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1. Introduction

Traditional tests of hypotheses are special cases of multiple decision procedures. Usu-
ally, they are restricted to two decisions. These testing methods emphasize on a confir-
matory approach. The hypotheses are specified before the data are collected. However, it
is difficult sometimes to specify appropriate hypotheses of interest based on past experi-
ence. We take a data analysis approach to the problem of decision making (see Gupta and

Huang, 1981).

Usually, an experimenter faces the problem of comparing several categories or popu-
lations. The classical approach to this problem is to test homogeneity (null) hypothesis
Hy: 0, =... =0, where 61,...,0; are the unknown values of the parameter § for these
populations. In the case of normal populations with unknown means 6;,...,6; and a
common unknown variance o2, the test can be carried out by means of the F-ratio of the

analysis of variance.

In this paper, we formulate above k-sample problem as a multiple decision problem in
analysis of variance and regression analysis. Among the early investigators of procedures
for such problems are Paulson (1949), Bahadur (1950), Bahadur and Robbins (1950). The
formulation of multiple decision procedures in the framework of selection and ranking
procedures has been generally accomplished by using either the indifference zone approach
or the (random-sized) subset selection approach. The former approach was introduced
by Bechhofer (1954). Substantial contribution to the early and subsequent developments
in the subset selection theory have been made by Gupta starting from his work in 1956.
We will be mainly concerned with multiple decision problems formulated as selection and

ranking problems (see Gupta and Panchapakesan (1979)).

In this paper, we discuss inference about the parameters in multiple linear regression
model. By a proper reparametrization, ANOVA models can be handled by regression tech-
niques. As Draper and Smith (1981) pointed out, it is useful to appreciate the connection

between the two methods of analysis. We consider here only the one-way ANOVA model.

Our interest is not just to test the null hypothesis Hy against the global alternative.
When H, is rejected, we want to identify significantly important independent variables

and also check the appropriateness (to be explained) of the choice of the variables or the




factor levels.

2. Inferences About Regression Parameters

Consider the linear model
Y=XB+¢ (2.1)

where Y' = [¥1,Y3,...,Y,] is an n x 1 vector of responses, X = L, X,,...,X, ;] is an
n X p(n > p) matrix of known constants of rank p, g’ = [Bo,P1,.-.,Bp—1] is a 1 x p vector of
unknown parameters, ¢ ~ N(0,021,), and I,, denotes the n xn identity matrix. We refer to
model (2.1) as the true model of size p. From this model, we obtain p— 1 so-called reduced
models, each of size p—1, by dropping one independent variable at a time. Let X (m) denote
the “X matrix” of the reduced model obtained by dropping the independent variable X,
m =1,2...p—1. Correspondingly, we have the residual sums of squares for these reduced
models denoted by SSp,_1,m, m =1...,p — 1. Accordingly, the residual sum of squares
for the true model is denoted by S$S, 1. It is known that $S,; = Y'QY and SS -1,m =
Y'Qm)Y where Q = I, - X(X'X)X' and Q1) = In — X(m)(X('m)X(m))“lX(’m). Under
the true model assumption, it is known that

SSP’IN 2 _,and

Ssp“lym 2 1
o2 n=p o ’

2 ~ n_Py’\p—l,m7 =

.,p—1,

where Ap_1m = (XB) Q(m)(XB)/20%,m = 1,2,...,p — 1,x2 denotes the (central) chi-
square distribution on v degrees of freedom with noncentrality parameter A. Thus

E[SSp1] =(n—p)o? and E[SSp_1,m] = (n—p+1)0* + 202 Xp_ym,m=1,...,p—1.

We note that @(n),m = 1,2,...,p — 1, are idempotent and symmetric; thus they
are positive semidefinite. Hence Ap_1 m,m = 1,2,...,p — 1 are nonnegative. Obviously,
P1 =...= Bp-1 =0 implies that A\,_; » =0 for m =1,...,p — 1. However, the converse
1s not necessarily true. When 8 # 0, \;—1,m can be interpreted as the contribution of X,
in making the regression significant given that the other variables are already in the model.

Let

5 _n=p[S%-1m| n-p+1
T T 2
where

= T SS,/(n—p)



has the noncentral F-distribution on 1 and (n — p) degrees of freedom with noncentrality

parameter A,_1 m,, denoted by Fj ,—p A We note that the 7, is the statistic used in

p—1,m"

the so-called partial F-test for the significance of 3,.

Now, we consider our problem of testing Hy : § = 0. The classical F-test for this
against the global alternative H, : § # 0 is designed only to control the probability of
type I error. In our formulation, when Hj is rejected, the decision also includes selecting
a subset of the p — 1 independent variables as significant. When H, is false, a correct
decision (CD) occurs if Hj is rejected and the selected subset of the independent variables
includes the variable associated with the largest Ap_1,;m. Let A = [Ap—1,1,...,A\p=1,p—1] and
Ap—1,11] S --+ £ Ap_1 [p—1) denote the ordered A\p_1 m. We require that, for given 0 < e < 1

1 *
andel<P < 1,

Pr[RejectHp|f =0] < a (2.2)

and

PT{C-D[/\p—l,[p-—l] Z A} Z P* (23)
where A > 0 is specified in advance.

Since 8 = 0 implies that A = 0, (2.2) is satisfled if
Pr[RejectHo|lA=0] < a (2.4)

and (2.3) is equivalent to

Inf Pr{CD[Ap-1 1) 2 A] = P*. (2.5)

We propose a test of Hy based on the statistics SN,, = 10loghm,,m = 1,...,p — 1, where
the log is to base 10. We could just use the 7, but the transform denoted by SNy, is

based on Taguchi’s idea of signal-to-noise ratio. Qur test procedure is as follows:

Reject Hy if SN; > C for some i. Include in the selected subset of significant variables
all the variables X!s for which SN; > C.

The constant C should satisfy




Pr{SN; > C for some i]A =0} < « (2.6)
and

Inf Pr{SNp-1) 2 ClAp1,p-1) = A} = P* (2.7)

where SNN,_; denotes the SN; associated with Ap—1,p-1]- When A =0,S5N;,i=1,...,p—
1, are correlated each having a central Fi ,_, distributions. By using the inequality:

P[UA;] < 37 P(4), (2.6) is satisfled if
J

p—1
> Pr{SNn,>CA=0}=a

m=1

which gives

a

& =(say). (2.8)

Pr{F ., <106} =1—
y P P

When A,_; (p—1) > 0,5N(,-1) has the stochastically increasing property in terms of the

noncentrality parameter. Thus, (2.7) is satisfied if

Pr{Fipn_pa <105} =1— P*, (2.9)
We obtain an approximate solution to (2.8) and (2.9) in the form of C as a function of n

by using the following lemma of Huang (1996).

Lemma: Let Y have the noncentral F' distribution with u,v degrees of freedom, and

noncentrality A, denoted by F, , o. Then A

PT{Y S y} = [1 + 6—1.7941481:]—-1 (2.10)
where .
u 3 2(u+24)
(1 - 62?) (ﬁ%) - [1 T 9(uFA)?

T = 1

2(u+24) 2/ uy Z B
9(u+4A)? + 90(u+A)




The maximum absolute error in the approximation in (2.10) is 0.06 for v > 5. Also A =0
gives the approximation in the central F, , case.

<

Now, let y = 1015, o =

1 1
11'79{1148 In(1Zz = 1),b0 = trmgin(i=er —1),4 = 1~
3

, and F = 20428) By using the above-stated lemma in

2
B=1—§’E=< o(1+n)2"

2 1 _
9(n—p)’ +A

equations (2.8) and (2.9), we obtain an approximate solution to (2.8) and (2.9) from the

following equations:

Ay% 5 1L — 40, (211)
[(1=B)+(1-Ays]:
AByS —(1-F) _ bo. (2.12)

[F+(1- AE5])
Squaring both sides of (2.11) and (2.12), and rearranging the terms, we get
[A2 — ag(1 — A)ly? — 24By3 + B — ay(1 — B) = 0, (2.13)

[A2E? — by(1 — A)E?y3 — 24E(1 — F)y3 + (1 — F)? — by F = 0. (2.14)

We now eliminate y3 from (2.13) and (2.14) to obtain

[B? — af(1 - B)][A’E? — b3 E*(1 — A)] — [(1 = F)> - B3 F][A* — af(1 — 4)]
2AB[A?E? — RE?(1 - A)] — 2AE(1 — F)[AZ — a3(1 — A)]

=

’y =
= G, say.
Thus y = G® and y = 1075, yielding C = 30 log G. (2.15)

Remark: While the data are used to test Hy and make appropriate decision, the
statistics SN, as signal-to-noise ratio tell also something about the appropriate choice
of the independent variables. A negative value of SN, (or equivalently %, < 1) shows

instability of variance in estimating B,.
3. Regression Treatment of One-Way ANOVA Model
Consider the ANOVA model
Yiij=p+6i+e; j=12,...,J5i=12,...,1, (3.1)

6



wheree; ;,7 =1,2,...,J;5¢ =1,2,...1, are independent and identically distributed normal
N(0,0?) random variables and 6; +...+8; = 0. By letting 8; = u+6;,7 = 1,...,I, model

(3.1) can be written as regression model:
Y=XB+¢

where Y' = [Yi1,....Y15;.. Y, Y, X = [X,,.. ., X)X = [0,...,0;..;
1,...1; ...;0,...,0),s =1,2,...,I, and 8 = [B1,...,B1].
N’ —
ith block
— Ji
Let b = (b1,...,br) where b; = Y; = JL, Y. Y; is the least squares estimate 3,
j=1

I R I
i=1,...,I. Since §; = B; — } Y B;, we unbiasedly estimate 6; by 6; =b; —+ Y, b;. It
j=1 =1

j
is easy to show that E(éz) = 6;, and Var(éi) = ¢;0?, where ¢; = (1 — })? JLJ +4% 3 71;-,

o B
[

i=1,2,...,1

Let ; =6?,:=1,...,I, and let 1] < -+ < 1) denote the ordered 7;. The 6; are the
treatment effects and 77} is associated with the treatment whose effect is farthest from the
average of all treatment effects which is zero. As a treatment effect goes farther from zero,
it is said to become more significant. We want to test Hy : ™ = ... = 77 = 0 (which is
equivalent to Hy : 1 = ... = fr) at level a. When Hj is false, a correct decision occurs

if Hy is rejected and a subset including the treatment associated with 7y} is selected. Let

' =[n,...,77]. We require that
Pr{ Reject Hylr =0} =« (3.2)
and
Inf Pr{CD |r;; > Ac®} = P* (3.3)

where % < P* <1 and A > 0 are specified in advance.

Since Var(8;) = c;0?, it can be estimated by ¢; s2, where s® is the error mean square
Y3

(MSE) in the one-way ANOVA. It is known that c,-9'32 follows the noncentral Fij_r.»,

I
2
distribution where \; = %’i =1,...,I,and J = ) J;. We define our test statistics

=1

SN; by SN; =10 log;i i =1,...,I where the log is to base 10. Our test procedure is

c; 827

as follows:



Reject Hy if SN; > C for some 1. If Hy is rejected, then include in the selected subset

of significant treatments all those treatments for which SN; > C.

The constant C' should satisfy

. > p— — .
Pr{ll\éI%XI SN; >Clr=0} =« (3.4)
and
Igf Pr{SNy > Clry > Ao} = P, (3.5)

where A(r) is the A; associated with 7.

When 7 = 0, the SN; are i.i.d. central F} ;_1. So, using the arguments employed in

Section 2, equation (3.4) is satisfied if
< a
Pr{F1,j-1 <107} =1- T (3.6)

Now,

Ilélf Pr{SN > C|T[I] > Ac?}
= I%J.f PI'{Fl,J—I;)\(,) > C'|7'[I] > Ac?},

where A(p) is the A7 associated with 7). Using the stochastically increasing property of
the noncentral F in terms of the noncentrality parameter, we can see that equation (3.5)
is satisfied if

Pr{Fy s, <100} =1 - P* (3.7)

where A} = "m‘a%—'

¢

1<igI
Ifwenowlety=1-%,A=1~ 9—(-1—2_—[), and define y, ag, bp, B, E, and F' as in Section
2 with A, in the place of A, then an approximate solution to (3.6) and (3.7) is given by
(2.11) and (2.12). Thus the solution is (2.15), namely, C = 30 log G.

Maz

22y 6 . .

Remark: One can use —’23%!——- as a choice of A for a future study. When SN; is
" .

negative, c‘_ggz as an estimate of [-—51%—)]2 is less than 1; this usually means that the
: ar(8;

estimator éi of 6; 1s unstable.




4. An Example

We illustrate the one-way ANOVA test procedure of Section 3 using the following
example of Draper and Smith (1981).

An experiment was conducted using three treatment levels, namely, 0, 100, and 200
mgs of caffeine. Thirty healthy male college students of the same age and with essentially
the same physical ability were selected and trained in finger tapping. After the training
was completed, ten men were randomly assigned to each treatment level. Neither the
men nor the physiologist knew which treatment the men received; only the statistician
knew this. Two hours after the treatment was administered, the number of finger taps per

minute was recorded for each man.

Let Y;; = number of finger taps per minute of the jth man on the ith treatment,

p = true value for the average number of finger taps in a population of males of which the
selected thirty from a random sample, 8; = the ith treatment effect, that is, the additive
effect of the ith treatment over and above (or below) u, where 6; + 6, + 63 = 0, and ¢;;
= the random effect which is a random deviation from u + 8; taps per minute for the jth

student who received the 7th treatment.

With the above definitions, we have the ANOVA model:
Yij=p+0i+eij

and we assume that the ¢;; are iid N(0,0?).

Now, 0' =[0,...,0, 1 =[1,...,1, X', =1, 0,07, X; = [0,1,0, X5 = [0,0', 1],
(1x10) (1x10)
and ﬁ' = [$1, B2, B3] where B; = p + 6;,: = 1,2,3. From the data we have:

Y' = [242 245 244 248 247 248 242 244 246 242 248 246 245 247 248
(1x30)
250 247 246 243 244 246 248 250 252 248 250 246 248 245 250],
X =X, X, X;],I=3,J; =J,=J3=10.
(30x3)

The regression model is: ¥ = X +¢.



From the output of SAS program, we obtain the following:

by = 244.8, by = 246.4, by = 248.3, s> = 4.9667.

From the results in Section 3, we obtain

1.

15’

—1.7,6, = 0.1, 63 = 1.8, )y, =8.728, X, = 0.03, \3 = 9.785:

~

61

SNy = 9.42384, SN, = —15.815, SN; = 9.9203.

Suppose we have chosen A = 0.217 and A; = 15A = 3.25 based on the past experience

Mazx é;

(or a preliminary sample which yielded <53 — = 3.25). Let a = 0.05 and P* = 0.90.
Then C' = 3.05149. Since SN; > C and SN3; > C, we reject Hy : 6; = 6 = 03 =0

and select treatments 1 and 3 as significant (i.e. sufficiently away from the average effect).

On the other hand, SN; is not only far less than C, it is negative. We conclude that this

treatment level is not stable.

10
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