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Abstract

Energy cost was examined while four Marines walked at 4 km/hr on an open
field with each of four snowshoes. Snowshoes were the Pride Assault,
Montana, British Assault, and the U.S. Army Standard. The grade of the field
was about 2.4% and the Marine walked once downhill and once uphill with
each snowshoe. Expired respiratory gases were collected continuously during
each walk. On the downhill portion of the course, average + standard
deviation (SD) VO, values were 1.25+0.13, 1.46+0.11, 1.31£0.13, and
1.22+0.20 I/min for the Pride, Montana, British, and Standard snowshoes,
respectively (p=0.01); the Pride and Standard snowshoes had significantly -
lower energy cost than the Montana (p=0.05). On the uphill portion of the
course, average + SD VO, values were 1.58+0.12, 1.7+80.14, 1.62+0.21, and
1.5+10.06 Vmin for Pride, Montana, British, and Standard snowshoes,
respectively (p=0.06). Data suggested that several characteristics may be
favorable from an energy cost perspective: 1) a foot hinge and binding system
that allows the snowshoe to be dragged across the snow, 2) an upturned front
that pushes snow away and allows a more horizontal displacement of the
snowshoe during locomotion, and 3) a lower mass-to-surface-area ratio.
Further research will be necessary to determine the relative importance of
these design characteristics, given the small number of subjects.
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EXECUTIVE SUMMARY

Energy cost was examined while Marines walked in each of four snowshoes: the Pride
Assault, Montana, British Assault, and the U.S. Army Standard. Four male Marine volunteers
wearing only battle dress uniforms (BDU) and Gortex parkas walked with each snowshoe at 4
km/hr on an open field. Walking velocity was established by a pace setter who called the speed
every 30 m; the Marine adjusted his pace based on this feedback. Grade of the field was about
2.4% and the Marine walked once downhill and once uphill with each snowshoe. Each walking
segment was 336 meters long and took about 5 minutes to complete. While the Marines walked,
heart rates and expired respiratory gases were collected continuously. Heart rate was measured
with a Polar Vantage XL.® heart rate device, and expired gases analyzed for oxygen content (VO2)
using an Oxylog2®. Overall snowshoe flotation was measured from snowshoe prints by
averaging the depth of depression on the medial, lateral, and posterior sides. Snow conditions
were 8 cm of new powder on a 60-cm base. On the downhill portion of the course average +
standard deviation (SD) VO, values were 1.25+0.13, 1.46+0.11, 1.31+0.13, and 1.22+0.20 //min
for the Pride, Montana, British, and Standard snowshoes, respectively (p=0.01). Post hoc
analysis indicated that the Pride and Standard snowshoes had significantly lower energy cost than
the Montana (p=0.05). On the uphill portion of the course average + SD VO, values were
1.58+0.12, 1.78+0.14, 1.62+0.21 and 1.5120.06 I/min for Pride, Montana, British, and Standard
snowshoes, respectively (p=0.06). There were no significant differences among the snowshoes
on overall flotation; average depth of depression was about 5 cm. The Pride and Standard
snowshoes differed from the Montana in several characteristics, suggesting that these
characteristics may be favorable from an energy cost perspective. These characteristics were 1) a
foot hinge and binding system that allows the snowshoe to be dragged across the snow, 2) an
upturned front that pushes snow away and allows a more horizontal displacement of the
snowshoe during locomotion, and 3) a lower mass-to-surface-area ratio (lighter snowshoe
combined with a greater area on the snow). Further research will be necessary to determine the
relative importance of these design characteristics, given the small number of subjects in this
investigation.




THE ENERGY COST OF WALKING IN FOUR TYPES OF SNOWSHOES

Weather is not only to a great extent the controller of the conditions of ground but also of
movement.

-- Major General J.F.C. Fuller, The Foundations of the Science of War, 1926

...the Russian land which he dreams of enslaving will be strewn with his bones. We will pursue
tirelessly. Let winter, blizzards, and the cold come. We know them.

-- Field Marshall Prince Mikhail Kutuzov, 1812, speaking with his troops during Napoleon’s
invasion of Russia (Sbornik dokumentov, 1955).

INTRODUCTION

Cold climates with large amounts of ground snow cover pose significant challenges for
military operations. One of these challenges is the ability of foot soldiers to traverse over the
snow. A dramatic example of how military success was influenced by effective mobility across
snow occurred in the winter of 1939-1940 when the Soviet Army invaded Finland. At the Battle
of Suomussalmi, the Finnish Ninth Infantry Division defeated the combined strength of the
Soviet 163th Infantry Division and 44th Motorized Rifle Division despite the Soviet’s two- or
three-to-one numerical advantage. The Finnish Army had trained in the snow and knew how to
quickly and efficiently move across it (Thompson, 1995).

Two major methods of movement in deep snow are skis and snowshoes. Snowshoes are
by far the easier method for American soldiers to learn; it has been estimated that skillful
movement over open terrain can be acquired in about 1 hour of training (Thompson, 1995).
Despite the perceived usefulness of snowshoes for mobility over snow, there are few
investigations examining the effectiveness of this mode of transportation for military operations
(Hickey, Knapik, Ortega, & Nagel, 1996; Hickey, Hanlon, & Oblak, 1994).

One characteristic of the snowshoe that can become very important in a military
environment is the energy cost. Compared to temperate environments, cold climates require
soldiers to carry a greater quantity of clothing and equipment in order to combat weather-related
problems. This additional load taxes the soldier’s energy reserves. A snowshoe that has a low
energy cost would be favored over one with a higher energy cost. The lower energy cost item
would help the soldier conserve strength for other tasks.




The major purpose of this investigation was to determine the energy cost of four
snowshoes. A secondary purpose was to determine some of the factors that may account for the

differences in energy cost among the snowshoes.

BACKGROUND

It is often assumed that human energy cost is increased in cold weather. Cold exposure
can increase energy cost if the individual is inadequately clothed and shivering occurs. Shivering
is the forcible contraction of one muscle group against its antagonist and can increase resting
energy expenditure as much as 5 times (Adolph & Molnar, 1946). On the other hand, there is
probably little or no measurable increase in energy expenditure in an adequately clothed
individual because a microclimate is created around the body through the trapping of warm air in
clothing which maintains body temperature. Some increases in energy expenditure might be
expected to be attributable to a) warming and humidifying cold air breathed into the body, b)
warming of cold air brought into the clothing, and c) the additional weight of equipment and
clothing that must be carried in field environments (Askew, 1989; Buskirk & Mendez, 1967).
However, during controlled laboratory conditions, energy cost is the same in a temperate (26° C
to 200 C) and a cold (5° C to -20° C) environment, provided the exercise intensity is sufficient to
cause heat transfer from the body to the environment (Patton & Vogel, 1984; Stromme,
Andersen, & Elsner, 1963). Further, with physical activity of sufficient intensity, core and
extremity temperature can be easily maintained (Virokannas, 1996). Patton and Vogel (1984) had
subjects perform cycle ergometer exercise at 1715 watts (approximately 75% VO2 max) to
exhaustion and found no difference in energy cost whether subjects exercised at -20° C or +20° C.

Much work has been done on the energy cost of human locomotion. Energy cost
increases in a systematic manner with increases in body mass, load mass, velocity, and/or grade
(Bobbert, 1960; Borghols, 1978; Goldman & Iampietro, 1962; Soule, Pandolf, & Goldman, 1978).
Type of terrain also influences energy cost (Haisman & Goldman, 1974; Pandolf, Haisman, &
Goldman, 1976; Soule & Goldman, 1972). Pandolf, Givoni, and Goldman (1977) used these
relationships to develop an equation for predicting energy cost of locomotion with loads:

My = 1.5W+2.0¢(W+L)o(L/W)2 + Te(W+L)*(1.5V2 + 0.35:V+G)

in which Mw = Metabolic cost of walking (watts)
W = Body mass (kg)
L = Load mass (kg)



T = Terrain factor (coefficients shown below)
1.0 = Black top road
1.1 = Dirt road
1.2 = Light brush
1.5 = Heavy brush
1.8 = Swampy bog
2.1 = Loose sand
V = Velocity or walk rate (m/sec)
G = Slope or grade (percent)

Critical to this equation is the terrain factor. The terrain factor is an empirically derived
number based on studies examining energy cost in various terrains. Energy expenditure during
walking in the snow appears to be largely dependent on the depth to which the individual sinks
into the snow (Heinonen, Karvonen, & Ruosteenoja, 1959; Pandolf et al., 1976; Ramaswamy,
Dua, Viswanathan, Madhaviah, & Srivastava, 1966). Pandolf et al. (1976) demonstrated a rise in
energy cost as the depth of depression increased. The terrain factor for walking in snow could be

estimated from the equation:
T = 1.30+0.082D

in which T = Terrain Factor and D = depth of the depression (in cm).

The Pandolf equation was developed for predicting the energy cost of locomotion with
boots. Placing snowshoes on the boot complicates the metabolic picture. In addition to the
factors mentioned (body mass, load mass, velocity, and grade), certain characteristics of the
snowshoe might be expected to influence energy cost. A snowshoe with a larger surface area may
result in greater flotation (i.e., how well the snowshoe keeps a person from sinking into the
snow), thus reducing the depth of depression, and consequently reducing energy cost (Pandolf et
al., 1976; Ramaswamy et al., 1966). The total mass of the snowshoe may also be important.
Any increase in load mass will increase energy cost, but loads carried on the feet are especially
expensive since they result in an energy cost five to seven times higher than an equivalent load
carried on the upper body (Legg & Mahanty, 1986; Soule & Goldman, 1969). For each 1 kg
added to the foot, the increase in energy expenditure is 7% to 10% (Catlin & Dressendorfer,
1979; Jones, Toner, Daniels, & Knapik, 1984; Legg & Mahanty, 1986; Soule & Goldman, 1969).
Thus, factors relating to flotation, surface area, and snowshoe mass must be considered in the
energy cost of walking in snowshoes.




Few studies have examined energy cost during locomotion in snowshoes and all these -
studies have neglected critical variables. Buskirk et al. (1956) made nine determinations on eight
men walking at 3.7 kmv/hr. They found an average energy cost of 6.21.1 kcal/min or an oxygen
* uptake of 1.28 V/min (17.5 mUkg*min). Neither the snowshoe characteristics nor depth of snow
is reported. Rodgers, Buck, and Klopping (1965) report individuals walking at 3.7 km/hr with
- snowshoe prints about 9 cm deep. They estimated that oxygen uptake was 2.45 I/min
(35ml/kg*min) for one man. They do not provide the type of snowshoe used or its
characteristics. Allen and O’Hara (1973) studied nine infantrymen carrying equipment estimated
at 23 to 27 kg, traveling at 2 to 3.6 km/hr. They found an average energy expenditure of
4.83+1.51 kcal/min or 0.980:30 I/min. Walking pace was highly variable and the depth of
depression and snowshoe type were not reported. Worsley (1974) reported a number of soldiers
walking in snowshoes with packs at various speeds where the depth of depression did not exceed
5 cm. During the conditions of their study, oxygen uptake (ml/kg*min) could be predicted from
the equation -1.3+0.33*speed (m/min) over a range of speeds from about 40 to 100 m/min 24 to
6 km/hr). However, pack mass was not provided, nor was the grade of the terrain the soldiers

traversed.

OBJECTIVE

The major objective of this investigation was to measure the energy cost of locomotion in
four types of snowshoes. The secondary objective was to examine some factors that may

influence energy cost of snowshoeing.

METHODS

Subjects

Subjects were four Marines who volunteered for this investigation after a full briefing
about the purposes and risks. They signed an informed consent statement in compliance with
Army Regulation 70-25. The study was approved by the institutional Human Use Review

Commiittee.

Marines had previously trained one day with each snowshoe before the energy cost
studies as part of another investigation (Hickey et al., 1996). Training consisted of identical
morning and afternoon sessions. These involved a 30- to 45-minute walk in the snowshoe, a run
up and down a steep hill and a sprint on a 75-m assault course. On the walk, a variety of terrain
was encountered, including level areas, rolling hills, and steep slopes (uphill and downhill). The



75-m sprint involved completing the distance as fast as possible while assuming a prone rifle-
firing position twice at specific intervals on the course. Marines wore the snowshoes around the

camp during the time they were not being tested.

Anthropometry

Marines’ total body mass was obtained from a digital scale (Seca) and stature from an
anthropometer (GPM). Age was determined from the date of their last birthday. Circumferences
were obtained from the neck and abdomen using a fiberglass tape measure (Gulick). Body fat
was estimated from anthropometric measurements (Vogel, Kirkpatrick, Fitzgerald, Hodgdon, &
Harman, 1984) and fat-free mass by subtracting body fat mass from total body mass.

Trochanterion height (total leg length) was measured with an anthropometer from the
floor to the femoral trochanter with the subject in the standing position, heels together, and
weight evenly distributed on each foot (Gordon et al., 1989). Calf length was measured with an
anthropometer between the knee joint line and tip of the medial malleolus (tibia distance) with
the subject in a seated position and knees crossed (Lohman, Roche, & Martorell, 1988). Thigh
length was measured with a fiberglass tape from the midpoint of the inguinal ligament to the
proximal edge of the patella with the subject standing and the measured leg on a chair such that
the knee was at a 90° angle (Lohman et al., 1988). All these measurements were made on the

right leg.

Apparatus
Snowshoes

Four snowshoes (the Pride Assault, the Montana, the British Assault and
the U.S. Army Standard snowshoe [trail magnesium]) were tested. The Pride Assault snowshoe
(see Figures 1 and 2) consisted of an aluminum frame to which a solid plastic membrane was
attached with 20 plastic loops. The front of the frame was turned upward. The boot binding
system (see Figure 1) was attached to the aluminum frame by a plastic-covered piece of steel that
allowed the binding to pivot as the subject walked. The binding consisted of single piece of
aluminum with upturned sides to prevent lateral and medial boot slippage. When the boot
entered the binding, a clip at the rear forced the boot against a front cable and firmly locked it into
the binding. A single adjustable strap on the rear clip was secured around the ankle to minimize
the possibility of the clip coming off. On the underside of the Pride were two crampons (see




Figure 2), one of which pivoted with the binding as the subject walked. The other crampon was

fixed under the snowshoe at about the level of the heel.
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Figure 1. Top view of pride assault snowshoe.
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The Montana snowshoe (see Figures 3 and 4) was a rubber tire into which holes
had been drilled. Fabric webbing was looped through some of these holes and the webbing
formed a crisscrossed network inside the tire. The nine pieces of webbing were riveted at
crossing points. The boot binding system consisted of three straps riveted to the webbing; all
three straps were adjustable using buckles. Two straps ran over the tops of the boot and one

across the heel.

The British Assault snowshoe (see Figures 5 and 6) consisted of a plastic
(polyvinyl chloride [PVC]) frame with nine crisscrossed straps riveted at crossing points. The
boot binding system consisted of 1) a plastic strap that ran over the top of the boot, 2) a fabric
strap for the front of the ankle, and 3) a fabric strap than ran from the front of the boot to around
back of the heel. All three straps were adjustable with buckles. On the underside of the
snowshoe (see Figure 6) were two crampons arranged at about a 45° angle to the long axis of the
snowshoe. The crampons were attached to the aluminum frame and to a single thin strip of metal

near the front of the snowshoe.

The U.S. Army Standard snowshoe (see Figures 7 and 8) had a metal frame with
two metal supports approximately perpendicular to the frame. The metal frame tapered to a long
tail in the rear of the snowshoe and the front of the snowshoe was turned upward. Plastic-
covered wires crisscrossed the frame. The boot binding system consisted of three fabric straps
that went around the top of boot, heel, and ankle. The straps were adjustable with buckles.

Measurement of Snowshoe Characteristics

The mass of each snowshoe was measured using a digital scale. Length and width

were measured with a ruler at the longest portions of each snowshoe.

Surface areas were determined by manual planimetry. Two outlines of each
snowshoe were traced on a large sheet of paper. Tracings were performed on the flat and anterior
curved portions of the snowshoe. The flat portion was that part of the snowshoe which was in
contact with the surface when the snowshoe sat on a level platform. The curved portion was the
front upturned part of the snowshoe (only present on the Pride and Standard models). Curvature
outlines were obtained by rolling the snowshoe forward on the paper and then tracing this
portion. To determine the limit of the curvature, 1) the snowshoe was placed back down on the
tracing a second time, 2) a thin ruler was slipped under the front part of the shoe until the
snowshoe stopped the ruler, 3) the snowshoe was removed, and 4) a straight line was drawn

14



across the tracing where the ruler rested. The curved area was the area encompassed by the line
and front part of the shoe.

Figure 5. Top view of British assault snowshoe.
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Figure 6. Bottom view of British assault snowshoe.
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Figure 7. Top view of U.S. Army standard snowshoe.
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Figure 8. Bottom view of U.S. Army standard snowshoe.
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To gauge flotation, the depth of depression was measured. Flotation is the inverse
of depression, that is, the greater the depression, the less the flotation. Depression was measured
with a ruler after Marines began walking in the snow. A straight edge was placed horizontally
across the snowshoe print. A ruler was used to make four vertical measurements on the lateral,
medial, and posterior portions of the snowshoe imprint. The deepest impression was also
measured. To obtain a measure of overall depression, the lateral, medial, and posterior values
were summed and averaged. The deepest depression was not included in the measure of overall
depression because the characteristics of some snowshoes would have an unduly large influence
on this measure (i.e., the crampon on the Pride or the toe pivot on the Standard).

Heart Rate

Heart rate was determined using a Polar Vantage XL® heart rate watch (Polar
USA, Stamford, Connecticut). The device consisted of a sensor strap and watch. The subject
wore the sensor strap around his chest. The watch was placed on the Oxylog2® device to allow
technicians to read it easily. The strap contained electrodes that detected electrical signals from
the heart and transmitted them to the watch.

Oxylog2® Device

The Oxylog2® device (PK Morgan, Chatham, United Kingdom) was designed to
measure oxygen consumption (VO2) and ventilation (Vg) in ambulatory subjects. The subjects’
expired air was passed to the central Oxylog2® unit which contained a FIGARO KE-25 oxygen
fuel type cell. The PO, difference between the inspired and expired air was measured in the
instrument, and the volume of oxygen extracted was calculated. A turbine flow meter attached to
the air intake side calculated the volume of the subjects’ inspired air. A display on the device
provided the VO, and Vg, which were averaged as minute values.

Marines wore a large pediatric mouth breathing face mask (Hans Rudolph Inc.,
Kansas City, Missouri, Series 7970) connected to the central Oxylog2® unit with Warren Collins
(Braintree, Massachusetts) plastic spiral tubing. The Oxylog2® turbine flow meter was
connected to the inlet valve of the face mask with Warren Collins molded couplers. The entire
device weighed 2.3 kg.

Procedures

The snowshoe course was situated on a meadow in the Sierra Mountains of California
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near the Marine Corps Mountain Warfare Training Center, Bridgeport, California (Sonora Pass
Area). A 336-meter course was delineated on a helicopter landing zone. The course was not flat.
An estimate of the slope obtained using survey techniques found the grade to be 2.4%.

All measurements were made on a single day and it had snowed the night before.
Conditions were about 8 cm of powder snow on a base of about 60 cm of crust. In the days
before the snowfall, temperatures had routinely achieved 10° C during the day, dropping below
0° C at night. Thus, the base snow had repeatedly frozen and thawed. Temperatures during the

energy cost testing ranged from -3°C to 2°C.

Procedures during the testing were as follow. The Marines’ mass in BDUs was obtained
from a digital scale. They then donned the Oxylog2® device and the mask was fitted. The
central Oxylog2® unit was contained in an insulated carrying case that was suspended from the
subject’s hips. The case was stabilized with straps across the Marine’s shoulders and waist.
While the Marine was changing snowshoes, he removed the mask by pulling it down to his neck.
Just before walking, he put the mask back on and waited 1 minute before beginning to walk.

One of the investigators walked with each Marine and provided pacing information. The
Marine was told that the goal was to achieve a pace of 4 km/hr (1.12 m/sec, 2.5 mi/hr). Poles
were placed in the snow along the course, alternating every 20 m and 10 m. Between the 20-m
markers, the investigator obtained the time to cover the distance. During the 10-m distance, the
investigator consulted a chart relating time to distance and the Marine was provided his current
speed. Information given the Marine was in the form of the speed for the previous 20-m segment
(e.g., “4.2, that is a little fast; slow it down just a bit”). This process was repeated every 30 m.
Marines were easily able to adjust their pace within 1 to 2 minutes of walking. Time to complete
the entire 336-m distance was recorded at the end of the walk and converted to average speed for

the distance.

Marines completed two walks with each of the four snowshoe models. Marines walked
for about 5 minutes on the downbhill leg of the course, then reversed direction and walked for
about 5 minutes on the uphill leg. They then changed snowshoes and repeated the process. The
order of presentation of the snowshoes is shown in Table 1. Marines always walked on fresh
snow by progressively moving to the eastern side of their previous tracks. Measurements were
obtained from the digital displays on the Oxylog2® and heart rate monitors at 3.5 minutes and at
5 minutes of the walk. Ventilation (I/min), oxygen uptake (/min), and heart rate (beats/min) were
recorded on paper.

20



Table 1

Order of Snowshoe Presentation

Marine identification Presentation order
number 1 2 3 4
1 Pride Montana British Standard
2 Montana Standard Pride British
3 British Pride Standard Montana
4 Standard British Montana Pride
Data Analysis

Data were analyzed using a one-way repeated measures analysis of variance (ANOVA),
testing the hypothesis of no difference among snowshoes. When significant differences were
found, differences between snowshoes were determined with the Tukey Honestly Significant
Difference (HSD) Test. Pearson product moment correlations were used to examine the
relationship between oxygen consumption and flotation measures. In order to examine the
relationship between snowshoe characteristics and oxygen consumption, Pearson product
moment correlations were performed between the average oxygen consumption for each
snowshoe (uphill and downhill legs separately) and the snowshoe characteristics.

RESULTS

The physical characteristics of the four Marines are shown in Table 2.

The physical characteristics of the snowshoes are presented in Table 3. The two surface
area measurements did not differ by more than 0.6%, so the values were averaged. The
correlation between snowshoe mass and surface area was 0.67 (p=0.33).
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Table 2

Body Composition and Anthropometric Characteristics of the Marines

Stature Body mass Body fat Fat mass Fat-free mass
(cm) (k) (percent) ke (kg)
Mean 174.2 73.2 16.5 12.5 60.7
SD 49 4.5 8.2 7.8 4.1
Neck Abdominal Trochanterion  Thigh Calf Body mass
circumference  circumference height length  length with uniform
(cm) (cm) (cm) (cm) (cm) (kg)
Mean 36.7 83.4 91.6 39.5 37.2 77.6
SD 1.8 9.4 55 3.2 2.7 9.6
Table 3
Physical Characteristics of the Four Snowshoes
Mass to
Surface area (cm2) surface
Size (cm) Mass  entire area ratio
Manufacturer Model length  width (kg) shoe  curve (gm/cm?)
Pride Assault 74 22 2.4 1393 230 1.72
Montana RWT 52 34 3.0 1649 1.82
British Assault 46 30 2.0 1302 1.54
Standard Trial 120 28 2.6 1892 335 1.37
magnesium

Table 4 shows the measurements made on stride length and depression depth for each of
the four snowshoes. A lower number for depression would indicate better flotation (less
depression into the snow). There were no significant differences among the snowshoes on any

measure.
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Table 4

Stride Length and Flotation Measures

Flotation measures

Stride Medial Lateral Rear Deepest Overall

length depression  depression depression depression  depression

(cm) (cm) (cm) (cm) (cm) (cm)
Pride - 73.5+2.3  5.410.7 5.0+£0.8 5.5+0.5 6.9+0.5 5.3£0.9
Montana 74.4+3.1 5.310.2 5.5+0.3 6.0+0.9 6.0+0.4 5.6+0.7
British 73.2+1.7 4.9+0.8 5.3£0.7 5.7+£0.7 5.7+0.5 5.3+1.3
Standard 70.7+£3.1  5.5%0.3 4.3+0.5 5.0+0.5 5.8+0.3 4.9+0.8
F-value  0.38 0.18 0.70 0.65 2.13 0.38
p-value  0.77 0.91 0.57 0.60 0.17 0.77

Table 5 shows the speed at which Marines completed the 5-minute walks on both the
uphill and downhill legs of the course. There were no significant differences among the

snowshoes.
Table 5
Actual Speed of Walking During Snowshoe Testing
Speed on uphill (km/hr) Speed on downhill (km/hr)

Pride 4.1+0.0 4.1+0.1

Montana 4.1+0.1 3.940.2

British 4.1+0.1 4.2+0.4

Standard 4.0+0.2 4.0+0.1

F-value 1.88 1.19

p-value 0.20 0.37
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Table 6 shows the cardiorespiratory values for the four models of snowshoes when
Marines were on the downhill leg of the course. These are the average of the values taken at 3.5
minutes and 5 minutes since a paired t-test showed no difference between the two periods for
any measure. The Tukey test on the VO3 values revealed that the Pride and the Standard
snowshoes had a significantly lower energy cost than the Montana (p<0.05) but the British did
not differ from any other snowshoe (critical difference = 0.17 for absolute VO2 (Vmin) and 2.36
for relative VO, (ml/kg*min). For VE, the Tukey test indicated that the Montana produced
significantly higher values than any of the other three snowshoes but there were no significant
differences among the Pride, British, or Standard shoes (critical difference = 5.4).

Table 6
Cardiorespiratory Values for the Four Snowshoe Models on the
Downhill Portion of the Course

Heart rate VO VO2 VE

(beats/min) (I/min) (ml/kg*min) (Vmin)
Pride 122.9+14.2 1.254+0.13 17.4+3.2 24.5+6.1
Montana 136.0+11.1 1.4610.11 20.2+2.7 30.0+6.2
British 130.4+14.4 1.3140.13 18.2+3.7 24.4+4.3
Standard 123.3+7.3 1.22+0.20 16.8+2.3 20.6+2.6
F-value 2.09 7.79 7.36 869
p-value 0.17 0.01 0.01 0.01

Table 7 shows the cardiorespiratory values for the four snowshoes when Marines were
on the uphill portion of the course. The rank of snowshoes with regard to energy cost and heart
rate was similar to the downhill portion (see Table 6).

Table 8 shows the Pearson product moment correlation coefficients between the flotation
measures and oxygen uptake for each snowshoe. The pattern of correlations suggests that lower
energy cost is associated with less depression for the Pride and Montana, but this pattern is not

seen with the British or Standard snowshoes.
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Table 7

Cardiorespiratory Values for the Four Snowshoes on the

Uphill Portion of the Course

Heart rate VO, VO, VE

(beats/min) (I/min) (ml/kg*min) (Vmin)
Pride 143.4+14.6 1.58+0.12 22.0+4.0 32.619.7
Montana 154.6+7.3 1.78+0.14 24.5+2.8 36.7+10.8
British 151.4+11.1 1.6210.21 22.6+4.9 32.249.0
Standard 143.6+8.4 1.51+0.06 21.0+3.3 30.145.1
F-value 3.35 3.69 3.47 1.96
p-value 0.07 0.06 0.06 0.19

Table 8

Correlation Coefficients Between Measures of Snowshoe
Depression and Oxygen Consumption

Deepest depression Overall depression
Pride (downbhill) ' 0.96 0.65
Pride (uphill) 0.51 0.31
Montana (downhill) 0.69 0.24
Montana (uphill) 0.48 0.89
VO, British (downhill) -0.66 -0.20
(Vmin) British (uphill) 0.06 0.56
Standard (downbhill) 0.11 -0.26
Standard (uphill) 0.16 -0.17
Pride (downhill) 0.81 0.71
Pride (uphill) 0.50 0.50
Montana (downhill) 0.83 0.26
Montana (uphill) 0.82 0.72
VO, British (downhill) -0.53 -0.09
(mlkg*min) British (uphill) -0.15 0.36
Standard (downbhill) 0.01 -0.33

Standard (uphill) 0.04 -0.29
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Table 9 displays correlations between various snowshoe characteristics and average
oxygen uptake. The mass-to-surface-area ratio demonstrated the highest relationships and Figure
9 displays this. Examination of Figure 9 suggests that the Montana, British, and Standard
snowshoes demonstrate proportional increases in oxygen consumption with increasing mass-
surface area. The Pride, however, departs from this trend showing less of an increase for its

surface area.
Table 9
Correlations Between Snowshoe Characteristics and
Average Oxygen Consumption
Snowshoe Oxygen comsumption
characteristic downbhill ' uphill
Mass 0.51 0.54
Surface area -0.17 -0.08
Mass-surface area 0.81 0.72
DISCUSSION

Comparisons Among Snowshoes

The small number of Marines makes any conclusions drawn from this study tentative.
However, even with the small sample size, we found differences between the snowshoe models.
The Montana had a significantly higher energy cost than the Pride or Standard snowshoes on the
downhill portion of the course and this same trend was duplicated on the uphill portion of the
course. The British snowshoe tended to have a higher energy cost than the Prides or Standards,

but this was not statistically significant.

Because of the small number of subjects, we performed a statistical power analysis to
further examine differences between the British snowshoe verses the Pride and Standard. The
techniques of Cohen (1977) were used. An o, of 0.05 and power of 0.80 were assumed and effect
sizes were calculated as Mean;-Meany/c (in which ¢ is the average of the standard deviations of
the two means). Results are shown in Table 10. These results suggest that with larger sample
sizes the Pride and Standard snowshoes could demonstrate lower energy cost than the British

snowshoe.
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Table 10

Statistical Power Analysis of Snowshoe Types Based on Data from
This Study (assumes 0=0.05 and power=0.80)

Approximate sample

Course Comparison Effect size size needed

Downbhill Standard versus British 0.53 50
Pride versus British 0.46 50

Uphill Standard versus British 0.85 20

Pride versus British 0.24 138

The Montana snowshoe made walking most difficult for the Marines. This model tended
to be very flexible since it was composed cf automotive tire rubber. It could deform easily and
tended to fold under often, causing the Marines to change their gait and stumble forward at times
(although no one actually fell). Also, the Montana was wider than the other snowshoes, causing
somewhat more abduction of the legs at the hips and more of a waddling gait than the other
snowshoes. Gait adjustments and stumbling could have been significant factors in the higher
energy cost. The Montana was also the heaviest of all the snowshoes and it has been shown that

greater mass on the foot has a large effect on energy cost (Jones, Knapik, Daniels, & Toner, 1986;
Jones et al., 1984).

The energy cost of the Pride and Standard snowshoes was lower than that of the
Montana. The Pride and Standard shoes share two common characteristics. First, they have a
hinge and binding system that allows the snowshoe to be dragged in the snow. With more of the
snowshoe mass supported on the snow, less total mass (leg plus snowshoe) may have been
lifted, thus reducing energy cost. The British and Montana had to be raised almost vertically out
of the snow to avoid tripping. This additional vertical distance (relative to the Pride and
Standard) may have contributed to the higher energy cost. The second common characteristic
shared by the Pride and Standard shoes is an upturned front (the curved portion). This allows
the snow to be pushed to the front and side, permitting the shoe to be elevated out of the
depression in a more horizontal direction. This may also assist in reducing the vertical

component of the leg-plus-snowshoe lift.
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The correlational analysis suggested that a low mass-to-surface-area ratio is associated
with a lower energy cost. Such a ratio would be achieved with a light snowshoe covering a large
area of snow. Thus, reducing mass with lightweight materials while increasing surface area may
be desirable in snowshoe design.

These data suggest that favorable characteristics of snowshoes from an energy cost
perspective may be 1) a hinge and binding system that allows the snowshoe to be dragged across
the snow, 2) an upturned front that pushes snow and allows a more horizontal displacement of
the snowshoe, and 3) lightweight snowshoe materials combined with greater surface area. Further
research will be necessary to determine the relative importance of these design characteristics,
given the small number of Marines in this study.

Comparisons Among Studies

Table 11 shows a comparison of the results of the present study with others that have
examined the energy cost of snowshoeing. The difficulty of making direct comparisons is
immediately apparent. There are differences in walking speed, and most studies do not report
grade, depth of depression, or mass carried, despite the importance of these variables to energy
cost (Goldman & Iampietro, 1962; Heinonen et al., 1959; Pandolf et al., 1976; Ramaswamy et al.,
1966). Further, Rodgers et al. (1965) noted that energy cost will vary with the skill of the user;
they reported that one of their subjects actually used more energy with snowshoes than without.
Our Marines trained a full day with each snowshoe and were very familiar with them by the time
the energy cost studies were conducted. In addition to these considerations, the findings here
suggest that certain characteristics of the snowshoe can influence energy cost and none of the
studies report these characteristics.

We used the Pandolf equation (Pandolf et al., 1977) to estimate the energy cost of walking
in the snow, assuming the conditions of our study. This could only be done for the uphill
portion of the course since the equation does not accurately estimate the metabolic rate for
downhill walking (Knapik, Harman, & Reynolds, 1996). For the uphill calculation, we used a
grade of 2.4% and a walking speed of 1.12 m/sec. The subject’s load mass was the weight of the
uniform plus the weight of the Oxylog2®. Terrain factors were calculated from the overall
depression for each snowshoe (Pandolf et al., 1976). Metabolic rates were converted to
kilocalories (kcals), assuming that 1 watt = 0.01433 kcals. Kilocalories were converted to oxygen
uptake values, assuming that 1 liter of oxygen is the metabolic equivalent of 5 kcals (on the
Oxylog2®). It was assumed that energy cost would increase 10% for each kg of snowshoe
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wweight (Jones et al., 1986; Jones et al., 1984). Values based on these assumptions are given in
Table 12 and compared to actual energy cost values. The Pandolf equation underestimated the
oxygen consumption rate by 7%, 16%, 11%, and 3% for the Pride, Montana, British, and
Standard snowshoes, respectively. Note that the Pandolf equation was developed for walking in

boots and has not been validated for snowshoes.

Table 11

The Energy Cost of Walking in Snowshoes in Various Studies
(NR=not reported; CBC=cannot be calculated)

Depression  Subjectbody  Grade Speed V02 Vo2

Study (cm) kg (percent) (km/hr) (Umin) (mlkg*min)

Buskirk et al. NR 75 NR 3.7 1.28 17.5
(1956)

Rodgers et al. 9 70 Near zero (on 3.7 2.45 35.0
(1965) frozen river)

Allen & O’Hara NR NR NR 2.0-3.6 097 CBC
(1973)

Worsley et al. <5 67 NR 3.6 ~13 ~19

(1974)2 4.8 ~1.7 ~25

Present study 5 73 -24 4.0 1.22-1.46  16.8-20.2

(downhill)

Present study 5 73 +2.4 4.0 1.51-1.78  21.0-24.5

(uphill)

aAuthors noted that subjects had a pack but provided no pack mass; energy cost values estimate from equation
(VO2(mVkg*min)=-1.3+0.33*speed(m/min) and Figure V.2 in Worsley et al. (1974)

Snow Conditions

Snow conditions were such that walking was not difficult for Marines in this study. The
8 cm of new snow was very soft and powdery. The 5 cm of average depression indicated that
the snowshoes elevated Marines about 3 cm above the snow base. It will be critical in future
studies to provide better descriptions and quantification of snow conditions, as these may alter

energy cost measures.
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Table 12

Estimates of Metabolic Rates, Energy Expenditure Rates, and VO, (from Pandolf Equation)
Compared to Actual VO3 During Uphill Walking at 2.4% Grade

Estimates based on Pandolf equation

Energy
expenditure Actual
Metabolic rate VO, VO,
Snowshoe rate (watts) (kecal/min) (Vmin) (Vmin)
Pride 504 7.22 1.47 1.58
Montana 508 7.28 1.50 1.78
British 504 7.22 1.47 1.62

Standard 495 7.09 1.46 1.51
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