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1    Introduction. 
Proximity drawings of graphs have received increasing attention recently in the computational 
geometry and graph drawing communities due to the large number of applications where they play 
a crucial role. Such applications include pattern recognition and classification, geographic variation 
analysis, geographic information systems, computational geometry, computational morphology, and 
computer vision (see for example [29, 27, 12, 24, 31]). 

A proximity drawing is a straight-line drawing where two vertices are adjacent if and only if they 
are neighbors according to some definition of neighborhood. One way of defining a neighborhood 
constraint between a pair of vertices is to use a proximity region, that is a suitable region of the plane 
having the two points on the boundary. Two vertices are adjacent if and only if the corresponding 
proximity region is empty, i.e., it does not contain any other vertex of the drawing. For example, 
two vertices u and v are considered to be neighbors if and only if the closed disk having u and v as 
antipodal points, is empty. Proximity drawings that obey this neighborhood constraint are known 
in the literature as Gabriel drawings ([14, 24]) and the closed disk is called Gabriel disk. 

A different notion of proximity region is based on lunes instead of disks. In a relative neighbor- 
hood drawing ([30, 32]) two vertices u and v are adjacent if and only if the intersection of two open 
disks, one having center at u and the other at v, and with radius the distance between u and v, is 

empty. _      .... 
Gabriel drawings and relative neighborhood drawings are just two examples of an infinite family 

of proximity drawings called /^-drawings that have been first introduced by Kirkpatrick and Radke 
[18, 27] in the computational morphology context. 

A ß-drawing is a straight-line drawing such that there is an edge between a pair of vertices u 
and v if and only if the corresponding ß-lune is empty. The /3-lune is defined as the intersection 
of two disks whose radius depends on the value of the parameter ß. For ß > 1, the /Mune is the 
intersection of the two disks of radius ßd{u,v)/2, where d{u, v) is the distance between u and v, 
and centered at the points (1 - ß/2)u+{ß/2)v and {ß/2)u + (1 - ß/2)v. In particular, for ß = 1, 
the /3-lune coincides with the Gabriel disk. Figure 1 depicts a set of /3-lunes. 

L/u,v, W_ 

Uu,v,3.2]. 

Llu,v,0.5] 

L[u,v,2J 

Figure 1:  A set of /3-lunes between vertices u and v. 

A different definition of proximity drawing is given in [8].   A weak proximity drawing is a 
straight-line drawing such that if there is an edge between a pair of vertices u, v then the proximity 



region of u and v is empty. This definition relaxes the requirement of classical /3-drawings, that 
for each pair of non-adjacent vertices the /3-lune is not empty. In other words, if (u, v) is not an 
edge, then no requirement is placed on the proximity region of u and v. Several papers have been 
recently published that characterize proximity drawings and show algorithms to construct proximity 
drawings of different classes of graphs and different definitions of proximity [3, 23, 13, 24, 10]. 

In [2, 3], the problem of characterizing /3-drawable trees has been addressed and an algorithm 
to compute Gabriel drawings and relative neighborhood drawings of trees in the plane is given. 
The 3-dimensional version of the same problem has been studied in [22]. Lubiw and Sleumer [23] 
proved that maximal outerplanar graphs are both relative neighborhood and Gabriel drawings. 
This result has been extended in [21] to all biconnected outerplanar graphs. Also, in [8] several 
algorithms to construct weak proximity drawings of different families of graphs are given. For a 
survey on proximity drawings see [7]. 

In this paper, we investigate the area requirement of proximity drawings. The finite resolution 
of display and printing devices requires that some constraints be placed on the drawing so that 
its dimensions cannot be arbitrarily scaled down. Any constraint which imposes bounds on the 
minimum distance between vertices and (non-incident) edges in the drawing is called a resolution 
rule. Typical resolution rules are [5, 9]: the vertex resolution rule which requires that any two 
vertices have distance at least (a constant) S, (typically, S = 1); the edge resolution rule which 
requires that the minimum distance between any vertex and a non-incident edge is at least 6; 
the angular resolution rule which states that the vertex resolution rule is verified, and that the 
minimum angle between two edges incident at the same vertex is at least a(d), where a(d) is a 
predefined function of the maximum degree of the graph. Once the resolution rule is given, the 
problem of evaluating the area of a drawing naturally arises [4, 9, 16, 17, 15, 6, 19, 20, 28]. In fact, 
any resolution rule implies a finite minimum area for a drawing of a graph. 

All known algorithms that compute (weak) proximity drawings produce representations whose 
area increases exponentially with the number of vertices. As a consequence, the problem of con- 
structing proximity drawings of graphs that have small area is considered a very challenging one 
by several authors (see [3, 10, 24]). Additionally, the importance of this question arises in practice, 
by observing that several heuristics for drawing graphs often produce proximity drawings; see, for 
example [11]. 

In this paper we present the first results on area requirements of proximity drawings. Namely, we 
present a class of graphs whose proximity drawings require exponential area under several different 
definitions of proximity. 

The main contributions of the paper are listed below. 

1. We describe a class of graphs whose Gabriel drawing has exponential area. 

2. We extend the above result to weak Gabriel drawings. 

3. We show an exponential lower bound on the area of an infinite class of /3-drawings, for 
1<ß<  I-CO^TT/S- 

The rest of the paper is organized as follows. Section 2 contains basic notation and properties 
of Gabriel drawings. In Section 3, we describe the class of graphs; while Section 4 is completely 
devoted to the proof of the lower bound on the area of (weak) Gabriel drawings. Finally, in 
Section 5 we extend the main result to deal with a wider class of /^-drawings and describe some 
open problems. 



2    Preliminaries. 
We assume familiarity with basic graph theoretic and computational geometry definitions. For 
more details see [1] and [26]. 

A graph G = {V,E) consists of a finite non empty set V(G) of vertices, and a set E(G) of 
unordered pairs of vertices known as edges. Given an edge e = (u, v), u and v are the endpoints of 
e and are said to be adjacent vertices. 

A simple path of length k in a graph is a finite sequence P = V\V2 .. .ujfe, where u,- ^ Vj, for 
1 < i < 3 < k, and (u,-, w;+i) 6 J5(G), for i G {1,..., k-1}. The vertices i>i and ufc are the endpoints 
of the path. A k-cycle Ck = Viv2 .. .ut is a sequence of vertices such that P = v\v2.. .VkVi is a 
simple path. 

A drawing T of a graph G = (V, E) is a function which maps each vertex of G to a distinct 
point of the plane and each edge e = (u, v) in G to a simple Jordan curve with endpoints the points 
of the plane corresponding to u and v. T is a straight-line drawing if each edge is a straight-line 
segment; T is planar if no two edges intersect, except possibly at their endpoints. In this paper, 
when it does not give rise to ambiguities, we refer to a drawing of a graph as the graph itself. 

A planar triangular graph is an embedded planar graph so that every internal face is a 3-cycle, 
a triangle. 

The area of a drawing V can be defined in several ways depending on whether we evaluate lower 
or upper bounds. In this paper, we define the area of T as the area of the smallest polygon covering 
r[9]. 

In our proofs, we will use several geometric objects. Let IR denote the euclidean plane. Given 
any three distinct points a,b,c£ IR2, labe denotes the counterclockwise angle between line segments 
ab and be; Aabc denotes the triangle whose vertices are a, b, and c. 

Let Pi be a convex pentagon. The intersections of the five diagonals of Pi define a pentagon P2 

inside Pi (see Figure 2). We call Pi the extruded pentagon of P2, and we denote it by Extr(P2). 
Conversely, P2 is the intruded pentagon of Pi, denoted by Intr(Pi). Let a be a vertex of Pj. Its 
opposite vertex, op(a), is the vertex of Intr(Pi) belonging to the region of the plane delimited by 
the two diagonals outgoing from a. 

A Gabriel drawing is a planar straight-line drawing such that there is an edge between two 
vertices u and v if and only if the closed disk having u and v as antipodal points is empty. The 
closed disk is denoted as D[u, v]. 

A weak Gabriel drawing is a planar straight-line drawing such that there is an edge between 
two vertices u and v if the closed disk having u and v as antipodal points is empty. 

A given graph G is Gabriel drawable if it admits a Gabriel drawing. 
A maximal Gabriel graph is a Gabriel drawable graph with the maximum number of edges. 
In what follows we show some properties of (weak) Gabriel drawings. 

Property 1 A Gabriel drawing of a planar triangular graph is such that all internal faces have 
acute angles. 

Proof: By contradiction. Suppose a triangle A(abc) is such that labe > | then b £ D[a,c].       □ 

Property 2 [24] In a Gabriel drawing every 3-cycle and every chordless A-cycle is an internal 
face. 

Proof: By contradiction. Suppose a vertex v is drawn inside a 4-cycle C4 — abed. Then at least 
one of the angles Ibva, levb, Idvc, and Idva is greater than or equal to |. Say, Ibva > | then 
b 6 D[a, b]. A similar reasoning holds for a 3-cycle. 



P,=Extr(P2) 

Figure 2:   Extruded and Intruded Pentagons. 

Property 3 A weak Gabriel drawing of a maximal Gabriel graph is also a Gabriel drawing. 

Proof: The proof easily follows from the definitions of weak Gabriel and Gabriel drawings and 

from maximality condition. 

3    Description of the class of Graphs 
In this section we exhibit a class of planar graphs which require exponential area in any Gabriel 

drawing. 
Let us define the following class of graphs (see Figure 3). Graph Gu shown in Figure 3 (a), 

is a 5-vertex wheel graph consisting of vertices vl,v\,v\,vl,v\, and v*, and edges {v*,vj) and 
(v^ v}-    ,    M), for i € {0,...,4}.  For n > 2, Gn is constructed from Gn_i by adding vertices 
\vt '    (j+l)mod5/> l   '        '    ' ~ 

ttf.tM.iM, and edges K\<ft+1)mod5), K>,n_1), and K>(l;i)mod5), where i G {0,...,4} 
as shown in Figure 3(b). We refer to the 5-cycle composed by ügufwjüjvj as F5

n. 
It is easy to verify that Gn is a planar triangular graph, with 5n+1 vertices, and 15n - 5 edges. 

Also, Gn is triconnected. 
The following two results are shown in [24] (see Figure 4 for a drawing of G2): 

Lemma 1 [24] Gn is Gabriel drawable. 

Lemma 2 [24] Gn is a maximal Gabriel graph. 

Lemma 3 In a Gabriel drawing of Gn the external face is a 5-cycle. 

Sketch of Proof: As Gn is triconnected, its planar embedding is fixed for any given choice of 
the external face. From Property 2, the external face of a Gabriel drawing of G„ can only be the 

5-cycle J£ = v^v\lv^v^. D 

Lemma 4 In a Gabriel drawing of Gn (n > 2), for all 1 < i < n - 1, tfj is a strictly convex 

pentagon. 



(a) (b) 

Figure 3:  A class of graphs that require exponential area. 

Sketch of Proof: We prove the lemma by contradiction.  Suppose F5
n  1 is drawn as a concave 

pentagon (see Figure 5).   Let Zitf-1«?-1^-1  > ir.   Since the sum of the external angles of a 

A(« 
equai VKJ 2 ■ 

has a non acute angle. This contradicts Property 1. 

4    Area Requirement 
In this section, we prove that a (weak) Gabriel drawing of Gn requires exponential area. Before 
showing the main result, we need a preliminary technical lemma. 

Let two straight lines in general position (not parallel) h and Z2 be given; let a and b two points 
on h, and c and d two points on l2, such that a is to the left of b and c is to the left of d (see 
Figure 6). Suppose that the crossing point of Zi and l2 lays to the left of a and c. Let o be the 
crossing point of the line through a and d and of the line through c and b. Then we have: 

Lemma 5  The area of the triangle A(aoc) is smaller than the area of triangle A(bod). 

Sketch of Proof: Triangles A(abc) and A(abd) have the same basis a6, while the height of A(abc) 
is smaller than the height of A(abd). Hence, the area of A[abc) is smaller than the area A(abd). 
Since they share A(abo), we have the proof. □ 

Theorem 1 Given any resolution rule, both a Gabriel drawing and a weak Gabriel drawing of Gn, 
with 5n+ 1 vertices requires area Q(3"). 

Sketch of Proof: Let An be the minimum area of a Gabriel drawing of Gn. We use induction to 
prove that An > 3An_i. Since A\ > c, for some constant c depending on the resolution rule, this 
implies the claimed result. 



Figure 4:  A Gabriel drawing of G2 ■ 

We prove the theorem in two steps. We start by showing that Area(Tn) > 2Area(Tn-1). Then 
we prove that Area(Tn) > 3Area(rn_i). For the sake of simplicity of presentation, unless stated 
otherwise, we assume in the following that the index i G {0,..., 4} and all the operations on the 

indexes are modulo 5. 
Let rn_i be a Gabriel drawing of Gn-\. We show how to produce a drawing Tn of Gn starting 

from rn_i. First, we need some more notation, described in Figure 7. Let B, denote the region of 
the plane delimited by the two lines p, and p,+1 through u,n_1 and v?~?, perpendicular to the edge 

 _-_1»- - . * • «s>        i 11«*, 11 il 1« J 1  1-     J.1  J  
..n-1 , v"rf). Moreover, let ffPfu,""1) be the the half plane delimited by the line through the edge 

K-i\<_1) and not containing rn_i. Finally, let d = B, n HP«"1) n HP{v^). 
1 We show that uf must be placed inside Ct. Let us suppose by contradiction that vf does not 

belong to Q. Three cases are possible: 

1. uf g Bi. Let v? be placed to the right of p;. Then Zt»^1«"-1«? > f. Hence, from Property 1, 
edge (v"rj, v") cannot be drawn. Similarly, v" cannot be placed to the left of p,+i. 

2. v'1 g ffP(u,"_1). According to the above condition, each vertex vf is placed in the corre- 
sponding B\ region. Thus, in this case, vf'1 G Dlv^v^]. Hence, edge «,<_i) cannot be 
drawn. 

3. < €" HP{v^).   Similar to the previous case, v^ G D[v?,v?+1].  Hence, edge «,u"+i) 



Figure 5:  Illustration for Theorem 4. 

Figure 6:  Illustration for Lemma 5. 

cannot be drawn. 

From the above discussion, it follows that a Gabriel drawing Tn of Gn must strictly contain 
Extr{Fg~l) (see Figure 8), where Extr(F^l~1) is the extruded pentagon of the external face F5

n_1 

of (?„_,. 
In order to prove the claim, we show that Area(Extr(Fg *)) is at least three times Area(Tn-i) 

which implies that Area(Tn) > 2Area(Tn-i). 
First we need some more notation (see Figure 8). Let w^,w^, w%,w%, w% be the vertices of 

Extr(F^l~1), such that u£+3)mod5 is the opposite vertex of w". 

We denote by P?, the triangle Aiv"'1, v"^, w^).    Also, we denote by W/1, the triangle 



HP(v%) HP(vT') 

Figure 7:  Construction of Tn starting from Tn_i. 

The proof of the claim proceeds in two steps. First we show that Area(\J-=0 P/1) > 
Area(rn_!) and then that Area{\fi=0 W?) > Area{Tn^). Hence, the proof follows observing 
that Area(Extr(F^)) = Area((Jto*?) + Area(Uio W?) + Area(r„_i). 

We show that Area(\J-=0P") is at least as large as Area(Tn-i). Let us consider the line 
segments having as endpoints vertices of Extr{F$~l) and the corresponding opposite vertices of 
F£~l. These segments subdivide each P? in two triangles. With reference to Figure 9(a), let us 
consider the two triangles A(COD) and A(AOB). Due to Lemma 4, line segments ED and EB and 
points C, D, A, and B satisfy the conditions of Lemma 5, hence, Area(A(COD)) is greater than 
Area(A(AOB)). A similar reasoning holds for all P?. It is well known that in any arrangement of 
lines, every internal region is a simply connected region. Thus, Area(ULo^T) > Area(r„_i). 

As a next step, prove that Area(\jj=0 W?) > Area(r„_i). Consider the pentagon Intr(F£~l). 
We extend the notation to the intruded pentagon, so defining the P"_1's and W?~l's regions. 

As above, applying Lemmas 4 and 5, it is possible to derive that AreaiyV?) > Area{W?~l) + 
AreaiPp-1) + Area{W^). Hence, Area(U?=0M?) > AreadJLo^""1) + 2Area([Jio W,""1)- 
As Ui=oW'"-1 1S covered twice it is possible to recursively apply the above strategy, to 
Intr(Intr{F£-1)). 

From the first part of the proof we have that Area(Extr(F^~1)) is at least twice Area(r„_i). 
Hence,   the recursion ends after a finite number of steps,   proving that Area(\jf=0Wp)   > 



W" 

Figure 8:   Extruded pentagon of Fg n—1 

Area(r„_i). 
As (Ji=o W/1 anc* Ui=o -P«" are disjoint, combining the two results we prove the first part of the 

claim. 
The proof for the weak Gabriel drawings follows in a straightforward manner from Property 3 

and Lemma 2. 
D 

5    Extensions and Open Problems 
In this section we extend the result of Theorem 1 to an infinite family of (^-drawings. 

Theorem 2  Given any resolution rule, both a ß-drawing and a weak ß-drawing ofGn, with 5n+1 
vertices requires area fi(3"), for 1 < ß < 1_cos2ff/5- 

Sketch of Proof: We first show that Gn is /?-drawable for 1 < ß < jz^^Tß- 
Let us consider the following drawing of Gn. Draw v* as the origin point and the n sets of 

vertices uj,, v\, v*2, v^, v\, for i G {1,..., n}, as equally spaced points on the boundaries of concentric 
circles, each circle having k > l/(cos7r/5 - (sin7r/5)V2/9 - 1) times the diameter of the preceding 
one, and each set of five points are 36° out of phase with respect to their predecessors. Using basic 
geometry, it is readily verified that the obtained drawing is a (weak) /3-drawing. 

Based on the fact that a /3-lune contains the Gabriel disk, for 1 < ß < 1_COs2ir/5' ** can ^e 

proved that the /3-drawing is also a Gabriel drawing. Hence, the claim follows from Theorem 1. □ 



(a) 

Figure 9:  Covering of T„_i. 

Several problems remain open in this area: (1) Study the area of proximity drawings using 
different definitions of proximity. For example, we find interesting to investigate the area of relative 
neighborhood drawings, and minimum spanning trees. For what concerns minimum spanning trees, 
note that Monma and Suri [25] conjectured an exponential lower bound on the area requirement. 
(2) Motivated by our exponential lower bounds, it is interesting to investigate classes of graphs 
that admit a (weak) Gabriel drawing with polynomial area. 
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