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Abstract. 
We studied the complexity problem for neural networks used in function approximation; 
i.e., the problem of estimating the number of neurons needed to provide a given accuracy 
of approximation for any function, unknown except for a few a priori assumptions. We 
developed a unified theory, applicable to the traditional neural networks, radial basis func- 
tion networks, and generalized regularization networks. While our main objective was to 
provide a solid theoretical foundation for the subject, we have also developed new training 
paradigms, where no optimization based technique such as back-propagation is required. 
Thus, the training of our networks is very simple and entirely free of all the traditional 
shortcomings, such as local minima. Our ideas were tested to develop neural networks for 
prediction of time series, and beamforming in phased array antennas. In both cases, we 
obtained spectacular improvements over previously known results. Our work has resulted 
in 14 publications. In addition, the grant has facilitated the completion of our book on 
weighted approximation as well as the fulfillment of our obligations as an invited guest 
editor for a special issue of Advances in Computational Mathematics on Mathematical 
Aspects of Neural Networks. 

1. Introduction. An artificial neural (mapping) network is a mechanism for a highly par- 
allel computation of functions of several real variables. The basic components of a mapping 
network are called principal elements or neurons. These are simple processors equipped 
with a small local memory and are capable of performing certain simple computations such 
as taking an inner product or evaluating a transfer function (activation function). It may 
take any number of input variables and produce a real output. For example, the action 
of a typical neuron is to evaluate an expression of the form <r(w • x + b) where x denotes 
the vector of inputs, the weights w and the thresholds b are stored in the local memory 
and a is the activation function. These are not the only kind of neurons being considered 
in practice, but these seem to be the most traditional ones. The neurons are organized 
in layers. The input layer fans out its input to all the neurons in the first hidden layer. 
The neurons in the hidden layers can be interconnected in any manner whatever. In a 
feedforward network, the outputs of the neurons in any hidden layer is fanned out to the 
neurons in the next hidden layer. The output layer calculates (and outputs) a weighted 
sum of the outputs of the neurons in the last hidden layer. The network learns (is trained) 
by adjusting the weights and thresholds in the various neurons. 

It is obvious that a mapping network evaluates a special kind of function. For example, 
if the network has only one hidden layer, and all the neurons evaluate the same activation 
function <r, then the output of this network will have the form £)jb=i cjto-(wjt -x + i*). Many 
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applications of neural networks, such as guidance and control of an airplane, target clas- 
sification, analysis of time series, and robotics, involve the approximation of an unknown 
target function. Therefore, the main questions in the theory of mapping networks arise out 
of the desire to represent an "arbitrary" function at least approximately using networks 
with one or more hidden layers. 

Prior to the start öf this project, many authors [22, 25, 27] had studied the density 
problem; i.e., the problem to determine if an "arbitrary" function can be represented within 
an arbitrarily small margin of tolerance by the outputs of a neural network. However, 
there was only a scant study [17] concerning the size complexity of the networks required 
to achieve a prescribed order of approximation. Of course, neural networks were used to 
solve practical problems involving function approximation in spite of the lack of theory 
However, the techniques used are often ad hoc, and require a detailed knowledge of the 
specific problem being solved. 

We observe that although networks which represent boolean functions were studied 
extensively, approximation of real functions is an entirely different problem with totally 
different issues of interest. For example, one major problem in the realization of boolean 
functions is to avoid over-training, rote memorization in the extreme case, as it limits the 
capacity of the network to generalize. In contrast, a rote memorization is impossible for real 
functions and the very notion of generalization takes on a new meaning - approximating 
the target function at points where no training data is available. 

2. Detailed description of our work. The objective of the program was to 
conduct a thorough theoretical investigation of the capabilities of neural networks to ap- 
proximate functions. In particular, the project aimed at the construction of networks with 
a minimal number of neurons so as to provide universal approximation of functions when 
the only a priori knowledge about the target function is that it has a certain number of 
bounded derivatives. The architecture of the network should be the same for a wide class 
of functions; only the parameters may depend upon the individual function. Moreover, 
the approximation should be localized in the sense that if the target function has to be 
changed on a small part of its domain, then only a few neurons, rather than the whole 
network, should be retrained. 

In general, the target function is an unknown function. However, it is customary 
to assume that the function belongs to a known function class. For example, the now 
well known result of Barron [17] shows that if the function is assumed to satisfy certain 
conditions expressed in terms of its Fourier transform, and each of the neurons evaluates a 
sigmoidal activation function, then at most 0(e~2) neurons are needed to achieve the order 
of approximation e. It is sometimes difficult to verify whether the conditions required to 
apply Barron's theorem are satisfied. It is more customary to assume only that the target 
function has a certain number of derivatives. 

Thus, a common choice of the function class is the Sobolev class Wr,s, for some integer 
r > 1. This class consists of all functions on [—1,1]* having continuous partial derivatives 
up to order r. For the sake of clarity of exposition, we limit ourselves to continuous 
functions, although most of our results are also valid for other Lp classes. In the sequel, 
we find it convenient to write 1/n for e. The symbol E^yT,sxn will denote the number of 
neurons, each evaluating an activation function <£, required to yield an approximation order 
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1/n for every function in WT<a. 

General results in the theory of approximation of functions suggest that £^,jrj,;n > 
cnr'3 for a suitable constant c > 0. In fact, the same lower bound is valid for any approx- 
imation process depending upon n parameters selected in a robust manner. Therefore, 
we addressed primarily the following questions. (1) What order of approximation can one 
achieve with an "arbitrary" activation function? (2) Can one achieve the optimal order 
of approximation for some specific activation function? (3) Are there some limitations on 
neural networks in terms of the degree or manner of approximation, in spite of their well 
known universal approximation properties? (4) Is it possible to provide simple training 
paradigms for the networks which provide the theoretical bounds on approximation? We 
also investigated a few side issues related to these main problems. 

All the networks that we have developed for approximating functions from the Sobolev 
class share some important features. None of them use any nonlinear optimization. Thus, 
they are all free of all the pitfalls of such commonly used procedures as backpropagation, 
e.g. local minima. In fact, our networks define linear operators given by explicit formulas. 
In particular, their training is especially easy. 

In [1], we have proved that it is possible to arrange 0(na/r) neurons, each evaluating 
a univariate sigmoidal function of order k, where k > 2 is an integer, in sufficiently many 
hidden layers so that an arbitrary function in WrjS can be approximated within 1/n by the 
output of the resulting network. The networks in [1] also provided localized approximation 
in the following sense. The network can be implemented using only a fixed number of neu- 
rons, independent of the desired accuracy. If the value of the target function is desired at a 
point x, one trains this network by choosing the training data in a neighborhood of x, using 
the fast training algorithm described in [1]. The diameter of this neighborhood depends 
upon the desired accuracy, but it is not required to find the nearest neighbors, or to solve 
any other optimization problem. From a global perspective, the domain of approximation 
is divided into small subregions, with diameter depending upon the accuracy desired, and 
the network consists of subnetworks, each having a small size and each "responsible" for 
one subregion. If the function has to be modified in some subregion, then only the neurons 
responsible for this subregion need to be retrained using a very fast process. This aspect 
was discussed in detail in [3]. 

During our research, we became aware of the paper [24] of Girosi, Jones, and Poggio. 
They have introduced (in a somewhat restrictive form) the notion of generalized translation 
networks (GTN's) which can be described mathematically as follows. Let l<d<s,N>l 
be integers, and <f> : R° —» R. A generalized translation network with N neurons evaluates 
a function of the form £*=i ak4>(At(-) + bk) where the weights At's are d x s real matrices, 
the thresholds hk 6 R* and the coefficients ak £ R (1 < k < N). The set of all such 
functions (with a fixed N) will be denoted by U^N.B- When d = 1, 11^,* is the set of 
all outputs of a neural network with N neurons, each evaluating the activation function 4>, 
and receiving s inputs. When d = s, and ^ is a radially symmetric function, then II^Ar,, 
denotes the set of all outputs of a radial basis function network. In [24], Girosi, Jones, and 
Poggio have pointed out the importance of the study of the more general case considered 
here. They have demonstrated how generalized translation networks arise naturally in such 
applications as image processing and graphics, as solutions of certain extremal problems. 
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In the sequel, the symbol E^<r,3-n will denote the number N of neurons required to obtain 
the degree of approximation 1/n for all functions in Wri, by GTN's in 11*.//,,. 

In [7], we have studied the complexity problem for the generalized translation net- 
works. The focus of this work was to investigate what activation functions $ can give, 
what degree of accuracy - the intention being to compare different activation functions in 
terms of the number E^<r>s.n. Among the networks included in this study are the classical 
neural networks as well as classical radial basis function networks evaluating the Gaussian 
function, thin plate splines, generalized multiquadrics and other general functions. Our 
work is the first of its kind in the theory of radial basis function approximation - the degree 
of approximation is estimated in terms of the number of evaluations of the basis function 
rather than in terms of a scaling factor. The networks also provide a simultaneous ap- 
proximation of derivatives of the target function, thus solving a problem that occurs often 
in control theory (cf. [20, 23]). We have also studied the complexity problem in terms of 
the number of observations of the function, rather than in terms of the number of neurons 
involved. The paper [5] contains an announcement of some of these results. 

In [8], we have studied a special class of activation functions, satisfying certain smooth- 
ness conditions. We have constructed networks that give the optimal order of approxima- 
tion for Sobolev classes, i.e., for which E^tr,Sin < cn*/r. Some of the important exam- 
ples of the activation functions included among those in [8] are : the squashing function, 
(1 + c"r)-1, generalized multiquadrics, certain thin plate splines, and the Gaussian func- 
tion. The weights and thresholds in our networks are all uniformly bounded. The results 
and ideas in [8] have been applied to the problems of probability density estimation [30] 
and pattern recognition [18]. 

In [11], we prove that the coefficients of any network using an activation function 
smoother than the target function must satisfy certain lower bounds; in particular, must 
become unbounded as the desired accuracy of approximation increases. Our results can 
be interpreted as a test of the hypothesis about the smoothness of the unknown target 
function. 

Although the activation functions studied in [8] include the most commonly used 
radial basis functions, they are not of the pure translation form ]C°*$(IIX — xfc||), where 
no matrices are involved. In [9], we constructed Gaussian networks of the pure translation 
form which provide an optimal approximation for functions in the Sobolev class. The 
centers of this network may be chosen independently of the target function, and arbitrarily 
close to the origin. An additional novelty of this work is the construction of networks 
capable of providing approximation on the whole Euclidean space. The networks provide 
simultaneous approximation of the derivatives and also of the Fourier transform of the 
target function, using information about the function (in the space domain) alone. The 
proofs of the results in [9] are given in our book [16]. 

In [2], we consider the problem of localized approximation. We proved that even 
in the case of the Heavyside activation function, it is not possible to approximate the 
characteristic function of a two dimensional square by neural networks with one hidden 
layer consisting of a fixed number of neurons. Thus, the constructions similar to those 
in [1] cannot be made with networks with one hidden layer. On the positive side, we 
constructed the Chui-Wang spline wavelets (cf. [21]) using neural networks with multiple 
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hidden layers and using sigmoidal functions of order at least 2 as activation function. The 
number of neurons in the approximation of the mother wavelets are independent of the 
degree of approximation required. This research has motivated further work by Kurkova 
[26] regarding the nature of functions that can be approximated arbitrarily well by neural 
networks with a the number of neurons prescribed in advance. 

In [10], we strengthened our results of [2]. We proved that with the additional require- 
ment of localization, the number of neurons in a generalized translation network to provide 
the degree of approximation 1/n to all functions in Wr,3 must be at least cns,r log n. This 
is true even when each neuron may evaluate a different activation function, and even when 
the activation function may depend upon the target function. On the other hand, a neural 
network using the squashing function as the activation function is capable of giving the 
same order of approximation, with localization, using at most n3^r+s neurons, for any 
£>0. 

In [4], we have constructed generalized translation networks to provide dimension 
independent approximation order for the class of functions with summable Fourier coeffi- 
cients. This generalized the well known result of Barron[17], which was applicable only 
for sigmoidal activation functions. We also established tight lower bounds for the approx- 
imation order. One interesting aspect of this paper is that the conditions on the target 
function are local. In contrast, the conditions assumed by Barron are in terms of the 
Fourier transform, which amounts to an assumption on the behavior of the target function 
on the entire Euclidean space. In fact, we have proved some very general results. If the 
activation function is an (orthogonal) "mother wavelet", then our results give dimension 
independent bounds in the case when the wavelet coefficients of the target function are 
summable. 

In our work [13] with our student N. Hahm, we study the problem of system identifi- 
cation. As pointed out by Sandberg [28], this problem can be thought of as the problem 
of approximating a functional defined on a function space, typically some V space, rather 
than functions defined on a Euclidean space. We have constructed generalized translation 
networks to uniformly approximate a class of nonlinear, continuous functionals defined on 
Z*([-l, 1]*) for integer s>l, l<p<ooor C([-l, lja). We obtain lower bounds on the 
possible order of approximation for such functionals in terms of any approximation process 
depending continuously upon a given number of parameters. Our networks almost achieve 
this order of approximation in terms of the number of parameters (neurons) involved in the 
network. The training is simple and noniterative; in particular, we avoid any optimization 
such as that involved in the usual back-propagation. An announcement of these results 
appears in [14]. 

The paper [6] is an invited survey paper, reviewing some of our work until the time 
when it was written. 

In the joint work [12] with our undergraduate student, L. Khachikyan, we applied some 
of the ideas in [1] to the problem of constructing general algorithms for the prediction of 
time series. Superficially similar to the CART algorithm [19], our algorithm involves a 
very simple training method, based on adaptive approximation, that does not involve any 
optimization. For the flour data [29], our results are 30 to 40 times better than previously 
known results. 
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During the summer of 1996, we collaborated with Dr. H. Southall at the Hanscom Air 
Force Base on the problem of beam steering using phased array antennas. Some of our ideas 
were used to construct neural networks which do not utilize any nonlinear optimization. 
On all the data sets investigated by Dr. Southall's group using traditional method of 
training radial basis function networks, our new methods gave a dramatic improvement. 

3. Conclusions. We have conducted a thorough investigation of the complexity problem 
in the theory of neural networks; i.e., to determine the number of neurons required to 
give a prescribed degree of approximation to an unknown target function, which satisfies 
a minimal a priori assumption that it has a certain number of bounded derivatives. The 
problem was not studied before, and in general, very little was known at the beginning of 
our work. Our ideas have lead us to new paradigms for training neural networks. Instead 
of attempting to find the best fit for the data, we find a good fit. This is done so as to 
ensure a desired accuracy, and without using any nonlinear optimization. On the practical, 
diverse, and difficult problems of predicting an economic market, as well as beam steering 
using phased array antennas, our new paradigms provide a substantial improvement over 
previously known results. 
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