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Summary of accomplishments 

The goals of the research carried out under the AASERT Proposal were as follows: 

(a) Generate from a simple set of rules data that are very close to the real turbulent 
data. These data could be used as initial conditions for direct numerical simulations. It 
was thought that the use of these data would enable faster convergence to the final state 
of turbulence than would be possible by starting with, say, a Gaussian random field as the 
initial data. 

(b) Generate new subgrid models which faithfully account for the intermittency of the 
small scale. 

As reported in previous progress reports, (a) and (b) were accomplished relatively quickly 
for homogeneous and Isotropie turbulence. The basic ideas and their implementation in 
one dimension has been published [1]. The three-dimensional version of the model was 
used successfully to generate initial conditions for a simulation of turbulence in a periodic 
box. This part of the work is described in the Ph.D. thesis of Anurag Juneja ("Scaling 
laws in turbulence: their manifestation and utility", May 1995). This part of the work has 
not yet been published. In summary, the goals of the proposal can be said to have been 
met satisfactorily. 

Even as the work just mentioned was getting under way, it was realized that a more 
interesting and useful task would be to extend the method to shear flows, especially wall- 
bounded flows such as boundary layers. A new scheme was devised to this end. The basic 
hypothesis underlying the scheme was verified experimentally. However, the method was 
not implemented and tested because the grant came to a natural close. This part of the 
work is being prepared for publication. 

The publication and the thesis have been sent to AFOSR as part of previous progress 
reports, and the forthcoming publications will also be sent when ready. 



Some details 

Homogeneous turbulence 

The basis of the work is the reasonably well-understood fact that the inertial and 

dissipative ranges of scales of turbulent motion at high Reynolds numbers are 

independent of the flow configuration—at least to a degree that is usefully accurate. It 

then follows that these scales of motion depend only on a few gross parameters. An 

important question, then, is: What is the smallest set of parameters which adequately 

incorporate all the universal aspects of turbulent motion—at least to some reasonable 

accuracy? One can construct, with relatively modest physical input, stochastic signals that 

have most properties of a turbulence velocity trace at high Reynolds numbers. For 

convenience, artificial signals mimicking real turbulence well were designated as 

synthetic turbulence. 

One of the relevant observations in this regard is that the longitudinal velocity increments 

in the inertial range of scales share some of the properties of fractional Brownian motion 

with a Hurst exponent of about 0.35 [2]. However, this is only partially true because the 

increments of fractional Brownian motion are symmetrically distributed whereas the 

turbulent velocity increments have a finite skewness. Several other methods can produce 

signals possessing some properties of turbulence but fall short in other ways. A particular 

shortcoming of these models is that they do not successfully incorporate the skewness of 

the velocity derivative and odd-order structure functions. Indeed, the finite skewness of 

longitudinal velocity increments (or differences) is an important property related to the 

energy transfer across scales [3], and its incorporation into a simple scheme is a major 

challenge. Another important consideration is the incorporation of intermittency of the 

dissipation field. 

In the present work, we have outlined a family of schemes for generating turbulence-like 

signals that mimic real turbulence; in the more refined of these schemes, the signals 

generated do not differ significantly from real turbulence in the sense of one-point and 

two-point statistics. All schemes consist of three essential ingredients. First, an 

appropriate multiplicative procedure is utilized for generating intermittent positive 

definite signals (or measures) possessing many of the properties of turbulent energy 

dissipation, e [4]. The properties of the measure living in a box of size r are then related 



to those of velocity increments Au(r) over a separation distance r. This is done via a 

stochastic variable V introduced in the spirit of Kolmogorov's refined similarity 

hypothesis [5]. The third and final step consists of constructing synthetic turbulent 

velocity signals by suitably combining the velocity increments. This step partially 

resembles the so-called mid-point displacement method [6] used for generating fractional 

Brownian motion. 

For the three-dimensional extension of the method, the simplest scheme consists of 

generating three independent one-dimensional fields and enforcing the divergence-free 

condition on the total vector field. This straightforward procedure was found to be rather 

expensive computationally, and so some simplified procedures were invented. The 

cheapest of them involved only an approximate satisfaction of the periodic boundary 

conditions. Further work showed that the direct numerical simulations employing these 

synthetic data yielded better convergence than those with random initial conditions, as 

measured in terms of the decay of total vorticity and the derivative skewness and flatness. 

The DNS scheme was devised by G. Erlebacher of ICASE and the simulations were 

performed on a 643 and 963 boxes. Further details can be found in Juneja's thesis which 

was included as part of a previous progress report. 

Wall-bounded flows 

The basic idea, just as in homogeneous turbulence, was to generate space-time velocity 

data in wall-bounded flows, such as pipe and channel flows as well as boundary layers. It 

seemed that the scheme would have the best chances of success if restricted to the so- 

called logarithmic region. In that region, it was hypothesized that one can relate, by 

means of a universal stochastic variable W, the dynamics of all velocity fluctuations in 

the constant-pressure boundary layer to that of a single dynamic variable, such as the 

(kinematic) wall shear stress, xw: The average wall stress not only serves as the scale for 

average quantities such as mean velocity and the mean-square velocity fluctuation, but 

the instantaneous wall stress determines the properties of the instantaneous velocity 

fluctuation u in the flow, through the universal variable W which is independent of the 

distance from the wall (for y+ > 30, say), the wall stress and the Reynolds number (as 

long as it is sufficiently high). This hypothesis, denoted here as the "strong similarity" 

hypothesis, can be stated as follows: 

"In the overlap region of the boundary layer (also pipe flows, channel flows, and other 



attached wall-bounded flows) one can define a stochastic variable Wsuch that 

u=W xj/2. w 

The variable W is independent of the bulk Reynolds number of the flow (as long as it is 
sufficiently high) and of TW, but depends on the height y from the wall. When yxw

1/2/v » 

1, the stochastic variable Wbecomes independent also of y, and is thus universal." 

The work so far suggests that W is independent of the wall-normal distance to a good 
approximation. This is shown by Figure 1, which is the probability density of W at five 
different wall-normal positions at a Reynolds number of about 230,000 in a pipe flow. 
Note that the variable Wis a dimensionless quantity and is not normalized by its standard 
deviation or referenced to anything else. The probability density is plotted in logarithmic 
coordinates to emphasize its tails. This figure encourages the belief that there is an 
extraordinary simplification in log-layer dynamics, and that, if one can provide a simple 
dynamical model for the wall shear stress, we can describe by means of that model and 
the variable W, the entire log-layer dynamics—at least to an accuracy that is suitable for 

most practical purposes. 

We made similar measurements in the boundary layer at moderate Reynolds numbers. 
Figure 2 shows that W is essentially independent of the wall-normal position (at least in 
the narrow range of Reynolds number explored). For this flow as well, the function W 
was found to be independent of the wall-normal distance as expected (this will be seen in 

the next figure). 

As stated earlier, the expectation was that the stochastic function W would be 
independent not only of the wall-normal distance but also of the flow (pipes, channels, 
wall jets and boundary layers). That is, the probability density of W would be universal. 
Comparison between boundary layers and the pipe flows shows that there is some 
difference. However, when normalized by the standard deviation of W, the pipe flow data 
at all the wall-normal positions and the boundary layer data at different heights from the 

wall collapse quite well. This is shown in Figure 3. Thus, it appears that a large part of 
the hypothesis is verified, but more work is needed to assess further details of the model 

and implement it for practical purposes. 
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Figure captions 

Figure 1. The logarithm of the probability density of the variable W measured for five 

different heights in the log-region of a turbulent pipe flow at a Reynolds number of 

230,000. Symbols correspond to y/R = 0.033, 0.067, 0.10. 0.133 and 0.167, 7? being the 

pipe radius. 

Figure 2. The logarithm of the probability density function of the variable W at a height 

of 3 mm in boundary layers at momentum thickness Reynolds numbers of 2147, 2666, 

3900 and 4416. The 3 mm height lies within the log-region of all the boundary layers. 

Figure 3. Comparison between pipe flows and boundary layers. The boundary layer 

positions are 0.0568, 0.0838, 0.1398, where.8 is the boundary layer thickness; the pipe 

positions are 0.0337?, 0.0677? and 0.17?. When normalized by the standard deviation of W, 

all the plots collapse satisfactorily. 
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