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ABSTRACT 

Several sensor management schemes based on information theoretic metrics such as discrimination gain have been 
proposed, motivated by the generality of such schemes and their ability to accommodate mixed types of information 
such as kinematic and classification data. On the other hand, there are many methods for managing a single sensor 
to optimize detection. This paper compares the performance against low signal-noise ratio targets of a discrimination 
gain scheme with three such single sensor detection schemes: the Wald test, an index policy that is optimal under 
certain circumstances and an 'alert-confirm' scheme modeled on methods used in some existing radars. For the 
situation where the index policy is optimal, it outperforms discrimination gain by a slight margin. However, the 
index policy assumes that there is only one target present. It performs poorly when there are multiple targets while 
discrimination gain and the Wald test continue to perform well.   In addition, we show how discrimination gain can 
be extended to multisensor / multitarget detection and classification problems that are difficult for these other 
methods.   One issue that arises with the use of discrimination gain as a metric is that it depends on both the current 
density and an a priori distribution.   We examine the dependence of discrimination gain on this prior and find that 
while the discrimination depends on the prior, the gain is prior-independent. 

1. Introduction 

The problem of sensor management is to determine how to select sensors, sensor modes and sensor search patterns 
to maximize the effectiveness of individual sensors and collections of sensors which may be located on different 
platforms against a set of mission requirements [Musick, Popoli.Watson].   Work in this area has a long history 
[Wald, Nash, Stone]. In order to simultaneously optimize conflicting objectives such as detection, tracking and 
classification, several authors have proposed the use of measures derived from information theory [e.g. Hintz] which 
can be used to coordinate the collection of many different types data, shifting the emphasis from optimizing 
parameter estimates for individual targets to optimizing the probability density estimates constructed by data fusion 
systems. 

One information theoretic metric that has been applied to several types of sensor management problems is 
discrimination gain. This has been used for multisensor / multitarget assignment problems [Schmaedeke93], 
minimizing error correlations between close targets [Kastella94], and single sensor detection / classification 
problems [Kastella97]. This entails predicting the expected discrimination gain for each sensor dwell which is 
similar to covariance prediction in a Kaiman filter. For a simple detection problem discrimination gain results in a 
performance improvement on the order of 6 dB compared with direct search [Kastella97]. These types of 
performance increases are significant if similar results hold for realistic systems. 

Supported by the Minnesota Center for Industrial Mathematics under Air Force Office of Scientific Research 
Contract AF/F49620-95-1-0307 
+ Supported by a grant from the Air Force Office of Scientific Research 
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Another type of sensor management that is used on some existing radar systems is the so-called 'alert-confirm' 
method [Blackman92]. With this, a portion of the surveillance volume is scanned. If an initial tentative detection is 
obtained at some point (an 'alert'), then the radar dwells on that point in order to confirm the target location. 

Recently, [Castanon] used stochastic dynamic programming to analyze optimal search for detecting a single static 
target located in one of C detection cells. Remarkably, under a symmetry condition on the measurement probability 
density, the probability to detect the target is maximized by an index rule. This index rule is to select the cell that is 
most likely to contain the target for each sensor dwell.  What is especially interesting about this result is that greedy 
(or myopic) optimization, i.e. selecting each sensor dwell to maximize the immediate gain, yields the global 
optimum.   Optimality proofs along the lines of [Castanon] are quite useful for guiding the selection of sensor 
management strategies, even though when they apply only under somewhat restricted circumstances since good 
general strategies should perform nearly as well as the optimal strategy in the restricted case. 

This paper is organized as follows. The next section defines several metrics for sensor management. We emphasize 
discrimination gain (DG) and show how it can be used for multisensor / multitarget detection and classification 
problems. One issue with using discrimination as a basis for sensor managment is that it depends on an a priori 
distribution. There are several alternatives for this prior, so it is natural to ask how this prior affects the 
discrimination gain here. Also, an alternative metric based on optimization of the probability to correctly determine 
the state of each cell in the surveillance volume is also developed. Section 2 concludes with definitions of three 
other sensor management metrics for detection to be used for performance comparison with DG. Section 3 examines 
comparative performance for single and multitarget detection.  DG, alert-confirm and the index rule of [Castanon] 
are evaluated using a monte carlo simulation with discrete measurements. Detection performance for a sequential 
probability ratio test is estimated using an analytic expression for expected time to decision [Wald, Blackman86]. In 
Section 4 the behavior of DG for multitarget / multisensor detection / classification is compared to greedy 
optimization of the total probability metric. The time-dependence of the error rates and sensor use are obtained 
using monte carlo simulation. Surprisingly, direct optimization of the total probability metric saturates quickly 
leading to very poor performance. Section 5 discusses the results and their implications. 

2.0  Sensor Management Strategies 

Consider the following problem. There are an unknown number of targets confined to a surveillance volume that 
consists of C discrete cells indexed C = 1,..., C. Each cell contains at most one target: it can be empty or it can 

contain a target that from one of T target classes. The state of each cell is then indexed by t = 0,..., T where 

t = 0 denotes an empty cell.   The problem of detection and classification is then to determine the state 
t = 0,..., T of each cell. 

There are S sensors labeled s = 1,..., S . The cells are sampled at discrete times k . At each time k a single cell 

is sampled. Only one sensor can be used at each sample time.   The probability densities p(z\ t,s) to obtain 

measurement outcome z given that sensor S is used and that the cell contains target type t are known, time- 
independent and independent of c.  The individual measurements z can consist of continuous, discrete, vector- or 

set-valued random variables. The expression    dz f (z) shall denote the integral over the entire measurement 

domain. Let N be the number of measurements in a cell c at time k . The entire set of measurements in cell c is 
Z = {Zj,..., ZN } ■   In general, Z contains measurements produced by a number of different sensors. 

Our objective is to compute the conditional density p(t\Z,c) for cell c to contain a target of type t, given the 

observation set Z.   Then the minimum-probability-of-error classifier is to classify each cell according to [Blahut] 

ic = argmax p(t\Z,c). (l) 
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The error probability for that cell is then pe(c) = l — p(t\Z,c). 

Suppose that sensor s is used to perform a measurement in the cell, producing outcome z . The new set of 
observations is Z'={j}uZ and the new target probability is obtained using Bayes rule, 

p(t\Z>,c)=P(zU>S)p{tlZ>C)    ,    (2) 
%p(z\t',S)p(t'\Z,c) 

t' 

where we have assumed that the cell-state hypotheses are independent. The a priori density is determined by the 
relative frequencies of occurrence for each target type. The outcome of a measurement can be predicted, 
conditioned on the current measurement set as 

p(z\ Z, c,s) = ^ p(z\ t, s)p(t\ Z, c).    (3) 
1=0 

2.1 Discrimination Gain Metric 

Let p0(t\c) be some a priori probability for target type t to be in cell C. Then for the conditional density 

p(t\Z,c) , the discrimination [Blahut, Kapur] in cell c is 

L(Z,c) = ^p(t\Z,c)log(p(t\Z,c))-Jlp(t\Z,c)log(pQ(t\c)).        (4) 
t < 

The expected discrimination when one additional measurement is made in cell c can be computed using the density 
p(z\Z,c,s) . Using Eqs. (2-4), the expected discrimination is 

Ez^[L(c,Z')] = \dz^p(z\t,s)p(t\Z,c)log(p(t\Z',c)) 
t 

-^p(t\Z,c)\og(p0(t\c)) (5) 
t 

The interesting feature to observe here is that the prior-dependent terms of L(Z,c) and EZcs[L(c,Z')j are 

identical, so they cancel in the evaluation of AL(Z,c,s) = Ez c s[L(c,Z')J— L(c,Z) , 

AL(Z,c,s) = jdz^p(z\t,s)p(t\Z,c)\og(p(t\Z,,c)) 
t 

-]T p(t\Z,c)\og(p(t\Z,c)) (6) 

As a result, the discrimination gain is independent of the prior. (AL(Z, c, s) is also the same as the decrease in 
entropy.) 

2.2   Direct Optimization of Total Probability to Correctly Classify 
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As an alternative to DG, the probability that all of the cell-states are estimated correctly can be maximized directly 
for each cell sample. With the maximum likelihood classifier Eq. (1) the probability to correctly classify cell c is 

pcorr{Z,c) = l-Pe(c) = max p(t\Z,c) (7) 

Using Eq. (3), the expected increase in pcorr(c) for the individual cell when it is sampled with sensor S  is 

bPcorr (Z,c> s) = EZcs [pcorr (Z',C)] - pcorr (Z,c) where Z' = {z} U Z and 

(8) 

Ez,c,s [Peon (Z',c)] = J dz p(z\Z,c, s) max[p(t\Z',c)] 

= \dzmax[p(z\t,s)p(t\Z,c)]. 

The probability to correctly classify all of the cells in the surveillance volume is 

PZr=UPcoAZ,C). (9) 
c=\ 

When cell c is observed with sensor s, then the incremental increase in p°on is 

^PlMc) = \f[Pcon{Z,c') &Pcorr(Z,C,S) 
(10) 

.c'=l J     Pcorr (Z>C) 

C 
In Eq. (10) the prefactor fl pcorr (c') does not depend on which cell is observed so that maximizing the gain 

c'=l 

g(Z,S,c)^Ap^Cf (11) 
Pcorr (C,S) 

is equivalent to maximizing p°on 

2.3  Sensor Management for Detection 

Let us postulate a situation where there are just two possible outcomes from a sensor, either detection or no 
detection. Single-observation detection and false-alarm probabilities are denoted PD = p(z = II? = 1) and 

PF = p(z = Vit = 0) , where cell type 0 represents no target and cell type 1 represents target. A slightly more 

general condition is when there are T>1 target types and the full set of types is denoted {0,1,2,...,T}. Assuming the 

sensor can distinguish between T+l types, the measurement density matrix (Px{sense type t \actual type t) ) is 

square and of order T+l. In the performance comparisons in Section 3, the focus will be on T=l and on dim targets 
where PD is 0.69 and PF is 0.31. 

To compare results between the various detection techniques, let   ct  denote the collection of cells that contain a 

target of type t. Further denote the actual target type in a particular cell c as tc. We define two error probabilities as 
follows: 
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pe(k) = Pr{arg max p(t = 1 \Zk,c) e c0} 
C (12) 

pet(k) = Pr{max p(x\Zk,ct) > p(tc\Zk,c)} 

pe is the frequency for the largest probability in the cell volume occurring in a non-target cell. pet is the frequency in 
type t cells for the largest probability to be for a type t* other than t. If T=l, the only types present are non-targets 

and targets. Then pe 0 = p(t = llf = 0) is the frequency in non-target cells for the largest probability to be a 

target while pe, = p(t = 0\t = 1) is the frequency in target cells for the largest probability to be a non-target. pe0 

and pel are independent of one another and are not related by formula to pe. Here pe is a global error metric in the 
sense that it looks at the entire volume to produce a single decision while pet is local since it focuses on a 
representative cell of type t. It is straightforward to construct expressions for these probabilities in terms of the 
errors arising in simulation. 

We now briefly describe several alternative sensor management techniques that will be compared to DG in single 
sensor detection problems. 

Direct search CDS): The search procedure in the direct search technique is to advance through the cells in the 
volume in the same order for every frame, taking one measurement in each cell. 

Alert/confirm (A/O: This technique proceeds exactly as direct search does until some cell yields a detection called 
an alert [Blackman92]. The alert triggers a confirm cycle in which additional measurements are immediately taken 
in the alert cell. The dwell time for the additional measurements is often longer than that for alert so that a higher 
signal/noise ratio (SNR) can be achieved. For a radar using coherent integration, the SNR is proportional to the 
dwell time.  We consider two alternatives for how the confirm cycle. The first option is to assume that alert and 
confirm use equal amounts time so they have the same per sample detection probability PD and false alarm 
probability PF. Alternatively, confirm can dwell on the cell so that its PD is higher and PF is lower.   In the example 
below, we assume Gaussian target with -3 dB SNR during altert and PD = 0.9, PF =0.1, corresponding to an +5.2dB 
SNR. With coherent processing requires that the confirm dwell time is roughly 6.6 (10082) times longer than the 
alert dwell. 

Index rule (IR-): The index rule's search procedure is to sample only the the cell with the highest probability of 
containing a target. This greedy procedure is optimal [Castanon] if two assumptions are met: First, the 
measurements z are scalars with the symmetry condition p(z\t = 0) = 1 — p(b — z\t = 1) for some constant b. 

(for binary measurements this symmetry becomes PD — 1 — PF ). Second, the search volume must contain just one 

target. 

Discrimination gain (DG): This technique is based on a recursive expression for calculating the expected 
discrimination gain AL(Z,C,s) where an observation with a given measurment density to be taken in cell c where 

the current probability vector is p(tlZ,c). The search procedure is to measure the cell c* with the largest AL(.). After 
the measurement is made and the Bayesian update to p(tlZ,c*) is computed, the update is used to re-evaluate AL(c*). 
The cells are maintained in a priorty queue determined by their expected gains. The computational overhead of this 
queue is 0(log C) where C is the total number of cells. 

Sequential Probability Ratio Test (SPRT):   SPRT [Wald, Blackman86] can be applied to the binary detection 
problem by sampling each cell one at a time, testing between hypotheses Hl for target present and H0 for no 

target in the cell. In the usual notation of SPRT we have a = p(i = II? = 0) and ß = p(t = 0\t = 1) . For 

6 = Hl or H0, the expected number of measurements required to reach a decision [Blackman86]: 
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___     101    fr(e)ln((l-ß)/a) + [l-Ke)]ln(ß/(l-q)) 

«(9) 

u     z,,m    f1_ß'   9=Hi     j/m    \PF a.-a^R,correct 
where b(Q) = < , d(Q) = < , a, = In 

In 

[a, e = Hr PD a, - a2, H, correct 

(13) 

(PDI(\-PD)^ 

PF/(l~PF) \*F F> J 

(1-PD) 

and 

If the fraction of target-containing cells is p(H/), then the average number of measurements required to reach a 
decision over the entire surveillance volume is 

E[Kdecide] = (l-pCH^Et^lffo] + piH^EiK^JH,]. (14) 

3.   Detection Performance 

In this section we examine results for a test case with each detection technique using Monte Carlo simulation and the 
analytic expression Eq. (14) for SPRT.  Each Monte Carlo study consisted of 1000 runs with 1000 measurements 
(100 cells x 10 measurements/cell on average) taken in each run for a total of 1 million measurements processed per 
study. 

We define a standard test problem (STP) with C=100 cells.   There is just one target type so each cell is either empty 
(tc=0) or contains a type 1 target (tc=l).  A single agile sensor makes measurements in a fixed amount of time. The 
sensor is operating against dim targets with -3dB signal-to-noise ratio (SNR). This yields per sample detection 
probabilty PD = 0.69 and false alarm probability PF = 0.31. 

Figure 1 shows comparitive results for the STP using the global metric pe as functions of the average number of 
samples per cell.   Since all conditions for optimality of the index rule are satisfied in the STP, it perform best here. 
As expected, the performance for direct search is worst.   Figure 1 also shows the direct search result against a much 
stronger target of +3dB SNR. This curve is similar to the -3 dB curves for the index rule and DG, we conclude that 
they achieve approximately a 6dB gain over direct search. 

As shown in Figure 1, alert/confirm (with the same dwell time during alert and confirm cycles) performs slightly 
better than direct search but not nearly as well as the index rule or DG. The reason for its poor performance seems to 
be that it does not dwell on any cell long enough to resolve it.   One performance indicator is the percentage of 
resources devoted to the target cell. While the index rule expended 23.7% of its time there and DG 18.7%, A/C 
spent only 1.15% of its time searching the target cell which is nearly the same as the 1% obtained by direct search. 

Figure 2 presents pe results for A/C when PD =0.9 and PF =0.1 on the confirm cycle, accounting for the additional 
time required to achieve this SNR .   Sensor use against the target cell increased to 1.29%, but is still far short of DG 
and IR values. 

Figure 3 presents a comparison between DG and the index rule (IR) with five targets are scattered randomly through 
the surveillance volume, violating IR's single-target assumption. Once IR finds a target cell, it remains focused on 
that cell, leading to poor overall performance. DG is a superior choice for this set of circumstances, as shown in the 
figure. 
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Flaute 1. Comparison of three search methods against optimal index rule. 

"alert/confirm 

~disc gain 

"index rule 

- 'direct, +MB 
'anwt  

tingle -3dB target 

5ampl»/C*ll (fc/too) 

Figure 2. Comparison of enhanced alert/confirm to optimal index rule. 
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Fiaure 3. Performance of optimal index rule when target count condition not met. 

e io 
S*mpl*aSC«tt 

Figure 4. Comparison of expected lime to decision, SPRT and DG. 

In order to compare DG to SPRT, we use the Monte Carlo simulation to determine DCs (X = p(t = l\t = 0) and 

ß = p(t — 0l£ = 1) as functions of the average number of samples/cell. Eq. (14) is then used to determine the 

average time to decision that SPRT would require to obtain the same values of a and ß . This is shown in Figure 

4, together with the SPRT sample times.   SPRT performs slightly better than DG through the first two measurements 
but then DG slightly dominates. Overall, the performance of DG and SPRT are quite similar for this detection 
problem. Like DG, SPRT does not require that there be only one target in the surveillance volume. 

4.   Detection / Classification Results 

Typical performance of DG and Apcorr (Z, c, s) for detection and classification in a two sensor, multitarget 

application is shown in Figures 5-9. It should be emphasized that these results are obtained using greedy 
optimization: each sensor sample is selected to maximize the immediate gain. Figures 5-7 show how the average of 

the confusion matrix varies as a function of the average number of samples per cell. The confusion matrix P(t\t) 

is the probability to declare that a cell state is t given its true state t. In all cases there are 18 targets of class 1 and 
2 targets of class 2 (recall the t = 0 denotes an empty cell). Figures 5 and 7 show results with 100 cells in the 
surveillance volume while Figure 6 has 1000 cells. The curves give the average performance obtained over 500 
trials. 

The sensors are characterized by the conditional probabilities p(z\ t, s) . The output z of the sensor takes one of 

three discrete values, z = 0,1 or 3 with probability determined by t and s . The sensors are selected so that S = 1 

represents a 'detection sensor' while 5 = 2 is a 'classification sensor'. This can be achieved by defining the sensor 
measurement density matrices as 
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Detection Sensor (s = 1): 
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Classification Sensor (s = 2): 

p(zlf,2) f = 0 1 2 

z = 0 
l 
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.4 

.1 
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.4 

The detection sensor has no ability to distinguish between targets of class 1 and 2 but has detection 
performance corresponding to about 5 dB target SNR. On the other hand, the classification sensor provides 
very little information when no target is present (t = 0), but when a target is present, it is unlikely to 
confuse Class 1 with Class 2. Sensor use by type is shown in Figures 8 and 9. 

The missed detection performance is shown by the curves for P(0I1) and P(0I2) in Figures 5-7.   For DG 

these are similar to those obtained for the pure detection problems shown in Figure 1. The classification 
performance is indicated by the other curves. As expected, the missed target detections are monotone 
decreasing. Notice that the curve for Class 2 significantly lags the curve for Class 1. This is because there 
are many more Class 1 targets. Therefore, as non-empty cells are detected, they are initially classified as 
Class 1 targets based on the a priori information. It is only after several dwells have been performed with 
the classification sensor that Class 2 targets can be separated from the Class 1 targets. This is apparent from 
the behavior of the P(1I2) error curve which actually increases initially, as a result of the 

missclassifications caused by the prior. 

Interestingly, this confusion between Class 1 and Class 2 is reduced as the number of cells increases, as 
shown in the 1000 cell example of Figure 6. The detection performance is quite similar for the 100 and 
1000 cell cases. However, once the non-empty cells are detected, a fixed number of Sensor 2 dwells 
suffices to differentiate between Class 1 and Class 2. Therefore, performance is better as a function of 
average samples per cell. 

Further insight into the behavior of the DG algorithm is provided by Figure 8, showing the time dependence 
of the sensor use, again plotted as a function of average samples per cell. For the first several dwells, 
Sensor 1 is used exclusively. It is only after the existence of a target has been established that any benefit to 
be derived from Sensor 2. This is a desirable behavior for the algorithm since it means that dwells with 
Sensor 2 are not wasted on empty cells. In fact, the probability to sample an empty cell with Sensor 2 is 

10~2 for the 100 cell problem and 10~3 for the 1000 cell problem. 

Surprisingly, greedy optimization of the probability correct using g (Eq. (11)) leads to very poor 

performance as shown in Figure 7 for the 100 cell, 2-sensor, 2-target class case treated above using DG. 
The source of this difficulty can be seen by plotting the expected gains for the two sensors as a function of 

probability vector (p(t = 0), p(t = 1), p(t = 2)) = (l - pt, ptr, pt (1 - r)). With this 

parameterization the variable pt is the probability that there is a target in the cell and r is the relative 

probability that the target is of Class 1, given that there is a target in the cell. Surface plots for both sensors 
of the discrimination gain ÄL and probability gain g as functions of pt and r are shown in Figure 10. 

Notice that the surface for the detection sensor S] is peaked at pt =.5 and is independent of r . On the 

other hand, the gain using the classification sensor S2 is maximal at pt = 1 and r =.5, corresponding to 

the situation where one knows for sure that the cell contains a target but one is completely uncertain as to its 
type. 
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Classification Probabilities Using 
Discrimination Gain Metric 
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Figure 5. Time-dendence of confusion matrix 

P{t 11) using DG for two sensor, two target class 

problem with 100 cell surveillance volume. 
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Figure 6. Time-dendence of confusion matrix 

P(t\t) using DG for two sensor, two target class 

problem with 1000 cell surveillance volume. 

Classification Probabilities Using 
Probability Gain Metric 

Figure 7. Time-dendence of confusion matrix 

P(t\ t) using probablity correct metric for two 

sensor, two target class problem with 100 cell 
surveillance volume. 
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Figure 8. Time-dendence of sensor use for 100 cell 
problem using discrimination gain of Figure 5. The 
detection sensor Sx is used exclusivly for the first 

part of the search. Later, the classification sensor 
S2 is used. 
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Figure 9. Time-dendence of sensor use for 100 cell 
problem of Figure 7. The expected gain for both 
sensors saturates at 3 samples/cell (average). 
Beyond 3 samples/cell, the algorithm selects 
randomly between sensors. 

While the behavior of the probability gain g is 

qualitatively similar to the discrimination gain, 
notice that for both sensors, g is 0 over the regions 

near pt = 0 and pt = 1, r = 1 or 0. For these 

regions, the probability gain is the same for both 
sensors, so the metric provides no guidance about 
which one to use. Once enough data have been 
collected to place all of the cell probabilities into one 
of these regions, the algorithm can do no better than 
to switch between Sx and S2 randomly. This 

behavior is exhibited in the sensor use plot for g 

shown in Figure 9. The probability to use either 
sensor quickly goes to .5. This contrasts with the 
situation for discrimination gain, where the gains are 
the same only along lines. As a result, there is 
almost never any ambiguity as to which sensor 
provides the higher gain. 
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Figure 10. Expected gain as a functions of probability that a target is present pt and relative probability r 

that target is is type 1 or type 2, using discrimination gain and probablity gain metrics. 

5.   Discussion 

This paper has compared several techniques for managing sensors to detect and classify dim targets. 
Because of its flexiblility, robustness, and near optimality, discrimination gain (DG) appears to be the best 
of the techniques overall. For the restricted problem of detecting a single target, DG, and sequential 
probablity ratio test (SPRT) perform similarly while the index rule enjoys a moderate performance 
advantage, as long as there is only a single target. The advantage of DG is that its generalization to multiple 
targets, multiple target classes and multiple sensors is straightforward. 

When compared to SPRT, DG finds targets slightly more quickly for the same error probability. However, 
in SPRT, the distribution of time to decision (Kdecide) is skew [Wetherill, Chs 4,6] and relatively flat. This 

can cause SPRT to have long test sequences.   In applications, this is partially cured by using a truncated 
sequential probablity ratio test. DG may have smaller variance in the time to decision because it 
incorporates the prior and uses Bayesian updating. Furthermore, SPRT methods are cumbersome for 
implementing M-ary hypothesis tests (T>1 target types) whereas DG extends naturally to this case. 

In [Castanon], a probability based metric treats a detection problem similar to [Kastella97]. Similar 
probability-based metrics can be obtained in the multitarget/multisensor case, but have not been previously 
studied.   It may be possible to obtain optimality criteria for these metrics using a similar approach.   For the 
case of unknown target number, the optimal strategy resembles a maximum information gain approach. An 
interesting question is whether the two methods are equivalent in the large sample limit. In relation to the 
optimal index rule of [Castanon], our numeric results show that DG is a close second in performance when 
there is only one target in the search volume. When there are many targets, DG finds them all and is easily 
the better performer. This leads us to conclude that DG is more robust. 

In view of the similar performance of DG, SPRT, and the index rule, it might be expected that most 
reasonable sensor management strategies will work well. Therefore, it is somewhat surprising that the 
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probability gain metric g performs so poorly. This may be due to the fact that greedy optimization was 

used, suggesting that for this case, it yields solutions that are far from the gobal optimum. This constrasts 
with the result of [Castanon], where even when it is not optimal, the greedy index policy yields a very good 
solution in the single target detection problem. 

In comparison with alert/confirm (A/C), DG perfoms significantly better by every metric we studied, even 
though we assume cohereint integration for the confirm dwell, while DG is essentially an incoherent 
technique. This supports the case for considering DG in detection/classification applications in radars and 
other sensor systems where A/C or A/C-type techniques have tradionally been used. However, 
implementation considerations (e.g. compute load) may favor one method and we have not examined these 
issues. 

Acknowledgment Thanks are due to T. Jenison for his assistance with the numerical experiments in 
classification and detection performance. 

REFERENCES 

[Blackman86] Samuel S. Blackman, Multiple-Target Tracking with Radar Application, Artech House, 
Norwood, MA, 1986. 

[Blackman92] S. S. Blackman, "Multitarget Tracking with an Agile Beam Radar", in Multitarget- 
Multisensor Tracking: Advanced Applications, Vol. II, Y. Bar-Shalom, Ed., Artech House, 1992. 

[Blahut] R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley Pub. Comp., 
Reading, MA, 1987. 

[Castanon] D. A. Castanon, "Optimal search strategies in dynamic hypothesis testing", IEEE Trans. Sys. 
Man Cyb. Vol 25, No 7, July 1995 pp 1130-1138. 

[Hintz] K. J. Hintz and E. S. McVey, "Multiprocess constrained estimation", IEEE Trans. Sys. Man Cyb., 
Vol. 21, No. 1, pp 237-244. 

[Kapur] J. N. Kapur and H. K. Kesavan, Entropy Optimization Principles with Applications, Academic 
Press, Inc., Boston, MA, 1992. 

[Kastella94] K. Kastella and W. Schmaedeke, "Event-averaged maximum likelihood estimation and 
information based sensor management", SPIE Proceedings Vol. 2232, Signal Processing, Sensor Fusion, 
and Target Recognition III, April, 1994, pp 91-96.. 

[Kastella95] K. Kastella, "Event-Averaged Maximum Likelihood Estimation and MEan-Field Theory in 
Multitarget Tracking", IEEE Trans. Aut. Con., Vol. 40, No. 6, June 1995, pp. 1070-1074. 

[Kastella97] Keith Kastella, "Discrimination gain to optimize detection and classification", to appear, IEEE 
Sys. Man. Cyb., Jan. 1997. 

[Mangel] Marc Mangel, "Search Theory: A Differential Equations Approach", in Search Theory, David V. 
Chudnovsky and Gregory V. Chudnovsky, Ed., Marcel Dekker, New York, 1989. 

[Musick] Stan Musick and Raj Malhotra, "Chasing the elusive sensor manager'", Proceedings 1994 
NAECON, Dayton, OH. 

[Nash] J. M. Nash, "Optimal allocation of tracking resources", Proc. IEEE Conf. Dec. Cont., 1977, pp. 
1177-1180. 

11 



SPIE Symposium on Aerospace/Defense Sensing and Controls 
Signal and Data Processing of Small Targets 1996 
8-12 April, 1996, Orlando, FL 
[Popoli] Robert Popoli, "The Sensor Management Imperative", in Multitarget-Multisensor Tracking: 

Advanced Applications, Vol. II, Y. Bar-Shalom, Ed., Artech House, 1992. 

[Schmaedeke93] W. Schmaedeke, "Information-based sensor management", SPIE Proceedings Vol. 
1955, Signal Processing, Sensor Fusion, and Target Recognition II, April, 1993. W. Schmaedeke and K. 
Kastella, "Information theory and sensor management", Basic Research Group of the Joint Directors of 
Laboratories 1993 Symposium on Command and Control Research, June 28 - July 1, 1993. 

[Stone] Lawrence D. Stone, Theory of Optimal Search, 1989, ORSA Books, Arlington, Virginia. 

[Wald] Abraham Wald, Sequential Analysis, 1947, John Wiley & Sons, Inc., New York, New York. 

[Watson] G. A. Watson and W. D. Blair, "IMM algorithm for tracking targets that maneuver through 
coordinated turns", Proc. SPIE Signal and Data Processing of Small Targets, 1992, Orlando, FL, Apr. 
1992, pp 236-247, "Revisit control of a phased-array radar for tracking maneuvering targets when 
supported by a precision electornic support measures sensor", Proc. SPIE Signal and Data Processing of 
Small Targets, 1994, Orlando, FL, Apr. 1994, pp. 448-459. 

[Wetherill] G. Barrie Wetherill, Sequential Methods in Statistics, 1966, Methuen and Co Ltd, London, from 
Methuen's Monographs on Applied Probability and Statistics, and John Wiley and Sons Inc, New York. 

12 


