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PREFACE 

This report considers how Air Force repair contracts should be 

designed.  A large and potentially growing fraction of repairs are done 

by contractors.  Can contracts be redesigned to provide contractors with 

better incentives to have a robust, high-speed repair system? 

This report models and simulates contractor decision making. 

Insights are then derived as to how repair contracts should be designed 

to induce optimal contractor behavior. 

This work was carried out in the Contracting for Lean Logistics 

study in the Resource Management Program of Project AIR FORCE, RAND's 

federally funded research and development center (FFRDC) funded by the 

United States Air Force.  It was sponsored by the Deputy Chief of 

Staff/Logistics, Headquarters, USAF.  It should be of interest to 

logistics managers and analysts throughout the Air Force logistics 

system, especially those involved in contracting, and to logisticians 

and contracting officials in the other military departments and in the 

Office of the Secretary of Defense. 

PROJECT AIR FORCE 

Project AIR FORCE, a division of RAND, is the Air Force federally 

funded research and development center (FFRDC) for studies and analyses. 

It provides the Air Force with independent analyses of policy 

alternatives affecting the development, employment, combat readiness, 

and support of current and future aerospace forces.  Research is being 

performed in three programs:  Strategy and Doctrine, Force Modernization 

and Employment, and Resource Management and System Acquisition. 

In 1996, Project AIR FORCE is celebrating 50 years of service to 

the United States Air Force.  Project AIR FORCE began in March 194 6 as 

Project RAND at Douglas Aircraft Company, under contract to the Army Air 

Forces.  Two years later, the project became the foundation of a new, 

private nonprofit institution to improve public policy through research 

and analysis for the public welfare and security of the United States— 

what is known today as RAND. 
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SUMMARY 

Contractors represent a sizable, and potentially growing, portion 

of the Air Force's repair system. How should the Air Force design its 

repair contracts? 

In this report, we develop an economic model of contractor 

motivations and behavior and simulate how contractors would respond to 

different types of contracts.  We derive the government's optimal 

contract under varying scenarios. 

This model of contractor behavior is useful as a way to quickly and 

inexpensively test different types of contracts.  Further, models are a 

well-developed and accepted part of economic theory,1 and that research 

is utilized here in the construction and interpretation of the model. 

A MODEL 

We model an aircraft system that experiences stochastic failures. 

Broken parts enter the repair system irregularly.  The contractor must 

repair the broken parts and/or replace them with spare parts to maintain 

a specified aircraft availability level. 

The contractor has a variety of choice variables, e.g., repair 

capacity and quality.  We assume the contractor makes these choices 

based on what course of action will prove best for the contractor, given 

the contract provided by the government.  Meanwhile, the government 

chooses the contract form, which may include stipulations regarding a 

fee per unit repaired, a fee per spare required, and/or a lump-sum fee 

that does not vary with the number of units repaired or spares needed. 

The government knows the contractor will maximize for its own benefit in 

response to the contract provided.  In the model, the government must 

provide the contractor with a combination of fees and a lump sum that is 

lucrative enough ex ante (ahead of time) to induce the contractor to 

participate in the contract. 

1See, for example, Schmalensee and Willig (1989) . 
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AN APPLICATION AND SIMULATION 

We used data based on select F-16 components to run the model and 

understand contractors' and government behavior.  Our simulations 

suggest that the type of contract that the government provides has a 

large impact on contractor behavior.  For example, a contract that pays 

a contractor a sizable fee per unit repaired produces very poor 

incentives in this illustrative analysis.  The contractor's incentive is 

to choose very low-quality repair to assure itself of a steady stream of 

broken parts in the future.  The government's expected expenditures are 

quite large with the contracts of this sort that we analyzed. 

Unfortunately, this is a very common contracting approach. 

Our simulation suggests a contract that combines a sizable lump-sum 

payment with cost-sharing for required expensive spares can be a 

desirable approach.  With such a contract, the contractor receives a 

lump-sum payment that does not vary with the number of units repaired. 

The contractor also receives partial reimbursement if expensive spares 

are needed.  In exchange, the contractor agrees to maintain a specified 

aircraft availability rate.  Contractors compete for the contract on the 

basis of who will accept the lowest lump-sum payment, holding fixed the 

required availability level and the spares cost-sharing formula.  The 

model indicates that it is better to reward a contractor for meeting an 

aircraft availability target rather than compensating the contractor per 

item repaired.  An availability-oriented contract encourages high- 

quality contractor repair; the contractor benefits from high-quality 

repair since fewer broken items appear subsequently.  A contract with a 

lump-sum and expensive item cost-sharing also encourages rapid 

contractor repair, even without any explicit rewards for fast repair 

turnaround. 

EFFECTS OF CHANGING ASSUMPTIONS 

We derived an optimal contract for a specific set of parameters. 

To test the robustness of this result, we analyzed the performance of 

this contract in case various parameters varied. 

In general, the base-case optimal contracts performed well in the 

face of parameter perturbations.  For example, although the optimal 
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contract with a risk-neutral contractor involves no spares cost-sharing, 

the contract that was optimal with a highly risk-averse contractor still 

performs adequately with contractor risk-neutrality.  A halving or 

doubling of the part failure rate relative to the government's 

expectations is virtually irrelevant provided the contractor knows the 

actual failure rates.  As one might expect, large-scale changes in the 

contractor's repair cost function change the government's expected 

expenditures, but the form of the contract does not change in important 

ways.  One clear source of difficulty, though, would be if the 

government overestimates the costs of new spares and offers the 

contractor more per new spare required than the spares cost the 

contractor.  Also, we find the optimal contract does vary in important 

ways if contract duration is changed. 

CONCLUSION AND IMPLICATIONS 

Our model and simulations suggest that a contract with a lump-sum 

and expensive item cost-sharing in which payment to the contractor does 

not vary with the number of units repaired deserves greater attention in 

government repair contracting.  When the government can rely on 

contractor competition to arrive at the lump-sum payment, our 

simulations suggest such contracts place very limited informational 

requirements on the government.  The government does not need vast 

knowledge of part failure rates or contractor costs.  Such a contract 

does, however, assume the contractor has fairly detailed information 

about a weapon system, e.g., its failure pattern.  Such contracts are 

probably most appropriate, therefore, for mature weapon systems with 

predictable usage patterns. 
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INTRODUCTION 

BACKGROUND 

In Fiscal Year 1995, the Department of Defense spent in excess of 

$13 billion on depot-level weapon system maintenance and repair.  The 

Air Force's share of this spending exceeded $4 billion.1  The Air Force 

spent in excess of $1 billion on private sector contractor repair.2 

Further, proposals have been made to eliminate or lessen the current 

legislative mandate that at least 60 percent of maintenance work must go 

to public sector depots.3  Hence, contractor repair and maintenance is a 

large spending category and it may be growing further.  Clearly, it is 

important and valuable that the government design these repair contracts 

as carefully and thoughtfully as possible. 

In light of the large and potentially growing role contractors play 

in these processes, how might repair contractor performance be improved? 

How can component repair contracts be modified to ensure that 

contractors will take effective action to minimize their flow times and 

enhance the effectiveness of their efforts?  Can contractors be induced 

to provide high-quality, responsive repair? 

The United States government has typically used "per-repair" 

contracts.  With a per-repair contract, the contractor receives 

compensation that is a direct function of the number of items the 

contractor repairs. 

One version of a per-repair contract is a requirements contract in 

which the contractor receives a specified fee per unit repair without a 

guaranteed minimum workload.  Time and material contracts are also a 

version of a per-repair contract.- With a time and materials contract, 

the contractor is paid for whatever labor time and materials are 

xSee United States Air Force, Defense Business Operations Fund.  FY 
1995 Budget Estimates.  U.S. Air Force Overview.  Operating/Capital 
Budget (1994). 

2Leland (1995) notes that about 70 percent of the Air Force's total 
maintenance is done at public depots; the rest goes to contractors. 

3See Commission on Roles and Missions of the Armed Forces (1995) 
and Leland (1995). 



required to fix broken items.  Also in the category of per-repair 

contracts, the government sometimes uses fixed price contracts where a 

fixed number of items are guaranteed to be entering the repair process. 

Per-repair contracts have been criticized for not providing 

contractors with good incentives.  For example, because the contractor 

gets paid additionally each time a piece of equipment needs to be 

repaired, the contractor lacks obvious incentive to do high-quality 

repair. 

To address this problem, the government has begun to use a variety 

of other contracting approaches that move beyond per-repair contracts. 

One approach we label an "availability-oriented" contract; i.e., the 

contractor is paid for keeping a system operating and available.  For 

example, Serv-Air Inc. has a contract with the Air Force for repair of 

the C-21.  The C-21 is the military version of a Lear jet.  Serv-Air has 

a ten-year contract with the Air Force for C-21 repair and is 

compensated on the basis of the number of C-21 flight hours the Air 

Force receives.  If, for example, Serv-Air can increase C-21 reliability 

through improved repair processes, they will benefit financially even if 

fewer C-21 components then enter the repair process. 

Similarly, the Navy has a five-year contract with Litton Industries 

for repair of the LN-15C Inertial Navigation Unit.  Litton receives a 

payment per LN-15C flight hour while guaranteeing the Navy a specified 

availability level.  As with the Serv-Air contract, this LN-15C 

contractual arrangement provides Litton with enhanced incentives to make 

repair more lasting and effective.  In contrast, improved repair 

processes can reduce short-run firm revenue with a per-repair contract. 

Our objective in this research was to model repair contractor 

behavior to gain general insights into appropriate contract formulation. 

What incentives do per-repair contracts provide?  Does the C-21 or the 

LN-15C approach seem more reasonable?  Are there other desirable 

options? 

A MODEL 

This report describes a model that the Air Force (or any other 

organization interested in outsourcing its maintenance function) could 
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use to help assess and compare different ways of designing the contract 

for maintenance services.  It provides a flexible way to test the 

efficacy of different types of repair contracts.  As currently 

constructed, the model allows a risk-averse contractor to choose repair 

capacity, repair quality, the modification level, and hands-on repair 

time so as to maximize its utility, given the contractual terms that the 

government offers.  The model then uses simulation and numerical 

parameter search to predict how a utility-maximizing contractor would 

respond to any government offer and uses such predictions to derive the 

optimal contract from the government's point of view. 

The model can accommodate a wide range of assumptions about the 

characteristics of the contractor, the production process, the state of 

the world, and the contract designs to be evaluated.  We used a specific 

example based on Air Force maintenance data to illustrate the range of 

questions that can be addressed and to draw contracting policy 

implications. 

Figure 1 summarizes the model we developed.  In the model, there is 

a flight line that generates broken parts.  These parts flow to the 

contractor who is supposed to repair them. 

The repair contractor has a variety of choices to make.  For 

example, the contractor makes a one-time choice of how much repair 

capacity to build, how much quality to put into repairs, and how much 

time the hands-on repair takes.  Appendix A explains these parameters 

and details the mathematics of the model. 

The contractor's preferences will influence its behavior.  One view 

is that contractors are risk-neutral profit-maximizers.  However, 

another view is that contractors may be risk-averse.  Risk-averse 

contractors put comparatively greater negative weight on possible losses 

of a certain level than they put positive weight on possible profits of 

that same level.  We examine both these cases using the model. 

Meanwhile, the government has to decide what sort of contract to 

give to the contractor.  The government could set an aircraft 

availability requirement.  The government could give the contractor a 

fixed ("lump-sum") payment that does not vary with the number of items 

repaired or spares required.  The government could also give the 



Figure 1—Sketch of the Model 

contractor funds every time a repair is done or a spare is needed.  The 

different approaches to contracting discussed earlier are subsumed in 

these cases.  For example, a requirements contract lacks an availability 

requirement or a lump-sum payment, but has a fee per unit repaired.  The 

C-21 and LN-15C contracts, in contrast, have availability requirements 

and lump-sum payments. 

SIMULATION AND NONLINEAR SEARCH 

Given this model, we then simulate it.  We use sets of random 

numbers to simulate streams of broken aircraft.  We then use nonlinear 

parameter search to compute how the contractor best responds to possible 

broken aircraft streams, e.g., what level of repair capacity and quality 

is best for the contractor.  Finally, we use another nonlinear search to 

compute the best contract specifications for the government to provide 

to the contractor, given the government knows the contractor will 

respond in whatever manner serves its ends in response to that contract. 



It is important to understand the limitations of any simulation 

process of the sort used in this report.  For example, any simulation 

inherently involves a finite number of random draws from asserted 

statistical distributions.  We believe we have undertaken enough draws 

(generally 50 sets of 1250 periods) to find stable results.  However, 

one can never be fully sure.  For example, changes in the random number 

generator seed (building off a different string of random numbers) will 

result in somewhat different results.  We believe, however, that the 

basic findings, as opposed to the specific numeric results, in this 

report are robust to such changes. 

Further, our simulations' searches for the contractor's choices and 

the government's optimal contract involve nonlinear optimization.  We 

use a nonlinear search algorithm4 that we believe to be robust and 

stable.  However, nonlinear search algorithms involve starting values 

(i.e., best guesses of where solutions might lie), and it is always 

possible that nonlinear search algorithm solutions will vary with the 

starting values provided.  Again, our experiments with different 

starting values in our program lead us to believe our findings are 

robust.  Further, the contractor optima are similar case to case.  But 

the nature of nonlinear search is that there can be no guarantees that 

global optima have been found in every case. 

In Chapter 2, we simulate this model using the Radio Frequency (RF) 

repair stand and its repairs of F-16 transmitters and antennae as an 

example.  We derive the optimal contract given our parameters.  Chapter 

3 examines the sensitivity of the results to variations in our 

assumptions.  We show that Chapter 2's optimal contract continues to 

perform fairly well even if the government's knowledge of the real world 

parameters is imperfect.  Chapter 4 concludes the report. 

4We use the AMOEBA search algorithm described by Press et al. 
(1989) on pages 326-330.  Appendix B discusses our search algorithm in 
more depth. 
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AN APPLICATION AND SIMULATION 

We next apply this model to a realistic problem, the RF repair 

stand and its repairs of F-16 transmitters and antennae, and simulate 

the model.  The primary goal in this chapter is to derive the "optimal 

contract" in this example, i.e., the contract that minimizes expected 

government expenditure given that the risk-averse contractor maximizes 

in response to the contract it gets.  We also test the efficacy of 

common contracting approaches, e.g., time-and-materials contracts.  We 

assume a structure in which the government declares what per-unit 

repaired fee and spares cost-sharing it is offering, along with the 

required aircraft availability rate, and contractors compete based on 

who will accept the lowest lump-sum payment.  Later in this chapter, we 

show how the optimal contract changes as the required aircraft 

availability level changes.  In Chapter 3, we show how contractor 

behavior and the optimal contract change when model parameters change. 

In this example, we assume one has 403 F-16 aircraft that must be 

kept at a 98 percent Fully Mission Capable (FMC) rate at all times, 

i.e., 395 aircraft available.  We assume an available aircraft averages 

0.9 sorties per day, five days per week, with 1.25 hours per sortie.  We 

are using a specific type of contract in which the contractor must 

guarantee a specified availability level, in this case 98 percent. 

This F-16 example is based on the Air Force's Coronet Deuce 

exercise described in Abell and Shulman (1992).  The parameters we 

assume are designed to add realism to this example but are not to be 

viewed as real or valid.  The parameters chosen are important, however, 

in that they drive the specific contract parameters we derive. 

Table 1 and Appendix C present our base-case parameter assumptions. 

We assume the contractor is risk-averse and has the utility 

U(k) = k2,k>0 
function 

U(k) = -k2,k<0 

where k   is firm profit or losses, measured in thousands of 

dollars.  Figure 2 depicts this utility function. 
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Table 1 

Base Case Application Parameters 

Parameter Value 

Cost per new part      $198,578 

Statistical Lognormal with mean 0.013, variance 
distribution of part   twice as large as the mean, 
failure fraction       truncated at 1. 

Annual cost per repair  $535,000.00 
stand 

Periods per year       250 

Statistical Lognormal with mean 0.1 and variance 
distribution of repair  0.2, truncated at 1. 
stand failure fraction 

Repair quality per-unit $ 6407.8 *<?''68 

cost function 

Modification level     $ 39715.70 * m2 / (1-m) 
per-unit cost function 

Modification level     $ 10,000,000 *m 
fixed cost function 

Cost of speeding       0 
hands-on repair time 
by one day  
NOTE:  See Appendix C for details. 

This contractor is quite risk-averse.  Contractor utility could be 

defined in other ways, and/or different levels of risk-aversion could be 

chosen.  A general formulation is that the contractor's utility function 

is U(k(x,q,m,tr)), where X  is contractor repair capacity, q   is 

contractor repair quality, m   is the contractor's modification level, 

and tr  is the contractor's choice for the hands-on repair time. 

In this application, the government has three choice variables. 

The first is the fee per unit repaired (c\) .     The second is the fee per 

new unit required (c2).  Finally, the government can make a lump-sum 

payment to the contractor.  In this application, we do not consider fees 

based directly on the contractor's costs.  Instead, the fees are based 

on the number of units repaired and new units needed.  We wished to 



Figure 2-Risk-Averse Contractor Utility Function 

avoid the real-world complexity of government monitoring of contractor 

costs. 

Further, the lump-sum payment is constrained as the government must 

be sure the contractor's expected utility is at least zero.  The 

government cannot compel a contractor to perform; a contractor must be 

offered arrangements whereby its expected utility is nonnegative.  If we 

let E  denote the government's expected expenditure, the government 

wishes to choose c\   and cl  to minimize E(cl,c2). 



In response to any contract, the contractor has four choices:  the 

number of repair stands to buy (X  -  fractional values are allowable), 

the quality of repairs {q   falls between 0 and 1), the modification 

level to choose (m   falls between 0 and 1) , and the hands-on repair 

time (tr  - must be an integer).  We assume the contractor knows 

everything in Table 1, including the statistical distributions of part 

and repair station failure. 

To summarize, we have the government choosing c\   and cl  to 

minimize E(cl,c2)   subject to the contractor choosing X,   q,   m,   and tr  to 

maximize U(k(x,q,m,tr)). 

We simulate this model over five 250-period "years".  (There are 

approximately 250 business days in a calendar year.)  Appendix B 

describes the simulation procedure.  We assume a repair station can be 

rented for five years for $2,675 million.  We do not consider the 

possibility of contractual breach by either the contractor or the 

government. 

Before finding the optimal c\   and c2, we examined a "time and 

materials" contract.  With this type of contract, the government gives 

the contractor a fee equal to the marginal cost of q=1 repair every 

time an item is repaired.  Also, the government promises to pay for any 

spares the contractor needs.  The government also offers the contractor 

a lump-sum payment to make the contractor's expected utility zero. 

Table 2 shows how the contractor responds to such a contract. 

The contractor chooses a high-capacity level, but zero quality and 

no modifications.  The coexistence of a high-capacity level with low 

quality and no modifications occurs because the contractor is paid a 

high cl of $6,408 every time a broken item enters the repair process. 

Hence, in this case, high capacity is chosen to handle high volumes of 

repair that generate a great deal of fee income.  However, once in the 

repair process, the contractor has no incentive to undertake high- 

quality repair.  Instead, the contractor wants items to break again. 

The contractor relies on the government-funded spares (cl =198,578.47 or 

100 percent of the spares cost) to maintain the required 98 percent 

aircraft availability level. 
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Table 2 

Simulation of Time and Materials Contract with Risk-Averse Contractor 
98% Required Aircraft Availability 

Time and 
Materials 

Parameter   Contract 
Government c\ 

c2 
$6,407.80 

$198,578.47 
Lump- -sum -$1,598,990, 000 

Contractor X 

<? 
m 

K 

416.13 
0.00 
0.00 " 

1 

Government Expected 
expenditure 

$1,371,625, 000 

NOTE:  Simulation based on 50 sets of 
1250 periods.  Expected contractor utility 
is zero for each contract. 

Table 2's results are disturbing.  Table 2 suggests that a 

contractor has a strong incentive to cheat on a "time and materials" 

contract.  Instead of choosing high-quality (q = l)   repair, the 

contractor chooses low-quality (q = 0)   repair.  Broken items then churn 

through the contractor's repair facility with the contractor receiving 

the $6,407.80 fee for each one.  A fee of $6,407.80 per unit "repaired" 

does not, in this case, induce the contractor to choose the quality 

level associated with a contractor marginal cost of $6,407.80.  Instead, 

q = 0   and m = 0 repair with no marginal cost to the contractor is chosen 

and each cl=6407.80 temporarily becomes contractor profit.  Ultimately, 

however, this profit is competed away in the lump-sum. 

Interfirm competition does not move the government away from Table 

2's bad outcome.  Indeed, the contractor's expected utility in Table 2 

is zero.  The large negative lump sum implies the time and materials 

contract is not ultimately lucrative to the contractor.1  However, Table 

2's contract is extremely costly to the government. 

10f course, many actual defense contracts do have a separate fee 
based on the size of the contract.  Tying the contractor's profit to the 
size of the contract will clearly impact the contractor's incentives. 
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This is a noteworthy result in that the government often uses time 

and materials contracting approaches.  There is an allure to a contract 

in which the government pays for exactly the repairs that occur.  Table 

2's result suggests, however, that there can be severe incentive 

problems emanating from this sort of arrangement.  Contractors are 

tempted to skimp on repairs to the extent they can fool the government 

into believing expensive repair has occurred. 

Clearly, the legal system, reputational effects, monitoring of the 

contractor, and other mechanisms can be used to mitigate this bad 

outcome.  However, left unchecked, the model shows that time and 

materials contracts have a tendency to induce low quality. 

However, it is noteworthy that, in this simple, illustrative case, 

"good" outcomes can be elicited without intensive monitoring of 

contractor quality.  Table 3 shows that the government can do 

considerably better than offering Table 2's contract.  Table 3's optimal 

contract was derived through a nonlinear search of potential contracts 

the government might offer.  In other words, given that we know the 

contractor will optimize in response to any government contract, we 

found the Table 3 optimal contract provides the best expected results 

from the government's perspective.  We have one nonlinear search in 

which the contractor finds its best response to the government's 

contract and another search in which the government finds its best 

contract, knowing the contractor will optimize with respect to that 

contract. 

In Table 3's optimal contract, there is a penalty for having to 

repair a part ( c\) , but now the government pays 88 percent 

($174,110/$198,578.47) of the cost of buying a new part.  The risk- 

averse contractor wants protection against needing expensive spares. 

However, subsidizing spares lessens the contractor's incentive to choose 

high quality.  Hence, a per-repair penalty ( cl <0 ) accompanies spare 

cost-sharing. 

The contractor receives a big lump-sum payment from the government. 

(This lump-sum payment is chosen to set expected contractor utility 

equal to zero given c\   and cl.     We envision contractors competing on 

the basis of who will accept the lowest lump-sum payment, holding fixed 
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Table 3 

Simulation Contract Approaches with Risk-Averse Contractor 
98% Required Aircraft Availability 

Optimal Lump-Sum- -Only 
Parameter Contract Contract 

Government c\ -$2,628 $0 

c2 $174,110 $0 

Lump-sum $73,292,700 $122,728 000 

Contractor X 5.13 11.06 

q 1.00 1.00 

m 0.53 0.67 

K 1 1 

Government Expected 
expenditure 

$101,025 900 $122,728 000 

NOTE:  Simulation based on 50 sets of 1250 periods. 
Expected contractor utility is zero under each 
contract. 

c\   and c2.  An alternative approach would be to have the lump-sum 

provide the contractor with a fixed profit level.)  This lump-sum 

payment could be spread over time to reduce the possibility of 

contractor default.  The important point, however, is that the lump-sum 

payment does not vary with the number of broken parts or spares 

required. 

A fast hands-on repair time is chosen even though no explicit bonus 

is paid for speed of repair.  It is possible to have contracts with fast 

hands-on repair time even without explicitly rewarding or requiring 

speed.  When the contractor knows it will have to buy expensive spares 

if availability problems occur, it is in the contractor's best interests 

to move broken items through the repair process rapidly. 

The average repair capacity (X)   utilization rate associated with 

Table 3's optimal contract is approximately 44 percent.  However, the 

repair capacity is heavily used early in the contract.  With a positive 

m,   though, parts do not fail as often after being repaired once.  As 

time passes, a growing percentage of the parts has been modified. 

Hence, the number of failures and repair stand usage decrease over the 

duration of the contract. 

In Table 3, the pure lump-sum contract is not optimal and its cost 

is about 21 percent greater than the cost of the optimal contract.  The 
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government incurs additional cost with lump-sum contracts due to 

contractor risk-aversion.  The risk-averse contractor chooses a somewhat 

higher modification level (m) and considerably greater capacity level 

(X) than is optimal.  The government ultimately pays for this increased 

capacity and modification level through the lump-sum payment. 

Figure 3 shows the frequency of different ranges of realized 

contractor profits from 50 sets of simulations of Table 3's optimal 

contract and the lump-sum-only contract.  In all but one set of draws, 

the highly risk-averse contractor is profitable with the optimal 

contract.  The contractor is unprofitable in three sets of draws with 

the lump-sum-only contract.  The contractor's expected profit facing the 
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Table 3 optimal contract is $14.8 million.  By contrast, the 

contractor's expected profit with the lump-sum-only contract is $29.7 

million.  Of course, the contractor's expected utility with either 

contract, by definition, is zero.  The lump-sum-only contract implies 

the risk-averse contractor is bearing more risk, so the contractor must 

be compensated for doing so. 

In conclusion, we see optimal repair contracts with risk-averse 

contractors involve risk-sharing between the contractor and the 

government (cl >0 ) .  Such risk-sharing reduces the government's 

expected costs.  However, complete risk elimination, as in Table 2's 

time and materials contract, is highly undesirable as the contractor has 

strong temptation to cheat on such a contract. 

NO PER-UNIT PENALTY? 

One unusual aspect of Table 3's optimal contract is the per-unit 

penalty, cl <0. Under this type of contract, the contractor not only 

has to fix any unit that breaks, but must pay a penalty on top of any 

repair costs. 

This penalty is part of the optimal contract because 88 percent 

spares cost-sharing dulls the contractor's incentives to undertake high- 

quality repairs.  A penalty every time a part breaks increases the 

contractor's incentive to build high quality into repairs. 

Perhaps, however, a per-repair penalty is not practical. As an 

alternative, we considered a case where c\ is constrained to be zero 

and the lump-sum and the spares cost-sharing, cl, can vary. Table 4 

shows the optimal contract in this case. 

As expected, the government's expected expenditure is greater in 

this case compared to Table 3's.  However, the increase in the 

government's expected expenditure is less than 2 percent.  Without a 

negative c\, spares cost-sharing, c2, falls.  Table 4 involves 84 

percent, rather than 88 percent, cost-sharing. 

The broader message of Table 4, however, is that a per-repair 

penalty (c\ <0) does not appear to be centrally important.  One can 

achieve comparable results with cl=0 and somewhat less spares cost- 

sharing. 
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Table 4 

Simulation Contract Approaches with Risk-Averse Contractor 
98% Required Aircraft Availability 

c\ — 0 Contract 

cl = 0 
Parameter Contract 

Government c\ $0 

c2 $166,786 

Lump-sum $67,734,400 
Contractor X 5.39 

q 1.00 
m 0.49 

K 1 

Government Expected 
expenditure 

$102,854,600 

NOTE: Simulation based on 50 sets 
of 1250 periods. Expected contractor 
utility is zero under each contract. 

For the rest of this report, we allow c\   to be negative.  Table 4 

suggests, however, that this is not a critical feature of repair 

contracts. 

THE COST-AVAILABILITY CURVE 

As noted, Table 3 displays the optimal contract when 98 percent of 

the aircraft must be available in every period. 

We can use the same simulation procedure to sketch the cost- 

availability frontier, i.e., a display of the costs of different 

aircraft availability levels.  Table 5 shows the optimal contracts and 

the results of a lump-sum contract for various availability 

requirements. 

Not surprisingly, the government's expected expenditures with the 

respective optimal contracts are increasing in the required aircraft 

availability rate.  The cost per available aircraft also increases with 

the required availability rate.  We see that 100 percent availability 

costs more than three times as much as 50 percent availability.  The 

lump-sum-only approach is least appropriate at high availability levels. 

With a low enough availability requirement, the contractor's risks are 

not large, so the lump-sum-only approach is more appropriate. 
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Table 5 

Optimal Contracts and Required Aircraft Availability Levels 

Case c\ c2 Lump-sum 
Expected 

m Expenditure 

50% 
Optimal 
50% Lump- 
Sum-Only 

60% 
Optimal 
60% Lump- 
Sum-Only 

70% 
Optimal 
7 0% Lump- 
Sum-Only 

80% 
Optimal 
80% Lump- 
Sum-Only 

90% 
Optimal 
9 0% Lump- 
Sum- Only 

95% 
Optimal 
95% Lump- 
Sum-Only 

98% 
Optimal 
98% Lump- 
Sum-Only 

100% 
Optimal 
100% Lump- 
Sum-Only 

$7,877 -$79,399 $19,102,000 2.95 0.54 $29,336,400 

$0 $0 $31,318,300 2.67 0.54 $31,318,300 

-$2,000 $170,591 $42,115,600 3.26 0.50 $40,584,300 

$0 $0 $47,126,200 6.33 0.65 $47,126,200 

-$13,700 $177,302 $72,910,200 3.09 0.63 $56,255,000 

$0 $0 $66,629,300 7.89 0.67 $66,629,300 

-$7,577 $180,599 $69,555,000 3.82 0.58 $68,483,800 

$0 $0 $86,473,500 9.01 0.67 $86,473,500 

-$9,968 $178,677 $85,068,400 4.04 0.62 $87,354,000 

$0 $0 $106,840,100 10.16 0.67 $106,840,100 

-$11,972 $178,945 $94,893,200 4.09 0.64 $97,468,300 

$0 $0 $116,792,700 10.65 0.67 $116,792,700 

-$2,628 $174,110 $73,292,700 5.13 0.53 $101,025,900 

$0 $0 $122,728,0009 11.06 0.67 $122,728,000 

-$7,516 $181,010 $87,069,100 4.74 0.59 $103,901,700 

$0 $0 $126,699,900 11.28 0.67 $126,699,900 

NOTE:  Simulation based on 50 sets of 1250 periods.  Expected 
contractor profits are zero under each contract.  For each case, ^ = 1 

and L = 1. 
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Figure 4 plots the cost-availability curve. 

It surprised us that the cost-availability curves in Figure 4 are 

so linear.  Our intuition from inventory theory was that the curves 

would be more convex, i.e., the cost of 100 percent aircraft 

availability would be extraordinary.  The key to approximate linearity 

in Figure 4, it appears, is that repair capacity (X),   as well as the 

number of spares purchased, is allowed to vary with the required 

availability level.  Increasing the availability requirement, holding 

the capacity level fixed would result in a convex increase in costs as 

only spares could be used to obtain an increased availability level. 
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With both the optimal contract and, even more markedly, the lump- 

sum-only contract, the risk-averse contractor chooses to have a great 

deal of excess repair capacity on average.  For example, in the 100 

percent availability case, the optimal contract results in an average 

repair capacity utilization rate of 42.8 percent.  In the same case, the 

lump-sum-only contract results in an average repair capacity utilization 

rate of 14.9 percent.  The contractor is quite averse to having to 

purchase expensive spares. 

This excess capacity cushions the contractor against the 

variability in demands.  One would see considerable convexity if one had 

to purchase spares to buy out the variability at high availability 

rates. 

OPTIMALITY AND ROBUSTNESS 

The "optimal" contract in Table 3 is only optimal, according to our 

simulation, if all the myriad parameters and assumptions underlying 

Table 3 hold true.  Further, the Table 3 optimal contract is based on a 

finite number of random draws. 

As a practical matter, we may not so much be interested in a 

specifically optimal contract like the Table 3 optimal contract. 

Instead, we may wish to find a contract that is effective under a 

variety of circumstances, especially when we do not know all the 

detailed parameters of the model exactly.  We refer to such a versatile 

contract as being robust.  A robust contract is optimal in that it 

minimizes expected costs, given government uncertainty about certain 

parameters that characterize the world. 

Chapter 3 discusses our analysis of contract robustness.  It turns 

out that Table 3's optimal contract is surprisingly robust.  It closely 

resembles the optimum contract even with some major perturbations in the 

model's parameter values. 
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3.   EFFECTS OF CHANGING ASSUMPTIONS 

Table 3's findings apply to a very specific set of parameters and a 

specific type of contract.  In this chapter, we examine how optimal 

contracts change as situations change.  We also evaluate whether the 

Table 3 optimal contract performs adequately in these revised cases. 

Each case in this chapter uses the 98 percent required availability 

standard. 

We start with a change to the contractor's objective function. 

Suppose the contractor is a risk-neutral profit-maximizer.  How should 

the government design contracts for such a contractor? 

Another likely possibility is that aircraft parts fail in a manner 

other than the failure distribution assumed in Table 3.  We examine 

perturbations to Table 3's scenario whereby, for instance, parts fail 

more or less frequently.  We assume the contractor knows the true 

failure rates, but the government may be misinformed.  As the government 

might not anticipate failure rates correctly, it is important, too, to 

note how the Table 3 optimal contract works with different part failure 

distributions. 

There are other possible perturbations to the Table 3 scenario that 

the government is more likely to know about.  We examine cases where 

modifications are prohibitively expensive, where speeding hands-on 

repair time is costly, and where spares are less costly. 

Finally, the government itself might wish to change the contracting 

approach.  We examine a case of a one-year contract (our base case is a 

five-year contract) and a case of having ten times fewer aircraft 

repaired under a contract. 

A RISK-NEUTRAL CONTRACTOR 

Table 3 assumes a risk-averse contractor.  Suppose, instead, the 

contractor were risk-neutral.  Clearly, risk-neutral contractors may not 

be likely, but it is possible that a contractor would not be as risk- 

averse as the Table 3 contractor.  Hence, it is valuable to examine 

ramifications of loosening the risk-aversion assumption.  Under risk- 
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neutrality, the contractor's utility function has the form U(k) = k   for 

all values of L  A risk-neutral contractor weights a gain of $k   as 

favorably as it weights a loss of $k  unfavorably.  Table 6 shows the 

optimal contract in this case. 

Table 6 shows that a contract that relies solely on a lump-sum 

payment to the risk-neutral contractor is essentially optimal.  In 

contrast, Table 3's optimal contract is problematic with a risk-neutral 

contractor.  In our model, a risk-neutral contractor would choose to 

build too little capacity and would choose too low an m   value while 

relying excessively on the subsidized spares to maintain the required 

aircraft availability level.  If the government is wrong about the 

degree of contractor risk-aversion, fine-tuned contracts like the Table 

3 contract can be troublesome.  Of course, there is a large difference 

in the risk-aversion levels in Table 3 and Table 6, so perhaps it is 

comforting that Table 3's optimal contract is not even more 

inappropriate in this case. 

Figure 5 shows the frequency of different ranges of realized 

contractor profits from 50 sets of simulations of Table 6's lump-sum- 

only contract with a risk-neutral contractor.  Note Figure 5 is on a 

Table 6 

Simulation Contract Approaches with Risk-Neutral Contractor 
98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 

Government c\ $588 -$2,628 $0 

c2 -$3,224 $174,110 $0 
Lump-sum $82,078, 900 $57,362,200 $82,868,900 

Contractor X 5.68 4.21 5.68 
q 1.00 1.00 1.00 
m 0.62 0.48 0.62 

K 1 1 1 

Government Expected 
expenditure 

$82,864, 400 $93,530,400 $82,868,900 

NOTE:  Simulation based on 50 sets of 1250 periods.  Expected 
contractor profits are zero under each contract. 
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Figure 5-Risk-Neutral Contractor Profits with Lump-Sum-Only Contract 

different scale than Figure 3.  In contrast to Figure 3, there is a 

substantial chance the risk-neutral contractor loses money.  Of course, 

with contractor risk-neutrality, the government has the luxury of being 

able to set contractor expected profits to zero. 

Comparing Tables 3 and 6, the government spends more money when 

facing a risk-averse, rather than a risk-neutral, contractor because the 

government must compensate the risk-averse contractor for bearing risk. 

Table 3's lump-sum contract carries an expected government expenditure 

of $122,728,000.  In contrast, Table 6's lump-sum contract has an 

expected government cost of $82,868,900.  Hence, if one uses lump-sum 
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contracts, Table 3's contractor risk-aversion costs the government 

$39,859,100, or a 48 percent increase in expected costs.  Table 3's 

optimal contract eliminates $21,702,100 of this risk-aversion cost, or 

54.4 percent of the expected cost of risk-aversion.  Hence, Table 3's 

optimal contract is fairly effective in reducing the government's cost 

of risk-aversion, but a 22 percent risk-aversion premium remains. 

GOVERNMENT HOLDS INCORRECT DISTRIBUTIONAL BELIEFS 

The results in Table 3 are predicated on some heroic informational 

assumptions; e.g., the government and the contractor know part failure 

fractions are drawn from a lognormal distribution with mean 0.013 and 

variance twice as large as the mean, truncated at 1. 

Suppose, for instance, that the risk-averse contractor knew the 

true statistical distribution of part failure fractions was lognormal 

with mean 0.0065 (half the failure fraction the government expects) and 

variance twice as large as the mean, truncated at 1.  Table 7 

illustrates the truly optimal contract in this case (which the 

government does not know) as well as the results if the government were 

to offer Table 3's optimal contract or the lump-sum-only contract. 

Table 7 

Simulation Contract Approaches with Risk-Averse Contractor 
Failure Fraction Half Expected Level 
98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum - -Only 

Parameter Contract Contract Contract 

Government c\ -$2,567 -$2,628 $0 

c2 $177,777 $174,110 $0 

Lump-sum $50,617,500 $52,301,400 $111,564 300 

Contractor X 3.93 3.90 7.57 

q 1.00 1.00 1.00 

m 0.31 0.32 0.32 

K 1 1 1 

Government Expected 
expenditure 

$82,540,100 $82,905,000 $111,564 300 

NOTE:  Simulation based on 50 sets 
contractor utility is zero under each 

of 1250 periods 
contract. 

Expected 



23 

Table 7 shows that the optimal contract with half the expected 

failure rate is very similar to the Table 3 optimal contract.  As in 

Table 3, forcing all risk on the risk-averse contractor through a lump- 

sum-only contract is costly to the government.  Note the risk-averse 

contractor chooses far more repair capacity when facing the lump-sum- 

only contract than the optimal contract.  Due to this contractor risk- 

aversion, the government pays a 35 percent premium with a lump-sum-only 

contract in this case. 

Table 8 presents the reverse case, i.e., a part failure fraction 

twice what the government expects.  Again, the optimal contract in Table 

8 closely resembles the Table 3 optimal contract, and the Table 3 

optimal contract performs well. 

Comparing Tables 3, 7, and 8, we see that changes in the expected 

part failure rates do not proportionally change the government's 

expected costs.  Table 7's halving of the part failure rate reduces the 

government's expected expenditure less than 20 percent.  Table 8's 

doubling of the part failure rate increases the government's expected 

expenditures only by roughly 25 percent.  There are important fixed 

repair costs in this parameterization of the model.  This result 

Table 8 

Simulation Contract Approaches with Risk-Averse Contractor 
Failure Fraction Twice Expected Level 
98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 
Government cl -$2,723 -$2,628 $0 

c2 $185,535 $174,110 $0 
Lump-sum $103,291, 000 $105,446, 000 $141,472,000 

Contractor X 9.07 9.09 9.31 
q. 1.00 1.00 1.00 
m 0.67 0.67 0.71 

K 1 1 1 

Government Expected 
expenditure 

$126,305, 400 $126,854, 600 $141,472,000 

NOTE:  Simulation based on 50 sets of 1250 periods.  Expected 
contractor utility is zero under each contract. 
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suggests that if the government wants to tie payments to the contractor 

to the number of flying hours, for instance, the payment schedule should 

be nonlinear.  The contractor should receive a fixed payment along with 

a payment that varies with the number of flying hours. 

PROHIBITIVELY EXPENSIVE MODIFICATIONS 

The cases presented heretofore are characterized by m>0 in 

equilibrium; i.e., parts that break are repaired to be "better than 

new."  Perhaps such thorough repairs are not feasible. 

Looking at the other extreme, we examined the case where both the 

fixed and marginal costs of modifications were 100 times larger; i.e., 

it was prohibitively expensive even to consider modifications.  Table 9 

shows the resultant optimal contract. 

Table 9's optimal contract closely resembles Table 3's.  Again, we 

see a combination of a per-repair penalty (cl<0) and sizable spares 

cost-sharing is optimal.  Despite the major limitation in repair 

technology, the Table 3 optimal contract continues to work well in this 

case.  As in Table 3, the lump-sum-only contract induces the risk-averse 

contractor to build excess repair capacity. 

Table 9 

Simulation Contract Approaches with Risk-Averse Contractor 
Prohibitively Expensive Modifications 
98% Required Aircraft Availability 

Parameter 
Optimal 
Contract 

Government c\ 
c2 
Lump-sum 

Contractor X 
q 
m 
K 

Government  Expected 
expenditure 

-$3,132 
$180,616 
$82,638,400 
5.46 
1.00 
0.00 
1 

$153,250,600 

Table 3 
Optimal 
Contract 

Lump-Sum-Only 
Contract  

-$2,628 
$174,110 
$84,728,400 
5.42 
1.00 
0.00 
1 

$155,198,200 

$0 
$0 
$203,090,700 
10.39 
0.83 
0.00 
1 

$203,090,700 

NOTE:  Simulation based on 50 sets of 1250 periods, 
contractor utility is zero under each contract. 

Expected 
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When modifications are no longer an option, the cost of the optimal 

contract is over 1.5 times Table 3's optimal contract cost; more parts 

need to be repaired.  Further, the contractor's capacity level needs to 

increase (x = 5.46 versus x = 5.13 in Table 3). 

The repair stand utilization rate with Table 9's optimal contract 

is approximately 76 percent.  Since m = 0,   the expected repair rate is 

constant over time.  However, given the stochastic nature of part 

failure, it proves to be optimal to have some unused capacity, on 

average, because having to use spares to maintain availability is very 

expensive. 

HANDS-ON REPAIR SPEED IS COSTLY 

Our results heretofore assume the contractor can choose any repair 

speed ("hands-on time") between 1 and 50 days with no inherent cost 

associated with this choice. 

An opposing view is that it does cost a contractor to reduce hands- 

on repair time; e.g., capital expenditures may be required.  Hence, we 

investigated how the optimal contract and the associated outcome changes 

over a couple of hands-on repair speed cost scenarios. 

Table 10 outlines the case where there is a incremental cost to the 

contractor of $500,000 per day for hands-on repair time faster than 50 

days. 

In Table 10's $500,000 per day case, very fast (tr = l)   hands-on 

repair time is chosen in the optimal contract, even with a $24,500,000 

penalty to the contractor for choosing this speed level.  The Table 3 

contract remains virtually optimal. 

Table 11, however, shows that eventually the costs of repair speed 

grow prohibitive.  In Table 11's case, hands-on repair speed faster than 

50 days costs $1,500,000 per day.  We now see an equilibrium with very 

slow repair.  Further, repair capacity and the modification level fall 

(from x = 5.01/ m = 0.54 in Table 10 to x = 4.23/m = 0.30 in Table 11), so 

spares are proportionally more important in maintaining the required 

aircraft availability level.  As above, however, the Table 3 contract is 

essentially optimal in this case. 
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Table 10 

Simulation Contract Approaches with Risk-Averse Contractor 
Hands-On Repair Speed Costs $500,000 per Day 

98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 

Government c\ -$3,608 -$2,628 $0 

c2 $176,418 $174,110 $0 

Lump-sum $99,911,600 $97,704,; 500 $147,251,800 

Contractor X 5.01 5.13 10.99 

q 1.00 1.00 1.00 

m 0.54 0.53 0.67 

K 1 1 1 

Government Expected 
expenditure 

$125,153 ,500 $125,412 ,100 $147,251,800 

NOTE:  Si mulation base d on 50 sets of 1250 per iods. Expected 

contractor utility is zero under each contract. 

Table 11 

Simulation Contract Approaches with Risk-Averse Contractor 
Hands-On Repair Speed Costs $1,500,000 per Day 

98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 

Government c\ -$3,183 -$2,628 $0 

c2 $178,747 $174,110 $0 

Lump-sum $78,265,900 $79,917,000 $193,708,000 

Contractor X 4.27 4.31 4.10 

<7 1.00 1.00 1.00 

m 0.30 0.30 0.59 

tr 
50 50 50 

Government Expected 
expenditure 

$155,636 300 $156,459 600 $193,708,000 

NOTE:  Si mulation base d on 50 sets o f 1250 periods. Expected 

contractor utility is zero under each contract. 

It turns out that with the parameters we have used, the crossover 

point from a tr = 1 equilibrium to a tr = 50 equilibrium occurs at a cost 

per day of slightly over $1,000,000. 
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SPARES HALF AS COSTLY 

We also investigated a case where spares were half as costly as 

before ($99,289 rather than $198,578), but everything else (e.g., repair 

costs, failure rates) was held constant.  Table 12 presents the optimal 

contract in this case. 

Table 12's optimal contract has the magnitude of c2, the spares 

cost-sharing, reduced somewhat more than proportionally to the reduction 

in the spares cost.  Table 3's optimal contract had 88 percent spares 

cost-sharing; Table 12's has 77 percent spares cost-sharing.  Table 12's 

optimal contract's cost is 80 percent as large as Table 3's.  Not 

surprisingly, we see somewhat less reliance on repair capacity (;c = 5.05 

versus .£ = 5.13 in Table 3) with the halving of the relative price of 

spares. 

It is also not surprising that Table 3's optimal contract does not 

perform well in this situation.  The contractor eagerly lives off 

Table 12 

Simulation Contract Approaches with Risk-Averse Contractor 
Spares Cost Half as Much 

98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 
Government c\ -$3,3 05        -$2,628     $0 

c2 $76,491        $174,110     $0 
Lump-sum     $74,718,900   -$285,675,000 $93,599,800 

Contractor X 5.05 0.00 5.35 
Q 1.00 NA1 1.00 
m 0.54 0.00 0.57 
tr 1 NA 1 

Government  Expected     $81,242,800   $578,819,900  $93,599,800 
 expenditure  

NOTE:  Simulation based on 50 sets of 1250 periods.  Expected 
contractor utility is zero under each contract. 

■'-The quality and speed of repair are irrelevant if x = 0. 
Meanwhile, one does find m = 0 in this situation since there are fixed 
costs associated with any positive modification level. 
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$99,289 spares for which he receives $174,110 each.  In prior cases, we 

have seen that informational asymmetries, e.g., about failure rates or 

modification costs, are not always costly to the government.  The 

Table 3 optimal contract continues to work fairly well.  Table 12 

presents the (perhaps obvious) caveat that if the government chooses to 

mitigate contractor risk by subsidizing expensive spare parts, the 

government does have to have a reasonable understanding of the costs of 

these spares. 

DIFFERENT CONTRACTING APPROACHES 

One-Year Contract 

Table 3's contract runs five years.  Suppose, instead, the 

government wished to have a one-year repair contract.  Given annual 

budget cycles, the government often issues one-year contracts.  Even 

government multiyear contracts generally involve annual renewal options 

unilaterally held by the government.  Table 13 shows the optimal one- 

year contract. 

The optimal contract in this case involves less risk-sharing than 

in Table 3 (81 percent down from 88 percent in Table 3).  Table 3's 

optimal contract induces too little repair capacity and too small a 

Table 13 

Simulation Contract Approaches with Risk-Averse Contractor 
One-Year Contract 

98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 

Government c\ -$2,571 -$2,628 $0 

c2 $160,250 $174,110 $0 

Lump-sum $36,227, 900 $29,183, 800 $86,421,400 

Contractor X 18.85 3.88 19.08 

<? 1.00 1.00 1.00 

m 0.31 0.00 0.20 

K 1 1 1 

Government Expected 
expenditure 

$54,772, 000 $77,685, 000 $86,421,400 

NOTE:  Simulation based on 50 sets of 250 periods, 
contractor utility is zero under each contract. 

Expected 



- 29 - 

modification level.  Consequently, distended government costs occur due 

to excessive spares reliance. 

The government's expected cost of the optimal one-year contract is 

more than 50 percent of Table 3's five-year expected costs.  The short 

duration of the contract implies a low m; consequently, the cost per 

year is considerably greater. 

The average capacity utilization rate in the optimal case is about 

18 percent.  The considerable variance in part failure requires large 

excess repair capacity, on average. 

Contractor Responsible for Ten Times Fewer Aircraft 

The government might want to have fewer aircraft repaired by the 

contractor.  Hence, we investigated the case of ten times fewer 

aircraft, i.e., 40.3 aircraft of which 39.5 must be available.  All 

other parameters were kept the same, most notably the fixed costs of a 

given modification level.  Table 14 shows the resultant optimal 

contract. 

Table 14 shows that aircraft modification is no longer desirable 

with fewer aircraft.  However, the major change in the number of 

Table 14 

Simulation Contract Approaches with Risk-Averse Contractor 
Contractor Responsible for Ten Times Fewer Aircraft 

98% Required Aircraft Availability 

Table 3 
Optimal Optimal Lump-Sum-Only 

Parameter Contract Contract Contract 
Government c\ -$2,804 -$2,628 $0 

c2 $182,412 $174,110 $0 
Lump-sum $7,865,800 $8,371,000 $17,345,700 

Contractor X 0.55 0.54 0.83 
q 1.00 1.00 1.00 
m 0.00 0.00 0.60 

K 1 1 1 

Government Expected 
expenditure 

$14,589,600 $14,866,400 $17,345,700 

NOTE:  Simulation based on 50 sets of 12 50 periods.  Expected 
contractor utility is zero under each contract. 
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aircraft notwithstanding, the Table 3 contract structure continues to 

work well, as long as the lump-sum payment shrinks appropriately. 

Table 14 suggests considerable economies of scale in aircraft 

repair, given the cost function we have assumed.  Specifically, 

modifications are no longer cost-effective at this smaller scale. 

Hence, despite having 10 percent as many aircraft, Table 14's minimized 

expected government expenditure is over 14 percent as large as 

Table 3's. 
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CONCLUSION AND IMPLICATIONS 

This research has developed and simulated a model of repair 

contractor behavior.  Models are, by definition, oversimplifications of 

the real world.  Hence, we urge against interpreting these results too 

literally.  However, we believe there are a number of tentative lessons 

from these models and implementations.  First, per-repair contracts 

often seem to provide poor incentives.  The contractor has incentive to 

choose slow, low-quality repair.  Hence, the repair contractor has to be 

intensively monitored to provide reasonable repair speed and quality. 

According to our simulation, the optimal contract combines a lump- 

sum payment, expensive item cost-sharing, and an availability guarantee. 

With this sort of contract, the contractor guarantees a specified 

availability level.  This type of arrangement appears to provide 

excellent incentives to contractors.  The Air Force is using an 

arrangement of this sort for C-21 support, while the Navy has a contract 

of this sort for LN-15C inertial navigation unit repair. 

Across a fairly wide variety of scenarios, such contracts will give 

contractors incentives to provide fast, high-quality repair without 

explicit monitoring of or rewards for contractor capacity, quality, or 

speed.  Instead, the government only needs to make sure aircraft 

availability guarantees are being fulfilled.  With thoughtfully 

constructed contracts, the government's monitoring costs should be 

comparatively minimal.  Intensive auditing and monitoring of contractors 

may not be an inevitable component of government contracting. 

Such contracts do, however, require a well-informed contractor. 

Hence, contracts with lump-sum payments, expensive item cost-sharing, 

and availability guarantees seem most applicable for mature weapon 

systems with predictable failure patterns. 
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APPENDIX A: BASIC MODEL AND ENHANCEMENTS 

BASIC MODEL 

The model accommodates a single type of part. It operates under 

the assumption that the buyer will operate N of these parts in every 

period. For a new part, there is a stochastic failure fraction £k in 

period k . £t is a random variable drawn from some distribution g(e), 

where g{£)   has support over the interval [0,1]. 

For period 1, £XN  parts are broken and go to the contractor for 

repair.  In this model, there is one repair contract, though multiple 

contractors may compete for this contract.  There is no organic repair 

in this model. 

The repair contractor must choose some repair capacity X  before 

the contract begins.  If £XN<X,   the parts will be fixed for next 

period.  If not, new parts will be needed to get the number of operating 

parts back up to N   for next period.  We assume N  parts are operated 

every period.  The contractor must purchase extra parts to the extent 

there are not enough parts repaired.  The contractor may, however, be 

reimbursed, at least partially, for these purchases. 

This model is based on a fixed-availability assumption.  The 

contractor promises to provide a fixed level of aircraft availability to 

the government.  This is not simply a model in which the contractor 

tries its best to maximize availability.  Instead, the contractor 

promises to purchase spares as needed to maintain the required 

availability level.1 

The contractor also must choose the quality, q,   of its repairs, 

<J€[0,1].  If the contractor chooses quality level q, the newly repaired 

i-One might justifiably argue that it is unrealistic that a 
contractor could instantaneously acquire needed spares.  A related model 
would have the contractor pay a penalty equal to the cost of a spare 
every time a spare would be needed to hit the availability target.  Such 
a penalty-based model would differ from this chapter's model, though, in 
that actual aircraft availability would not always hit the target. 
Also, the government's net expenditure would be lower as it would 
receive penalty revenue. 
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part fails during period 2 with probability (1 — q + q£2).     Any value of 

q   can be chosen between 0 and 1, inclusive.  If the contractor chooses 

q = 0,   the part will certainly fail next period.  If the contractor 

chooses q = l,   the part will fail next period with probability £2, the 

failure probability of a new part.  If the repaired part does not fail 

in its first period after repair, its failure probability thereafter 

corresponds to the failure probability of a new part. 

Given this model, we can define five state variables and their 

interrelationships.  Define F{k)  to be the number of parts working in 

period k   immediately out of repair, i.e., the number of parts that just 

got fixed.  Define P(k)  to be the number of new parts brought into 

service in period k   (due to an inadequate number of parts coming out of 

repair) .  Define L(k)   to be the number of leftover parts in period k . 

With exactly N  parts operating every period, it is possible that there 

will be unused, but operable, parts.  Define B(k)  to be the number of 

parts newly broken as a result of operation in period k .     Finally, 

define D(k)  to be the number of parts in the contractor's depot or 

repair system after period k .      D(k)  will exceed B{k)   if the contractor 

has unfixed, broken parts overhanging from prior periods. 

Expressions for these state variables and the explanations for 

their derivation are found below. 

F(k) = rmn(D(k-l),x) 

P(k) = max(B(k -1) - F(k) - L(k -1),0) 

L(k) = max(F(£) + L{k -1) - B(k -1),0). 

B(k) = (N- F{k))£k + F(k)(l -q + q£k) 

D(k) = max(£>(fc -1) - JC,0) + B(k). 

First, F(k)   is derived by noting that, by definition, D(k — 1) 

parts were in the repair system during period k — \.     If D(k — 1)<X, 

where X  is the repair capacity, then all D{k — 1) parts are fixed.  If 

not, only X  are fixed. 

P(k)   is the number of new parts brought into service when the 

repair system can't keep up with breakage.  The Air Force loses B(k — 1) 

parts that broke in period k — 1.  The Air Force gains F(k)  parts, which 
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emerge from the repair system and can draw on any other unused parts. 

Hence, if B(k — 1) > F(k) + L(k-1) , the contractor needs to purchase 

B(k — 1) — F(k) — L(k — 1) new parts to cover the shortfall in period k. 

L(k)   is the number of leftover, unused parts in period k.     If the 

number of newly fixed parts, F(k), plus leftover parts, L(k-Y),   exceeds 

the previous period's breakage, B(k — 1) , one will have leftover parts. 

B(k)   is the number of broken parts in period k .     Newly repaired 

parts, F(k),   break with probability (l-q + q£k).     Any parts that were 

just fixed fly this period, we assume.  Other parts that fly, N— F(k), 

break with probability £k . 

D(k)  is the number of parts in the repair system after period k . 

That includes parts broken in period k   (B(k)),   plus any leftover parts 

if the system capacity, X,   wasn't sufficient to fix all of period 

k — l's  parts in the repair system, D(k — 1). 

Figure 6 sketches this model. 

Figure 6—Basic Model 
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The contractor chooses capacity, X,   and quality, q.     The 

contractor is assumed to have costs that are a function of F(k),    X,   q, 

and P(k), if the contractor both fixes parts and builds new ones.  (If 

the contractor only does repairs, P(k)   is not in the contractor's cost 

function.)  Meanwhile, the contractor receives payment from the 

government based on F(k)  and P(k).     For any period k, the contractor's 

marginal revenue is 

cl*F(k) + c2*P(k), 

while the contractor's marginal cost is 

(Cost of a repair, a function of q)* F(k) + (Cost  of a spare)* P(k) . 

The contractor also has fixed costs (for capacity, X)   and may 

receive a lump-sum payment.  Given these revenues and costs, the 

contractor will choose X  and q   to maximize its expected utility. 

Meanwhile, the government will want to offer a contract that 

minimizes its expected expenditures on repairs and new parts, taking 

into account the contractor maximizing its utility in its choices of X 

and q . 

MODEL ENHANCEMENTS 

There are a variety of realism enhancements one can build into this 

model.  One important issue is whether the repair contractor will choose 

to do modifications to parts in the repair process that make them 

"better than new"; i.e., modified parts have failure probabilities lower 

than new parts. 

To incorporate modifications into this model, suppose the 

contractor chooses the modification level m, me [0,1].  After a repair, 

the part's failure probability henceforth is (1-m) times the old 

failure probability.  If m = 0, there is no change in the part's failure 

probability.  If m = \,   the part will never fail again. 

With modification in the model, there is a considerably larger 

number of state variables.  There are "old," i.e., unmodified, parts as 

well as modified parts.  Conceptually, however, the model is the same. 

Hands-on repair time can also be a contractor choice.  (In the 

basic model, all repairs take one period to accomplish, if capacity is 
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available.)  Let us suppose repairing an already modified, but broken, 

part takes tr  periods while modifying a part takes tm  periods.  (If 

m = {Ji   no modification occurs.  In this case, tm   ±s  the time it takes to 

repair a part the first time it is in the repair system and ^r is the 

time subsequent repairs take.  One way to handle this would be to have 

tm
=t

r  for sufficiently small values of ^ .) tr  and tm  could be 

exogenous or they could be contractor choice variables.  The parameters 

tr  and tm  do not include any time spent in repair queues.  Clearly, 

queue time will be a function of tr,   tm,   X,   q,   m,   and the aircraft 

failure distribution. 

With the hands-on portion of repairs and modifications taking more 

than one period, it becomes an issue how the capacity constraint binds. 

We assume only X  units can begin the repair process in a given period.2 

We might also suspect that repair facilities themselves might not 

always work.  Suppose there is a stochastic failure fraction Xk   for 

repair capacity in period k, where Xk   is a random variable drawn from 

some distribution h{X)  with support over the interval [0,1]. Xk   could 

be correlated with £k .     Effective repair capacity in period k   is 

x(l — hk) .     We assume the contractor has no control over Xk. 

To incorporate modifications, repair lags, and repair facility 

failures, define OP(k)  to be the number of "old" parts operating in 

period k .     Define MP(k)   to be the number of modified parts operating 

in period k.     If there are extra parts, one always operates all 

available modified parts before operating any old parts.  Define OB(k) 

to be the number of old parts broken during operation in period k . 

Define MB(k)   to be the number of modified parts broken during operation 

in period k .     Define OD(i,k)  to be the number of old parts in the Ith 

stage of repair in period k,   i<tm.      (If there is not enough repair 

capacity to start repair on a part, it stays in the first stage of 

repair until capacity becomes available.)  Define MD(i,k)  to be the 

number of modified, but broken, parts in the ith stage of repair in 

2Below, we outline the case where X   is the maximum number of units 
at any stage of the repair process at any point in time.  The simulation 
results, however, are based on having X  be the maximum number of units 
that can start repair in a period. 
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period k,    i<tr.     We assume the contractor will first fix broken parts 

that have already been modified.  Define F(k)  to be the number of newly 

fixed parts in period k .     Parts that are fixed are modified, but it is 

possible that a part will be fixed that had previously been modified. 

Define P(k)   to be the number of new, but not modified, parts the 

contractor needs to purchase in period k   to assure that N  parts 

operate in period k .     Define OL(k)  to be the number of leftover 

(operable but not operating) old parts and ML(k)   to be the number of 

leftover modified parts.  Finally, define MT(k)  to be the total number 

of modified, operable parts and NM(k)   to be the number of parts newly 

modified in period k . 

Given these variables, we obtain the system 

OP(k) = N-MP(k) 

MP(k) = rmn(N,MP(k -1) - MB(k -1) + F(k)) 

OB{k) = ekOP(k) 

MB(k) = (l-q + q(l- m)£k )F(k) + (1 - m)ek (MP(k) - F(k)) 

OD(\,k) = max(0Z)(U -1) - max(x(l - A4_,) - MD&k -1),0),0) + OB(k) 

0D(2,k) = min(0D(U - l),max(x(l - Xk_,) - MD(l,k -1),0)) 

OD(i,k) = OD(i - U -1),*' e [3,tJ 

MD(l,k) = max(MD(lk-l)-x(l-Xk_l),0) + MB(k) 

MD(2, k) = min(M£>(l, k -1), x(l - At_,)) 

MD(i,k) = MD(i - U - l),i e [3,fr] 

F(k) = OD(tm,k -1) + MD{tr,k-1) 

P{k) = max(OB(k -1) + MB(k -l)-F{k)- OL(k -1) - ML(k -1), 0) 

OL(k) = max(0L(£ -1) + OP(k -1) - OP(k) - OB(k -1),0) 

ML{k) = max(MT(Jt) - MP(k\0) 

MT(k) = MT{k -1) + F{k) - MB(k) 

NM(k) = OD(tm,k-l). 

OP(k)   is the number of old parts operating in period k .     We assume 

that, if available, one uses modified parts, MP(k),   rather than old 

parts.  iV parts are in use every period, so OP{k) = N — MP(k) . 
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MP(k)   is the number of operating, modified parts. N  parts 

operate each period, so MP(k)  can't exceed N.      MP(k — \)  modified 

parts operate in period k — 1. MB(k — 1) of these break, but then F(k) 

modified parts emerge from the repair system. 

OB(k)   is the number of old parts broken in period k .      OP(k)  old 

parts are in use in period k;   they break with probability £k . 

MB(k)   is the number of modified parts broken in period k .     MP(k) 

modified parts operate in period k .      F(k)  of these modified parts are 

newly fixed and modified; they fail with probability (1 —q + q(l — m)£k) . 

The rest, MP(k)-F(k),   fail with probability (l-m)£k. 

OD(l,k)   is the number of old parts in the first stage of the repair 

process in period k.     In the first stage, no repair actually occurs 

unless repair capacity is available.  Hence, parts can linger in the 

first stage.  During period k — l,    OD(l,k — l)   old parts are in the first 

stage of the repair process along with MD(l,k — 1) modified parts.  We 

assume a repair algorithm in which you first fix already modified parts 

then fix old parts only if you have capacity.  Hence, if 

x{\- Xk_x)> MD{\,k-l),   some of the OD(l,k-l)  parts get fixed.  If not, 

all OD(l,k — 1) are leftover and stay in the first stage.  In addition, 

OB(k)  newly broken parts arrive. 

0D(2,k)   is the number of old parts in the second stage of the 

repair process in period k.     If x(l — Ajt_1) > MD(l,k — 1), there was some 

capacity available to old parts last period. OD(l,k — 1) old parts were 

available in the first stage last period.  To the extent capacity 

existed, these parts become 0D(2,k). 

OD(i,k)   is the number of old parts in the ith stage of the repair 

process in period k,    ie[3,tm].     For these i  values, the number in the 

/th stage of repair this period is simply the number in the /—1st stage 

last period. 

MD(l,k)   is the number of modified, but broken, parts in the first 

stage of the repair process in period k.     If MD(l,k — 1) > ;c(l — At_,) , 

there are unfixed, modified parts from previous periods.  If not, there 

are only newly broken, modified parts. 

MD(2,k)   is the number of modified, but broken, parts in the second 

stage of the repair process in period k .     Last period, there were 
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MD(l,k — Y)  modified, but broken, parts in the first stage.  At most, 

x(l-Xk_{)  could actually enter the repair process and therefore hit the 

second stage. 

MD(i,k)   is the number of modified, broken parts in the ith  stage 

of the repair process in period k,    ie[3,tr].     For these i  values, the 

number in the Ith stage of repair this period is simply the number in 

the l'-lst stage last period. 

F(k),   as above, is the number of newly fixed parts in period k . 

OD(tm,k-l)   formerly old, broken parts emerge from the repair system 

along with MD(tr,k-\)  modified, formerly broken parts. 

P(k)   is the number of new, but not modified, parts the contractor 

must purchase to insure that N  parts operate in period k.      OB(k-l) 

old parts break and MB{k-\)   modified parts break.  However, one has 

newly fixed parts, leftover old parts, and leftover modified parts to 

offset these breakages before purchases need to be made. 

OL(k)   is the number of leftover old parts in period k .     One might 

have leftover old parts from period k — 1.     One also has OP(k — l) 

operating old parts in period k-l.      OB(k-\)  of these break. OP{k) 

old parts operate in period k.     If OP(k) + OB(k - 1) < OL{k - 1) + OP(k -1) , 

one ends up with leftover old parts in period k . 

ML(k)   is the number of leftover, modified parts in period k.     We 

know MT(k)  parts are modified and operable while MP(k)   actually 

operate.  The remainder are leftover. 

MT(k)   is the total number of modified, operable parts. MT(k-l) 

were around last period, but MB{k)  broke. F(k)  newly fixed parts come 

on-line, however. 

Finally, NM(k)   is the number of newly modified parts that we know 

to be OD(tm,k-l). 

Clearly, adding these enhancements to the model complicates the 

analytics of this modeling approach, but there is no major conceptual 

complication.  As in the simpler case, the contractor would choose X, 

q,   and now m, tm,   and tr  to maximize expected utility, and the 

government, in turn, would attempt to design a contract that minimizes 

its expected expenditures, given contractor behavior. 
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ANOTHER VIEW OF CAPACITY 

As noted, in the current configuration of the model, X,   capacity, 

is the maximum number of units that can start to be repaired in a 

period. 

Another view of capacity is that X   is the maximum number of parts 

that can be at any stage in the repair process at a point in time. 

In such a case, the effective capacity facing parts awaiting repair 
V 'in 

is   xil-l^-^MDiUfy-^ODiUk).     Hence,   we would get 
i=2 i=2 

I, <m 

OD(l,k) = max(OZ)(U -1) - max(x(l - At_,) -^MD(i,k-1) -^OD(i,k -1),0),0) + OB(k) 
1=1 i=2 

• r 'in 

0D(2,k) = min(0D(U - l),max(x(l - Xk_x) - ^MD(i,k -1) - ^OD(i,k -1),0)) 
1=1 /=2 

MD(l,k) = max(MD(l,k-1) - *(1 - A,_,) + ^MD(i,k-1) + %OD(i,k -1),0) + M5(fc) 
i=2 i=2 

MD(2, it) = min(MD(l, fc -1), x(l - V.) - X MD(U -1) - J 0D(i, * -1)). I 
1=2 i=2 
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B.  THE CONTRACT SIMULATION PROGRAM 

We developed a UNIX-based C computer program we called CONTRACT to 

undertake the simulations described in this paper.  This appendix 

sketches the CONTRACT program. 

The outermost loop of the program involves the government's search 

for the optimal contract.  The government searches over c\,   cl, and the 

lump-sum using the AMOEBA search algorithm described by Press et al. 

(1989) on pages 326-330. c\   and cl  can be negative or positive.  The 

lump-sum payment is chosen to set the contractor's expected utility to 

zero.  The government attempts to minimize its expected expenditures. 

The AMOEBA search algorithm is not particularly efficient, but we 

chose it as a conservative algorithm that can hopefully find optima in 

very nonlinear situations. We were concerned that faster, derivative- 

based search algorithms, e.g., Davidon-Fletcher-Powell, would jump too 

quickly to solutions without surveying the set of options thoroughly. 

Given a specification of the government's contract, the next loop 

of the CONTRACT program involves the contractor's search for its optimal 

parameters, e.g., capacity (X),   quality (q) , the modification level 

{m),   and hands-on repair time (tr) .     For each contractor capacity, 

quality, modification, and speed combination, the program computes the 

contractor's expected utility and the government's expected expenditure. 

We used the AMOEBA search algorithm to find the contractor's 

optimal capacity, quality, and modification level, given the 

government's contract.  Meanwhile, we discovered that repair time (tr) 

always goes to a corner solution.  Hence, we simply checked the corners 

of tr = 1 and tr = 50 .  (Obviously, in this loop, the contractor does not 

account for the fact that in the higher loop, the government adjusts the 

lump-sum payment to set the contractor's expected utility to zero.  The 

lump-sum payment is exogenous from the contractor's perspective.) 

We know a priori that x>0 ,   0<q<l,   and 0 < m < 1.  In order to 

assure that these constraints held, the search algorithm actually 

:hed f< 
.2 //,.2 

searched for J>,, y2,   and y3, where X = yl  ,   q = y2 I (y2 +1) ' an(ä 

m = y;i(y; + \). 
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The expected utility and expenditure values are computed from 50 

sets of 1250 period simulations.  For each period, there is a random 

draw that determines the part failure fraction (£k)   and a different 

random draw that determines the repair station failure fraction ( Xk) . 

The draws £k   and Xk  come from a random number generator based on work 

by Marsaglia and Zaman (1991) and Feldman (forthcoming). 
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C.  APPLICATION PARAMETERS 

This appendix discusses our base-case parameters.  These parameters 

are presented in Table 1 and used in the simulation results in Tables 2 

and 3.  These parameters are loosely based on the Coronet Deuce exercise 

described in Abell and Shulman (1992).  However, this example is 

designed to be illustrative, not a tight representation of reality. 

We assume a Radio Frequency (RF) repair stand costs $5.35 million 

and lasts ten years.  Hence, its annual fixed cost is $535,000.1  Repair 

stands are assumed to have a stochastic failure fraction drawn from a 

lognormal distribution with mean 0.1 and variance 0.2, truncated at 1. 

Three F-16 parts are relevant to our analysis:  the dual mode 

transmitter, the modular low power radio frequency (MLPRF), and the 

antenna.  To accommodate the needs of the model, we will treat these as 

a single composite part with a pattern of failure and costs consistent 

with the underlying characteristics of these three parts.  We assume 

that on a given flight hour, the dual mode transmitter fails with 

probability 0.005, the MLPRF fails with probability 0.006, and the 

antenna fails with probability 0.002.  If failure probabilities are 

independent, the probability that nothing fails is 0.987.  Hence, we 

assume part failure fractions per flight hour are drawn from a 

distribution with mean 0.013.  We further assume this failure fraction 

distribution is lognormal and has variance twice as large as the mean, 

truncated at 1.  We assume part failure and repair stand failure are 

statistically independent.  These distributional assumptions describe 

the pre-modification failure pattern.  If the contractor chooses to 

modify aircraft, the failure fraction falls. 

1For simplicity, we set aside problems associated with willingness 
to invest in a specific asset like an F-16 Radio Frequency repair stand 
or getting access to the technical data that allow a contractor to use 
such a specific asset.  A more complete analysis would address the 
implications of these problems for contract design.  For simplicity in 
this illustrative analysis, we assume that such an asset is freely 
available for rental at the annual fee noted. 
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We have data indicating that a dual mode transmitter costs $199,778 

new, a MLPRF costs $229,134 new, and an antenna costs $98,756.2  Hence, 

the failure weighted average price of a new part is $198,57 8.  We will 

simplify our problem by assuming there is one "typical" part with this 

failure weighted average price. 

We also have data indicating that dual mode transmitter repair has 

a marginal cost of $6469.38, MLPRF repair has a marginal cost of 

$5544.75, and antenna repair has a marginal cost of $3265.59.  Hence, 

the average marginal repair cost, conditional on some failure occurring, 

is $5572.00.  Previous research found that most fixed parts are "good as 

new," but 7 to 9 percent are not adequately repaired and will 

immediately fail again.3  Hence, we assume one gets g = 0.92 for 

$5572.00. 

We also assume that 15 percent more expenditure per repair would 

solve the imperfect repair problem.  Hence, if we model repair cost as 

aqL, we find a = 6407.80 and L = 1.68.  With this structure, q = l   repair 

costs $6407.80 per unit repaired. 

We also assume that a 50 percent modification (i.e., the modified 

unit will require removal with half the probability of a nonmodified 

unit) would entail $5 million in fixed cost plus 10 percent of the 

relevant part's cost.  Given our average part value, this per-unit 

m = 0.5 cost is $19,857.85.  We assume that modification costs increase 

geometrically and that m =1 is prohibitively expensive. 

Figure 7 shows the unit cost of a repair associated with the 

contractor's choices of q   (solid line) and m   (broken line). 

We also assume that it is costless for a contractor to speed up the 

hands-on portion of repair.  Hence, a contractor can choose any tm  or tr 

without cost.  We do, however, assume tm—tr,   for simplicity.  Of 

course, hands-on repair time is only a portion of total repair time as 

items may wait in repair queues if there is limited repair capacity. 

2These data and the repair cost data come from the March 1993 issue 
of the Air Force Materiel Command's Recoverable Consumption Item 
Requirements System (D041) database. 

3For example, Dumond, Eden, Mclver, and Shulman (1994) argue that 
about 9 percent of F-15C/D radar units are "lemons." 
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Figure 7—Unit Cost of a Repair 

AGGREGATION BIASES 

In the real world, every aircraft has a large number of parts.  In 

the application in this report, we aggregate aircraft parts such that 
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each aii-craft has only one part.  This aggregation procedure is not 

entirely benign.  There are at least two resultant biases, and it turns 

out that they work in opposite directions. 

Suppose, in the real world, one had an aircraft that experienced 

multiple, concurrent part failure.  In the real world, two or more 

broken parts would enter the repair process. 

In our aggregated world, each aircraft has only one part.  Hence, 

this multiple, concurrent part failure on one aircraft would be 

represented by having one broken part enter the repair process.  In this 

situation, our capacity estimates (X) are biased downward. 

Another real world scenario, however, would have two different 

parts on two different aircraft fail.  Two parts would enter the repair 

process.  However, in the real world, cannibalization across aircraft 

may be possible.  In this situation, only one aircraft may consequently 

be grounded.  In the aggregated world, each aircraft with a broken part 

would be grounded.  Hence, the contractor would likely buy extra repair 

capacity to avoid having to purchase extra spares, as compared to the 

real world situation with cannibalization. 

Hence, there are countervailing biases introduced by the part 

aggregation procedure.  If intra-aircraft part failures are highly 

correlated, the first bias (X  too low) may be important.  If, however, 

cannibalization is important in the real world, the second bias (X  too 

high) may be important. 

We ignore potential economies of scope in repairing multiple types 

of items.  Also, we do not consider flexibility tradeoffs, e.g., 

flexible versus specialized repair technology. 

Ultimately, however, the primary purpose of this report is to 

illustrate how contractors might respond to different types of 

contracts.  It isn't clear there would be any bias in the comparative 

statics of contractor responses, even if the capacity estimates are 

biased in an unknown direction. 
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