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1    Introduction 

The extraction of molecular Hamiltonian information from laboratory data has been 

a goal of considerable importance in chemistry. In general, the data can come from 

either stationary or time-dependent experiments, with the latter just recently becom- 

ing available at interesting ultrashort time scales[1]. In addition, there are numerous 

spectroscopic, and other sources, of time-independent data. A significant bottleneck 

in this field has been the lack of reliable algorithms for inverting such data to their 

underlying physical (Hamiltonian) information[2, 3, 4, 5, 6]. 

The algorithm presented in this work may be traced back to tracking control of 

molecular motion[7]. In the inversion context, a "track" < 0(t) > was assumed 

to be observed laboratory data, and the goal was to find the potential or electric 

dipole function consistent with the track. This report presents the basic rudiments 

of the idea that was developed under this project, and the results suggested that the 

concepts were quite well-founded. 

A variety of dynamical experiments [8] and theoretical techniques provided the 

basis for the inversion research. The last three decades witnessed the development of 

time-dependent quantum-mechanical methods for molecular dynamics [9], which were 

made possible by the efficient numerical algorithms of wavepacket propagation[10]. 

Combining the advances in both the experimental and the numerical techniques, we 

proposed a new inversion algorithm that reconstructs the underlying potential energy 

surfaces (PES) and dipole function from temporal measurements. 



2    Methodology 

Different types of observables and different initial conditions can arise, depending on 

the nature of the experiments. Here, we consider a single observable operator 0 with 

a sequence of initial conditions ^(t = 0),j = 1,2...ND. The Hermitian operator 

0 corresponded to a physical quantity observed in laboratory as a function of time. 

For example, in the case of position tracking, 0 = x, and < x(t) > is the measured 

mean position of the atoms in the molecule (e.g., measurement of ultrafast X-ray or 

electron diffraction). 

The experiments were assumed to provide measurements < Oj(t) >=< ipj(t)\0\ipj 

(t) >, j = 1,2...ND. According to the Heisenberg equation of motion, we had 

ihd <^j >   =   <^\[Ö,H)\^> 

=   < ^|[Ö,T]|^ > + < *j\[ÖtV\\1>i > ~€j(t) < MO,ß]\^i > (i) 

where H = T + V - pe(t) was the Hamiltonian for the system, T was the kinetic 

energy operator, (j,(x) was the dipole moment and e(t) was an external field. 

For any arbitrary Hermitian operator 0, Eq. (1) could be .recast into the form of 

a Fredholm integral equation of the first kind for the potential 

JK(j,x)V(x)dx = 9j (2)' 

where 

K(j,x)   =   7m{(<fyi)>i} •» (3) 

A similar expression could be written for the dipole function, if it was also sought. 

The kernels K(j, x) in Eq. (3) implicitly depended on time. We assumed that [Ö, V] 



was not identically zero. If [0,V] = 0, then Eq. (1) was not an invertible relation 

as it stood. In such a case, the differentiation of the track < Oj(t) > with respect 

to time must be continued to obtain a higher-order equation which is invertiblefll]. 

An example was the case of position tracking 0 — x. Although [x, V(x)] = 0, the 

invertible relation for V was obtained after differentiating <x(t) > twice with respect 

to time. 

Given the above basic relations, a family of algorithms was suggested to achieve 

the desired inversion. Many issues arose in this regard, and only the simplest approach 

was explored in the research. The procedure for the potential inversion is given below 

in detail, based on the field e(t) being zero. This discussion can be easily adapted 

to the dipole inversion case. The actual laboratory data < Oj(t) > is a convolution 

of the wavefunction in configuration space (or some Other representation), and thus, 

no unique wavefunction ipj corresponded to the data. To start the inversion, a set of 

initial conditions ipj(t = 0) was needed to be consistent with < i>j(0)\O\^j(0) >=< 

Oj(t = 0) >, and much freedom existed in the choice. With the known initial states 

tßj(t = 0) and the initial data < Oj(t = 0) >, the unknown potential V was the 

solution of the integral equation (2). Since the initial nonstationary states ^(0) are 

usually localized in the Franck-Condon region in an electronic excitation process, the 

solution of the integral equation consequently only gave the local potential VQ in the 

Franck-Condon region. However, this piece of potential VQ could be used to propagate 

the wavemnctions ^(0) to the next time i/>j(At) according to the time-dependent 

Schrödinger equation, 

ih^l = {T + VM>       , (4) 

Then, the solution of the integral equation (2) gave the next piece of the potential 

V&t. With V&t, the wavefunctions at the next time step ^(2Ai) could obtained by 



propagation, which allows for solving the integral equation to get V2At, etc. This 

procedure could be effected in terms of the split operator method[12]. The process of 

inversion plus propagation continued until the wavefunctions sampled all dynamically 

accessible regions of the PES. Finally, the potential V was the union of the sampled 

pieces along the track. 

3    The Need for Regularization 

The solution of the integral equation (2) was generally not unique. This was due to 

the limited information we could get from the inevitably incomplete data. In addition, 

the solution was likely not stable against small changes in the data, which were known 

as ill-posedness. Both of these issues are common to virtually all inverse problems. 

However, we did not seek an arbitrary potential or dipole function, but a physical one ■■ 

which was capable of reproducing the data and also met some fundamental physical 

requirements and boundary conditions. These requirements and conditions consti- 

tuted our prior knowledge about the potential or dipole function. For example, the 

physical PES should be a smooth function and negligible asymptotically as x —► oo. 

As a general inverse-problem approach was adopted in this research, we did not as- 

sume any biased functional form for the potential. Without further restriction, this ,, 

allowed multiple solutions satisfying Eq. (2), with some of them highly irregular and 

even singular. The incorporation of prior knowledge provided some mild general con- 

straints on the solutions. Thus, by incorporating this prior knowledge, the solution 

could be stabilized, which is referred as a regularization procedure. Here, we used the 
■i 

very mild criterion of smoothness of the potential as our prior knowledge to regularize 

the solution. 
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In order to implement the regularization, Eq. (2) was rewritten as [2] 

JK^(j,x)V^(x)dx = 9j (5) 

where 

K^(j,x)   =   - [*   K^(j,x')dx' (6) 

The regularized solution of Eq. (2) was achieved by minimizing the following functional[2] 

J=\\jKMU,x)VW{x)dx-gj\\l + a\\VM{x)\\l (7) 

leading to 
ND   (vTa\ 

where Uj,Vj(x) were the singular functions for the kernel in Eq.  (5), with singular 

values Uj. 

The regularization parameter a denoted the trade-off between reproducing the 

data and the solution being smooth. We constructed an error function of a, 
i 

Error(a) = \\ JK^(j,x)V^(x)dx - 9j\\l (9) 

The optimal a* was located at the global minimum of this error function. , 

The inversion was actually achieved through the nth derivative V^(x), which 

imposed a stronger smoothness condition on V(x) for n > 1. To obtain V(x), we 

needed to integrate n times 

V^m-\x) = - /    dx'VW{x')   * (10) 

The above proposed algorithm was presented in one dimension, but it could be gen- 

eralized to higher dimensions as well. 



4    Example 

We simulated the inversion of the potential and dipole function of a diatomic molecule. 

Suppose that the mean positions < Xj(t) >=< ^(*)|a#(*) > of the wavepackets could 

be measured in the experiment (e.g., by ultrafast X-ray or electron diffraction). Since 

the Hesienberg Eq. (1) for Ö = x was not invertible, the second derivative could be 

invoked to give 

^ < Xj(t) >=-jdx\^\2V^) + Jdxe(t)\i;j\
2^) (11) 

where the superscript 1 denoted the first order space derivative. 

We proceeded to reconstruct the potential and the permanent dipole functions 

from the time-dependent data < Xj(t) > by solving the Fredholm integral equation of 

the first kind, Eq. (2). We applied the direct inversion procedure to a model problem 

of a bound diatomic molecule. 

In the simulation, the initial wavefunctions were taken as Gaussian wavepackets, 

**,*»(*) = CexV {U^x - (*~^)2) ,    j = 1,2, ...ND (12) 

where C = (xh)~^A was the normalization constant. The initial condition in Eq. 

(12) was consistent with the track < Xj(t) >. 

The results presented below were based on the following conditions. The second 

derivative of the potential was required to be smooth, i.e., n = 2. The number of 

data is No = 16, poj = 0, qoj = —0.9 + (j — 1)Ax where Ax = 0.01 was the numerical 

grid spacing; and xmin = —2, xmax = 8 specified the size of the numerical grid. 

The inverted potential was compared with the exact one V in Fig. la. The over- 

all quality of the inverted potential was excellent. As a more sensitive verification, 

the wavefunction at fixed interval of time was compared to those obtained by the 



propagation on the exact potential V{x) (so-called exact wavefunctions) in Fig. lb. 

The wavefunctions propagated on the inverted potential had no essential difference 

from the exact ones, except that a small fluctuation was visible at later times, which 

resulted from the finite size of the chosen numerical grid. A similar inversion was 

carried out to extract the dipole function in this model, and the results for the dipole 

function are given in Fig. 2. Similar quality excellent results were obtained for the 

inversion. 

5    Conclusion 

This report summarizes a new direct inversion algorithm under development for recov- 

ering molecular potentials and dipole functions from sequential time measurements. 

The direct algorithm exploits efficient numerical methods of wavepacket propagation. 

Time is explicitly utilized as an important parameter in organizing the inversion. We 

have demonstrated this algorithm in a simulation for recovering the potential and 

dipole moment for a model diatomic molecule. 
i 

The proposed inversion algorithm is direct and computationally efficient.   The 

traditional time-independent inversion schemes usually require many iterations before 

convergence.   This can be very time consuming computationally.   In the tracking , 

method, the inverse problem is solved just once at each time step.   Furthermore, 

the size of the inverse problem solved in the direct approach can be much smaller 

(ND 
W
 10) than that in the time-independent methods (No « 102 in one dimension), 

because the potential sampled by the localized wavepackets can be inverted locally 
i 

which is in contrast to the global potential sampled by all the eigenstates or the 

continuum states. In the direct method most of the computational effort deals with 
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the wavepacket propagation, which is much easier. 

The time-dependent tracking approach to inversion also opens up the possibility 

to recover the potential from time-independent data, since the latter data can be 

synthesized from the time-independent information. This topic, as well as a host 

of other issues, needs to be explored to fully exploit the capabilities of the direct 

algorithm. The results of this research opens up this field for further exploration of 

these new concepts of laboratory data inversion. 
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Fig. 1 : The results for the potential inversion. The initial conditions are: q0i 

and po = 0. 

= -0.9 

(a) V(x). The squares are the inverted results, and the solid line is the exact 

potential. - 

(b) Snapshots of |^-=i|2 at the successive intervals of time, where the solid line 

is recorded during the inversion and dotted line is the exact result obtained 

by the propagation on VM{X). 
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Fig. 2 : The results for the dipole function inversion. The initial conditions are: <?oi = 

-0.9 and p0 = 0, and JJL(X). The squares are the inverted results, and the solid 

line is the exact dipole. 
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