
• IDA

August 1996

Approved for public release;
distribution unlimited.

IDA Paper P-3169

Log: H 96-002880

UNCLASSIFIED

NSTITUTE FOR DEFENSE ANALYSES

Nearest Neighbor Search Applications
for the

Terasys Massively Parallel Workstation

Eric W. Johnson

00
^«fciasn»

^

«RBOüSQ*

UNCLASSIFIED

This work was conducted under IDA'S independent research program.
The publication of this IDA document does not indicate endorsement by
the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

© 1996 Institute for Defense Analyses, 1801 N. Beauregard Street,
Alexandria, Virginia 22311-1772 • (703) 845-2000.

This material may be reproduced by or for the U.S. Government.

PREFACE

The work reported in this document was carried out under the Independent

Research Program of the Institute for Defense Analyses (IDA) as Central Research Project
9000-605, Applications of Parallel Processing. The project was conducted in IDA's Com-

puter and Software Engineering Division.

The author would like to thank the following people for help with this project and

with this report: Alfred E. Brenner, Anne A. Douville, Edward A. Feustel, Michael C.
Frame, Michael T. Goodrich, David S. Hough, Norman R. Howes, Reginald N. Meeson,
and Richard P. Morton. The author would like to thank Harold E. Conn for help with Tera-
sys programming and for running the Terasys tests described in this report. The author
would like to thank James R. Silk for suggesting how nearest neighbor search could be

applied to radar analysis.

m

Table of Contents

SUMMARY S-l

1. INTRODUCTION 1

2. NEAREST NEIGHBOR CLASSIFICATION 3

3. OVERVIEW OFTHETERASYS WORKSTATION 5

3.1 Interprocessor Communication 5
3.2 The dbC Programming Language 6

4. USING THE TERASYS TO FIND NEAREST NEIGHBORS 9

4.1 Placing Sample Records in the Terasys 9
4.2 Placing Training Records in the Terasys 10
4.3 Handling Sets That Are Too Large for Primary Storage 10
4.4 Allocating Space in the Extended Algorithm 11

5. FASTER ALGORITHMS FOR SEQUENTIAL SEARCH 13

6. THE EFFECT OF I/O ON TERASYS PERFORMANCE 15

7. EXPERIMENTAL RESULTS 17

7.1 Performance Ratio of the Terasys 18
7.2 Estimates of Overall Terasys Performance 18

8. USING THE TERASYS DURING CLASSIFIER DEVELOPMENT 21

8.1 Estimating the Error Rate of a Nearest Neighbor Classifier 21
8.2 Refining the Training Set 22

9. ORGANIZING THE TERASYS INTO VECTOR COMPARISON UNITS 25

9.1 Using Vector Comparison Units to Compute Euclidean Distances 25
9.2 Optimal Terasys Design for VCU-Based Search 27

10. PATTERN RECOGNITION APPLICATIONS 29

10.1 Time Series Analysis 29
10.2 Image Analysis 29

11. OTHER APPLICATIONS OF EUCLIDEAN SEARCH 31

11.1 Estimating Intrinsic Dimensionality ...31

v

11.2 A Nonparametric Technique for Estimating Density 32

12. APPLICATIONS OF EUCLIDEAN SEARCH TO RADAR ANALYSIS 35

12.1 Target/Clutter Discrimination 35
12.2 Effect of Conversion to Integers on Classifier Accuracy 36
12.3 Dimensionality Test 37
12.4 Entropy Computation 37

13. CONCLUSIONS AND RECOMMENDATIONS 39

APPENDIX A.
IMPROVING THE EFFICIENCY OF EUCLIDEAN NEAREST NEIGHBOR
SEARCH A-l

LIST OF REFERENCES References-1

LIST OF ACRONYMS Acronyms-1

VI

SUMMARY

The Terasys workstation is a massively parallel computer developed at IDA's Center
for Computing Sciences (formerly the Supercomputing Research Center) in Bowie, Mary-
land. The Terasys workstation is a SIMD (Single Instruction, Multiple Data) computer,

meaning that all processors perform identical instructions and that each processor has its

own local memory. Terasys processors are single-bit processors, meaning, for example, that

operations like adding two multi-bit integers require several processor cycles. A Terasys
workstation consists of a linear array of Terasys processors controlled by a Sun Microsys-
tems Sparcstation-2 host. The Center for Computing Sciences has built working Terasys
prototypes with up to 32,768 processors.

The existence of working Terasys prototypes at the Center for Computing Sciences
made it appropriate to investigate ways in which the computing power of the Terasys could
be applied to help meet the needs of IDA sponsors in divisions other than the Center for

Computing Sciences. After discussing potential Terasys applications with a number of IDA
researchers, we decided to focus on Terasys applications involving nearest neighbor search.

Nearest neighbor search can be implemented efficiently on the Terasys and there are a num-
ber of applications of nearest neighbor search that are potentially of interest to IDA spon-
sors. One particularly important application of nearest neighbor search is nearest neighbor
classification-classifying new samples by finding previously classified samples that they
are similar to.

To implement nearest-neighbor search on the Terasys, one training record can be
placed in each processor and the host can be used to broadcast each sample record. Each
time a sample is broadcast, the sample can be compared with many training records in par-
allel. In the report we present experimental results showing that a Terasys with 32,768 pro-
cessors can perform a particular nearest neighbor search problem up to 69 times faster than
a 61 MHz Sun Sparcstation-20.

For certain types of records and distance functions, and particularly for nearest
neighbor search in a Euclidean space, it may be more efficient to place adjacent record com-

S-l

ponents in adjacent processors. In such a case, we refer to the sequence of processors used

to store a record as a vector comparison unit.

To illustrate how Terasys-based nearest neighbor search could be applied to the

work of IDA sponsors outside of the Center for Computing Sciences, the report discusses

three possible applications of nearest neighbor search to an ongoing radar evaluation

project in IDA'S Science and Technology Division.

This report demonstrates that nearest neighbor search can be implemented efficient-

ly on the Terasys and that nearest neighbor search can be applied to a number of problems
that are potentially of interest to IDA sponsors. We recommend that the next step in this
investigation should be additional experiments which use Terasys-based nearest neighbor

search in a variety of applications. We particularly recommend tests that would use the

Terasys to assist in the development of new nearest neighbor classifiers.

S-2

1. INTRODUCTION

The Terasys workstation is a massively parallel computer developed at IDA's Center for
Computing Sciences (formerly the Supercomputing Research Center) in Bowie, Maryland.
The Terasys workstation is a SIMD (Single Instruction, Multiple Data) computer, meaning that
all processors perform identical instructions and that each processor has its own local memory.
Terasys processors are single-bit processors, meaning, for example, that operations like adding
two multi-bit integers require several processor cycles. A Terasys workstation consists of a lin-
ear array of Terasys processors controlled by a Sun Microsystems Sparcstation-2 host. The
Center for Computing Sciences has built working Terasys prototypes with up to 32,768 proces-

sors.

The existence of working Terasys prototypes at the Center for Computing Sciences
made it appropriate to investigate ways in which the computing power of the Terasys could be
applied to help meet the needs of IDA sponsors in divisions other than the Center for Comput-
ing Sciences. After discussing potential Terasys applications with a number of IDA research-
ers, we decided to focus on Terasys applications involving nearest neighbor search. Nearest
neighbor search can be implemented efficiently on the Terasys and there are a number of appli-
cations of nearest neighbor search that are potentially of interest to IDA sponsors. One partic-
ularly important application of nearest neighbor search is nearest neighbor classification-
classifying a new sample by finding the previously classified sample that is most similar to it.

Given a set S of sample objects and a set T of training objects, the goal of nearest neigh-
bor search is to find the nearest neighbor in T of every object in S. Nearest neighbor search
problems can involve many kinds of objects and many different distance measures. For exam-

ple:

1. Sets S and T might contain database records each describing a particular object
or event. The goal might be to classify each object in S by finding the object in
T that is most similar to it. In this case the distance between two records could
be an arbitrary function involving the fields in each record.

2. A number of pattern recognition techniques make use of nearest neighbor
search. For example, suppose that S and T contain vectors representing time

series. The vectors in T might correspond to patterns that are of particular inter-

est for some application and the goal might be to identify vectors in S that are

similar to vectors in T. The distance between two time series might be the sum

of the products of the two series at each point in time.

3. As described in [Stan 1986], each element in S and T might be a set of English
words converted into a bit vector by computing multiple hash values for each
word. If the vectors in T contain key words from abstracts of articles, the goal
might be to find abstracts in 7" that share many key words with queries in S.

4. Sets S and T might contain points in a high-dimensional Euclidean space and

the distance between two points could be the ordinary Euclidean distance.

This report provides an overview of the Terasys workstation and discusses how nearest

neighbor search can be implemented on the Terasys. The report presents experimental results
showing that a Terasys with 32,768 processors can perform a particular nearest neighbor search
problem up to 69 times faster than a 61 MHz Sun Sparcstation-2.

2. NEAREST NEIGHBOR CLASSIFICATION

A typical problem which a credit card company might face is the task of predicting how
satisfied it would be with a new applicant. Suppose that the company maintains a database of
information about existing customers. A natural way for the company to predict how satisfied

it would be with a new applicant is to find out how satisfied it has been with existing customers

who are similar to the new applicant.

Predicting the behavior of new customers by finding similar existing customers is an
example of nearest neighbor classification [Fix 1951, 1952], [Cove 1967]. Nearest neighbor
classification is closely related to a technique called memory-based reasoning [Cree 1992].

Consider a sample record R and a set T of correctly classified training records. The m-

nearest neighbor classification rule classifies R by performing the following two steps:

1. Find the m records C/j,..., Um in T which are closest to R using some sort of

distance measure.

2. Assign R to the class which appears the most frequently among t/l5..., Um .

As the following example illustrates, the definition of what it means for two records to be sim-

ilar may vary from problem to problem.

In the credit card problem discussed earlier, the following information might be avail-

able for each new applicant:

1. id (integer)

2. age (integer)

3. income (integer)

4. occupation (discreet: 1 = student, 2 = self-employed,...)

5. credit_rating (integer)

Suppose that the above information is also available for all existing and previous customers.

In addition, suppose that each existing or previous customer has been classified as either satis-

factory or unsatisfactory, based on the company's experience with them.

Assuming that age, income, and credit rating have all been normalized on a scale of 0

to 10, the following algorithm computes a value between 0 and 100 indicating the distance

between two records. The algorithm gives 50% of total weight to income, 30% to credit rating,

and 10% each to age and job type.

procedure ComputeDistance(record Rl, record R2)

distance = 0;

distance = distance + (5 * abs{Rl.income - R2.income))',

distance = distance + (3 * abs(Rl.credit jating - R2.credit jating));

distance = distance + abs(Rl.age - R2.age);

if (Rl.occupation & R2. occupation)

distance = distance +10;

return distance;

(In the above procedure, function "abs" returns the absolute value of an integer.)

Besides its intuitive appeal, nearest neighbor classification has several other advantag-

es. New "knowledge" can be added to a classifier simply by adding more training records. A

nearest neighbor classifier can be tuned by modifying distance functions or by adjusting the

number of nearest neighbors used. Classifier results can be justified or explained by showing a

user the training records used in the classification.

A primary disadvantage of nearest neighbor classification is that for large data sets, the

computation time required to find nearest neighbors can be substantial. One way to speed the

process up is to use a parallel computer such as the Terasys to perform many comparisons

simultaneously.

3. OVERVIEW OF THE TERASYS WORKSTATION

As has already been discussed, a Terasys workstation consists of a linear array of sin-
gle-bit SIMD processors connected to a Sun Microsystems Sparcstation-2 host. Current Tera-
sys prototypes have up to 32,768 processors.

The Terasys workstation is called a workstation because it is intended to be small
enough and affordable enough to potentially be dedicated to a single analyst. Gokhale et al.

[Gokh 1995] estimate that in limited commercial production the chips required for a 32K pro-
cessor Terasys array might cost approximately $32,000; including the Sparestation host and
other items needed to build the Terasys might bring the final price to approximately $42,000.

The Terasys is based on the PIM (Processor-in-Memory) chip. As the name suggests, a
PIM chip can be thought of as a conventional memory chip in which some of the area that
would have been used for storage has instead been used to implement 1-bit processors. Each
PIM chip currently contains 64 processors and each processor has 2,048 bits of local memory.
This means that a single PIM chip has 128K bits of storage.

The Terasys architecture is designed to be extensible and Terasys (or Petasys) comput-
ers containing substantially more than 32K processors could potentially be built.

3.1 Interprocessor Communication

In a Terasys workstation, the ability of the host to broadcast a message to the entire pro-
cessor array is implicit in the dbC language (described in the next section) used to program the

Terasys. If a is a parallel variable and b is a host variable, the value of b can be broadcast to all
Terasys processors simply by executing the statement "a - b". In addition to implicit commu-

nication using assignment statements, the Terasys architecture also permits the following kinds
of communication:

1. The host can read and write to the memory of individual processors.

2. Special instructions allow the host to efficiently obtain the maximum or mini-
mum value of a parallel variable and the ID of the processor which holds the val-
ue. We will refer to these instructions as global min and global max operations.

3. The Terasys processor array supports a parallel prefix communication network

which allows values in particular processors to be broadcast to their n left-most
neighbors where n is an arbitrary power of 2. One important application of the
parallel prefix network is in efficiently computing sums over groups of proces-
sors. The linear array of Terasys processors can be divided into equal-length
segments where the length of each segment is an arbitrary power of 2. If x is a

parallel variable, the parallel prefix network can be used to compute the sum of
x over each segment in time proportional to the logarithm of the length of the

segment. When the computation is complete, the value of the sum is located in

the final processor in each segment.

A Terasys workstation also has the ability to transfer properly formatted data back and

forth from host to Terasys memory at roughly the same speed that data can be transferred within

host memory. When data is transferred from host memory to Terasys memory in this way, a 32-

bit word of host data is not written to the memory of a single processor. Instead, each bit in the
32-bit word is written to a bit in one of 32 contiguous processors. In order for efficient data
transfer from host to Terasys to take place in this way, the data in the host must be "corner
turned" or preprocessed into a one bit per processor format.

Most Terasys applications use integer arithmetic. While Terasys processors can per-
form floating point arithmetic (operating on just one bit per cycle), most floating pointing oper-

ations are too slow to be of practical use on a Terasys with 32K processors.

Parallel arrays are supported on a Terasys workstation with the important restriction

that Terasys processors do not support indirect addressing. This means that when array opera-
tions are performed in parallel, every processor must operate on the same array location (in its

local memory) at the same time.

3.2 The dbC Programming Language

A Terasys workstation can be programmed using a language called dbC (data-parallel,
bit C) developed at the Center for Computing Sciences. The dbC language is an extension of C
which allows integrated programming of both the host computer and the processor array. The
dbC language allows variables to be declared as type poly, meaning that a copy of the variable
is placed on each processor. Variables which are not declared to be of type poly exist only on

the host. Consider the following lines of dbC code:

poly int c;
int i;

c = 0;
/or (/-0;i< 10;/++)

c++;

Assuming that it is run on a 32K processor Terasys workstation, the above program fragment
would execute as follows. The declaration "poly int c" means that a copy of variable c is
placed on each of the 32K processors. The declaration "int i" means that one copy of variable
i is placed on the host computer. Executing the statement "c = 0" causes each of the 32K pro-

cessors to initialize its copy of c to 0 in parallel. Each time the host computer executes a cycle

of the "for" loop, all 32K copies of variable c are incremented in parallel.

The fact that Terasys processors are bit-serial means that they are well-suited for per-
forming bit-oriented operations. The dbC language includes facilities for declaring and manip-
ulating parallel arrays of bits and parallel integers with an arbitrary number of bits.

The dbC language makes it possible to write code that executes on only a subset of the

Terasys processors. Consider the following statements:

poly int c;

c-0;
if(DBC_iproc>= 16384)

c++;

In the above lines of code, DBCiproc is a predefined parallel variable which tells each pro-
cessor what its ID is. Executing the "if statement in the above code fragment on a 32K pro-
cessor Terasys would cause the processors with IDs between 16,384 and 32,767 to increment
their copies of c in parallel. The processors with IDs between 0 and 16,383 would remain idle.

4. USING THE TERASYS TO FIND NEAREST NEIGHBORS

Consider a set S of sample records and a set T of training records. Assume that our goal

is to find the m nearest neighbors in T of each record in S. We will assume that each record is

small enough to fit in the memory of a single processor.

In general, a Terasys implementation of nearest neighbor search can either place sample

records in the Terasys and broadcast training records or place training records in the Terasys

and broadcast sample records.

4.1 Placing Sample Records in the Terasys

The case where samples are stored in the Terasys array might be implemented as fol-
lows. A list of nearest neighbors for each sample is maintained by the Terasys host. Each Tera-
sys processor stores the distance from its sample to the mth closest training record that has been
broadcast so far. When a new training record is broadcast, each processor computes the dis-
tance from its sample to the new record and checks whether the new record is closer than the
sample's current mth nearest neighbor. If the new record is closer, the processor alerts the host
which then updates the nearest neighbor list for the sample. Once an alert has been posted, the

host must also update the distance to the processor's mth nearest neighbor.

One drawback to the approach just described is the amount of sequential processing
required during the early stages of the algorithm. Since the first training record broadcast will

be a nearest neighbor for every processor, the host will initially have to respond to alerts from
every processor. One way to help alleviate this problem might be to have processors alert the
host only when the distance to a new training record is smaller than some threshold.

If space permits, another way to avoid this problem might be to have each Terasys pro-
cessor maintain its own list of m nearest neighbors. Since Terasys processors do not support
indirect addressing, inserting new elements into these lists would require the parallel execution

of m instructions each of the form "if you have found a new nearest neighbor and if the current
element is your mth nearest neighbor, then overwrite that element."

4.2 Placing Training Records in the Terasys

The alternative to placing sample records on the Terasys and broadcasting training

records is to place training records on the Terasys and broadcast sample records.

If enough processors are available, one training record can be placed in each processor.

In this case the nearest neighbor of a sample can be located by performing a single parallel dis-

tance computation followed by a Terasys global min operation. A Terasys workstation with one
training record stored per processor could potentially be used as a real-time classifier.

The following algorithm handles the case where there are more training records than

processors by dividing the training set into subsets which are small enough to fit into the pro-
cessor array. In describing the algorithm, we initially assume that S and T are small enough to

fit in the host's main memory.

During its initialization phase, the algorithm performs the following steps:

1. Load S and T from secondary storage to host memory.

2. Divide Tinto subsets Th ... ,Tn where each subset 7} is small enough to fit in

the Terasys processor array.

3. Load the records in 7\ from host memory to the processor array, putting a single
training record in each processor's memory.

After the initialization phase is complete, the algorithm loops through the following steps:

4. Let 7} be the subset of training records currently in the Terasys array. Each sam-
ple record in S is compared with all the records in 7} in parallel. After each par-
allel comparison has been performed, the host computer uses the Terasys global
min feature to find the training records which are closest to the current sample.
The host computer is responsible for keeping track of the m overall closest train-

ing records for each sample.

5. If all of the subsets Th ..., Tn have been processed, the algorithm is complete.
Otherwise, the next training subset is loaded into the Terasys processor array

and the algorithm loops back to step 4.

4.3 Handling Sets That Are Too Large for Primary Storage

In the algorithm discussed in the previous section, we refer to the loop described by

steps 4 and 5 as the Terasys inner loop. In a case where sets S and T are too large to be stored

10

in host memory, an additional loop must be added to the algorithm during which records are

loaded from secondary to host memory.

Consider an implementation of the algorithm with the constraint that only a total of q

sample records and c2 training records can be stored in host memory at any given time. In this
case, we divide S into subsets each of size q and Tinto subsets each of size c2. We embed the
Terasys inner loop within a new loop which operates as follows:

1. Load the first subset of q sample records from secondary to host memory.

2. Load the first subset of c2 training records from secondary to host memory.

3. Execute the Terasys inner loop using the sample and training records currently

in host memory.

4. Continue as follows:

• If additional subsets of training records remain to be loaded from secondary
to host memory, load the next training subset and loop back to step 3.

• If additional subsets of sample records remain to be loaded from secondary
to host memory, load the next sample subset and loop back to step 2.

• If all sample records in secondary storage have been processed, the algo-

rithm is complete.

4.4 Allocating Space in the Extended Algorithm

In the extended algorithm just described, only q sample records and c2 training records
are stored in host memory at any given time. Each time a new subset of sample records is loaded
into host memory, all of the training records must be sequentially loaded into host memory and
processed. Consequently, if set S has been divided into k subsets of size q, then each training
record must be loaded into host memory k times.

Because the extended algorithm must load training vectors into host memory multiple

times, it is advantageous for an implementation of the algorithm to divide S into as few subsets
as possible. In general, each training subset should be just big enough to fill the Terasys pro-
cessor array while each sample subset should be as large as host memory permits.

11

5. FASTER ALGORITHMS FOR SEQUENTIAL SEARCH

In comparing the speed with which the Terasys and a conventional computer can per-

form nearest neighbor search, we will assume that both the conventional computer and the

Terasys use exhaustive search to find nearest neighbors. Consequently, we must consider

whether there are sequential nearest neighbor search techniques which are more efficient than

exhaustive search.

Euclidean search is a special case of nearest neighbor search where records correspond
to points in a Euclidean space. As discussed in Appendix A, Euclidean search has been the sub-
ject of a substantial amount of research.

The execution time of exhaustive search is linear in the size of the search space. A goal

of research into Euclidean search is to find search algorithms with sublinear performance.

Unfortunately, the sublinear Euclidean search algorithms that have been developed so far tend

to work well only in low-dimensional spaces.

The performance of sublinear search algorithms in practice strongly depends on the dis-
tribution of points in the search space. When the distribution of points is fairly uniform, the per-
formance of sublinear search algorithms tends to follow the following pattern. The algorithms
typically do well in cases where k (the dimension of the space) is fairly small, i.e., less than 8.
For values of k between about 8 and about 20, the application of sublinear techniques tends to
become increasingly difficult for one of two reasons: either performance degenerates into
exhaustive search or the number of data points required for efficient operation becomes unre-
alistically large. For values of k much larger than about 20, the two problems just described tend

to become so severe that using existing techniques to achieve a significant speedup over
exhaustive search becomes essentially impossible for data sets of a reasonable size. The prob-
lem of finding efficient Euclidean search techniques for high-dimensional spaces is an active
area of research.

The extent to which the Euclidean search methods described in Appendix A can be
applied to the more general kinds of nearest neighbor search will vary from case to case. If we

permit the distance between two records to be defined by an arbitrary function, it seems that

13

achieving a guaranteed speedup over exhaustive search is not possible even in principle. In

practice, it may be reasonable to assume that the function/defining the distance between two

records is always a metric, meaning that/has the following three properties:

1. fiRlt R2) > 0 for all Rx and R2

2. fiRlt R2) = 0 only if R^R2

3. ycÄi,Ä3)^Äi,Ä2)+^2.Ä3).

A nearest neighbor search technique discussed in [Shas 1990] can be applied to any search

problem where a metric distance function is used. We would expect, however, that like the

Euclidean search methods described in Appendix A, the method described in [Shas 1990] will

become inefficient for records with many parameters (i.e., high-dimensional records).

As will be discussed in Section 8, one area where a Terasys implementation of nearest

neighbor search may be particularly useful is during the development of new nearest neighbor
classifiers. During classifier development, it may be necessary to experiment with different dis-
tance functions and to alter other parameters of the search as well. In such a context, it may be
especially difficult to implement sequential search techniques with better performance than

exhaustive search.

14

6. THE EFFECT OF I/O ON TERASYS PERFORMANCE

Given two records JRJ and R2, we refer to the process of computing the distance between

Rl and R2 as a record comparison operation. Assuming that Ri is stored in host memory and
that R2 is stored in the memory of a single Terasys processor, let ^ be the number of record
comparison operations per second that a single Terasys processor can perform. Let s2 be the
number of record comparison operations per second that can be performed by a specific con-
ventional computer. For a given type of record and a given distance measure, we refer to the
quantity r = si/s2 as the performance ratio of a single Terasys processor with respect to the con-
ventional computer. Since a single Terasys processor will typically be much slower than a con-
ventional computer, quantity r will normally be smaller than 1.

For a Terasys workstation with P processors, the maximum speedup that the Terasys
can achieve with respect to a given conventional computer is generally equal to Pr. In practice,

the actual speedup achieved by a Terasys workstation will be less than Pr because of the time
that must be spent on I/O.

When we compare a Terasys workstation with a conventional computer, we will assume
that the conventional computer and the Terasys host have the same amount of primary memory
and the same secondary to primary transfer rate. Under these assumptions, both a conventional
and Terasys implementation of a particular algorithm will spend the same amount of time doing
secondary to primary transfer.

Amdahl's law [Marc 1994, p. 775] can be applied to the Terasys as follows. Suppose
that a given program requires t seconds to run on a sequential computer and that of those t sec-
onds, h seconds are devoted to tasks which must be run on the Terasys host. In such a case, a
Terasys workstation must take at least h seconds to perform the task. Consequently, the maxi-
mum speedup that the Terasys can achieve is tlh.

For nearest neighbor search, the most significant part of the problem that must be per-
formed on the host is the transfer of records from secondary to host memory. Suppose that for

a given search problem the conventional computer spends ninety percent of its total computa-

15

tion time on secondary to primary transfer. In this case, the maximum speedup the Terasys can

achieve is 10/9 or approximately ten percent.

For a search problem to be a good candidate for the Terasys, we might want to make

sure that a conventional implementation of the problem spends no more than one or two percent

of its total computation time on secondary to primary transfer. As illustrated by the examples

in the following section, for large sets of records such low percentages should not be difficult

to achieve. •

16

7. EXPERIMENTAL RESULTS

The Terasys used in the following tests had 32K processors and was connected to a Sun

Microsystems Sparcstation-2 host. The conventional workstation used for comparison was a 61
MHz Sun Microsystems Sparcstation-20. The records used in the experiment were vectors of
32 8-bit positive integers. The distance between two vectors was defined to be the square of the

Euclidean distance.

On the Sparcstation-20 that we tested, it turned out that floating point arithmetic was
faster than integer arithmetic. Consequently, in a Sparcstation-20 implementation of nearest
neighbor search it would be advantageous to store vector components on disk as 8-bit integers
but to convert vector components to floating point values before processing begins.

Our analysis of conventional workstation performance is based on the following exper-

imental results:

• A Sparcstation-20 can transfer approximately 92,600 vectors per second from disk
to host memory. (Note: All of our experimental results are rounded to three decimal

places of accuracy.)

Since each vector is 32 bytes long, 92,600 vector transfers per second corresponds
to approximately 2,960,000 bytes per second.

• A Sparcstation-20 can convert approximately 75,200 vectors per second from inte-

ger to floating point components.

• A Sparcstation-20 can perform approximately 158,000 vector comparisons per sec-

ond.

Given two vectors U and V, computing (L/,- - V;)2 for a single component requires 2
floating point operations. Computing {Ut - Vt)

2 for 32 components requires 64 float-
ing point operations. Computing the sum of (I/,- - V,)2 over 32 components requires
an additional 31 floating point operations. Computing the square of the distance
between U and V thus requires 95 floating point operations. Consequently, 158,000
vector comparisons per second corresponds (very roughly) to 15,000,000 floating
point operations per second.

17

Our analysis of Terasys performance is based on the following experimental results:

• A Terasys workstation can transfer approximately 3,850 vectors per second from

host memory to the Terasys processor array.

A transfer rate of 3,980 vectors per second corresponds 123,000 bytes per second.
The reason the transfer rate is so slow is that we used dbC assignment statements to
write individual vectors to individual processors. Using this approach, essentially
only a single bit was transferred to a single processor during each cycle. As dis-
cussed earlier in the report, the time required to load the Terasys array could have
been substantially reduced if we had stored the data in the host in corner-turned for-
mat.

• A Terasys workstation with 32K processors can perform approximately 10,900,000

vector comparisons per second.

For the Terasys, each vector comparison requires 95 small integer operations. Con-
sequently, 10,900,000 vector comparisons per second roughly corresponds to
slightly more than 1 billion small integer operations per second.

7.1 Performance Ratio of the Terasys

The experimental results given in the previous section indicate that a Sparcstation-20
can perform approximately 158,000 vector comparisons per second while a 32K processor
Terasys can perform approximately 10,900,000 vector comparisons per second. This means
that a 32K Terasys is able to compare vectors approximately 69 times faster than a Sparcsta-
tion-20. Our experimental results also imply that a single Terasys processor can perform
approximately 333 vector comparisons per second. This means that a Sparcstation-20 is about

474 times as fast as a single Terasys processor.

7.2 Estimates of Overall Terasys Performance

In the previous section, we noted that a 32K processor Terasys can compare vectors
approximately 69 times faster than Sparcstation-20. As discussed earlier, a factor of 69 is thus
an upper bound on the overall speedup that the Terasys can achieve for this problem. In the fol-

lowing two examples, we estimate the total execution times of a Sparcstation-20 and Terasys
for vector sets of different sizes. (Note: As we proceed through our examples, we will imme-

diately round each result to three decimal places of accuracy.)

18

Example: Find the nearest neighbors of 10,000 sample vectors in a training set of 100,000

vectors.

1. Estimate of I/O time for Sparcstation-20

• Time to transfer 105 training vectors from host to disk: 1.08 seconds.

• Time to convert 105 training vectors from integer to floating point: 1.33 seconds.

• Time to transfer 104 sample vectors from host to disk: 0.108 seconds.

• Time to convert 104 sample vectors from integer to floating point: 0.133 seconds.

• Total I/O time: 2.65 seconds.

2. Estimate of total execution time for Sparcstation-20

• Time to perform 104 * 105 comparisons: 6,330 seconds.

• Total Sparcstation-20 execution time: 6,330 seconds = 106 minutes. (I/O time is

insignificant.)

3. Estimate of I/O time for Terasys

• Time to transfer 105 training vectors from host to disk: 1.08 seconds.

• Time to transfer 104 sample vectors from host to disk: 0.108 seconds.

• Time to transfer 105 training vectors from host to Terasys array: 26.0 seconds.

• Total I/O time: 27.2 seconds.

4. Estimate total execution time for Terasys

• Time to perform 104 * 105 comparisons: 91.7 seconds.

• Total Terasys execution time: 91.7 + 27.2 =119 seconds.

• Overall Terasys speedup: 6,330/119 = 53

Example: Find the nearest neighbors of 100,000 sample vectors in a training set of 1,000,000

vectors.

1. Estimate of I/O time for Sparcstation-20

• Time to transfer 106 training vectors from host to disk: 10.8 seconds.

• Time to convert 106 training vectors from integer to floating point: 13.3 seconds.

19

• Time to transfer 105 sample vectors from host to disk: 1.08 seconds.

• Time to convert 105 sample vectors from integer to floating point: 1.33 seconds.

• Total I/O time: 26.5 seconds.

2. Estimate of total execution time for Sparcstation-20

• Time to perform 105 * 106 comparisons: 633,000 seconds.

• Total Sparcstation-20 execution time: 633,000 seconds = 10,600 minutes = 177

hours = 7.38 days. (I/O time is insignificant.)

3. Estimate of I/O time for Terasys

• Time to transfer 106 training vectors from host to disk: 10.8 seconds.

• Time to transfer 105 sample vectors from host to disk: 1.08 seconds.

• Time to transfer 106 training vectors from host to Terasys array: 260 seconds.

• Total I/O time: 272 seconds.

4. Estimate of total execution time for Terasys

• Time to perform 105 * 106 comparisons: 9,170 seconds.

• Total Terasys execution time: 9,170 + 272 = 9,440 seconds = 157 minutes = 2 hours,

37 minutes.

• Overall Terasys speedup: 633,000/9,440 = 67

20

8. USING THE TERASYS DURING CLASSIFIER DEVELOPMENT

One area where a Terasys implementation of nearest neighbor search may be particu-
larly useful is in the development of new nearest neighbor classifiers. During the development
of a new classifier, it may be necessary to experiment with a number of different classifier

designs. For example, a user might want to test different methods of extracting features from
the training data or try out different distance functions. During the development process, the
ability to test a classifier in less time means that more tests can be conducted and that more vari-
ations can be tried. The ability to test a classifier quickly is especially important when a tech-
nique such as genetic algorithms is used to automatically generate classifier parameters.

Because the time required to load training vectors must be amortized over many com-
parisons, a Terasys implementation of nearest neighbor search can usually be applied effective-
ly only when many samples need to be processed simultaneously. The classifier test and
refinement techniques discussed in this section both meet this criterion.

8.1 Estimating the Error Rate of a Nearest Neighbor Classifier

Consider the problem of estimating the error rate of a nearest neighbor classifier which

classifies samples using a training set T. As discussed in [Fuku 1990, p. 219], one technique for
estimating the error rate of the classifier is to determine how well a subset of the records in T
is classified by the remaining records. In the leave-one-out error estimation method, a single
record is removed from T and then classified using the remaining records. The process is
repeated until enough of the records in Thave been classified to yield a reliable error estimate.

With only minor changes, the Terasys nearest neighbor search algorithm that we have

discussed can be used to implement the leave-one-out method. Suppose that it has been deter-

mined that a total of n records need to be tested in order to reliably estimate the error rate of a
classifier. A Terasys implementation of the leave-one-out method would generate a sample set

by randomly selecting n records from T. The n records in the sample set would then be classi-
fied using the entire training set minus the sample currently being classified.

21

8.2 Refining the Training Set

Given a nearest neighbor classifier based on a training set T, one would expect that
deleting a subset of the records in T would improve the speed of the classifier at a cost of

increasing its error rate. In such a situation, the question arises of how to choose a subset of

records to delete in a way that minimizes the resulting increase in errors.

A substantial amount of research in the area of training set refinement has been done.
In [Dasa 1991], 18 papers proposing a variety of refinement techniques were reviewed. In this
section, we propose a training set refinement technique that is well-suited for implementation

on the Terasys.

The training set refinement technique that we propose repeatedly identifies and removes

the least useful record in the original training set. The method we describe is closely related to

the reduced nearest neighbor (RNN) rule [Gate 1972]. The RNN rule begins the process of
removing redundant records only after the original training set has been refined using another
method called the condensed nearest neighbor rule [Hart 1968]. In contrast, our refinement
technique is applied directly to the original training set. Both the condensed nearest neighbor
rule and the RNN rule assume that only a single nearest neighbor is used to classify each sam-
ple. The method we describe can be used to refine classifiers which make use of several nearest

neighbors.

Given a training set T, our refinement method starts by using the leave-one-out tech-

nique described in the previous section to estimate the error rate of T. Suppose it has been deter-
mined that a total of n records from T need to be classified in order to obtain a reliable error
estimate. Our algorithm begins by building a sample set S consisting of n randomly chosen
records from T. An initial estimate of Ts error rate is then obtained by classifying each record
in 5 using the leave-one-out method. Once the initial error estimate has been computed, our
refinement procedure proceeds to identify records in T whose deletion would cause little or no

increase to the initial error rate.

Suppose the records in T are used to classify a sample according to its m nearest neigh-
bors. During the second stage, our method uses the Terasys to find and store a list of at least the

m nearest neighbors of each sample in S. Up to some limit, it will be beneficial to store as many

neighbors for each sample in S as possible.

Once a list of nearest neighbors for each record in S has been computed, the third stage

of our refinement process starts. We assume that the third stage is performed entirely on the

22

host computer but it is interesting to note that under some circumstances the Terasys could be

used for the third stage as well.

During the third stage, each record U in Tis examined to determine how the deletion of

U would change the error rate of the current training set. To determine how the deletion of U

would affect the classification of a particular sample record R, the list of R's m nearest neigh-
bors is considered. If U is not one of the m nearest neighbors of R, deleting U would clearly not

affect the classification of R. If U is one of the m nearest neighbors of R, the deletion of U might
change R's classification from correct to incorrect, might change R's classification from incor-

rect to correct, or might leave R's classification unchanged.

After the overall effects of deleting each training record have been considered, the train-
ing record which would decrease the error rate the most or increase the error rate the least is
deleted. This process is repeated until any further deletions would result in an error rate that

exceeds some threshold.

As more and more training records are deleted, the lists of active nearest neighbors for
each of the sample records will become shorter and shorter. At some point they will be so short
that the m nearest neighbors for one or more samples can no longer be determined. When this
happens, the Terasys is used again to "refresh" the nearest neighbor lists for all samples with

missing elements.

23

9. ORGANIZING THE TERASYS INTO VECTOR COMPARISON
UNITS

Up until now, we have assumed that nearest neighbor search is implemented on the
Terasys by placing one record in each processor. In a case where a each record is a vector of

similar components, it is sometimes possible to implement nearest neighbor search more effi-
ciently on the Terasys by placing vectors linearly along the Terasys array with adjacent vector
components stored in adjacent processors. For this approach to be possible, the distance func-
tion between two vectors must first apply the same operation to each pair of components and
then apply a global operation such computing a sum or count to the results. We will illustrate
this technique for the case where records correspond to points in a Euclidean space. Other types
of distance functions where the "one-component-per-processor" approach could be applied

include:

• A distance function that counts the number of pairs of components that have iden-

tical values.

• A distance function that computes the average difference between pairs of compo-
nents.

• A distance function that computes the maximum difference between pairs of com-
ponents.

9.1 Using Vector Comparison Units to Compute Euclidean Distances

Consider the case where each record denotes a point in a ^-dimensional Euclidean
space. We will assume that each point in the search space is represented by a vector of k integers
where k is a power of 2. The one-component-per-processor approach divides the processor
array into segments of k processors and uses each segment to store one sample vector and a
fixed number of training vectors. We refer to each segment of & processors as a vector compar-
ison unit or VCU.

25

Storing vectors in VCUs makes it possible to take advantage of the special Terasys

hardware discussed in Section 3 for efficiently finding the sum of variables in a segment of pro-

cessors. The Euclidean distance e between two vectors U and V is defined as

e - t](Ul-V1)
2
+... + (Uk-Vkf.

In the case where both U and V are stored in the same VCU, each processor in the VCU can

compute the quantity (Ut - Vt)
2 for the components of U and V stored in the processor. Once

these quantities have been computed, the Terasys summation hardware is used to compute

their sum in time 0(log k) instead of time O(k). Because the squares of nonnegative integers

increase monotonically, in a Euclidean search problem quantity e can be used for compari-

sons in place of quantity e.

Pi

Pi

P3

P4

P5

Pe

Pi

P*

P9

P10

Pn
Pn

1 5 9

2 8 11
3 7 10
4 6 12

1 6 10
2 7 12

3 5 11
4 8 9

1 7 10

2 5 11
3 6 9

4 8 12

Figure 1. Sample use of VCUs

Example: Figure 1 illustrates how VCU-based search might be implemented in a case where

vectors have 4 components. In this example, we assume that the Terasys processor array con-

tains just 12 processors and that each processor has 5 bytes of memory. In figure 1, the array

of 12 processors has been divided into 3 VCUs. The first column of each VCU holds the cur-

26

rent sample vector-in this case [1, 2, 3, 4]. Columns 2 and 3 hold training vectors, and col-
umns 4 and 5 are reserved for intermediate processing. During the first cycle of the algorithm,

sample vector [1,2,3,4] is compared with training vectors [5, 8,7,6], [6,7,5,8], and [7,5,6,

8] in parallel. During the second cycle, vector [1,2, 3, 4] is compared with vectors [9,11,10,

12], [10,12,11,9], and [10,11,9,12].

Example: As a second example, we consider a VCU-based search implementation in a more
realistic case where each vector has 256 8-bit components and where the Terasys processor
array contains 32K processors. In this case, we divide the 32K Terasys processor array into
128 vector comparison units, each consisting of 256 processors. If each VCU stores one sam-
ple vector and 249 training vectors, the ith processor in each VCU will store the ith compo-
nent of the sample vector and the ith component of each of the 249 training vectors. The
number of bits required per processor is thus 250 * 8 - 2,000. Since each processor has 2,048
bits of local memory, this will leave 48 bits free per processor for use in intermediate process-

ing.

9.2 Optimal Terasys Design for VCU-Based Search

We have already pointed out that one advantage of using VCUs to implement nearest

neighbor search is that special Terasys hardware for computing the sums of segments can be
used. A second advantage of using VCUs is that VCU-based search can efficiently handle vec-

tors of length equal to any power of 2.

Trying to store an entire vector in each processor can be inefficient whenever vectors

are either too big or too small to fit into a single processor. Consider, for example, the case
where a single vector must be stored in two processors. In such a case, the two processors used

to store a given vector must do their processing sequentially rather than in parallel. Such an
implementation is inefficient because half of the processors are idle during any given process-

ing step.

As discussed earlier, a single Terasys chip contains 64 processors. The case where vec-
tors are too small to fill up a single processor's memory is also inefficient because in such a case
space on the Terasys chip that could have been used for more processors has instead been used

for unnecessary memory space.

It seems that for VCU-based search, an optimal Terasys design would have as many

processors as possible per chip. The memory of each processor should be just large enough to

store two vector components with enough intermediate processing space left over to compute

27

a simple quantity like (£/,• - VI)2. In this design, each VCU would store just one sample vector
and one training vector. A Terasys designed in this way would be able to efficiently perform

VCU-based search for vectors of length k where k is any power of 2 as long as the Terasys con-
tains substantially more than k processors. The reason why the Terasys must contain substan-

tially more than k processors is as follows.

In the optimal Terasys design just described, a different training vector is loaded into
each VCU. We will assume that the cost of loading training vectors into VCUs can be amor-

tized by comparing the loaded training vectors with many sample vectors.

In order to compare a single sample vector with each of the loaded training vectors, the

sample vector must be broadcast one time to load the sample vector into each VCU. When there

are many VCUs, the time spent broadcasting samples will have little effect on overall perfor-

mance. If there are only a few VCUs, the time spent broadcasting samples could significantly

degrade performance. In the extreme case where the entire processor array is configured as a
single VCU containing just a single training vector, broadcasting a single sample vector is like-
ly to take more time than a sequential computer would require to compare the sample with the

training vector.

28

10. PATTERN RECOGNITION APPLICATIONS

In this section we consider how the Terasys could be used to search for patterns in time
series data and in 2-dimensional images. The fact that Terasys processors are arranged in a lin-
ear array makes the Terasys particularly well-suited for the task of time series analysis.

10.1 Time Series Analysis

Consider, as an example, the problem of continuously monitoring a patient's EKG.
Assume that an EKG signal can be converted into a time series of integers and that a training
set T exists where each vector in T corresponds to a potentially significant pattern. For the sake

of simplicity, assume the vectors in T are all of length k where k is a power of 2.

Assume that our goal is to design a classifier which will post an alert each time a length-

k subsequence of the input time series falls within a fixed distance of a vector in T. VCU-based
search can be used to solve this problem by dividing the Terasys into vector comparison units
each of length k. As before, each VCU stores a fixed number of training sequences. The input
time series is fed one value at a time through the processor array. Each time the input time series
is advanced one step, a new length-^ subsequence is, in effect, loaded into each VCU. Each
VCU then computes the distance between its current subsequence and each of the training
sequences that it contains.

In a case where the entire training set can be stored in Terasys memory, the implemen-

tation that we have just described could potentially analyze input signals in real time. In a case

where the training set is too large to fit in Terasys memory, the training set could be broken into
subsets. In this case it would probably be necessary to store the input signal and analyze it off-
line. Each time a new subset of training sequences was loaded, the entire input signal would be

fed through the processor array.

10.2 Image Analysis

In principle, nearest neighbor search can be directly applied to image analysis. Consider
a target recognition system which is responsible for locating targets in an image. Assume that

29

the system makes use of a set of training images in which each target has been photographed

at all scales and orientations likely to appear in samples.

Assume that each input image is of size m by m and that each target image is of size n

by n where n is smaller than m. Each m by m input image can be viewed as a set of overlapping

n by n subimages. By viewing each n by n subimage as a linear vector of length n , target rec-
ognition can be converted into nearest neighbor search. A possible distance measure in this case
might be the total number of target pixels that closely match the corresponding pixel in an input

subimage.

In most cases, the number of training vectors required to cover every possible scale and

orientation of each target is likely to be unrealistically large. A more traditional approach to

target recognition might initially use a conventional computer to segment an input image into

separate objects. Each object would then be processed to extract a set of features for the object.

Assuming that the target images have been processed in the same way, nearest neighbor search

could then be used to classify the resulting feature vectors.

30

11. OTHER APPLICATIONS OF EUCLIDEAN SEARCH

In this section we consider several applications of Euclidean search which are not

directly related to classification. We consider how Euclidean search can be applied to the prob-
lems of estimating intrinsic dimensionality and computing the approximate value of a density
function. We also consider how density estimation based on Euclidean search can be used to
generate new vectors which have approximately the same distribution as the vectors in an exist-

ing set.

11.1 Estimating Intrinsic Dimensionality

Consider a random vector X of the form [xx,..., xk] where each xt is a random variable.
The explicit dimensionality of Xis equal to k. As discussed in [Fuku 1990, p. 280], we say that
the intrinsic or effective dimensionality of X is equal to ke if each component xt of X can be writ-
ten as a function ffyv ...,yk) of ke random variables. Geometrically, this means that each

sample of X lies on a hypersurface of topological dimension ke.

Example: Consider a set of points which are randomly distributed on a 2-dimensional plane
embedded in a 10-dimensional space. In this case, the explicit dimensionality of the points is

10 while their intrinsic dimensionality is 2.

Knowing the intrinsic dimensionality of a data set can be useful in classification prob-
lems. If the intrinsic dimensionality of a set of points is significantly lower than its explicit
dimensionality, it may be possible to map the points into a lower dimensional space in which

the classification task can be performed more efficiently.

In [Fuku 1990, p. 281], the following formula is given which can be used to estimate

the intrinsic dimensionality of a set of data points:

Eid(m+\)NN^X)y „1 (1
E{dmNN(X)} ~ mke

31

In this expression, quantity E {d(m + i)?w(X) } is the expectation of the distance from a sam-
ple of X to its (m + l)th nearest neighbor. Quantity E { d^^X) } is the expectation of the dis-

tance from a sample of X to its mth nearest neighbor.

Given a set of samples, the two expectation values in the above formula can be estimat-

ed by choosing an arbitrary value of m and computing the average distance to the /nth and

(m + l)th nearest neighbor of each sample. Once estimates of E { d(m + I)NNQO } and
E { dfnNNiX) } have been computed, an estimate of the intrinsic dimensionality ke of the sample

set can be obtained using the equation given earlier.

11.2 A Nonparametric Technique for Estimating Density

Suppose the only information available about a random variable X is a set S of samples

of X. Let/? be the (unknown) probability density function associated withX and suppose we

want to evaluate p at an arbitrary point V. As discussed in [Fuku 1990, p. 255], one technique
for evaluating p(V) is to center a unit volume kernel function at each of V's m nearest neighbors
in S. The sum of the kernel functions at V is then used as an estimate of p(V). We refer the reader
to [Fuku 1990] for a detailed description of this method. In a case where the density function
p needs to be evaluated at many points, the Terasys nearest neighbor search algorithm discussed
in this report could be used to find the m nearest neighbors of each point.

One interesting application of nonparametric density estimation is in the generation of
new samples that have approximately the same distribution as the vectors in an existing set. As
before, let S be a set of samples generated by a random variable X and let/? be the unknown
probability density function associated withX. Suppose we want to generate new samples of X
which lie within a ^-dimensional region R. Although the structure of p is unknown, suppose it
can be assumed that/? is bounded by a constant c throughout R.

The rejection method [Pres 1992, p. 290] for generating new samples of X can be

applied in our example as follows. First, generate a random point V in R and a random number
r between 0 and c. The density estimation technique described earlier in this section is then
used to obtain an estimate of /?(V). If r is less than the estimate of p(V), V is returned as the new

sample of X. If r is greater than the estimate of p(V), the process is repeated.

Recall that the Terasys can be used effectively for nearest neighbor search only in cases
where the nearest neighbors of many points need to be found simultaneously. When the rejec-
tion method is used to generate new samples, the generation of a single new sample can require
multiple evaluations of p which means that the nearest neighbors of many points need to be
found. The fact the nearest neighbors of many points need to be found means that Terasys-

32

based nearest neighbor search can potentially be applied even when only a few new samples

need to be generated.

33

12. APPLICATIONS OF EUCLIDEAN SEARCH TO RADAR ANALYSIS

To illustrate how the Terasys could be applied to the kinds of government work con-
ducted by IDA divisions outside of the Center for Computing Sciences, we examined three pos-
sible applications of a Terasys implementation of Euclidean search to an ongoing radar analysis

project being conducted by Jim Silk in IDA's Science and Technology Division. To find out
how much computing power these applications require, we built prototypes of the three appli-
cations using a conventional workstation to implement Euclidean search. All the experiments
discussed in this section were conducted using a 61 MHz Sun Microsystems Sparcstation-20.

All three of our tests made use of a set of tank radar data which had been previously
obtained in a laboratory. To collect the data, a tank was mounted on a turntable and rotated
through a little less than 360 degrees in a total of 29,516 increments. At each increment, a radar
scan of the tank was obtained. Before the data was used in our experiments, each scan was con-
verted into a vector of 32 real-valued components where each component was normalized to

lie between 0 and 1.

This data set of approximately 30,000 vectors was used only for demonstration purpos-
es. To fully analyze an actual radar system, a data set containing substantially more than 30,000

vectors would be required.

12.1 Target/Clutter Discrimination

The first test that we performed used nearest neighbor search to classify samples as
either targets or randomly generated "clutter" based on the classifications of their nearest
neighbors. In this experiment our training set consisted of 59,032 vectors, half of which were
actual tank scans and half of which were randomly generated. Our sample set consisted of
6,000 vectors, half of which were actual tank scans and half of which were randomly generated.
Our experiment placed each sample vector into the class of its single nearest neighbor. (Since
each tank scan sample vector was also a training vector, tank scan samples were classified

according to their second nearest neighbors.)

35

In the experiment, the Sparcstation-20 was able to classify the entire sample set in 37.6
minutes, meaning that approximately 2.7 vectors were classified per second. The misclassifi-

cation rate for both the target and random vectors was about 4 percent.

In this example, if the 6,000 samples vectors needed to be classified just one time, hav-

ing to wait 37 minutes may not be a significant problem. If one wanted to improve the accuracy

of the classifier, however, having to wait more than a half hour to see the results of a modifica-

tion could be a serious impediment.

As discussed earlier, an actual radar evaluation experiment would be likely to use sub-
stantially more than 30,000 (or 60,000) training vectors. The speedup that the Terasys could
provide might become very significant if the sizes of both the target and training sets were
increased by a factor of 10. In such a case, the execution time for the Sparestation would grow

by a factor of 100 to more than 50 hours.

12.2 Effect of Conversion to Integers on Classifier Accuracy

In the classification experiment discussed in the previous section, each tank-scan vector

component was normalized to a floating point value between 0 and 1. In order to perform vector
search on the Terasys, each vector component would probably need to be converted to a small
integer. We performed the following test (using a Sparestation) to analyze the effect of conver-

sion to 8-bit integers.

The real-valued vectors used in our conversion test consisted of the 29,516 tank-scan
vectors combined with 29,516 randomly generated vectors. A corresponding integer-valued
training set was constructed by converting each vector component to a value between 0 and
255. The first sample set consisted of 10,000 randomly chosen tank-scan vectors and the second
sample set consisted of 10,000 random vectors. Integer-valued versions of both sample sets

were constructed.

When the tank-scan sample set was tested, approximately one vector in 74 had a differ-

ent nearest neighbor in the integer-valued training set than the corresponding vector had in the
real-valued training set. For one tank-scan sample in 1,250, the nearest neighbor in the integer-

valued training set was in a different class than the nearest neighbor in the real-valued set.

When the random sample set was tested, approximately one vector in 60 had a different

nearest neighbor in the integer-valued training set than the corresponding vector had in the real-
valued training set. For one random sample in 588, the nearest neighbor in the integer-valued
training set was in a different class than the nearest neighbor in the real-valued set.

36

These results imply that for this particular classification problem, conversion from real-

valued to 8-bit components has only a small effect on classifier accuracy.

12.3 Dimensionality Test

The explicit dimensionality of the vectors used in our tests was 32. Using the technique
described in Section 11.1, we used the average distances to nearest neighbors to estimate the

intrinsic dimensionality of the tank scan data.

Our training set in this case consisted of the 29,516 tank scan vectors and our sample
set consisted of 3,000 vectors randomly chosen from the training set. Our test computed the
average distances to the 20 closest neighbors of 3,000 sample points. Finding the 20 closest

neighbors of 3,000 samples required approximately 26 minutes of Sparcstation-20 computing
time. The initial result of the dimensionality test indicated that dimensionality of the tank scan

data set is about 15.

If the intrinsic dimensionality of a data set is ke, the dimensionality test described in
Section 11.1 can be applied directly only if the data set is large enough to "fill" a space of
dimension ke. Calibration tests showed that the relatively small size of the tank scan data set
was skewing the calculated intrinsic dimensionality to an artificially small value. We ran the
dimensionality test program a number of times to test different techniques to compensate for

this bias.

A conventional workstation was fast enough to compute the intrinsic dimensionality of

a data set of about 30,000 points. As in the previous example, in a case where the sample and
training sets were 10 times larger and the execution time was 100 times larger, the Terasys

could provide a significant advantage.

12.4 Entropy Computation

Assume that the 29,516 vectors in the tank-scan data set are samples of a random vector
X and let/? be the probability density function associated with X. The entropy e associated with

p is defined as

e = f p(U) log p(U)dU.
«— oo

Monte Carlo integration [Pres 1992, p. 304] is a technique for integrating a function by evalu-

ating the function at a large number of random points. For our data set, we found that evaluat-

ing the quantity p(U) log p(U) at 1,000 random points was sufficient to yield a stable integral.
At each point, we used the nonparametric density estimation method described in Section 11.2

37

to evaluate p(U). The entire process of computing the entropy of the tank scan data set

required approximately 9.7 minutes of computing time on a Sparcstation-20.

As in our other examples, for a data set of about 30,000 vectors a conventional work-

station was fast enough to perform the entropy computation. For a larger data set, the Terasys

could potentially provide a significant advantage.

38

13. CONCLUSIONS AND RECOMMENDATIONS

This report has demonstrated that nearest neighbor search can be implemented effi-
ciently on the Terasys and that nearest neighbor search can be applied to a number of problems

that are potentially of interest to IDA sponsors.

One area where the use of Terasys-based nearest neighbor search seems particularly

promising is in the development of new nearest neighbor classifiers. During classifier develop-

ment, the ability to test a classifier in less time means that more tests can be conducted and that
more variations can be tried. The ability to test a classifier quickly is especially important when
a technique such as genetic algorithms is used to automatically generate classifier parameters.

Euclidean search is a special case of nearest neighbor search where records corresponds
to points in a Euclidean space. In the report we have discussed how Euclidean search can be
efficiently implemented on the Terasys by dividing the Terasys array into vector comparison
units. We have considered a number of areas where Euclidean search can be applied including

several applications in the area of radar analysis.

We recommend that the next step in this investigation should be additional experiments
which use Terasys-based nearest neighbor search in a variety of applications. We particularly
recommend tests that would use the Terasys to assist in the development of new nearest neigh-

bor classifiers.

39

APPENDIX A.
IMPROVING THE EFFICIENCY OF EUCLIDEAN NEAREST

NEIGHBOR SEARCH

Let Tbe a set of points in a ^-dimensional Euclidean space and consider the problem

of finding the nearest neighbor in T of an arbitrary point V. If there are N points in T, com-

paring V with every point in T will take time 0(N). In this appendix we consider several
techniques which can potentially find the nearest neighbor of V without examining every
point in T.

For three of the techniques we discuss, some sort of average or worst case sublinear
performance bound is provided. Unfortunately, the three techniques with guaranteed sub-
linear performance all tend to become impractical in high-dimensional spaces.

The fourth technique we consider, a method using Fourier coefficients as indices, is
heuristic in the sense that no guarantee of sublinear performance is provided. The ability of
heuristic techniques to perform Euclidean search will vary from application to application.

A.1 The Friedman, Baskett, and Shustek Algorithm

One of the first Euclidean search algorithms with provably sublinear expected exe-
cution time was developed by Friedman, Baskett, and Shustek [Frie 1975]. We refer to this
as the FBS algorithm. Like most of the algorithms discussed in this appendix, the FBS algo-
rithm can be used to find the m nearest neighbors of a sample point. For simplicity, we con-
sider only the case where m ** 1.

The FBS algorithm requires time 0(N log N) to preprocess the points in T and is
able to find the nearest neighbor of an arbitrary sample point in expected time 0(N1_1/ *).
In small dimensional spaces, the FBS algorithm can achieve a significant speedup for data
sets of a reasonable size. Consider, for example, the case where k •= 2. In this case the time
required for the FBS algorithm to find the nearest neighbor of an arbitrary point is 0{jN).

Ignoring constant terms, in the 2-dimensional case T might need to contain only 100 points
in order for the FBS algorithm to achieve a ten-fold speedup over exhaustive search.

A-l

For higher dimensions, however, the number of points required for the FBS algo-

rithm to obtain a significant speedup can become extremely large. In the case where k = 32,
the time required by the FBS algorithm is approximately 0(N0969). In this case (again

ignoring constant terms), Tmight need to contain approximately 1.8*10 points in order

for a ten-fold speedup over exhaustive search to be achieved.

A.2 Cell Methods

Dividing a 2-dimensional search space into a grid of 2-dimensional cells is often an
effective means of performing nearest neighbor search. Consider the problem of searching

for nearest neighbors within a 2-dimensional square. In this case, a grid of n by n cells could

be implemented using an n by n array. Each location in the array points to a linked list of

all the points which lie within the corresponding cell. The nearest neighbor of an arbitrary

point V is found by searching in a spiral pattern beginning with the cell containing V.

Conceptually, the 2-dimensional search technique just described can be generalized
to higher dimensions in a straightforward way. A ^-dimensional space can be divided into
hypercubic cells each of dimension k. The search for the nearest neighbor of a point V
begins in the cell where V is located and proceeds to the neighbors of that cell. Bentley et
al. [Bent 1980] analyze the performance of this approach. They show that for any value of
k, if the points in T are uniformly distributed in a hypercube of dimension k, then the aver-
age number of cells that need to be searched to find the nearest neighbor of an arbitrary

sample point is 0(1).

There are several techniques which can be used to implement a multidimensional
cell array using a reasonable amount of space. By hashing the indices of active cells, a hash
table can be used to implement the cell array in space 0(N) with potentially constant access
time. A variation of the k-d tree described later in this appendix can be used to implement

the cell array in space 0(N) with access time 0(log N).

Unfortunately, cell methods encounter a serious obstacle when generalized to a

high-dimensional space. As discussed in [Bent 1980], each cell in a ^-dimensional space
has 3k - 1 neighbors. Consequently, even though the average number of cells that need to
be searched is 0(1), the constant of proportionality grows exponentially with the dimension

of the search space. Because of this exponential dependence, cell-based techniques are like-

ly to become impractical in high-dimensional spaces.

A-2

A.3 Approximate Nearest Neighbor Search

As we have just discussed, Bentley et al. (Bent 1980] show that for a uniform dis-

tribution of points the average number of cells that need to be searched to find the nearest
neighbor of an arbitrary sample point is 0(1). Recently, this result has been strengthened in

the following way [Arya 1993,1994].

Consider, as before, a set T of Appoints in a ^-dimensional space. Let V be an arbi-
trary sample point. Following [Arya 1994], we define an approximate nearest neighbor of
V as follows. For any £ > 0, we say that a point U in T is a (1 + £)-nearest neighbor of V if

for all points U' in T

dist(y,U')^
distiy, U) ~

In the case where £ = 0.1, the set of (1 + £) nearest neighbors of V consists of all points
which are up to ten percent further from V than the actual nearest neighbor of V.

Arya et al. present a cell-based Euclidean search technique for which they are able
to give worst case rather than average case performance results. Using a tree-based struc-
ture to implement a multidimensional cell array, they show that for any distribution of
points and for any non-zero value £, at most 0(1) cells need to be examined to find a (1 +
£)-nearest neighbor of an arbitrary sample point. In their method, the time required to find
the cell containing an arbitrary point is 0(log N). Consequently, their method is able to find
a (1 + £)-nearest neighbor of an arbitrary sample point in time 0(log N).

Unfortunately, the constant of proportionality in their method again depends expo-
nentially on the dimensionality of the underlying search space. As discussed in the previous
section, in a high-dimensional space this exponential dependence is apt to make their meth-
od impractical. The authors state that one of their goals is to develop nearest neighbor
search algorithms that can be applied effectively in spaces of dimensionality up to approx-

imately k = 20.

A.4 Multidimensional Search Trees

A k-d tree [Bent 1975] is a generalization of a binary search tree to a space of arbi-

trary dimensions. Each internal node in a k-d tree partitions a subset of points into left and
right sub-trees, based on whether a particular coordinate of each point is larger than or

smaller than a discriminator associated with the node. A k-d tree generally requires time

0(kN log N) to construct.

A-3

When describing the structure of a k-d tree, it is useful to refer to the root as being

on the first level, its children as being on the second level and so on. In the original k-d tree
as described in [Bent 1975], the root node partitions the entire set of points with respect to

the first coordinate in the space. Nodes at levels two through k partition their points with

respect to the second through kth coordinates of the space. Nodes on the (k + l)th level cycle

back and again partition with respect to the first coordinate. The use of an optimized form

of k-d tree to solve the nearest neighbor search problem is discussed in [Frie 1977].

Friedman et al. show that for a large class of underlying distributions, if T contains

a sufficient number of points, then a k-d tree can be used to find the nearest neighbor of an

arbitrary point in expected time Oilog N). Friedmann et al. do not give a precise statement
of how many points T must contain for asymptotic behavior to occur but give empirical

results for the case where the points in T are normally distributed with a unit dispersion

matrix. In a 2-dimensional space, on the order of 100 points are sufficient for asymptotic

0(log N) search times to be achieved. In a 4-dimensional space, on the order of 10,000
points are required to achieve asymptotic behavior. In an 8-dimensional space, the largest
data set they tested consisting of 16,000 points was not sufficient for asymptotic behavior

to occur.

In [Spro 1991], an experiment using a modified k-d tree was conducted with k = 16
and with set T containing 75,857 points. The points in T were generated using a uniform

distribution. Sproull reports that in this case, finding the nearest neighbor of a single sample
point required on average the examination of more than 95% of the points in the training
set. He notes, however, that the efficiency of a k-d tree can improve substantially for non-

uniform or "clumpy" data.

The number of sample points required for a k-d tree to achieve logarithmic behavior
presumably grows exponentially with the dimensionality of the underlying space. Conse-
quently, for high-dimensional spaces the number of points required for asymptotic behavior
is likely to be too large to be achievable in practical applications.

A.5 Similarity Search Using Fourier Coefficients as Indices

As we have discussed in this report, one area where the need for high-dimensional

search arises is in the analysis of time series. A search technique designed specifically for

time series analysis is described in [Agra 1993]. Unlike the other methods described in this

A-4

appendix, the method described in [Agra 1993] is heuristic in the sense that it does not have
guaranteed worst case or average case sublinear behavior.

The time series considered in [Agra 1993] each contain between 256 and 2,048 ele-

ments and thus correspond to points in a space of between 256 and 2,048 dimensions. Given

a set T of time series, the goal of this method is to find all the elements of T which lie within

a distance £ of a sample time series V.

Agrawal et al. conclude that the dimensionalities required for time series similarity
search are much too high for traditional multidimensional search techniques to be directly
applied. Instead, Agrawal et al. propose the use of the Discrete Fourier Transform as a

means of mapping time series into a lower dimensional space. Given a time series V, their
method begins by using the Discrete Fourier Transform to transform V into a series y* in
the frequency domain. Once V* has been generated, the first n components of V* are used
to map V* to an n-dimensional space. In the examples they discuss, the resulting space typ-
ically has a dimensionality of between 2 and 4. Because the dimensionality of the resulting
space is so low, a number of efficient multidimensional search techniques can be applied.

Agrawal et al. demonstrate that their method is complete in the sense that it will
never fail to find all the points within a given search radius. They do not, however, guarantee
that their approach will always be more efficient than exhaustive search. While the method
described in [Agra 1993] cannot be guaranteed to be efficient, the authors provide empirical
results showing that their method performs significantly better than exhaustive search in
particular application domains.

A dimensionality reduction method such as the one described in [Agra 93] can
potentially complement the use of the Terasys for nearest neighbor search. Given a high-
dimensional data set, a dimensionality reduction technique could be used to reduce the
original data to the lowest dimensional space that still permits effective search. If the
dimension of the resulting space is sufficiently low, conventional multidimensional search
techniques can be used. If the dimension of the resulting space is still too high for conven-
tional techniques, the Terasys could potentially be employed.

A-5

LIST OF REFERENCES

[Agra 1993] R. Agrawal, C. Faloutsos, and A. Swami, "Efficient Similarity Search in
Sequence Databases," Proc. FODO Conference, October 1993.

[Arya 1993] S. Arya and D. M. Mount, "Approximate Nearest Neighbor Queries in
Fixed Dimensions," Proc. 4th ACM-SIAM Sympos. Discrete Algorithms,

1993, pp. 271-280.

[Arya 1994] S. Arya, D. M. Mount, N. S. Netanyahu, and R. Silverman, "An Optimal
Algorithm for Approximate Nearest Neighbor Searching," Proc. 5th
ACM-SIAM Sympos. Discrete Algorithms, 1994, pp. 573-582.

[Bent 1975] J. L. Bentley, "Multidimensional Binary Search Trees Used for Associa-
tive Searching," Communications of the ACM, Vol. 18, No. 9 (Septem-

ber 1975), pp. 509-517.

[Bent 1980] J. L. Bentley, B. W. Weide, and A. C. Yao, "Optimal Expected-Time
Algorithms for Closest Point Problems," ACM Transactions on Mathe-

matical Software, Vol. 6, No. 4 (December 1980), pp. 563-580.

[Cove 1967] T. M. Cover and P. E. Hart, "Nearest Neighbor Pattern Classification,"
IEEE Transactions on Information Theory, Vol. IT-13, No. 1 (January
1967), pp. 21-27. Also in [Dasa 1991].

[Cree 1992] R. H. Creecy, B. M. Masand, S. J. Smith, and D. L. Waltz, "Trading
MIPS and Memory for Knowledge Engineering," Communications of

the ACM, Vol. 35, No. 8 (August 1992), pp. 48-63.

[Dasa 1991] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classifica-

tion Techniques, IEEE Computer Science Press, Los Alamitos, CA,

1991.

[Fix 1951] E. Fix and J. L. Hodges, Discriminatory Analysis: Nonparametric Dis-
crimination: Consistency Properties, Project 21-49-004, Report Num-

References-1

ber 4, USAF School of Aviation Medicine, Randolph Field, TX, 1951,

pp. 261-279. Also in [Dasa 1991].

[Fix 1952] E. Fix and J. L. Hodges, Discriminatory Analysis: Nonparametric Dis-

crimination: Small Sample Performance, Project 21-49-004, Report

Number 11, USAF School of Aviation Medicine, Randolph Field, TX,

1951, pp. 280-322. Also in [Dasa 1991].

[Frie 1975] J. H. Friedman, F. Baskett, and L. J. Shustek, "An Algorithm for Finding

Nearest Neighbors," IEEE Transactions on Computers, Vol. C-24, No.

10 (October 1975), pp. 1,000-1,006.

[Frie 1977] J. H. Friedman, J. L. Bentley, and R. A. Finkel, "An Algorithm for Find-

ing Best Matches in Logarithmic Expected Time," ACM Transactions

on Mathematical Software, Vol. 3, No. 3 (September 1977), pp. 209-

226.

[Fuku 1990] K. Fukunaga, Introduction to Statistical Pattern Recognition, Second

Edition, Academic Press, Boston, MA, 1990.

[Gate 1972] G. W. Gates, "The Reduced Nearest Neighbor Rule," IEEE Transactions

on Information Theory, Vol. IT-18, No. 3 (May 1972), pp. 431-433.

[Gokh 1995] M. Gokhale, B. Holmes, and K. lobst, "Processing in Memory: The

Terasys Massively Parallel PIM Array," IEEE Computer, Vol. 28, No. 4

(April 1995), pp. 23-31.

[Hart 1968] P. E. Hart, "The Condensed Nearest Neighbor Rule," IEEE Transactions

on Information Theory, Vol. IT-14, No. 3 (May 1968), pp. 515-516.

[Marc 1994] J. J. Marciniak, ed., "Encyclopedia of Software Engineering," John

Wiley & Sons, New York, NY, 1994.

[Pres 1992] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, Cambridge University Press, Cambridge, UK,

1992.

[Shas 1990] D. Shasha and T. Wang, "New Techniques for Best-Match Retrieval,"

ACM Transactions on Information Systems, Vol. 8, No. 2 (April 1990),

pp. 140-158.

References-2

[Spro 1991] R. F. Sproull, "Refinements to Nearest-Neighbor Searching in &-Dimen-

sional Trees," Algorithmica, Vol. 6 (1991), pp. 579-589.

[Stan 1986] C. Stanfill and B. Kahle, "Parallel Free-Text Search on the Connection
Machine System," Communications of the ACM, Vol. 29, No. 12

(December 1986), pp. 1,229-1,239.

References-3

LIST OF ACRONYMS

dbC Data-Parallel, Bit C
IDA Institute for Defense Analyses

K 1,024
MHz Megahertz
PIM Processor in Memory
RNN Reduced Nearest Neighbor
SIMD Single Instruction, Multiple Data
VCU Vecter Comparison Unit

Acronyms-1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1996
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Nearest Neighbor Search Applications for the Terasys Massively Parallel
Workstation

6. AUTHOR(S)

Eric W. Johnson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Institute for Defense Analyses (IDA)
1801 N. Beauregard St.
Alexandria, VA 22311-1772

5. FUNDING NUMBERS

EDA Central Research Program
(CRP) 9001-506

8. PERFORMING ORGANIZATION REPORT
NUMBER

IDA Paper P-3169

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, unlimited distribution.

12b. DISTRIBUTION CODE

2A

13. ABSTRACT (Maximum 200 words)

The Terasys workstation is a massively parallel computer developed at IDA's Center for Computing
Sciences. This report, based on a project conducted in EDA's Computer and Software Engineering
Division, presents an overview of the Terasys workstation and discusses how the Terasys could be
applied to the task of nearest neighbor search. The report discusses a number of areas where Terasys-
based nearest neighbor search could potentially be applied including nearest neighbor classification,
pattern recognition, and estimating intrinsic dimensionality. One area where the use of Terasys-based
nearest neighbor search seems particularly promising is in the development of new neighbor
classifiers. The report includes experimental results showing that a Terasys with 32,768 processors
can perform a particular nearest neighbor search problem up to 69 times faster than a Sun
Microsystems 61 MHz Sparcstation-20. To illustrate how the Terasys could be applied to the kinds
of government work conducted by EDA divisions outside of the Center for Computing Sciences, the
report examines three possible applications of Terasys-based nearest neighbor search to an ongoing
radar evaluation project in EDA's Science and Technology Division.

14. SUBJECT TERMS
Single Instruction, Multiple Data (SIMD) Computers; Massively Parallel
Computers; Nearest Neighbor Search.

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
66

16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

