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ABSTRACT 
Face-milled spiral bevel gears with uniform tooth height 

are considered. An approach is proposed for the design of 
low-noise and localized bearing contact of such gears. The 
approach is based on the mismatch of contacting surfaces 
and permits two types of bearing contact either directed lon- 
gitudinally or across the surface to be obtained. A Tooth 
Contact Analysis (TCA) computer program was developed. 
This analysis was used to determine the influence of mis- 
alignment on meshing and contact of the spiral bevel gears. 
A numerical example that illustrates the developed theory 
is provided. 

1 INTRODUCTION 
Two models for spiral bevel gears with uniform tooth 

height were proposed by Litvin et al [6]. The generation of 
tooth surfaces of such gears is based on application: (i) of 
two cones that are in tangency along their common gener- 
atrix (model 1), and (ii) a cone and a surface of revolution 
that are in tangency along a common circle (model 2).The 
pinion and the gear are face-milled by head-cutters whose 
blades by rotation form the generating surfaces. 

The generating surfaces provide conjugate pinion-gear 
tooth surfaces with a localized bearing contact that is 
formed by a set of instantaneous contact ellipses. The path 
of contact is directed across the surfaces in model 1 (fig. 1), 
and in the longitudinal direction in model 2 (fig. 2). The 
transmission errors are zero but only for aligned gear drives. 

It is well known that misalignment of a gear drive causes 
the shift of the bearing contact and transmission errors. The 
transmission errors are one of the main sources of vibration. 
Therefore, the direct application of the models discussed 
above for generating surfaces is undesirable. 

It was discovered that misalignment of a gear drive causes 

an almost linear but discontinuous transmission function. 
However, such functions can be absorbed by a predesigned 
parabolic function of transmission errors. The interaction 
of the parabolic function and a linear function results a 
parabolic function with the same parabola coefficient [9]. 
Based on this consideration, it becomes necessary to mod- 
ify the process for generation discussed above to obtain a 
predesigned parabolic function of transmission errors. It 
was proposed in work [10] to obtain the desired parabolic 
function of transmission errors by executing proper nonlin- 
ear relations between the motions of the cradle and the gear 
(or the pinion) being generated. This approach requires the 
application of the CNC machines. 

The purpose of this paper is to propose modifications of 
generating surfaces that will obtain: (i)a localized bearing 
contact that may be directed in the longitudinal direction or 
across the surface, and (ii)a predesigned parabolic function. 
These goals that will be proven later are obtained by the 
proper mismatch of the ideal generating surfaces shown in 
figs.l and 2. The mismatch of surfaces is achieved by appli- 
cation of modified generating surfaces shown in fig. 3. The 
modified generating surfaces are in point contact instead 
of tangency along a line that the ideal generating surfaces 
have. The desired parabolic function of transmission errors, 
the orientation of the path of contact, and the magnitude 
of the major axis of the contact ellipses are obtained by the 
proper determination of the curvature and the mean radius 
of the surface of revolution of the generating tool. 

The meshing and contact of the tooth surfaces was sim- 
ulated by the TCA computer program developed by the 
authors. Numerical examples for the illustration of the pro- 
posed approach are considered. 



2  METHOD  FOR GENERATION   OF  CONJU- 
GATE PINION-GEAR TOOTH SURFACES 
Gear Generation: 

The head-cutter for gear generation is provided with inner 
and outer straight-line blade (fig. 4), that form two cones 
while the blades are rotated about the Zla-axis of the head 
cutter. These cones will generate the convex and concave 
sides of the space of the gear, respectively. 

We apply coordinate systems SC3, S2, Sm that are rigidly 
connected to the cradle of the generating machine, the gear 
and the cutting machine, respectively (figs. 5 and 6). The 
cradle with coordinate system SC3 performs rotation about 
the Zm-axis, and ^C2 is the current angle of rotation of 
the cradle (We take i = 2 in the designations of fig. 5). 
Coordinate system St3 is rigidly connected to the gear head- 
cutter that is mounted on the cradle. The installment of the 
head-cutter is determined with angle 92 and Sr2 = |0c20«2| 
(fig. 5(b)). The gear in the process for generation performs 
rotation about the Zb-axis of the auxiliary fixed coordinate 
system Sb that is rigidly connected to the Sm coordinate 
system (fig. 6). The installment of Sb with respect to Sm is 
determined with angle 72, where 72 is the angle of the gear 
pitch cone. The current angle of gear rotation is ip2 (fig. 6). 
Angles i>C3 and V"2 are related as 

u, Cj = —- = sm 72 (1) 
Yc3 _ 

\j)2 U>2 

The observation of this equation guaranties that the Xm- 
axis is the instantaneous axis of rotation of the gear in its 
relative motion with respect to the cradle. 
Pinion Generation; 

The head-cutters for pinion generation are provided with 
separate blades that will generate the convex and concave 
sides of the space of the pinion, respectively (fig. 7). The 
pinion generating tool is installed on the cradle similarly to 
the installment of the gear generating cone (We take i = 1 
in the designations of fig. 5). An auxiliary fixed coordinate 
system Sa is rigidly connected to the Sm coordinate system 
(fig. 8). The installment of Sa with respect to 5m is deter- 
mined with angle 71 of the pinion pitch cone. An imaginary 
process for the pinion generation for the purpose of simpli- 
fication of the TCA program is considered. The installment 
of coordinate system Sa with respect to Sm is determined 
in the real process of cutting by the angle 71 that is mea- 
sured clockwise, opposite to the direction shown in fig. 8. 
The pinion performs rotation about the Za-axis and ^1 is 
the current angle of rotation. The angles of rotation of the 
pinion and the cradle are related as 

Axis Xm in accordance to equation (2) is the instanta- 
neous axis of rotation of the pinion in its relative motion 
with respect to the cradle. 

— = sm 71 (2) 

3 DERIVATION OF GEAR TOOTH SURFACE 
We consider that the gear head-cutter surface is repre- 

sented in St3 by vector function Tt3(sg,6g), where s3 and 
Og are the surface parameters. A family of tool surfaces is 
generated in gear coordinate system S? while the cradle and 
the mounted tool and the gear perform the rotational mo- 
tions that are shown in figs. 5 and 6. The family of surfaces 
is represented in S2 by the matrix equation 

T2{sg,0g, ^2)    = M24(V,2)M6mMmC2(V'C3)Meat3rla(s,, 0g) 
= M2t2r,2(s,,0,) 

(3) 
The product of matrices M2<3 is based on the coordinate 

transformations from St3 to 52 (figs. 5 and 6). The deriva- 
tion of vector function rt3(sg,9g) is represented in Appendix 
1. 

The envelope to the family of surfaces T2(sg,0g,ij>2) is 
determined with equation (3) and the equation of meshing 
is [9] 

Ne2-v^2) = /2(ss,^,V2) = 0 (4) 

where NC2 is the normal to the generating surface, and 

v£2
22') is the relative velocity of the tool with respect to the 

gear. Vectors in equation (4) are represented in coordinate 
system SC3 ■ 

An alternative approach for the derivation of the equation 
of meshing is based on the consideration that the normal 
to the generating surface at a point of tangency of the con- 
tacting surfaces passes through the instantaneous axis of 
rotation. 

Equations (3) and (4) represent the gear tooth surface by 
three related parameters. Taking into account that these 
equations are linear with respect to sg> we may eliminate 
sg and represent the gear tooth surface by two independent 
parameters, 0g and r\>i- 

4 DERIVATION OF PINION TOOTH SURFACE 
The derivations are similar to those that have been de- 

scribed in section 3. The family of generating surfaces is 
represented by the matrix equation 

ri(Xp,0p,ipi)    = Mi«(iiii)M8mMmCl(^I)MeitlriI(Apiflp) 
= Mitlrtl(Ap,0p) 

(5) 
Here, rtl(Ap, 9P) is the vector function that represents the 

generating surface ( Appendix 2 ), where Ap and 6P are the 
surface parameters. 

The equation of meshing is 

Nc1-v(tll) = /i(Ap,Op,^1)=0 (6) 



Equations (5) and (6) represent the pinion tooth surface 
by three related parameters. After elimination of param- 
eter Xp we may represent the pinion tooth surface by two 
independent parameters, 6P and V>i ■ 

5 LOCAL SYNTHESIS 
The ideas of local synthesis are based on the following 

considerations [9] : 
(1) The pinion and gear tooth surfaces are in tangency 

at the mean contact point M that is in the middle of the 
contacting surface. 

(2) The gear ratio is equal to the theoretical one. 
(3) Considering the principal curvatures of the contacting 

surfaces, we have to provide in the neighborhood of M the 
following transmission function (fig. 9) 

fa(<t>\) = -j^-h - 2m2i^i (7) 

where im'2l is the parabola parameter of the predesigned 
parabolic function of transmission errors 

(8) A<fo(^i) = -2m2i^i 

(4) In addition it is necessary to provide the desired di- 
rection of the contact path. 

All these goals can be achieved by the proper mismatch 
of the contacting surfaces of the pinion-gear tooth surfaces. 
The procedure of the local synthesis is as follows: 

Step 1: We consider as given the surface of the head- 
cutter that generates the gear tooth surface. The head- 
cutter surface is a cone and is in line contact with the sur- 
face of the gear. One of such contact lines passes through 
the mean point M of tangency of the pinion and the tooth 
surfaces. Considering the surface of the gear head-cutter 
being as known, we determine at point M the principal 
curvatures and directions of the gear head-cutter. 

Step 2: Our next goal is to determine at M the princi- 
pal curvatures k, and kq and directions of the gear tooth 
surface S2- We apply for this purpose the equations that 
have been proposed in [9] and represent the direct relations 
between the principal curvatures and directions for two sur- 
faces being in line contact. 

Step 3: We consider at this step that gear and pinion 
tooth surfaces, S2 aRd Si, are in tangency at M. As a 
reminder the mismatched gear and pinion tooth surfaces 
are in point contact at every instant. 

Unit vectors e, and eq represent the known directions 
of the principal directions on surface E2. The principal 
curvatures ks and kq on the gear principal directions are 
known. Our goal is to determine angle cri2 that is formed by 
vectors e/ and e, (fig. 10) and the principal curvatures kj 
and kh of the pinion tooth surface at point M. Unit vectors 
e/ and e^ represent the sought-for principal directions on 
the pinion tooth surface Si. 

Step 4: The three unknowns: kf, kh and cr\2 can be 
determined using the approach developed in [9]. We use for 
this purpose the following system of three linear equations 
[9]. 

(«' = 1,2,3)       (9) aavP + ai2vg
1)    = a<3 

The augmented matrix formed by the coefficients an, an 
and a,3 is a skew-symmetric one [9]. Here, wj ' and v\ ' 
are the components of the velocity of the contact point that 
moves in the process of meshing over the pinion tooth sur- 
faces Si. Coefficients an, a,2 and a,3 are represented in 
terms of ks, kq, kj, kh, o\i and the parameters of motion. 
Coefficient a%% contains the derivative 

m2i = TT (m2l(«£l)) 

where 
dfa 

"»21 = 

(10) 

d<f>2 
d<t>i (11) 

Step 5: Equation system (9) represents a system of three 
linear equations in two unknowns: v, ' and vg '. Surfaces 
Si and S2 are in point contact, the path of contact has a 
definite direction, and the solution of equation system (9) 
with respect to v; ' and v) ' must be unique. Therefore, 
the rank of the augmented matrix formed by an, a,2 and 
a,3 is equal to two. This yields that 

= F(kf, kh, ks, kq, <T12, m21) =0 

(12) 

The other relation between the coefficients an, a<2 and 
«to may be determined considering that 

an an a13 

ai2 «22 a23 
<*13 «23 G33 

Unrii = -fjT (13) 

where r\\ is the assigned direction at M of the tangent to 
the path of contact on the pinion surface Si. 

Using the relations between the coefficients of linear equa- 
tion (9) discussed above, we are able to determine the 
sought-for pinion principal curvatures kj, kh and orienta- 
tion angle 0-12. 

Step 6: We consider now that pinion principal curvatures 
kj, kh and angle <xi2, and the principal directions e/ and 
eh on surface Si are known. The generating surface of 
the head-cutter is designed as a surface of revolution (fig. 
3). The pinion head-cutter surface and the pinion tooth 
surface are in line contact at every instant. Using the direct 
relations between the principal curvatures and directions 
for two surfaces being in line contact [9], we may determine 
the principal curvatures of the pinion head-cutter. Then, 
the desired mismatch of the surfaces of the gear and the 
pinion will be obtained by the generation of the gear and 
the pinion by the designed head-cutters. 



Step 7: Knowing the principal curvatures and directions 
of the pinion and gear tooth surfaces, the elastic approach 
of the surfaces, we may determine the orientation and the 
axes of the instantaneous contact ellipse [9]. 

6 TOOTH CONTACT ANALYSIS 
The purpose of TCA is to determine the influence of mis- 

alignment on the shift of the bearing contact and the trans- 
mission errors. This goal is obtained by the simulation of 
meshing and contact of pinion and gear tooth surfaces of a 
misaligned gear drive. 

We consider that the pinion and gear tooth surfaces are 
analytically represented in coordinate systems Si and 52 
(see sections 3 and 4, respectively). The meshing of pinion 
and gear tooth surfaces is considered in fixed coordinate 
system Sh (figs. 11 and 12). Auxiliary fixed coordinate sys- 
tem Sa and Se are applied to describe the installment of the 
pinion with respect to Sh (fig. 11)- The pinion alignment 
error AAP is the pinion axial displacement. The misaligned 
pinion in the process of meshing with the gear performs ro- 
tation about Ze-axis. The current angle of rotation of the 
pinion is designated by <j>\ (fig. 11). 

Auxiliary coordinate systems £j, Sc and Sd are applied 
to describe the installment of misaligned gear with respect 
to Sh • The errors of alignment are: the change A7 of the 
shaft angle (fig. 12), the offset AE and the gear axial dis- 
placement AAg (fig. 13). The misaligned gear performs 
rotation about the Z<j-axis, and <j>2 is the current angle of 
the gear rotation. 

A TCA computer program was developed to simulate the 
meshing of pinion-gear tooth surfaces of the misaligned gear 
drive. The development of the TCA program is based on 
the following considerations: 

Step 1. We consider that the pinion and gear tooth sur- 
faces and the surface unit normals are represented in coor- 
dinate system Si and S2 by vector functions 

r,(0,-,V<,)       (i= 1,2) (14) 

n,(^,V,)       (i= 1,2) (15) 

where (öj, Vi) are the surface parameters. 
Step 2. We represent now the pinion-gear tooth surfaces 

and their surface unit normals in coordinate system Sh, 
and take into account that the surfaces are in continuous 
tangency. Then we obtain the following equations 

rh
l\eul>u<f>1)-rh

2\e7,rJ>2,<l>2) = Q (16) 

41)(öi,Vi)^)-42)(^)V2,^2) = 0 (17) 
Equations (16) and (17) represent the conditions that the 

contacting surfaces at the point of tangency have a common 
position vector and a common surface unit normal. Equa- 
tions (16) and (17) yield a system of five independent scalar 
equations of the following structure 

/i(*i,tfi,*i,fc,tfa,*a) = 0      UeC1       (»= 1..5) (18) 

As a reminder vector equation (17) yields only two in- 

dependent scalar equations and not three, since |n^  | = 

|ni2)| = l. 
Step 3. System (18) of five nonlinear equations contains 

six unknowns, but one of the unknowns, say <f>\, may be con- 
sidered as the input parameter. Our goal is the numerical 
solution of nonlinear equations (18) by functions 

{0i(<l>i),M<f>i),02(<i>i),M<i>i),fo(<t>i)} € c1     (19) 

The sought-for numerical solution is an iterative process 
that requires on each iteration the observation of the fol- 
lowing conditions [9] [3]: 

(i) There is a set of parameters (the first guess) 

p(e[o),4"\<f>[0)A0)A0\40))        (20) 
that satisfies the equation system (18). 

(ii) The Jacobian taken at P differs from zero. Thus, we 
have 

D{fuh,h,f4,h) 
A5=- ^0 (21) 

Then, as it follows from the Theorem of Implicit Function 
System Existence, equation system (18) can be solved in the 
neighborhood of P by functions (19). 

Using the obtained solution, we can determine the path 
of contact on the pinion-gear tooth surface, and the trans- 
mission errors caused by misalignment. The path of contact 
on surface £< (i = 1,2) is determined by the expressions 

Ti(0i,1>i),    ft(tfi),    1W1)       (*' = 1,2)       (22) 

The transmission errors are determined by equation 
Ni 

A<t>2 = <£2(<£l)--T7-<£l 
JV2 

(23) 

The dimensions and orientations of the instantaneous 
contact ellipse at the contact point may be determined con- 
sidering that the principal curvatures and directions of the 
contacting surfaces, and the elastic approach of the surface 
[9] are known. 

7 NUMERICAL EXAMPLE 
The blank data is given in Table 1. 
The gear head-cutter is a cone (figs. 2, 3 and 4), the cut- 

ter radius is designated by R3 (fig. 1), the radial setting of 
the head-cutter is |0CaOt2| (fig. 5(b)), and the installment 
angle is q2 (fig. 5). The data for the gear head-cutter that 
generates the gear concave side are represented in Table 2. 

The parameters of the pinion head-cutter were deter- 
mined by application of the method of local synthesis (sec- 
tion 5). The data for the pinion head-cutter that gener- 
ates the pinion convex side are represented in Table 3. We 



considered in the numerical examples the meshing of the 
gear tooth concave side with the pinion tooth convex side. 
Case 1 corresponds to the orientation of the bearing contact 
across the surface, case 2 corresponds to the orientation of 
the bearing contact in the longitudinal direction. 

The application of TCA for the simulation of meshing 
and contact permits the determination of misalignment ef- 
fects on the transmission errors and the shift of the bearing 
contact. It has been shown that in the case of application 
of ideal generating surfaces (without mismatch, figs. 1 and 
2) the errors of misalignment cause indeed discontinuous al- 
most linear transmission errors as shown in fig. 14 for shaft 
angle error A7. Similar functions of transmission errors are 
caused by errors AAV, AAg and AE. Table 4 shows the 
maximal transmission errors caused by misalignment. 

The results of TCA for the properly mismatched gener- 
ating surfaces (see section 5) confirmed that a predesigned 
parabolic function indeed absorbs the transmission errors 
caused by misalignment, and the resulting function of trans- 
mission is a parabolic one (fig. 15). The absorption of linear 
function of transmission errors is carried out as well in other 
cases of misalignment: AAP, AAS and AE. The bearing 
contact of the drive is stabilized, and its shift is permissible 
(fig. 16). Model 2 of the gear drive (with longitudinal di- 
rection of the bearing contact) is preferable due to the lower 
level of transmission errors caused by misalignment. 

8 CONCLUSION 
From the study conducted the following general conclu- 

sions can be drawn: 
(1) An approach has been developed for the synthesis of 

spiral bevel gears that provides: (i) localized bearing con- 
tact, and (ii) low level of transmission errors of a parabolic 
type. The approach developed permits two possible direc- 
tions of the bearing contact: across the tooth surface or in 
the longitudinal direction. 

(2) A Tooth Contact Analysis (TCA) computer program 
for the investigation of the influence of misalignment on the 
shift of the bearing contact was developed. 

(3) The low level of transmission errors, the parabolic 
type of the function of transmission errors, and the local- 
ization of the bearing contact are achieved by the proper 
mismatch of contacting surfaces. 

(4) The influence of the following errors of alignment was 
investigated: (i) for axial displacement of the pinion, (ii) 
axial displacement of the gear, (iii) offset, and (iv) change of 
the shaft angle. These types of misalignment were proven to 
cause discontinuous almost linear functions of transmission 
errors, but they are absorbed by the predesigned parabolic 
function of transmission errors. 

The results of this investigation show that a predesigned 
parabolic function can indeed absorb the linear functions 

of transmission errors caused by misalignment. The design 
of gears with a longitudinal bearing contact (in comparison 
with the bearing contact across the surface) is preferable 
since a lower level of transmission errors can be obtained. 
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APPENDIX 1 
Equations of Gear Generating Surfaces 

The generating cone represented in St7 is 
(Rs — sg sin ag) cos 9g 

*«3 (*».*») = (Rg — sg sin ag) sin 0g 

sg cos ag 

(24) 



where sg and 0g are the surface coordinates; ag is the blade 
angle; Rg is the radius of the head-cutter at mean point. 
Equations (24) may also represent the convex side of the 
generating cone considering that ag is negative. 

Coordinate system St3 is rigidly connected to coordinate 
system SC3, and the unit normal to the gear generating sur- 
face is represented by the equations 

.(*,) = 
Ne 

|Ne8, 
Equations (24) and (25) yield 

NC2 = 
d6a      dsa 

ne,(6g) = 
cos ag cos 6g 
cos ag sin 9g 

sin a „ 

(25) 

(26) 

rtl(Ap,0p) = 

APPENDIX 2 
Equations of Pinion Generating Surfaces 

The generating surface of revolution is represented in 5«, 
as 

[Rp — Äi(cos ap — cos(ap 4- Ap))] cos 0P 

[Rp — Äi(cosQp — cos(ap + Ap))]sin#p 

—Äi(sinap - sin(ap + Ap)) 
(27) 

where Ap and 9p are the generating surface coordinates; ap 

is the profile angle at M point; Rp is the radius of the head- 
cutter at mean point; R\ is the radius of surface of revolu- 
tion. Equations (27) can also represent the concave side of 
the generating surface of revolution if we substitute ap as 
180»-ap. 

Coordinate system Stl is rigidly connected to coordinate 
system SCl, and the unit normal to the pinion generating 
surface is represented by the equations 

Ue,(Ap,0p) = 
_ dru      drtl 

^ " d6p x dXp |NcJ ' 

Equations (27) and (28) yield 
cos Op cos(ap + Ap) 

(28) 

nCl(Ap,0p) sin0pcos(ap + Ap) 
sin(ap + Ap) 

(29) 

TABLE 1: Blank Data 

Pinion Gear 
N\,N2, Number of teeth 11 41 
7, Shaft angle 90° 
Mean spiral angle 35° 35° 
Hand of spiral RH LH 
Whole depth (mm) 10.0 10.0 
7i, 72, Pitch angles 15°1' 74°59' 

Contact Path 

FIGURE 1: Generating cones 

Contact Path 

FIGURE 2: Generating cone and generating surface of rev- 
olution 

FIGURE 3: Mismatched generating surfaces 

Generating 
cones 

Cutter blade 

It. 

FIGURE 4: Cones for gear generation 
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(a) (b ) 

FIGURE 5: Coordinate systems Sc and S„ 

Y„.Y 

°b5
0

2.Om 
Gear pitch cone 

Z, 

FIGURE 6: Coordinate systems Sm, 5j and 52 

U) 

b ) ? 1 

lif      R 

FIGURE 7: (a)Convex (inside blade) and (b)concave {out- 
side blade) sides of the generating blades and generating 
surfaces of revolution 

FIGURE 8: Coordinate systems Sm, Sa and S\ 
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Ideal transmission 

<Pz\ 
function 

^1 h ^ 
, 

i » * 
*i 
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FIGURE 9: Transmission function and predesigned 
parabolic function of transmission errors, ^i-pinion rota- 
tion angle; <£2-gear rotation angle; A^2-transmission error 

FIGURE 10: Unit vectors of principal directions of surfaces 
£2 and Si 

TABLE 2:    Parameters and Installment of Gear Head- 
Cutter on gear concave side 

ag, Blade angle 20° 
Rg, Cutter radius at mean point (mm) 78.52 
5r2, Radial setting (mm) 70.53 
92j Installment angle -62°14' 



TABLE 3: Parameters and Installment of the Pinion Head- 
Cutter on pinion convex side 

Y^Y ,Y. d'   c ' h 

Case 1 Case 2 

ap 20° 20° 

91 -61°51' -51°24' 

INPUT 

m 171" 92° 

m'21 -1.3e-3 -1.2e-3 

Afa -10.94 -10.09 

OUTPUT 
M (79.88, 0.39, 0.17) (77.83, 1.64, 0.72) 

Äp(mm) 78.0 64.7 

ßi(mm) 235.0 765.0 

la (mm) 12.54 4.5 

TABLE 4: Maximum Transmission Errors for Generating 
Surfaces with Mismatch 

A<j>2 in arc sec. 
Case 1 Case 2 

AAP = 0.1mm 8.8 16.2 
AA„ = 0.1mm 11.5 12.5 
AE = 0.1mm 11 15 
AT = 3' 10.7 13.5 
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FIGURE 11: Simulation of pinion misalignment AAP 
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(a ) (b ) 
FIGURE 12: Simulation of gear misalignment A? 
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(b) 
FIGURE 13: Simulation of gear misalignment AE and AAg 
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FIGURE 14: Transmission errors for a misaligned gear drive 
with ideal surfaces: A7 = 3 arc min. 
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FIGURE 15: Transmission errors for a misaligned gear drive 
with mismatched gear tooth surfaces: A7 = 3 arc min. 

FIGURE 16: Longitudinal bearing contact for a misaligned 
gear drive (A7 = 3 arc min.) 
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