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THE SEPARATION OF SUPERSONIC FLOW 

FROM CURVED PROFILES 

1. Introduction and summary of results. The experimental work of A. 
Ferri [1] has shown that there exists a sharp rise in the pressure on a 
curved profile (airfoil) in a supersonic stream which is not predicted by 
the usual theory of pressure distribution. Following this pressure in- 
crease, the flow separates from the surface, after which the pressure 
remains constant or nearly constant over the remainder of the profile. 
Moreover, the shock which occurs at the rear of the profile is not at- 
tached to the end vertex but is separated from the profile and displaced 
in the direction of the stream. It is felt that the existence of this shock is 
directly connected with the phenomenon of separation. If this view is 
correct, the problem of the separation of supersonic flow from curved 
profiles is definitely a problem in the large. The above facts are indicated 
in Fig. 1 in which AB represents the small interval of increasing pres- 
sure. Separation occurs at point B, the shock at the rear of the profile is 
represented by CD, and CE is a stream line behind the shock. Between 
point B and the tail vertex T the pressure is practically constant. 

FIG. 1 

As a consequence of the above behavior of the pressure function, both 
immediately before and following the point of separation of the flow, the 
experimental lift and drag on the profile differ markedly from the theo- 
retical values obtained by the standard pressure calculations. A theory 
which will account for the actual pressure effects with good quantitative 
accuracy would appear to be not merely of academic interest but of con- 
siderable practical importance in the design of supersonic airfoils. In 
spite of this incentive, there has been no attempt in the literature to 
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solve this problem, although the need for its solution was recognized in 
this country in 1945 in a report prepared by Edmonson, Kennedy and 
Nering for the Applied Physics Laboratory at The Johns Hopkins 
University. 

Undoubtedly the problem of the separation of supersonic flow from an 
airfoil and the determination of the associated pressure effects would 
have been solved before now except for the difficulties inherent in its 
mathematical formulation. What is apparently needed is a guiding prin- 
ciple which will lead to the establishment of a suitable mathematical 
model. We have attempted to meet this situation by assumptions on 
the tendency of mach angles to remain invariant during the separation 
process (§13). One consequence of these assumptions is that a certain 
element of rigidity is imposed on the flow pattern. The essential physical 
validity of the assumptions is indicated by the excellent agreement be- 
tween the experimental and calculated pressure graphs for the GU2 and 
GU3 profiles over a wide range of angles of attack (§19). The cross sec- 
tion of the GU2 profile consists of two circular arcs while that of the 

6U2 PROFILE GU3 PROFILE 
FIG. 2 FIG. 3 

GUS profile is formed by a circular arc and its secant. These profiles are 
shown in Figs. 2 and 3 with their relative dimensions. Calculations are 
carried out for the GU2 profile for M = 2.13 and for the GU3 profile for 
M = 1.85 and M = 2.13 where M denotes the mach number of the free 
stream. These calculations specifically yield the final pressure on the 
profile (§15), the point of separation (§16) and the back pressure interval 
over which the pressure increases abruptly (§17). 

It is possible that deviations from the assumed rigidity of the flow 
pattern following separation occur when the mach number M is de- 
creased sufficiently in the case of any given profile. Evidence to this 
effect is to be found in the experimental pressure measurements on the 
GU2 profile for M = 1.85, which show a significant increase beyond the 
separation point, whereas in the case of the same profile for M = 2.13 
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(as well as the profile GU3 for M — 1.85 and 2.13) constant values of 
the pressure are attained. On the other hand, there is the possibility that 
this observed pressure increase following separation of flow was the re- 
sult of conditions within the wind tunnel which were measurably effec- 
tive only for the lower mach number M = 1.85 in the case of the GU2 
profile. In this connection it may be mentioned that Ferri has stated in 
his article [1] that the apparatus used was far from perfect and that its 
final form had not been decided upon at the time of the experiments 
although these experiments were never repeated with improved appara- 
tus. In view of the questions here raised, separation calculations for the 
GÜ2 profile with M = 1.85 have not been included. 

The standard method of pressure calculation lies at the basis of this 
theory of the separation of supersonic flow. This has made it almost 
necessary to give some account of the standard theory. Since the usual 
derivations are in part geometrical in character, we have taken this op- 
portunity to present a completely analytical discussion. It is hoped that 
this modification of the usual treatment will be of some interest in itself. 

A comparison of the calculated and experimental pressure graphs 
shows that the differences between the final calculated and experimental 
pressures are, in general, almost precisely equal to the differences in the 
values of these quantities at the point at which the back pressure begins 
effectively to develop. This suggests strongly that an improvement in 
the standard procedure for pressure calculation would automatically lead 
to a corresponding improvement in the determination of the value of the 
pressure after separation. In order to test this hypothesis we have ex- 
tended the experimental pressure graph for the GU3 profile for M = 2.13 
and angle of attack a = 0 in a natural way as shown in the figure at the 
top of the graph in §20. The curve so obtained was then used in place of 
the complete pressure graph, calculated by the standard procedure, for 
the determination of separation effects. As a result of this calculation 
we arrive at a pressure graph which passes accurately through all experi- 
mental pressure values (§20), thus verifying the above hypothesis.1 

2. Stationary ideal gases. Consider the equations governing the flow 
of a stationary ideal gas with viscosity and thermal conductivity zero, 
namely 

(1) p,a + pMffMa,, = 0 (equations of motion), 

(2) p,aua + pu„,, = 0 (equation of continuity), 
1 The drawings and graphs were made by D. M. Nead in his capacity of research 

assistant under Navy Contract N6onr-180, Task Order V, with Indiana Univer- 
sity, and the computations were carried out by B. H. McCandless, a graduate 
student in the Department of Mathematics. 
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in which p,p and ua denote, as is customary, the pressure, density and 
velocity components. We assume the motion referred to a system of 
rectangular coordinates xa; then the comma in the above and following 
equations represents partial differentiation. In addition there is the equa- 
tion which states that the entropy S is constant along stream lines. This 
condition when combined with the equations (1) results in the relation 

(3) 7—7P^   + = u.u. = II       (energy equation), 
(7 - l)p      2 

where y is the ratio of the two specific heats cp and c„ (assumed constant) 
and H is constant along stream lines but can vary from stream line to 
stream line (weak Bernoulli equation). Conversely the condition that S 
be constant along stream lines can be recovered from (1) and (3). Hence 
the general equations determining the motion of the gas under consider- 
ation are given completely by (1), (2) and (3). 

In the following discussion we shall assume that H is an absolute con- 
stant, i.e., its value is independent of the stream line (strong Bernoulli 
condition). It can be supposed, moreover, that the values of the con- 
stants y and H are known from the conditions of the problem. Then the 
number of equations in the set (1), (2) and (3) is exactly equal to the 
number of functions ua , p and p to be determined. 

Remark 1. The quantity in the left member of (3) is invariant in the 
transition across a shock wave, i.e., its value is the same at adjacent 
points on the two sides of a shock surface. It follows that the value of the 
constant H is not effected by shocks which occur when an obstacle is 
placed in a uniform supersonic gas flow, i.e., it has the same constant 
value over the entire field of flow. The above assumption, namely that H 
is an absolute constant, can therefore be made in most practical appli- 
cations involving shocks. 

By means of (3), the density p and its derivatives p,a can be eliminated 
from (1) and (2). The resulting equations can be written in the form 

(4) cp,a + ypu.u«,, = 0, 

(5) p,aua + ypu.,«    = 0, 

where c = yp/p is the velocity of sound in the gas. From (3) the quantity 
c2 is given explicitly in terms of the velocity components ua by 

(6) c2 = ?-^l (2H - u.U.). 

Conversely, from (4), (5) and (6), the equations (1), (2) and (3) can be 
recovered. Hence in our discussion of the flow problem we can limit our 
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attention to the equations (4) and (5) in the variables p and ua with c2 

given by (6). When these equations have been solved for the functions 
p and ua , the density p will be determined from (6), and the expression 
yp/p for c2. 

Remark 2. Multiply (5) by c2, equation (4) by ua, and then subtract 
corresponding members of these equations to obtain 

(7) ua,ßUaUß = c%u,,, . 

This relation expresses the condition that the entropy is constant along 
stream lines (see, T. Y. Thomas, The fundamental hydrodynamical equa- 
tions and shock conditions for gases, Math. Mag., vol. 22, pp. 169-189). 

3. Characteristic curves for supersonic flow. In the following we shall 
limit our attention to plane flow. Let C be a curve in the coordinate plane 
denned parametrically by xa(s). We suppose that the functions xa(s) are 
continuous and differentiable and that xaxa>0 where the "dot" is used 
to denote differentiation with respect to the parameter s. Now define 
functions ua(s) and p(s) along C, and let us raise the following question: 
Will there exist a compressible flow of the generality considered in §# having 
the velocity components ua(s) and pressure p(s) along C? We shall be con- 
cerned primarily with the discussion of this question under the condition 
that the flow is supersonic. 

As necessary conditions for the existence of the above flow, equations 
(4) and (5) must be satisfied along C. There are also conditions on the 
derivatives ua,ß and p,„ which result from differentiation of the given 
functions «,(s) and p(s) with respect to the parameter s. Combining 
these relations we have the following system 

c2(log p),a + yu,ua,, = 0 
(logp),„w„ + yuc,„     = 0 

(logp),^" = p/p 

where c is given by (6). These equations involve as unknowns the func- 
tions ua and p alone. As explained in §2, any solution of the first two 
equations (8) will determine a compressible flow with density p given by 
c2 = yp/p and the relation (6). 

The system (8) is represented completely by Table 1 in which the 
entries are the coefficients of the derivatives ua,ß and (log p),a as indi- 
cated in the first row of the table. The last column labelled R.M. con- 
tains the right members of the system (8). Each entry in this table is 
determined by the curve C and the data ua{s) and p(s) assigned along C. 

Denote by D the sixth order determinant whose elements are obtained 
from the first six columns of this table. If D ^ 0 on C, then the deriva- 

(8) 
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TABLE 1 

«1,1 «i,» «2,1 U2,3 (log p),i (log P),2 B.M. 

7"i 7« 2 0 0 c2 0 0 
0 0 7"i yuz 0 c2 0 
7 0 0 7 «i M2 0 
X1 X* 0 0 0 0 Ml 

0 0 X1 A2 0 0 Ms 

0 0 0 0 A1 i2 
PlP 

tives «„.is and p,„ have a unique determination along C. Under this 
condition it is a theorem in differential equations that there exists one, 
and only one, compressible flow, i.e., solution ua{x) and p(x) of the equa- 
tions (4) and (5), which assumes the assigned values ua(s) and p(s) on C. 

Suppose now that D — 0 at each point of C. A curve for which this is 
the case is called a characteristic curve of the system (4) and (5), more fully 
a characteristic curve relative to the data ua(s) and p(s) assigned along the 
curve. Equating D to zero and simplifying the equation, we find that the 
conditions for a characteristic curve are 

(9)    (u2x
l - uiö?)[{u\ - c2){x2f - 2ulU2xx2 + (ul - c2)^1)2] = 0. 

The conditions (9) can be written in more compact form as follows. 
Denote by \" the components of the unit tangent vector to C, and by 
v" the components of the unit normal to this curve; then 

.i      ,i 
X  ~ A 

2  J? v , x -.2 1 
A    =   V . 

Making these substitutions in (9) we obtain 

(10) ucv'(uauß - Saß cVV = 0 

as the conditions for the characteristic curve. Another form of these 
conditions which may be considered involves the slope of the curve C. 
If we denote the slope by 0, so that x = Ox1, the characteristic condi- 
tions (9) yield 

(11a) 

(lib) 

u<i — 0u\ = 0, or 

(ul - c)d2 - 2uiw20 + (ul - c) = 0. 

Since the curves having slope Wwi are stream lines, we see immediately 
from (11a) that the stream lines form a family of characteristic curves. 

The condition that (lib) have a real solution 0 on C is that C
2
(J>

2
 — c2) 

^ 0 where v = u„u<, is the square of the velocity. Hence the data ua(s) 
and p(s), assigned on C, must be such that this inequality is satisfied if 
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C is to be a characteristic in virtue of (lib). Now suppose that the data 
ua and p on C is taken to be that resulting from a given supersonic flow 
so that the condition c(y2 — c) > 0 is automatically satisfied. When 
the data on a characteristic curve are obtained in this way, the curve 
will be said to be determined by the given flow. Hence, in addition to the 
stream lines, there will be two real families of characteristic curves determined 
by a given supersonic flow having slopes 6 which satisfy (lib). If we denote 
by 0 = £ and 0 = £ the two solutions of (lib) for supersonic flow and 
solve this equation by the quadratic formula, we obtain 

(12) e - t - ™ + «Vp^, 
Ml  — C 

(is) 0 = r = UlU2 "2
cVT 

U\ — c 

2 where we have identified the slopes £ and £ by means of these relations. 
Since v2 > c2 for supersonic flow, the curves having slopes £ and 
distinct as implied in the above italicized statement. 

4. A property of the characteristic curves. Let us denote, for brevity, 
by Ui/ui, £ and £ the families of the characteristics determined by a 
supersonic flow which have slopes w2/wi, £ and f, respectively. It will be 

FIG. 4 

assumed that the curves £ and f are so directed that they are divided 
internally by the stream line u2/ui as shown in Fig. 4. We now prove 
the following result: The characteristic line of the family Ui/ux {stream 
line) through any point P bisects the angle formed by the characteristic lines 
of the families £ and £ through P. To prove this it suffices to show that 

2 The occurrence of the quantity u? — c2 in the denominator in the above equa- 
tions (12) and (13) implies that the coordinate axes are so oriented that this 
quantity does not vanish in the region under consideration. 
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£ — U2/U1 U2/U1 — f 
(14) 

1 + M2SM 1 + [Ui/Ui ' 

since the left member of this equation is the tangent of the angle formed 
by the lines of the families w2/«i and £, while the right member is the 
tangent of the angle formed by the lines of the families f and w2/wi. 

It can be assumed that the axes are so oriented that ui ^ 0 and 
and w2 5^ 0 at P. Also neither denominator in (14) can vanish, for the 
vanishing of either denominator would mean that a solution of (lib) 
would be given by 0 = — Ui/uz; but making this substitution into 
(lib) the resulting equation reduces to v2(v2 — c2) = 0, which is not 
satisfied for supersonic flow. Equation (14) can now be written in the 
form 

(15) (wi - u\){i + f) + 2«!«rff - 2Ulu2 = 0. 

But if we substitute into (15) the values of £ and f given by (12) and 
(13), the equation will be satisfied identically. Hence (14) holds and 
the above assertion is proved. 

Denote by p > 0 the positive angle, not exceeding 90°, which the 
stream line makes with either characteristic £ or f. Also denote by o the 
inclination of the stream lines and by ß the inclination of the £ charac- 
teristic so that p = ß — co (see Fig. 4). Then 

Mi = v cos co, w2 = v sin co 

x ~ cos ß, x ~ sin ß. 

Hence equation (9) yields 

(16) c2 = u2(sin jS cos co — cos ß sin co)2 = v1 sin /*. 

The equation m2 = v/c defines the local mach number m. Introducing 
this number into the relation (16), we can write sin p = 1/m. Hence at 
at any point of the flow the relation sin p = 1/m holds between the local 
mach number m and the positive inclination p of the £ or f characteristic 
relative to the stream line. 

5. Consistency relations for characteristic curves. Consider Table 1 in 
§3 which was used in the definition of the characteristic curves C. Sup- 
pose the coordinate axes oriented so that at a given point P of the 
characteristic curve x"(s) we have x ^ 0 and x 9^ 0. It follows that 
6 5* 0 at P. Then when we substitute x = dx1 in Table 1 and take due 
regard to the last column labelled R.M., it is seen that the quantity x 
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can be cancelled without changing the rank of any matrix appearing in 
the table.5 The matrix determined by the table is now given by 

(17) 

yui yui 0 0 2 c 0 0 
0 0 yui yu2 0 2 c 0 
7 0 0 y «i Ul 0 
1 0 0 0 0 0 Ml 

0 0 1 0 0 0 Ü2 

0 0 0 0 1 e vlv 

Equations (11) in §3 which give the conditions for the characteristic 
curves in terms of the slope 0 result by equating to zero the determinant 
of order six which is obtained from the elements of the first six columns 
of this matrix. 

Now consider the following determinant 5 selected from the above 
matrix, namely 

5 = 

yui 

0 
0 
0 
0 

0 0 
yui 7M2 

0 y 
0 0 
1 0 

c* 0 
0 c2 

«1 Ui 

0 0 
0 0 

Expanding 5 we obtain 

(18) 6=   — yc8[(ul — c2) — UiUnd], 

Hence S = 7C40 when 8 = «2/wi and consequently 8 ^ 0 in the neighbor- 
hood of the point P on a characteristic stream line. 

Suppose now that 0 satisfies (lib). Then if the bracket expression in 
(18) vanishes we have 

0 = («2 — c2)/wiw2. 

Substituting this value of 0 into (lib), we find that the resulting equa- 
tion reduces to u\ + ut = c, which is not satisfied for supersonic flow. 
Hence again 8 ^ 0. It follows in all cases that 8 is different from zero, 
and hence the matrix (17) will have rank not less than the order of the 
determinant 5, i.e., the rank of the matrix (17) cannot be less than 5. 

8 The rank of the complete matrix determined by Table 1 is obviously inde- 
pendent of rotations of coordinate axes on account of its relationship to the equa- 
tions (8), but the rank of certain matrices selected from the table may depend on 
the choice of coordinate axes. 
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th order determinant 

7W2     0       0 c2    0 0 
0     yui   yu2 0    c2 0 
0       0      7 «1      M2 0 
0       0       0 0    0 «1 

0      1      0 0    0 Ü2 

0      0      0 i   e P/P 

A = 

which appears on the right of the matrix (17). Along a characteristic 
curve A = 0 since otherwise the equations (8) would not be consistent. 
But A = 0 and 5^0 insures that the matrix (17) has rank 5 at points 
of the characteristic, and this suffices for the algebraic consistency of 
the equations (8) as equations for the determination of the derivatives 
w„,8 and p,a along the characteristic curve. 

Expanding A we find 

fm\      -C20[(t4 ~ C2)  - WiM20] ? (.19; p 

+ yui[c2 — (M2 — 0ui)2]ui + 7C'MIM20
2
 = 0. 

If 0 satisfies (11a) equation (19) reduces to 

(20) c2 - + yuaü, = 0. 

Now suppose that 0 satisfies (lib). Then from this equation we have 

and 

C2 —   («2 

—  [(«2  — C2)   — U1U26]  =  [(u\  — C2)0 — MiM2]0, 

eUly = - \{u\ - c2) - 2MJM20 + ule2] 

= - [(ul - c2)02 - 2uiw20 + (ul - c2) + c202] = - cV. 

Making these substitutions in (19) we are led to the following equation 

(21) [(w2 — c2)0 — uiu2] - + y(uiÜ2 — Uiüi) = 0. 
P 

Equation (20) is invariant under rotations of the coordinate axes and 
hence is independent of the orientation of axes which was assumed at 
the beginning of this discussion. Equation (21) is likewise seen to be 
invariant when account is taken of the condition determining the slope 
0 of the characteristic curves, i.e., the equation (lib). Thus from (12) 
and (13) we can write 
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(Ml  -  c2)0 - WiW2  =  CV^"17^ (0 =  £), 

{u\ - c)0 - %M2 = - csjl?~^~e        (0 = f). 

Hence, according a8 0 = £ or 0 = f equation (21) becomes4 

(22) cV^~irci - + yuaüßeaß = 0       (0 = £), 

(23) c\/^~^c2 ^ - yuaüpeaß = 0       (0 = f). 

The invariance of (22) and (23) under rotations of coordinates is evident. 
We can now state the following result which is independent of the co- 
ordinate system employed. Equation {20) must be satisfied along the 
characteristics given by 6 = w2/wi {stream lines), and {22) and {28) along 
the characteristics £ and f respectively. When (20) is satisfied at points of 
a characteristic stream line, or when (22) or (23) is satisfied at points of 
a £ or £ characteristic, then the system (8) will be algebraically con- 
sistent as equations for the determination of the derivatives ua,ß and 
p,a along the characteristic. 

Remark. We now give another form of the equations (22) and (23) 
which will be useful in the following discussion. By differentiation of the 
relations «i = v cos w and w2 = v sin w and substitution into the last term 
of (22) or (23), we find that 

UaÜßeaß = Mi«2 — W2W1  = J>2W. 

Making this substitution into (22) and (23) and introducing the local 
mach number m, these conditions become 

(22a) Vm2- 1 ^ + W« = 0        (0 = £), 
V 

(23a) Vm2- 1 ^ - 7m2« = 0        (0 = f). 
V 

The following result is an immediate consequence of (22a) and (23a)' 
7/ the inclination o> of the stream lines is constant along a !■ or £ character- 
istic, so also is the pressure p. 

6. Rotational and irrotational flow. In this section we consider certain 
special relations which are consequences of the equations of the preced- 
ing sections. We first recall the definitions of a few terms which are basic 
in the discussion. 

4 The quantities eaf defined by en = — en = 1 and en = ß22 = 0 are the com- 
ponents of a skew symmetric tensor under proper orthogonal rotations of the 
coordinate axes. 
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A flow is said to be rotational if the rotation, i.e., the vector having 
components eaßyUß,y in rectangular coordinates, does not vanish identi- 
cally.6 When this vector vanishes the flow is called irrotational. The flow 
is said to be non-isentropic, or sometimes non-adiabalic, if the entropy 
S is not constant throughout the flow. Otherwise the flow is said to be 
isentropic or adiabatic. The condition of isentropy can be expressed by 
the statement that the quantity N, which occurs in the relation p = Np7, 
is an absolute constant; for non-isentropic flow N is constant only along 
stream lines and varies from stream line to stream line. 

In the case of plane flow, the rotation is determined by the single 
component 

<j> = Uifi — M2,i . 

We shall now show that plane irrotational flow is isentropic and conversely. 
It follows that plane rotational flow is non-isentropic and conversely. In 
other words, irrotational and isentropic flow, and likewise rotational and 
non-isentropic flow, are equivalent in the plane case under consideration. 

First differentiate (3) with respect to x" to obtain 

(24) -2— \?£ - v- p,J + «,«,,„ = 0. 
7 - 1 L P        P2     J 

Assuming the flow irrotational (1) becomes 

(25) ?* + u.U..« = 0. 
P 

Subtracting corresponding members of these two equations we have 

(26) (    *     -i)£,-_     *     £Pi--o. 
\7 — 1 /   P 7-1 P2 

But this last equation can be integrated readily to give N,a = 0 where 
N is the ratio p/p7. Hence N is an absolute constant and the flow is 
isentropic in accordance with the above definition. Now assume p — Np7, 
with N an absolute constant. But under this condition we can deduce 
(26). Subtracting corresponding members of (24) and (26), we obtain 
(25). But when (25) is combined with (1) we obtain 

U.(Wa,<r   —   Ua,a)   =   0. 

Hence u#t> = 0 and ui<j> = 0. It follows that <t> = 0 at any point where the 
velocity does not vanish. From continuity <§> = 0 at any point, which is 

6 The quantities eaßy withe123 = 1 are the components of a completely skew sym- 
metric tensor in three dimensional space under proper rotations of the rectangular 
coordinate axes. 

8 The relation p = Np", in which N is constant along streamlines, is equivalent 
to the condition, stated in §2, that the entropy S is constant along stream lines. 
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a limit of points for which the velocity does not vanish. Also <f> — 0 
identically in any open region in which the velocity is equal to zero. 
Hence <f> = 0 at all points of the flow, which means that the flow is irrota- 
tional. This proves the above italicized statements. 

In the case of plane flow it can be shown that [2] 

(27) <t> = Ap, 

where the quantity A is defined by 

(28) (7 - 1)NA = - dN/df 

with \}/ the stream function. Hence A is constant along stream lines but 
varies from stream line to stream line for rotational flow. The relation 
(27) is first proved subject to the condition that the velocity does not 
vanish, but this condition is easily removed by the type of argument 
employed above. Thus, if v = 0 at a point P, and P is a limit of points 
at which v ^ 0, we see that (27) is satisfied at P by continuity. In case 
v = 0 at P, and P lies in an open set of points at which v = 0, then <t> 
vanishes identically in this open set; but <£ = 0 means that the flow is 
irrotational, and hence the flow is isentropic in this open set by the above 
result. It follows from the equation (28) defining A that A must vanish 
in this open set. Hence both members of (27) vanish in the open set and 
this equation is again satisfied at the point P. The equation (27) is 
therefore satisfied throughout any region in which the flow is continuous and 
differentiable. 

Remark 1. Plane flow is irrotational (and hence isentropic) if, and only 
if, A = 0. This is an immediate consequence of the above results. 

Remark 2. If the inclination co of the stream lines is constant along a 
£ or f characteristic in plane flow, then the pressure p was shown to be 
constant along this characteristic (see Remark at the end of §5). When, 
in particular, the flow is irrotational, so that N is an absolute constant, 
we see from the equation p = Npy that p is also constant along the 
characteristic. It follows from these results and the energy equation (3) 
that the velocity v and hence the velocity components ua are likewise 
constant. In addition, the velocity of sound c, given by c2 = yp/p, and 
the local mach number m, where m = v/c, must be constant. Similarly 
the quantity p which gives the inclination of the characteristic relative 
to the stream lines must be constant in view of the relation sin y. = 1/m. 
But from the fact that y. and co are constant, it follows that the inclina- 
tion of the characteristic is constant, and hence the characteristic is a 
straight line. We combine these results briefly in the following italicized 
statement: //, in the case of plane irrotational flow, the inclination w of the 
stream lines is constant along a £ or f characteristic, then the characteristic 
is a straight line having constant inclination ft relative to the stream lines and 
along which the pressure p, density p, velocity vector and its components ua , 
velocity of sound c and local mach number m are constant. 
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7. The fundamental differential relation. Let a denote arc length along 
a stream line measured in the direction of the flow. Also let us denote 
by n distance in the direction of a vector 17 normal to the velocity vector 
v; we suppose the normal i\ so directed that the vector pair v, -q has the 
same orientation as the coordinate axes. The following formulas [2] 

(29) 

(30) 

can now be derived, where K = dco/da is the curvature of the stream 
line. The first of these relations is a kinematical identity while the second 
is a consequence of the equations of §2 which determine the flow. In 
addition let us note the relation 

1 

(31) tan At 

dv 
dn 

= vK + <l>, 

dw 
dn 

m2 — 1 dv 
v      da 

Vm! — 1 
which is equivalent to the equation sin /1 = 1/m derived in §4. 

Now let s be arc length along a £ or f characteristic as shown in Fig. 5. 

FIG. 5 

With reference to the £ characteristic we then have 

dv dv   , dv — = cos n — + sin ix — , 
as da an 

dco du ,    .      dec — = cos p —■ + sin n — . 
ds da dn 
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Making the substitutions (29) and (30) into these equations and divid- 
ing corresponding members, we arrive at the following relation 

1 dv _    dv/da + (vK + <ft) tan p 
v du ~ vK + (m2 — 1) tan p dv/da 

for the derivative of the velocity v with respect to the inclination w of 
the stream lines along a £ characteristic. When account is taken of the 
relation (31) the above equation becomes 

1 dv  _ [dv/da + (vK + <S>) tan p] tan p 
v du ~~ dv/da + vK tan p 

Equation (32) is seen to simplify considerably in the case of irrota- 
tional flow for which <j> = 0. Assuming that the flow is irrotational we 
have 

(33) _ — = tan p       (along the £ characteristic). 
v du 

It is clear from Fig. 5 that the corresponding relation for the f character- 
istic is obtainable from (33) by replacing p by 180° - p. Making this 
substitution in (33) we thus have 

(34) —- = —tan p       (along the f characteristic). 
v do) 

The equations (33) and (34) are fundamental in the derivation of the 
method which we shall employ for calculating the pressure, density and 
velocity along the profile. 

8. Relation between the inclination of the profile and the character- 
istic directions. It will be assumed that the contour of the profile under 
consideration is regular in the sense that it is defined by functions x"(t) 
having at each point of the contour the following properties. First, the 
functions x"(t) are continuous and possess continuous first derivatives 
and second, the condition xaxa > 0 holds, where the "dot" denotes 
differentiation with respect to t. Under these conditions the arc length a 
of the contour can be defined, the contour will have a continuously turn- 
ing tangent, and the curvature K = du/da, where oi is the inclination of 
the contour, will exist and be a continuous function of the arc length. 
It will furthermore be assumed that along the upper contour of the pro- 
file the inclination w is a decreasing function of the arc length a, where 
a = 0 at the front vertex V and a = L at the tail vertex T so that L is 
the length of the upper contour. In the following we shall deal specifically 
with the upper contour of the profile. By reflecting the lower contour 
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about a straight line in the direction of the undisturbed flow, a curve will 
be obtained for which it will be assumed that the above conditions are 
valid; hence the discussion can be applied to the reflected contour to 
yield results which can be transferred to the lower contour. 

Let us now substitute the quantity c  = yp/p into the energy equation 
(3) to obtain 

(35) -*L + £ = H. 
7—1      2 

From this equation we can eliminate c2 by means of the relation c = v 
sin /i derived in §4; solving the resulting equation for v2 and also for 
sinV we have 

(36) v2 = 2 2(7 - 1)H 
7 - 1 + 2 sin2 M ' 

(37) sin2 ß = , .. __ (7 - 1)H     7-1 

We now consider (36) and (37) along a £ or f characteristic for which 
the inclination co of the stream lines can be introduced as a parameter. 
Then differentiating (37) with respect to to, we are led to the following 
equation 

/-oo\ • dß       —(y — 1)H     1 dv (38) sin ß cos ß -f = —'— ■ - —• 

We can now eliminate the second factor in the right member of (38) by 
means of (33) or (34), depending on whether we are dealing with a £ or 
a f characteristic. Making this elimination and using (36), we arrive at a 
differential equation which can be written in the form 

(39) du =        ±dß 

1 — k2 sec2 ß' 

where k2 = (7 + l)/2; here the plus sign applies in the case of a £ charac- 
teristic and the minus sign for a f characteristic. It can easily be verified 
that a solution of (39) is given by 

(40) ± « = const. - f(ß), 

where 

<«>   *.) - \/Witan_1 WWitan ß) - *• 
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Hence if co0 and no are a pair of corresponding values of co and n on the 
characteristic, it follows from (40) that 

(42) co - coo = f(ßo) - f(n)    (along a? char.), 

(43) co — coo = /(M) — /(/"o)    (along a f char.). 

We see from these relations that if co is known at every point of a £ or f 
characteristic and if n is known at one point, then p is determined at 
every point of the characteristic. 

We now consider the special case of irrotational flow for which the £ 
characteristics are straight lines and the inclination co as well as 

FIG. 6 

the various hydrodynamical quantities are constant along these charac- 
teristics in accordance with Remark 2 of §6. Fig. 6 shows the family of 
straight line £ characteristics issuing from the points of the profile (upper 
contour) which is of course one of the stream lines in the field of flow. The 
derivative in the left member of (33) is now indeterminate; however, it 
may be supposed that (34) and consequently (43) are valid relations. 
We assume that the £ characteristic through the vertex V is intersected 
by every f characteristic which passes through a point of the profile 
between V and T as shown in Fig. 6. But along the £ characteristic 
through V the angle co and the inclination p are constant and have the 
values w„ and /*„ of these quantities at the vertex V. Hence the equation 
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(44) « - «, = /(/•) - /W 

holds along each f characteristic, and hence in particular this equation is 
satisfied along the profile itself. Correspondingly if it is assumed that the 
f characteristics form a family of straight lines we deduce the validity, 
along the profile, of the equation 

(45) u - wv = /(/ir) - f(p). 

Equation (44) is basic in the standard theory of pressure calculation 
along the profile [3]. The flow associated with this relation is expansive, 
i.e., the inclination p. of the characteristic lines relative to the profile de- 
creases as o decreases, or, in other words, as we move from the front 
vertex V to the tail vertex T of the profile. For it follows immediately 
from (34) that v increases along the profile as w decreases, hence from 
(35) c decreases and hence m — v/c increases. But from the relation sin p 
= 1/wi it therefore follows that p decreases as stated. Solving the rela- 
tions c2 = yp/p and p = Npy for p and p we find 

27/7-1 ,,2/7-1 

P   ~   -.-W-V— !An/-v-l> P yr/T-iJVi/r-i' ^        (yN)11^1' 

Since c decreases as w decreases, it follows from these equations that p 
and p likewise decrease as o decreases in the case of expansive flow. 

When the flow is governed by equation (45) it is clear on the basis of 
the above discussion that n will increase as o> decreases so that the £ 
characteristics, which are now curved lines, will tend to crowd together 
as we move along the profile in the direction of the flow. It will be seen in 
the following that a condition of this type will play an important role in 
the process of separation of the flow from the profile. 

9. Standard pressure calculation along the profile. Consider the equa- 
tions p = iVp7 and c2 = yp/p along the profile and also the corresponding 
equations pv = Np„ and cl = ypv/pv where the subscript denotes evalu- 
ation at the vertex V of the profile. From these relations we can readily 
deduce 

7_ 
7-1 

Pv \Pv/ W 

Also by elimination of v2 between (35) and (36) we obtain an equation 
which can be written in the form 

(47) e = 2(7 - 1) H (     Sin%\ 
\7 — cos 2ju/ 
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Hence from (46) and (47) we obtain 

(48) *  = ft 

where nv denotes the value of p at the vertex V, and 

(49) „00 = (-Eb)A 
\y — cos Zii/ 

In the standard pressure calculation we seek the values of the ratio 

(50) £ - £ . & 
Pi Pv Pi 

along the profile, where pi is the pressure of the undisturbed flow. This 
calculation is based on an irrotational flow of expansive type as explained 
at the end of the preceding section and is carried out as follows: First, we 
determine the values of /*„ and the ratio pv/pi by means of the shock 
conditions (see §14). The value of ju at a point P of the profile can be 
found from the equation (44), or 

(51) /(M) «= /(M.) -uv + a 

in which u> is the known value of the inclination of the profile at P. 
Equation (48) can then be used to find p/pv at the point P, after which 
equation (50) gives the required value of p/pi at P. Values of the corre- 
sponding ratio for the various hydrodynamical quantities, for example 
the ratio p/pi where pi is the density of the undisturbed flow, can be 
determined along the profile from the values of the pressure ratio p/pi 
by means of formulas which are readily constructed (see §10). 

The above calculation of the pressure ratio p/pi along a profile is 
greatly facilitated by the use of a table, such as Table 2, for the functions 
f(p) and g(jt). This table, which is based on the value of y = 1.4, has 
been used in the pressure calculations for the GU2 and GU3 profiles in 
the latter part of this article. 

10. Auxiliary formulas. Let us suppose that the quantity n and the 
pressure ratio p/pi have been calculated along a profile by the method of 
the preceding section. From this calculation the various hydrodynamical 
quantities will be determined along the profile and the known algebraic 
relations between them will be satisfied. We shall now give a direct dem- 
onstration of these facts after which we shall derive certain formulas of 
differentiation which will be needed in the following section. 
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TABLE 2 

c /GO »(c) c /(c) »(c) 

90° 130.45° .5283 44° 120.32° .2971 
89° 130.45 .5282 43° 119.54 .2860 
88° 130.45 .5279 42° 118.71 .2746 
87° 130.45 .5274 41° 117.83 .2630 

86° 130.45 .5268 40° 116.90 .2512 

85° 130.44 .5259 39° 115.92 .2391 
84° 130.44 .5249 38° 114.88 .2269 
83° 130.42 .5236 37° 113.77 .2146 
82° 130.41 .5222 36° 112.61 .2022 

81° 130.39 .5206 35° 111.37 .1897 

80° 130.37 .5188 34° 110.07 .1772 

79° 130.34 .5168 33° 108.70 .1647 

78° 130.31 .5146 32° 107.23 .1522 

77° 130.27 .5122 31° 105.69 .1399 

76° 130.22 .5096 30° 104.08 .1278 

75° 130.16 .5067 29° 102.36 .1159 

74° 130.10 .5037 28° 100.56 .1043 

73° 130.03 .5005 27° 98.65 .09313 

72° 129.95 .4970 26° 96.64 .08237 

71° 129.85 .4933 25° 94.53 .07211 

70° 129.75 .4894 24° 92.30 .06243 

69° 129.64 .4853 23° 89.96 .05338 

68° 129.51 .4809 22° 87.50 .04502 

67° 129.37 .4763 21° 84.91 .03739 

66° 129.22 .4715 20° 82.19 .03054 

65° 129.05 .4664 19" 79.34 .02447 

64° 128.87 .4611 18° 76.34 .01919 

63° 128.67 .4555 17° 73.21 .01469 

62° 128.45 .4497 16° 69.94 .01095 

61° 128.22 .4436 15° 66.51 .00791 

60° 127.97 .4372 14° 62.95 .00552 

59° 127.69 .4306 13° 59.23 .00370 

58° 127.40 .4237 12° 55.37 .00237 

57° 127.08 .4165 11° 51.37 .00143 

56° 126.74 .4090 10° 47.22 .00081 

55° 128.38 .4013 9° 42.94 .00043 

54° 125.99 .3933 8° 38.53 .00020 

53° 125.57 .3850 7° 34.00 .00009 

52° 125.12 .3763 6° 29.36 .00003 

51° 124.64 .3675 5° 24.63 .00001 

50° 124.14 .3583 4° 19.81 .00000 

49° 123.59 .3488 3° 14.92 .00000 

48° 123.02 .3390 2° 9.98 .00000 

47° 122.40 .3289 1° 4.00 .00000 

46° 121.75 .3186 0° 0.00 .00000 

45° 121.06 .3080 
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The relation p = Npy, which must hold along the profile with N con- 
stant, becomes pv = Npl when evaluated at the vertex V. Combining 
the latter with the corresponding relation pi = Nip? for the undisturbed 
flow we have 

Ni       (Pv/pi)y 

This equation determines the constant N/Ni since the ratios pv/pi and 
pv/pi are determined from the shock conditions (§14). Then from p = Npy 

and pi = Nipi we obtain 

% - (B-T 
for the determination of the density ratio p/pi along the profile. Similarly 
from c2 = yp/p and c\ = ypi/pi we have 

p/pi 

<h       P/PI 
(54) 

by which the ratio c/c\ is given along the profile. Now from sin p = 1/m 
we can determine the mach number m, since p. is known by direct calcu- 
lation. Hence 

,   D
2
    (v/wyw2 _ M2(v/wy 

m    ~   "»   —     /'«2/„2\   2     — „2/2       , 

where W has been used to denote the velocity and M the mach number in 
the undisturbed flow. But this equation gives 

m I • I   _ ™VA2) iw) M* 

for the determination of the ratio v/W along the profile. 
If we assume that the values pi, pi, W, Ci and M are known in the 

undisturbed flow, then the determination of the ratio p/pi and the above 
ratios (53), (54) and (55) yields the value of the quantities p, p, v and c 
along the profile. The constant N is determined from (52). Moreover 
these quantities and m satisfy the relations m = v /c , c = yp/p and 
p = Npy along the profile. 

Let us now show that the energy equation (3) is satisfied along the 
profile. Thus 

2 2  2 yp v   _       yp mc 
(y - DP      2 ~ (y - l)p + "2~ 

yp 

P (th + $ 
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y(p/Pv)Pv (      1       + 1      \ 
(P/PV)PV   \y - 1      2 sinV/' 

But p/pv is given by (48) and this ratio is related to the ratio p/pv by the 
equation p/p„ = (p/pv)7. Hence 

l<7-«/7 
72? 

(7 - 1)P 2        p„   \7 - 1       2 smV L9'(Mr)J 

2[~7 —1 + 2 sin2;u~j/     sin2/i     \ /? — cos 2 
L 2(7 — 1) sinV J \7 — cos 2p/ \     sinV» 

cl(y — cos 2/i„) _ c2(7 — 1 + 2 sinV) 
2(7 — 1) sinVt. 2(7 — 1) sinV„ 
222 2 

cv cvmv ypv        .   vv 
~r —7T~   —   ; TK r 7-1 2 (7 - 1)PV       2 

But this last expression has the value H by the shock conditions (see 
Remark 1 in §2). Hence the energy equation holds along the profile. For 
later use we also note the validity, along the profile, of the relation (36) 
or (37), which is an immediate consequence of the energy equation. 

Let us now differentiate (48) along the profile with respect to the arc 
length <r to obtain 

(56) ^ = V* ^ —. 
da- g(pv) der 

Differentiating (49) with respect to a we find, after some reduction, that 

(57) ,'(„) = 2Tg°iCf/- 7 — cos 2ß 

Also differentiation of (37) gives 

dß       -2(7 - 1)H dv 
(58) 

da vi sin 2p     da 

When we substitute (57) and (58) into (56) and use (36) and (48), the 
resulting equation can be written 

dp _    -yp   dv 
(59; -j-   —    r-7— j- • 

da       v sin2 p da 

For definiteness we shall now suppose that the flow is of the expansive 
type (§8) so that (44) holds along the profile. Then differentiating this 
equation with respect to <r we have 



(60) 
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d<0 ,,/ \ du 
da da 

But from (41) we find, after some reduction, that' 

2 
(61) /'GO 7secV+ tanV — 1' 

Hence substituting (58) and (61) into (60) an equation is obtained which 
reduces to 

(62) 
dxa _  — ctn ix dv 
da v       da 

We shall also need formulas for the normal derivatives du/dn and 
dp/dn along the profile. In Fig. 7 we have shown two £ characteristics 

FIG. 7 

which pass through points P and Q of the profile and intersect at a point 
0. QR is a normal to the profile at point Q. Denoting the values of u at 
points P, Q, R by coP , «Q , wB , respectively, the change Aco, incurred in 
moving along the normal from Q to R, is wB — u« , and hence is also 
equal to wP — wQ since to is constant on each £ characteristic for the 
expansive flow under consideration. But to within terms of the first order 
we have 

Wj» blQ 
du . 
— tia. 
da 

Hence dividing both members of this relation by An 
to the limit as Q —* P we obtain 

QR and passing 

(63) 
doo ,       doi 
— =  -ctn M — 
an da 

ctn ^ dv 
j;     da 
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when use is made of (62). In a similar manner, using (59), we are led to 
the equation 

/CA\ dp dp      yp ctn n dv (64) -f = -ctn p. -f =  ,y.        —. ■ 
dn                    d<r       v sin2 p.  da 

11. Proof of sufficiency. By the pressure calculation of §9 for expansive 
flow the inclination p. of the £ characteristics relative to the profile is 
determined, and hence these characteristics are determined since they 
are straight lines. The quantities p, p, w, v, ua, c and m are constant 
along the £ characteristics for this flow (§8). Hence let us determine their 
values along the profile as in §9 and §10 and then define them in the 
plane of the flow by the requirement that they be constant along the 
curves of the congruence of straight lines which make an angle p. with 
the profile. We now raise the question: Will the quantities p, p, u, v, 
ua , c and m, so determined in the plane, be the pressure, density, etc., 
of an irrotational flow of expansive type having the above congruence of 
straight lines as its £ characteristics? 

To give a direct proof of the fact that the above question is to be 
answered in the affirmative, we make use of the following result [2]: 
Let p, p, v and w be a set of junctions of the coordinates, and denote by G 
the congruence of curves having the inclination w. Suppose that these func- 
tions satisfy the conditions 

//it-x /   a      i\ dp 2 du dp 2 du (65) (m  - 1) -f =   -pyz —, ~f =   -pv2 — 
da dn dn da 

where a denotes arc length along the curves of G, and n is the distance along 
their normals defined as in §7 relative to the direction on these curves specified 
by the components 

(66) Ui — v cos co,       «2 = v sin u. 

Suppose, furthermore, that 

.2 

(67) -JL- v- + v- = H, p = Np-> 
y — i p       z 

where H is an absolute (positive) constant, and N is a function of the 
coordinates which is constant along the curves of the congruence G. Then the 
p, p and the ua defined by (66) are the pressure, density and velocity com- 
ponents of a compressible flow having the curves of the congruence G as its 
stream lines. It is now immediately evident that (66) and (67) are satis- 
fied in the plane, since these relations hold along the profile (§10) and 
all quantities involved in the relations are constant by hypothesis along 
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the straight lines of the above congruence. Moreover, (65) holds along 

the profile. For from (59) and (63) we have 

(68) 

(69) 

(m2 - 1) 
dp _  —yp ctnV dv 

da- v sin2/j 
.  2   dv =  -pv ctn p —, 

etc a<r 

pv 
dco 

dn 
-pv ctn2 p. 

dv 
da1 

along the profile, where we have used the relations m = v/c and sin p — 
1/m in the derivation of (68). Hence from (68) and (69) we obtain the 
first equation (65). Similarly from (62) and (64) we have 

dp _ 
dn 

2 du 

pv ctn p 
dv 

-pv 
da 

pv ctn p 
dv 

and hence the second equation (65) is also satisfied along the profile. 
Now consider Fig. 8 which is identical with Fig. 7 except that in Fig. 8 

we have indicated a second stream line along which the velocity is 

FIG. 8 

designated by v' and arc length by a'. Also Q'R' is normal to the second 
stream line at Q'. Let / be a function which is constant along the curves 
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of the straight line congruence. Hence we have 

fd—fr= /Q' - fp>    (by hypothesis), 

PQ _ P'Q' 
OP      OP' 

(approximately). 

Dividing corresponding members of these equations and taking the limit 
as Q —■» P we see that 

(70) (d±) -°r(*£\ . V \d<r/p        OP \da)p- 

Similarly, if F is constant along the curves of the straight line congruence, 
we have 

FR - FQ = FB> - Fa>       (by hypothesis), 

QR _ Q'R' 
OQ      OQ' 

(exactly). 

Hence dividing corresponding members of these equations and letting 
Q —* P we obtain 

K   ' \dnjp      OP \dnjp- 

Now identify/with p and F with u in the first equation (65). Then when 
we make the substitutions (70) and (71) in the left and right members of 
the first equation (65) we see that the factor OP'/OP cancels, and we 
deduce the validity of this equation at the point P'. In the same way by 
taking F = p and / = co-it follows that the second equation (65) holds 
at P'. Hence (65) holds in the plane of the flow which is traversed by the 
straight line congruence, since P' is any point in this portion of the 
plane. 

It remains to mention that the flow determined in the plane by the 
above procedure is irrotational; this follows from §6 since N in equation 
(67) is an absolute constant by our hypothesis, i.e., the flow is isentropic. 
Moreover, the flow will have the profile as one of its stream lines and will 
evidently be of expansive type with the above congruence of straight 
lines as its f characteristics, since p is an increasing function of the in- 
clination co of the profile by direct calculation (§9). We have now 
proved the following result: If the inclination p and the various hydro- 
dynamical quantities are calculated along the profile by the procedure of 
§5 and §10, and if the values of these quantities are extended into the plane 
by the requirement that they be constant along the lines of the congruence 
of straight lines which make an angle p with the profile, then there will be 
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defined in the plane an irrotational flow of expansive type having the profile 
as a stream line and the straight lines of the above congruence as its £ charac- 
teristics. It is evident that a corresponding result will hold when the 
equation (45) lies at the basis of the calculation, in which case the f 
characteristics will replace the £ characteristics in the discussion. 

12. The continuity assumption. While the discussion and results of the 
preceding sections are basic in this theory of the separation of supersonic 
flow from curved profiles, these results will not in themselves account for 
the phenomenon of separation. This is done by the assumptions appear- 
ing in this and the next section. The first of these assumptions is the 
following: 

Continuity assumption. The pressure, density and velocity along the pro- 
file are continuous functions of the arc length. As a matter of fact the con- 
dition that any one of these functions be continuous would imply the 
continuity of the others on account of the relations between the hydro- 
dynamical quantities in §10. 

It will be found that, in consequence of the above assumption and the 
assumptions of §13, the pressure calculation along the profile must be 
carried out in part on the basis of the relation (44) for expansive flow and 
in part on the basis of (45) for flow of non-expansive type or compressive 
flow. This gives rise to the possibility of a shock, separating the regions 
corresponding to these two types of flow, of which there is some indica- 
tion in the photographs [1]. Any such shock cannot extend to a point on 
the profile in the case of an actual viscous fluid since the velocity will not 
be supersonic in a sufficiently small region about the profile, and this 
circumstance appears in close agreement with the above assumption of 
continuity along the profile. It must be borne in mind, moreover, that 
the simple irrotational flow of expansive or compressive type, discussed 
in the preceding sections, cannot strictly exist in the region about the 
profile and that our pressure calculations along the profile, based on this 
simple model, are intended only as approximations. In fact, from the 
curvature of the profile we can deduce as a mathematical consequence the 
curvature of the shock line which is associated with the front vertex V 
of the profile as well as the rotational character of the flow in the region 
behind this shock line. 

13. Separation assumptions. The separation of supersonic flow from a 
curved profile has its origin in the conditions existing at the rear of the 
profile. These conditions are effectively contained in the following itali- 
cized assumptions, but before stating them it will be helpful to make 
certain preliminary remarks. 
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It will be assumed that behind the front vertex V of the profile the 
pressure ratio p/pi (as well as the corresponding ratios p/pi, etc.) can be 
calculated, to the extent permitted by the following separation assump- 
tions, as for a flow of expansive type (§9 and §10). After separation effects 
occur the ratio p/pt so calculated does not retain its physical validity 
and will consequently be designated by the term virtual. Similarly we 
may speak of the virtual density ratio p/pi, the virtual mach angle p, etc., 
the angle p. in the above discussion being commonly called the mach 
angle. These virtual magnitudes will enable us to express, in a certain 
sense, rear conditions of significance in the hydrodynamical problem. 

We have spoken in the introduction (§1) of the tendency of certain 
mach angles to remain invariant during the separation process. This ia 
done in part by the following assumption (7), in accordance with which 
the configuration consisting of the virtual £ characteristics and the 
tangent to the profile at the point of separation is transformed into the 
configuration consisting of the rear shock line and the line of flow behind 
the rear shock at the vertex of this shock. A certain rigidity is therefore 
imposed on the flow pattern after separation by the assumption (7). 
Account is taken of conditions at the rear of the profile by a correspond- 
ing tendency toward invariance of the virtual mach angle p. at the tail 
vertex of the profile and the mach angle of the undisturbed flow, defined 
by sin-1 1/M, which is obviously of significance for the flow in the 
region behind the profile. The effect of these two factors on the value of 
the actual mach angle p at the point of separation is continued in assump- 
tion (5). Other assumptions made appear to be self-explanatory and need 
not be commented upon separately. The complete set of separation 
assumptions is as follows: 

(a) When separation occurs the flow leaves the profile along the tangent 
at the point of separation. 

(ß) The pressure is constant along the tangent stream line at the point 
of separation and the pressure on the profile behind the separation point is 
very approximately equal to this constant pressure. 

(7) After separation there occurs at the rear of the profile a shock possess- 
ing the following properties: (a) the flow behind the shock is parallel to the 
undisturbed flow, and (b) the direction of the flow behind the shock forms 
with the shock line at its vertex an angle which is equal to the virtual mach 
angle at the point of separation. 

(5) In the actual flow the mach angle p. at the point of separation is equal 
to the arithmetic mean of the mach angle for the undisturbed flow and the 
virtual mach angle p. at the tail of the profile. 



SEPARATION  OF SUPERSONIC FLOW FROM  CURVED  PROFILES       35 

Naturally the above assumptions are intended only as quantitative 
approximations to conditions existing in the actual flow. In the following 
sections we shall apply this theory to the GU2 and GU3 profiles for which 
experimental data is available. It will be found that the separation effects 
obtained when considered in themselves, i.e., apart from errors due to the 
standard calculation of §9 on which these effects also depend, are much better 
quantitatively than results based on the standard calculation along that part 
of the profile where such calculations apply (see §20). 

14. Application of the shock conditions. Consider the following two 
shock conditions [4] 

(72) £ = _H*    (M2 sin2 a - 1) + 1, 
Pi       7 + 1 

™ t =    2(M2sin2a-l) 
K'ai pi      (7- l)M2sin2a + 2^   ' 

where M, p\, and pi are the mach number, pressure and density of the 
undisturbed stream, while p and p denote pressure and density immedi- 
ately behind the shock line. The inclination of the shock line, relative to 
the x1 axis, which is assumed to have the direction of the undisturbed 
flow, is given by a and is related to the inclination &> of the stream line, 
also relative to the xl axis, immediately behind the shock line by the 
equation 
,_,,     . 2[(Af2 - 1) tan2 a - I]  
Ui;    tan a - ^ _ 1)M2 + 2] ^ a + ^y + 1)M2 + 2] tan a ' 

If W is the velocity of the undisturbed stream and v denotes velocity 
immediately behind the shock line, we can derive an expression for the 
ratio v/W as follows. We have 

-yp   +t=    7Pi    + Z! =    c*   + E.2 

(7 - l)p       2        (7 - l)pi 2 (7-1) 2 

from the invariance of the left member of (3) in the passage across the 
shock line (see Remark 1 in §2). In the above relation C, given by C2 = 
YPi/pi, is the velocity of sound in the undisturbed stream. Hence 

yjp/pdpi       ,   (v/W)2W2 =      C2 W^ 
(7 - 1)(P/PI)PI 2 (T- 1)       2: 

p/pi ,  iv/wY _        1 , 1 

or 

(75) 

(7 - 1)MKP/PI)  '2 (7 - DM*     2 

(7 - DM2 + 2 2(p/pi) 
(7 - 1)M2 (T - 1)M

2
(P/PI) 

+ ö,      OT 

(*)"- 
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The equations used in the calculation of a and the ratios p/pi, p/pi 
and v/W are obtained from the above equations (74), (72), (73) and (75) 
by putting y = 1.4. Making this substitution the equations become 

r7fiN . = 5[(Ma - 1) tan2« - 1] 
k   ' a      (M2 + 5) tan* a + (6M2 + 5) tan a ' 

(77) £-=4(M2sin2a-l) + l, 
Pi      b 

p_ = 5(M2 sin2 a - 1) 
pi        M2 sin2 a + 5   ' 

M2 + 5      5(p/pi) W- 
(78) 

(79) \Tirl JjT~       M\p/pj • 

In addition, we will make use of an equation giving the mach number m 
immediately behind the shock line which is derived as follows. By defini- 
tion 

m      c2      W2 &       \w) yp/p ' 

where c2 = yp/p gives the velocity of sound c behind the shock line. 
Hence 

l ä   . / .      TJ72 2 _/t,V   W*   P/Pl  _(v\ 
\WJ /ypÄp/px      \WJ 

from which we obtain the desired formula 

2 _ ^ wwnP/Pl) (80) m2 = M' 
P/Pi 

After m has been determined, the equation sin p. = 1/m can be used to 
determine the mach angle p. (§4). 

Denote by w„ the inclination of the profile at its vertex V and by a the 
angle of attack. We then easily calculate 

w, = 11.537°       for       GU2, a = 0 , 

w„ = 20.027°       for       GUS, a = 0 . 

Using these basic values of «„, the inclination w„ is immediately deter- 
mined for any angle of attack a for the GU2 and GU3 profiles. In Tables 
3, 4 and 5 we have given the initial determinations, or determinations at 
the vertex V, of the above quantities for the GU2 and GU2> profiles at 
various angles of attack when M = 2.13 and M = 1.85. 
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TABLE 3 
Initial determinations for GUS, M = S.1S 

o(deg) oi(deg) a(deg) P/PI p/pi (»/WO» m ji(deg) 

0 11.537 38.574 1.89118 1.56467 .77002 1.70010 36.03 
4 7.537 34.472 1.52899 1.35130 .85508 1.85165 32.69 
6 5.537 32.616 1.37108 1.25171 .89491 1.92526 31.29 
8 3.537 30.863 1.22*622 1.15652 .93359 1.99872 30.02 

10 1.537 29.201 1.09319 1.06569 .97156 2.07292 28.84 

TABLE 4 
Initial determinations for GUS, M = S.1S 

u(deg) co(deg) a(deg) P/PI p/pi (#)» m c(deg) 

0 
5 

10 
14 

20.027 
15.027 
10.027 
6.027 

49.734 
42.638 
36.965 
33.071 

2.91520 
2.26190 
1.74727 
1.40949 

2.07412 
1.76369 
1.48228 
1.27628 

.55310 

.68868 

.80298 

.88504 

1.33617 
1.56086 
1.75799 
1.90684 

48.45 
39.84 
34.67 
31.63 

TABLE 5 
Initial determinations for GUS, M = 1.85 

o(deg) o(deg) a(deg) P/PI p/pi (v/W)' m (i(deg) 

4 
16 

16.027 
4.027 

51.286 
36.350 

2.26435 
1.23609 

1.76494 
1.16314 

.58662 

.90836 
1.25096 
1.71038 

53.07 
35.78 

Using the values of p/pi and y. from Tables 3, 4 and 5, we can now 
calculate the value of the pressure ratio p/pi at a point on the profile of 
arbitrary inclination « by the method of §9. In addition to the pressure 
ratio p/pi, the following tabulations7 give, for the indicated values of 
«, the determinations of the mach angle p and the quantities f(n), g(n) 
and p/pv which enter in the calculations as well as the determinations of 
a new quantity m, defined in §16. The final value of u in each of these 
tables gives the inclination of the tail vertex T for the angle of attack 
under consideration and the corresponding value of p is the value of the 
mach angle pT at the tail vertex which we shall later have to consider in 
connection with the above assumption (8). 

7 In these tables and in all following calculations we shall measure angles in 
degrees; with this understanding the degree designation will henceforth be 
omitted. 
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6U2,M = 2.13, o = = 0 

u /W M »M P/Pv p/pi ih* 

11 112.10 35.59 .1971 .9729 1.8399 

9 110.10 34.02 .1774 .8756 1.6559 

7 108.10 32.59 .1596 .7878 1.4899 

5 106.10 31.27 .1432 .7068 1.3367 

3 104.10 30.01 .1279 .6313 1.1939 

1 102.10 28.86 .1143 .5642 1.0670 

-1 100.10 27.76 .1016 .5015 .9484 4.54 

-3 98.10 26.73 .09022 .4453 .8421 4.74 

-5 96.10 25.74 .07970 .3934 .7440 4.95 

-7 94.10 24.81 .07027 .3468 .6559 5.18 

-9 92.10 23.91 .06162 .3041 .5751 5.45 

-11 90.10 23.06 .05392 .2661 .5032 5.74 

-11.537 89.56 22.84 .05204 .2569 .4858 5.82 

GU2.M = 2.13, o => 4 

W /W M »W p/p» p/pi Ä« 

7 107.70 32.32 .1562 .9714 1.4852 

6 106.70 31.66 .1480 .9204 1.4073 

5 105.70 31.01 .1400 .8707 1.3312 

4 104.70 30.39 .1325 .8240 1.2599 

3 103.70 29.78 .1252 .7786 1.1905 

2 102.70 29.20 .1183 .7357 1.1249 

1 101.70 28.63 .1116 .6940 1.0612 

0 100.70 28.08 .1052 .6542 1.0003 4.51 

-1 99.70 27.55 .09927 ,6174 .9439 4.60 

-2 98.70 27.03 .09347 .5813 .8888 4.70 

-3 97.70 26.53 .08807 .5477 .8374 4.80 

-4 96.70 26.03 .08269 .5142 .7863 4.91 

-5 95.70 25.55 .07775 .4835 .7393 5.01 

-6 94.70 25.08 .07293 .4535 .6935 5.13 

-7 93.70 24.63 .06853 .4262 .6516 5.24 

-8 92.70 24.18 .06417 .3991 .6102 5.37 

-9 91.70 23.74 .06008 .3736 .5713 5.51 

-10 90.70 23.32 .05628 .3500 .5352 5.65 

-11 89.70 22.89 .05246 .3262 .4988 5.80 

-12 88.70 22.49 .04912 .3055 .4671 5.96 

-13 87.70 22.08 .04569 .2841 .4345 6.14 

-14 86.70 21.69 .04265 .2652 .4056 6.33 

-15 85.70 21.31 .03976 .2473 .3781 6.53 

-15.537 85.16 21.10 .03815 .2373 .3628 6.65 
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GU2,M = 2.13, a = 6 

a. /GO p «GO P/Pv J>/PI m! 

5 105.60 30.94 .1392 .9700 1.3300 
4 104.60 30.32 .1317 .9178 1.2583 
3 103.60 29.72 .1245 .8676 1.1896 
2 102.60 29.14 .1176 .8195 1.1236 
1 101.60 28.58 .1110 .7735 1.0606 
0 100.60 28.02 .1045 .7282 .9984 4.53 

-1 99.60 27.50 .09871 .6879 .9412 4.62 
-2 98.60 26.98 .09291 .6475 .8877 4.72 
-3 97.60 26.48 .08753 .6100 .8363 4.81 
-4 96.60 25.98 .08216 .5725 .7850 4.92 
-5 95.60 25.51 .07734 .5390 .7389 5.03 
-6 94.60 25.03 .07242 .5047 .6919 5.14 
-7 93.60 24.58 .06804 .4742 .6501 5.26 
-8 92.60 24.13 .06369 .4438 .6085 5.39 
-9 91.60 23.70 .05972 .4162 .5706 5.52 
-10 90.60 23.27 .05582 .3890 .5333 5.67 
-11 89.60 22.85 .05213 .3633 .4981 5.82 
-12 88.60 22.45 .04878 .3399 .4661 5.98 
-13 87.60 22.04 .04535 .3160 .4333 6.16 
-14 86.60 21.65 .04235 .2951 .4046 6.34 
-15 85.60 21.27 .03945 .2749 .3769 6.54 
-16 84.60 20.89 .03664 .2553 .3501 6.76 
-17 83.60 20.52 .03410 .2376 .3258 7.00 
-17.537 83.06 20.32 .03273 .2281 .3127 7.17 

GU2,M = 2.13, a ■■ = 8 

« /GO M »00 P/Pv P/PI m> 

3 103.58 29.71 .1243 .9703 1.1899 
2 102.58 29.13 .1174 .9165 1.1238 
1 101.58 28.57 .1109 .8657 1.0616 
0 100.58 28.01 .1044 .8150 .9994 4.53 

-1 99.58 27.49 .09860 .7697 .9438 4.63 
-2 98.58 26.97 .09281 .7245 .8884 4.72 
-3 97.58 26.47 .08743 .6825 .8369 4.82 
-4 96.58 25.97 .08206 .6406 .7855 4.92 
-5 95.58 25.50 .07724 .6030 .7394 5.03 
-6 94.58 25.02 .07232 .5646 .6923 5.15 
-7 93.58 24.57 .06795 .5304 .6504 5.27 
-8 92.58 24.13 .06369 .4972 .6097 5.39 
-9 91.58 23.69 .05962 .4654 .5707 5.52 
-10 90.58 23.26 .05573 .4351 .5335 5.67 
-11 89.58 22.85 .05213 .4070 .4990 5.82 
-12 88.58 22.44 .04870 .3802 .4662 5.98 
-13 87.58 22.03 .04527 .3534 .4333 6.16 
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GU2,M = 2.13, o ■ = 8 

6) /to V »W P/P» P/PI m' 

-14 86.58 21.64 .04227 .3300 .4046 6.34 

-15 85.58 21.26 .03937 .3073 .3769 6.55 

-16 84.58 20.88 .03657 .2855 .3501 6.77 

-17 83.58 20.51 .03403 .2657 .3257 7.01 

-18 82.58 20.14 .03150 .2459 .3015 7.27 

-19 81.58 19.79 .02927 .2285 .2802 7.55 

-19.537 81.04 19.60 .02811 .2194 .2691 7.72 

GU2,M = 2.13, a = . 10 

W /to » »to p/p» P/PI m« 

1 101.53 28.54 .1106 .9702 1.0606 

0 100.53 27.98 .1041 .9132 .9983 4.54 

-1 99.53 27.46 .09827 .8620 .9424 4.63 

-2 98.53 26.94 .09248 .8112 .8868 4.73 

-3 97.53 26.44 .08710 .7640 .8352 4.83 

-4 96.53 25.95 .08186 .7181 .7850 4.93 

-5 95.53 25.47 .07693 .6748 .7377 5.04 

-6 94.53 25.00 .07211 .6325 .6915 5.16 

-7 93.53 24.55 .06775 .5943 .6499 5.27 

-8 92.53 24.10 .06340 .5561 .6080 5.40 

-9 91.53 23.67 .05944 .5214 .5700 5.54 

-10 90.53 23.24 .05555 .4873 .5327 5.67 

-11 89.53 22.83 .05196 .4558 .4983 5.83 

-12 88.53 22.42 .04853 .4257 .4654 5.99 

-13 87.53 22.01 .04510 .3956 .4325 6.17 

-14 86.53 21.63 .04220 .3702 .4047 6.35 

-15 85.53 21.24 .03922 .3440 .3761 6.56 

-16 84.53 20.86 .03643 .3196 .3493 6.78 

-17 83.53 20.49 .03390 .2974 .3251 7.02 

-18 82.53 20.12 .03136 .2751 .3007 7.28 

-19 81.53 19.77 .02914 .2556 .2794 7.56 

-20 80.53 19.42 .02702 .2370 .2591 7.88 

-21 79.53 19.07 .02489 .2183 .2387 8.23 

-21.537 78.99 18.88 .02384 .2091 .2286 8.44 
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GU3, M = 2.13, a = 0 

<■> /to M »to p/p» p/pi TO1 

20 123.25 48.40 .3429 .9985 2.9108 
17 120.25 43.91 .2961 .8623 2.5138 
14 117.25 40.38 .2557 .7446 2.1707 
11 114.25 37.43 .2199 .6404 1.8669 
8 111.25 34.91 .1886 .5492 1.6010 
5 108.25 32.69 .1608 .4683 1.3652 
2 105.25 30.73 .1366 .3978 1.1597 

-1 102.25 28.94 .1152 .3355 .9781 4.22 
-4 99.25 27.31 .09659 .2813 .8200 4.52 
-7 96.25 25.82 .08052 .2345 .6826 4.86 
-10 93.25 24.43 .06659 .1939 .5653 5.26 
-13 90.25 23.12 .05447 .1586 .4624 5.73 
-16 87.25 21.90 .04426 .1289 .3758 6.31 
-19 84.25 20.76 .03575 .1041 .3035 7.05 
-20.027 83.22 20.38 .03314 .09651 .2813 7.35 

GU3, M = 2.13, o = 5 

<i) /to f »to P/Pv p/pi m* 

15 116.71 39.81 .2489 .9984 2.2583 
12 113.71 36.95 .2140 .8584 1.9416 
9 110.71 34.49 .1833 .7353 1.6632 
6 107.71 32.33 .1563 .6270 1.4182 
3 104.71 30.39 .1325 .5315 1.2022 
0 101.71 28.64 .1117 .4481 1.0136 4.35 

-3 98.71 27.03 .09347 .3749 .8480 4.65 
-6 95.71 25.56 .07786 .3123 .7064 4.97 
-9 92.71 24.18 .06417 .2574 .5822 5.35 
-12 89.71 22.90 .05254 .2108 .4768 5.80 
-15 86.71 21.69 .04265 .1711 .3870 6.36 
-18 83.71 20.56 .03438 .1379 .3119 7.06 
-21 80.71 19.48 .02738 .1098 .2484 7.98 
-24 77.71 18.46 .02162 .08672 .1962 9.23 
-25.027 76.68 18.11 .01977 .07930 .1794 9.77 



42 T.  Y.  THOMAS 

GU3, M *» 2.13, a = = 10 

<a /GO f »GO p/p» 

c 

P/PI m» 

10 110.91 34.65 .1853 .9984 1.7445 

7 107.91 32.46 .1580 .8513 1.4875 

4 104.91 30.52 .1341 .7225 1.2624 

1 101.91 28.75 .1130 .6088 1.0637 

-2 98.91 27.14 .09469 .5102 .8915 4.67 

-5 95.91 25.65 .07878 .4245 .7417 4.98 

-8 92.91 24.27 .06504 .3504 .6122 5.34 

-11 89.91 22.98 .05321 .2867 .5009 5.77 

-14 86.91 21.77 .04327 .2331 .4073 6.29 

-17 83.91 20.63 .03486 .1878 .3281 6.95 

-20 80.91 19.55 .02781 .1498 .2617 7.81 

-23 77.91 18.52 .02194 .1182 .2065 8.96 

-26 74.91 17.54 .01712 .09224 .1612 10.58 

-29 71.91 16.60 .01319 .07107 .1242 13.04 

-30.027 70.88 16.29 .01203 .06482 .1133 14.18 

GUi.M = 2.13, o = ■ 14 

a /GO M »GO p/p. P/PI in* 

6 106.63 31.61 .1474 .9986 1.4074 

3 103.63 29.74 .1247 .8446 1.1904 

0 100.63 28.04 .1048 .7100 1.0007 4.52 

-3 97.63 26.49 .08764 .5938 .8369 4.81 

-6 94.63 25.05 .07262 .4920 .6934 5.14 

-9 91.63 23.71 .05981 .4052 .5711 5.52 

-12 88.63 22.46 .04887 .3311 .4667 5.97 

-15 85.63 21.28 .03953 .2678 .3774 6.54 

-18 82.63 20.16 .03164 .2144 .3022 7.26 

-21 79.63 19.10 .02508 .1699 .2395 8.23 

-24 76.63 18.10 .01972 .1336 .1883 9.50 

-27 73.63 17.13 .01528 .1035 .1459 11.38 

-30 70.63 16.21 .01174 .07954 .1121 14.28 

-33 67.63 15.33 .00891 .06037 .0851 19.31 

-34.027 66.60 15.03 .00800 .05420 .0764 22.06 
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GUS, M «= 1.85, a - 4 

<l> /to M »to p/Pv P/PI s.' 

16 125.57 53.00 .3850 .9984 2.2607 
13 122.57 47.27 .3316 .8600 1.9473 
10 119.57 43.04 .2864 .7427 1.6817 
7 116.57 39.66 .2471 .6408 1.4510 
4 113.57 36.83 .2105 .5459 1.2361 
1 110.57 34.38 .1820 .4720 1.0688 

-2 107.57 32.23 .1551 .4022 .9107 3.46 
-5 104.57 30.30 .1314 .3408 .7717 3.79 
-8 101.57 28.56 .1108 .2873 .6505 4.14 
-11 98.57 26.96 .09271 .2404 .5443 4.54 

-14 95.57 25.49 .07714 .2001 .4531 5.00 
-17 92.57 24.12 .06359 .1649 .3734 5.57 

-20 89.57 22.84 .05204 .1350 .3057 6.27 

-23 86.57 21.64 .04227 .1096 .2482 7.18 

-24.027 85.54 21.24 .03922 .1017 .2303 7.11 

GU3,M - 1.85, o = - 16 

la /to M »to PlPv P/PI m' 

4 112.31 35.76 .1992 .9985 1.2342 
1 109.31 33.45 .1703 .8536 1.0551 

-2 106.31 31.40 .1448 .7258 .8972 3.62 
-5 103.31 29.55 .1224 .6135 .7583 3.95 
-8 100.31 27.87 .1028 .5153 .6370 4.30 
-11 97.31 26.33 08592 .4307 .5324 4.69 
-14 94.13 24.90 .07114 .3566 .4408 5.17 
-17 91.31 23.58 .05863 .2939 .3633 5.74 
-20 88.31 22.33 .04778 .2395 .2960 6.47 
-23 85.31 21.15 .03853 .1931 .2387 7.41 
-26 82.31 20.04 .03081 .1544 .1909 8.69 
-29 79.31 18.99 .02442 .1224 .1513 10.54 
-32 76.31 17.99 .01915 .09599 .1187 13.41 
-35 73.31 17.03 .01483 .07434 .09189 18.53 
-36.027 72.28 16.72 .01364 .06837 .08451 21.28 
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15. Determination of pressure at separation. Let us put 

fi = hiß + /*«■) 

where pT is the virtual mach angle (§13) at the tail vertex of the profile 
and ß is the mach angle of the undisturbed stream. Thus 

ß = sin-1 4 = 28.04       for M = 2.13, 
M 

ß = sin-1 4 = 32.72       for M = 1.85. 
M 

By assumption (5) the actual mach angle ju = j5 at the point of separa- 
tion. Hence the final value of the pressure ratio p/pi, which is attained at 
the separation point by assumption (0), occurs when n = fi, and hence can 
be found, in the case of the GU2 and GU3 profiles, by interpolation from the 
columns for ß and p/px in the tables at the end of §14. 

Since we allow the possibility of pressure variations corresponding 
both to expansive and compressive flow along the profile (§8), it is im- 
portant to observe that the relationship between p and p/pi is that given 
by the tables at the end of §14 for the GTJ2 and GU3 profiles irrespective 
of the type of flow under consideration. But this follows from the fact 
that along the profile p/pi is an explicit function of n in the general case 
of non-isentropic flow which we dealt with at the beginning of this paper. 
To derive this function divide both members of equation (35) by c2 to 
obtain 

(si) _!_,+?■   HH°' 
C2  C2/Ci 

But, 

c\ = (7 - l)pic2 + 2 cl  ~7-l+   2  • 

Making this substitution in the right member of (81) and also the sub- 
stitution for c/cl given by (54), we find 

1 m2      [(7 ~ 1)M2 + 2](p/p0 
{iiA) y - 1 + 2 2(T - lXp/pO       ' 

which is valid along the profile. Eliminating p/pi from (82) by (53), the 
resulting equation can be written 

[(7 - 1)M2 2] 

& {N/myii[{y - l)m2 + 2] 
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Finally taking y = 1.4 this equation becomes 

p  _        (M2 + 5)3"6 

Pi 
(83) (N/Ni)2*(m2 + 5)3-B 

in which the mach number m is to be expressed in terms of p by the re- 
lation sin ft = 1/m. Hence the relationship between p/pi and p along the 
profile is the same regardless of whether we are dealing with expansive 
or compressive flow, and hence the use of the tables at the end of §14, by 
which this relationship is expressed, is justified in the determination of 
the final pressure ratio according to the above italicized statement. 

For example, in the case of the profile GU2 with M = 2.13, a = 0, we 
have pT = 22.84 from the first of the tabulations at the end of §14. 
Hence ß = (28.04 + 22.84)/2 = 25.44. From the table containing the 
above value of pT we now see that the separation pressure ratio p/pi, 
which is the value of p/px for p = 25.44, lies between .6559 and .7440, 
and by interpolation we find its value to be .7155. 

Let us denote the separation or final pressure on the profile by p so 
that p/pi represents the pressure ratio at separation. Table 6 gives the 
values of ß and p/pi for the profiles GU2 and GUS at the angles of attack 
a and mach numbers M under consideration. 

TABLE 6 
Separation pressures 

Profile u a P p/pi 

GU2 2.13 0 25.44 .7155 
GU2 2.13 4 24.59 .6479 
GU2 2.13 6 24.18 .6137 
GU2 2.13 8 23.82 .5822 
GU2 2.13 10 23.46 .5517 
GU3 2.13 0 24.21 .5480 
GUS 2.13 5 23.08 .4916 
GUZ 2.13 10 22.16 .4365 
GU3 2.13 14 21.54 .3970 
GUZ 1.85 4 26.98 .5456 
GUZ 1.85 16 24.72 .4303 

16. Determination of the separation point. Suppose that the flow sepa- 
rates from the profile at a point P, at which the inclination is w (see Fig. 
9). The tangent line PQ will be a stream line by assumption (a) and there 
will arise a shock at some point Q, the stream line QR behind this shock 
being parallel to the undisturbed flow by assumption (y); since we sup- 
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pose the direction of the undisturbed flow to be along the horizontal, the 
stream line QR will be horizontal as indicated in Fig. 9. Also by assump- 
tion (7), the shock line QS will make an angle p with the line QR where 
n is the virtual mach angle at P. Now the mach number of the flow will 
have a constant value m along the stream line PQ. This follows from 

Fict. 9 

equation (83), and the fact that the pressure ratio p/pi is constant along 
PQ by assumption (/3). Hence, with reference to Fig. 9 and the relation 
(74), we see immediately that 

(84)   tan (-«) 

2[(m2 - 1) tan2 G» - w) - 1] 
[(7 - l)rä2 + 2] tan3 (/*-«) + [(7 + l)m2 + 2] tan 0* - «) 

where we suppose — « S> 0, since separation of flow presumably occurs 
at a point P at which the inclination w is not positive under the conditions 
of the problem. 

If we insert the value 7 = 1.4 into (84) and then solve for m, we find 

(85) m 

_ —5[tan3 (n — 03) tan (-co) + tan (n — co) tan (-co) + tan (p — ca) + 1] 
tan3 (n — to) tan (-co) + 6 tan (n — w) tan (—«■>) — 5 tan2 (/n — w)' 

Equation (85) is used to determine the entries in the last column of the 
tables at the end of §14. Specifically to determine the value of m2 corre- 
sponding to any value of w under consideration (w < 0) in these tables 
we substitute into the right member of (85) the value of « in question 
and the associated value of y. appearing in the table. 

Let us think of the quantity m as a function of co in accordance with 
the above statement concerning its determination. Then if separation 
occurs at a point P at which the inclination of the profile is o>, the cone- 
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sponding value of m must be the value of the mach number at the separation 
point P. But from assumption (5), in which p = ß (see §15), the value m 
of the mach number at separation is given by sin ß = 1/m. This relation 
enables us to determine m, and hence we can find the value of the in- 
clination w at separation from the relation (85). Thus for the profile 
GU2, with M = 2.13 and a = 0, we have ß = 25.44. Hence from sin ß = 
1/m we find m = 5.42. This places the value of w, at which separation 
occurs, between  —7 and  —9, as can be seen from the table for 

TABLE 7 
Inclination at points of separation 

Profile M a m* a 

GU2 2.13 0 5.42 -8.78 
GU2 2.13 4 5.78 -10.87 
GU2 2.13 6 5.96 -11.88 
GU2 2.13 8 6.13 -12.83 
GU2 2.13 10 6.31 -13.78 
GUZ 2.13 0 5.95 -14.14 
GUZ 2.13 5 6.51 -15.63 
GUZ 2.13 10 7.03 -17.31 
GUZ 2.13 14 7.42 -18.49 
GU3 1.85 4 4.86 -13.09 
GUZ 1.85 16 5.72 -16.89 

GU2, M = 2.13, a = 0 in §14. Hence by interpolation, using the columns 
for co and m2 in this table, we find that separation occurs at co = —8.78. 
Table 7 gives the values of the inclination 0 at which separation takes 
place for the profiles, mach numbers M, and angles of attack a under 
consideration. 

17. Origin of back pressure. We have now found the pressure ratio 
p/px (§15) and also the inclination Ü of the profile at the separation 
point (§16). These values fi and p/pi determine the pressure ratio p/pi 
at points preceding the separation point by the method of §9. The graph 
of the ratio p/pi so determined for the GU2 and GUZ profiles must meet 
the previous graph of this ratio, as determined in §14, so that the two 
graphs will combine to define p/pi as a continuous function along the 
profile, on account of the continuity requirement of §12. But for these 
graphs to intersect, we must apply the formula (45) for compressive 
flow in the above calculation of the ratio p/pi. In other words, for the 
calculation of the ratio p/pi immediately preceding the separation point, 
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we must use the formulas 

/GO = /GO + Ö - «, (86) 

(87) 1 
P giß)' 

P_ = p    p_ 
Pi    p   Pi 

where the values of fi, Ö, and p/p\ are known from §§15 and 16. Calcu- 
lation of the ratio p/pi by the formulas (86) and (87) for the GU2 and 
GU3 profiles under consideration now leads to the following tables: 

GU2, M = 2.13, a = 0 

ta /to p »0») P/P p/pi 

-8.78 95.46 25.44 .07662 1 .7155 
-8 94.68 25.07 .07283 .9505 .6801 
-7 93.68 24.62 06843 .8931 .6390 
-6 92.68 24.17 .06408 .8363 .5984 

GU2, M = 2.13, o = 4 

w /M ß »W p/p p/pi 

-10.87 93.61 24.59 .06814 1 .6479 
-10 92.74 24.20 .06437 .9447 .6121 
-9 91.74 23.76 .06026 .8844 .5730 
-8 90.74 23.33 .05640 .8277 .5363 
-7 89.74 22.91 .05263 .7724 .5004 
-6 88.74 22.50 .04920 .7220 .4678 
-5 87.74 22.10 .04586 .6730 .4360 

GU2, M = 2.13, o = 6 

w /GO M »to p/p p/pi 

-11.88 92.70 24.18 .06417 1 .6137 
-11 91.82 23.79 .06053 .9433 .5789 
-10 90.82 23.37 .05673 .8841 .5426 
-9 89.82 22.94 .05288 .8241 .5058 
-8 88.82 22.54 .04953 .7719 .4737 
-7 87.82 22.13 .04611 .7186 .4410 
-6 86.82 21.74 .04304 .6707 .4116 
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GU2, M - 2.13, a = 8 

a /to c »to p/p p/pi 

-12.83 91.88 23.82 .06080 1 .5822 
-12 91.05 23.47 .05763 .9479 .5519 
-11 90.05 23.04 .05374 .8839 .5146 
-10 89.05 22.63 .05029 .8271 .4815 
-9 88.05 22.22 .04686 .7707 .4487 
-8 87.05 21.83 .04372 .7191 .4187 
-7 86.05 21.44 .04075 .6702 .3902 

GU2, M = 2.13, a - 10 

tt> /to M 9to p/p P/PI 

-13.78 91.04 23.46 .05754 1 .5517 
-13 90.26 23.13 .05456 .9482 .5231 
-12 89.26 22.72 .05104 .8870 .4894 
-11 88.26 22.31 .04761 .8274 .4565 
-10 87.26 21.91 .04433 .7704 .4250 
-9 86.26 21.52 .04136 .7188 .3966 
-8 85.26 21.14 .03846 .6684 -    .3688 

GU3, M = 2.13, o = 0 

w /to p srto p/p p/pi 

-14.14 92.77 24.21 .06446 1 .5480 
-14 92.63 24.15 .06388 .9910 .5431 
-13 91.63 23.71 .05981 .9279 .5085 
-12 90.63 23.29 .05600 .8688 .4761 
-11 89.63 22.87 .05229 .8112 .4445 
-10 88.63 24.46 .04887 .7581 .4154 

GU3, M = 2.13, o = 5 

ta /to 0 »to pip P/PI 

-15.63 90.15 23.08 .05410 1 .4916 
-15 89.52 22.82 .05188 .9590 .4714 
-14 88.52 22.41 .04845 .8956 .4403 
-13 87.52 22.01 .04510 .8336 .4098 
-12 86.52 21.62 .04212 .7786 .3828 
-11 85.52 21.24 .03922 .7250 .3564 
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GU3, M = 2.13, a = 10 

u /to A «to p/p P/PI 

-17.31 87.89 22.16 .04636 1 .4365 
-17 87.58 22.03 .04527 .9765 .4262 
-16 86.58 21.64 .04227 .9118 .3980 
-15 85.58 21.26 .03937 .8492 .3707 
-14 84.58 20.88 .03657 .7888 .3443 
-13 83.58 20.51 .03403 .7340 .3204 

GU3, M = 2.13, a = 14 

a /to f »to vlv PIP\ 

-18.49 86.31 21.54 .04151 1 .3970 
-18 85.82 21.35 .04006 .9651 .3831 
-17 84.82 20.97 .03718 .8957 .3556 
-16 83.82 20.60 .03465 .8348 .3314 
-15 82.82 20.23 .03212 .7738 .3072 
-14 81.82 19.87 .02975 .7167 .2845 

GZ73, M ■= 1.85, a = 4 

U /to f »to p/p p/pi 

-13.09 98.61 26.98 .09291 1 .5456 
-13 98.52 26.94 .09248 .9954 .5431 
-12 97.52 26.44 .08710 .9375 .5115 
-11 96.52 25.94 .08175 .8799 .4801 
-10 95.52 25.47 .07693 .8280 .4518 
-9 94.52 25.00 .07211 .7761 .4234 

GU3, M = 1.85, a = 16 

b> /to M «to P/P P/PI 

-16.89 93.91 24.72 .06940 1 .4303 
-16 93.02 24.32 .06553 .9442 .4063 
-15 92.02 23.88 .06134 .8839 .3803 
-14 91.02 23.45 .05745 .8278 .3562 
-13 90.02 23.03 .05365 .7731 .3327 

To illustrate the procedure for determining the point on the profile at 
which the two graphs for p/pi intersect, let us consider the GU2 profile 
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with M = 2.13 and a = 0. Let co = fi be the value of w at which the 
graphs intersect, i.e., at which the ratio p/pi has the same value for each 
graph. Then, from the above table for GU2, M = 2.13, a = 0, and the 
corresponding table in §14, we see that fi must lie between —7 and —8, 
the value of p/px being .6155 at w = —8 from the table in §14. Hence 
if we put fi = — (7 + 8) so that 5 is a decimal fraction, we must have 

.6559 - .0404 8 = .6390 + .0411 8, 

since the left member of this equation is the value of p/pi at w = O, as 
found by interpolation from the table in §14, while the right member is 
the interpolated value of p/pi at co = Q from the table in this section. 
Solving for 5 we find 8 = .21, and hence 0 = —7.21. The calculated 
values of O for the various cases under consideration are given in Table 8. 

It is thus seen that the pressure ratio p/pi will be determined along 
the profile according to the calculations of §14 for expansive flow until 
the point oi = ß is reached. Between <a = O and the separation value 
a) = ti is an interval of increasing pressure or back pressure interval fol- 
lowing which the flow leaves the profile along the tangent and the pres- 
sure remains constant and equal to its value p at the separation point. 
It is interesting to observe from the above discussion that the back pres- 
sure has its origin essentially in the requirement of continuity stated in §12. 

TABLE 8 

Profile M a a 

GU2 2.13 0 -7.21 
GU2 2.13 4 -8.98 
GU2 2.13 6 -9.87 
GU2 2.13 8 -10.77 
GU2 2.13 10 -11.64 
GUS 2.13 0 -12.29 
GU3 2.13 5 -13.58 
GUZ 2.13 10 -15.17 
GUZ 2.13 14 -16.39 
GUZ 1.85 4 -12.02 
GUZ 1.85 16 -15.63 

18. Complete pressure calculations. We have now completed all calcu- 
lations for the determination of pressure on the GXJ2 and GUS profiles 
under consideration. It remains to arrange our results in such form that 
the calculated pressure graphs can readily be drawn and compared with 
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the corresponding experimental graphs. For this purpose we shall now 
replace the inclination w, which has served as our independent variable 
defining position on the profile, by the % chord 5. It can easily be veri- 
fied that the relation between 8, co and the angle of attack a is given by 

sin (w + a) = .2 - 
250 

for the GU2 profile, 

sin (co + a) 
50 - 5 

146 
for the Gm profile. 

By means of these relations the % chord 5, corresponding to any given 
inclination « and angle of attack a, is determined; conversely when 5 
and a are assigned, the inclination to can be found, and hence the value 
of the pressure ratio p/pi by interpolation, using the appropriate table 
in §14 or §17. We can thus construct the following tables for the pressure 
ratios p/pi in which the values of Ö and ti are given by Table 7 and Table 
8, respectively. 

GU2, M = 2.13, a = 0 

% chord <ti p/Pi 

0 11.54 1.891 
10 9.21 1.675 
20 6.89 1.481 
30 4.59 1.283 
40 2.29 1.149 
50 0 1.008 
60 -2.29 .880 
70 -4.59 .764 
80 -6.89 .661 
81.38 a .647 
84 -7.82 .673 
86 -8.28 .693 
88.16 n .716 
90 .716 

100 .716 
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GU2, M == 2.13, a = 4 

% chord ÜJ p/pi 

0 7.54 1.529 
10 5.21 1.347 
20 2.89 1.183 
30 .59 1.036 
40 -1.71 .905 
50 -4.00 .786 
60 -6.29 .681 
70 -8.59 .587 
71.70 a .572 
74 -9.51 .593 
77 -10.20 .620 
79.90 Ü .648 
80 .648 
90 .648 

100 .648 

GU2, M - 2.13, a = 6 

% chord Ö) P/PI 

0 5.54 1.371 
10 3.21 1.204 
20 .89 1.054 
30 -1.41 .920 
40 -3.71 .800 
50 -6.00 .692 
60 -8.29 .598 
66.87 a .538 
70 -10.59 .564 
73 -11.28 .590 
75.61 a .614 
80 .614 
90 .614 

100 .614 
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OU2, M « 2.13, o - 

% chord b> vlv\ 

0 3.54 1.226 
10 1.21 1.075 
20 -1.11 .938 
30 -3.41 .816 
40 -5.71 .706 
SO -8.00 .610 
60 -10.29 .524 
62.08 fi .507 
65 -11.44 .531 
68 -12.13 .557 
71.50 a .582 
80 .582 
90 .582 

100 .582 

GU2, M = 2.13, o = 10 

% chord CO p/pi 

0 1.54 1.093 
10 -.79 .954 
20 -3.11 .830 
30 -5.41 .719 
40 -7.71 .620 
50 -10.00 .533 
57.15 n .477 
60 -12.29 .499 
63 -12.98 .522 
66.48 Ü .552 
70 .552 
80 .552 
90 .552 

100 .552 
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GU3, M - 2.13, a = 0 

% chord O) P/PI 

0 20.03 2.915 
10 15.90 2.388 
20 11.86 1.954 
30 7.87 1.591 
40 3.93 1.292 
50 0 1.039 
60 -3.93 .824 
70 -7.87 .649 
80 -11.86 .502 
81.08 a .486 
83 -13.06 .511 
84 -13.47 .525 
85.67 Q .548 
90 .548 

100 .548 

GUS, M = 2.13, o = 5 

% chord W P/PI 

0 15.03 2.262 
10 10.90 1.839 
20 6.86 1.488 
30 2.87 1.194 
40 -1.07 .954 
50 -5.00 .754 
60 -8.93 .585 
70 -12.87 .451 
71.78 fi .428 
73 -14.06 .442 
75 -14.86 .467 
76.93 a .492 
80 .492 
90 .492 

100 .492 
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G173, M = 2.13, a = L0 

96 chord U P/PI 

0 10.03 1.747 
10 5.90 1.405 
20 1.86 1.121 
30 -2.13 .885 
40 -6.07 .696 
50 -10.00 .538 
60 -13.93 .410 
63.16 ft .376 
65 -15.90 .395 
67 . -16.69 .418 
68.58 a .436 
70 .436 
80 .436 
90 .436 

100 .436 

Ö173, M « 2.13, a «= 14 

% chord U p/pi 

0 6.03 1.409 
10 1.90 1.121 
20 -2.14 .884 
30 -6.13 .688 
40 -10.07 .534 
50 -14.00 .407 
56.09 Q .342 
58 -17.14 .359 
60 -17.93 .381 
61.43 Q .397 
70 .397 
80 .397 
90 .397 

100 .397 
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GÜ3, M = 1.85, a = 4 

% chord 6) p/pi 

0 16.03 2.264 
10 11.90 1.850 
20 7.86 1.517 
30 3.87 1.229 
40 -.07 1.012 
50 -4.00 .818 
60 -7.93 .653 
70 -11.87 .517 
70.37 a .512 
71 -12.27 .520 
72 -12.67 .533 
73.07 Ö .546 
80 .546 
90 .546 

100 .546 

GUS, M = 1.84, a - 16 

% chord W P/PI 

0 4.03 1.236 
10 -.10 .997 
20 -4.14 .798 
30 -8.13 .633 
40 -12.07 .500 
49.06 a .397 
50 -16.00 .406 
51 -16.39 .417 
52.57 R .430 
60 .430 
70 .430 
80 .430 
90 .430 

100 .430 
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19. Comparison of theoretical and experimental pressure graphs for 
the GU2 and GU3 profiles. The experimental values of p/pi obtained by 
Ferri [1] for the GU2 and GU2> profiles under consideration are given in 
Tables 9, 10 and 11. In the actual experiments the data contained in 
Table 10 were obtained by measurements on the under side of the GU2 

TABLE 9 
Exp. p/pi for GUS, M = S.1S 

% chord o = 0 o- 4 o = 8 

4 1.825 1.468 1.153 
12.5 1.557 1.258 .981 
21.5 1.384 1.105 .875 
31.0 1.240 .962 .732 
40.5 1.096 .895 .655 
50.5 .971 .790 .598 
59.0 .856 .675 .540 
68.5 .741 .618 .559 
78.7 .645 .683 .598 
87.5 .702 .694 .598 
97.0 .702 .694 .598 

TABLE 10 
Exp. p/pi for GUS, M ■■ S.1S 

% chord o = 6 a - 10 

13.6 1.134 .904 
22.5 .981 .808 
31.5 .866 .713 
40.5 .790 .646 
50.5 .675 .550 
59.0 .598 .521 
68.5 .579 .559 
78.7 .637 .559 
87.5 .637 .559 

profile at angles of attack a = — 6 and a = —10; we have, however, 
listed this data as though obtained from measurements on the upper 
contour of the profile for angles a = 6 and a = 10 to conform to our 
previous notation. 

In the graphs of this section the dotted lines are the experimental 
pressure curves based on the data in Tables 9, 10 and 11; the small 
circles on these graphs indicate the actual experimental values of the 
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ratio p/p\. The heavy curves are the pressure graphs determined from 
the calculated values of the pressure ratio p/pi in the tables at the end 
of §18. It is seen that the agreement between the experimental and calcu- 
lated pressure graphs is excellent. In general, the deviation between the 
calculated and experimental values of p/pi at the rear is very closely 
equal to the difference between these values at a point at the beginning 

TABLE 11 
Exp. p/pi for GU3 

M = 2.13 M~ 1.85 
% chord 

o = 0 o = 5 a = 10 a =• 14 a = 4 a = 16 

5 2.481 1.871 1.531 1.213 1.944 1.137 
11.5 2.146 1.594 1.383 1.000 1.714 1.000 
20.5 1.784 1.361 1.017 .789 1.466 .826 
30 1.488 1.127 .808 .660 1.199 .677 
40 1.244 .945 .669 .530 1.006 .590 
49 1.042 .746 .564 .443 .863 .516 
59.2 .873 .608 .460 .408 .714 .590 
68.4 .763 .486 .443 .443 .590 .590 
77.5 .634 .561 .486 .443 .609 .590 
86.2 .681 .561 .486 .443 .609 .590 
95 .681 .561 .490 .443 .609 .590 
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of the interval in which back pressure becomes effective. This suggests, 
as mentioned in the introduction, that an improvement in the standard 
pressure calculation of §14 will result in a corresponding improvement 
in the agreement, at the rear of the profile, between experimental and 
calculated values of the pressure. We shall examine this hypothesis more 
fully in the following section. 

20. A direct test of the separation theory with experiment. To test the 
hypothesis mentioned at the end of §19, let us extend the experimental 
pressure graph for GU3, M = 2.13, a = 0 ina natural way so as to ob- 
tain the curve shown at the top of the graph appearing in this section. 
This extended curve will now replace, in the separation calculation, the 
theoretical pressure curve given by the standard procedure (§14) and 
may in fact be considered as an improved version of the latter curve on 
account of its close relation to the experimental data. We must now de- 
termine the various quantities appearing in Table 12. The first four of 
the % chords and the associated pressure ratios p/px in this table are the 
same as have already appeared in Table 11 of experimental values of 
p/pi for (7£73, M = 2.13, a = 0 in §19; however the last three % chords 
and the corresponding pressure ratios are found from the extended part 
of the experimental pressure curve. Values of to in the second column of 
Table 12 are determined by the formula 

5 = 50 - 146 sin w 

which is obtained from the corresponding formula in §18 by taking a = 
0. To calculate the column of values of the ratio p/pi in Table 12, we 
have the formula (53), namely 

l(N/N0] 

1/1.4 

Pi 

TABLE 12 

% chord 6> P/PI P/PI (»/W)> m c m! 

49 .39 1.042 .9947 .9476 2.0258 29.58 
59.2 -3.61 .873 .8766 1.0045 2.1392 27.87 4.38 
68.4 -7.24 .763 .7962 1.0460 2.2253 26.70 4.60 
77.5 -10.86 .634 .6975 1.1003 2.3435 25.01 5.07 
86 -14.27 .550 6302 1.1403 2.4347 24.25 5.38 
94 -17.54 .500 .5887 1.1661 2.4958 23.62 5.77 

100 -20.027 .475 .5675 1.1796 2.5286 23.30 6.11 
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where N/Ni is given by (52). Thus 

60       30 100 

N 2.9152 
U = 1-0498, 

Ni      (2.0741) 

using the initial determinations of p/pi and p/pi given in Table 4. After 
the ratios p/pi have been found, the values of (v/Wf in Table 12 are 
determined by equation (79), then m is obtained from (80), p is deter- 
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mined by the relation sin JX = 1/m, and finally rn is found by means of 
equation (85). This completes the determination of all entries in Table 
12. 

The remainder of the separation calculation is the same as in the pre- 
ceding discussion. Thus y,T has the value 23.30 from Table 12, and hence 

fi = 1(28.04 + 23.30) = 25.67 . 

Using Table 12 we now find 

Pi 
= .684,       m2 = 5.33,       Ü ■13.72. 

To determine the value of Q we use formulas (86) and (87) to set up 
Table 13. Comparison of the values of p/pi in this table with those in 
Table 12 then leads, as explained in §17, to the value Q =   —11.87. 

TABLE 13 

b) M M i»M p/v P/PI 

-13.72 95.94 25.67 .07898 1 .684 
-13 95.22 25.33 .07550 .9559 .654 
-12 94.22 24.86 .07075 .8958 .613 
-11 93.22 24.41 .06664 .8438 .577 

Table 14 giving the final form of the calculated values of p/pi can now 
be constructed. Entries in this table for % chords less than 80.03, corre- 
sponding to oj = Q, have been omitted, since this part of the pressure 
graph is obtained from the experimental values of p/pi. Using Table 14 
we can now plot the pressure curve for GUS, M = 2.13, a = 0, which is 
shown at the bottom of the graph in this section. It is observed that 
agreement between experimental and calculated back pressure intervals 
and final or separation pressures is remarkably accurate. 

TABLE 14 

96 chord <a p/pi 

80.03 a .608 
81.5 -12.46 .632 
83 -13.06 .656 
84.63 a .684 
90 .684 

100 .684 
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