun- 
teers, (volunteer nos. I and II) and a patient (hypoe- 
choic tumor of the liver) imaged by ultrasonologists at 
the Thomas Jefferson University Hospital, Philadelphia, on 
a model UltraMark-9 system manufactured by Advanced 
Technology Laboratories, Seattle, U.S.A. A linear array, 
sector scanner with a nominal center frequency of 3.5 MHz 
and a field of vision 60° was used as the transducer. In 
the cases of the volunteer-I and the patient, the focus at 
transmission was set at a depth of 20mm (approx.); multi- 
focusing had been used for the volunteer-II, with focii set 
at depths of 77, 100 and 125 mms (approx.). Dynamic fo- 
cusing was applied in the receiving mode. The data were 
sampled at 12 MHz. 

IV. RESULTS 

A.  Cumulant estimation procedure 

Both of the tissue signatures proposed in this paper rely 
on computing the third-order cumulants from digitized RF 
scan line segments. In the following we describe the pro- 
cedure followed to estimate them. In the following, we 
assume y(k) to be an ergodic process. 

(51) Segment the i-th data record yi(k) into K records 
of length N samples each; subtract the mean of each 
record to form the zero-mean sub-segments yij{k). 

(52) Estimate the third-order cumulants cyij(r,p) of 
each sub-segment yij(k), j = 0,2 • • -K — 1 according 
to: 

N-l 

\r\<M,\p\<M      (38) 
k=0 

where M is the length of third-order correlation lags 
considered in the computation. 

(S3) Average the cumulant estimates cyij(r,p) over all 
sub-segments j = 0,1 ■ ■ -K — 1 to obtain the cumu- 
lant estimate cyi (r, p) corresponding to the data record 
yi(k): 

1 K~1 

Cy,(T,P)=xY;6y<j(T'P")' (39) 
j=o 

B. Estimating the periodicity 

B.l Simulation I 

In this experiment, we compare the proposed method to 
detect periodicity (see eq. (23)), with the power spectrum 
[10] and power cepstrum [26] techniques. Only the RPC 
component of the RF echo was considered. We simulated 
the inter-scatterer spacing with the T-density function, for 
v = a/ p = 0.03,0.15, and, 0.35, where p and a respectively 
denote the mean and the standard deviation of the scatter- 
spacings. The nominal mean scatterer spacing was p = 
1.0mm. 

Cumulants for the process were estimated according to 
the procedure (S1)-(S3) with the following parameters: 
M = 100, N = 256, K = 4. Fig. 1(a),(b) and (c) show the 
contour maps of the estimated cumulants corresponding to 
v = 0.03,0.15,0.35. 

Based on the cumulant estimates, |P3(TI,<J)|, 0 < ui < 
IT, was computed through (23), and its contour map is 
shown in Fig. 1 (d),(e) and (f) for v = 0.03,0.15 and 0.35 
respectively. 

The periodicity in data is evident from both the cumu- 
lants and in p|(ri,o;). However, they are better visualized 
in Fig.l (g),(h) and (i), which were obtained by projecting 
the absolute values of Fig. 1 (d), (e) and (f) along fre- 
quency axes, followed by smoothing. The dotted lines in 
Fig. 1 (g),(h) and (i) correspond to the true mean scatterer 
spacing, 1.00mm. 

Periodicity can also be estimated from the w-axis of 
P\{TX,LJ); Fig. 2 (a), (b) and (c) respectively show 
|P|(TI,W)|, 0 < W < 7T, corresponding to T\ = 0.0,1.0 and 
2.0 mm (see Fig.l (d),(e),(f) and eq. (26)). The spacings 
between adjacent spectral peaks, which is given by 27r/T 
according to (26), can be obtained from Fig. 2 (a), (b) and 
(c) and periodicity be determined. 

Next we computed the power spectrum and the power 
cepstra of the same set of data. Data were segmented ex- 
actly the same way as for the cumulant estimates, and the 
average autocorrelation over segments obtained. The auto- 
correlation estimates were smoothed through a Blackman 
window, before computing the power spectrum. Fig. 3 
(a), (b) ,(c) show the power spectra estimated for the cases 
v = 0.03,0.15 and 0.35. Note that the power spectrum 
reveals the periodicity only for the case v = 0.03, which 
corresponds to an almost periodic scatter spacings. Based 
on power spectra, the power cepstra illustrated in Fig. 3 
(d),(e) and (f) were computed; the dotted lines in these 
figure corresponds to the true mean scatter spacing, 1.0 
mm. The power cepstrum shows a well localized peak for 
^ = 0.03 and a reasonably well localized peak for the case 
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v = 0.15. However, it shows a large spurious peak for the 
case v = 0.35 which overshadows the true peak. 

We ran 50 Monte Carlo runs on the mean scatterer- 
spacing, based on the power cepstrum and the proposed 
method, corresponding to the case v = 0.15, and the mean- 
scatterer-spacing= 1.0mm. Due to poor performance, the 
power spectrum method was excluded. In estimating the 
periodicity via the proposed method, the first peak location 
was obtained as the location corresponding to the highest 
peak in the region 0.4-2.5 mm. The same procedure was 
used in the case of the power cepstrum method. Table I 
illustrates the results we obtained. These results illustrate 
that the proposed method outperforms the power cepstrum 
in estimating periodicity. 

Better estimates of the cepstrum can be obtained with 
parametric methods such as the AR approach considered 
in [26], when the model order is known fairly accurately. 
However, the estimation of the model order is not always a 
trivial task. In this paper, our use of non-parametric tech- 
niques to compute the power cepstrum is justified because 
we used non-parametric techniques to compute higher- 
order cumulants too. 

B.2 Simulation II 

In this simulation, we generated the RPC component as 
in Simulation I and added a DC component at a signal to 
noise ratio, SNR = —16 dB, where, following [9] the SNR 
is defined as: 

SNR= 101og10 (40) 

where Nr is the number of resolvable scatterers in the data 
segment considered. If the normalization term Nr is not 
included, the SNR measure does not represent the true 
situation. For instance, there can be cases with only a few 
resolvable scatterers over a long tissue length, where the 
energy per scatterer is high enough so that the periodicity 
can be determined without processing the signal, but still 
leading to a misleadingly low SNR measure. 

Fig. 4 illustrates the results of the proposed method and 
the power cepstrum one. Fig. 4 (a), (b), (c) show |p3(ri,w)| 
projected along the w-axis for cases v = 0.03,0.15,0.35. 
Fig. 4 (d), (e), (f) show the power cepstra corresponding to 
v = 0.03,0.15,0.35. Periodicities obtained from Fig. 4 (a), 
(b), (c) are: 0.97, 1.00, 0.96 mm. Periodicities obtained 
from Fig. 4 (d), (f) are: 0.96 and 0.88 mm. The result 
form (e) is inconclusive; there are several spurious peaks, 
two major ones corresponding to periodicities of 0.74 mm 
and 1.2 mm. 

Figs. 1, 4 and Table 1 suggest that the higher-order 
statistics based periodicity estimation technique proposed 
in this paper outperforms both the power spectrum and 
the power cepstrum. 

A problem often encountered with the power cepstrum is 
that it tends to produce spurious peaks in the presence of 
noise. Power cepstrum computations are heavily affected 
by the DC component and also the observation noise in 
RF echoes. Any noise escaped through the averaging and 

windowing operations at the auto-correlation estimation 
process, may contribute a large, slowly decaying compo- 
nent to the power cepstrum, thus masking small peaks. 
Spurious peaks pose a serious problem to the periodicity 
detection/estimation process. Fig. 4 indicates the fact that 
in the presense of the DC, the problem of spurious peaks 
gets aggravated. Since HOS suppresses the DC compo- 
nent and measurement noise, the proposed technique is ro- 
bust against their unwanted effects. 

B.3 Clinical data: Normal subjects: 

In this section, we present the periodicities estimated 
from clinical images, using the higher-order techniques. In 
all clinical images, we used M = 80, N = 128 and K = 5. 
Each segment corresponded to a length of 8 mm (approx.) 
in tissue. 

Fig. 5 illustrates results corresponding to a normal liver 
(volunteer-T). Contour maps of |p|(ri,w)|, 0 < w < IT is 
shown in Fig. 5 (a), and its smoothed projection along the 
w-axis is shown in Fig. 5 (b). The power spectrum and 
the power cepstrum computed from the same data using 
the same parameters as those used in the computation of 
cumulants, are illustrated in Fig. 5 (c) and (d). 

The period estimated from the cepstrum and the pro- 
posed method are respectively 1.28 mm, and 1.3mm. Pe- 
riodicity is much more evident in Fig. 5 (a), (b), which 
suggests that the proposed method is better than both the 
power cepstrum and the power spectrum. From the power 
cepstrum/spectrum it is impossible to see repeated peaks 
confirming a suspected periodicity, whereas repeated peaks 
are clearly seen in higher-order estimates. 

Fig. 6(a) shows the quadrature demodulated, loga- 
rithmically compressed liver image of vohnteer-I; the his- 
togram of estimated periods obtained from throughout the 
image, where periodicity could be detected, is shown in 
Fig. 6(b). The average value of the period evaluated using 
the proposed method over 80 estimations was 1.03 mm, at 
a standard deviation of 0.26 mm. Fig. 6(c) and (d) show 
similar results for the volunteer number II, where the av- 
erage=1.07 mm and the standard deviation = 0.25 mm. 
In these images, periodicities were estimated in a depth of 
approx. 35 mm - 51 mm from the transducer surface. 

B.4 Clinical data: tumor of the liver: 

In this section we report the results of our attempts to 
estimate periodicities from focal diseases of the liver. We 
obtained a clinical image of a patient diagnosed with a 
hypo-echoic tumor of the liver (see section 3.2) and ap- 
plied higher order periodicity detection schemes proposed 
in this paper. Fig. 7 (a) shows a part of the image we used. 
Periodicities were estimated at a depth of 48-65 mm from 
the transducer surface. The focus of the imaging system at 
transmission had been set at about 20 mm from the trans- 
ducer surface; dynamic focusing was used in the receive 
mode. In this simulation, we used M — 80, N = 128 and 
K = 5. 

Fig. 7(b) shows the histograms of the periodicities es- 
timated using the proposed method from within and out- 
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side the tumor. The mean and the standard deviation of 
the scatterer spacing obtained from within the tumor are 
respectively 1.07 and 0.42 mm. For regions outside the 
tumor, corresponding values were 0.97 and 0.31 mm. 

Based on Fig. 7 we conclude that there is no signifi- 
cant difference in periodicity within and outside the tu- 
mor. These results highlight the fact that there are im- 
portant clinical situations where the periodicity detection 
fails to delineate normal from abnormal tissue. This can 
happen either because there is no discernible change in the 
periodicity inside and outside the diseased area, or there is 
no periodicity associated with the concerned tissues at all, 
irrespective of normal or diseased. 

In the following, we investigate the performance of the 
color of the tissue response as a tissue signature in such 
situations. 

C. Estimating the color of the tissue response 

C.l Simulated data 

We simulated two realizations of digitized RF scan line 
segments corresponding to two differently-correlated, inter- 
scatterer spacings. In the first case an RPC component 
was generated with v = 0.05. The simulated RF echo was 
close to purely periodic, whose cumulants sequence was 
only slightly affected near the origin by the slight variations 
in the inter-scatterer spacings. This served as our first 
digitized RF scan line segment under study. 

In the second, we used v = 0.35 in the RPC component 
resulting in a digitized RF scan line segment with wider 
changes in the inter-scatterer spacings, thus contributing 
to the third order cumulant near the origin, i.e. change 
the statistical color of the RF echo. Another component 
from unresolvable correlated scatterers were simulated with 
another T distribution, withe a/fi = 0.8, and n = 0.3 
mm, i.e. inter-scatterer spacing distribution was almost 
non-periodic. Correlations were further introduced to the 
spacings by filtering them through a linear time invariant 
system of arbitrary frequency response. The echo corre- 
sponding to this scatterer distribution was taken as the 
second realization of the digitized RF scan line segment. 

To both of these realizations, a DC was added at a 
SNR = — YldB, defined according to (40) to get the two 
digitized RF scan line segments y\{k) and y2(k). In order 
to simulate the effect of observation noise, we added white, 
Gaussian noise at a signal to noise ratio S/N = lOdB, 
where the ratio S/N was defined to be: 

S/W = 10 log 10 1,2 (41) 

where yi(k), i = 1,2 are the two digitized RF scan lines 
under study and w(k) is the observation noise. 

From the two sets of digitized RF scan line segments 
2/1 (fc) and y^{k) so generated, we estimated the third-order 
cumulant sequences cy

z
1{r\,T2) and C

V
^{T\,T^) according to 

steps S1-S4. To separate the non-periodic parts c'^iji, T%) 

and C
Z
^{TI,T2) from C\'(T\,T2), i = 1,2, and to reduce 

the estimation variance associated with the cumulants, we 

applied a minimum bispectrum bias supremum window of 
length M on the cumulant sequence obtained through steps 
S1-S4. We used M = 30, N = 128 and K = 8, in following 
S1-S4. 

Fig. 8(a) shows the results of 50 Monte carlo runs for 
the quantity ui(k) = gi(k) * h(k) estimated through the 
methods of section 2.2 , based on 50 realizations of the digi- 
tized RF scan line segments corresponding to v = 0.05, i.e. 
j/i (k). The average value over 50 runs is shown in a solid 
line. The shaded area represents the average ± standard 
deviation. The dash-dotted line indicates the true ultra- 
sonic pulse used in the simulations. Fig. 8(b) shows the 
corresponding figure obtained with 50 realization of 2/2(&)• 
It can be seen that the contributions of the correlated scat- 
terer locations affect the estimated combined kernel v.2(k). 
However, from Fig. 8 we can see that the larger quantity 
h(t) masks the smaller differences between «i(fc) and 112(h). 

We formed the estimator Sij, i=l,2,j = l according 
to (32). Fig. 8(c) indicates the result Sn over 50 Monte 
Carlo runs; S21 is shown in Fig. 8(d). The average estimate 
is shown in a solid line, while the shaded area represents 
average ± one standard deviation. Fig. 8 suggests that 
our estimator Sij, i = 1,2, j — 1 is capable of detecting 
the color difference between 2/1 (&) and 2/2(&)• 

C.2 Clinical data 

To investigate the performance of the color of the tissue 
response as a signature in clinical situations, we attempted 
estimating the color of the tissue response measure Sij from 
images of the liver shown in Fig. 7(a). In estimating the 
cumulants we used N = 128, M = 25 and K — 3, where the 
three segments corresponding to K = 3 came form three 
adjacent A-lines located at the same depth of the image, 
i.e. from each A-line we considered data segments of length 
128 samples (8 mm in tissue space). 

Fig. 9(a) and (b) show the quantities ui(i) and U2(t) 
estimated respectively from within and outside the tumor. 
Solid line indicates the average estimate, while the shaded 
area represents average ± one standard deviation. The 
estimates Sn and S21 are shown in Figs. 9(c) and (d). 

Fig. 9(c) and (d) show the color of the tissue response 
estimated from within and outside the tumor. In form- 
ing the convolutional inverse Uj(k)~1 (see 32), we used 
the average of 20 combined kernels estimated within the 
tumor. According to Fig. 9, it is possible to delineate 
the tumor region from normal tissue using the estimate 
Sij, i = 1,2, j = 1. The closeness of the estimator to a 
Dirac-delta function can be used as a relative tissue signa- 
ture in the present case. 

Note that the variations in the estimations, i.e. the 
shaded areas in the figures, are not entirely due to statis- 
tical estimation errors. It has been shown in [1], [2], that 
using the same higher-order estimation techniques, under 
similar conditions, one can achieve a much smaller vari- 
ance. A major reason for the seemingly larger variance is 
the effects of natural biological variations of the scatterer 
spacing distributions among A-lines across the image, i.e. 
natural differences in the color of the tissue response be- 
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tween different A-lines. 

V. DISCUSSION AND CONCLUSIONS 

We modeled biological tissue as a collection of point 
scatterers positioned in a uniform non-scattering media. 
Based on the higher order statistics of scatterer spacings, 
we derived a technique to estimate mean-scatterer spac- 
ing, which has received a lot of attention in the past as 
a potential tissue signature for organs with periodic vari- 
ation of ultrasonic properties. We also proposed a higher- 
order-spectra based tissue signature, the color of the tissue 
response to supplement situation where there is no period- 
icity or periodicity fails to delineate normal from abnormal 
tissue. 

Using simulated data, it was shown that the periodicity 
can be better visualized and detected in the higher-order 
spectra domain. Since zero-mean Gaussian processes are 
suppressed in higher-order domain, the proposed method 
is robust against additive measurement noise unavoidable 
in data acquisition. Microscopic, diffuse scatterers of the 
size of individual cells often lead to RF-echos with circu- 
lar Gaussian statistics. Thus the proposed method is in- 
sensitive, unlike power spectra/cepstra techniques, to the 
diffused component, because of the property that HOS 
suppress Gaussian processes. This makes the higher-order 
spectra domain a well suited place to estimate periodicity 
associated with medical ultrasound data. 

The periodicity has been proposed as a potential tissue 
signature in detecting liver diffuse diseases such as cirrho- 
sis and chronic hepatitis [13], [10]. Using the higher-order 
statistics based schemes proposed in this paper, we esti- 
mated resolvable periodicities from healthy livers and a 
liver with a hypo-echoic tumor. Although we were able 
to detect and estimate periodicity from all images, we ob- 
served that there is no significant difference in the mean- 
scatter-spacing estimated from within and outside the tu- 
mor under study. 

Detecting and estimating periodicity from clinical data is 
not always a simple task. In methods such as [10], [13], the 
presence of coherently reflecting blood vessels, for instance, 
confuse the periodicity estimation process. There are also 
a lot of biological variations and imaging-equipment depen- 
dent factors such as the focus points of the system, beam 
width etc. which compromise the definition of periodicity, 
and its estimation. Tumors are highly irregular, complex 
structures whose organization depends on the type of the 
tumor and the stage of growth. There can be regions of 
necrosis, and regions with various levels of perfusion, served 
by a network of haphazardly developed blood vessels [23]. 
Even when the organ under study has periodic ultrasonic 
properties, there can be situations where there is no char- 
acteristic period which would have enabled us to detect 
abnormalities. It is plausible to expect such situations in 
the presence of a malignant tumor growing dendrites into 
a periodic structure, such as the liver. Methods that can 
only estimate periodicities associated with resolvable scat- 
terers will not be able to capture the true picture in such 
cases. 

The higher-order spectra based tissue signature, the 
color of the tissue response proposed in this paper, com- 
pactly summarizes the correlation structure existing among 
the scatterers of both short-range and long-range order. It 
is largely independent of the axial pulse echo impulse re- 
sponse of the imaging system h(t), and also, does not re- 
quire the RF echo be periodic. Therefore, the color of the 
tissue response can perform as a tissue signature which sup- 
plements the periodicity, and be measured even when the 
periodicity is not defined. Correlated, unresolvable scat- 
terers can be expected in situations such as the tumor 
micro-vasculature. Since our model includes the correla- 
tions among unresolvable scatterers, the effects of micro- 
vasculature is automatically included. 

We estimated the color of the tissue response from within 
and outside of a hypo-echoic tumor of the liver. We ob- 
served different colors of the tissue responses for the two 
cases, indicating characteristic scatter correlation struc- 
tures inside and outside the tumor. Currently, investi- 
gations are under way to devise tumor detection schemes 
based on the color of the tissue response, as observed from 
RF data corresponding to traditional B-scan images. 

VI. ACKNOWLEDGMENT 

The authors wish to thank the associate editor for coordi- 
nating the review of this paper, and the anonymous review- 
ers whose comments dramatically improved the technical 
content of this paper. The also wish to thank the Radiol- 
ogy Department at Thomas Jefferson University Hospital, 
Philadelphia, Pennsylvania, for providing the clinical im- 
ages described in section 3.2, clinical data. 

REFERENCES 

[1] U.R. Abeyratne, A.P. Petropulu, "System Reconstruction from 
Weighted Cumulant Projections, IEEE Tr. on Signal Process- 
ing, submitted in 1995. 

[2] U.R. Abeyratne, A.P. Petropulu, "a-Weighted Cumulant Pro- 
jections: A Novel Tool For System Identification", Twenty- 
Ninth Annual Asilomar Conference on Signals, Systems and 
Computers, California, Oct. 1995. 

[3] U. R. Abeyratne, A. P. Petropulu, J. M. Reid, "Higher Or- 
der Spectra Based Deconvolution of Ultrasound Images", IEEE 
Trans, on Ultr., Ferroelec. and Frequency Control, vol. 42, no.6, 
pp. 1064-1075,1995. 

[4] U. R. Abeyratne, A. P. Petropulu, J. M. Reid, "Higher Or- 
der Spectra Based Deconvolution of Ultrasound Images", 1995 
IEEE Workshop on Nonlinear Signal and Image Processing, 
Neos Marmaras, Greece, 1995. 

[5] J.C. Bamber, "TheoreticalModelling of the Acoustic Scattering 
Structure of Human Liver", Acoustic Letters, Vol.3, No. 6, pp. 
114-119, 1979. 

[6] J.-F. Chen, J.A. Zagzebski, and E.L. Madsen, "Non-Gaussian 
Vs. Non-Rayleigh Statistical Properties of Ultrasound Echo 
Signals", IEEE Tr. on Ultrasonics, Ferroelec, and Frequency 
Control, vol. 41, no. 4, pp. 435-440, 1994. 

[7] F.S. Cohen and G. Georgiou, "Detecting and Estimating Struc- 
ture Regularity of Soft Tissue Organs From Ultrasound Im- 
ages", International Conference on Image Processing, Wash- 
ington D.C., October, 1995. 

[8] F.S. Cohen, "Modeling of Ultrasound Speckle with Application 
in Flaw Detection in Metals", IEEE Tr, on Signal Processing, 
vol. 40, no. 3, pp. 624-632, 1992. 

[9] K.D. Donohue, J.M. Bressler, T. Varghese and N.M. Bilgutay, 
"Spectral Correlation in Ultrasonic Pulse-echo Signal Process- 
ing", IEEE Tr. on Ultrasonics, Ferroelec, and Frequency Con- 
trol, vol. 40, no. 4, pp.330-337, 1993. 



IEEE TRANSACTIONS ON MEDICAL IMAGING, AUGUST 1996 10 

[10] L. L. Fellingham and F.G. Sommer, "Ultrasonic Characteri- 
zation of Tissue Structure in the In Vivo Human Liver and 
Spleen", IEEE Trans, on Sonics and UHr., vol. SU-31, No-4, 
pp 418-428, 1984. 

[11] J.C. Gore, S. Leeman, C. Metreweli, N.J. Plessner, K. Willson, 
"Dynamic Autocorrelation Analysis of A-scans in-vivo", Ul- 
trasonic Tissue Characterization II, M. Linzer (ed.), National 
Bureau of Standards, Washington, D.C, pp. 275-280, 1979. 

[12] J.F. Greenleaf and CM. Sehgal, Biologic System Evalua- 
tion with Ultrasound, Springer-Verlag, New York, 1992. 

[13] M.F. Insana, R.F. Wagner, B.S. Garra, D.G. Brown and 
T.H. Shawker, "Analysis of ultrasound image texture via gen- 
eralized Rician statistics", Optical Engineering, Vol. 25, No. 6, 
pp. 743-748, 1986. 

[14] L. Landini and L. Verrazzani, " Spectral characterization of 
tissue microstructure by ultrasound: A stochastic approach", 
IEEE Tr. Ultra.,Ferroelec. and Freq. Control, vol. 37, pp 448- 
456, 1990. 

[15] F.L. Lizzi, "Clinical Spectrum Analysis Techniques for Tis- 
sue Characterization", Ultrasonic Tissue Characterization II, 
M. Linzer (ed.), National Bureau of Standards, Washington, 
D.C, pp. 111-119, 1979. 

[16] F.L. Lizzi, M. Greenebaum, E.J. Feleppa, M. Elbaum, 
D.J. Coleman, "Theoretical Framework for Spectrum Analysis 
in Ultrasonic Tissue Characterization", J. Acoust. Soc. Am., 
73(4), pp. 1366-1373,1983. 

[17] F.L. Lizzi, M. Ostromogilsky, E.J. Feleppa, M. Rorke, 
M.M. Yaremko, "Relationship of Ultrasonic Spectral Param- 
eters to Features of Tissue Microstructure", IEEE Tr. on Ultr. 
Ferroelec. and Frequency Control, 33(3), pp 319-329, 1986. 

[18] A. Lymberis, A. Herment, G. Demoment and C. Fric, "Estima- 
tion of Frequency-Dependent Attenuation Based on paramet- 
ric Spectral Analysis and Correlation Lags of the Demodulated 
Echo Signal", Ultrasonic Imaging, vol. 13, pp. 1-26, 1991. 

[19] C. L. Nikias and A.P. Petropulu, Higher-Order Spectra 
Analysis:   A Nonlinear Signal Processing Framework, 
Prentice Hall Incorporated, Oppenheim Series in Signal Pro- 
cessing, 1993. 

[20] A.V.Oppenheim and R.W. Schäfer, Discrete Time Signal 
Processing, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 
1989. 

[21] A. P. Petropulu and C. L. Nikias, "Blind Deconvolution Using 
Signal Reconstruction from Partial Higher Order Cepstral In- 
formation", IEEE Trans, on Signal Processing, Vol. 41, No. 6, 
pp 2088-2095, 1993. 

[22] J.M.Reid, "The Measurement of Scattering", in Tissue Char- 
acterization with Ultrasound, CRC Press, Boca Raton, Florida, 
pp.81-114, 1986. 

[23] A.A. Shah-Yukich and A.C. Nelson, "Characterization of Solid 
Tumor microvasculature: A Three Dimensional Analysis Using 
the Polymor Casting Technique", Lab. Invest., vol. 58, pp. 236- 
244, 1988. 

[24] P. M. Shanker, J. M. Reid, H. Ortega, C. W. Piccoli and B. B. 
Goldberg, "Use of Non-Rayleigh Statistics for the Identification 
of Tumors in Ultrasonic B-Scans of the Breast", IEEE Trans, 
on Medical Imaging, Vol. 12, pp 687-692, 1993. 

[25] R. H. Tuthill, R. H. Sperry and K. J. Parker, "Deviations From 
Rayleigh Statistics in Ultrasound Speckle", Ultrasonic Imaging, 
10, pp 81-89, 1988. 

[26] K.A. Wear, R.F. Wagner, M.F. Insana and T. J. Hall, "Applica- 
tion of Autoregressive Spectral Analysis to Cepstral Estimation 
of Mean Scatterer Spacing", IEEE Tr. on Ultrasonics, Ferro- 
elec, and Frequency Control, vol. 40, no. 1, pp. 50-58, 1993. 

[27] L. Weng, J.M. Reid, P.M. Shanker, K. Soetanto and X.-M. Lu, 
"Nonuniform phase distribution in ultrasound speckle analysis- 
Part I: Background and experimental demonstration", IEEE 
Tr. Ultrasonics, Ferroelec, and Frequency Control, Vol. 39, pp 
352-359, 1992. 

[28] T. Varghese and K.D. Donohue, "Characterization of Tissue 
Microstructure Scatterer Distribution with Spectral Correla- 
tion", Ultrasonic Imaging, vol. 15, pp.238-254, 1993. 

Udantha R. Abeyratne (M '94) was born 
in   Matale,    Sri    Lanka. He    received   a 
B.Sc.(Honors) degree in electrical and elec- 
tronic engineering from the University of Per- 
adeniya, Peradeniya, Sri Lanka in 1985 and a 
M.S. degree in electrical engineering from The 
University of Tokushima, Tokushima, Japan, 
in 1991. Currently he is a Ph.D. candidate at 
the Biomedical Engineering and Science Insti- 
tute, Drexel University, Phailadelphia. From 
1985 to 1988 he was an assistant lecturer in 

electrical engineering at the University of Peradeniya, Sri Lanka. 
From 1988-1989 he was with the University of Tokushima, Japan, as 
a researcher, where he studied artificial neural networks in communi- 
cation engineering. During the period 1988-1991, he was a Monbusho 
scholar of the Ministry of Education, Japan, from 1992-1994 he held 
a Calhoun fellowship at the Biomedical Engineering and Science In- 
stitute, and a research assistantship at the Electrical and Computer 
Engineering Department, both of Drexel University. In 1990 he co- 
received the President's Award for the Best Paper award at the In- 
ternational Congress on Brain Electromagnetic Topography, Osaka, 
Japan. His research interests include higher order statistics, system 
identification, ultrasound imaging and tissue characterization, digital 
signal/image processing and the functional electromagnetic imaging 
of the brain. He is currently a member of the I.E.E.E. Signal Pro- 
cessing and E.M.B.S societies. 

Athina P. Petropulu (S'86-M'91) was born 
in Kalamata, Greece. She received the 
Diploma in Electrical Engineering from the Na- 
tional Technical University of Athens, Greece 
in 1986, the M.Sc. degree in Electrical and 
Computer Engineering in 1988 and the Ph.D. 
degree in Electrical and Computer Engineer- 
ing in 1990 both from Northeastern Univer- 
sity, Boston. Since September 1992 she is 
an Assistant Professor in the Electrical and 
Computer Engineering Department and  the 

Biomedical Engineering and Science Institute, both at Drexel Univer- 
sity, Philadelphia. She is the coauthor (with C.L. Nikias) of the text- 
book Higher-Order Spectra Analysis: A Nonlinear Signal Processing 
Framework (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1993.) Her 
research interests span the area of statistical signal processing, com- 
munications, higher-order spectra analysis, image/speech processing, 
biomedical engineering and earthquake engineering. In 1995 she re- 
ceived the Presidential Faculty Fellow Award (PFF) for her work in 
Electrical Engineering. She has served as an Associate Editor for the 
IEEE TRANSACTIONS ON SIGNAL PROCESSING. Dr. Petrop- 
ulu is member of the Technical Chamber of Greece and the Greek 
Association of Electrical and Electronic Engineers. 

John M. Reid (SU48.-AU51-MU56-SMU79- 
FU84-LFU92) was born in Minneapolis, MN, 
in 1926. He received the B.S. and MS. in elec- 
trical engineering from the University of Min- 
nesota and the Ph.D. from the University of 
Pennsylvania. He worked on medical diagnosis 
with ultrasound at the University of Minnesota 
and St. Barnabas Hospital, MN, from 1950- 
1957, and developed the first ultrasonic scan- 
ner. At the University of Pennsylvania (1957- 
1965), he worked on echocardiography, and de- 

veloped methods for making ultrasonic scattering measurements in 
tissues. He was a Research Assistant Professor at the University 
of Washington from 1966-1971, where he continued the tissue re- 
search and worked on the Pulse Doppler and duplex imaging devices. 
He participated in forming the Institute of Applied Physiology and 
Medicine in Seattle, and was also affiliated with Providence Hospital 
from 1971 to 1981, while working on measurements, Doppler imaging 
and other ultrasonic developments. He occupied the Calhoun Chair 
of Biomedical Engineering at Drexel University from 1981 to 1994, 
and became an Adjunct Professor of Radiologyt at Thomas Jefferson 



IEEE TRANSACTIONS ON MEDICAL IMAGING, AUGUST 1996 

University, both in Philadelphia. He is currently an Emeritus and 
Research Professor at Drexel, and an Affiliate Professor at the Uni- 
vsity of Washington (Seattle). Dr. Reid is a fellow of the Acoustical 
Society of America, the American Institute of Medical and Biological 
Engineering, and the American Institute of Ultrasound in Medicine. 
He received his Lifetime Achievement Awarding of the IEEE Engi- 
neering in Medicine and Biology Society. 

TABLE I 

Simulaiion-I: MONTE CARLO SIMULATIONS FOR 

PERIODICITY ESTIMATION USING POWER CEPSTRUM AND 

THE PROPOSED METHOD. 

Mean 
(mm) 

Variance 
(mm2) 

True Period 1.00 0.000 
Power cepstrum method 0.91 0.026 

Proposed method 0.97 0.005 
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Fig. 1. Simulation I: (a), (b), (c) Contour maps for the absolute values of cumualnts corresponding to v = 0.03,0.15,0.35, (d), (e), (f) 
contour maps of |p| (TJ , w) |, 0 < w < 7r for cases v = 0.03,0.15,0.35, (g),(h),(i) smoothed, projected |P3(TI,U/)| along the u;-axis for cases 
v — 0.03,0.15,0.35. The dotted lines in (g), (h) and (i) indicate the true periodicity, 1mm. 
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Fig. 2.   Simulation I:   The slices of the IP^TI, U>)\ along the w-axis corresponding to (a) T\ = 0.0mm, (b) T\ = 1.0 mm, (c) T\ = 2.0mm. The 
spectral peaks are separated by 2-JT/T, where T is the period. 
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Fig. 3. Simulation-I: (a), (b), (c) The power spectrum for cases v — 0.03,0.15,0.35, and, (d),(e),(f) the power cepstrum for cases 
v = 0.03,0.15,0.35, of the APC-only digitized RF scan line segments. True periodicity, 1mm, is indicated in (d),(e) and (f) by dotted 
lines. 
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Fig. 5.   Normal liver:    (a) The contour map of |p|(Ti,ai)|, (b) the smoothed, projected |pg(Ti,u>)| along the < 
and, (d) the power cepstrum corresponding to the liver image of the normal subject, Vohnteer-I. 
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Fig. 6. Normal liver: (a),(c) B-mode images of parts of normal liver obtained from Volunteer-I and II, (b), (d) the normalized histogram 

for the mean scatterer spacing estimate corresponding to (a) and (c). The number of estimates involved in forming the histograms is 80. 
Average and the standard deviation for Volunteer-I are 1.03 and 0.26 mm.  Corresponding numbers for Volunteer-II are 1.07 and 0.25 
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Fig. 7. Tumor of the Liver (a) The B-mode image of a liver with a hypo-echoic tumor, (b) the histograms of the mean-scatterer spacings 
estimated from inside and outside the tumor. The average and the standard deviation estimated inside the tumor are respectively 1.07 
and 0.42 mm, while the corresponding numbers obtained from outside the tumor are 0.97 and 0.31 mm. 



IEEE TRANSACTIONS ON MEDICAL IMAGING, AUGUST 1996 16 

0 2 4 0 2 4 
Time (micro S) Time (micro S) 

Fig. 8. Color of the tissue response: (a) The combined kernel u\{k) corresponding to v — 0.05, (b) the combined kernel U2(k) corresponding 
to the case v = 0.35 and short-range, correlated scatterers. The true pulse used in the simulation is shown in a dash-dotted line, and 
the average estimate evaluated over 50 Monte Carlo runs is indicated in a solid line. The shaded area represents average ± one standard 
deviation, (c) The estimator Sn, and (d) S21; solid line indicates the average over 50 Monte Carlo runs, and the shaded area represents 
the average ± one standard deviation. 
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Fig. 9. Tumor of the liver: Combined kernels estimated form (a) inside, and (b) outside the tumor; (c) the color of the tissue response 
signature Sn estimated inside the tumor and (d) S21 estimated outside the tumor. In all cases the solid line indicates the average 
estimation, and the shaded area represents average ± one standard deviation. 


