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1. INTRODUCTION 

The nondestructive, noncontact x-ray diffraction (XRD) residual stress analysis technique has found 

widespread application (Kula and Veiss 1982; ASM International 1991; Hauk, Hougardy, and Macherauch 

1991) and is generally accepted as being the most accurate of the experimental methodologies for residual 

stress determinatioa1 XRD residual stress measurement is based upon the fact that strain induced in a 

crystalline material as a consequence of mechanical deformation, phase transformation, thermal expansion, 

etc., causes a change in the spacing of the atomic planes within the crystal structure from that in the stress- 

free condition. This change in interatomic, or d-, spacing is evidenced as a shift in the diffracted x-ray 

peak position. By resolving the angular peak shift and applying the Bragg law ti\ = 2d sinG (the relation 

that describes XRD) to quantify the d-spacing, the stress on the surface of the specimen can be calculated 

via linear elastic theory. Assuming that plane stress conditions exist on the surface (i.e., a biaxial system), 

the relationship of interatomic strain to stress is given by: 

S¥ ■ [(l+Dj/Elo^si^v - I>/E(O1+O2), (1) 

where 

e     - K -d0)/do = strain in the direction defined by angles <|> and y (d0 is the interatomic 

spacing in the stress-free condition) 

E, \> = material elastic constants 

o = surface stress in the direction defined by angle <(> 
9 

y = angle between the surface normal and the normal to the crystallographic 

planes from which an x-ray peak is diffracted 

G   o = principal stresses on the surface. 

This equation is used to calculate the stress a^ in any direction on the surface of the specimen. 

1 For further information in this area, see Advances in X-Rav Analysis, published by the Proc. Annual Conf. on Applicaton of 

X-Ray Analysis, New York:  Plenum Press, vol. 2-39, 1958-1995. 
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Residual stress determined from diffracted x-ray peaks represents strain averaged over a finite 

measurement volume comprised of the surface area irradiated by the x-ray beam and the depth to which 

it penetrates (typically, only a few tens of microns). When mechanical deformation processes such as 

grinding and shot peening produce uniform and continuous plastic strain in the materials surface layers 

different from that in the bulk, the resultant residual stress is referred to as a macro-stress. Plastic 

deformation nonuniformly distributed from grain to grain in a single-phase material, or between matrix 

and precipitates (with dissimilar yield points) in a multiphase system, causes microresidual stresses to 

form. Macrostress is detected by a shift in x-ray peak position; microstress is observed through peak 

broadening and can be described relatively by full-width half-maximum values. The residual stress 

magnitudes reported herein were generated by the measurement of macrostrain at the as-processed surface, 

except for the armor steel thru-thickness data, which were obtained from characterization of subsurface 

layers after electrolytic material removal. 

ARL-MD has an advanced XRD-based instrument capable of rapid, precise residual stress 

measurements on polycrystalline metals and ceramics. The Technology for Energy Corporation Model 

1610 X-Ray Stress Analysis System features a low power x-ray source (100 w, maximum) and a fixed 

location linear position-sensitive proportional counter (PSPC) and employs the sin2y stress-measuring 

technique. The PSPC is a sealed gas detector with a 50-mm-long (2 in) carbon-coated quartz fiber wire 

anode for peak position encoding. At a diffractometer radius (specimen-to-detector distance) of 208.7 mm 

(8.2 in), the PSPC subtends approximately 12° of the instrument's diffraction angle 29 range of 122° to 

166°. Diffraction peaks in the high-back reflection region (28 values approaching 180°) are much 

preferred because they show the greatest angular shift sensitivity with a given amount of stress. The 

Model 1610 allows for the utilization of up to 10 y angles per stress measurement. 

The süry technique requires a series of peak position measurements for a particular set of hkl planes 

be made at different tilts (y angles) of the crystallographic plane normal referenced to the normal of the 

specimen surface. The angular position of the diffracted peak is determined by least-squares parabolic 

curve fitting and is used to calculate d-spacing from the Bragg relation. A plot is then constructed of 

d-spacing vs. sin2y, and the slope of a least-squares line fitted to the experimental data multiplied by the 

x-ray elastic constant (E/(l + x>) is proportional to the stress on the plane of the surface. The slope is 

found by differentiating Equation 1 with respect to sin2\|/: 



slope = [a (d<|>\|f - doj/doj / [d sin^J- <2> 

A linear d-spacing vs. sin2y plot indicates that the strain distribution is homogeneous within the 

irradiated volume and that the assumption of a biaxial stress state is valid. Sin-square-psi plots that split 

into two branches (^-splitting) or exhibit curvature reveal a three-dimensional stress field containing 

pseudo-macro components of stress (average microstress within a sampled volume of grains). Additional 

information on the iheory of XRD and the principles of XRD residual stress measurement is available 

from Klug and Alexander (1974), Cullity (1978), Hilley (1971), and Noyan and Cohen (1987). 

2. EXPERIMENTAL PROCEDURES 

All residual stress data were collected via a divergent beam, four-positive y angle arrangement. Other 

pertinent material-Zprocess-dependent acquisition and calculation parameters are listed in Table 1. The 

characteristic radiation(s) and lattice planes selected for these investigations are typical for high-back 

reflection region residual stress characterization. The x-ray elastic constants used in calculating residual 

stress are bulk values taken from handbooks or literature. Bulk constants represent average elastic 

properties for all crystallographic directions and may be different from those experimentally determined 

for a particular set of planes. A brief description of each material system and the XRD residual stress 

analysis objective follows. 

2.1 AISI1S-5PH Stainless Steel Tail Rotor Yoke. Taken from a crashed Army attack helicopter and 

exhibiting no physical damage, this component was analyzed for resolving the effects of in-service loading 

on the magnitude and uniformity of surface residual stresses introduced from shot peening. The tail rotor 

yoke was sent to the U.S. Army Research Laboratory - Materials Directorate (ARL-MD) from the Corpus 

Christi Army Depot (CCAD), Corpus Christi, TX. CCAD personnel prepared the yoke for residual stress 

characterization by plastic bead shot blasting the painted surface to remove the acrylic lacquer and 

polyamide epoxy primer, then stripping the cadmium plating with ammonium nitrate to expose the 

martensitic-structured base metal. Measurements were performed in the longitudinal and transverse 

directions at six locations: four on the nameplate face and two on the opposite face. Figure 1 is a 

photograph of the tail rotor yoke showing the nameplate face stress measurement locations. 



Table 1. Residual Stress Acquisition and Calculation Parameters 

AISI 15-5PH 
Stainless 

Steel 

MIL-A-46100C 
High Hardness 
Armor Steel 

AISI 4340 
Gun Tube 

Steel 

99.5% 
Alumina 
Ceramic 

Characteristic Radiation CrKaj CrKa, CrKaj CrKat, CuKcCj 
Lattice Planes (211) (211) (211) (1 0 10), (146) 

Diffraction Angle 156.1° 156.1° 156.1° 135.0°, 136.2° 

Irradiated Area 1 mm x 5 mm 1 mm x 5 mm 2 mm dia. 1.5 mm x 5 mm 

Elastic Constant 180 GPa 169 GPa 154 GPa 246 GPa, 289 GPa 

n&xe 1-  Army attack helicopter tau rotor yoke with nameplate face stress measurement locations 1 
through 4. Locations 5 and 6 are on the opposite face. 

2-2 MIL-A-46100C Armor Steel Plate. Residual stresses in light gauge, high hardness (477-534 

BHN), high strength (1.36-1.44 GPa [197-207 ksi] 0.2% YS, 1.68-1.83 GPa [244-266 ksi] UTS) armor 

steel from quenching and tempering, cutting, grinding, and welding have been characterized for 

comparison to processing parameters as part of an ARL-MD exploratory development program. Surface 

measurements were made on as-produced quenched and tempered plate specimens for establishing baseline 

residual stress processing data. The measurements concentrated on the stress profiles generated at and near 

the free-cut edges from underwater plasma arc cutting and edge grinding operations. Magnetic particle 

inspection was used to confirm that the cutting and grinding did not create edge discontinuities.  Plate 



weldments were then fabricated per MIL-STD-1941 for the purpose of producing residual stress 

magnitudes and distributions on a laboratory specimen similar to those found on welded structures. 

Incremental subsurface residual stress analysis quantifying interior stress levels was performed on the as- 

produced plates and the experimental weldment after electropolishing with a 50-25-25 volumetric solution 

of phosphoric acid, sulfuric acid, and water. 

2.3 AISI 4340 Steel Gun Tube Disk. Benet Laboratories, Watervliet, NY, requested ARL-MD 

measure autofrettage-produced residual stresses in a 25-mm (1.0 in)-thick disk specimen sectioned from 

a 120-mm gun tube for comparison to theoretical stress distribution models. In autofrettage processing, 

a hollow cylinder is deformed into the plastic region by applying internal pressure, causing permanent bore 

expansion. The resulting beneficial residual stresses increase the elastic strength of the cylinder and retard 

fatigue crack growth at the bore. Hoop direction measurements were made on the electropolished breech 

face every 2.5 mm (0.1 in) along a thru-wall I.D. to O.D. traverse. 

2.4 Alumina Ceramic Block Specimens. The mechanical properties and overall performance of 

structural ceramic materials can be influenced by the magnitude, distribution, and depth of residual stresses 

effected by surface finishing operations. With the objective of using residual stress data as a method for 

evaluating and optimizing the grinding process, the Department of Industrial Engineering, Lehigh 

University, Bethlehem, PA, submitted 16 differently ground dual-channel 99.5% alumina ceramic block 

specimens to ARL-MD for residual stress testing services. Table 2 outlines the grinding parameters 

utilized for preparing the specimens. Longitudinal, or grinding direction, surface residual stresses were 

characterized with chromium and copper x-radiations at the center of an arbitrarily chosen channel on the 

nominal 102-mm x 25-mm x 19-mm (4.0 in x 1.0 in x 0.75 in) block specimens. 

3. RESULTS AND DISCUSSION 

3.1 AISI 15-5PH Stainless Steel Tail Rotor Yoke. The results of surface residual stress measurements 

in terms of location and stress-measuring direction are listed in Table 3. The data indicate that this 

component may have been subjected to an unusual service overload condition as was proposed as a 

possible explanation for cause of failure of another tail rotor yoke (Corpus Christi Army Depot 1987). 

Though unlikely, it is not known if the plastic media shot blast used to remove the paint caused any 

surface deformation. Additionally, the yoke may have been deformed at the time the aircraft crashed. 

For these reasons, the true shot peen-induced stress may not have been singularly characterized. However, 



Table 2. Grinding Parameters for 99.5% Alumina Ceramic Block Specimens 

Specimen Wheel Bond Mesh Size 
Grit 

Concentration 
Wheel 
Feed 
(m/s) 

Cut 
Depth 
(mm) 

1 Resin 80 50 2.9 1.5 

2 Resin 80 50 6.9 2.6 

3 Resin 80 100 2.9 2.6 

4 Resin 80 100 6.9 1.5 

5 Resin 180 50 2.9 2.6 

6 Resin 180 50 6.9 1.5 

7 Resin 180 100 2.9 1.5 

8 Resin 180 100 6.9 2.6 

9 Vitrified 80 50 2.9 2.6 

A Vitrified 80 50 6.9 1.5 

B Vitrified 80 100 2.9 1.5 

C Vitrified 80 100 6.9 2.6 

D Vitrified 180 50 2.9 1.5 

E Vitrified 180 50 6.9 2.6 

F Vitrified 180 100 2.9 2.6 

G Vitrified 180 100 6.9 1.5 

NOTE:  Grinding wheel specifications:  Diamond, 178 mm diameter, 6.34 mm width, 2,400 rpm rotational 
speed, down cut, 22.3 m/s peripheral velocity. 

two observations are noteworthy. First, the residual stresses measured at locations 1,2, and 5, the reduced 

area where the failed rotor yoke fractured, are significantly lower in magnitude, especially in the 

longitudinal direction (major length of yoke), than those measured at other locations. The second 

observation is the uniformity of the measured stresses in both the longitudinal and transverse directions 

at locations 3,4, and 6 (remote to the reduced areas). These values average -707 MPa (-102.6 ksi) and 

are in good agreement with other reported shot peening stresses (Wohlfahrt 1982). 



Table 3. Residual Stress Measurement Results From Shot-Peened 
Army Attack Helicopter Tail Rotor Yoke 

Location 

Residual Stress 

Longitudinal Direction 
(MPa [ksi]) 

Transverse Direction 
(MPa [ksi]) 

1 -223 (-32.4) -477 (-64.8) 

2 -298 M3.2) -445 (-64.5) 

3 -788 (-112.9) -694 (-100.6) 

4 -674 (-97.8) -761 (-110.4) 

5 -168 (-24.3) -444 (-64.4) 

6 -622 (-90.2) -714 (-103.5) 

NOTE:  Negative sign indicates compressive stress. 

3.2 MIL-A-46100C Armor Steel Plate. The residual stress data from an as-produced (spray-water 

roller quenched, tempered at 400° F/-50 min) armor plate are presented in Figure 2. Compressive stresses 

were measured at all surface locations along a traverse starting at the plasma cut and ground edge. 

However, at and near the edge, the stresses were less compressive in magnitude than those remote to the 

edge, indicating that the cutting and grinding processes altered the as-produced residual stress state. 

Subsurface residual stress profiles were compressive to a depth of roughly 0.25 mm (0.010 in), then 

became tensive and remained so for the balance of the 0.58-mm (0.023 in)-deep thru-thickness 

characterization. Microstructural examination of the as-produced plates had revealed the existence of an 

approximately 0.13-mm (0.005 in)-thick decarburized surface layer. Consistent with reported effects of 

decarburization (Hilley 1971), the measured residual compressive stresses decreased toward the surface. 

Figure 3 displays residual stresses measured in the transverse direction (perpendicular to the weld line) 

at the surface of the butt-welded plate specimen along with those measured at the same locations prior to 

welding. The distance offset in the start of the "after welding" trace is equal to half the width of the weld 

bead. Examination of Figure 3 reveals a steep stress gradient in the heat-affected zone (HAZ) with the 

residual welding stress values and distribution in general agreement with predicted restrained butt-weld 

stress data (Masubuchi 1980). Results from subsurface measurements parallel to the weld show tensive 

stresses in the HAZ approaching 50% of yield strength at 0.13 mm (0.005 in) below the surface. At the 

0.46 mm (0.018 in) depth, the stress magnitudes increase to 70% of yield. 
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Figure 2. Surface and thru-thickness residual stress on as-produced high hardness armor steel plate. 
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Figure 3. As-produced and after welding surface residual stress on high hardness armor steel plate. 



3.3 AISI 4340 Steel Gun Tube Disk. Figure 4 shows the graph of percent deviation between gun 

tube disk predicted (from a two-dimensional, nonlinear elastic-plastic finite element analysis model) and 

measured residual hoop stresses. Between the 0.14-in and 0.94-in traverse locations, the agreement is 

excellent—within 4.65%. From 1.04 in to 2.04 in, it is noticed that a slightly increasing percent deviation 

was obtained indicating a possible relief of residual stress upon cutting the disk from the gun tube. The 

larger excursions, such as at the 1.04-in, 1.64-in, and 2.14-in locations, could be attributed to surface 

preparation irregularities. Whereas, at the I.D. and O.D. (0.04-in and 2.24-in locations, respectively), the 

deviations may be due to the "rounding off' of the free edges during electropolishing causing an error in 

true \|f-position. 

0.5 1 1.5 2 

.D. To O.D. Traverse Distance, inches 

2.5 

Figure 4. Percent deviation between gun tube disk predicted and measured residual stress. 

3.4 Alumina Ceramic Block Specimens. Table 4 lists grinding direction residual stress measurement 

results. Employing both chromium and copper x-radiations for this study allowed for the determination 

of residual stress at two surface layer depths. The copper radiation penetrated approximately three times 

deeper due to the threefold difference in the linear absorption coefficient of the alumina for these 

radiations (per = 794 vs. p^ = 264). Lange, James, and Green (1983) have reported the depths of 

penetration in hot-pressed alumina (1,500° C/2 hr) for 50% diffracted intensity from chromium and copper 



Table 4. Grinding Direction Residual Stress Measurement Results 
From 99.5% Alumina Ceramic Block Specimens 

Specimen 

Residual Stress 

CrKa Radiation 
(MPa [ksi]) 

CuKa Radiation 
(MPa [ksi]) 

1 -104 (-15.1) 231 (33.5) 

2 -253 (-36.7) 187 (27.1) 

3 -120 (-17.4) 292 (42.3) 

4 -223 (-32.3) 276 (40.1) 

5 -70 (-10.1) 261 (37.8) 

6 -131 (-19.0) 234 (33.9) 

7 -165 (-24.0) 230 (33.4) 

8 -94 (-13.7) 214 (31.0) 

9 -86 (-12.5) 216 (31.3) 

A -181 (-26.3) 214 (31.1) 

B -191 (-27.7) 260 (37.7) 

C -242 (-35.1) 248 (36.0) 

D -114 (-16.5) 226 (32.8) 

E -109 (-15.8) 237 (34.4) 

F -85 (-12.3) 247 (53.8) 

G -36 (-5.2) 263 (38.2) 

NOTE:  Negative sign indicates compressive stress. 

radiations as 8 urn and 26 um, respectively. The variation in the chromium radiation residual stress data, 

which ranges from -36 MPa to -253 MPa (-5.2 ksi to -36.7 ksi) and averages -138 MPA ±64 MPa 

(-20.0 ksi ±9.3 ksi), suggests that the magnitude of the compressive stress may be a function of the 

grinding conditioa This is not apparent from the copper radiation results as a relatively uniform tensive 

stress, averaging 240 MPa ±27 MPa (34.8 ksi ±3.9 ksi), was measured on all specimens. The crossover 

from compressive to tensive residual stress occurs at a depth of approximately 5-10 um, indicating that 

the grinding-induced plastic deformation exists in a shallow surface layer. 
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4.  SUMMARY 

The x-ray diffraction residual stress analysis applications presented herein demonstrate the usefulness 

and versatility of this technique for characterizing process-induced residual stress in U.S. Army and other 

material systems. 
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