
Naval Research Laboratory 
Washington, DC 20375-5320 

NRL/FR/7144--96-9799 

Systematic Splitting of Wavefields 
into Unidirectional Modes: 
Long-Range Asymptotic Methods 
for Weakly Uniform Media 

ROBERT F. GRAGG 

Acoustics Systems Branch 
Acoustics Division 

August 8, 1996 

19961105 109 
DTIC QUALITY INSPECTED 3 

Approved for public release; distribution unlimited. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project 10704-01881, Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

August 8, 1996 

3. REPORT TYPE AND DATES COVERED 

4. TITLE AND SUBTITLE 

Systematic Splitting of Wavefields into Unidirectional Modes: 
Long-Range Asymptotic Methods for Weakly Nonuniform Media 

5. FUNDING NUMBERS 

PE - 62435N 
PR-UW-35203 

6. AUTHOR(S) 

Robert F. Gragg 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Research Laboratory 
Washington, DC 20375-5320 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

NRL/FR/7144-96-9799 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Office of Naval Research 
Arlington, VA 22217-5000 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT {Maximum 200 words) 

A series of pseudo-unitary transforms is devised and applied to the Heimholte equation for a weakly nonuniform one- 
dimensional medium, decoupling the wave field in a consistent order-by-order way into counter-propagating modes. The result 
is a generalized form of d'Alembert decomposition, providing an asymptotic solution without backscatter at arbitrary order. 
Low-order contributions correspond to the standard WKB approximation. Higher orders provide additional terms of potential 
importance in applications involving propagation over long ranges, e.g., long time-of-flight measurement and very-long-baseline 
interferometry. Evidence is presented that this decoupling scheme is equivalent to high-order Born approximations. 

14. SUBJECT TERMS 

Asymptotics                                                      Mode splitting 
Wave motion                                                    WKB 

15. NUMBER OF PAGES 

45 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std 239-18 

298-102 



CONTENTS 

1. INTRODUCTION  1 

2. BACKGROUND  1 

3. INITIAL REFORMULATION     6 

4. STATE-SPACE TRANSFORMS  11 

5. BREMMER REPRESENTATION  14 

6. HIGHER-ORDER REPRESENTATIONS  19 

7. EXPANSION IN 6 DERIVATIVES     22 

8. EXAMPLE  26 

9. DISCUSSION  29 

REFERENCES  30 

APPENDIX A - Pauli Operators  31 

APPENDIX B - Relation to the Born Series  34 

in 



SYSTEMATIC SPLITTING OF WAVEFIELDS INTO UNIDIRECTIONAL 
MODES: LONG-RANGE ASYMPTOTIC METHODS FOR WEAKLY 

NONUNIFORM MEDIA 

1. INTRODUCTION 

This work aims to produce a unified understanding of the three analytic approximations — 
WKB, parabolic, and Born — that are most widely cited to justify approximating wave propagation 
through media with only "weak" nonuniformities as a purely one-way phenomenon. The particular 
focus is on backscatter — how to neglect it in a consistent way, and what impact this neglect 
has on the remaining forward-propagating component. To limit the complexity of the problem 
and yet retain most of the essential features, attention is restricted to waves in a single spatial 
dimension. The subject is introduced in section 2 in the context of the prototypical example — 
vibrations of a nonuniform string. This section explores the difficulties inherent in any attempt to 
generalize forward/backward mode splitting beyond uniform media, where it is a trivial matter, to 
nonuniform media, where it can generally be done only approximately. In section 3, the initial- 
value problem for the Helmholtz equation is first recast in first-order form and then transformed 
by a rotation into the "d'Alembert" representation where questions of mode coupling are more 
naturally addressed. Section 4 discusses the effect of such state-space transforms on the equation 
of motion — especially the class of "pseudo-unitary" rotations that strictly conserve the wave 
energy. A pseudo-unitary rotation is used in section 5 to go to the "Bremmer" representation, 
where it is evident what will be required to decouple the counter-propagating wave modes to 
first order. Section 6 introduces a scheme of successive pseudo-unitary Pauli-space rotations that 
reveals the conditions for decoupling the modes to any desired order, giving operational meaning 
to the phrase "weakly nonuniform medium". In section 7, this weak nonuniformity is invoked, and 
the resulting asymptotic approximations are obtained for the long-range wave field through order 
m = 6. The phase in this expression is seen to agree with the WKB result through order m = 3, 
with differences appearing at m = 4. Endpoint amplitude effects are also discussed, and it is shown 
that these begin to differ from the WKB approximation at third order. Finally, section 8 presents 
an illustrative example involving a specific environment. Beginning with section 3, Pauli matrices 
are used to facilitate the analysis. Appendix A reviews their properties — particularly the fact 
that, when used as the infinitesimal generators of state-space transforms, the Pauli matrices just 
induce rotations. The relation of this work to the Born series approach is discussed in Appendix B. 

2. BACKGROUND 

This section sets the scene. The Helmholtz equation for continuous wave (cw) motion and its 
ancillary relations for energy density and power flux are obtained for one-dimensional nonuniform 
media, and the basic requirement for approximate mode splitting is identified. 

Manuscript approved November 14, 1995. 
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Consider the transverse motion of a string stretched along the x coordinate under tension r. 
Suppose the string has a density p(x) and consider its displacement w(x,t) in the transverse y 
direction. Within the linear-response regime, w will obey the familiar linear wave equation. If the 
x dependence of p is only a gradual one relative to the wavelengths involved, the solution to be 
expected on physical grounds should consist of a pair of waveforms that travel in opposite directions 
along the string, changing only gradually with x and only weakly coupled to one another. 

Uniform Medium 

If r and p are just constants, the displacement obeys a simple form of the wave equation 

pdfw - rd2
xw = 0 , (1) 

where the phase speed c = y/rfp is constant.   (See various elementary books, e.g. Ref. 1.)   The 
shorthand notation dqr = dr/dq, dqr = dr/dq is used for derivatives throughout this work. 

The kinetic energy is an inherently local quantity (because the mass is) with a density 
Kw = (p/2)(dtw)2. The potential energy can also be regarded as localized, with a density 
Vw = (T/2)(8XW)

2
. The total energy density for the wave motion is just their sum, 

Ew = ^{dtw)2 + T-{dxwf . (2a) 

The power flux, also known as energy current density, is 

Pw = -T(dxw)(dtw) . (2b) 

Since the medium is passive and lossless, wave energy is conserved, 

dxPw + 8tEw = (dtw)(pd2w - rd2w) = 0 . (3) 

Consider the distribution of energy in a wave field that is a superposition of two others: w = 
a+ß. Since the total wave energy is conserved, one might naively expect that PQ+ß and EQ+ß would 
simply reduce to Pa + Pß and EQ + Eß, but this cannot be true in general; linear superposition does 
not apply to energy quantities because they are quadratic in the wave field. Thus, the differences 

EQ,ß d=f EQ+ß - (Ea + Eß) = p(dta)(dtß) + T(dxa)(dxß) (4a) 

Paß =f Pa+ß ~ (Pa + Pß) = -r(dxa)(dtß) - T(dxß)(dta) (4b) 

do not vanish identically.  However, there is one important case where this energy superposition 
does hold. When d'Alembert's decomposition into left/right-going waveforms is used, i.e., 

w(x,t) = a(0 + ß{r}), (5) 

where £ = x — ct and 77 = x + ct, then 

EQ = r(d^a)2 > 0      PQ = +cEa > 0 
Eß = T{dnß)2 > 0      Pß = -cEß < 0 (6) 

EQ+ß = EQ + Eß>0   Pa+ß = PQ + Pß 
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so that both Eaß and Paß vanish. 

It is also well known [1] that w satisfies Eq. (1) if and only if d'Alembert's decomposition 
holds, i.e., that this decomposition provides the general solution for the wave equation in a uniform 
medium. Any wave field in such a medium is simply a pair of counter-propagating waveforms, 
the d'Alembert modes, and these partition the total energy. Energy superposition applies, and 
each mode separately transports its share of the total. These modes move at constant speed, 
propagate without distortion, and partition the energy exactly. Because there is no environmental 
inhomogeneity to couple the modes, there can be no backscatter. If the field is initialized with only 
one of these modes excited, the other one can never arise anywhere. The aim of this work is to 
extend this result in a controlled, approximate way to media with weak inhomogeneities, providing 
a generalized form of d'Alembert decomposition. 

Nonuniform Media 

The energy expressions in Eq. (2) remain valid even when T and p are not simply constants. 
The Lagrangian density L{w,dxw,dtw) = Kw — Vw is still governed by the appropriate Lagrange 
equation 

d 
dt 

[   dL   1 
[d(dtw)\ 

d 
dx 

[   dL   1 
d{dxw). 

- — -0 
dw (7) 

i.e., 

dt (pdtw) + dx (-Tdxw) = 0 (8) 

With p = p(x) and even r = r(t), this would reduce to Eq. (1) again. A time-dependent tension, 
however, would introduce a source term on the right-hand side of Eq. (3), so we will confine ourselves 
to cases with constant r. In these static nonuniform environments, wave energy is still conserved 
— Eq. (3) remains valid — but d'Alembert's decomposition no longer holds in the original form. 
It must be generalized. 

Complex Representation 

This generalization will be easier to produce using a complex representation. Physically, the 
wave field is certainly a real-valued quantity. But since the wave equation is linear and has real 
coefficients, there is no harm in adding on some imaginary part to extend the physical field wre to 
complex values: w = wre + tw,-m. Naturally, both wre and Wim must satisfy Eq. (1), and the same 
is true of w and w*. Also, the dxw, dfW factors in the energy expressions now refer to dxwre, dtwre 

so that 

Ew = £(dtw + dtW*)2 + T-{dxW + dxW*)2 

2V 2 

Pw = -r(dxw + dxw*)(dtw + dtw*)/4 . 

/4, (9a) 

(9b) 

As a result, 

dxPw + dtEw = (dtw + dtw*) \{pd2
tw - rd2

xw) + (pd2w* - r9>*)] /4 = 0 , 

as expected. 

(10) 
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For the superposition field w = a + ß, 

Ea,ß = [p(dta + dta*)(dtß + dtß*) + r(dxa + dxa*)(dxß + dxß*)} ß , 

Pa,ß = [~r(dxa + dxa*)(dtß + dtß*) - r(dxß + dxß*){dta + dta*)} /4 , 

(11a) 

(11b) 

but the right-hand sides fail to vanish because there is no d'Alembert decomposition to separate the 
field exactly into counter-propagating modes. However, there is a workable approximate approach. 

CW Fields 

It might be possible to deal successfully with fields whose time dependence is quite general. 
Narrowband fields, for example, could be handled using analytic-signal methods. Since this would 
be too great a diversion from the present purpose, however, the scope of this work is confined to 
continuous wave (cw) fields. 

Since the medium itself is not time-dependent, each frequency component can be treated 
separately. With only a single frequency u in its spectrum, the wave field can only be si- 
nusoidal in time: wre(x,t) = F(x)cos(u>t — <p(x)). If the imaginary part is chosen to be 
Wim(x,t) = —F(x) sin(u;i — (p(x)), then the complex representation of the wave field is 

w{x,t) = u{x)e~iut , 

where u{x) = F(x)et(p(x). Thus the wave equation for wre = (w + w*)/2 reduces to 

e-«u*(n" + k2u) + e+iwt(u*" + k2u*) = 0 , 

(12) 

(13) 

where the primes denote rc-derivatives and k(x) = u/c(x), so both u and u* must satisfy the 
one-dimensional Helmholtz equation 

The field's power flux is then 

where 

and its energy density is 

where 

u" + k2u = 0 . 

Pva — Pw  + Pw + Pw   , 

P+ = -e+i2wt(u*'u*)iu,T/4 

p- = +e-
i2ut(u'u)iuT/4 

Pi = {uu" - uV)iwr/4 , 

Ew — Ew + Ew + Ew , 

E+ = e+i2ui(u*'2 - *V2)r/8 

E- = e-^\un - k2u2)r/8 

El = {k2u*u + «*V)r/4 . 

(14) 

(15) 

(16a) 

(16b) 

(16c) 

(17) 

(18a) 

(18b) 

(18c) 



Systematic Splitting of Wavefields 

Here we apply time averaging (denoted by a bar). This effectively kills off the time-dependent'+' 
and '—' terms, leaving only the constant '0' terms. Thus 

Pw = W(u,u*) iur/4 (19a) 

Ew = (k2u*u + U*'U')T/A , (19b) 

where W is a Wronskian.1 It is clear from Eq. (19) that, although Ew can depend on x, Pw cannot. 
That is a statement of conservation of wave energy for the cw case. 

Each component of a superposition field w = a + ß can be represented in complex form, 
a(x,t) = a(x) exp(—iwt) and ß(x,t) = b(x)exp(—wt). Then, 

^J» = ^ + ^ + ^>. (2°) 

P+ß = -e+i2ut (a*'b* + a*b*') iu>r/4 (21a) 

P~ß = +e-
i2ut (a'b + ab') iur/4 (21b) 

Piß = [ia*'b + ab*') - (a'b" + a*b')] twr/4 , (21c) 

Pa,ß = [W(b, a*) + W(a, b*)] iuT/4 . (22) 

where 

and thus 

This clearly shows what would be needed to partition the power between two modes a and ß. Since 
a and a* must be solutions to Eq. (14), Pa cannot depend on x. The same is true of b and b*, so Pß 
cannot depend on x either. Finally, in order for Paß to vanish identically, there must be a linear 
dependence between a and b* (and thus between a* and b): 

Similarly, 

where 

aocb* . (23) 

E*,ß = Eiß+E°,ß+E«,ß' (24) 

E+ß = e+i2a" (a*'b*' - k2a*b*) r/4 (25a) 

K,ß = e~i2wt (a'b> - k2ab) T/4 (25b) 

El,ß = [(<*'&*' + °-*'b') + k2(a*b + ab*)] r/4 .                                            (25c) 

Again, under time averaging, the '+' and '—' terms vanish, leaving only 

Eaß = 3? [a'b*' + k2ab*} r/2 . (26) 

1 Recall that W(u, v) = uv' — vu' is independent of a; when u and v are solutions to Eq. (14), and vanishes whenever 
these solutions are linearly dependent, i.e., when v oc u. 
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From Eq. (23) it is clear that b* = (a where ( is some complex x-independent quantity. Thus, 

Ea,ß = » \((a'2 + k2a2)] r/2 . (27) 

At the same time, 

E'a = [a'{a*" + k2a*) + a*'(a" + k2a)] r/4 (28a) 

E'ß = [b'(b*" + k2b*) + b*'(b" + k2b)] T/4 . (28b) 

This is where difficulties appear in this attempt to separate the field exactly into counter-propagating 
modes that simultaneously obey the Helmholtz equation and partition the energy. Because a, b, 
a*, and b* are all solutions to the Helmholtz equation, both E'a and E'ß vanish identically, leaving 
Ea and Eß independent of x. This cannot be right; Ew itself did not have to be independent of x. 
Furthermore, Eaß can vanish only when a' = ±ika. That implies a functional form for a, 

a(x) = a(x0)exp\±i      dxk(x)    . (29) 
L     Jxo J 

Unfortunately, it also implies that 

a" - k2a = ±ik'a . (30) 

Since the right-hand side must vanish, it is essential that k' = 0. Clearly, the exact mode separation 
of the field can be done only in a uniform medium, where it is nothing more than the familiar 
d'Alembert representation. It cannot be done in nonuniform media — at least not in an exact way. 
Equation (30), however, suggests that mode separation might be achieved in some approximate 
sense based on the condition 

\k'\/k2 < 1 . (31) 

The remainder of this report is directed toward realizing that possibility. 

3. INITIAL REFORMULATION 

This section transmutes the whole wave motion problem into a form where the effects of envi- 
ronmental inhomogeneity on mode splitting are clearer and easier to begin dealing with. Initially, 
the. Helmholtz equation and its power flux and energy density relations are recast in first-order form 
involving Pauli matrices. Then the Helmholtz equation's Picard series solution is presented and 
the reason for its generally slow convergence is underscored. Finally, the problem is transformed to 
the "d'Alembert" representation — an optimal starting point for subsequent perturbation analysis. 

The one-dimensional Helmholtz equation has the form 

d2
xu + k2u = 0 , 

where the wavenumber k = w/c may be x-dependent. The complex field is w(x, t) = u(x) exp(-iwt) 
and the relevant energy quantities are 

Pw = (—z'wr/4) (u*dxii — udxu") 

Ew = (r/4) [k2u*u + (dxu*)(dxu)] 
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First-Order Form 

It is convenient to adopt some constant density value po as a standard and then use the 
corresponding phase speed CQ = VWPO *° define a reference wavenumber ko — U/CQ. The spatial 
coordinate will be rescaled to kox (so that distances are measured out in reference wavelengths), 
but this nondimensional coordinate will continue to be written as x. Thus the Helmholtz equation 
becomes 

dxu + n u = 0 , (32a) 

where n = CQ/C = k/ko = y/p/pa is the refractive index and, with constants lumped into 7 = 
w2po/4, the energy terms are 

Pw = — *c07 (u*dxu — udxu*) 

Ew = l [n2u*u + (dxu*){dxu)\ 

(32b) 

(32c) 

Since Eq. (32a) is linear, the familiar trick of swapping order for dimensionality [3] can be used 
to convert it from a second-order one-dimensional form to a first-order two-dimensional one. To 
facilitate dealing with the complex 2-by-2 matrices that the latter form entails, we invoke the Pauli 
spin matrices whose properties are reviewed in Appendix A. 

Initial Representation 

The simplest way to produce a first-order form is to let the dependent variables be u and 
ü = dxu (the displacement of the string and the slope of its tangent) so that the state of the system 
is specified by the vector 

u = 
u 
ii 

Then the Helmholtz equation takes the form 

dxu = G u 

where 

G = 
0      1 

-n2   0 
= i <T\ 

(33) 

(34a) 2     J \     2 

is the generator of the system's evolution along the x coordinate. 

This is equivalent to the Schrödinger equation, idxu = Hu, for a two-state quantum system 
with a Hamiltonian H = iG where x plays the role of time (in a system of units where h = 1). 
The Hamiltonian's eigenvalues, ±n, correspond to time-dependent energy levels. The power flux 
and energy density are "matrix elements" (in the quantum mechanical sense) 

P(u) = co7utp u 

E(u) = TU'EU 
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of a pair of Hermitian operators, 

P = 
0   -i 
i     0 = <r2 

E = 
n2   0 
0    1 -f^-pT*) 0*3 

(34b) 

(34c) 

The only peculiar aspect of this as a quantum mechanics problem is that, except for the degenerate 
n = 1 case, H is non-Hermitian. The work below is generally done in terms of G, with H appearing 
only when analogies to quantum mechanics are pursued. 

In a certain sense, the solution is already in hand. When Eq. (33) is combined with any 
initial condition u(x0) (forming an "initial-value" or "one-point boundary value" problem), the 
state vector at any x is simply 

u(x) = £(x,x0)u(x0) 

in terms of the propagator matrix £(x,x0). This matrix operator is defined by a Dyson-ordered 
integral [2] (also known as a "product integral" [4]) and is variously called a "matricant" [5] or 
"matrizant" [6]. It is the solution to the same ordinary differential equation with unit-matrix 
initial values: 

dxK(x, x0) = G(x) K(x, so)   ... £(a:o, x0) = 1 , (35) 

or, equivalently, the integral equation 

£(x,x0) = 1 + r>G(OK(£,x0) • (36) 

Under fairly general conditions,2 this has a unique solution in the form of an infinite series 

oo 

£(*<io) = 5]Kj(ilio) (37a) 
i=o 

that begins with 

Kofoso) = 1 (37b) 

and continues by Picard iteration 

Kj+1(x,x0) = [*dtG(OKj(t,x0) , (37c) 
JXQ 

converging uniformly and absolutely [5,6]. This Picard series3 is satisfying but less useful than it 
may appear, especially in nonuniform media, because the convergence is typically quite slow. 

Sufficient conditions are that, in an interval containing x and x0, n
2(x) be single-valued, bounded, and integrable 

and that dxn
2(x) be piecewise continuous and bounded [6]. 

It is also associated with the names Liouville and Neumann. 
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To see why that is, let 

e = (nJ - l)/2 (38) 

measure the deviation of the refractive index from its reference value, 1, so that the three operators 
of Eq. (34) are 

G = -e<Ti + i(l + e)<T2 

P = <72 

E = (i + e)l + e<T3 . 

(39a) 

(39b) 

(39c) 

The generator G has a constant term as well as e-dependent ones. Thus Ky, a multiple integral of 
a product of the form 

G^OG^.i) •••G(i2)G(xi) , 

contains contributions of multiple orders in e(x). The integrand for K3, for example, is 

G(x3)G(x2)G(xi)   = 0 -(l + 2e(x2)) 
(1 + 2e(z3))(l + 2e(ai)) 0 

(40) 

which has contributions of orders 0, 1, and 2 in e. The convergence of Eq. (37) is slow because 
Kj generally contains terms in c°,e^e2, • ■ ■ , eJ-1,eJ. Although it is mathematically allowable to 
expand all the terms and re-order the series so that the j'th term contains only e3, no method is 
known for doing that with any generality. There is, however, a way to finesse a solution by applying 
Pauli-space rotations. 

d'Alembert Representation 

Before pursuing that option, it will be convenient to change the representation to one in which 
the generator G is diagonal wherever the inhomogeneity e vanishes. This is done by applying the 
unitary operator 

U = 
v/2 

1     1 
—i   i 

(41) 

to transform state vectors and operators according to u = Uu and V = UVU  1, respectively. The 
form of the problem remains the same, 

dxu = Gu 

P(u) = co7u*Pu 

l?(u) = 7ufEu 

(42a) 

(42b) 

(42c) 

in terms of the transformed state vector 

■-* 
u + iit 
u — iv, 

and transformed operators G,P,E in this new "d'Alembert" representation. 
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Equation (41) can be written as U = exp{-iS} in terms of an operator S = 501 + Sa 
that has a scalar part SQ = -7r/4 and a Pauli-vector part S = Ss with magnitude S = 7r/3 and 
direction s = {£\ - £2 + h)/V3. Thus, U transforms operators into the d'Alembert representation 
by simply rotating their Pauli-vector parts about the (1, -1,1) direction through the angle -25 = 
—27T/3. That rotation amounts to a cyclic permutation of (£2, —£3, —ei), i.e., to the replacement 
(ei,e2,e3) —► {-£2, —h,e\), which means that the effect of U can be found by inspection. In 
particular, the three operators of Eq. (39) become 

(43a) 

(43b) 

(43c) 

Their scalar and Pauli-vector parts are 

G = -i(l + e)<r3 + ea2 

P = -<r3 

E = (l + 5)1 + e<Ti . 

parts are 

G0 = 0 

E0 = l + e 

G = -z(l + e)e>3 + (.£2 

P = -£3 

E = eei , 

and, with the positive sign chosen for square roots, the magnitudes and directions of the vector 
parts G = Gg, P = Pp, and E = E£ are 

G = in       g = -[(l + e)e3 + ie£2] /n 
P = 1 p = -£3 

E = e £ = £\ . 

On first inspection, the initial-value problem seems no better behaved than before, since the 
generator in Eq. (43a) will also produce e-ordering problems in the Picard series for its propagator. 
The advantage of this representation is that, within any i-interval where k = jfc0, the generator 
reduces to a diagonal form: G —» -10-3. Since the forthcoming solution will emerge from a 
perturbation process for |e| < 1, it is naturally simpler to begin in the d'Alembert representation 
where the unperturbed e = 0 problem is diagonal. 

Mode Separation 

At this point, it is worth noting that wherever k = k0, the d'Alembert generator's eigenvectors 
are |<?) with corresponding eigenvalues -qi, where <; = ±. This means that the state vector separates 
exactly into a sum of counter-propagating modes 

u(x) = a(x) -f b(x) , 

where 

a(z) = u-(x0) exp [+i(x - x0)] |-) (44a) 

b(x) = u+(x0) exp [-i(x - x0)] |+> . (44b) 

It is easy to confirm that these modes partition both the power flux and the energy density, 

P(a + b) = P(a) + P(b) 

£(a+b) = .E(a) + £(b), 
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that their individual energies are separately conserved, 

P(a(x)) = P(a(x0)) = +co7|u-(*o)|2 

P(b(x)) = P(b(x0)) = -c01\u+(x0)\2 

and that their energy densities are spatially uniform, 

£(a(x)) = £(a(x0)) = 7lM*o)|2 

'E(b(x)) = E(b(x0)) = 1\u+(x0)\2. 

This is d'Alembert's decomposition again — an exact result for uniform media, but only approxi- 
mate otherwise. 

4. STATE-SPACE TRANSFORMS 

Later on, the convergence of Picard-series solutions will be improved by the application of well 
chosen transforms. This section previews the properties of such transforms — particularly those of 
the wave-energy conserving "pseudo-unitary" class. 

The challenge is to find some expression for the solution to the d'Alembert initial-value problem, 

dxK(x,x0) = G(x)K(x,x0)   ...  K(x0,x0) = 1 , (45) 

that is better behaved than Eq. (37). The general idea is to do this by transforming to still other 
representations where the generator assumes more tractable forms. A perfectly diagonal form would 
seem ideal, but it is not generally attainable. Instead, we apply a series of transforms that improve 
the diagonality incrementally with each step. 

The first step is along the general lines of the work by Keller and Keller [6]. The essence of it 
is to find a change of representation that converts the generator G into the form 

G = Ä + R , (46) 

where 

• A is diagonal and proportional to a suitably defined quantity v « n, and 

• R is off-diagonal and proportional to a suitably defined small quantity Q. 

Once that is achieved, one can transform to the A-interaction representation, where the jth term 
in the propagator's Picard series will contain only Q> . For small \Q\, this approach leads to a 
perturbative formulation for the field in terms of multiply reflected left- and right-going modes. 
This series constitutes an algorithm for computing the field at limited ranges, and its leading 
term provides an asymptotic expression for the field at long range. The transform that splits the 
generator according to Eq. (46) is a simple rotation in Pauli space. 

In fact, the second, third and all subsequent steps are achieved though a regular succession of 
such rotations. Given certain assumptions about the range dependence of the medium, each one 
improves both the perturbative formulation and the long-range asymptotic approximation. The 
operators that produce these rotations, however, differ in two respects from the transform U in 
Eq. (41), namely, they are 
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• x-dependent, and 

• "pseudo-unitary" (a generalization of the unitary class). 

Ultimately this means that all the v and g quantities are functions of x, and that all the rotation 
angles are imaginary. These points are explored in the remainder of this section, and then the 
rotations themselves are obtained explicitly in the following sections. 

Pseudo-Unitarity 

This section makes some analogies to quantum mechanics, and thus uses the Hamiltonian 
H = zG. For any operator V, it is clear from Eq. (42a) that 

dx (u
fVu) = uf [i(HfV - VH) + dxv] u (47) 

represents the total x-derivative of the matrix element of V with the state vector u — the rate 
of change due to both the dynamic evolution of u and any explicit x dependence in V. Since the 
Hamiltonian is "pseudo-Hermitian", i.e. 

HfP = PH  ...  pseudo-Hermitian , (48) 

and P itself is independent of x, any matrix element of P must also be x-independent. That 
fact itself is nothing new (it was implicit in Eq. (19a)); the novel element is its relation to the 
pseudo-Hermiticity of H. Note that there is no comparable result for E. Since 

E = -PH , (49) 

that operator, although pseudo-Hermitian, is x-dependent wherever H is. As a result, P is a 
constant of the motion, but E is not. 

The dynamic evolution of the state vector can be summarized in terms of the propagator as 
u(0 = K(f, C)u(C). From the identity 

ut(OPu(0 = ut(C) [Kt(£,C)PK(£,0] U«) , 

together with the initial value K(£,£) — 1, it follows that, since P is an invariant of the motion, 
the propagator is "pseudo-unitary", i.e. 

P = Kt(£,C)PK(£,<)   ...  pseudo-unitary (50) 

for any £, (. This property is responsible for the invariance of P during the evolution. By definition, 
P will be invariant under any pseudo-unitary transform M, whether, like K, it is related to the 
dynamic evolution of the system or not.4 

Using the fact that P is Hermitian, the pseudo-Hermiticity of H and the pseudo-unitarity of a 
transform M can be rewritten in various equivalent ways, such as 

(PH)f = PH 

(PM)f = PM-1 . 

4Strictly speaking, the way things have been defined, it is M  ', not M itself, that is directly analogous to K. 
However, pseudo-unitarity for one implies pseudo-unitarity for the other. 
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These results have better-known analogs in quantum mechanics, where the operator P2 = 1 is a 
constant of the motion rather than P itself. Although the vibrating string problem and the two- 
state quantum problem are very similar in a mathematical sense, it would be a mistake to press the 
analogy too far, since the two state vectors have entirely different physical meanings — one being 
a classical displacement and the other a probability amplitude. 

In a quantum mechanical setting, the physical observables are represented by Hermitian oper- 
ators. Any such operator V has real Pauli coefficients VQ, • • •, V3. In the present context, V may 
be pseudo-Hermitian, in which case VQ and V3 are real while V\ and V2 are imaginary. 

State-Space Transforms 

A linear transform Mü = u will preserve the appearance of the problem 

dxn = Gü (51a) 

P(ü) = coTütpü (51b) 

E(ü) = 7üfEü (51c) 

in terms of the transformed operators 

G = A + R (52a) 

P = MfPM (52b) 

E = MtEM (52c) 

The first part of the generator, 

A = M_1GM (53a) 

is a similarity transform; the second part, 

R = -M_14M (53b) 

involves the explicit x dependence of M (which is assumed to be nonsingular and differentiable so 
that R is well-defined). 

To conserve energy, M will be restricted to pseudo-unitary transforms. When that is done, Eq. 
(49) is enough to determine the forms of the transformed energy operators: 

E = -iPÄ (54) 

and P = P. In quantum mechanical terminology, such an M is an innocuous "change of picture," 
and all that is needed to characterize its effect is usable expressions for A and R. To obtain them, 
it will be sufficiently general to use 

M = exp(-tS) (55) 

with a pseudo-Hermitian S to guarantee that M is pseudo-unitary. Thus, 

A = exp(+iS)G exp(-iS) (56a) 

R= — exp(+iS)da;exp(—iS) . (56b) 
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Since Eq. (56a) is a similarity transform, A = Äol + Ä-<7 is the result of a simple Pauli-space 
rotation of G, as discussed in Appendix A. Specifically, 

Äo = Go = 0 (57a) 

and A = AA where 

Ä = G = in, (57b) 

with A obtained by rotating g about the s direction through the angle <f> = -25. But, since S is 
pseudo-Hermitian rather than Hermitian, this angle need not be real. If s points mainly in the I3 
direction (i.e., if |s-ea|2 > |s-ei|2 + |s-e2p), then <f> is a real angle — otherwise it is imaginary. 

The second term of the transformed generator has the form 

R = - {c+tfo [cos(S) + ism(S)s-a]} dx [e~iS° [cos(S) - isin(S)«•<?]} . (58) 

With the help of s-s = 0 and Eq. (A6), this reduces to 

R = iS0l + i [Ss + cos(S) sin(S)s - sin2(5)(sxi)l a . (59) 

(As always, the dot indicates differentiation by the scaled coordinate x.) The scalar part of S 
affects only the_ scalar term R0 — iS0. Since S0 has no impact on the vector part of R and had 
none at all on A, it is entirely irrelevant to the problem of diagonalizing A + R. For convenience, 
let So = 0 so that only the vector part 

R = — - I</>s + sin (/> s + (1 - cos</>)sxs| (60) 

remains. This involves rates of change for both the length and direction of S (i.e., both «^ and s), 
and that appears to be about all that can be said about it in general. However, if the direction is 
fixed, the expression simplifies to 

R = -^4>s. (61) 

One case is useful enough to deserve special attention, namely an S that is parallel to one of the 
Pauli axes: s-ej = ±1 for j = 1, 2, or 3. To maintain pseudo-unitarity, 4> must be real when j = 3 
and imaginary when j = 1,2. 

5. BREMMER REPRESENTATION 

This section implements a pseudo-unitary transform to the "Bremmer" representation, where 
the generator of the wave evolution is diagonal to order e. This fact improves the convergence 
of the Picard series for the solution and provides the impetus for additional transforms that are 
developed in the next section to improve it still further. 
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Change of Notation 

The previous section dealt with state-space transforms in a fairly general sense: u = Mü, where 
u was a d'Alembert state vector and ü was the state vector in some transformed representation. 
Here we devise a particular form for that. Since it will ultimately be the first in a series, we switch 
to an indexed notation at this point. Quantities in the d'Alembert representation together with 
the transform that produces them are indicated by a (°) superscript, e.g., G, A, R, u and M, 
S are written hereafter as G<°>, A®\ R(0), u<°> and M<°>, S<°>. The transformed or "Bremmer" 
representation is labeled with a W superscript, so G, A, R, ü are denoted G^\ A^\ R^, u^1). 
The transform, then, is written u^ = M^W1). 

Rotation 

Making A^ diagonal is tantamount to aligning A^1) with e$. Since A^1) results from a rotation 
of G^0) = ee2—i(l+c)e3, the diagonalization can be accomplished by using e\ as the axis and rotating 

through the angle tan-1(ie/(l + e)), i.e., by using a vector S^ with components 5^ = S3 — 0 
and 

5i0) = -#(°)/2 , (62) 

where 

Thus 

tanhV(0) = -Z— ■ (63) 
1 + 6 

S(°) = -^(0V1, (64) 

and the transform M^0) = exp { —iS'°) > is 

M(0) = cosh (i/>(0)/2) 1 - sinh (v>(0)/2) <T\ 

The transformed operators are 

where 

l + ra„      1 — n .„„. 
2y/n 2y/n 

AW = -iu^a3 (66a) 

R(D = e(i)cn (66b) 

p(J) = -0-3 (66c) 

E^ = u^l , (66d) 

«/<*> = n (67) 

e(1) = ^ = dx(logJn) . (68) 

Note that \Q^\ "C v^ is precisely the condition anticipated by Eq. (31) at the end of section 2. 
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Using a pseudo-unitaxy transform automatically produces an off-diagonal R^1'. The converse 
is also true. Keller and Keller [6] began by requiring "R,^ to be off-diagonal and arrived at a 
pseudo-unitary transformation (the same one, to within an arbitrary constant). Pseudo-unitarity 
distinguishes an essentially unique "splitting" among all the possible transforms [7]. It is appro- 
priate to acknowledge here that, despite a somewhat altered appearance in the present context, 
the transform developed in this section is a type of Foldy-Wouthuysen transform [8]. This sort of 
transform was introduced in the early 1950s [9] to produce asymptotic mode decoupling in a very 
different physical context — relativistic quantum mechanics. 

Mode Separation 

This is a convenient point to pause and consider the case of an environmental region where the 
wavenumber k is a constant — possibly different from the reference value &o- Since c is constant 
in such a region, G^0) is independent of x and can thus be diagonalized by an re-independent S^0). 
This means that R^ vanishes so that Eq. (64) diagonalizes the whole generator G^1) = — iv^cr^, 
and that i/1' = n is independent of x. As in section 3, the generator's eigenvectors are |c); here, 
however the corresponding eigenvalues are — cii/1). Again the state vector separates exactly into a 
sum of counter-propagating modes 

u(1)(i) = a(1)(i) + b(1'(i), (69) 

where 

a(1)(x) = iS^ixo) exp [+zV(1) x (x - x0)] |-> (70a) 

bW(x) = u^ixo) exp [-Ü/W x(x- so)] |+) • (70b) 

It is easy to confirm that these modes also partition both the power flux and the energy density, 

P(sS^ + b^) = P(a(J)) + P(b(J)) 

E(&M + b(J>) = E(sS^) + E(b^) , 

that their individual energies are separately conserved, 

P(*Q\x)) = P{*M(x0)) = +co7k(-1)(*o)|2 

P(bM(x)) = P(bW(xo)) = -CD7|u(+Vo)|2 , 

and their energy densities are spatially uniform, 

£(aW(aO) = £(a(1>(x0)) = 7^(1 V-Wl* 

E(bM(x)) = E(bW(xo)) = T^V+Wl* • 

This is the d'Alembert decomposition of section 3 again, this time for if n ^ 1. 
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Bremmer Series 

In the Bremmer representation, the initial-value problem is 

dxuW(x) = [A&\x) + R(1)(a:)] u^(x)   ...  u^(x0) = [M(°)(X0)] ~* u<°)(a:o) • (71) 

Since A^\x), the "large" part of the generator, is diagonal, it can be used to construct an "inter- 
action" transform [10], 

L(x,x0) = exp(£dM(1)(O) = 
exp (—i(p^\x,xo)j 0 

0 expf+i^^SjXon 
(72) 

Ho 

in which 

<pM{x,x0)= fX d^l\0- (73) 
Jxo 

This L converts the state vector to the interaction representation via 

u(1>(x) = L(x,xo)q(x), (74) 

and is itself the propagator for an artificial problem, 

dxL(x,xo) = A(1)(x)L(x,xo)   ...   L(xo, xo) = 1 (75) 

in which the perturbation g^ is "turned off" [2] so that |+) and |—) are decoupled. 

In this interaction representation, the initial-value problem for state vectors is 

dxq(x) = V(x, x0)q(x)   ...  q(x0) = u(1)(x0) (76) 

in terms of the generator,5 

V(x,x0) = L-1(x,x0)R^(x)L(x,x0) . (77) 

The propagator, Z(x,xo), evolves the state vector from its initial value in the usual way, 

q(x) = Z(x,xo)q(x0) , (78) 

and thus satisfies the initial-value differential problem, 

dxZ(x,x0) = V(x,x0)Z(x,x0)   ...   Z(x0,x0) = l. (79) 

As before, the equivalent integral equation is 

Z(x, x0) = 1 + /* d£ V(£, x0)Z(£, x0) , (80) 
JXQ 

and its Picard series solution (often called a Born series in this context [10]) is 

In quantum-mechanical terms, the interaction Hamiltonian would be tV. 
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where 

and 

Z(x,x0) = ^Zj(x,x0) , 
3=0 

Zo(x,x0) = 1 

(81a) 

Zj+i(x,x0) = /   d£V(£,x0)Zj(£,x0) . 
Jxo 

Equations (79)—(81) are identical in form to Eqs. (35)-(37). Here, however, V oc g^: 

(81b) 

(81c) 

V(£,*o) = e(1)(0 
_exp[-2zyi)(e,x0)] 

exp[+2i<pW(Z,x0j\ 
(82a) 

Thus Tij involves only the jth power of gfi\ so the convergence problem that was caused by the 
presence of terms containing both e° and e1 in G (the generator in Eq. (39a)) is avoided. For 
If/1)! <S 1, the series should converge rapidly. 

Furthermore, V is off-diagonal.  Consequently the Zy terms are alternately diagonal and off- 
diagonal. Z2, for instance, is just the double integral of 

v(£,*o)V(c,*o) = <?(1)(0<?(1)(0 
exp[+2i<pW (£,()] 0 

0 exp[-2i^1)«,C)] 
(82b) 

As a result, when Eq. (81a) is used with Eq. (78) with the state vector expanded in the unperturbed 
eigenstates, q(x) = £?=± <7<r(x)|?), one finds 

ft0*0 = ft(xo) + /   dxi £(1)(xi)exp [+2^(1)(xi,x0)] q~dxo) 
Jxo L J 

fX fXl 

+       dx2 dxiQ^1\x2)ßW(xi)exp\+2(;i<p('1\x2,xi)\q<;(xo) 
Jxo Jxo L J 

+ (83) 

for <; = ±. This is essentially the Bremmer series [11] — an expression whose jth term represents a 
wave that been reflected j times on its way from XQ to x, with Q^(x) acting as a distributed reflec- 
tion coefficient for the medium. Clearly, if g_c vanishes at xo, the odd-numbered terms all vanish. 
Then the state vector reduces to ft(x)|c), a mode that propagates purely in one direction, but has 
an amplitude g?(x) composed of contributions that have undergone an even number (0,2,4, •••) 
of distributed reflections. The j > 2 terms were left implicit in Eq. (83). More of them could 
have been included without much trouble, but there would be little reason for it in this context 
because our interest is in long-range propagation. For computational purposes, the infinite series 
must be truncated at some order, and this implies a maximum x beyond which the truncated series 
no longer faithfully represents g?(x). For long-range use, a large-x asymptotic expansion is needed 
instead. The first term in the asymptotic expansion of the Bremmer series for small gW is just the 
leading term in the series [6], 
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u{^(x) ~ exp j-K<p(1)(x,a:o)] qAxo) • (84) 

This expression is an asymptotic approximation for one-way propagation that excludes backscatter 
in all forms (all the j > 0 terms). 

Note that this would all have been equally simple had R/°) involved 0*2 instead of 0*1, i.e., if 
(j(°) had turned out to be orthogonal to e-i rather than to e\. In that case, a diagonal Ay> could 
have been produced by simply rotating around that axis instead. 

6. HIGHER-ORDER REPRESENTATIONS 

Building on the results of the preceding section, this section introduces a hierarchy of 
trans-Bremmer rotations. In these the wave-evolution generator is diagonal, and thus the for- 
ward/backward modes are decoupled, to progressively higher orders. 

Chain of Rotations 

Pseudo-unitary rotations similar to the one in the preceding section will be used to generate 
further representations, which will be denoted by superscripts (m), with m > 1. Let ej, e% be the 
first two Pauli unit vectors ei,e2 in either order and suppose that G^m> is orthogonal to ej (i.e., 

Gj = 0). Then choosing s^m^ to lie along the j axis (|s(m)-ej| = 1) allows the first term on the 
right-hand side of 

(*(m+i) = (cosh^G^ + isinhV(m)G(mWm)) + \s^mUx^ (85) 

(see Eq. (All)) to be aligned with £3 by the proper choice of ip^m\ This is still only a partial 
diagonalization because the second term remains orthogonal to is; however, if \G ™     I/IG3        | < 

\G™ I/IG3 I, it is a step in the right direction. Furthermore, since G™ = 0, the process can 
easily be repeated, this time by a rotation about the I axis. In fact, it can be iterated indefinitely 
in an alternating series of rotations about the first and second Pauli-space axes. 

The process begins with the Pauli vector part of the d'Alembert generator rewritten as 

Ö(0> = -ü/°)c3 + ß(°)c3xS<0> (86a) 

in terms of 

s(0) = ej (86b) 

i/0) = 1 + e (86c) 

Q{0) = e . (86d) 

The axis s^°> and the rotation angle 

^ = tanh"1 (<?((V0)) (86e) 

determine the transform M>°) that produces G^1'. 
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The jth iterate has the same form, 

(50) = -iu^e3 + Q^ e3 X s^ , (87a) 

with 

SU) = j(i-i)Xe3 (87b) 

i/Ü) = „(i-i)/ cosh ^Ci-i) (87c) 

<?(i) = idx^0'-^ • (87d) 

The axis s^') and rotation angle 

^(J) = tanh"1 (e{i)/u^) (87e) 

determine the transform M^') that produces G^+1\ 

This procedure produces a chain of generators 

G(°) -» G^ -♦ G<2> -» G<3> -» ► G<m> (88) 

linked by a series of pseudo-unitary transforms, u^') = "M.^u^>+1\ where 

M(i) = cosh (</>(i)/2) 1 - sinh (v-(i)/2) sU)-a . (89) 

Only one assumption is implicit in the construction of link m at the end: that d™e exists for the 
environment in question. As m is increased, lengthening the chain, p(m) always remains identical 
to the original p(°\ and the system evolves by the transformed equation 

4u(m) = G(TO)u(m) . (90) 

As m is increased by 1, s^ simply rotates by — 7r/2 about e$. (It is periodic: $(TO+4) = s^m\) In 
addition, provided the ratio [v^/g^l diminishes with increasing m, the generator becomes more 
and more diagonal. Together these mean that successive G(m) vectors spiral in toward alignment 
with — ez as sketched in Fig. (1). 

As in the m = 1 case of section 5, the transformed generator for m > 1 is split into G^m) = 
jlCm) + R(">)5 where 

A{m) = -iv^<TZ (91a) 
R(m) = g(m)(&3X$(rn)y# (91b) 

And, as always, 

p(">) = -cr3 . (91c) 

Thanks to the nature of the transform that produced them, all three operators have conveniently 
simple forms: p(m) is invariant, A^ oc i/m) is diagonal, and PJ7™) oc (fm' involves only one of the 
two off-diagonal Pauli operators <7i,0"2. It would be too much to hope that the simplicity of Eq. 
(66d) would persist in a form like E^™) = u^l, and indeed it does not. But there is no physical 
reason why it should. 
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Fig. 1 - Pauli-space illustration of Ö^m^ for m = 0 • • • 4. Since G3     is imaginary, the figure is only qualitative. The 

mth gray arrow has components (Gj    , GJj    , 3Gj    ). 

Mode Separation 

Suppose, for the moment, that the environment has an interval / where (fm\x) = 0. Then the 
generator is diagonal in that interval 

G^m\x) =-i^m\x)a3  ...  x€l 

and so is the propagator 

K^m\x,x0) = exp(-ia3 J^ d^{m)(0}   •••  x,x0el, 

so that the state vector separates exactly into a sum of counter-propagating modes 

u(m)0r) = a(m)(x) + b(mHx), 

where 

a(m>(x) = u(_m)(x0) exp f+» f <fc>(m)«) 

b(m\x) = u(
+
m)(x0)exp \-i I* d&m\Q 

I") 

1+) 

(92) 

(93a) 

(93b) 
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It is easy to confirm that the power flux is partitioned between these modes 

P(a(m) + b(m)) = P(a(m)) + P(b(m)) 

and separately conserved 

P(sSm\x)) = P(a<m>(s0)) = +co7l«(-mW|2 

P(h(m\x)) = P(b(m)(*o)) = -co7|«(
+

ra)(xo)|2 - 

This result is exact but, of course, it is not general because the condition Q^m\x) = 0 limits 
its validity to a particular type of environment. The m = 1 case was encountered in section 
5, where (fl\x) = 0 was seen to imply a uniform medium having n(x) = n(xo), with standard 
d'Alembert mode separation prevailing everywhere. The limitation is even greater for m > 1. 
For example, (f2\x) = 0 presupposes a medium where n_1(x) — n(xo)-1 = (x — xo)g for some 
constant g. This, in turn, means that 0 < n(x) < oo is possible only on the semi-infinite interval 
I = {x\(x — X(j)gn(xo) > 0}. This is just another reminder that, except for tailor-made special 
cases, mode separation is an approximate result, not an exact one. 

Higher-Order Bremmer Series 

In parallel to section 5, the initial-value problem for u^m^ can be solved via the A^ interaction 
representation. The eigenvectors of A^ are still |c), and the counterpart of Eq. (83) for the 
components of the interaction-representation state vector is again a Bremmer series, 

g?(*) = fcO&o) + /   dxi^(m)(a;i)exp[+2<;^(rn)(a;i,xo)]9_?(xo) 

+ fX dx2   r dxlQ^m\x2)g{mHx1)exp[+2<;i^m\x2,x1)]qq(x0) + --- (94) 
Jxa Jxn 

The first term in the asymptotic expansion of this mth-order Bremmer series^ for small g^ is again 
just the leading term in the series, 

u{mHx)~exp[-<;i<p(mHx,x0)\q<(xo)   ...  ? = ±. (95) 

This is a higher-order asymptotic approximation for one-way propagation. 

7. EXPANSION IN e DERIVATIVES 

This section introduces a smallness criterion for spatial derivatives of e that renders the mth- 
order Bremmer representation's generator diagonal to order em, thus eliminating backscatter to 
that order. Further, it obtains the resulting x-dependent amplitude and phase of the field and 
interprets each of these as having a contribution that accumulates along the propagation path and 
another contribution from the path's endpoints. 

If the environmental variations are adiabatic in the sense that x ~ e-1, then one should expect 
that 
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Since tanh^^ = e/(l + c) and tanh^1^ = dxe/2n, one would have 

tanhV>(0) ~c 

tanh^(1) ~e2 

and, indeed, for any order m, 

tanhV>(m)~em+1 . (97) 

The symbolic mathematics system Maple® has been used to confirm through m = 5 that, assuming 
Eq. (96), 

tanhV-(m) = 2~md™e + 0(em+2) , 

which provides a direct verification of Eq. (97). This means that, as m increases, g^ grows steadily 
smaller in relation to i/TO) in the sense that ß(m)/i/™) ~ e

m+1. Thus, under these assumptions, 
G(m) is diagonal to order em. 

The notation (^ has been used generally for any quantity £ in the mth representation. When 
the e series for (^ is truncated at the mth order, the result will be denoted C'm'. For the generator 
G(m), this is 

GM = -ivH(r3 , (98) 

where i/M consists of all the terms of i/(m) up through order em, i.e., i/ra) = i/H + 0(em+1). 
Since Eq. (98) is diagonal, the evolution that it generates can be found by a trivial integration, 
provided that the function v^m\x) is known. As m grows larger, the calculation of i/H becomes an 
increasingly intricate task, but one that reduces to a fixed pattern of routine operations — an ideal 
job for symbolic computation software. Maple has been used to generate the result out to m = 6. 
(Farther, actually, but this has to be stopped somewhere.) The result can be expressed as 

1 2      1 3 
» = 1 + e-2e+? 

-(r4-H+G^H-(i^iÄ2+^2)+^)' (99) 

with i/H found by simply truncating v at the mth order. Maple has also been used to verify that 

Cumulative Contribution 

With i/Iml (x) in hand, it is a trivial matter to solve the problem approximated at order m, 

4u(m) = 6HUW . (100) 

The state vector has the separated form 

u(m) _ a(m) _|_ k(m) 

where the modes are 
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BSm\x) = uJ°(so) exp (+i<p[m](x, so)) I-) (101a) 

b(m>(x) = u{™\x0)exp (-i<pW(x,x0j) |+) (101b) 

in terms of the phase function 

<p(x,x0)= [Xdtv(0. (102) 
Jxo 

(<pM is formed in the usual way, by using v^m' as the integrand.) A few points should be noted 
here: 

1. The important quantity here is this phase, specifically the deviation from </?'0'(x,xo) = x — XQ 

(its value in a uniform medium with n = 1). 

2. The even-order contributions to v*™' — i/'0' are all negative. For x — XQ > 0 (< 0), this means 
that all the even-order contributions to tp\m' serve to retard (advance) the phase in a strictly 
cumulative way. 

3. The odd-order contributions to v*™' do not have definite signs (thanks to their odd powers of 
e) so they are likely to do quite a lot of zero-crossing when \x — XQ\ is large enough. In that 
event, their contributions to ipi™' should oscillate about zero rather than accumulating. 

4. Comparison of Eq. (99) to the Taylor series for the refractive index, 

1 2      1 3 

8 8 16 {   ' 

shows that v begins to deviate from n at order e4. Thus the WKB phase approximation — the 
consequence of invoking the estimate v « n in the phase integrand — begins to depart from 
the above results at fourth order. 

Endpoint Contribution 

The procedure detailed above yields u.(m\ the state vector in the mth transformed representa- 
tion. That still has to be transformed back to the d'Alembert (0-th) representation via 

u(0) = W(m)u(m)  ^ (103) 

where 

W(m) = M(0)M(i)... M(m-i) _ (104) 

So W^"1) needs to be calculated. Of course, since it is going to be applied to vSm\ the mth order 
estimated state vector that results from approximating G^m' by G'"1', a suitable approximation 
for W(m) will do. But what is "suitable"? A knee-jerk option might be W'm!, the transform 
truncated at the same order as the generator. On consideration, however, that appears to be 
overdoing it. The phase deviation y?'7™' — <p™> embodies the effects of environmental nonuniformities 
accumulated throughout the propagation from £ = XQ to £ = x. But the back-transform W^m^ is 
not cumulative; it depends only on environmental conditions at the final point £ = x. It might be 
sufficient to approximate it by W'^ for some £ < m . We proceed for the moment with WM. 
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The unitary transform in Eq. (41) needs to be applied to return to the initial representation 
(where the first component of the state vector was simply the string displacement and the second 
was the slope of its tangent) 

a = Ua<°> = UWMa<«> (105a) 

and 

b = Ub<°> = UW^bW . (105b) 

In view of Eqs. (93) and (101), only the matrix elements (+|UWl£]|+> and <+|UWM |-> are needed 
to obtain the displacement fields for the left- and right-going d'Alembert modes, respectively. 
Another resort to Maple yields 

<+|UWM|+> = ^e+i,,M (106a) 

<+|UWM|-> = 5L-'*M, (106b) 
V2 

where the phase is 

■d = \i - fee + (f e2e + ^e) + 0(e5) , (107) 

and the amplitude term is 

_ 1       5 2 

The endpoint phase vanishes to first order, i?'1' = 0. When the endpoint x lies in a uniform region 
(where n is constant, but not necessarily 1), the phase vanishes entirely, and if n = 1 the amplitude 
term also reduces to unity. Comparison of Eq. (108) to the power series 

shows that the standard WKB amplitude expression Q « l/\/" is valid only through order e2. It 
might be guessed that Q « 1/y/v would be an improvement on that, but the e-series 

""1/2=1-r+r2 

15   ,       /195  4        1   .o\        ~, 5, 

shows that it, too, is valid only through order e2. 
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Conclusion 

The final result for the string displacement field is 

u(x) = ^P- (u^\x0)exp{+i[<pW(x,x0) -tfW(x)]} + u{™\xo)exp{-i[<pW(x,xo)--dW(x)]})  , 

(110) 

where m is the "cumulative" order and I < m is the "endpoint" order. 

8. EXAMPLE 

This section introduces a specific weakly nonuniform medium and presents a numerical example 
of 4th-order, non-WKB phase accumulation. 

Consider a class of environments characterized by a periodic inhomogeneity of the form 

e(x) = Agsin(agx) + Bgsin(bgx) . (Ill) 

As an example, take the case where (A,B,a,b,g) = (1.0,0.4,1.0,0.8,0.1). Figure 2 illustrates the 
first- through fourth-order contributions to Eq. (99), namely, 

first-order index contribution • —he 
1 2 

second-order index contribution ■ -e 

1     o 
third-order index contribution h-e 

5 1 
fourth-order index contribution ••■—-€   ——e 

8 8 
WKB non- 

WKB 

plotted from top to bottom in the figure. As should be expected, this e(x) exhibits spatial inter- 
ference in the form of a pattern of beats in the top plot with a spacing 

L « 2TT/[(O - b)g] = 100TT , 

and the second through fourth orders follow suit. The amplitude of the beats in the rath order is 
gm = 10_TO, with the odd orders being about equally positive and negative, and the even orders 
purely negative. In the bottom plot, the small non-WKB part of the fourth-order contribution is 
shown along with the total. 

Figure 3 shows the phase contributions according to Eq. (102). Each plot results from inte- 
grating the corresponding plot in Fig. 2 from XQ = 0 to x. Their behavior is as anticipated: the 
odd orders oscillate around small 'dc' values; the even orders decrease monotonically, contribut- 
ing steadily accumulating phase retardations. In the even case, the phase retardation rate drops 
sharply with increasing order. In the bottom plot, the WKB and non-WKB parts of the fourth- 
order contribution are shown in addition to the total. In that plot, the rate of non-WKB phase 
retardation is about 15% of the WKB rate, which is itself only about 1.5% of the second-order rate. 
Clearly, fourth-order effects could be prominent only at long ranges. In fact, it is only when ranges 
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Fig. 2 - Index contributions to Eq. (99) for the example described in the text. Plots contain 500 points each and are 
computed at 20-digit precision. 
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Fig. 3 - Phase contributions to Eq. (102) for the example described in the text. Plots contain 500 points each and 
are computed using 20-digit precision. (The tiny ripples in the even orders do not seem to be artificial. They look 
the same when computed with 10-digit precision.) 
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of x « 224,000 « 7142/ are reached that the fourth-order non-WKB phase contribution reaches 
—7r/2. At that range, the WKB contribution to the fourth-order phase is —37r, while the second- 
order contribution is approximately — 2147T = 107 * (—2ir). The example serves to underscore the 
following points: 

• For situations that demand the relative phase of the signal at points only a few dozen wave- 
lengths apart (Ax « 10 to 100), fourth-order phase corrections are quite small. In practice, a 
first-order estimate will usually be accurate enough. 

• When the demand is for accurate phase values at very long ranges (e.g., in some long-range 
interferometry and long time-of-flight applications), fourth-order phase estimation, including 
the non-WKB contribution, may be indicated. 

9. DISCUSSION 

For the one-dimensional case of interest here, it has been shown that a properly chosen series 
of pseudo-unitary transforms converts the equation for the dynamic evolution of the wave field 
— the Helmholtz equation in this case — to a far more tractable (in fact, diagonal) approximate 
form. This can be done to any desired order m in the small environmental inhomogeneity e(x). 
The resulting equation can be integrated immediately to provide mth-order expressions for the 
amplitude and phase of the wave field at long range. An inherent part of this construct is that 
backscatter is neglected at all orders so that the field consists of a pair of asymptotically decoupled 
counter-propagating modes. 

The approach taken in sections 6 and 7 is not without historical precedent. Most notable is 
the 1950 application by Foldy and Wouthuysen [9] of such methods in quantum physics to obtain 
the Schrödinger equation from its relativistic precursor, the Klein-Gordon equation. More recently, 
Wurmser et al. [12] brought these techniques to bear on a case of classical wave motion in which the 
medium is also allowed to vary in directions transverse to the direction of propagation (e.g., along 
y as well as x). The resulting two-dimensional Helmholtz equation (Eq. (32a) with d% —► d% + cß) 
leads to a d'Alembert representation of the dynamics that is similar to Eq. (42a) except that e is 
a differential operator in y. The upshot is a pair of asymptotically decoupled parabolic equations 
for propagation in the ±x directions. These involve fourth-order non-WKB "corrections" to the 
refractive index like those seen here. They also contain novel features related to the additional 
transverse degree of freedom, notably a classical analog of the quantum mechanical phenomenon 
of Zitterbewegung [8]. 

Bremmer originally developed the representation of section 5, Eq. (83) in particular, by different 
means [11]. He first "stratified" the medium, approximating the refractive index by a piecewise 
constant stairstep function; then he accounted for all the multiple reflections at each discontinuity; 
and finally, he took the limit of infinitely many steps of vanishing height. This "infinitesimal" 
approach is perfectly valid and can lead to physical insights [13]. It has been avoided here only 
because it is difficult to generalize. 
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Appendix A 

PAULI OPERATORS 

Pauli matrices are used to facilitate the analysis throughout the body of this work. This section 
reviews their properties — especially their role as infinitesimal generators of rotation transforms in 
state space. 

The Pauli spin matrices6 

-    - 1 . F 0   -1 " 1 0 
0     -1 (Al) 

have seen long service as a labor-saving device in quantum mechanics and will prove useful here 
also. Although certainly not essential, they do have some attributes that reduce the work involved 
in doing linear algebra on complex two-dimensional state spaces, e.g., 

In addition, the eigen-basis of 0*3: 

trace (Tj = 0 "J-l 
det <Tj = — 1 <7J = (Tj . 

0"3|c> = ck>   . ..   C = ± 

where 

J+) = |-> = 

is convenient for representing complex vectors 

The main advantage of Pauli operators, however, relates to the representation of linear transforms. 

Pauli Space 

The three Pauli operators are complete in the sense that, together with the unit matrix, they 
form a basis for complex 2-by-2 matrix operators. Any such operator can be represented as 

V = V01 + Via-i + V2a2 + V3ar3 (A2a) 

sNo distinction is observed between the operators themselves and their matrix representation. 
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in terms of the four coefficients 

Vb = trace (V)/2 (A2b) 

Vj = traceCVo-j + tr,V)/4  ... j = 1,2,3 , (A2c) 

all of which have real values if V is Hermitian. In brief, 

V = V01 + Va , (A3) 

where 

<T = <T\e\ + cr2e2 + ^h (A4a) 

7 = Viei + V2e2 + Vzh (A4b) 

are vectors in an abstract three-dimensional 'Pauli space'. The original operator is equivalent to a 
scalar part VQ and a Pauli-vector part V. A magnitude and direction can be defined for this vector 
part through V = (V-V)1'^ and v = V/V, although these need not generally be real valued. 

Products and Exponentials 

Products and exponentials of Pauli operators can be evaluated by using the fundamental com- 
bination rule 

(Tjcrk = iejkeCTe + 6jkl (A5) 

and its various spinoffs [Al] such as 

(a-a)(b-a) = (a-b)l + i(axb)-cr (A6) 

and 

exp(±iSs-a) = cos(5)l ± isin(5)s-<7 . (A7) 

Similarity Transforms as Pauli-Space Rotations 

For any Hermitian operator S, the result of using the unitary operator exp(—zS) to perform a 
similarity transformation 

V' = exp(+iS)Vexp(-iS) (A8) 

on the V of Eq. (A3) is necessarily an operator of the same form, 

V' = V{1 + V'-a . (A9) 

Clearly, the scalar parts of S and V play only a trivial role in this (So is irrelevant and VQ is 
invariant), and the vector parts are related through 

V'-a = exp(+iS-ä)V-ä exp(-iS-a) . (A10) 

Expansion of the exponentials using Eq. (A7), followed by two applications of Eq. (A6) results in 
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V' = cos(25) [V - (V-s)s] + sin(2S)t?x J + (V-s)s . (All) 

To clarify the form of this, let S = -<f>/2 and write V = Vv so that 

V =V {cos<p [v - (v-s)s]-sm<j>vxs + (v-s)s} . (A12) 

For a given v, any choice of s — provided it is not collinear with v — determines a right-handed 
orthogonal Pauli-space basis q,f,s in the following way. Take f to be the direction of sxv, i.e., 
sxv = sin Of with 0 = l(s,v). Then, since v is orthogonal to f, it can be written as 

v = sin 0 q + cos 0 s , 

where q = fxs. Thus Eq. (A12) becomes 

V' = V (A13a) 

v'= sm0(cos<j>q + sm<l>r) + cos0s , (Al3b) 

which means that V is just a rotated version of V. In standard spherical coordinates relative to 
the q,r,s axes, v' is a unit vector with spherical angles (0,<£), whereas v was a unit vector with 
spherical angles (0,0). Clearly, since V0' = V0 and V - V, the entire V —► V transformation 
amounts to nothing more than a Pauli-space rotation of the vector part of V about the direction s 
through an angle <f> = -25. Since S is Hermitian, S\, 52, S3 are all real, making the rotation angle 
real also. 

If S is not Hermitian, then the magnitude 5, as defined above, can become imaginary, giving 
the unit vector s both real and imaginary components. A more general class of "pseudo-Hermitian" 
S operators (with real 53 but imaginary Si, 52) is encountered below. The above result still applies, 
provided the rotation angle is allowed to be imaginary. 
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Appendix B 

RELATION TO THE BORN SERIES 

This appendix relates the "Foldy-Wouthuysen" (FW) solution obtained in the body of the 
report to the solution achieved in a scattering context by the Born method. The two are shown to 
agree through second order. 

Scattering Problem in Integral Form 

The Helmholtz equation of interest is 

d2
xu(x) + u(x) = -2e{x)u{x) , (Bl) 

in the scaled x coordinate. A scattering problem is being considered, so there are no sources at 
finite x. The retarded Green's function for a uniform medium (one with e = 0) is 

g(x,y)=%-j\x-d. (B2) 

It satisfies 

dlg(x,y) + g{x,y) = -8{x-y) (B3) 

and allows Eq. (Bl) to be re-expressed, within any interval a < x < b, as 

=6       fb 

u(x) = [g(x, y)dyu{y) - u(y)dyg(x, y)]yy=a + J   dy 2g(x, y)e(y)u(y) . (B4) 

Bounded Scattering Region 

For simplicity, suppose that all environmental nonuniformity lies in a bounded "scattering 
region" — specifically that the support of e(x) is the finite interval I < x < r. Outside that interval 
the field must have the form 

,  ,      / Ae+%x-a) + Be-*x-a)       ...   x<£ 
U[X) ~ { Ce+^-a) + £>c-'<*-fl>       ...   r < x (B5) 

where the point x = a has been used for the (arbitrary) phase reference and A, B, C, D are param- 
eters. One can always arrange for .A = 1 and D = 0 by normalizing appropriately and taking the 
incident signal to come from the left. Then if a < £ and r < b, the [•••]„ term in Eq. (B4) reduces 
to e*(x~a\ leaving 

rb 
u{x) = ei(x~a) + i /   dye^x-^e(y)u(y)  ...  a<x<b . (B6) 

Ja 

34 
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Now we rename a = XQ and let b —► oo so that the integral equation to be solved is 

u(x) = uo(x) + i /    dye*'x~y'e(y)u(y)  ...  io < x < oo , (B7) 
Jxo 

given the incident signal uo(x) = e1'*-*0). 

Born Method 

The smallness of e(x) suggests that one attempt to obtain the solution u as a Born series 

uB(x) = w0(x) + wi(x) + w2(x) + • • • (B8) 

with wn = 0(c"), starting with the incident field WQ = UQ. Born's method obtains the partial sums, 
un = wo + • • • + wn, of this series by iteration, 

un{x) = uQ{x) + i I    dyj\x-y\e(y)un-x{y)   ...  n >0 . (B9) 

In other words, successive terms in the Born series, Eq. (B8), are generated via 

tii„(a:) = t f°°dyjl*-tie(y)wn-i(y)   ...  n > 0 , (BIO) 

and the nth Born approximation is uB = un + 0(en+1). 

Preliminaries 

Before proceeding in that direction, it will be convenient to introduce some shorthand notation 
and a preliminary result. 

Differentiation will be denoted by superscripts in parentheses, 

9
(">(x)=^   ...  n>0, (Bll) 

which is a departure from the usage in the body of the report, (n = 0 is the trivial case q^ = g.) 
This will be extended to n < 0 so that, for example, g(-1) denotes the anti-derivative, 

q(~1\x)=  Fdyqiy). (B12) 
Jxa ixo 

In this notation, a typical Taylor series takes the form 

•f™ 

n7 
n=0 

9(^ + y) = E^(n)(a;)- (B13) 

We will also need the following result: 

L *^lr-(5)    • <B14) 

This may be obtained by first changing the integration variable to t = 2y, thereby converting the 
left-hand side to 

—^-rj /     dtelHn . 
n!2n+1 Jo 
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For physical reasons7, that singular integral is to be understood as the \j\ —* 0 limit of 

Jo 

which can be found in tables [Bl]: 

r dtft-xe-^iei6t = /c9
r(M

9\   ,,e''"atclanWW)   ...   »(/*)>-1,    |7| > |S(«)| - 
Jo (o + Yr1 

With /x = n + 1 and 6 = 1, the |-yf -» 0 limit is T(n + i)e
t'(n+1),r/2 = n! in+1, confirming Eq. (B14). 

First Born Approximation 

The first Born term is 

/•oo 

wi{x) = i /    <fyei(!/-X0+ls-J/l)e(?/) , 

or, with the integration range partitioned at y = x, 

ifll(s) = [t I' dye(y)   e
+i(x-x°^ + \i f°° dy ei2(-y-x°h(y) e-**-*^ . (B15) 

/(*) *(*) 

Outside the scattering region, where the functions / and 6 are constant, the significance of the 
two terms in Eq. (B15) is unambiguous. To the right (for r < x), b vanishes and the first term 
reduces to f(+<x>)e+t^x~x°"> where 

/oo 
dye(y) , 

-oo 

while to the left (for x < £), f vanishes and the second term reduces to b(—oo)e~'(x~x°^ where 

/oo 
dyei2^-xah{y) . 

-oo 

On the right side of the scattering region, w\ is a constant-amplitude wave that moves to the right; 
on the left, it has a different constant amplitude and moves to the left. Note also that for x < £, 

/oo 
dyei2ye{y) . 

-oo 

In terms of the unsealed lengths X = X/UQ, Y = y/ko, this is 

uiPO = e-
ikoXa{eikoX + [ik0e(2k0)}e-ikoX} , 

in which the [• • •] factor is recognizable as the first-order Born reflection coefficient expressed in the 
standard way [B2] as a Fourier transform C(K) = J^ dY elKYe(Y). 

7J7| embodies the effect of attenuation in the medium. 
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But we are interested mainly in the field within the scattering region, where w\ does not yield to 
any such simple, unambiguous reduction into forward and backward components. In the scattering 
region, however, Eq. (B15) can be written 

[rx too 

i /   dy e(y) + i        dy e,2ye(x + y) 
Jx0 JO 

(B16) 

Then, with e(x + y) = [e(x + y) — e(x)] + e(x) in the second integrand and with f£° dy e'2y = i/2 
(Eq. (B14) with n - 0), one has 

w\(x) = WQ(X) < 
tx 1 f°° 

i      dye(y)- -e(x) + i       dy e,2y[e(x + y)- e{x)] 
Jx0 I JO 

V 

(B17) 

This form emphasizes the fact that w\ can always be regarded, without any approximation at all, 
as a forward-propagating carrier WQ{X) = exp{i(x — xo)} with an x-dependent modulation fi + u. 
It also suggests that, although fj. ~ e, it may be possible, when e is a slowly varying function, to 
relegate v to the 0(e2) terms so that it contributes nothing to the Born approximation at this 
order. The remainder of this appendix is basically a systematic pursuit of this possibility through 
first and second order. 

When e(x + y) in the second integrand in Eq. (B16) is expanded in a Taylor series about y = 0, 
and Eq. (B14) is used to evaluate the resulting /0°° dy el2yyn/n\ terms, the outcome is 

WI/WQ 
°°     /,-\n+l oo        / • \ 

c(«) (B18) 

(Note that \i comes from n = — 1,0 and v from n > 1.) Thus the first Born partial sum is given by 

U\/v)Q = 1 + 1 m » (B19) 

i.e. 

ai(aj) = e^*-*") 1 + t 
rx I /» \ n+1    ,   v 

With 

e<-V ~ e , 

the first Born approximation u   — u\ + 0(e ) can then be written 

uB(x) = e*x-Xo) 
oo    /,-\n+l 

(l-iC(x))e^;d3'£(3')+^I:(i),,    eW(x) + 0(e2), 

(B20) 

(B21) 

(B22) 

but that is as far as one can go without some knowledge of the behavior of the derivative terms in 
the remaining sum. If, as in section 7, one assumes that 

e(") ~ £"+!   ...  n > 0 , (B23) 
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then all of them belong with the 0(e2) terms and one has 

u*(x) = (l - le(x)\ e»/-ody[1+e{y)] + 0(e2) . 

Term-by-term comparison with the first-order form of Eq. (110), namely, 

uFW{x) = Q[i](x)e-^11We'>[1]^") + 0(e2) , 

confirms that they agree through first order, 

uB-uFW = 0(e2). 

Second Born Approximation 

The second Born series term is given by the double integral 

roo roo 
w2(x)/w0(x) = -        dy        dzE(y,z) 

Jxo Jxo 

with the integrand8 

E(y,z) = e,^l»-*l+l*-«'l+(*-I»e(y)e(«) . 

When the integration ranges axe partitioned at y = x and z = y, this becomes 

W2/W0 = —(a + b + c + d) 

in terms of the four quantities 

rx roo 
a(x)=       dy dzei2^-yh(y)e(z) 

Jxo        Jy 
rx ry 

b{x) =       dy       dze{y)e(z) 
Jxo Jxo 

roo ry 
c(x)=        dy       dzei2(y-xh(y)e(z) 

Jx Jxo 
roo roo 

d(x)=        dy dzei2(z-xh{y)e(z) 
Jx Jy 

which will now be evaluated in turn. 

(B24) 

(B25) 

(B26) 

(B27) 

(B28) 

(B29) 

(B30a) 

(B30b) 

(B30c) 

(B30d) 

The a term is 
rx roo 

a(x) =       dy e{y) /    dz ei2ze(y + z) 
Jx0 JO 

rx °° r   roo ?n 

= /   dye{y)Y,*{n\y)   /    dzj2' — 
Jxo T?n Uo n! 1X0 n=0 

-E 5    -w n=0 

E's x dependence is left implicit. 

(B31a) 

(B31b) 

(B31c) 
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where expanding e(y + z) in a Taylor series about z — 0 produces Eq. (B31b), and Eq. (B31c) 
comes from evaluating [• • •] via Eq. (B14) and using the definition 

an(x)= fXdye(y)e^(y). 
Jxo 

The b term is, with no approximation, 

H*) = 2 \J dve(y) 

(B32) 

(B33) 

The c term is 

where the definition 

Jx 
TOO 

= /    dyei2y>y(x + y) 
Jo 

71=0   yLJ 

j(x) = e(x) /   dye(y) 
Jxa 

(B34a) 

(B34b) 

(B34c) 

(B34d) 

(B35) 

is used in Eq. (B34a), then expanding j(x + y) about y = 0 produces Eq. (B34c), and evaluation 
of [• • •] through Eq. (B14) produces Eq. (B34d). 

The d term is 

/•oo 
d(x)= /    dyei2^-x)a^(y) 

Jx 
/•oo 

= /    dye^a^ix + y) 
Jo 
00    °°    /,'\n+l , r  /-oo .jt 

f=0n=0 v''/ 1/° . 
oo    oo    ,..n+e+2 

= EEs      a-+1)(a:) 
n=0t=0 VZ/ 

oo    / • \ n+2   " 

- E (i)   E«ES'w 

(B36a) 

(B36b) 

(B36c) 

(B36d) 

(B36e) 

where expanding a^l>(x + y) about y = 0 and using the definition Eq. (B32) produce Eq. (B36c), 
then evaluating [• • •] using Eq. (B14) produces Eq. (B36d), and summation in an alternate order 
yields Eq. (B36e). 
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The second Born partial sum is given by 

UI/WQ = 1 + WI/WQ + W2/WQ (B37) 

with WI/WQ and W2/1V0 obtained from Eq. (B18) and Eq. (B29), respectively. For the second Born 
approximation, we will need to identify and retain contributions through order e2. For W\/WQ that 
is easy; to second order it is simply 

_£e(D 
4        • 

For W2/W0, we need all the second-order terms from a, b, c, and d. Since b is purely second-order, 
its contribution is simply e(-1)2/2. 

For a, we need to assess the an =   e(°M") terms, the first two of which are 

rx 
a0(x) = /   dye2(y) 

JXQ 

rx 1 
ai(x)= /   dye(y)eW(y) = -e2(y) 

Jxo 4 

Since e^(xo) = 0 for all n > 0, we have 

a0 = e2^1) ~ e2 (B38) 

ay = ^2 ~ «2 , (B39) 

both of which contribute at order e2. The an for n = 2,3, • • • can be evaluated by repeated 
integration by parts. For even and odd n, respectively, they are 

xo 

t_n Jxo 

e-i 

V ~,2/+2 

Jfc=0 > =v ' 

~€ 
""*  ~t2<+2 
:2l+2 

for £>1. Since 2^ + 1 > 3, all of these belong in 0(e3) and we are left with 

1 
a = -a0 - -ax + 0{eA) 

= je2(-1)-ie2 + 0(£
3). 

(») 

(B40) 

For c, we need the 7^") =   e^J  ^       terms. Since 

7(0) = e(0)£(-D ) (B41) 
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these can easily be obtained from the standard expression for the nth derivative of a product, 

7(n) = E      k   Wk)Jn-k-1)   ...  n>0 
fc=o V    / 

With the k = n term written separately, this is 

7( («)=£^+E(^)e(fc)6(n-fc-1)   ...  n>0. 
^,n+2 fc=0   \ / 

(B42) 

6n+l 

Clearly, the only contribution below the third order is the k = 0_,one for n = 1. Thus 

= i£(0)e(-i)_l£(0)2+o(e3) (B43) 

The fact that a^+1) = Wm]     = [e(°>c(m)|     is the Ith derivative of a product allows it to be 
written as 

Contributions to d come from m = n — £. Since these are 

fc=0   \ / ~,n+2 

only n = 0 contributes below the third order. Thus 

2 

= _I£(0)2+O(£3)# 

(B44) 

(B45) 

In Hght of the above results, the second Born approximation is given by 

u ) +C(e3) , (B46) 

or, in the conventional notation, 

uB(x) = e^-*») 1 + * y   dye{y)--(j   dye(y)J   - -e(x) 

+^e\x) - l-e(x) - l-e{x)fxdye{y) - %-£dye2(y)| +0(C
3) . (B47) 
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Term-by-term comparison with the second-order form of Eq. (110), i.e., 

uFW(x) = Q^(x)e-idM^ei^x^ + 0(e3) 

= (i _ le(x) + jj^)) e-«W/v£ +W)-«»™ + 0(,3) (B48) 

confirms their agreement through second order, 

uB-uFW = 0(e3). (B49) 

To extend this investigation to the third Born approximation would mean analyzing WZ/WQ — 
a triple integral analogous to Eq. (B27). The analog of Eq. (B30) would involve 23 = 8 terms; 
furthermore, their third-order contributions, along with those of W2/W0 and W\/WQ, would need to 
be identified and retained. The effort appears prohibitive, but it seems compelling to conjecture 
that uB — uFW vanishes to all orders. 
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