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The UMass RADIUS Project - Year 2 

1    Introduction 

The goal of the Research and Development for Image Understanding Systems (RADIUS) 
project is to develop image understanding (IU) algorithms that support model-based aerial 
photointerpretation. The Computer Vision Research Laboratory at the University of Mas- 
sachusetts (UMass) is funded under a three-year contract to develop algorithms to automat- 
ically acquire, extend, and refine 3D geometric site models. This report describes research 
activities performed during the second year of the UMass RADIUS contract, covering the 
period of October 1993 - October 1994. 

Site model acquisition involves processing a set of images to detect both man-made 
and natural features of interest, and to determine their 3D shape and placement in the scene. 
The models produced have obvious applications in areas such as surveying, surveillance and 
automated cartography. For example, acquired site models can be used for automated model- 
to-image registration of new images, allowing the model to be overlaid on the image to aid 
visual change detection and verification of expected scene features. Two other important 
site modeling tasks are model extension - updating the geometric site model by adding or 
removing features, and model refinement - iteratively refining the shape and placement 
of features as more views become available. Model extension and refinement are ongoing 
processes that are repeated whenever new images become available, each updated model 
becoming the current site model for the next iteration. Thus, over time, the site model has 
steadily improved to become more complete and more accurate. 

In 1995, work at the University of Massachusetts (UMass) focussed on designing and 
implementing a system for automatically extracting models of buildings from multiple, over- 
lapping images of a site. The system design emphasizes model-directed processing, rigorous 
camera geometry, and fusion of information across multiple images for increased accuracy 
and reliability. To maintain a tractable goal for our research efforts, we have chosen initially 
to focus on a single generic class of buildings, namely flat-roofed, rectilinear structures. The 
simplest example of this class is a rectangular box-shape; however other examples include 
L-shapes, U-shapes, and indeed any arbitrary building shape such that pairs of adjacent roof 
edges are perpendicular and He in a horizontal plane. The system is designed to operate over 
multiple images exhibiting a wide variety of viewing angles and sun conditions. The system 
is designed to perform well at one end of a data-vs-control complexity spectrum, namely 
a large amount of data and a simple control structure, versus the alternative of using less 
data but more complicated processing strategies. In particular, while the system can be 
applied to a single stereo pair, it generally performs better (in terms of number and quality 
of buildings found) when more images are used. 

This document proceeds as follows. Section 2 begins with a specification of general input 
requirements for the UMass building extraction system. This is followed in Section 3 by 
a breakdown of the system into its key algorithmic components. Section 4 reports on an 
experimental case study in site model acquisition, using the RADIUS Model Board 1 data 



set. Section 5 describes the process of model extension, and provides a demonstration using 
the partial site model acquired in Section 4. Section 6 presents a brief summary and a set 

of likely program activities for next year. 

2    General System Requirements 

The UMass building extraction system was developed on a Sun Sparc 10, using the RADIUS 
Common Development Environment (RCDE) [8]. The RCDE is a combined Lisp/C++ sys- 
tem that supports the development of image understanding algorithms for constructing and 
using site models. In particular, the RCDE provides a convenient framework for represent- 
ing and manipulating images, camera models, object models and terrain models, and for 
keeping track of their various coordinate systems, inter-object relationships, and transfor- 
mation/projection equations. The RCDE also provides utilities for interactively developing 
site models, specifying tie points, and for performing photo-resection. 

2.1    Images 

Acquisition of a 3D site model requires a set of overlapping images of the site. The UMass 
system is designed to operate over multiple images, typically five or more, exhibiting a 
wide variety of viewing angles and sun conditions. The number five is chosen arbitrarily 
to allow one nadir view plus four oblique views from each of four perpendicular directions 
(e.g. North, South, East and West). This configuration is not a requirement, however. 
Indeed, some useful portions of the system require only a single image, namely line segment 
extraction and building rooftop detection. On the other hand, epipolar rooftop matching 
and wireframe triangulation require, by definition, at least two images, with robustness and 
accuracy increasing when more views are available. Once again, the number five has been 
chosen arbitrarily, and perhaps only three well-chosen images would suffice, but verification 
of this is a matter for further experimentation. 

Although best results require the use of many images with overlapping coverage, the 
system allows considerable freedom in the choice of images to use. Unlike most other building 
extraction systems, this system does not currently use shadow information, and works best 
if used on images with different sun angles, or with no strong shadows at all. Also, the 
term "epipolar" as used here does not imply that images need to be in scan-line epipolar 
alignment, as required by many traditional stereo techniques. The term is used instead in its 
general sense as a set of geometric constraints imposed on potentially corresponding image 
features by the relative orientation of their respective cameras. The relative orientation of 
any pair of images is computed from the absolute orientation of each individual image (see 
Section 2.3). 



2.2 Site Coordinate System 

Reconstructed building models are represented in a local site coordinate system that must 
be denned prior to the reconstruction process. The system assumes this is a "local-vertical" 
Euclidean Coordinate System, that is, a Cartesian X-Y-Z coordinate system with its origin 
located within or close to the site, and the positive Z-axis pointing upwards (parallel to 
gravity). The system can be either right-handed or left-handed. Under a local-vertical 
coordinate system, the Z values of reconstructed points represent their vertical position or 
"height" in the scene, and X-Y coordinates represent their horizontal location in the site. 

2.3 Camera Models 

For each image given to the system, the absolute orientation of the camera with respect to 
the local site coordinate system must be known. This includes both the internal orientation 
(lens/digitizer parameters) and the external orientation (pose parameters) of the camera. 
Given the absolute orientation for each image, the system computes all the necessary rela- 
tive orientation information needed for determining the epipolar geometry between images. 
Camera models can be specified in two ways. For the perspective frame camera model, 
absolute orientation for each camera is supplied as a 3 x 4 projective transformation matrix 
describing (in homogeneous coordinates) how points in the site coordinate system project 
into points in the image coordinate system. This simple representation makes no distinc- 
tion between internal and external camera parameters. Translation between "standard" 
photogrammetric parameterizations (e.g. focal length, principle point coordinates, camera 
location vector and rotation Euler angles) and the 3 x 4 matrix representation is provided 
by the RCDE. 

Many aerial photographs, particularly satellite images, are generated by nontraditional 
imaging systems for which the standard perspective frame camera model is not an adequate 
description. The fast block interpolation projection (FBIP) camera model has been 
proposed as an alternative description of the imaging process in these situations. The general 
idea is to break space into "blocks" and then generate local frame camera approximations 
within each block in such a way that adjacent frame approximations agree at the block 
boundary, in a manner somewhat analogous to approximating a nonlinear function by a 
piecewise linear one. This representation easily handles 2D image nonlinearities, such as 
camera lens distortion, as well as 3D space nonlinearities caused by the refraction of light 
through layers of the atmosphere. 

Integrating the FBIP camera model into image understanding algorithms is potentially 
difficult, since it violates the fundamental assumption underlying most work with tradi- 
tional, perspective camera models, namely the assumption that straight lines in the world 
will appear straight in the image. The FBIP camera model not only raises representational 
concerns, such as whether the edge of a building in the image can be adequately characterized 
by a single straight line segment, but also strikes at a deeper level, invalidating such funda- 
mental geometric notions as vanishing points and epipolar geometry. Our interpretation of 
the FBIP camera model is that it is possible to derive a local 3x4 projective transformation 



matrix that provides an accurate approximation to the imaging process within a given 3D 
region of interest spanning the spatial extents of a single building. 

2.4 Digital Terrain Map 

Currently, the UMass system explicitly reconstructs only the rooftops of building structures, 
and relies on vertical extrusion to form a volumetric 3D wireframe model of the whole 
building. In other words, perpendiculars are dropped from each corner of the reconstructed 
building rooftop down to the ground, and connected by a building base formed as a vertical 
translation of a copy of the roof polygon. The extrusion process relies on knowing the local 
terrain, namely the ground height (Z value) at each location in the scene. We assume this 
information is represented as an array of elevations, or in the special case of flat ground 
planes as a horizontal plane equation Z = z$. Representation of digital terrain maps in 
either format, along with their use in providing a basic ground level for vertical extrusion, 
is supported by the RCDE. Future versions of the system will use digital terrain maps 
automatically extracted from stereo image pairs (nadir or oblique) by a correlation-based 
terrain reconstruction system developed recently at UMass. 

2.5 Other Required Parameters 

In addition to the general information described above, a few miscellaneous parameters and 
thresholds are required to be supplied by the user before the system can be run. The most 
important of these are: 

• max-building-height - the maximum possible height of any building that will be 
included in the site model. This threshold is used to limit the extent of epipolar search 
regions. The lower this threshold can be, the smaller the search area for rooftop feature 
matches will be, leading to faster searches with higher likelihood of finding the correct 
matches. 

• min-building-width - the minimum horizontal extent (width or length) of any build- 
ing that will be included in the site model. This is, loosely speaking, a way of specifying 
the desired "resolution" of the resulting site model, since any buildings having hori- 
zontal edges shorter than this threshold will probably not be found. Setting this value 
to a relatively long length essentially ensures that only large buildings in the site will 
be modeled. 

3     Algorithmic Building Blocks 

The UMass building extraction system currently follows a simple processing strategy. To 
acquire a new site model, an automated building detector is run on one image to hypothesize 
potential building rooftops. Supporting evidence is located in other images via epipolar line 



segment matching, and the precise 3D shape and location of each building is determined by 
multi-image triangulation and extrusion. Image intensity information is backprojected onto 
each face of these polyhedral building models to facilitate realistic rendering from new views. 

This section describes the key algorithms that together comprise the UMass building 
extraction system. These algorithms are: line segment extraction, building rooftop detection, 
epipolar rooftop matching, multi-image wireframe triangulation, and projective intensity 
mapping. Line segment extraction and building rooftop detection are illustrated with sample 
results from two sites, the Schenectady County Air National Guard base (Figure 1), and 
Radius Model Board 1 (Figure 2). 

3.1    Line Segment Extraction 

To help bridge the huge representational gap between pixels and site models, a straight line 
feature extraction routine is applied to produce a set of symbolic line segments, representing 
geometric image features of potential interest, such as building roof edges. We use the 
Boldt algorithm for extracting line segments [3]. At the heart of the Boldt algorithm is a 
hierarchical grouping system inspired by the Gestalt laws of perceptual organization. Zero- 
crossings of the Laplacian of the intensity image provide an initial set of local intensity edges. 
Hierarchical grouping then proceeds iteratively; at each iteration edge pairs are linked and 
replaced by a single longer edge if their end points are close and their orientation and contrast 
(difference in average intensity level across the line) values are similar. Each iteration results 
in a set of increasingly longer line segments. The final set of line segment features (Figures 3 
and 4) can be filtered according to length and contrast values supplied by the user. 

Although the Boldt algorithm does not rely on any particular camera model, the utility of 
extracting straight lines as a relevant representation of image/scene structure is based on the 
assumption that straight lines in the world (such as building edges) will appear reasonably 
straight in the image. To the extent that this assumption remains true at the scale of the 
objects being considered, such as over a region of the image containing a single building, 
then straight line extraction remains a viable feature detection method. However, very long 
lines spanning a significant extent of the image, such as the edges of airport runways, may 
become fragmented depending on the amount of curvature introduced into the image by 
nonlinearities in the imaging process. 

3.2    Building rooftop detection 

The goal of automated building detection is to roughly delineate building boundaries that 
will later be verified in other images by epipolar feature matching and triangulated to create 
3D geometric building models. The UMass building detection algorithm [6] is based on 
perceptual grouping of line segments into image polygons corresponding to the boundaries 
of flat, rectilinear rooftops in the scene. Perceptual organization is a powerful method for 
locating and extracting scene structure. The rooftop extraction algorithm proceeds in three 
steps; low-level feature extraction, collated feature detection, and hypothesis arbitration. 
Each module generates features that are used during the next phase and that interact with 



Figure 1: Schenectady subimage. Figure 2: Model Board 1 subimage. 

n,n i\^H   Pe^nVAi 
Figure 3: Boldt lines for Figure 1. Figure 4: Boldt lines for Figure 2. 

lower level modules through top-down feature extraction. 

Low-level features in this system are straight line segments and corners. The domain 
assumption of flat-roofed rectilinear structures implies that rooftop polygons will be produced 
by flat horizontal surfaces with orthogonal corners. Orthogonal corners in the world are 
not necessarily orthogonal in the image, however. To determine a set of relevant corner 
hypotheses, pairs of line segments with spatially proximate endpoints are grouped together 
into candidate image corner features. Each potential image corner is then backprojected into 
a nominal Z-plane in the scene, and that hypothetical scene corner is tested for orthogonality. 

Mid-level collated features are sequences of perceptually grouped corners and lines that 
form a chain (Figures 5 and 6). A valid chain group must contain an alternation of corners 
and lines, and can be of any length. Chains are a generalization of the collated features 
in earlier work [5] and allow final polygons of arbitrary rectilinear shape to be constructed 
from low-level features. Collated feature chains are represented by paths in a feature relation 
graph. Low level features (corners and line segments) are nodes in the graph, and perceptual 
grouping relations between these features are represented by edges in the graph. Nodes have 
a certainty measure that represents the confidence of the low-level feature extraction routines; 
edges are weighted with the certainty of the grouping that the edge represents. A chain of 
collated features inherits an accumulated certainty measure from all the nodes and edges 
along its path. 

High-level polygon hypothesis extraction proceeds in two steps. First, all possible 
polygons are computed from the collated features. Then, polygon hypotheses are arbitrated 
in order to arrive at a final set of non-conflicting, high confidence rooftop polygons (Figures 7 



Figure 5: Feature chains for Figure 1. Figure 6: Feature chains for Figure 2. 

Figure 7: Rooftop hypotheses for Figure 1.        Figure 8: Rooftop hypotheses for Figure 2. 

and 8). Polygon hypotheses are simply closed chains, which can be found as cycles in the 
feature relation graph. All of the cycles in the feature relation graph are searched for in a 
depth first manner, and stored in a dependency graph where nodes represent complete cycles 
(rooftop hypotheses). Nodes in the dependency graph contain the certainty of the cycle 
that the node represents. An edge between two nodes in the dependency graph is created 
when cycles have low-level features in common. The final set of non-overlapping rooftop 
polygons is the set of nodes in the dependency graph that are both independent (have no 
edges in common) and are of maximum certainty. Standard graph-theoretic techniques are 
employed to discover the maximally-weighted set of independent cycles which is output by 
the algorithm as a set of independent high confidence rooftop polygons. 

While searching for closed cycles, the collated feature detector may be invoked in order 
to attempt closure of chains that are missing a particular feature (an example occurs in 
Figure 6). The system then searches for evidence in the image that such a virtual feature 
can be hypothesized. In this way, the rooftop detection process does not have to rely on 
the original set of features that were extracted from the image. Rather, as evidence for a 
polygon accumulates, tailor-made searches for lower level features can be performed. This 
type of top-down inquiry increases system robustness. 

3.3    Epipolar Line Segment Matching 

After detecting a potential rooftop in one image, corroborating geometric evidence is sought 
in other images (often taken from widely different viewpoints) via epipolar feature matching. 



The primary difficulty to be overcome during epipolar matching is the resolution of ambigu- 
ous potential matches, and this ambiguity is highest when only a single pair of images are 
used. For example, the epipolar search region for a roof edge match will often contain mul- 
tiple potentally matching line segments of the appropriate length and orientation, one of 
which comes from the corresponding roof edge, but the others coming from the base of the 
building, the shadow edge of the building on the ground, or from roof/base/shadow edges 
of adjacent buildings (see Figure 9). This situation is exacerbated when the roof edge being 
searched for happens to be nearly aligned with an epipolar line in the second image. The 
resolution of this potential ambiguity is the reason that simultaneous processing of multiple 
images with a variety of viewpoints and sun angles is preferred in the UMass system. 

view 1 view 2 

Figure 9: Multiple ambiguous matches can often be resolved by consulting a new view. 

We match rooftop polygons by searching for each component line segment separately and 
then fusing the results. For each polygon segment from one image, an appropriate epipolar 
search area is formed in each of the other images, based on the known camera geometry and 
the assumption that the roof is flat. This quadrilateral search area is scanned for possible 
matching edges, the disparity of each potential match implying a different roof height in 
the scene. Results from each line search are combined in a 1-dimensional histogram, each 
potential match voting for a particular roof height. Each vote is weighted by compatibility of 
the match in terms of expected line segment orientation and length. This allows for correct 
handling of fragmented line data, for example, since the combined votes of all subpieces of 
a fragmented line count the same as the vote of a full-sized, unfragmented line. A single 
global histogram accumulates height votes from multiple images, and for multiple edges in 
a rooftop polygon. After all votes have been tallied, the histogram bucket containing the 
most votes yields an estimate of the roof height in the scene and a set of correspondences 
between rooftop edges and image line segments from multiple views. 

3.4    Wireframe triangulation/extrusion 

After finding a set of rooftop edge correspondences via epipolar matching, multi-image trian- 
gulation is performed to determine the precise size, shape, and position of the roof polygon 



in the local 3D site coordinate system. A nonlinear estimation algorithm has been developed 
for simultaneous multi-image, multi-line triangulation of 3D line structures. 

Two versions of the triangulation subsystem have been developed. In the first, the pa- 
rameters estimated for each rooftop edge are the Phicker coordinates of the algebraic 3D line 
coinciding with the edge. Specific points of interest, like vertices of the rooftop polygon, are 
computed as the intersections of these infinite algebraic lines. Pliicker coordinates are a way 
of embedding the 4-dimensional manifold of 3D lines into R6. Although the Pliicker repre- 
sentation requires 6 parameters to be estimated for each line rather than 4, it simplifies the 
representation of geometric constraints between lines. For the generic flat-roofed rectilinear 
building class being considered here, a set of constraints is specified to ensure that pairs of 
adjacent lines in a traversal around the polygon are perpendicular, that all lines are coplanar, 
and that all lines are perpendicular to the Z-axis of the local site coordinate system. An 
iterative, nonlinear least-squares procedure determines the Pliicker coordinates for all lines 
simultaneously such that all the object-level constraints are satisfied, and an objective "fit" 
function is minimized that measures how well each projected algebraic line aligns with the 
2D image segments that correspond to it. 

Although triangulation of line structures via Pliicker coordinates is general, in the sense 
that any set of 3D lines can be represented, we have found this approach to be computation- 
ally burdensome and numerically unstable. The reason for this is mainly due to the number 
of parameters in the representation and the number of constraints that must be imposed to 
achieve a unique, geometrically accurate solution. In particular, triangulation of a rooftop 
polygon containing n lines requires 6 x n parameters to represent the Pliicker coordinates, 
plus an addition 2 x n Lagrange multipliers to ensure a unique solution (recall that the 
dimension of the line manifold is 4, thus 6 — 4 = 2 additional constraints are required for 
each line to make the solution vector unique). Further constraints (and thus more Lagrange 
multiplier parameters) are necessary to impose the required geometric configuration on the 
lines in the final polygon, namely that all are coplanar and horizontal, and that adjacent 
pairs are perpendicular. 

In response to these computational difficulties, a second version of the triangulation sys- 
tem has been developed using a specialized parameterization for representing flat, rectilinear 
polygons. The types of line structures that can be triangulated are considerably more re- 
strictive than in the earlier, general version; however, the restrictions mesh well with current 
system assumptions and result in a much more streamlined optimization problem. Instead 
of each line being represented separately, a whole rectilinear polygon is parameterized at 
once, using the variables shown in Figure 10. The horizontal plane containing the polygon 
is parameterized by a single variable Z. The orientation of the rectilinear structure within 
that plane is represented by a single parameter 0. Finally, each separate line within the 
polygon is represented by a single value r; representing the signed perpendicular distance 
of that line from some nominal point in the plane, usually chosen to be near the center of 
mass of the polygon being estimated. The representation is simple and compact, and the 
method of Lagrange multipliers is no longer necessary since the coplanarity and rectilinearity 
constraints on the polygon's shape are already built in to the representation. 

Regardless of which parameterization is chosen, nonlinear estimation algorithms typi- 
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Figure 10: Parameterization of a flat, rectilinear polygon for multi-image triangulation. 

cally require an initial estimate that is then iteratively refined. In this system, the original 
rooftop polygon extracted by the building detector, and the roof height estimate computed 
by the epipolar matching algorithm, are used to generate an initial, flat, roof polygon. After 
triangulation, each 3D rooftop polygon is extruded down to the ground, as determined by 
the digital terrain map for the site (see Section 2.4), to form a volumetric wireframe model. 

3.5    Projective intensity mapping 

To provide added realism for visual displays, and as a convenient means of storage for 
later detailed processing of building surface information, mechanisms have been developed 
for projectively warping image intensities onto polygonal building facets. Planar projective 
transformations provide a mathematical description of how surface structure from a planar 
building facet maps into an image. By inverting this transformation using a known building 
position and camera geometry, intensity information from each image can be backprojected 
to "paint" the walls and roof of the building model. Since multiple images are used, intensity 
information from all faces of the building polygon can be recovered, even though they are 
not all seen in any single image (see Figure 11). The full intensity-mapped site model can 
then be rendered to predict how the scene will appear from a new view (Figure 12), and on 
high-end workstations realistic real-time "fly-throughs" can be generated. 

10 



Figure 11: Intensity maps axe stored with the planar facets of a building model. 

Figure 12: Intensity-mapped site model rendered from a new view. 

By storing surface information with the object, intensity mapping provides a convenient 
storage method for later symbolic extraction of detailed surface structures like windows, 
doors and roof vents. Furthermore, this subsequent processing becomes greatly simplified. 
For example, rectangular lattices of windows or roof vents can be searched for in the un- 
warped intensity maps without complication from the effects of perspective distortion. Sec- 
ondly, specific surface structure extraction techniques can be applied only where relevant, 
i.e. window and door extraction can be focused on building wall intensity maps, while roof 
vent computations are performed only on roofs. 

When processing multiple overlapping images, each building facet will often be seen in 
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more than one image, under a variety of viewing angles and illumination conditions. This 
has led to the development of a systematic mechanism for managing intensity map data, 
called the Orthographic Facet Library. The orthographic facet library is an indexed data 
set storing all of the intensity-mapped images of all the polygonal building facets that have 
been recovered from the site. Usually, a horizontal roof facet appears in all the aerial site 
images and thus has a complete set of intensity-map versions in the library. Vertical wall 
facets usually show up only in a subset of the site images, however, so fewer intensity-map 
versions are available to choose from. Each intensity-map version is tagged with a variety 
of spatial and photometric indices (e.g. viewing angle, resolution, sun angle) in order to 
facilitate retrieval and analysis by image understanding algorithms. As intensity-mapped 
building facets accumulate in the facet image library, knowledge about the site improves; 
albeit in an implicit, image-based form. 

When using the facet library to render a new view of the site, it is necessary to distill 
the information contained in multiple intensity-mapped versions of each building facet into a 
single "best" image representation for that facet. Two alternative solutions have been tried 
so far. The first approach is to use the pixels in the best representative version of each 
facet to paint the given surface. The "goodness" of an image with respect to a particular 
building facet is based on a heuristic measure that takes into account the camera viewing 
angle, the sun angle, and the placement and geometry of other buildings in the site, all of 
which allow the system to compute the size, relative orientation, and photometric contrast 
of the facet in the image, as well as predict the percentage of the facet covered by shadows 
or occlusion in that view. The advantage of best version representation is its simplicity, in 
that only a heuristic function is calculated for each view and no further image processing is 
needed. The drawback of this method is that sometimes occlusions or shadows appear in 
every image of a building facet; thus, the representative will have to include those artifacts 
no matter which image is chosen. The best version representation was used to texture the 
building facets in Figure 11. 

In contrast to the best version approach, the best representative piece method takes 
occlusions and shadows into account. As intensity-map versions are placed in the library, 
pixels in the facet are partitioned into "pieces" according to whether they are sunlit or in 
shadow. Pixels that are labeled as occluded areas are discarded and are not considered to 
be a part of any piece. The idea of the best piece representation is to assign a heuristic value 
to each piece of an intensity-map version, rather than to the entire version. When rendering 
a new view, each pixel on a building's surface is backprojected to determine which pieces 
it is associated with. This set of pieces is ordered according to their heuristic values, and 
the photometric value for the pixel is selected from the highest-rated piece. Hence, all the 
pixels in the rendered image are the best ones available. Note, however, that some pixels in 
the rendered image might not exist in any of the pieces in the library, when they correspond 
to portions of building that have never been seen in any of the images. These pixels are 
painted black by default. The best piece representation was used to render the site model 
in Figure 12. 

The best piece representation is a method of data fusion, and compatability problems arise 
in that different pieces of each building face can appear under different sunlight conditions 
in different images, and thus different portions of the same building face may be assigned 
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Figure 13: A sample image from Model Board 1 

significantly different grey-levels, leading to a patchy appearance. One reasonable way to 
solve this problem is to make all the versions of the facet "similar" in intensity. Currently, a 
simple histogram adjustment technique is used to make the intensity distributions of all the 
pieces associated with a single building face uniform with respect to each other. Currently, 
the biggest sunlit piece of the facet is chosen as the model piece against which all other pieces 

are transformed. 

4    Model Acquisition Experiment 

Previous sections of this report present a system developed at UMass for automated site 
model acquisition via building extraction. The main algorithmic components of this system 
are line segment extraction, monocular building rooftop detection, multi-image epipolar 
rooftop matching, multi-image wireframe triangulation, and projective intensity mapping. 
This section demonstrates the model acquisition process by way of an experimental case 
study using images J1-J8 of the RADIUS Model Board 1 data set. In this experiment, 25 
building models were generated, covering a large portion of the model board site. The study 
was conducted in order to exercise and evaluate our current model acquisition system on 
a realistic task. The goal of this section is to present a fair evaluation of current system 
performance by showing representative successes, failures, and a quantitative analysis of 

results. 

4.1    Radius Model Board 1 

The model acquisition experiment was performed using images J1-J8 from the RADIUS 
Model Board 1 data set. Figure 13 shows a sample image from the data set. The scene is 
a l:500-inch scale model of an industrial site. Ground truth measurements are available for 
about 110 points scattered throughout the model.  The scale model is built on a table top 
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that can be raised and tilted to simulate a variety of camera altitudes and orientations. For 
model board images J1-J8, the table was set to simulate aerial photographs taken with a 
ground sample distance of 18 inches, that is, pixels near the center of the image backproject to 
quadrilaterals on the ground with sides approximately 18 inches long (all measurements will 
be reported in scaled-up (i.e. x500) object coordinates). Each image contains approximately 
1320 x 1035 pixels, with about 11 bits of grey level information per pixel. The dimensions of 
each image vary slightly because the images have been resampled and subjected to unmodeled 
geometric and photometric distortions that simulate actual operating conditions. 

4.2    Camera Resection 

Camera resection (calibration) to determine the interior (lens) and absolute (pose) parame- 
ters of each camera with respect to the scene is a precursor for many site-modeling tasks, and 
is essential for accurate 3D triangulation of scene features. The resection process determines 
both the absolute orientation of an image (the precise geometric relationship between the 
image and the scene) and the relative orientation between images (that is their relationship 
relative to each other, which in essence determines their epipolar geometry). Ideally, im- 
ages to be used for site-modeling purposes would be resected prior to the application of IU 
algorithms for automated building extraction. Indeed, that is the goal of the ARPA/ORD 
Model Supported Positioning (MSP) project. The model board images were not supplied 
with an accurate set of camera parameters, however. 

We resected images J1-J8 by directly estimating the 11 free parameters of the 3x4 
projective transformation matrix for each image. Matrix elements were computed by setting 
the lower right-hand element of the projective transformation matrix to 1, then estimating the 
remaining elements using an iterative least-squares procedure to minimize the sum of squared 
residual errors between projected 3D ground truth points and their hand-selected 2D image 
locations. Note that more sophisticated resection procedures are available that take into 
account prior knowledge of the internal camera parameters and enforce geometric consistency 
constraints between solutions for multiple images [1]. However, our simple approach was easy 
to implement and run, and in fact worked well for this set of images because a large number 
of well-distributed ground control points are available. 

Table 1: RMS errors (in pixels) for J1-J8 resections 

image number 
RMS error 

Jl 
1.95 

J2 
1.93 

J3 
2.72 

J4 
2.38 

image number 
RMS error 

J5 
2.25 

J6 
2.87 

J7 
2.38 

J8 
2.04 

Table 1 shows the average residual error for the resections we performed. The residual 
error for each image is in the 2 to 3 pixel range, representing the level of unmodeled geo- 
metric distortion present in each image.   Since the ground scale distance is 18 inches, this 
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Figure 14: Boldt line segments extracted from Figure 13 

corresponds to a backprojection error of roughly 3 to 4.5 feet in object space.   This is a 
significant amount of error, and presents a good test of system robustness. 

We note in passing that we also have a model-to-image registration system that automat- 
ically determines the correspondence between 3D building wire-frame edges and 2D image 
line segments while simultaneously solving for a robust estimate of camera pose (see Sec- 
tion 5. This resection method was not appropriate for this experiment, however, since we 
wanted to simulate an initial model acquisition episode where there were no prior building 
models. 

4.3    Line Segment Extraction 

To help bridge the huge representational gap between pixels and site models, feature ex- 
traction routines are applied to produce symbolic, geometric representations of potentially 
important image features. We use the Boldt algorithm for extracting line segments [3]. At 
the heart of the Boldt algorithm is a hierarchical grouping system inspired by the Gestalt 
laws of perceptual organization. Zero-crossing points of the Laplacian of the intensity image 
provide an initial set of local intensity edges. Hierarchical grouping then proceeds iteratively; 
at each iteration edge pairs are linked and replaced by a single longer edge if their end points 
are close and their orientation and contrast (difference in average intensity level across the 
line) values are similar. Each iteration results in a set of increasingly longer line segments. 
The final set of line segments were filtered to have a length of at least 10 pixels long and 
a contrast of at least 15 grey levels. This procedure produced roughly 2800 line segments 
per image. Figure 14 shows a representative set of lines, extracted from the image shown in 

Figure 13. 
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4.4    Building Detection 

The goal of automated building detection is to roughly delineate building boundaries that 
will later be verified in other images by epipolar feature matching and triangulated to create 
3D geometric building models. The building detector was run on image J3. This happens 
to be a near-nadir view, but nothing in the code precludes using one of the oblique views 
instead (see [6]). The roof detector generated 40 polygonal rooftop hypotheses. Most of the 
hypothesized roofs are rectangular, but six are L-shaped. Outlines of the extracted rooftops 
are shown in Figure 15. Alphabetic labels key into the discussion below. 

Figure 15: Roof hypotheses extracted from J3. Alphabetic labels are referred to in the text. 

First, note that the overall performance is quite good for buildings entirely in view. Most 
of the major roof boundaries in the scene have been extracted, and in the central cluster of 
buildings (see area A in Figure 15), the segmentation is nearly perfect. 

There were some false positives - polygons extracted that do not in fact delineate the 
boundaries of a roof. The most obvious example is the set of overlapping polygonal rooftops 
detected over the large building with many parallel roof vents (marked B in Figure 15). Note 
that the correct outer outline of this building roof is detected, however. The set of parallel 
roof vents on this building, coupled with the close proximity of other buildings and three 
tall smokestacks (and their shadows!)  that occlude and fragment the building boundary in 
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many of the images, make this one of the most challenging buildings in the site for rooftop 
detection, epipolar matching and intensity mapping. 

There are also some false negatives, which are buildings that should have been detected, 
but weren't. The most prevalent example of this is a set of buildings (see C) that are only 
partially in view at the edge of the image. The current system is built implicitly around 
the idea of detecting complete building models; partial building structure information that 
is extracted is not carried along. Although the subsequent epipolar feature matching and 
multi-image line triangulation routines are already able to handle such building "fragments," 
additional code would be necessary to merge the partial building wireframes produced from 
different images into a single building model. 

Label D marks a false negative that is in full view. Two adjacent corners in the rooftop 
polygon were missed by the corner extraction algorithm. Although a top-down virtual feature 
hypothesis can be invoked to insert a single missing corner in an incomplete rooftop polygon, 
there is no recovery mechanism when two adjacent corners are missing. It should be stressed 
that even though a single image was used here for bottom-up hypotheses, buildings that 
are not extracted in one image will often be found easily in other images with different 
viewpoints and sun angles. 

There are several cases that cannot be strictly classified as false positives or false nega- 
tives. Several split-level buildings appearing along the right edge of the image (e.g. E) are 
outlined with single polygons rather than with one polygon per roof level. Some peaked roof 
buildings were also outlined, even though they do not conform to the generic assumptions 
underlying the system. 

The results on this image illustrate an important fact - - the current rooftop detection 
algorithm is implicitly built around the goal of detecting complete building outlines. Partial 
building structure information (say from buildings that extend beyond the boundaries of the 
image) is not currently stored. Although subsequent routines for epipolar feature matching 
and multi-image line triangulation are already able to handle such building "fragments," 
additional code would be necessary to represent partial building wireframes in the final site 
model and to merge partial wireframes detected from different images into a single, coherent 
building model. 

4.5    Multi-Image Epipolar Matching 

After detecting a potential rooftop in one image, corroborating geometric evidence is sought 
in other images via epipolar polygon matching. As described in Section 3.3, potential matches 
for the edges of the rooftop polygon across multiple images are stored as votes in a building 
height histogram. After all votes have been tallied, the histogram bucket containing the 
most votes yields an estimate of the roof height in the scene and a set of correspondences 
between rooftop edges and image line segments from multiple views. 

For the Model Board 1 experiment, the minimum and maximum values for the epipolar 
height histogram were chosen based on the range of Z-coordinates present in the set of 
measured ground truth points.   The histogram contained 24 buckets with a height range 
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of roughly 12 feet per bucket.  After epipolar voting was completed for a rooftop polygon 
correspondences were extracted from the histogram bucket containing the highest number 
of votes and those buckets immediately adjacent to it. 

Epipolar matching of a rooftop hypothesis is considered to have failed when for anV 

edge m the rooftop polygon, no line segment correspondences are found in any image This 
criterion was chosen because the 3D line triangulation algorithm will fail to converge in this 
case. Based on this criterion, epipolar matching failed on eight rooftop polygons. Six were 
either peaked or multi-layer roofs that did not fit the generic flat-roofed building assumption 
and the other two were building fragments with some sides shorter than the minimum length' 
threshold on the line segment data. 8 

At this stage, we also removed six obviously incorrect building hypotheses by hand Five 
of them comprised the set of overlapping polygons within the building labeled B in Figure 15 
The sixth was the fenced-in area appearing directly below label D in that image. We believe 
that pointing to building hypotheses that are presented by the system to either accept or 
reject them is an acceptable level of interaction when creating a new site model. However we 
are actively investigating methods for detecting and removing such mistakes automatically. 

4.6    Multi-image Line Triangulation 

Following epipolar rooftop verifcation and matching, a rigorous multi-image triangulation 

T^ 1S 1 TnT        ,       mlne thG PreCiSe SiZe' Shape' and P°sition of the b-wLg roof 
in the local 3D site coordinate system. Outlines of the final set of triangulated rooftops are 
shown in Figure 16   The rightmost polygon in the image is noticeably incorrect. This polygon 
actually corresponds to a split-level building containing two roofs at different heights in the 
scejie    Most of these split-level buildings were automatically filtered out during epipolar 
matching, but this one managed to survive.  Determining how to automatically detect and 
remove such errors is an ongoing research issue - there is information contained in the 
epipolar histograms and triangulation residuals that has yet to be taken advantage of. 

ideJ°fiT1UfG thG 3D rriCy °f the trian§ulated buildinS P^ygons, 21 roof vertices were 
identified where ground truth measurements are known. These locations are labeled m 
Figure 16 with numeric indices that are keyed to the file of Model Board 1 ground truth 
measurements. Table 2 shows the Euclidean distances between triangulated polygon vertices 
and their ground truth locations The average distance is 4.31 feet, which is reasonable given 
the level of geometric distortion present in the images (see Section 4.2). 
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Table 2:   Euclidean distance (in feet) between triangulated and ground truth building vertex 
positions. Numeric indices correspond to the labeled positions in Figure 16. 

index error index error index error 

10 6.21 41 3.53 69 2.78 

17 1.20 42 5.21 70 2.12 

18 13.70 43 4.70 71 2.62 

22 3.41 47 3.88 74 2.62 

37 6.75 49 4.22 75 4.87 

39 3.59 67 3.85 79 2.30 

40 4.30 68 4.18 90 4.58 

Figure 16:   Verified and triangulated rooftops, projected back into image J3 (compare with Fig- 
ure 15). Numeric labels mark 21 roof vertices where ground truth measurements are known. 

It is instructive to decompose the distance error into its horizontal and vertical compo- 
nents. The average horizontal distance error is 3.76 feet, while the average vertical error is 
only 1.61 feet. This is understandable, since all observed rooftop lines are considered simul- 
taneously when estimating the building height (vertical position), whereas the horizontal 
position of a rooftop vertex is primarily affected only by its two adjacent edges. 
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Also note that the error associated with point 18 appears to be an outlier - it is twice as 
large as the next largest distance. The building was not triangulated well, due in part to its 
extremely close proximity to a neighboring building, which interferes with correct matching 
and triangulation. It is no coincidence that the vertex error computed for the neighboring 

building is the second largest error. 

After triangulation, each 3D rooftop polygon was extruded down to the ground to form 
a volumetric model. For the Model Board 1 site, we represented the ground as a horizontal 
plane with a Z-coordinate value determined from the ground truth measurements. More 
generally, we will soon be combining our symbolic building extraction routines with digital 
elevation maps produced by a terrain reconstruction system developed recently at UMass. 

4.7    Projective Intensity Mapping 

Projective mapping of image intensities (rendering) onto polygonal building model faces 
enhances their visual realism and provides a convenient storage mechanism for later symbolic 
extraction of detailed surface structure. For each of the 25 volumetric building models that 
were acquired, a surface intensity map was generated for each planar facet by projectively 
mapping intensity values from the images in which the facet is visible, and combining them 
using the "best piece" representation (BPR) method described in Section 3.5. 

Figure 17 shows an example of the best piece represention and its construction for one 
particular building facet in the model. Figure 17(a) shows the set of sampled surface inten- 
sity maps for this facet, along with their associated shadow and occlusion labelings. This 
rectangular wall facet appears only in site images Jl, J2, J6, and J8, and thus only these 
four images are sampled. In site image Jl, part of the wall is cut by the image border, and 
is marked in the labeling image for the version from Jl. Facet versions from J6 and J8 look 
darker because they are self-shadowed, i.e. oriented away from the light source. In site image 
J2 and J6, this wall is viewed from such an oblique angle that the textures mapped from 
these two images provide very little additional information over much of the wall surface. 
However, near the lower left of the wall there is another small building that occludes the 
wall in versions Jl and J8, but not in J2 and J6 due to the extreme obliquity of the viewing 
angle. This example illustrates why multiple images are necessary to see all the portions of 
this particular building face. 

Figure 17(b) shows the BPR image synthesized using the facet images in Figure 17(a). 
The sunlit piece in Jl version is chosen as the exemplar piece for histogram adjustment of 
intensity values from different images. We can see that some regions in the BPR image 
contain the intensities from version Jl, some others from J8 and J2. The intensities from 

different sources are consistent as well. 
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Figure 17: Construction and use of the best piece representation (BPR) of a building facet, 
(a) Sampled surface intensity maps and their label images, (b) BPR image of the facet, and 
its intensity sources,  (c) The result of dark rectangle extraction on the BPR image. 
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By storing surface intensity information with the object, intensity mapping provides a 
convenient storage method for later symbolic extraction of detailed surface structures like 
windows, doors and roof vents. As one example, we have developed a generic algorithm 
for detecting dark, oriented rectangular patterns, as a method for extraction windows and 
doors on wall surfaces. Figure 17(c) shows the results of applying this algorithm to the 
BPR image in Figure 17(b). Twenty dark regions in Figure 17(c) are correctly extracted 
as hypothesized windows and doors and written into a new, refined model. There are also 
four false detections, which could potentially be removed automatically using knowledge- 
based constraints regarding the size and shape (range of aspect ratios) of true windows 
and doors. An interesting result in Figure 17(c) is that the detected rectangle on the right 
bottom of the image crosses over two regions whose intensities come from different image 
versions, showing that the BPR algorithm maintains good consistency of image intensities 
from different sources. 

The purpose of model visualization is to provide a visually realistic rendering of the 
scene. A sample 3D site rendering is shown in Figure 18. The surfaces are texture-mapped 
using the BPR facet representatives constructed as described earlier. For example, the BPR 
synthesized wall facet from Figure 17 can be seen prominently in the image, when generated 
from this viewpoint. A second site rendering, from a viewpoint at the other end of the site, 
is shown in Figure 19. A sequence of rendered views constructed in this way has been used 
to construct a simulated video "fly-through" of the site, in order to demonstrate the level of 
realism achievable by these modeling techniques, and to investigate the use of visualization 
techniques for interactive evaluation of modeling results. 

4.8    Summary 

An evaluation of the IU algorithms that comprise the UMass automated building extraction 
system was performed using a sample site model acquisition task. The algorithms currently 
assume a generic class of flat roofed, rectilinear buildings. When run on image J3 of the Model 
Board 1 imagery, an automated building roof detector produced 40 rooftop hypotheses. 
Supporting evidence was located in other images via epipolar line segment matching, and 
the precise 3D shape and location of each building was determined by constrained multi- 
image line triangulation. Through a process of filtering and attrition, we ended up with 25 
building models that represent most of the central buildings in the site. Projective mapping 
of intensity information from the images onto these polyhedral models results in a compelling 
site model display that can be used for rendering the scene from new views and for generating 
animated, video fly-throughs. 
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Figure 18: A rendered view of the full, intensity-mapped site model. 
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Figure 19: Another rendered view of the intensity-mapped site model. 
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5    Site Model Extension 

The goal of site model extension is to find unmodeled buildings in new images and add them 
into an existing site model database. The main difference between model extension and 
model acquisition is that the prior site model can be used to make the building extraction 
process more efficient and more accurate. For example, areas already known to contain 
modeled buildings can be masked out in the new image, so that the computation time of 
the building extraction procedures can be devoted to unmodeled areas. Even if it is desired 
to verify that modeled buildings are still present in the new view, model-based prediction 
and verification procedures can be applied that are much more efficient than reacquiring the 
building models from scratch. 

A second important aspect of site model extension is that the existing geometric site 
model can be used to refine the camera resection parameters provided by the Model-Supported 
Positioning (MSP) project. The nonlinearities of classified sensor imagery make it hard to 
resect, and even with state-of-the-art mathematical models of the sensor geometry, local 
corrections to the set of globally resected camera parameters may be necessary. For this 
purpose, we propose to use an automated model-to-image registration process that can de- 
termine local, model-based corrections that result in more accurate 3D triangulation of new 
structures. 

In this section, we first briefly describe our model-to-image registration alorithms for 
locally refining the camera resection parameters provided with incoming imagery. This is 
followed by an example of model extension using the partial site model constructed in the 

last section. 

5.1    Model-To-Image Registration 

Our approach to model-to-image registration involves two components: 1) model match- 
ing to determine correspondences between model features and image features, and 2) pose 
determination to determine the precise geometric relationship between the image and the 

scene. 

5.1.1     Model Matching 

The goal of model matching is to find the correspondence between 3D features in a site 
model and 2D features that have been extracted from an image; in this case determining 
correspondences between edges in a 3D building wireframe and 2D extracted line segments 
from the image. The model matching algorithm described in [2] is being used. Based on 
a local search approach to combinatorial optimization, this algorithm searches the discrete 
space of correspondence mappings between model and image features for one that minimizes 
a match error function. The match error depends upon how well the projected model geo- 
metrically aligns with the data, as well as how much of the model is accounted for by the 
data.   The result of model matching is a set of correspondences between model edges and 
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image line segments, and an estimate of the transformation that brings the projected model 
into the best possible geometric alignment with the underlying image data. 

The efficiency and success rate of the model-matching algorithm depends on finding 
a good initial set of potential model-to-image correspondences. This in turn depends on 
the quality and completeness of initial estimates of the image acquisition parameters. As a 
general rule-of-thumb, the difficulty of finding correspondences is directly proportional to the 
number of unknown acquisition parameters (unconstrained degrees of freedom in the model- 
to-image transformation space) and the amount of uncertainty in the acquisition parameters 
that are known. We currently assume the intrinsic (lens) parameters of the camera are 
accurately known, and that enough information is available to piece together a reasonable 
estimate of the extrinsic (pose) parameters [4]. In an operational setting, an initial estimate 
of camera pose for each local area of interest can be derived from the resection parameters 

provided by the MSP project. 

5.1.2    Pose Determination 

The second aspect of model-to-image registration is precise pose determination. It is 
important to note that since model-to-image correspondences are being found automatically, 
the pose determination routine needs to take into account the possibility of mistakes or 
outliers in the set of correspondences found. The robust pose estimation procedure described 

in [7] is being used. 

At the heart of this code is an iterative, weighted least-squares algorithm for computing 
pose from a set of correspondences that are assumed to be free from outliers. The pose 
parameters are found by minimizing an objective function that measures how closely pro- 
jected model features fall to their corresponding image features. Although similar objective 
functions have been proposed elsewhere, two novel solution techniques distinguish this al- 
gorithm from past approaches. First, both rotation and translation parameters are solved 
for simultaneously, which makes more effective use of the geometric constraints and is more 
accurate in the presence of noise than techniques that decompose the problem by solving 
for rotation first, followed by translation. Second, the nonlinear least-squares optimization 
algorithm used to solve for rotation and translation is based on the quaternion representa- 
tion of rotations, which provides much better convergence properties than solution methods 

based on Euler angles. 

It is well known that least-squares optimization techniques can fail catastrophically when 
outliers are present in the data. For this reason, the basic pose algorithm described above is 
embedded inside a least-median-squares (LMS) procedure that repeatedly samples subsets of 
correspondences to find one devoid of outliers. This approach is called least median squares 
because it in effect minimizes the median-squared residual distance error rather than the 
mean-squared distance. LMS is robust over data sets containing up to 50% outliers. The 
final results of pose determination are a set of camera pose parameters and a covariance 
matrix that estimates the accuracy of the solution. 
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5.2    Model Extension Example 

The model extension process involves registering a current geometric site model with a new, 
incoming image, and then focusing on unmodeled areas to try to recover new buildings that 
have been recently built, that were previously unseen, or that for some other reason are not 
present in the site model database. We illustrate this process using the partial site model 
constructed in Section 4, and image J8 from the Radius Model Board 1 dataset. Although 
this is not strictly speaking a new image, since it was one of the eight images used during 
initial model acquisition, it will suffice for this example since we did not find aU the buildings 

during that previous model construction phase. 

Figure 20: Previous site model rooftops (thin lines) projected onto image J8, via model- 
to-image registration. New rooftop hypotheses produced during model extension are also 

shown (thick lines). 

Results of registering image J8 with the partial site model can be seen in Figure 20, 
which shows projected building rooftops from the site model overlaid on the image (thin 
lines). Based on this model-to-image registration, the areas containing buildings already in 
the site model were masked off, and the building rooftop detector was run on the unmodeled 
areas in the image. A set of 19 rooftop hypotheses was generated, also shown in Figure 20 
(thick lines). Once again, the detector did a reasonably good job at delineating the significant 
building rooftops lying completely within the image. Only one hypothesis is notably incorrect 
- - in the lower right hand corner a set of building shadows have been incorperated into a 
spurious rooftop hypothesis surrounding an actual roof, which was detected correctly. 

Based on the new set of rooftop hypotheses, the multi-image epipolar matching and 
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Figure 21: Updated site model projected onto image J8. Thick lines delineate buildings that 
were added based on model extension, thin lines show the previous site model. 

constrained multi-image triangulation procedures from Section 4 were applied, again using 
images J1-J8, to verify the new buildings and construct 3D volumetric building models. 
Only 10 hypotheses survived the verification and triangulation process. These were added 
to the site model database, to produce the extended model shown in Figure 21. The main 
reason for failure among building hypotheses that were not verified was that they represent 
buildings located at the periphery of the site, in an area which is not visible in very many of 
the eight views. If more images were used with greater site coverage, we expect that more 
of these hypotheses would survive the multi-image verification process. 

6     Summary and Future Work 

A set of IU algorithms for automated site model acquisition and extension are being devel- 
oped at the University of Massachusetts. The UMass design philosophy emphasizes model- 
directed processing, rigorous 3D perspective camera equations, and fusion of information 
across multiple images for increased accuracy and reliability. This year, a system for auto- 
mated building extraction was developed. The building extraction system currently assumes 
a generic class of flat-roofed, rectilinear buildings. Other required input parameters to the 
system include a set of images of the site, a user-define local site model coordinate system, 
camera resection parameters relating each image the to site model coordinate system, and a 
digital terrain map to place the extracted buildings upon. 
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To acquire a new site model, an automated building detector is run on one image to 
hypothesize potential building rooftops. Supporting evidence is located in other images via 
epipolar line segment matching, and the precise 3D shape and location of each building is 
determine by multi-image triangulation. Projective mapping of image intensity information 
onto these polyhedral building models results in a realistic site model that can be rendered 
using virtual "fly-through" graphics. An experimental case study of the model acquisition 
process was carried out using images J1-J8 of the RADIUS Model Board 1 data set. In this 
experiment, 25 building models were generated, covering a large portion of the model board 

site. 

To perform model extension, a prior site model is registered to new images, and model ac- 
quisition procedures are focused on previously unmodeled areas. In an operational scenario, 
this process would be repeated as new images become available, gradually accumulating ev- 
idence over time to make the site model database more complete and more accurate. An 
example of extending the partial Model Board 1 site model generated during model acqui- 
sition was presented. Model-to-image registration techniques were also presented that can 
be used to automatically determine model-based, local corrections to the resected camera 

parameters provided with each image. 

Several avenues for system improvement are open. One high priority is to add capabilities 
for detecting and triangulating peaked roof buildings. Another significant improvement 
would be extending the epipolar matching and triangulation portions of the system to analyze 
why a particular building roof hypothesis failed to be verified. There are many cases where 
the rooftop detector has outlined split-level buildings with a single roof polygon. This 
currently causes the subsequent epipolar verification procedure to fail, since all lines in 
the polygon are assumed to be at the same height. However, a careful analysis of the height 
histogram in these cases reveals it to be bimodal, meaning that some lines have been found 
to be at one height, while some occur at another. Automatic detection of these situations, 
followed by splitting the rooftop hypothesis into two separate hypotheses, one for each roof 
level, would result in an improvement in system performance. 

Our symbolic building extraction procedures will soon be combined with a correlation- 
based terrain extraction system developed at UMass. The two techniques clearly complement 
each other: the terrain extraction system can determine a digital elevation map upon which 
the volumetric building models rest, and the symbolic building extraction procedures can 
identify building occlusion boundaries where correlation-based terrain recovery is expected to 
behave poorly. A tighter coupling of the two systems, where an initial digital elevation map 
is used to focus attention on distinctive humps that may be buildings, or where correlation- 
based reconstruction techniques are applied to building rooftop regions to identify fine surface 
structure like roof vents and air conditioner units, may also be investigated. 
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