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ONR Progress Report '96: Sheath Waves 

Summary of current and future research 

Our 2d3v simulations have added to the detailed understanding of sheath 

waves in metal bounded plasmas. We define sheath waves as surface waves 

which propagate along a plasma/sheath interface. Sheath wave modes anal- 

ogous to Gould-Trivelpiece waves (which exist in dielectric bounded cylindri- 

cal plasmas) have been measured in electrostatic PIC simulation of a metal 

bound plasma slab. Thermal excitation (linear regime) of these normal modes 

has been sufficient to measure both real and imaginary components of the 

sheath wave dispersion relations, cu(ky) where the waves propagate along the 

y-axis and the x-axis is perpendicular to the plasma slab. A time averaged 

power spectral density of the signal <f)(x, ky, t) in w-space was used to measure 

this dispersion. By computing the PSD at varying x positions, the eigenfunc- 

tions of the perturbed wave potential were measured. 

Additional sheath wave modes, whose ky = 0 cutoffs represent Tonks- 

Dattner resonances of a plasma slab, have also been measured. The ex- 

perimental measurement of the spatial eigenfunctions of these modes (Fig. 1) 

suggests good qualitative agreement with the prior theoretical work of Parker, 

Nickel and Gould[l] who predicted that Tonks-Dattner resonances resulted 

from the trapping of a longitudinal plasma wave between a bounding wall 

and an internal turning point. 



This detailed study of the linear behavior of sheath waves in a plasma 

sustained by external means (typically uniform ionization) has been followed 

by an investigation of sheath wave sustained plasmas. Early work has been. 

limited to ld3v simulation in which the sheath wave is driven at its cutoff 

frequency to resonantly sustain the plasma discharge. This cutoff is known as 

the series resonance since its frequency u(ky = 0) represents the point at 

which the series capacitance of the sheath regions and the plasma regions can- 

cel. Resonantly sustained discharges have been observed at varying plasma 

and neutral species densities (Fig. 2). Scaling laws predicted by Godyak[2] 

have been demonstrated in our simulation. Also, for sufficiently low neutral 

species densities, as in conventional (low frequency urf <C wpe) capacitively 

coupled discharges, a large deviation from a single Maxwellian distribution 

of electron energies is observed. 

There are several additional step to be taken, as follows. 

•Observation of electron heating exhibits large spatial oscillation near the 

plasma/sheath boundary indicating the likelihood of different heating mecha- 

nisms than observed in non-resonant discharges. These observations (Fig. 3) 

serve as a motivation to further study the mechanism by which these reso- 

nantly sustained discharges are heated. 

Large area discharges may be sustained via the excitation of a standing 

sheath wave. Such a device may be of particular applicability to materials 

processing where large area, uniform plasmas are desired. This possibility has 

served as a motivation for developing a doubly bounded, electromagnetic PIC 



code with which preliminary simulations have proven that standing sheath 

waves can in fact sustain a discharge. Further investigation is needed to char- 

acterize the plasma dependencies along the parallel direction., e.g. density 

profiles, uniformity of energy deposition. 

There are also some more speculative ideas to be considered, such as the 

application of microwave sheath waves to enhance plasma uniformity in tra- 

ditional capacitively and inductively coupled discharges. 
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Figure 1:   Electron density perturbation of the asymmetric main resonance (top) and the 

first Tonks-Dattner resonance (bottom). The mid-plane of the plasma slab is at x = 0.01m. 
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Figure 2: Normalized density profiles for series resonance sustained discharges. Peak densi- 

ties range from 109/cm3 (case A) to 1011 /cm3 (case G). 
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Figure 3: Electron heating profile (top) for discharges of various peak densities, 109/cm3 

(case A) to 1011/cm3 (case G). Electron energy probability functions for these experiments 

(bottom). 


