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Chapter I 

Background 

This paper develops a model for determing the combat readiness of an Army 

Battalion and investigates the problem of automating this task. The central problem is 

one of classification and the domain is that of military readiness in United States 

Army Battalions, but it could be applied to a wide variety of problems with only 

minor modifications. The problem is simply defined but very difficult to solve. 

It is first necessary to understand the current method for evaluating unit 

readiness and the problems associated with it. Readiness reports are called Unit 

Status Reports (USRs) in the Army, and are conducted at the Battalion level. Each 

service has a different report with its own problems. I will address only the Army's 

method. 

Battalions are the lowest level of organization in the Army that is considered 

able to support its own operations and is probably the highest level where 

commanders are fully aware of the condition of the unit. It consists of three to eight 

hundred soldiers with equipment dependent on its mission, i.e., Aviation, Armor, 

Infantry, or Administration. Table 1-1 compares a few typical battalions. 



Approx # of 
Soldiers 

Major Piece 
of Equipment 

Number of 
Major Equip 

Aviation -300 Helicopter 30 
Armor -400 Tank 58 

Infantry -500 Infantry 
Fighting 
Vehic. 

54 

Light Infantry -500 Light Truck 60 
Admin -800 Light Truck Varies 

Table 1-1: Typical Battalions 

As Table 1-1 shows, battalions are highly unique depending on their mission. 

What is important for an Administration Battalion might not be important for an 

Armor Battalion. Commands located above Battalion level are not pure, i.e., they 

may contain different types of units. This makes it difficult to report a consistent 

readiness above battalion level. The purity of battalions and their potential for 

independent operations make them an obvious level for status reports. 

Each month the battalion's key personnel gather information from a variety of 

sources, analyze it in excruciating detail, and determine the combat readiness of the 

unit on a scale of 1 to 5. The report includes information through the 15th of each 

month, but the process requires that units begin preparation during the first week of 

each month and finish the report prior to the 11th or 12th. The additional information 

is extrapolated. Information is examined in three broad areas: Logistics, Training, 

and Personnel. 

Logistical information includes the equipment on hand compared to the 

equipment that is authorized to the unit, the serviceability of that equipment 

(maintenance rates), and evaluations of the units expendable supplies. Certain pieces 

of equipment are known as Pacing Items and must maintain a certain on-hand 



percentage and readiness rate. A tank unit has to have a certain number of tanks. A 

battalion can have several hundred types of equipment and several hundred pieces of 

equipment per type. Many of the pieces require complex maintenance reports that 

must be compiled for the monthly report. The equipment information is located in a 

consolidated database in either MS DOS or Burroughs Twenty Operating System 

format. A single database can contain the property data for up to thirty battalions. 

The Battalion motor pool manages the maintenance data in a variety of formats. 

Primarily, they have MS-DOS based personal computers using the Unit Level 

Logistics System database. 

Personnel information includes the number of soldiers available per specialty 

and rank. Very few units have one hundred percent of their authorized personnel and 

some have less than eighty percent. If the shortages are in key areas or concentrated 

in one area, the results can be severe. Also, soldiers have requirements that take them 

away from the unit or render them nondeployable. These factors must be compiled 

and a status assessed. The data is maintained in the personnel or SI office in both 

MS-DOS format on personal computers and on a tactical system using the Burroughs 

Twenty Operating System (BTOS). 

Training is the most subjective of the areas, and unit leaders must examine a 

wealth of training information prior to judging the effectiveness of the unit. This 

information includes weapons qualifications, physical fitness reports, unit training 

results, and unit specific tasks such as pilot training. These records are normally 

stored in a MS-DOS based format on personal computers located in the training or S3 



office or in the underlying units. Figure 1-1 is a simplified Data Flow Diagram for 

the battalion's 2715 input. 

After the battalion collects the information, the staff officers compile it into an 

understandable report, and the key leaders evaluate their areas of responsibility, the 

battalion commander makes a decision on the readiness of his unit. His decision is 

part objective and part subjective, based on his interpretation of the information and 

his intuition. This report is then reviewed by the controlling organizations before 

being forwarded to the Department of the Army. 

HI  Dept of 
the Army 

Figure 1-1 - Data Flow Diagram for a Battalion's 2715 reporting 

After the report is forwarded to HQDA, they use it in a variety of ways. [AR 

220-1, 93] defines the objectives of the Unit Status Report. These include: 



(1) Indicate the Army-wide conditions and trends. 

(2) Identify factors which degrade unit status. 

(3) Identify the difference between current personnel and equipment assets n 

units and full wartime requirements. 

(4) Assist HQDA and intermediate commands to allocate resources. 

Often, HQDA and Congress use these reports to determine funding issues and as 

justification for expenditures. 

What are the problems associated with the report? It seems straight forward 

for a unit to report its condition, forward that report to Washington, and have their 

report compared to other Army units for resource allocation. 

The first major problem is determining what readiness means. [Betts, 95] 

observes that "readiness is easiest to assess at the lowest level: individual soldiers" 

and it grows more difficult with the size of the unit. A soldiers has basic tasks with 

known standards. If he can accomplish each task to the standard, then he is 

considered trained. A weapon system, such as an Attack Helicopter, is not as simple. 

It has a crew that must be evaluated, a maintenance condition, and a support structure 

that must keep it in operation. To what degree must the helicopter be combat ready? 

[Betts, 95] states that the "technological sophistication of many modern weapon 

systems means that very few are ever likely to be fully mission capable." So even at 

the weapon system level, readiness requires judgment. 

Now consider the battalion level with different types of soldiers, weapon 

systems, and missions. [Holz, 94] describes three problem areas when evaluating a 

unit: 



(1) Multitudes of missions and tasks. 

(2) Uniqueness of each unit and its post. 

(3) Difficulty of measuring leadership and cohesion. 

The answer has been to require all the available information from units and 

have them perform a subjective evaluation of the information within defined 

parameters. [Betts, 95] points out that "the volume and redundancy of the reporting 

requirements have sometimes been so great that they overburden commanders and 

reduce productivity." This is the second problem with the current report: it places a 

burden on the units. 

Third, there is a problem with shifting standards. In the 1980s, the Army 

converted from Ml tanks to M60 tanks. Readiness went down in each of the new 

units because units were transitioning to new types of equipment. The units might be 

required to have a different type or number of communication systems, for example. 

The regualations required that the units report a reduced level of readiness even 

though the Ml was vastly superior to the M60. Combat potential increased but 

readiness reports showed a marked decrease. The Army fields new equipment each 

year, and the readiness baseline moves with each fielding. It is difficult to measure 

progress with shifting standards. 

A related problem is the subjective nature of the standards. Commander's 

perceptions of readiness may differ as does their personal optimism. If the data 

indicates a unit is C2, one commander may downgrade the unit to C3 because he 

"feels" the unit has major deficiencies. Another commander may upgrade the same 

unit to Cl because he feels it has cohesion that will overcome its problems. 



Fourth, careerism tends to alter the results. [Betts, 95] states that self interest 

can move the ratings either direction. "New commanders would have an interest in a 

poor rating" so that they can show improvements later. "Commanders near the end of 

their tour would have an interest in a high rating" to demonstrate their managerial 

success. [Betts, 95] believes the "dominant tendency seems to be to inflate ratings." 

Finally, "there is no agreement on what indices provide the best measure of 

operational readiness" [Betts, 95]. In a report to Congress, the General Accounting 

Office recommended that the Secretary of Defense develop a more comprehensive 

readiness measurement system. This report included several indices that should be 

included, and directed the Defense Department to study additional indices. This work 

is ongoing [NSIAD, 95-29]. 



Chapter II 

Unit Status Report Survey 

Purpose 

I conducted this survey to determine the opinions of the officers who prepare 

the Unit Status Reports (USR) each month. In ten years of service, I have observed a 

common criticism that the USR requires a disproportionate amount of time compared 

to the results that filter back down to the unit. It was my intent to quantify this 

opinion. 

Collection of Data 

The collected data does not represent a random sample, and I have not 

included a margin of error. The internet was the primary source of information 

including both direct mailings to the Command and General Staff College at Fort 

Leavenworth, Kansas, and the United States Military Academy at West Point, and a 

posting to the Army Automation List Server. Approximately 150 surveys were sent 

to the academic institutions, and 110 officers responded. However, some of the 

responses indicated that the survey was not applicable. I used Email listings from the 

institution's World Wide Web page, so some of the addresses could have been out of 

date. The Automation List Server has over 500 subscribers, but it is impossible to say 

how many follow the daily postings. 60 officers responded. Additionally, surveys 

were distributed to individuals at Fort Campbell (15), Vanderbilt University's ROTC 



department (8), and the University of Kentucky's ROTC department (5). A total of 

164 surveys were collected from these sources. 

Results 

1. What is the highest rank at which you have had USR experience? 

Table 2-1 

MAJ CPT LT cwo Enlisted 
Percentage 41% 38% 15% 1 % 5% 

Number 68 62 24 1 9 

Figure 2-1 

Highest Rank at which you have had USR 
experience? 

0.6 

0.5 

a^i ap 

MAJ       CRT LT WO        ENL 

RANK 

The majority of surveys that were returned with "not applicable" were from 

enlisted service members and warrant officers. Only two lieutenants indicated that 

they had never had any USR experience. There were no officers above the rank of 

Lieutenant that had not had USR experience. 

There were several officers that had USR experience at the Lieutenant Colonel 

level. These were included in the Major totals. Seventy-nine percent of the surveys 

were completed by officers having a rank of Captain or greater. There are two 



reasons for this discrepancy, (1) Staff officers and commanders are usually 

responsible for the preparation of the USR, and most staff officers and commanders 

have these ranks. (2) The majority of the individuals contacted for the survey were 

commissioned officers. 

2. In what area do you have USR experience? 

Table 2-2: 

Personnel Training Logistics 
Percentage 70% 78% 57% 

Number 115 128 94 

Figure 2-2: 

Area in which you have USR experience? 

0.9 

0.8 

g   0.7 
O 
E   0.6 
Q. 

0.5 

0.4 
S1 S3 

STAFF SECTION 

S4 

Officers were allowed to check all areas in which they had experience. The 

majority of individuals had experience in all three of the subject areas, but training 

was the most common choice, followed by personnel and logistics. The S3 section 

typically has the most officers and assumes overall responsibility for the USR. 
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3. How many soldiers worked on the USR within your section (i.e., Personnel, 

Training, or Logistics)? 

Table 2-3 

1 2 3 4 5+ 
Percentage 7% 38% 36% 9% 10% 

Number 12 62 59 15 16 

Figure 2-3 

How many soldiers worked on the USR 
within your section? 

SOLDIERS 

The results formed a normal distribution with a mean response of 2.8 soldiers 

per section required to complete the USR and a standard deviation of 1.05. This 

indicates that for the three sections, an average of 8.4 soldiers per month were 

required together with the executive officer to oversee and coordinate the activities of 

the staff. 

4. How many hours did you dedicate to the USR each month? 

Table 2-4 
Hours: 0-8 9-16 17-24 25+ 

Percentage: 50% 32% 12% 1% 

11 



Number:                  83 54 20 7 

Figure 2-4: 

Number of hours you dedicated to the USR 
each month? 

c 
a 
a u 
Q. 

Using the midpoint of each range (4 for 0-8, 12 for 9-16), the mean number of 

hours reported was 9.5 per month per individual. 

5. To what extent did the Unit Status Report return tangible results to your 

unit? 

Eighty-nine percent of responders indicated that the Unit Status Report 

returned either Few or No positive benefits. Of those that indicated Few or Many, 

many stated that the process of reviewing the data was the primary benefit. Only a 

small percentage claimed that headquarters above division level ever responded to a 

problem. However, the USR is not primarily a tool for assisting units. It is intended 

to provide readiness information to Headquarters, Department of the Army (HQDA). 

AR 220-1 clearly establishes this in its objectives. The last objective listed is to 
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"assist HQDA and intermediate commands to allocate resources" [AR 220-1, 93]. 

The remaining objectives concern providing information about Army units. 

Table 2-5: 

None Few Many 
Percentage: 20% 69% 11% 

Number: 32 111 17 

Figure 2-5: 

6. Was the USR a training distracter? Selections were "Yes, the time could 

have been better utilized" or "No, it provided insights into the readiness of the unit." 

Responders were divided on this question. A few individuals pointed out that 

the questions was misleading because the USR provided both insights and 

distractions. My belief is that most selected the response they thought most relevant. 

Surprisingly, Majors selected Yes fifty-five percent of the time compared to the total 

mean of fifty-one percent. One could make an argument that experience in the Army 

would increase the understanding of USR requirements. As one moves up and 
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performs a variety of jobs, she would gain insights not seen by lower ranks. 

However, this data suggests that there is no statistical significance between rank and 

attitude. 

Table 2-6: 

Yes No 
Percent 51% 49% 

Number: 81 78 

Figure 2-6 

IS THE USR A TRAINING DISTRACTOR? 

o 

0.6 
0.58 |: 
0.56- 

< 0.54 -I 
£ 0.52 
UJ 0.5 „ 
g 0.48}; 
w 0.46 -i 
°- 0.44 

0.42 -P 
0.4 

YES 

RESPONSE 

NO 

7. Was USR data ever inflated in your unit? 

There are several reasons why data might not be accurately reported. A unit 

might overly emphasize a problem area in order to give it visibility and possibly speed 

a solution. This would be most probable in the personnel and equipment on-hand 

areas where higher level intervention is required for a solution. Another possibility is 

a unit failing to examine data until it is time to report it, and feeling that the data does 

not reflect the readiness of the unit. This scenario is more likely in the training area. 

14 



For example, units routinely spend several consecutive months in the field. It is 

difficult during this time to ensure that 90% of the soldiers take a physical fitness test; 

however, commanders are reluctant to report a low readiness rate because of physical 

fitness. To correct the deficiency, commanders can either falsify the report or have 

their soldiers take a fitness test with little warning. Of the three possible actions, (1) 

report the truth and face the consequences, (2) falsify the report, or (3) make the 

soldiers take a short notice fitness test, option 2 is sometimes selected. 

Equipment Readiness is a potential area for erroneous reporting as well. 

There is a huge reporting requirement and the standards, although clear, are often 

debatable. A unit might not report a piece of equipment as Not Mission Capable 

when the regulation states that it is. 

[Betts, 95] states that, "The difficulty associated with aggregating 

measurements in general, as well as the career incentives that those who gather data 

have to fabricate or distort, should make people skeptical about what ostensible 

information about readiness really shows." There exist certain truths: (1) Units make 

data collection errors, (2) Some data is over-emphasized so that it receives attention, 

and (3) Some data is omitted to protect careers. These truths tend to reduce the value 

of the readiness reports. 

In this poll, forty percent of Majors and Captains claimed that reports were 

inflated while only thirty percent of the Lieutenants made the same claim. It may be 

that the more experienced officers were more involved with decisions of this type. 

Table 2-7: 

15 



Percentage: 
Yes 
36% 

No 
64% 

Number: 57 101 

Figure 2-7: 

» 
Ol 
(0 
c 

a> 
a. 

0.7- 

0.6- 

0.5 - 

0.4- 

0.3- 

0.2- 

0.1 - 

0- 

Was the USR inflated in your unit? 

BHSMSBBBHSI 
BWWW^M^JPBÜ 

__            . 

(ppl      R1IL_ 
^^B       ^^n 

YES                                NO 

Response 

Thirty-six percent of responders indicated that the USR was inflated. It is possible 

that this number would have been higher had it been stressed that inflated meant up or 

down. Also, this does not include the errors that are made. 

8. Could an automated system that looks only at data evaluate unit 

readiness? 

Seventy-four percent of responders indicated that an automated system could 

not evaluate unit readiness. This shows the common belief that a commander 

"knows" his unit and gets a "feel" for it that numbers cannot measure. This "feel" not 

only includes certain intangibles such as morale, espirit, and teamwork, but it also 

includes an overall sense of mission accomplishment. For example, the unit might 
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have had a serviceability percentage that was seventy-five percent, but the commander 

thinks his motor pool is superb and would perform exceptionally in a wartime 

environment. No one argues with the collected statistics, but many claim that they do 

not capture the warfighting potential of the unit. 

Most surprisingly, sixty-three percent of those that said the USR was inflated 

and distracting also said that an automated system could not evaluate unit readiness. 

This shows how firmly entrenched the perception is that a commander must evaluate 

his unit. Even those that admit the current system is imperfect believe it is better than 

an automated system. 

Table 2-8: 

Yes No 
Percent: 26% 74% 
Number: 41 114 

Figure 2-8 

Could an Automated System that looks only at 
data evaluate unit readiness? 

o. 
o. 
0. 

0) 

=    0. 0) 

a o. fl) 
°-   0. 

0. 

YES 

Response 

Summary 
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1. The poll suggested that, on average, 9.4 personnel utilize 9.5 hours each 

month preparing the USR for a total of 89.3 man-hours. 

2. Eighty-nine percent reported that the USR returned Few or No positive 

benefits to the unit. 

3. Fifty-one percent reported that the USR was a training distracter. 

4. Thirty-six percent reported that the USR had been inflated in their units. 

5. Seventy-four percent said that an automated system that looked only at 

readiness could not replace the current system. Surprisingly, of those that said the 

USR was both a distracter and inflated, sixty-three percent still said that an automated 

system could not evaluate unit readiness. 

18 



Chapter III 

Criteria for Unit Assessment 

Overall Unit Ratings 

There are five categories of readiness, Cl, C2, C3, C4, and C5. C5 indicates a 

unit that is in a reorganization status either because it is disbanding or being created. 

It is not used by normal field units. The definitions of the categories are as follows: 

C1: The unit is fully combat ready. 

C2: The unit is combat ready but has minor deficiencies. 

C3: The unit has major deficiencies. 

C4: The unit is not ready for combat. 

Army Regulation 220-1 establishes the criteria for evaluating units. There are 

several rules that dictate levels, but there are many subjective areas.   Additionally, 

commanders can increase or decrease the overall level if he believes it is justifiable. 

The regulation groups the performance indicators into three areas: personnel, 

training, and logistics. Each area receives a rating that is equal to the lowest of its 

indicators, and the overall rating is equal to the lowest rating of the areas. The 

battalion commander is responsible for evaluating the data and determining the true 

readiness of the unit. The following sections describe the three areas. 

For the experiments described in this paper, an Army Lieutenant Colonel 

evaluated 120 data sets each comprising 38 indicators. He used the following 

descriptions, AR 220-1, and eighteen years of experience including a battalion 
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command to evaluate the data sets. Appendix A describes the data sets in greater 

detail. 

Personnel 

The purpose of the personnel section is to determine the status of the unit's 

personnel. A high rating indicates that the unit has enough soldiers, the soldiers have 

the right specialties and ranks, and the transition rate is sufficiently small. Each 

paragraph concludes with a description of the data as either continuous or discrete, 

and the range of the variable. 

1. Assigned Strength Percentage: The unit's assigned strength divided by the 

required strength. The required strength is based on the unit's MTOE (Modified 

Table of Organization and Equipment.) Continuous. Range: 0-100. 

Standards:       Cl - 100-90% 

C2- 89-80% 

C3 - 79-70% 

C4 - 69% and below. 

2. Available Strength Percentage: Available strength divided by the required 

strength. The number available is the number of assigned personnel minus those that 

are not able to deploy in support of the unit's wartime mission. Continuous. 

Range: 0-100. 

Standards:       Cl - 100-90% 

C2- 89-80% 

C3 - 79-70% 

20 



C4- 69% and below 

3. MOS Qualified Percentage: Qualified strength divided by the required 

strength. A soldier is not qualified if his MOS or his Additional Skill Identifier is not 

appropriate for his assignment. Soldiers can fill spaces that are two above and one 

below his/her current grade. Continuous. Range: 0-100. 

Standards:      Cl -100-85% 

C2- 84-75% 

C3 - 74-65% 

C4- 64% and below 

4. Available Senior Grade Percentage: The number of assigned 

commissioned, warrant, and noncommissioned officers divided by the required 

number.   Continuous. Range: 0-100. 

Standards:       Cl -100-85% 

C2- 84-75% 

C3 - 74-65% 

C4- 64% and below 

5. Personnel Turnover Rate: This indicator measures the turmoil caused by 

transitioning personnel. It is equal to the number of personnel that have joined the 

unit in the 3 months prior to the "as of date divided by the assigned strength. 

Continuous. Range: 0-100. 

Standard: This indicator is subjective, but less than 10% is optimal. 
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Logistics 

The purpose of the logistics section is to determine the availability and 

condition of the unit's equipment. The type and importance of the unit's equipment 

depends on the unit's mission. The rating consists of a supply area (S) and a 

maintenance area (R). 

1. Equipment On Hand (EOH): 

(a). Each type of equipment is assigned an Equipment Readiness Code 

(ERC) of P, A, B, or C. For each ERC P and A equipment type, divide the quantity 

on hand by the required quantity. Assign each line a rating based on the percentage 

fill: 

51 - 100-90% 

52 -    89-80% 

53 -   79-70% 

54 -    69-60% 

Count the number of lines for each category. Divide the number of S1, S2, S3, and 

S4 lines by the total number of lines. Continuous. Range: 0-100. 

Standards:       S1 - The number of S1 lines divided by the total number of 

lines is greater than or equal to 90% 

52 - The number of SI lines is less than 90% of the total, but 

the number of SI plus S2 lines divided by the total lines is 

greater than 85%. 

53 - The number of S1 plus S2 lines is less than 85% of the 

total, but the SI plus S2 plus S3 lines divided by 
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the total lines is greater than 80%. 

S4 - The number of S4 lines is greater than 20% of the total, or 

conditions for S3 are not met. 

(b). Pacing Items are computed separately. The EOH rating cannot be 

higher than the lowest S rating of the Pacing Items. A Pacing Item is identified by an 

ERC of P on the unit's MTOE. The data sets will include three pacing items per unit. 

Continuous. Range: 0-100. 

Standards:       SI -100-90% 

52- 89-80% 

53- 79-70% 

S4 - 69% and below 

2. Nuclear, Chemical, and Biological Equipment (NBC): The S level for six 

items of NBC equipment: Mask, Detector, Decontamination, Protective Suit, 

Medical, and Radiac. 

Standards:      SI - 100-90% 

52- 89-80% 

53- 79-70% 

S4 - 69% and below 

3. Equipment Serviceability: The total number of available hours (days) 

divided by the total number of possible hours (days) for reportable equipment. This 

measures the readiness of the unit's equipment. The equipment serviceability of 

aircraft is measured separately. Continuous. Range: 0-100. 

23 



Standards:       Rl - 100-90% Other than Aircraft 

R2- 89-70% 

R3 - 69-60% 

R4- 59% and below 

Standards:       Rl - 100-75% Aircraft 

R2- 74-60% 

R3 - 59-50% 

R4 - 49% and below 

4. Prescribed Loads List (PLL): The number of types of PLL that are zero 

balance (none on hand) divided by the total number of types. There is a separate 

indicator for ground and air items. Continuous. Range: 0-100. 

Standards:    Subjective evaluation with goal of less than 10% zero balance. 

Training 

The purpose of the training section is to determine the training status of the 

unit, i.e.,, its ability to accomplish the tasks identified in the unit's Mission Essential 

Tasks List (METL). 

1. METL evaluation: The unit has a minimum set of required tasks that they 

must be able to accomplish to fulfill their wartime mission. The unit assigns a grade 

of Trained, Partially Trained, or Untrained to these tasks. The number of METL tasks 

is determined by the unit, but the data sets will include three tasks for each unit. 

Discrete. Range: Trained, Partially, Untrained. 
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Standards: Subjective. Cl units should not have any Untrained METL Tasks 

and very few Partially Trained METL tasks. 

2. Physical Fitness Scores. Each soldier takes a PT test with a maximum 

score of 300 points. A soldier qualifies if he scores over 180 points. The following 

standards are for qualification. Continuous. Range 0-100, and 0-300. 

Standards:       Tl - 100-90% 

T2- 89-80% 

T3 - 79-70% 

T4- 69% and below 

Additionally, the assessors evaluate the average PT Score for a unit. 250 is a 

goal for unit average. 

3. Basic Rifle Marksmanship: A soldier is qualified if he/she receives a score 

of Expert, Sharpshooter, or Marksman. Standards represent percent qualified 

personnel. Continuous. Range: 0-100. 

Standards:       Tl - 100-90% 

T2- 89-80% 

T3 - 79-70% 

T4- 69% and below 

Percentage of Expert, Sharpshooter, and Marksman are subjective. 

4. Aviator Readiness: Each aviator has a Readiness Level of RL1, RL2, or 

RL3 for both his mission tasks and Night Vision Device tasks. Goals depend on the 

particular unit's mission. 
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Continuous. 

Range: 0-100. 

Standards: Tl - 100-90% 

Mission Tasks T2- 89-80% 

T3 - 79-70% 

T4- 69% and below 

Standards(NVD):       Depends on unit mission, but normally 30% 

5. Training Events: Measures the frequency of key training events. Listed as 

months since last (1) ARTEP, (2) NTC, CMTC, or Division Training Exercise, (3) 

Other Field Training Exercise, (4) Gunnery, and (5) Command Training Exercise. 

Discrete. Range: 0, 1, 2, 3 ,..., 24. 

Standard: Subjective. 

6. Crew Weapons: The number of trained crews divided by the number of 

required weapon systems. If there are more trained crews than weapon systems, then 

the value is recorded as 100 percent. The data sets will include three crew weapons. 

Continuous. Range: 0-100. 

Standards:       Tl - 100-90% 

T2- 89-80% 

T3 - 79-70% 

T4- 69% and below 

7. Leadership Training: Measure of the impact that the availability of 

qualified leaders is having on the unit. Discrete. Range: A, B, C, D 
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Standards:       Subjective. 

A - Insignificant Impact 

B - Minor Impact 

C - Major Impact 

D - Unable to meet the METL requirements because of a lack 

of qualified leaders 

Summary 

There are a total of thirty-eight indicators in this model. For the data used in 

this paper, personnel has five indicators. Logistics has fifteen indicators in six areas. 

Training and Readiness has eighteen indicators in 10 areas. The regulation stipulates 

that the overall rating can be no higher than the lowest of the three areas, and the 

individual area rating can be no higher than the lowest category. [Betts, 95] observes 

that since the "composite must equal the lowest of the individual ratings, it tends to 

understate readiness." The commander does have the flexibility to move up or down 

one rating (overall) to compensate for this tendency. 
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Table 3-1: Summary of Criteria 

Criteria Cl C2 C3 C4 Hard/Soft 
ASPER 100-90% 89-80% 79-70% Below 69% Hard 
AVPER 100-90% 89-80% 79-70% Below 69% Hard 
MOS% 100-85% 84-75% 74-65% Below 64% Soft 
SG% 100-85% 84-75% 74-65% Below 64% Soft 

Turnover Soft 

EOH 100-90% 89-85% 84-80% C4 > 20% See Chart 
PI-EOH 100-90% 89-80% 79-70% Below 69% Hard 

NBC EOH 100-90% 89-85% 84-80% C4 > 20% Soft 
ES 100-90% 89-80% 79-70% Below 69% Hard 

PI-ES 100-90% 89-80% 79-70% Below 69% Hard 
PLL-0-BAL <10% <20% <30% >30% Soft 

METL Eval Soft 
PT-Qual'd 100-90% 89-80% 79-70% Below 69% Hard 
PT-AVG >250 >230 >210 <210 Soft 

BRM-Qual'd 100-90% 89-80% 79-70% Below 69% Hard 
BRM % Exp Soft 
AVN RL1 % 100-90% 89-80% 79-70% Below 69% Hard 
AVN NVG% >30% Soft 
Months Since 

Event 
>18? Soft 

Crew 
Weapons 

100-90% 89-80% 79-70% Below 69% Soft 

Leadership 
Training 

A B C D Soft 
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Chapter IV 

Problem Statement 

Problem 

There exists a need to automate the collection and analysis of the information 

in the battalion and provide an intelligent judgment as to the status of the individual 

areas and the overall readiness of the unit. The advantages includes a common 

yardstick for all Army units rather than subjective evaluations, a reduction in the time 

required of the key leadership in producing the report, and a more comprehensive 

examination of the physical data. Only recently has the level of automation in the 

lower echelons of the Army become sufficient to realize this objective. 

If the standards are fully described in AR 220-1, why is it difficult to apply the 

standards to an Army unit? The difficulty is that the standards do not include the 

experience and judgment of the commander and staff. The commander does not look 

at a single category and deduce a rating. Rather, he uses a parallel approach to 

examining the features. Also, units have different missions and different 

requirements for personnel and equipment. The regulation can not cover every 

variation, so it is general enough to be used by all units. Finally, many standards are 

not fully specified. Mission Essential Task evaluation is probably the most important 

indicator of unit capability, but the evaluation standards are completely subjective. 

The evaluator for the data sets used in this model deviated from the regulation on 
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26% of the examples, and this was a controlled environment without the usual 

prejudices that accompany battalion command. 

In summary, we can classify the above problem as inaccessible, 

nondeterministic, episodic, highly dynamic, and continuous. The inputs to the system 

are constantly changing and soldiers continuously update their respective databases. 

Capturing a snapshot is a problem with the current system that an automated system 

could standardize. The report is episodic in that it is a monthly requirement, and last 

month's results do not impact upon the current month. An intelligent system should 

check for consistencies, however. Nondeterminism stems from the inability of the 

system to predict future actions based on current data. A maintenance status that is 

great today could fall catastrophically tomorrow.    Inaccessibility occurs because 

clerks either fail to update the databases or are not timely thus insuring that the system 

will never have a complete picture of the actual unit. Problems displaying these 

characteristics are very difficult for automated processes to solve, and many 

commanders believe that their intuition is a key factor in the evaluation process. 

Experimental Design 

For the experiments, I used generated data as described in Appendix A. I used 

the generated data rather than actual unit data because 

(1) Unit data would have had a confidential classification, 

(2) Units don't typically keep a database of the indicators, only the report 

itself, 

(3) It would be very difficult to obtain a balanced distribution of samples. 
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A previous battalion commander evaluated the data and assigned a 

classification based on the standards and his experience. The goal of the learning 

algorithms was to learn not only the rules but the experience. 

Each experiment used a stratified, cross validation technique dividing the data 

into six sections of twenty vectors. The experiment was repeated six times. Each 

time a different section comprised the test data while the remaining five sections 

comprised the training data. 

Overview of Systems 

I evaluated four learning algorithms: (1) Neural Networks using the 

backpropagation algorithm, (2) Decision Tree Induction, (3) Bayes's Classification, 

and (4) Classification based on the nearest neighbor concept. Additionally, I 

experimented with a binary classification scheme that evaluated the difficulty of 

determining whether a data set belonged to a particular class. For comparison, I also 

used a rule based classifier consisting of the "hard" standards described earlier. The 

rule based classifier correctly classified 74% of the data sets. 
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Chapter V 

Implementation Using Neural Nets 

Introduction to Neural Networks 

Appendix B provides a history and description of neural networks. They are 

the subject of much current research because they exhibit fault tolerance, have a 

highly parallel approach to problem solving, are adaptive, and can handle contextual 

information [Haykin, 1994]. A neural network can be given a set of input, output 

pairs and learn the relationship between the pairs even when the relationship is not 

known. They have proven ideal for feature detection because different cells in the 

network can be trained to identify features of a pattern. In this respect, neural 

networks seem ideal for this problem. 

Results 

Data Representation 

The raw data consisted of alpha-numeric characters that were not useful in the 

neural network context. Neural Networks can accept and output either binary or 

continuous (scaled between 0 and 1) numeric data, so representation of the data is 

obviously highly important.  I experimented with both continuous and binary 

schemes. 
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Continuous Inputs 

My first attempt was to scale the inputs to a range of 0 to 1 for input into the 

neural net. The output of the system was binary with 1-0-0-0 mapping to Cl, 0-1-0-0 

mapping to C2, 0-0-1-0 to C3, and 0-0-0-1 to C4. A sample input is 89% which was 

presented to the system as .89. 

After experimenting with several different network configurations, it became 

apparent that the net would not converge using continuous inputs. The error rate was 

consistently above 80% after six hours training. Annealing did not improve the 

convergence characteristics. Probably, the resolution of the inputs was such that 

continuous inputs were inappropriate. For example, an assigned personnel percentage 

of 90% is Cl while 89% is C2. This degree of resolution was impractical. While 

scaling the values within the certain ranges might improve performance, it would 

introduce an unacceptable bias to the data which might obscure judgments made by 

the expert. For example, if the expert decided that, based on the other data, an 89% 

data item was sufficiently close to 90% to achieve a Cl classification, the scaling 

would hide this criteria. 

Preprocessor 

Similar to [Gorman, 1988], I coded a preprocessor to convert the 38 input 

representation into a 149 input representation using domain knowledge. The 

processed information was binary with four bits representing each continuous input 

(three inputs required only three bits). I based the conversions on the individual 

standards given by Army regulations, technical manuals, field manuals, or standard 
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procedures for the specific categories. Figure 5 -1 is a graphical view of the problem 

structure. 

Model 

 ► 

Pre- 
processor 

 ► 
Classifier 

14910 10    4 

^ 

• 
• 
• 

• 
• 
0 

38 149 4 

Figure 5-1: Problem Structure 

Network Configuration: 

I first attempted a network structure consisting of 149 inputs, 38 hidden nodes, 

and four output nodes. The network converged with an accuracy of 88%, but it 

incorrectly classified each Cl unit. Of these errors, all but two contained outputs of 

0000, thus indicating no preference. The network classified two Cl units as C2 for 

the remaining errors. 

Increasing the number of hidden nodes to 76 compounded the problem. The 

network achieved no better than a 53% success rate and incorrectly classified all the 

Cl and C2 patterns. A hidden layer of fifty nodes returned similar results. 

Reducing the number of hidden nodes from 38 reduced the training time but 

did not improve the accuracy of the network. Performance declined with less than 20 

hidden nodes. 
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Next, I experimented with a second hidden layer. Using twenty nodes as a 

base from previous experiments, I achieved optimal performance with a network 

consisting of two hidden layers with ten nodes in each hidden layer. The network 

achieved 98% accuracy on the training data with 4 bit errors. The network incorrectly 

classified two patterns by one category (Cl to C2, and C3 to C2). Upon observation 

of the erroneous patterns, both errors were justifiable. Table 5-1 summarizes some of 

the results of the network configuration phase. 

Layout ETA alpha Bit Errors % Correct 

149-38-4 0.9 0.2 19 88% 
149-76- 4 0.9 0.2 66 53% 
149-50-4 0.9 0.2 66 53% 
149-20-4 0.9 0.2 17 86% 
149-15-4 0.7 0.1 18 87% 
149-10-4 0.7 0.1 24 83% 

149-12-8-4 0.7 0.1 10 94% 
149-14-6-4 0.7 0.1 5 97% 
149-10-10-4 0.7 0.1 4 98% 

Table 5-1 - Results of Various Network Configurations 

Generalization: 

After configuring a network that could obtain acceptable results on training 

data, I performed a six-fold cross validation to test generalization. The 120 data sets 

were divided into six groups of twenty. The experiment was repeated six times with 

each of the six subsets used once as the test set, with theother five subsets used as the 

training set. The results are listed in Figure 5-2. 
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Figure 5-2: Results of the Back Propagation Classifier 

Overall, 86% of the training patterns were correct with a 5% standard 

deviation, and 63% of the test patterns were correct with a 9% standard deviation over 

the six subsets. Table 5-2 shows the confusion matrix which is simply a matrix 

comparing the actual class to the neural networks classification. 

NN-> 
Actuali 

Cl C2 C3 C4 Percent 
Correct 

Cl 2 11 2 0 13% 
C2 4 46 2 0 88% 
C3 3 12 4 2 18% 
C4 2 2 3 25 78% 

Table 5-2: Confusion Matrix for the Neural Network Classifier 

It is apparent that the classifier was unable to identify Cl and C3 units. The 

reason is most likey the limited number of Cl and C3 training patterns available. As 

noted, it also requires more information to make a Cl determination, and there were 

limited examples from which to obtain this information. The fact that the matrix is 

not sparse indicates that there were insufficient examples. For the categories with the 

highest and second highest number of examples, the generalization results were 88% 

and 78%, respectively. 
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Weight Space Analysis 

Battalion Commanders and Army Planners desire to know not only the 

capability of a combat unit, but they must know the reasoning behind the 

classification. For the 149-10-10-4 network, there were a total of 1,654 free 

parameters. A complete Hinton or Bond [Haykin, 1994] diagram does not adequately 

relate the network's reasoning process. While they do tend to show behavior by 

describing the weight space, they fail to capture the key features that produced the 

classification. Ideally, we would like to know these key features. 

It is important to note that in the following analysis, I only considered the 

reasoning for an output node's excitation. The network is a one-hot system, meaning 

that only one output node is active per input pattern. One could also attempt to 

analyze why a unit was not assigned a classification based on the strength of the 

inhibitions; however, I examined the reasoning for excitation rather than inhibition. 

With this goal, I attempted to examine the weight space in combination with 

the network state for a given input. First, I selected a pattern that both the expert and 

the network classified as C4. Examination of the pattern revealed three variables 

(category) that strongly indicated a C4 unit, eight variables indicating a C3 unit, 

twelve indicating C2, and the remainder indicating Cl. 

Figure 5-3 is a weight-space graph of the network's activation for this pattern. 

The Graphs indicate the percentage activation for each binary input. I included only 

those inputs (of the 149) that significantly contributed to the. Zero and negative 

valued inputs tended to prevent activation of a neuron while positive inputs facilitated 

the activation. Figure 5-3 shows that Neurons (1,2) and (1,3) contributed 28% and 
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72%, respectively, to the activation of the output neuron, (2,4) for the C4 example. 

The (1,2) notation refers to the 2nd neuron in Layer 1. Layers are number from 0 to 2 

with 0 being the input layer. Neuron (0,9) contributed 90% to the activation of (1,3), 

and Neuron (0,8) contributed 10% to the activation of Neuron (1,3). 

From the figure it is possible to determine the primary bits responsible for the 

activation of the output neuron. Neuron (0,9) was responsible for 65% of the 

activation of the output neuron. Of this, Bit 110 was responsible for 18% or 12% of 

the output activation. Bit 59 was responsible for 12% of Neuron (0,9)'s activation or 

8% of the output activation. Likewise, Bit 71 was responsible for 6.5% of the output 

activation. Bit 110 was a ground serviceability rating that is considered C2. Bit 59 is 

for a Training item in the C3 range. Bit 71 is for a Training item in the C3 range. Of 

the three items considered C4, two, Bits 28 and 64, contributed to the activation of 

Neuron (0,9) (total of 9% of output activation). Of the ten inputs contributing to the 

activation of node (0,9), five were C3 items. Since this node was primarily 

responsible for a C4 classification, I can only conclude that this combination of C2, 

C3, and C4 items suggested a C4 classification, and not a set of C4 specific items. 

Second, I selected a pattern that the network correctly classified as C3. Figure 

5-4 shows that it required a more complicated analysis to produce the C3 

classification. This is justifiable because a higher classification requires that all the 

inputs be in a certain range. For example, if a unit had a high personnel and logistical 

classification but a poor training classification, it would receive a poor overall 

classification. In this sense, the classifier needs to verify that the unit meets all the 
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requirements before it assigns a high classification. On the other hand, only a few 

indications of poor performance is enough to justify a lower classification. 

Bit 110 produced the strongest contribution to the output neuron 

contributing 11% to the output activation. This item would individually indicate a C2 

unit, however. In fact, of the seven bits primarily responsible for the activation of 

Neuron (0,9), only one is tuned to a C3 indicator. This implies that a combination of 

features is required for this classification. 

Also of note is Neuron (0,5). It contributed substantially to each of the 

neurons except Neuron (1,4). The features detected by this neuron were considered 

by three neurons in the next layer where Neuron (1,4) considered Neuron (0,9) almost 

exclusively. 

Conclusion 

The neural network achieved an 86% performance rate on the training data 

with a 5% standard deviation and a 63% performance rate on the test data with a 9% 

standard deviation. The majority of the generalization errors occurred with Cl and 

C3 units for which there were limited training examples. For C2 and C4 units, the 

generalization percentages were 88% and 78%, respectively. 

A neural network could be constructed with the combined expertise of various 

commanders and staffs and used to provide a consistent classification for Army units. 

However, neural networks have a major limitation. Because neural networks use a 

highly parallel approach to selecting combinations of features within an input set, it is 

difficult to determine the exact reasoning for a classification. A simple example 

39 



revealed the inherent difficulty in identifying key features. Additionally, it was shown 

that the network required a more complicated analysis of the data to assign units 

higher classifications. 
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Chapter VI 

Decision Tree Induction 

Introduction 

Decision Tree Induction is quite simple, yet has been very successful for many 

applications [Michie, 1986], [Sammut, 1992]. The language of decision trees is 

propositional which means that rules comprised of conjunctions and disjunction's 

determine classifications. Figure 6-1 is an example of a decision tree. 

o 
e 
0 

Personnel 

Cl 
C2 

> 
C3\ 

r 
■^C4 

Training 
• 
e C4 

Cl / 
^ ̂  

Logistics 
01   C3   C4 

e        e          e 

Cl 
/ 
^ 

o        e          o 
.                 e        o          e 

Cl 
^,Z,       V_J>       ^,t 
so          e 
e        o          e 
e        e e 

Figure 6-1: Sample Decision Tree 

This tree has two visible leaves. One path begins with Personnel and follows 

a Cl arc to Training, then a Cl arc to Logistics, and finally a Cl arc to the leaf, Cl. 

Cl is thus the classification for this data set. The equivalent propositional rule is 

(Personnel Status - Cl) and (Training Status = Cl) and (Logistics Status = Cl)-> Cl. 
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This rule has three conjuncts, and for each variable of each conjunct, there are four 

possible classifications (i.e., Cl, C2, C3, or C4). This implies sixty-four rules for this 

simple, discrete example. The following rule might indicate C4: 

(Personnel = C4) and (Training = Cl or C2 or C3 or C4) and 

(Logistics = Cl or C2 or C3 or C4) => C4. 

The latter sentence has three conjuncts and eight disjuncts and is equivalent to 

(Personnel = C4) => C4. 

The illustration is simple because the decisions at each node are discrete, and 

there are a limited number of them. As the tree grows and continuously valued 

variables are added, it becomes necessary to prune the tree and capture only the 

essentials of the decision making process. This eliminates any decisions that do not 

influence the final outcome. Induction learning looks at the examples and constructs 

a decision tree that can be used to make classifications. This tree can also be 

expressed as a set of rules. 

C4.5 

C4.5 is a machine learning algorithm that uses decision tree induction for 

classification. The code and a description of the algorithm is provided in [Quinlan, 

92]. He states that a "decision tree can be used to classify a case by starting at the root 

of the tree and moving through it until a leaf is encountered...the class of the case is 

predicted to be that recorded at the leaf." C4.5 generates output in both "decision 

tree" and "rules" formats with accuracy data and data on the utility of the individual 

rules. 
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Data Representation 

C4.5 was able to process the data in its original form. Discrete variables were 

inputted as alphanumeric quantities, and continuous variables were inputted as 

floating point numbers. 

Results 

The results of the six-fold cross validation are given in Figure 6-2. The mean 

for the six trials was 86% accuracy for the training sets and 67% for the test sets with 

a standard deviation of 5% and 9%, respectively. C4.5 generated only seven rules, 

and the most complex of these consisted of only five conjuncts. Clearly, the poor 

performance on the test sets is attributable to the limited number and complexity of 

the rules. 

Not only were the rules overly simplistic, but they were not an accurate model. 

One rule indicated that no more than 82% of the unit could fire expert if the unit were 

to retain its Cl evaluation. Certain ranges for values were inconsistent within the 

rules, but there were several indications of success. It is possible that with many 

additional training patterns, the algorithm might produce rules that truly depict the 

nature of the decision rather than coincidental information. 
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C4.5 Decision Tree Induction 

j Training Sets 

I Test Sets 

Figure 6-2: Results of Decision Tree Induction 

It was suggested in Chapter 5 that it is easier to classify a unit with major 

deficiencies (C3 or C4) than one that has few or no deficiencies (Cl or C2). This is 

even more significant with decision trees. If an aviation unit, for example, only has 

50% of its aircraft, then the unit is easily classified as C4. It is unnecessary to search 

further in the decision tree. However, if the unit has only a few deficiencies, then a 

complete search is necessary to ensure a Cl or C2 classification. 

With 120 examples, C4.5 was unable to create rules that were sufficiently 

complex to classify Cl units. Only 66.7% of Cl training examples were correct, yet 

90.6% of the C4 classifications were correct. This disparity is easily explained by the 

lack of depth in the decision tree. 

Table 6-1 is a Confusion Matrix for the test cases using Decision Tree 

Induction. It is clear from the dispersion that the rules were not sufficiently complex 

to classify the Cl and C3 patterns. The classifier identified less than half correctly 

and inconsistent distributed the errors. 
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Actual-» 
Classifier-l 

Cl C2 C3 C4 Percentage 
Correct 

Cl 7 6 1 1 47% 
C2 5 41 4 1 80% 
C3 2 6 9 5 41% 
C4 0 3 11 18 56% 

Table 6-1: Confusion Matrix for Decision Tree Induction 

Decision Tree Algorithms apply Ockham's Razor [Russell, 95] which 

mandates the use of the simplest rule that correctly classifies the majority of the 

examples. However, this can cause poor generalization if the rules are overly 

simplistic. For the discrete Unit Classification Problem, there are over 7 X 1022 

possible combinations. Surely, it is impossible to train on each of the possibilities, 

and ideally we would like to increase the number of partitions of each attribute which 

would increase the number of possible patterns. 

Although there have been estimates on the required size of training patterns 

[Vapnik, 71], these estimates tend to be large, upper bounds. The best solution for 

minimizing the number of required training patterns is to incorporate known 

standards into the rule set and train on patterns that differ from the known standards. 

This approach could combine the benefits of expert systems with machine learning 

technology to assist unit classification. 
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Chapter VII 

Simple Bayes's Classifier 

Introduction 

Another often used method is Bayes's Rule which is based in probability and 

statistics. Bayes's Rule states that 

.       ,     P(B \A)P(A) 
P(A\B) = ^—/.v  J 

v       ' P(B) 

P(A I B) is the probability of an event A given the evidence B. P(B I A) is the 

probability of B given A. P(B) is the probability of B, and P(A) is the probability of 

A. For the Unit Classification Problem, we want to know the probability that a unit is 

Cl given its data, i.e.,, 

. x     PiData \Class)P(Class) 
P( Class \Data) = —K- ;—± '- v ' P(Data) 

This formula will allow the computation of the probabilities of each class. 

The algorithm then assigns the pattern the classification having the highest relative 

probability. Since the probabilities are relative, the P(Data) is the same for each term 

and can be eliminated. The equation thus reduces to 

P(Class\ Data) °c P(Data\Oass) P(Class) 

Assuming data independence, the P(Data I Class) can be expressed as the 

product of the individual probabilities, i.e.,, 

P(ciass\Data) oc P(Data\\Class)* P(Datai\Class)*--- * 

PyDatan \Class) 
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for n data items. The algorithm then assigns the classification according to the 

highest relative likelihood. 

The underlying assumption is data independence. Independence implies that 

the probability, P(Datai I Cl) = P(Dataj), or equivalently P(C11 Data;) = P(C1). This 

assumption might not be valid. For example, assume that a unit has an assigned 

personnel rating of 89%. This would suggest a C2 classification with a high 

probability. However, if the personnel available percentage were 100%, then the 

assigned shortage would not be as significant. 

Algorithm 

First, the discretized input space was compared to the expert's classification 

for each input. For each attribute, there were four ranges and four possible 

classifications. Each attribute, therefore, had 16 associated probabilities. Table 7-1 is 

a sample for the Assigned Personnel Attribute. 

Rangei P(Range; 1 Cl) P(Range; 1 C2) P(Rangei I C3) P(Range; 1 C4) 
1 1.00 .67 .45 .37 
2 0.00 .33 .45 .22 
3 0.00 0.00 .10 .25 
4 0.00 0.00 .00 .16 

Table 7-1: Probability Table for the Assigned Personnel Table 

In Table 7-1, each column sums to 1.00. For each example that the expert 

classified Cl, the Assigned Personnel Percentage was in Range 1. This indicates that 

the algorithm could not assign a classification of Cl unless the Assigned Personnel 

Percentage was in Range 1. For the examples that the expert classified C2, 67% were 

in Range 1 and 33% were in Range 2. For the C4 examples, the spread was evenly 
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distributed over the entire set of ranges. The entire probability table consisted of 593 

probabilities. 

For each pattern, the algorithm computed the probability of each class (1-4) 

using the probability table. There is a probability associated with each bit in the input 

pattern. For each bit, the corresponding probabilities were multiplied to form an 

aggregate probability. This product was then multiplied by the probability of the class 

to form the probability that the pattern belonged to the target class. The algorithm 

assigned the pattern to the classification having the highest probability. 

Data Representation 

The Bayes's Classifier used the discretized data described in Chapter 5. Each 

data set is represented by 149 bits corresponding to the 38 indicators. Each indicator 

has three or four bits, and the bit indicates if the indicator is in that range. For 

example, the raw data for a METL Task can either be T, P, or U. T would be 

represented as 1-0-0. P is 0-1-0, and U is 0-0-1 (see page 24). 

Results 

Figure 7-1 contains the results of the Simple Bayes's Classifier. 
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Simple Bayes's Classifier 

0. 

1 Training Sets 

I Test Sets 

Figure 7-1: Simple Bayes's Classifier Results 

For the six-fold cross-validation, the average percentage correct was 92% for the 

training data with a standard deviation of 2 %. The test set data was 69% correct 

with a 10% standard deviation. 

Table 7-2 is a Confusion Matrix for the Simple Bayes's Classifier. 

Actual—» 
Classifier^ 

Cl C2 C3 C4 Percentage 
Correct 

Cl 4 10 1 0 27% 
C2 2 44 4 1 86% 
C3 0 5 9 8 41% 
C4 5 1 0 26 82% 

Table 7-2: Confusion Matrix for the Simple Bayes's Classifier 

Table 7-2 shows that the C2 and the C4 classifications were most accurate. 

86% of C2 items were classified correctly, and 81% of C4 items were accurate. 

However, the Cl and C3 items did not perform as well. Only 27% of Cl items were 

identified correctly along with 41% of the C3 items. 

As discussed, classification of Cl items tends to be less accurate than the 

remaining classes as a result of the analysis. Additionally, the number of C2 (51) and 

C4 (32) patterns tend to improve their accuracy. The classifier identified 60 items as 
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C2. Interestingly, five C4 patterns (15%) were identified as Cl. This is the most 

severe mistake that can be made, classifying units that are not ready for combat as 

having no deficiencies. 

Conclusions 

The Simple Bayes's Classifier classified 69% of the test cases correctly. The 

majority of errors were from the Cl and C3 patterns. As previously noted, Cl 

classifications tend to be more difficult because of the exhaustive evaluation of data. 

However, the limited number of C3 and Cl training patterns reduced generalization. 
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Chapter VIII 

Nearest Neighbor Classifier 

Introduction 

Another simple method is classification based on the location of the input 

vector relative to an ideal class vector. The formula 

distance=J(x\-x\) + \X2-xzj ■■■{xn-Xnj 

can be used to obtain the distance from the input vector to each of the average class 

vectors. xn is the nth element of the target vector. Each element corresponds to a 

particular category of the unit, for example, a training, logistics, or personnel category. 

xnbar is the nth element of the classification vector. There is a classification vector for 

each of the four classes. The difference between the input category and each 

classification vector is squared. The distance to the classification vector is the square 

root of the sum of the squared differences. The classifier assigns the input vector to 

the classification having the smallest difference, i.e., the nearest neighbor among the 

ideal class vectors. 

Data Representation 

The classification vectors are derived from scaled training data. The raw data 

was scaled and modified to fit a normal percentage (0 to 1.0). Each data set consisted 

of 38 scaled, continuous indicators. The Cl range was 0.9 to 1.0. The C2 range was 

0.8 to 0.9. The C3 range was 0.7 to 0.8, and the C4 range was less than 0.7. Once 

again, I used a six-fold cross validation with 20 patterns in each test set. The 
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algorithm used the remaining 100 patterns to determine the four classification vectors 

by simply averaging each element over the 100 patterns based on its class. 

Results 

Figure 8-1 shows the results of the six trials. The classifier correctly identified 

73% of the test patterns with a standard deviation of 11 percent. 

Nearest Neighbor Classifier 

8     50% --$; 
£     40%       •" 

Trial        Trial        Trial        Trial        Trial        Trial 
1: 2: 3: 4: 5: 6: 

Trial 

0 Training H Test 

Figure 8-1: Results of the Nearest Neighbor Classifier 

Figure 8-2 shows the list plot for the average classification vectors. As 

expected, Cl units tend to have higher values than the other units. However, there is a 

substantial amount of overlap among the Cl, C2, and C3 units. In fact, the Cl and C2 

curves are highly similar over the 38 categories. The C4 plot tended to be well below 

the other three, and this resulted in an 81% accuracy rate for C4 test patterns. Note 

that the Cl, C2, and C3 patterns are centered at or above the 85% line. The data was 

scaled so that 80% to 90% would indicate a C2 unit, yet the C3 plot is centered at 

85%. 
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Figure 8-2: List Plot of the Average Classification Vectors 

As expected, this approach resulted in a sparse confusion matrix (Table 8-1). 

The classifier incorrectly classified a C4 unit as Cl, but this was the only test pattern 

to err by more than one category. This classifier correctly classified 80% of the Cl 

units and 68% of the C3 units. These figures are higher than previous results. The 

limited number of training samples was not as severe an obstacle to this algorithm 

because the samples provided a reasonable estimate to the mean; however, the 

classifier was only correct on 71% of C2 units. 

NNC^ 
Actual 1 

Cl C2 C3 C4 Percent 
Correct 

Cl 12 3 0 0 80% 

C2 12 36 3 0 71% 

C3 0 5 15 2 68% 

C4 0 1 5 26 81% 
Table 8-1: Confusion Matrix for the Nearest Neighbor Classifier 

The majority of the C2 misclassifications were to the Cl category. This 

highlights a bias with which the nearest neighbor classifier has trouble. Overall trends 
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tend to support a particular classification, but individual categories are the basis for the 

final decision. The nearest neighbor classifier does not weight one category over 

another and does not attempt to distinguish between the categories. [Aha, 1991] 

states that nearest neighbor classifiers are (1) intolerant of irrelevant attributes, (2) 

intolerant of noise, (3) have trouble with nominal valued data, and (4) do not provide 

much knowledge of the structure of the data. 

By normalizing the data, we can minimize problem (3) and Figure 8-2 does 

indicate the structure of the data. As discussed, however, irrelevant and relevant 

attributes are not distinguished. The low performance on the training set (78% 

correct) justifies this claim. 

Conclusion 

The nearest neighbor classifier identified 73% of the test patterns correctly, but 

only identified 78% of the training patterns. This approach is successful at establishing 

the trend of a unit, but as [Aha, 1991] argues, it can not separate the relevant from the 

irrelevant attributes. All categories possess the same level of importance in this 

classification algorithm, even though the expert weighted certain categories higher 

than others.   Additionally, it does not possess the capability to filter noisy data. 
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Chapter IX 

Trees 

Introduction 

Having examined the classification of 120 units using four types of classifiers, a 

natural question arises concerning the distinction of one particular class from another. 

The listplot of means in Figure 8-2 suggests that the class relationships are intricate. 

One method of testing the similarity of classes is to use a tree classification 

scheme. Using the existing data, change the desired values to a one/zero format where 

one indicates that the current pattern is a member of the target class and zero indicates 

that it is not. Use the training set four times, once for each class. We can then 

construct a simple classifier that queries the target vector four times. For example, if 

the Cl query is positive then the algorithm returns Cl. If the Cl query is negative 

then test for C2. The algorithm returns C2 on a positive match and checks for C3 on a 

negative match. If the C3 query is negative, then check for a C4 match. If the C4 

result is negative, then the classification was inconclusive. Using the Bayes's 

classifier, decision tree induction algorithm, and Perceptrons, I constructed tree 

classifiers that followed this description. 

57 



Data Representation 

The data representation varied according to the base classifier. The Perceptron 

Tree and the modified Bayes's Classifier used the binary representation described in 

Chapter 5, and the Modified Decision Tree used raw data. 

Results 

The performance of the tree classifiers closely imitated the performance 

described in earlier chapters. The Bayes's classifier had the best test results because of 

a 98% success rate on C2 patterns and 81% rate for C4 patterns. Cl patterns were 

recognized correctly 40% of the time while the C3 success rate was only 32%. 

Overall, 74% of the test patterns were identified using a six-fold cross validation. 

The Decision Tree results were highly similar. The algorithm achieved the 

greatest success for the C2 (76%) and C4 (75%) patterns, with poor performance for 

the C3 (41%) and Cl (33%) patterns. There is evidence that the lack of Cl and C3 

patterns was responsible for the low success rates. In fact, the trained Cl classifier 

was 88% correct when given a test case. It tended to return negative for every 

pattern. While this method achieved a high success rate individually, it was highly 

ineffective in the tree context. The 105 negative/ 15 positive balance simply was not 

sufficient to produce adequate rules. 

Finally, I constructed a Perceptron tree algorithm taking advantage of the 

preprocessed data described in Chapter 5. Perceptrons are valuable only for problems 
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that are linearly separable, so we would not expect the results to be very good. In 

fact, they were only slightly lower than previous results. By taking advantage of 

domain knowledge, certain weights can be fixed to look for certain attributes. When a 

key attribute is in a given range, then a fixed weight can highly influence the 

classification. Using fixed weights, the Perceptron tree algorithm identified 81% of C4 

patterns and 76% of C2 patterns. Once again, Cl and C3 patterns were lower at 40% 

and 27%, respectively. Figure 9-1 summarizes the tree classification results. 

Tree Classification Results 

c 
a 
2 
ai 
a 

B Bayes's Classifier 

E3 Decision Tree 

□ Perceptrons 

Class 

Figure 9-1: Tree Classification Results 

Conclusions 

A binary tree classification approach did not improve the performance 

characteristics significantly. Although the individual classifiers were able to obtain 

high success rates, when combined in a tree classifier, the overall performance was 
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similar to the aggregate classifiers. Perceptron trees achieved modest results despite 

their linearity limitation. This limitation was overcome using preprocessed data and 

fixed weights. Using raw data and unconstrained weights, the Perceptrons were 

unable to converge. No classifier was overwhelmingly superior in overall 

performance, but the Bayes's Classifier did maintain a slight performance edge. 
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Chapter X 

Comparison of Classifiers Using 

Selected Variables 

Introduction 

In previous experiments, the assumption has been that the data set was 

complete and noiseless. In reality, units will often have both incomplete and noisy data 

from which to make their assessments. Often the noise will be transparent because it 

will be hidden deep within a variable. For example, a clerk might enter an erroneous 

value for a single piece of equipment that alters the overall equipment serviceability. A 

company within a battalion might be on a training exercise during the report, and some 

of their data might not be available. In fact, one of the arguments against an 

automated evaluator is that the commander and staff "know" the unit and can 

compensate for data inaccuracies. This chapter explores the performance of the 

classifiers using incomplete data sets. Noise is not specifically addressed because it is 

an inherent part of the data that is impossible to distinguish. In fact, the statistical 

nature of the modeling algorithm mitigates problems associated with noise. 

I chose three, six, and nine variables from a total of thirty-eight in the complete 

data set. For the set of three, there is one item from each of the three areas: 

personnel, training, and logistics. For the set of six, there are two from each area; and 

for the set of nine, there are 3 from each area. I chose the variables that demonstrated 

the best separation of the data given two main indicators. The first indicator was 
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correlation of classification and variable, i.e., how closely the unit classification varied 

with the value of the variable. The second indicator was the separation provided by 

the normalized means. Figure 8-2 shows a continuous plot of the normalized means. 

The selected variables provided the maximum separation between classes. 

Results 

Figure 10-1 shows the classification results when using three, six, and nine 

variables together with the total results. All the classifiers obtained their lowest 

success rates when using three variables. The Bayes's Classifier correctly classified 

75% of the test patterns when using only six variables while the average for the other 

three was 63%. When using nine variables, the Neural Net was successful on 84% of 

the test patterns, exceeding the other three classifiers. 

Results for Selected Variables 

■ Bayes's Classifier   —&~~ Decision Tree 

Nearest Neighbor   ■■■■¥. Neural Net 

Figure 10-1: Results for Selected Variables 

Perhaps more interesting is the inconsistencies relating to the order and 

deviation of the classifiers. It is apparent from Figure 10-1 and Figure 10-2 that no 

one classifier is inherently better suited to this task. Rather, they depend on the 
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information available. Success rates had a much higher deviation with six and nine 

variables compared to the extremes of three and thirty-eight. 

Standard Deviation for Selected Variables 

•Std Deviation 

6 9 

Number of Variables 

Figure 10-2: Standard Deviation for Selected Variables 

Additionally, some classifiers performed better on particular classes. Figure 

10-3 shows the combined results of the three, six, nine, and total experiments for each 

class. The Nearest Neighbor Algorithm far exceeded the norm for classifying Cl 

Combined Confusion Matrix 

ElBayes's Classifier 

B Decision Tree 

D Nearest Neighbor 

0 Neural Net 

Figure 10-3: Comparison of Classifiers Combined Performance Per Class 
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units. Despite lower than average rates for most classes, the Decision Tree algorithm 

performed very well on C2 units. The success rate for C3 units was below 50% for 

each classifier, and the Neural Net achieved the highest rate for C4 units. Overall, the 

Bayes's Classifier had the highest average rate. The preceding demonstrates the 

inconsistencies of the algorithms. 

Conclusions 

In this chapter, I examined the performance of the four classification 

algorithms using reduced data sets. Using three variables and the complete set of 38, 

the standard deviation for the classifiers was much lower than for six and nine 

variables. The variation and the lack of consistent ordering indicated that no one 

classifier was best suited to this classification task. C2 and C4 units experienced much 

higher classification rates on average, but the Nearest Neighbor algorithm achieved the 

most consistent success rates. 
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Chapter XI 

Conclusion 

The original problem was to automate the analysis of the information in the 

battalion and provide an intelligent judgment as to the status of the individual areas 

and the overall readiness of the unit. It would be an easy problem if readiness were 

clearly defined. Unfortunately, evaluating readiness is a difficult problem that requires 

experience and judgment. The task is, therefore, to capture this experience and 

judgment. To simulate a unit, I created a model consisting of 38 indicators that 

represented the data in a battalion. An Army Lieutenant Colonel evaluated the combat 

potential of 120 of these units based on the data. He agreed with the hard rules listed 

in AR 220-1 for 74% of the units. For the others, he used his experience and 

judgment and ability to combine a combination of indicators to either upgrade or 

downgrade the readiness potential. Experiments were conducted using neural 

network, decision tree, Bayes's Classifier, and nearest neighbor algorithms. There 

were several trends among the algorithms: 

(1) Performance varied from 63% to 84% on previously unseen data. No 

single classifier was significantly better than the others. 

(2) Performance on units classified as C2 and C4 was vastly superior to units 

classified as Cl or C3. This corresponds to the number of training samples available. 
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The nearest neighbor algorithm achieved the best success rates for the Cl and C3 

classes. 

(3) Performance did not decline when the number of indicators was reduced 

significantly. Two of the classifiers showed increased performance with a reduction of 

indicators. The standard deviation in the performance was lowest when all the 

indicators were available. 

(4) Two of the classifiers required preprocessed data. The preprocessing did 

not alter the original data, but it did incorporate preexisting knowledge of the domain. 

(5) A requirement exists to justify the reasoning behind a classification. The 

reasoning used by neural networks is more difficult to discern than the other 

algorithms. 

The technology exists to automate the classification of Army Battalions, and 

the equipment to automate the collection is in the final stages of fielding. However, 

there is a majority of individuals who would argue that we should not take the 

evaluation process away from the commander. He has the feel of the unit, knows the 

soldiers, and can see the equipment. Although most of the objectives of the USR 

might be met without a commander's insights, surely commitment to battle necessitates 

his judgment. 

What the technology offers and what Force XXI forecasts is not replacing the 

commander's judgment but creating an environment that enhances his abilities in real 

time. Intelligent daemons can constantly retrieve and extract information from the 

personnel, training, and logistical databases, updating assessments as the data changes. 
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Knowledge Discovery algorithms (Appendix B) can combine the data to produce 

previously unknown conclusions. The commander can have a natural language 

interface for complicated queries such as maintenance prediction based on current 

operating conditions. This status can then be uploaded to higher echelons to update 

their databases for use by their intelligent algorithms. These daemons would operate 

in the background constantly updating and advising thereby reducing the requirement 

for excessive staff personnel and increasing the number of combat personnel. This 

information would be mobile, not subject to the upheaval caused by the movement of 

the operations center. This paper demonstrates the potential for intelligent algorithms 

using current machine learning technology in the domain of readiness classification. 
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Appendix A 

Unit Modeling Algorithm 

Purpose 

I elected to generate data rather than use existing data for two reasons. First, 

existing data has a confidential classification. This is not an insurmountable problem, 

but confidential information does restrict dissemination and collaboration. Second, 

existing data would not properly cover the data spectrum. Most units would center 

around C2 with a few low end Cl and a few C3. Very few C4 data sets would be 

available. The problem is that if we do not expose the learning system to the entire 

range of potential inputs, it may classify a pattern obviously located on the extremes of 

the output set incorrectly. 

But does generated data lose the knowledge contained in actual data? 

Certainly, there are input values that are strongly correlated. Examples include the 

senior grade available percentage from the personnel data set and the leadership 

training rating from the training data set. Experienced leaders tend to be more highly 

trained, and this correlation was included in the algorithm. Most likely, there were 

correlated categories that were not properly modeled. It is, in fact, unlikely that we 

could define all the relationships between data elements. This is an inherent 

complexity in the problem. 

Is this a limitation? I do not believe so because the expert had complete 

visibility of the data, and was able to judge the perceived inconsistencies. In fact, he 
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could use these inconsistencies to improve or reduce his rating. This is what a field 

commander might do if he realizes a low score in Physical Training was due to 

excessive field time over the last six months and not the overall physical condition of 

his soldiers. 

This raises the issue of whether all the relevant data is included. Certainly, all 

the information specified by AR 220-1 is included with the exception of funding issues, 

training facilities, etc. These areas address reasons for conditions rather than the 

condition of the unit, so they were intentionally omitted. The question is whether 

essential unit indicators were omitted, and it is a question that is difficult to answer. 

Many argue that cohesion, espirit, teamwork and other intangibles are essential to unit 

evaluation. I would only comment that, if valid indicators, these should translate into 

measurable areas such as physical training, marksmanship, and maintenance. 

Algorithm 

The unit modeling algorithm produced 120 units consisting of 38 individual 

data elements. The data elements consisted of five for personnel, eighteen for training, 

and fifteen for logistics. 

The algorithm consists of four major components as listed in Table A-l. The 

algorithm first randomly biased the unit toward a particular rating. The objective was 

biases consisting of fifty percent Cl, twenty percent C2, twenty percent C3, and ten 

percent C4. The bias established a range for the indicators, but within the range the 

indicator received a random value. This design is based on actual practice, and 

correlates to certain units receiving higher priority for resources than other units. For 

69 



example, certain units are designated to maintain a high readiness rating. These are 

rapid deployment units, and receive a high priority on their resource requests. A bias 

of Cl corresponds to this priority. Other units receive a lower priority for their 

request. These percentages evolved as I attempted to achieve a normal distribution. 

Table A-l: Unit Modeling Algorithm   
For i=l to 120 do 

begin 

(1) Determine the bias for the unit. 

(2) Based on the bias, generate the personnel data and normalize it. 

(3) Based on the bias, generate the training data and normalize it. 

(4) Based on the bias, generate the logistics data and normalize it. 

end; 

A normal percentage consisted of a value between 0 and 100. If a unit had a 

Cl bias, then the normal percentage was randomly distributed between 85 and 100. A 

C2 bias produced a normal percentage in the range of 75 to 100, and so forth for C3 

and C4. Table A-2 displays the probability distribution of the normal percentage as a 

function of the bias. The first column shows the bias. The second column shows the 

range that an indicator measured in a normal percentage can be assigned. In other 

words, if a data set has a Cl bias, then an indicator measured in a normal percentage is 

randomly assigned a value in the range 85-100. The normal range for Cl is 90 -100, 

so the probability that the value is Cl is 10/15 or 66%. The probability that the value 

is in the C2 range is 5/15 or 33%. 
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Table A-2: Bias Probability Distribution 

Bias Range Probability 
Cl 

Probability 
C2 

Probability 
C3 

Probability 
C4 

Cl 85-100 66% 33% 0% 0% 

C2 75-100 40% 40% 20% 0% 

C3 65-100 29% 29% 29% 14% 

C4 55-100 22% 22% 22% 33% 

For the categories that were not evaluated with a normal percentage, similar 

strategies forced ratings towards this distribution. For the METL task example, the 

domain consisted of T for trained, P for partially trained, and U for untrained. The 

distributions were randomly assigned according to the strategy in Table A-3. 

Table A-3: METL Task Distribution 

Bias Probability T Probability P Probability U 

Cl 70% 20% 10% 

C2 65% 20% 15% 

C3 60% 20% 20% 

C4 20% 40% 40% 

The normalization process employed a simple scheme to enforce data 

dependencies. For example, the available strength percentage can never exceed the 

assigned strength percentage. The probability that a unit is trained in a METL task is 

correlated to the months since certain training events. The algorithm attempted to 

resolve these dependencies. However, it is dependent on the heuristic evaluation of 

the dependencies. I am confident that not all the dependencies are known. 

As stated, the expert evaluated 120 units. The results of his classification are 

listed in Table A-4. His evaluations did not fit a normal distribution, because he 
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emphasized key features within the model. For example, he considered a U in the 

training data highly significant which tended to skew the distribution to the right. 

Table A-4: Distribution of Unit Modeling Data 

Rating 
Cl 
C2 
C3 
C4 

Total 

Number 
15 
51 
22 
32 
120 

Percentage 
13% 
42% 
18% 
27% 
100% 
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Appendix B 

Description of Terms 

Multi-Layer Perceptrons With Backpropagation 

Biological Neurons form the basis for artificial neurons. A typical biological 

neuron is illustrated in Figure B-l. A comparison of Figure B-l and Figure B-2 

reveals the similarities between the two models. The artificial neuron has inputs, 

weights on the inputs, a summing component, a nonlinear mapping function, and an 

output. The biological neuron has similar components: dendrites (inputs), soma 

(summing component), axon hillock (nonlinear mapping function), synapses 

(connections or weights) and an output (axon). 

Axon Hillock 
Dendrite 

Axon 
Synapse 

Figure B-l: Neuron 

Neural Network research began in 1957 with the invention of the Perceptron 

by F. Rosenblatt. In its simplest form, the Perceptron is a linear filter that maps a 
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series of inputs to a single output. Figure B-2 is a graphical model of the single 

element Perceptron. 

There is a problem with Perceptrons, however, that limits their usefulness. 

They are only useful for problems that are linearly separable. A class is linearly 

separable if all members of the set can be placed into one of two categories. Figure B- 

3 is an example of both a linearly separable problem and one that is not linearly 

separable. Most interesting problems tend to have more than one class. We typically 

want to classify things in more complex ways than just good/bad or yes/no, for 

example. In 1969, M. Minsky and S. Papert published a book that denounced 

Perceptrons because of this limitation. This effectively halted neural network research 

until the 1980's. 

InPuts n is the nth element of the data set 

x2(n) 

Weights 
x2 (n) -\ \. *,(n)  Output 

xm (n) 

NL—y(n) 

Threshold 

Non-linear 
mapping function 

Figure B-2: Perceptron 

In the mid 1980's, researchers led by D. Rumelhart and J. McLelland 

[Rumelhart, 86] standardized a method of training multi-layer Perceptrons. Figure B- 
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4 depicts a multi-layer Perceptron where each neuron is similar to the model in Figure 

B-2. These neurons are arranged in layers with an input layer, one or more hidden 

layers, and an output layer. Once again, there is a biological basis for this 

construction. Humans have neurons that receive sensory inputs, billions of 

interconnected neurons that process the inputs, and neurons that relay information to 

muscles. In fact, it is this massively parallel nature that provides the power of human 

intelligence. 

Linearly Separable 
Data Set 

No 

1 

The XOR Problem: 
Not Linearly Separable 

Figure B-3: Linear Separable Data Sets 
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Figure B-4: Multi-Layer Perceptron 

In its typical role, the multi-layer Perceptron is a vector mapper. It takes an m- 

dimensional input, processes it, and produces a k-dimensional output. Typically, k is 

much less than m, so that you are taking a complex set of inputs and returning a 

classification for those inputs. A typical problem is the XOR problem. The XOR has 

two input bits with four (22) total inputs and one output bit so two potential outputs. 

Table B-l is an example of the XOR problem. The multi-layer Perceptron maps 00 

and 11 to 0, and it maps 01 and 10 to 1. By increasing the size and complexity of the 

multi-layer Perceptron, we can increase the problem solving potential. 
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(n)     Exemplar     xj(n)     x2(n)     y(n) 

1 00 0 0 -1 

2 10 1 0 1 

3 01 0 1 1 

4 11 1 1 -1 

Table B-l - Representation of the XOR Problem 

The Backpropagation algorithm as presented in [Haykin, 94] is given in Table 

B-l, and Table B-2 provides a summary of the relevant taxonomy. 

1. Initialization: Determine the number of layers and neurons in each layer. This 
determines the number of weights. Set each weight to a small, random value 
2. Presentation of Training Examples: Present the network with each pattern in the set of 
training examples. For each pattern, perform steps 1 and 2. 
3. Forward Computation: Each neuron in the input layer processes the input, and 
computes an output. The output of each neuron in the input layer is passed to each 
neuron in the first hidden layer. This continues to the output layer, and the output of the 
output layer is the output of the system. 
4. Backward Computation: Compute the error of the output layer. Use this error as a 
guide for updating the neurons in the output layer. Then, propagate this error back 
through the network based on the contribution of the target neuron 
5. Iteration: Compute the sum of squared errors for each pattern in the input set. Repeat 
the above process until the sum of squared errors is sufficiently small.  

Table B-2: Error Backpropagation Algorithm 

Neural Network 

Neuron 

Dendrites 
Soma 

Axon 
Synapse 
Exemplar 

Interconnected neurons arranged in layers trained to produce a 
desired output when presented with a specific input.  
Basic element of the neural network. Contains dendrites, soma, 
axon, and synapses.  
Inputs to the neurons. 
Computational compartment of the neuron. Multiplies the input 
with the associated weight, computes the sum of these products- 
Output of the neuron 
The connection between neurons, a weight. 
The set of input/output pairs. For each input, there is a 
corresponding output. The total set of pairs forms the exemplar. 

Table B-3: Taxonomy for the Backpropagation Problem Domain 
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Database Systems 

[Wiederhold, 83] defines a database as related data, the hardware that stores 

the data, and the software that manipulates it. [Date, 95] prefers "a systematic 

methodology for the standardization and integration of data resources at the 

organizational level," and [Frawley, 93] describes a database as "logically integrated 

collection of files." For the purposes of this paper, we will assume the latter, more 

limited definition. Specifically, database will refer to a relational database consisting of 

persistent data (extension) and an associated data dictionary (intension) that specifies 

the data types, field values, ranges, and related information. 

A distributed database is simply a database where the data is stored on more 

than one node. A node can be a separate workstation with its own secondary storage, 

a processor with little secondary storage, or possibly a unit of secondary storage with 

only enough computational capacity to retrieve and store data. The nodes are 

connected via modem or a network. In contrast, a centralized database is a single 

database residing on the same node. Also, distributed database are homogeneous. 

The term Heterogeneous Databases can have different meanings. 

Heterogeneity can refer to differences in database systems, operating systems, or the 

hardware it runs on [Sheth, 90]. For clarity, databases that operate under different 

operating systems, utilize different database management systems, have different query 

languages, or operate on different hardware platforms are considered heterogeneous. 
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A deductive database or logic base uses logic and logic based programming to 

extend the capabilities of the database [Sirounian, 95]. It consist of facts and rules. 

The facts can be related to the extension of a database, and the rules are similar to the 

intension. 

Knowledge Based Systems 

A knowledge base represents facts about the environment [Russell, 151]. It is 

similar to database systems in many ways. The knowledge base contains a series of 

representations or facts. The knowledge base administrator (automated or human) 

adds, updates, or removes facts as the environment changes, and users search the 

knowledge base for information about the environment. The information in a 

knowledge base differs somewhat from that in a typical database. The knowledge base 

contains facts about the domain, but the facts are expressed in a knowledge 

representation language. 

A knowledge representation language should be unambiguous, clear, concise, 

and efficient. First order logic is a typical base for representation languages. It also 

has the advantages of being widely studied and well defined. The basic elements of 

first order logic are as follows: 

Element of First Order 
Logic  
Connectives 

Quantifiers 

Constants 

Variables 

Description 

And, or, implies, equals 
Example: (A and B) is true if both A and B are true 
For each, There exists 
Example: For each X there exist a Y such that if X is true 
then Y is true.   
A nonchanging object in the world 
Example: HEMMT  
One of a set of objects. 
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Predicates 

Functions 

Sentences 

Example: X 
A description of a variable. Represented as a tuple. 
Example: TRUCK(HEMMT, 5 TON, 2.5 TON) 
Relates one variable to another 
Example: classification(HEMMT) = TRUCK 
Logic expression that represents a fact 
Example: (A and B or C) 

Table B-4: First Order Logic 

A sentence is the basic structure stored in the knowledge base. The fact that 

sentences are based in logic provides the power of the knowledge base and 

distinguishes knowledge bases from databases. 

One of the major goals of the DARPA Knowledge Sharing Effort is to 

standardize the representation knowledge in knowledge based systems. [Paul, 95] 

notes that application specific representations are necessary, but describes a language 

that could be used as an interchange format. The Knowledge Interchange Format is an 

extended version of First Order Logic that is designed to be the basis for libraries 

providing reusable components. KIF is also intended to allow the interchange between 

application specific domains. The sending system would translate its specific 

representation into KIF, and the receiving system would then translate the KIF into its 

internal representation. An example KIF sentence is 

(defrelation HEMMT (?x) := 

(and (truck ?x) (ten-ton ?x))) 

which would indicate that a HEMMT is a ten ton truck. As this example 

demonstrates, the sentences are contained in lists and have a linear, ASCII syntax. 
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The second component of a knowledge based system is the inference 

mechanism. This automated component is made up of rules that are used to control 

how the rules in the knowledge base are used or processed. It directs operations by 

deciding which sentences are applicable, how they should be applied, when enough 

sentences have been considered, and what possible solution is implied [McGraw, 4]. 

This inference mechanism is usually based in one of four language representation 

categories. 

Information Extraction 

Information Extraction (IE) Systems analyze text-based data and return 

relevant facts from the data. The systems do not attempt to understand all of the text, 

but rather attempt to determine the relevance of specific passages based on inherent 

knowledge of the query. The product of an IE is, ideally, a database of entries 

relevant to the problem. Designers pre-determine the database's column headings, and 

insert information descriptors obtained from the text search. Often, cells are best filled 

with strings from the source text. 

IE systems must have the ability to perform limited natural language 

processing. They must be able to perform word recognition and sentence analysis, and 

be able to understand the subject of the overall document. Dictionaries are usually 

tailored to the problem domain to better support the abbreviations, technical terms, 

names, and jargon specific t the domain. 

Many fields are currently developing IE systems. Some examples are Health 

Care, Intelligence Gathering, technical literature monitoring, and intelligence 
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gathering. Researchers are developing IE systems in Health Care that summarize 

medial patient records, assist with quality assurance studies, and support insurance 

processing. Many technical companies are interested in developing databases of 

current technology in order to stay ahead of competitors. IE systems automate this 

process by analyzing the relevant publications. A final example is government and 

business organizations that monitor newswire and on-line documents for intelligence 

gathering. Terrorism prevention and industrial competition are sample applications. 

[Lehnert, 95] describes two metrics useful in assessing the performance of IE 

systems, recall and precision. Recall refers to "how much of the information that 

should have been extracted was correctly extracted," and precision is described as the 

"reliability of the information extracted." In studies conducted at the University of 

Massachusetts, humans exhibited 79% recall and 82% precision on information 

extraction tests. Automated systems achieved 53% recall and 57% precision 

indicating that IE systems are not currently as capable as their human counterparts. 

However, automated Systems have a much greater throughput. 

Information Retrieval 

In Information Retrieval (IR), the task is to choose from a set of documents 

the ones that are pertinent to a query. Early systems used Boolean connectives to 

search through keywords or abstracts to find a document matching the query. So 

much text is now available on-line that systems have become more sophisticated. It is 

now more common to search the entire text rather than abstracts, and vector-space 

models have replaced Boolean connectives [Russell, 95]. 



The vector-space model considers every list of words to be a vector in n- 

dimensional space. This includes both the query and the target text. It then compares 

the query vector against the target vector and reports the ones that are closest to the 

query vector. Sophisticated systems use variations of the query words, synonyms, and 

statistical techniques. These systems rate words that appear in fewer documents 

statistically higher on the assumption that they are better at discriminating the search. 

IR techniques are primarily at the word level. Systems based on Natural 

Language Processing techniques have not been able to demonstrate a significant 

improvement to date. When performing IR related tasks, it appears that the words 

convey as much information as the sentences. 

Knowledge Discovery in Databases 

[Frawley, 92] defines knowledge discovery as "the nontrivial extraction of 

implicit, previously unknown, and potentially useful information from data." Frawley's 

definition assumes that data will be stored in the form of databases, but we can extend 

this idea to include text-based documents as well. Patterns in the data are deemed 

interesting when they are useful and provide insights that were previously unknown. 

Knowledge is useful when it can be used to solve a problem or meet an objective. 

Finally, the discovery process must be efficient enough to solve problems that are 

deemed interesting. 

Data possesses inherent problems that a knowledge discovery system must 

consider. The first is missing or null information. If a database contains a null field for 

a person's middle initial, then either the person does not have a middle name or the 
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middle initial is missing. Which is true is impossible to ascertain. Databases can set 

null fields to a neutral value or prompt the user for additional information, but the 

problem of missing information is one that a discovery system must address. 

The second problem is that of noise or uncertainty. A human user will be 

suspicious when a request for the average annual rainfall in Saudi Arabia is reported as 

26 inches. A discovery system by its definition will seek the extremes in a data set in 

an attempt to deliver potentially interesting information. The problem is how to 

determine if the data is unusual because it is erroneous. Another aspect of this 

problem is uncertainty. If data is inputted on the basis of an average or some 

statistical measurement, then the information concerning correlation and deviation may 

or may not be available. The discovery system must be able to determine the quality 

of the information it receives. 

Third, the impact of irrelevant information must be considered. Today's 

databases are very large and will certainly contain information that is not relevant to 

the current problem. The discovery system will have to make judgments on whether a 

potential attribute, tuple, table, or even database is relevant. This is a difficult task 

because discovering a solution to interesting problems may require unconventional 

approaches. Failing to search a particular document or database on the basis of a 

predetermined criteria may speed the search but could potentially ignore valuable data. 

Similarly, redundant information abounds in large, heterogeneous databases. 

[Matheus, 93] describes a common form of redundant information as "functional 
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dependency." This form exists when one field is defined as a function of other fields 

such as 

Percentage_On_Hand := OnJHand / Authorized; 

To prevent redundancies, KDS's must be aware of the dependencies of the databases. 

Finally, the distributed, dynamic nature of present day databases pose problems 

for discovery systems. Current organizations add data at a far faster rate than it can be 

effectively analyzed, and solutions to most problems of significance depend on the 

latest information. Synchronization problems occur when processes are conducted in 

dynamic, heterogeneous environments. For example, if the task is to examine several 

organizations and determine which is better situated to meet a certain task, then it is 

important to have an "as of" time that is consistent between the organizations and have 

data that is as current as practicable. 

Because of the problems listed above, discovery requires a significant amount 

of computation. In order to constrain the search process, the system uses inherent or 

background knowledge to focus queries to the relevant information. Background 

knowledge can exists in many forms, the most common being the data dictionaries of 

the databases. Other sources include domain knowledge or inter-field relationships 

such as height and weight. Domain knowledge provided by an expert eliminates 

search paths by providing guidelines or rules. If an organization can not satisfy its 

requirements without a certain piece of equipment, and the discovery system detects 

the unavailability of that equipment, then the search can stop. As previously 

discussed, however, limiting the search space can impact on the quality of the 
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discoveries. The system must provide a balance that minimizes search in unpromising 

areas, but allows search in interesting ones. 

Figure B-5 depicts a potential knowledge discovery system. The system is 

interactive, guided by the user. The arrows illustrate the flow of data from the 

databases to the user through the Knowledge Discovery System and the Information 

Retrieval System. The Discovery System can send queries to the databases or to the 

Information Extraction System and can use background or previously determined 

knowledge from its Knowledge Base. The user can then review the results of the 

Discovery System and analyze the documents returned by the IR System to make a 

decision. 

Figure B-5: Knowledge Discovery System 
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