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Foreword

Technology is an important ingredient in having an effective military. Technology provides

the military with advanced capabilities in communications resulting in rapid response as well as
precision strike weapon systems resulting in robust effectiveness. As technology matures, more and
more "smart" systems will evolve. The unique operational and technical nature of these smart systems

has given rise to a variety of sensor/seeker technologies available to the designer.

There is no "one" perfect sensor technology to be used in a missile seeker system, but instead
there is in many cases "one" better technology given the constraints. This document was written as a
tutorial for those who wish to develop an understanding as to the selection of a particular technology

implemented in autonomous missile sensor/seeker designs.
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1.0 INTRODUCTION

The implementation of an autonomous smart weapon system, such as surface/air-to-air or
surface/air-to-ground missiles presents an engineering challenge to the system and seeker/sensor
designers. Achievement of objectives may require missiles employing single as well as multi-

spectral seekers.

The selection of the electromagnetic spectrum(s) to be used by the seeker requires
engineering tradeoffs by the designers. These tradeoffs involve many variables such as missile
diameter/volume constraints, acquisition range/tracking accuracies, target position uncertainty
(which drives search volume requirements), target(s) characteristics (size, temperature, radar
cross section, velocity, altitude), natural background (sky, ground, trees, dust, rural/urban,
seasonal, night/day), weather (rain, clouds, fog, snow), and countermeasures (signature

suppression, decoys, jammers).




2.0 ELECTROMAGNETIC SPECTRUM DISCUSSIONS

The seeker links the missile to the outside world and is used to detect and tfack targets.
The sensor is sensitive to the electromagnetic radiation incident upon its aperture. _This radiant
energy can come from any of the following sources: reflection from the target, emittance from
the target, and/or emittance/reflectance from the target's background (rocks, trees, sun, clouds,
etc.). In response to this energy, the sensor produces internal electrical signals which are sent to
the signal processing electronics. The sensor output is processed for target detection and
possibly recognition by the electronics to determine the appropriate guidance commands for

missile intercept. A simplified diagram is shown in Figure 1.
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Figure 1. Simplified Radar/Infrared Sensor Block Diagram

The electromagnetic spectrum can be partitioned into radio frequency and infrared
wavebands as illustrated on the horizontal axis of Figure 2. One important aspect of spectrum
selection for a seeker is consideration of the associated atmospheric attenuation that is indicated
on the vertical axis of Figure 2. The desirable points on the curve are the valleys (marked with a
circle) which correspond to wavebands of minimum atmospheric attenuation or "atmospheric

windows" as they are commonly referred to.
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Figure 2. Electromagnetic Spectrum

Accordingly, the common nominal infrared wavebands are 0.75-3 pm (short wave IR),
3-6 pm (mid wave IR), and 6-15 pm (long wave IR). The corresponding common nominal radio
frequency bands are 9-12 GHz (X band), 12-18 GHz (Ku band), 27-40 GHz (Ka band), and
92-96 GHz (W band). The 35 and 94 GHz regions are commonly referred to as millimeter wave
frequencies by the seeker community. Appendix A contains a much broader electromagnetic

spectrum which covers all sensor technologies.

2.1 Infrared
All objects possessing a temperature above absolute zero (minus 459.67 degrees

fahrenheit) emit radiation. This thermally generated radiation occurs in all regions of the IR




spectrum. The amount of IR radiation from a particular waveband is a function of the

temperature and material characteristics of an object such as emissivity (the ability to emit
radiation). An ideal radiator is called a blackbody which possesses an emissivity of "one" (ideal).
Plank's law provides the spectral radiant emittance of a blackbody as a function of temperature.
Figure 3 shows the distribution of radiant emittance as a function of wavelength for a blackbody

at various temperatures. The bottom portion has been rescaled to show the emittance of the

various wavelengths at cooler temperatures.
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Figure 3. Emittance vs Wavelength For Specific Temperatures



The area under a particular temperature curve over the waveband of interest determines
the amount of spectral emittance in that region of the spectrum. The spectral emittance resident
in the 4-6 pm and 8-10 ym wavebands at 300° K are illustrated by the shaded areas in Figure 3.
At lower temperatures there is considerably more energy in the 6-15 pm region than in the 3-6
um region. For example at 80.3°F (300°K-ambient) approximately 38% of the total radiation is
in the 6-15 pym region as compared to 1.3% in the 3-6 pm and 0.009% in the 0.75-3 pm regions.
Consequently, the 6-15 um region generally performs better against a cooler target than 3-6 ym
and 0.75-3 um regions. However, as the temperature is increased the percentage of the emittance
in the .75-3 pm and 3-6 um regions increase:with a corresponding percentage decrease in the
6-15 ym region. At these hotter temperatures the 3-6 pm region performs better than the 6-15
pum and the 0..75;3 um regions. At very hot temperatures (>1200°K) the percentage of emittance

is greater for the 0.75-3 pm region as compared to 3-6 pm and 6-15 pm regions.

The 0.75-3 pm region is not normally used in "passive” missile seeker applications
because typical targets (at temps less than 1000°K) passively emit "thermal radiation” which is
characteristic in the mid/long wave IR bands. However, the 0.75-3 pym region is used in "active"
or "semi-active" missile seeker systems which require a source designator such as a LASER.

Most LASER sources used produce stimulated radiation emissions in the 0.75-3 um window.




The advantages and disadvantages of the two IR spectral regions commonly used for

"passive" missile seekers is shown in Table 1.

Table 1. Comparison of IR Regions

Spectrum Region

Advantages

Disadvantages

3-6 ym (MWIR)

« Responsive to hotspots

« Good contrast with hot.object
against an ambient
background

 Technology is very mature/low
cost

« Multiple detector material
selection

+ More design tolerance

» Poorer performance against
cool targets

» Atmospheric attenuation
(under the conditions
specified in Figure 2. See
note 1).

6-15 pym (LWIR)

« Responsive to cool targets

 Less atmospheric attenuation
(under the conditions specified
in Figure 2. See Note 1)

« Technology not as
mature/higher cost

« Limited detector material
selection

Note 1: Atmospheric attenuation is heavily dependent upon range, temperature and humidity.
Regions of crossover exists where MWIR attenuation is lower than LWIR.

IR seekers can be used in scanning or staring modes. LWIR scanning systems would

have better performance than MWIR scanning systems. However, MWIR staring systems with

longer integration times may provide the needed performance.

2.2 Radio Frequencies (RF)

Radio frequency selection involves engineering tradeoffs among several critical factors

which impact seeker characteristics and performance. These factors include physical size,

transmit power, bandwidth, beamwidth, atmospheric attenuation, cost, and maturity of

components. Table 2 summarizes the effect on performance and seeker characteristics as the

frequency is increased.




Table 2. Effect On Seeker Characteristics As Frequency Is Increased

Characteristics by Increasing

Effect on Seeker

Advantage / Disadvantage

Source of Effect

Frequency
« Decrease size and weight Advantage » Smaller and lighter
components
« Improve detection of stealth Advantage « Higher frequency particularly
targets at millimeter wave
« Increase Doppler resolution frequencies
* Increase range resolution Advantage « Larger bandwidth practical at
« Spread spectrum for ECCM : millimeter wave frequencies
« Improve tracking accuracy Advantages » Narrower beamwidth & lower
« Increase angular resolution sidelobes
» Reduce multi-path and clutter
+ Higher gain
¢ More jam resistant
« Improve image quality and
classification
« Decrease target search Disadvantage « Narrower beamwidth
capability
« Increase atmospheric losses Disadvantage « Increase absorption and
scattering
»_Shorter Acquisition_ranges Disadvantage + Less transmit power
. Ipcrease cost and schedule Disadvantage « Technology less mature at
risk higher frequencies
(particularly at 94 GHz and
higher)




3.0 MULTISENSOR DATA FUSION

Missile seekers employing sensor suites require an architecture for employing the outputs
of more than one sensor. Complementary sensor characteristics, such as acquisition range versus
tracking accuracy, can be exploited by sequential employment of sensors. In addition,
simultaneous employment of multisensor data may be required to provide the margin of
performance enhancement necessary to acquire and track challenging targets such as low
observable - stealth targets at low altitude (see Figure 4). Section 5.0 describes the fundamentals

of using sensor fusion for increased acquisition performance.

Coarse acquisition sensor hands off target to high resolution terminal

engagement sensor
ACQUISITION SENSOR
\ IFov
By
~T— - - TRACKING SENSOR
~ T~ S IFOV

Sequential Sensor Fusion

Sensor A and Sensor B provide acquisition and track functions

SENSOR A

e \ IFOV
‘f%ﬁ? Ad SENSOR B
/\ e —_ IFOV

Simultaneous Sensor Fusion

Figure 4. Sequential and Simultaneous Sensor Fusion
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4.0 POTENTIAL MULTI-MODE/DUAL MODE CONCEPTS.

Often, due to the diversity of target and background sets, utilization of multi-mode/dual
mode seeker concepts can be expected from industry. This would permit the missile to operate in

a more diverse battle environment. There are numerous ways to implement multi-spectral

seekers.

4.1 18 GHz (Ku band) Radar/ 8-12 ym or 3-5 pm Focal Plane Array

The primary employment mode for this sensor suite would be sequential with the radar
acquiring the target at greater ranges and then handing off to the IR sensor for more accurate
tracking in the end-game. The radar could shut down after hand-off for covenness. Alternately,
the radar could actively track the target in concert with the IR sensor for improved track
continuity in the event of countermeasure employment or a cloud obscured line-of-sight to the

target.

For low observable targets at low altitude, target acquisition performance enhancement
could potentially be realized via a sensor fused operating mode where detection decisions are

based on combined radar/IR observations.

4.2 18 GHz (Ku band)/ 35 GHz (Ka band) Radar

The primary operating mode for this frequency diverse combination of radars would also
be sequential. The 18 GHz frequency would be the primary frequency for acquisition with better
ranging capability. The 35 GHz millimeter wave frequency would provide primary tracking for
higher angular resolution. Frequency switching could be employed in a jamming environment.
The MMW frequency could also prove useful in assisting the acquisition of heavily stealthed

targets, since stealth techniques are usually aimed at microwave frequencies.




4.3 35 Gz (Ka band) Radar/ 8-12 um or 3-5 pm Focal Plane Array

This combination of sensors offers the above cited advantages of millimeter wave
frequencies compared to microwave frequencies at the cost of decreased radar acquisition range.
Accordingly, this sensor suite would need to depend more heavily on a sensor fused mode of

operation to raise the acquisition capability of the sensor suite above that of the individual

SEnsors.

4.4 Option 4.1, 4.2, or 4.3 with Passive RF Radiometer

The addition of an RF radiometer to one of the radar/IR dual mode suites represents a
potentially very powerful combination of sensors. The radiometer would be designed to detect
microwave emissions from the target within the band from 2 to 18 GHz. This sensing capability
could prove extremely valuable in acquiring emissions from the RF altimeters of teﬁain
following cruise missiles. The radiometer could significantly augment the detectability of this
type of low observable target whose response in the radar and IR channels will often be quite

weak.

10




5.0 FUNDAMENTALS OF SENSOR FUSION

Sensors detect targets by measuring quantities associated with the target that are well-
separated from the corresponding quantities associated with the background scene or other
sources of interference. For example, Figure 5 shows that the radar signal returns from a target
aircraft are usually greater in amplitude than the noise voltage in the radar receiver electronics.
This separation between the radar measurements associated with target returns and those
associated with receiver noise permits the placement of a detection threshold which effectively
segregates the two "clusters" of measurements. When a radar measurement exceeds this

threshold, a target can be declared present with high confidence.

X = TARGET RETURN
@= RECEIVER NOISE

- @———0000¢ X% >
| RADAR
AMPLITUDE
DETECTION
THRESHOLD

Figure 5. Examples of Radar Receiver Output Amplitude
for Target Returns Compared to Receiver Noise
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However, occurrences of usually large noise voltage can occasionally exceed the
threshold (see Figure 5) resulting in the false indication of a target (i.e., a false alarm). Similarly,
weak returns from a target may occasionally fall below the threshold resulting in a missed target.
Accordingly, the radar designer minimizes the occurrence of false alarms and misses by
maximizing the separation between the "clusters" of target and noise related measurements.
Maximizing this separation is synonymous with maximizing the ratio of target signal power to

noise power, i.., maximizing the signal-to-noise ratio (SNR) that is commonly referred to in

radar literature.

For an infrared (IR) sensor, the contrast in the intensity of IR radiation observed between
the target and the background is usually greater than the contrast in the background scene (see
Figure 6). This separation between IR measurements associated with a target and those associ-
ated with background clutter permits the placement of a detection threshold similar to the radar
example just considered. Also, as in the radar case, it is possible for weak target contrast to fall
below the threshold resulting in a missed target and for strong background clutter to exceed the
threshold causing a false alarm. Again, designing the sensor to maximize the separation between
the "clusters" of target and background contrast measurements will minimize the probability of

making an erroneous decision and optimize the detection performance of the sensor.

X = TARGET CONTRAST
@®= BACKGROUND CONTRAST

IR
CONTRAST

@ —EK——X—X—>

DETECTION
THRESHOLD

Figure 6. Examples of IR Contrast
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Fusing synchronized sensor measurements together into a multidimensional observation
is a means of achieving further separation between the "clusters” of target and interference
measurements. This is apparent in Figure 7 where the sample radar and IR measurements from
Figures 5 and 6 have been plotted as orthogonal coordinates. Associated radar and IR

measurements are plotted 2- dimensionally (radar amplitude = x-component; IR contrast = y-

component).

The separation between cluster centroids for the radar, IR, and fused measurements are
indicated by the two-ended arrows in Figure'7. The increased cluster separation realized via
fusion is merely a result of geometry - the magnitude of the vector separation is greater than any

of its individual components.

It is this increased separation between target and interference related measurements that is
the physical basis/source of detection performance enhancement for any implementation of a
fused multisensor mode of operation. This increased separation effectively constitutes an
increase in the signal-to-noise ratio upon which detection decisions are based. The increased
separation makes it easier (compared to single sensor operation) to position a decision boundary
which segregates target and interference related measurements into separate regions (see the
dashed line in Figure 7). It then becomes less likely that a measurement associated with a weak
target will fall below the decision boundary and cause a target to be missed. Similarly, it also
becomes less likely that strong interference will rise above the boundary and cause a false alarm.
Sensor fused operation thus holds the potential to simultaneously provide higher detection

probability and lower false alarm probability than can be achieved with a single sensor.

13




X = FUSED TARGET OBSERVATION

" @= FUSED INTERFERENCE
X

CONTRAST

RADAR

AMPLITUDE
)

Figure 7. Fusion of Radar and IR Measurements
into 2-D Observations

The multidimensional measurement space concept, shown in Figure 7, represents the
fundamental analytical tool for bounding the maximum theoretical fused detection performance
of a given sensor suite. This performance bound can be usefully employed as a yardstick to test

the reasonableness of a contractor's fusion performance claims.
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6.0 BATTLEFIELD PHENOMENA

There are many elements of modern day battlefields that can impact the performance of
missile seekers. Of these elements, it can only take one for which the sensor was not designed
can defeat an entire weapon system. All effects which could potentially be a factor on the
battlefield should be considered when designing and developing specifications for missile

sensors/seekers.

An understanding of all realistic battlefield phenomena is crucial for successful weapon
employment, weapon survivability, and training. Appendix B contains executive charts
illustrating four (4) areas of battlefield phenomena (i.e., weather effects, countermeasures, dirty
battlefield, and camouflage, concealment, and deception (CCD)) and the impact on smart weapon
sensors and seekers. The executive charts are a product of a series of studies sponsored by the
U. S. Army Materiel Command - Smart Weapons Management Office (AMC-SWMO). The
primary purpose of these studies has been to identify and categorize the phenomena and develop

a methodology to assess their impact.

The first study focused on the impact of weather on smart weapon sensors/seekers. One
of the main objectives of this study was to present a concise methodology for preparing weather
specification for sensors associated with smart weapon systems. The "Smart Weapons Weather
Specification Guide", AMC-SWMO, 31 October 1990 was produced to outline the procedure.
Another product from the study included a wall chart entitled "Weather Effects on EO/IR/MMW

Sensors" which is included in appendix B.

Countermeasures (CMs) were the focus of the second study "AMC-SWMO
Countermeasures Study, Volume I: Guide to How Countermeasures Affect Smart Weapons",
January 1992. There were two primary objectives of this study - to address several technical
issues on the effects of CMs on smart weapon systems and to introduce the organizations that are
key in the specification, development, and evaluation of smart weapon CMs. The technical

issues included a description of the various CMs, a methodology to assess the impact of CMs on

15



smart weapon systems, and the application of this methodology to five specific systems. The

executive wall chart titled "Countermeasure Effects on Smart Weapon Sensors" was developed

and is included in appendix B.

A third study addressed the effects of battle by-products on smart weapon sensors. Battle
by-products is defined as "the phenomena produced by military operations that unintentionally
reduce the operational effectiveness of an activity or capability”". A methodology was developed
to assess the impact of the battle by-products on smart weapon sensors and seekers. Several
effectiveness models and phenomenology models and databases were reviewed to assess their
applicability to the methodology. This was not a model survey; it was an assessment of several
accepted models to demonstrate how to utilize available tools in the methodology.. The
methodology was then applied to two representative smart weapon concepts. Results of this
study are documented in a two-volume report "The Effects of Battle By-Products on Smart
Weapon Sensors”, AMC-SWMO, March 1994, and an executive wall chart which is included in
appendix B.

The fourth study also produced an executive wall chart included in appendix B titled
"Camouflage, Concealment and Deception (CCD) Effects on Smart Weapons Sensors", AMC-
SWMO. The purpose of the wall chart is to provide basic information on the Government CCD
organization, the CCD development cycle and CCD techniques as they relate to the operation of

smart weapons sensors.

16



7.0 SUMMARY

There is no "one" perfect sensor technology to be used in a missile seeker. The
environment, target signature, background and countermeasures as well as size, cost and
complexity constraints require many engineering tradeoffs leading to the final selection of seeker

operating spectrum(s). It is generally accepted that the use of more than one seeker spectrum for

a particular mission broadens the operational envelope.

17




Appendix A

Electromagnetic Spectrum
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Figure A-1. Acoustic (Mechanical) Spectrum
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ty Annex CM Category Definitions

DEFINITION

IMPLICATION

[SINT approved CMs that
ve a high probabitity of
ing encountered.

[SINT approved CMs that
ve a low to medium
obability of being
countered.

JAs that are judged to be
Ehnically and tactically
hsible but are not DCSINT
proved.

Performance levels specified in the
presence of CMs are required in the
first production.

Performance levels specified in the
presence of CMs are required in the
first production. (Performance levels
may not be as stringent as would be
required against Category | CMs).

Performance levels in the presence
of CMs may be required in the first
production. A P program should
be prepared as a minimum.

SOURCE: US ARMY SMO, VAL. VLAMO (25 JUN 1991)
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DUCTS ON SMART WEAPON SENSORS

BATTLE BY-PRODUCTS

7 A
TLE BY-PRODUCTS CAN IMPACT SMART WEAPON ‘ ¢4//S S\\-?’Q\
| PERFORMANCE THROUGH PATH EFFECTS, CLUTTER, .

OR TARGET SIGNATURE ALTERATION

TRANSMISSION THROUGH BATTL!
BY-PRODUCT OBSCURANT.

T = Transmittance
A = Wavelength (um)
o = Mass Extinction Coefficient (m?2/g)

CL = Concentration Length (g/m?2), product of
the concentration (g/m3) of the aerosol an
the path length (m) through the
intervening media

TYPICAL VALUES OF MASS
EXTINCTION COEFFICIENT (m?/g

=LATIONSHIP OF REALISTIC OBSCURANT : :
’ ’ VISIBLE | SWIR MWIR LWIR MMW

BA LEFIELD ELEMENTS TYPE 04-07 um | 0.7-12um: 3-5pum | 8-12 um { 35/94 GHz
e e e e R N

b tactical employment of smart :
ni weapons, smart weapon 1.50 . 075 | 0.32 0.001
survivability, and t
VE, A training of troops 0.32 : X . X 0.001
HICLE H .

expLOSiON> :
SATTLE = : PHOSPHORUS SMOKE 0 | 177 029 | o 0.001
mes Y-PRODUCTS

S, L
P‘“Méss SIGN NICS

LOFTED SNOW . ! . : . ’ . 0.005-0.1

SOURCE: 61 JTCG/ME-87-10 AND DOD-HDBK-178 (E!

WEATHER:
The natural state of
the atmosphere in-
cluding its interaction COMMANDER
with other elements of US ARMY MATERIEL COMMAND
the naturally occurring SMART WEAPONS MANAGEMENT OFFICE
and manmade environment (AMC-SWMO)
ATTN: AMSMI-SW

REDSTONE ARSENAL, AL 35898-5222
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Cmﬂ()h”dﬂ(} The use of concealment and disguise to minimize the possibility of detection and/or identification of troops. n
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