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ABSTRACT 
A new technique has been developed to study two dimensional heat 

transfer problems in gears. This technique consists of transforming the 
heat equation into a line integral equation with the use of Green's theo- 
rem. The equation is then expressed in terms of eigenfunctions that sat- 
isfy the Heimholte equation, and their corresponding eigenvalues for an 
arbitrarily shaped region of interest. The eigenfunction are obtained by 
solving an intergral equation. Once the eigenfunctions are found, the 
temperature is expanded in terms of the eigenfunctions with unknown 
time dependent coefficients that can be solved by using Runge-Kutta 
methods. The time integration is extremely efficient. Therefore, any 
changes in the time dependent coefficients or source terms in the bound- 
ary conditions do not impose a great computational burden on the user. 
The method is demonstrated by applying it to a sample gear tooth. Tem- 
perature histories at representative surface locatons are given. 

INTRODUCTION 
The cooling of gears is an important problem that has been studied for 

a number of years. An early model of oil cooling is given in De Winter 
and Block (1972). El-Bayoumy et al. (1989) expands on the model of 
DeWinter and Block (1972) mainly by noting the importance of the 
Coriolis force on oil cooling of gears. El-Bayoumy et al. (1989) also 
develops a finite element model of the gear tooth. We now believe that 
the finite element method has speed and accuracy limitations and have 
abandoned this approach in favor of the Green's function method 
described herein. 

In the next section, a new dynamic, accurate and efficient solution 
method for two dimensional heat transfer problems in gears is described. 
The solution method consists of transforming the heat equation into a 
line integral equation with the use of Green's functions with unknown 

time dependent coefficients. The transformed integral equation is used 
to obtain the dynamic equations for the time dependent coefficients for 
each eigenfunction. In order to obtain the eigenvalues and correspond- 
ing eigenfunctions, the Helmholte equation for the eigenfunctions is trans- 
formed into a line integral equation by the use of the two-dimensional 
free space Green's function. The integral equation is discretized into a 
set of homogenous simultaneous equations. The discretized version of 
the eigenfunction can be obtained by solving a set of homogenous 
simultaneous equations. The obtained dynamic equations can be inte- 
grated extremely efficiently. Therefore, any changes in the boundary con- 
ditions do not impose a great computational burden. In the third section, 
the computational results and a discussion is presented. 

FORMULATION 
In this section, an accurate and efficient solution method for solving a 

time dependent two dimensional heat problems in gears is developed. 
The temperature field is expanded in terms of the eigenfunctions with 
unknown time dependent dynamic coefficients. The dynamic equation 
for the time dependent coefficients of each eigenfunction is obtained by 
the use of an integral equation. 

Consider a gear tooth geometry shown in Fig. 1. The transient heating 
of the gear tooth is described by 

3T 
9t 

= aV2T (1) 

where V2 = 32/3x2 + 92/9y2 and a is the thermal diffusivity. The 
boundary condition for the left side and top of the gear is given by 

KS="(5W-T- (2) 
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where the equation represents the heat output to cooling oil, |j is the 

vector coordinate on the boundary, K is the thermal conductivity, n is the 
outward pointing normal unit vector, h is the heat transfer coefficient 
and Tc is the temperature of the cooling oil. The boundary condition for 
loaded side (meshing surface) of the gear (right side in Fig. 1) deter- 
mines the heat conduction into gear body and is given by 

K 
3T 

3n po(i) (3) 

where F0 is the heat flux into the gear and the remainder of the 
boundary is described by the vanishing normal derivative of the tem- 
perature, 9T/3n = 0. 

Dynamical Equations for Transient Heat Flow 
Rather than solve the physical equations directly, as in a finite element 

method or finite difference method, we develop here a Green's function 
method that reduces the two-dimensional problem to a one-dimensional 
line integral over the gear tooth boundary. The line integral equation 
yields the dynamical equations. This procedure yields a computational 
advantage over the previous approaches where there is no reduction in 
the problem dimensionally and the time and spatial integrations are per- 
formed simultaneously. 

The heat equation is transformed into a line integral equation by using 

Green's theorem, (Wyld, 1972) 

JJ(T^.--r.»>-J(T^-T.£> ro 
where ds is the surface element and dl is the line element. Substituting 
Eqs. (1) and (4) into the left hand side of Eq. (5) yields 

where the vectors ä and c in the integration limits are shown in Fig. 1 
(a driven gear). Note that a considerable simplification has been accom- 
plished for the line integral on the right hand side of Eq. (5). The only 
contribution comes from the boundary conditions described by the non- 
vanishing normal derivatives, Eqs. (2) and (3). Substitution of Eqs. (2) 
and (3) and expansion of the temperature field in terms of the 
eigenfunctions as 

T(x,t) = ^Tin(t)Vn(x) 

n 

yield a dynamic equations for the time dependent coefficients, T|n, 

(7) 

K^=h(9fT-To) 

B Flux out 
A Flux in 

KfT-Foffl 
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Figure 1.—Simulated gear tooth geometry and all the 
boundary conditions. 

We assume, the following eigenfunctions, yn, and eigenvalues, k„ are 
known and the eigenfunctions satisfy the Helmholtz equation, 

i 2 « tln+akjTin= — 

where 

XA™°T1°>+Bn+C„ 

Amm=0(I)Vm(^)Vn(|)dl 

Bn=-TcJh(I)Vn(^)dl 

Cn=J_CFo®Vn(I)di 

(8) 

(9a) 

(9b) 

(9c) 

The line integrals are easily calculated as the boundary conditions are 
changed. Therefore, the calculation burden for changing the boundary 
conditions is minimal. These coupled first order equations in Eq. (8) are 
integrated efficiently with Runge-Kutta method. 

(v2+k2)Vn=0 (4) 

inside the gear tooth with vanishing normal derivative, d\|/n/9n = 0. (The 
method for obtaining the eigenvalues and eigenfunctions is given in the 
following section.) It can be shown that these eigenfunctions are or- 
thogonal. The eigenfunctions will be normalized to unity by 

il y„dxdy = l. 

Eigenvalues and eigenfunctions 
The method for obtaining the eigenvalues and eigenfunctions used to 

effect the simplification of the previous section is given below. These 
functions are two dimensional analogs of the trigonometric functions 
used in Fourier methods. 

The eigenvalues, kj, and the corresponding eigenfunctions, \j/n are 
obtained through the use of two dimensional free space Green's func- 
tion (Koshigoe and Tubis 1989), 



G(x|x') = {H«(kn|x-x'|) (10) 

where HQW is the Hankel function of the first kind and the Green's func- 
tion satisfies the inhomogeneous Helmholtz equation, 

(v2+k2)G(x|x") = -8(x-x') (11) 

where 8(x) is the delta function. 

Again utiHzing Green's theorem, one obtains 

JJ(G(V
2
 +k2)Vn - Vn(v

2 +k2)G)ds' 

=J G(X|I ,\
9¥n 

3GI 

)^-V»-^ 
ffl) dl' (12) 

With the use of Eqs. (4) and (11) and vanishing normal derivative bound- 
ary condition for the eigenfunctions the integral equation is simplified 

(13) 

This integral equation yields the value of \|/n at any location inside the 
gear tooth when the values of \yn on the gear tooth boundary are known. 
Now let x approach a point, £ on the gear tooth boundary, then Eq. (13) 
becomes 

ß^)+Pj^')-^di'=o (14) 

in order to specify the key features of the gear tooth geometry. The 
cooardinates of these points are given in table 1. The physical constants 
used for the calculation are: the gear thermal diffusivity, a = 0.452 ft2/hr; 
the thermal conductivity, K = 25 Btu/hr/ft/F; the oil temperature, Tc = 
200 F; the heat transfer coefficient, h = 0.34 Btu/sec/ft2/F follows from 
DeWinter and Block (1972) and El-Baypoumy et al. (1989). 

The heat flux, F0, along the boundary from the location | = £ to c 

(shown in Fig. 1), is given as a function of the distance measured from 
the point £ (shown in Fig. 2). This is the heat generated in mesh for a 1 - 
inch wide gear, with a pitch radius of 6 inches, rotating a 10,000 rpm and 
transmitting 500 hp. We are interested in gear steady-state temperatures 
that take hundreds of seconds to reach. Hence, the detailed temperature 
changes that occur as the gear goes in and out of mesh cannot be re- 
solved. Thus, both the heating and the cooling have been averaged over a 
complete revolution cycle. 

Table 1.—Coordinate of 
Points in Figure 1 

Figure 1 x, inches y, inches 
location 

ä -0.197 0.541 
b .073 .795 
c .274 .337 
d .318 .184 
e .371 .184 
f .362 .000 

The temperature calculation was performed using 21 eigenmodes. (This 
was found to provide adequate convergence.) The results presented herein 
were generated on a 486-PC with a total running time, including the 
costly eigenfunction generation, of less than one hour. 

where ß^ is the contribution from the singularity in the integrand 

(Burton and Miller 1971) and is given by: 

ßt = inside angle at the point £/2jt (15) 

and P designates the Cauchy principal value integral. The eigenfunction, 

\|/n is discretized in Eq. (14) and yields a set of simultaneous equations. 

The eigenvalues, kj, are determined by setting the determinant of the 
simultaneous equations to zero. Once the eigenvalues are determined, 
the corresponding eigenfunctions can be obtained through the 
simultaneous equations. The formulation developed in this section can 
now be applied to the gear tooth geometry (shown in Fig. 1) and the 
calculation result discussed. 

SAMPLE CALCULATION 
The technique developed in the previous section is applied to the gear 

tooth geometry shown in Fig. 1. Various coordinates are labeled in Fig. 1 

0.1        0.2       0.3       0.4       0.5 
Distance from the point b, in. 

Figure 2.—Time-averaged heat input to gear. 
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Figure 3.—Gear surface temperature at selected locations. 

The eigenvalues and the corresponding eigenfunctions are obtained 
through the use of discretized version of Eq. (14). The discretization is 
carried out with 40 line elements and on each element, the second order 
approximation is used to represent the geometry as well as the 
eigenfunctions. The temperature calculations at three different locations 
on the gear tooth boundary, (0.0,0.397) represented by the solid line, 
(-0.228,0.066) by the dashed line, and (0.174,0.194) by the dotted line 
are shown in Fig. 3 as functions of time. The curve labeled Tl is centered 
on the top of the gear at location (0.0, 0.795). T2 on the cooled side of 
the gear in the region cooled by the oil at (-0.228,0.464). T3, the highest 
curve, is on the side heated during mesh, slightly above the pitch point at 
(0.174,0.592). Because both the heating and cooling functions have been 
averaged over a complete gear revolution, these temperatures can best be 
interpreted as out-of-mesh temperatures. 

At the present time the calculation method is hard wired for a single, 
but representative, problem. Furthermore, we have not yet included the 
triangular portion of the gear extending to the axis of rotation. Generali- 
zation of the method is planned now that its application to a specific 
problem has been demonstrated. Appendix A "Thermal Analysis of Spur 
Gears" provides the geometric formulation input. 

CONCLUSION 
A new technique has been developed to study two-dimensional heat- 

ing of gears. The computational advantage of this technique over 

previous approaches using the finite element method or the finite dif- 
ference method results from two features: First, the problem is reduced 
from two dimensions to one. Second, the time and spatial integrations 
are separated. Therefore, when compared with other methods, this new 
technique can provide substantial improvements (one order of magni- 
tude) in computational speed. However, the benefit of the dimensional 
reduction is manifested not only in the computation speed but also in 
the ease of problem set-up since one is required to deal with the bound- 
ary not the entire two-dimensional gear geometry. The other benefit of 
this technique, based on the separation of time and spatial integration, 
is accuracy. This technique takes the full advantage of the spectral 
method that has exponential solution convergence. This should be com- 
pared to finite element or difference methods where only algebraic con- 
vergence is possible. 

Since the new technique is extremely efficient, any changes in the 
time dependent coefficients or source terms in the boundary conditions 
do not impose a great computational burden on the user. This result is 
very important when performing accurate Scoring Analysis in gears. 
This allows the bulk (or blank) temperature to be accurately known. 
Furthermore, the gear out-of-mesh temperature is not a constant along 
the tooth profile at steady state running conditions, as is often assumed 
by gear engineers. The method is also more adaptable for use in small, 
lubricated, concentrated contacts, such as gears, since high resolution 
can be obtained without using large numbers of elements. 

Currently, we are planning to extend this technique to a multiblock 
application that includes the remainder of the gear sector and that further 
optimizes the computation accuracy and speed. 
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APPENDIX A 

THERMAL ANALYSIS GEOMETRY FOR SPUR GEARS 

by 

Lee S. Akin * and Dennis P. Townsend ** 

to the gear temperature analysis problem. The above is accomplished by 
using special integration techniques newly developed to accommodate 
the special conditions found in lubricated concentrated sliding contacts, 
such as found in high performance aircraft gear drives. This appendix 
describes the intricate gear geometry needed for this analysis, mostly 
available in the literature but certainly not all in one place. This paper 
hopes to fill that need. 

ABSTRACT 
The gear geometry needed to perform a complete thermal analysis for 

a gear set is very complex and has, to the authors knowledge, never been 
published before as one set of equations needed for the analysis. The 
thermal analysis of gears is a very important subject in that it can be used 
to determine the scoring failure criteria which includes the blank (bulk) 
temperature and the flash temperature as used in the Blok scoring 
formula. 

1. T, =Tf+Th 

The geometry for this analysis must include the involute geometry, 
the load variance when the teeth mesh is in a single or double tooth 
contact zone, tooth load sharing due to varying deflection, long and 
short addendums, tip and/or root relief. Also included are the affect of 
heat partitioning due to varying tooth contact sliding velocities over con- 
stantly changing Hertzian contact band widths, gear set speed and its 
affect on the lubrication regime (film thickness versus surface rough- 
ness). 

This geometry analysis will be used as the input parameters to com- 
plete the analytical computation of running gear temperatures using 
Green's function. 

INTRODUCTION 
This is one more in a series of papers by the authors on their continued 

study of the art of the prediction of the onset of scoring or scuffing in 
high performance gear drive mechanisms and our attempt to make it 
more scientific. These studies have examined a series of disciplines from 
an interdisciplinary lubrication theory (ref. 1), to a study of the effect of 
windage on the lubricant flow into high speed gear teeth (Ref. 2) and a 
model for lubricant flow in between gear teeth (Refs. 3, 4, 6, 7, 10 
and 11,13,16). 

In addition these studies have evaluated the analytical and experimen- 
tal spur gear temperature effects on operating variables (Ref. 5), gear 
lubrication and cooling studies (Refs. 7 to 9, and 12), investigations of 
affect of transient (time variant) thermal and lubricant boundary layers 
(Refs. 14 and 15). 

Most of the above and all of the thermal work was done using finite 
element methods which produce large matrixes causing slow computer 
solutions to provide satisfactory accuracy. This geometry analysis is 
developed for, "a computer program for the computation of running gear 
temperatures using Greens function" provides a new and unique solution 

FORMULATION OF GEOMETRICAL EQUATIONS 
The equations for the involute curve in rectangular coordinates is shown 

in equation set 2 (see Fig. 1). 

Involute curve 

R cos 9 = y 

Figure 1.—Involute curve geometry. 

2. x = (cos9 + 6sin6) R or x = R sinG see nomencalture 

y = (sin9 + 0cos6)Rb     or     y = Rcos6 

x2+y2=(l + e2)1/2 — 
Rb 

* Gearesearch Associates. ** NASA-Lewis Research Center. 



The polar/vectorial angle 8, in Fig. 1 may be calculated from: 

-fx2+v2    T.2f2   *       (R2"R2fa 

-lX+y-Rb)      R- Rh 

1/2 

3. 
-tan 

(R
2
-R

2,
I " :tanffl-<b = inv(t 

where:   R =—&R0 =-^jr&Rb =Rcos<|> 

so that the pressure angle <(> in Fig. 1 is: 

(R
2
+RI)

U R 
4. 6 = tan = cos   — and the roll angle is E = 0 + <|> = 

Rb R 

tan<|). The important radii of curvature equations, some at critical loca- 
tions, are shown below in equation set 5, and see Figs. 1 and 2: 

5. p = Rsin«)) = eRb and for the mating gear pm = Rmsin(|) = emRbm 

The lowest point of contact for the mesh is pc calculated from: 

and 

pc=Csin^)-(R2+Ry 

(2 2   \^' Rom+RbmJ 

R,= 

where C sin (j) = La the line of action, and 

Csin^-^+R2, ]  +R 

1/2 

R       — Csin^-^R^+Rbm I  +R !2 
1/2 

is the lowest point on the mating gear. The radii of curvature at the low- 
est and highest points of single tooth contact may be calculated from: 

p,=(R2+Rg) R1=(p?+Rg)' 

ph=Csin<|)-(R2
m-Rgm)     +pb 

1/2 

Rh=(ph+Rb) 

In 

ill 

where the base circle pitch is Pb =—cos<|) and the circular pitch 

/—J- Pb = base circular pitch V 
•f     — Base circular pitch = Pb 

DTC 

\ 
T 

— Single tooth contact 
Length of line of contact 
Length of line of action - 

\    \ 

DTC 

Figure 2.—Gear mesh line of action geometry. 

7tD 
is P = _j^~- The distance of roll/slide S along the involute curve 

may be calculated by integrating over the roll angle e, from (vogle, 
Ref. 17), see Fig. 1: 

6. S = fR2
beds = fe2|:f=fH-e?) 

= _P_ 
RK 

and since, as can be noted from Fig. 1, p = Rb£ = Rb tan<|> and e 
2        2 

thus Sj_2 = ——— over any arbitrary portion of the profile with sub- 
2Rb 

2        2 
_PQ-Pc 

scripts 1 and 2 and Sc_0 
: 

2RV 
" over the whole profile from the first 

point of mesh contact on the profile at Sc to the last point at outside 
diameter S0. For example: from Rc to Rj to R (at pitch point) to Rh to 
Rn at the outside radius. The arc length along the base circle S can be 



calculated from (were subscripts 1 and 2 are at arbitrary locations on the 

tooth profile) as shown. 

7. Ej_2 = Rt,(£2 - 
ei) = Rb (tan<l)2 ~ tan<t>i)so tnat Si_2 = 

Rv 
P2       Pi 

*vRb      RW 
: P2 - Pi and thus the ratio between the distance S and 

the distance £ becomes k = ——— a quantity useful in thermal calcu- 
2Rb 

lations. The transition time, as a function of radii of curvature and its 

rolling velocity between any two points along the tooth, can be expressed 

in equation set 8 as: 

V = iP=^Rb=R 
dt     dt 

bco- 
rad 

i— 
sec 

where: 

de 
— = ro, a constant and since p = eRh then de = codt and — dt = —-, so dt ■ D „ 

that 
fP2 

^ = ln^ = - 
'P,    P Pi       £2 "El 

^dt = ^ 
e        p 

CO    /        ■,      co(*2 ~h) 
(»2-*i)=-iJ:—   and Ati.2 

R, 
(P2-Pl) 

P2 — Pi        P2 
(tj - tj) =   R       m ~~~ is the time it takes for the gear to rotate from Ej 

to e^ The critical dimensions along the line of action are shown in fig- 
ure 2 and described below in equation 9: 

9.  Z = ^RQ! -Rbi + ^Ro2-Rb2 - Csin<(> is the length of the "line of 

contact b - f' as a subset of the "line of action a - g." 
Now we can calculate the width of the Hertzian band of mutual con- 

tact at the mesh point from equation 10: (Timoshenko Ref.18) 

10.     B = 
16Wn(K1+K2)Plp2 

a/2 

F(PI+P2) 

where:     Kj - 
1-vf 
7CE, 

and 

2 = —z— and Ki + K2 - 
jrE9 

K,= 
'l-v2^ 

and since: p j + p2 = La = C sin(j) 

and Wn = W/cosCb = W,sec<|>, see Fig. 3, and Ej = E2 = E 

\l/2 Wt(l-v
2) 

B = 3.19,|_     V_ .   ^(Pip2) 
[Fcos<t)Csin(|)E 

The rolling velocity for the gear Vj and it's mating gear V2 are calcu- 

lated from equation set 11: 

11.   Vj =5l5£L ft/Sec and V2 = °^2  ft/sec, so that the sliding 
360 360 

velocity Vs = Vt -V2 =—(n^ -n2p2) ft/sec where: Vj =V&V2 = 

Vm. 

WN = Wt/cos <f» 

WR = Wt tan <|> 

Figure 3.—Gear tooth profile showing normal load Wfg. 

Therefore the rolling velocity anywhere along the profile can be cal 

7tp 
culatedfrom: V, 

nmpm 
ft/sec and vm - „,-„  ft/sec for the mat- 

114.59 114-59 

..        nPi +nmPim 
ing gear so that the sliding velocity is calculated from: Vis - — — 

ft/sec where n = speed of gear and nm = the speed of the mating gear. 

Another value needed to calculate the coefficient of friction is the total 

„       nPi +nmPim      , 
velocity from: Vt = — — ft/sec. 

We can now calculate the coefficient of friction as: 

12. f = 0.0127 log10 

^3.17xl06Wtsec(t)A 

where F = tooth face width, 

|i   = viscosity in centipoise and Wt = tangential tooth load in lbs. Thus 
"CP 
we find ourselves in a position to calculate the instantaneous heat flux 
q(p)j as a function of the radius of curvature at the instantaneous posi- 
tion "i" along the line of contact per equation Set 13. 

Wtsec(<|>)f(npi-nmpim) 
13- q^ = TTO^ BTU/mm 

This equation can also be written in a form more useful using the 

pinion speed only: 

.   ,    Wt sec(<|>)n0f, x _Ng 

q(Pi)=     17033Q    (Ppi~mgPgi) BTU/min, where mg-^ the 

gear ratio. At times it is more convenient to calculate the hear flux from 

the radius vector at the instantaneous contact points where: 

Wtsec(4>)nDf f , x   ( 
1 170330     [ ^        g>   V 'gLPC 

-R 
1/2 

+mg R;; 
Rpo    _R2 
lpLPC pb 

1/2 
BTU/min 

CLOSURE 
This appendix develops the geometry analysis for the input for 

the computer solution of the thermal analysis of spur gears using 

Green's function to solve for gear blank surface temperatures. This 



geometry analysis provides the gear tooth geometry input, the 
gear tooth sliding distance parameters, the rolling and sliding 
velocity inputs and the equations for the frictional heating 
developed during the gear tooth meshing, as a function of the 

location on the gear tooth. 
Using these inputs the program can then determine the transient 

and steady state temperatures of the gear teeth. 
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NOMENCLATURE FOR APPENDIX A 

B 

C 

E 

F 

f 

Mg 

N 

P 

Pb 

qRt 

q(Pi) 

R 

RK 

R„ 

Rgb&Rpb 

R^& ^i 

Rgo&RPo 

RLPC2 *•R LPC1 

width of the band of mutual contact at the mesh point 

center distance for mating pair 

Young's modulus of elasticity 

face width 

coefficient of friction 

gear ratio N/N 

number of teeth in gear and Nm number of teeth in 
the mating gear 

pinion speed, rpm, nm for mating gear and r^ 
for pinion 

diametral pitch of the teeth 

circular pitch of gear and its mating gear 

heat flux calculated using the instantaneous radius 
vector 

heat flux due to sliding friction at instantaneous point 
of contact using the radius of curvature as a 
parameter 

radius vector to the pitch point and Rm for the mate 
at the contact point 

base radius of the involute curve (its origin) and Rbm 

for mating gear 

radius vector to lowest point of contact from center 
of gear and Rcm for mating gear 

base radius of gear and pinion respectively 

instantaneous radius og gear and pinion respectively 

outside radius of gear and pinion respectively 

lowest point of contact for gear and pinion 
respectively 

Ri&Rh 

v 

wt&wn 

x&y 

Atl,2 

AN 

E 

e 

Pl&Ph 

outside radius of the gear and end of the involute 
curve and Rom for mating gear 

radius vector to lowest and highest points of single 
tooth contact 

velocity along the curve (involute) 

the sliding velocity at an instantaneous point vt - v2 

in the mesh 

the total velocity at an instantaneous point in the mesh 

rolling velocity of the gear and its mating gear 

tangential and normal (perpendicular) load, 
respectively 

Cartesian coordinates of the involute curve from its 
origin at the base circle 

length of the line of contact as a subset on the line 
of action 

the time it takes to rotate from Ej to £2 

virtual number of teeth expansion or reduction for 
long and short addendums 

roll angle on tooth 

involute polar angle = inv<)> = tan(|> - <|> = e - ty (rad) 

oil viscosity, in cp 

radius of curvature from the base circle and pm for 
the mating gear at contact point 

radius of curvature at lowest or initial point of 
contact from base circle and pcm for mating gear at 
contact point 

radius of curvature at lowest and highest points of 
single tooth contact 

pressure angle of mesh 
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