
-loo- 

Experimental Evaluation of the Push-Relabel Method 
for the Minimum-Cost Flow Problem 

(Extended Abstract) 

Andrew V. Goldberg* 
Michael Kharitonov 

Department of Computer Science 
Stanford University 
Stanford, CA 94305 

August 1991 

19961114 047 

I    £5f!*i^^Ä.:
1:-i„-:v:i':':.-»'---"'--''--^'   | 

Sap*©*«* to m^ »-«f^ 
R 
i 

•Research partially supported by NSF Presidential Young Investigator Grant CCR-8858097 with matching funds from 
AT&T and DEC, ONR Young Investigator Award N00014-91-J-1855, and a grant from Mitsubishi Corp. 

7TIC QTTAJ^ 



•101- 

1     Introduction 

The generalized cost-scaling method, introduced in [4, 7], is theoretically superior to other methods 
for solving the minimum-cost flow problem, in the sense that it leads to the best running time bounds 
currently known under the assumption that the absolute values of costs are not too big. (See also [1].) 
There is some evidence that the method should perform well in practice as well: an earlier cost-scaling 
algorithm of Blend and Jensen [2] was shown to be competitive with a well-established network simplex 
code. The method is very flexible and has many variants. Which version of the method works best in 
practice? But how good is the method in practice? These are the questions addressed in our study. 

Generalized cost scaling framework can accommodate several very different algorithms such as 
the push-relabel method [5, 7], the blocking flow method [3, 7, 10], multiple scaling algorithms [1], 
and cycle-canceling algorithms [6]. We restrict our study only to push-relabel variant of the cost- 
scaling approach. This variant is the most promising since, in the context of the closely related 
maximum flow problem, several researchers reported its superior performance compared to other 
popular techniques. (The most comprehensive study we are aware of was done by Michael Grigoriadis 
[personal communication].) For this reason we believe that the experimental study of the push-relabel 
variants of the method should be done first, and in this study restrict ourself to these variants. 

The main advantage of the push-relabel method is its flexibility. The method allows arbitrary 
ordering of its basic operations. In addition, several heuristics can be used in attempt to reduce the 
number of basic operations. In the context of the maximum flow problem, a good choice of operation 
ordering and heuristics proved to be essential for obtaining an efficient implementation. The more 
general minimum-cost flow problem allows an even richer choice heuristics. The use of scaling also 
raises the question of the choice of the scaling factor. We study several operation orderings and 
heuristics proposed in [7], as well as new heuristics. 

Although our study is not yet complete, we learned a lot. The practical performance of the method 
is much better then the worst-case bounds suggest. In particular, one scaling iteration seems to be 
not that much slower than a shortest path computation on the residual graph. Since the number of 
scaling iterations is small, the algorithm runs very fast. We expect the final implementation to be 
memory bound, so that any problem that fits into the main memory of a RISC workstation can be 
solved in a matter of minutes. 

Since the practical behavior of the algorithm differs substantially from the worst-case behavior, 
some operations and heuristics with negligible worst-case cost become too expensive in practice. In 
some cases, the new bottleneck can be eliminated by handling such operations in a more sophisticated 
way. In one case, we overcame such a problem by introducing a data structure that speeds up the 
bottleneck operations substantially. Some heuristics improve the running times. Others do not. In 
some cases, a heuristic needs to be replaced by one that accomplishes a similar goal in a more "quick 
and dirty" way. 

To summarize, our experimental results so far are very encouraging. We learned several interesting 
facts about the practical performance of the method and related heuristics. Our observations lead 
to practical improvements of some implementations and even to a revival of an earlier theoretical 
conjecture. 



-102- 

2 Preliminaries 

We assume that the reader is familiar with [7] and use the definitions and notation from that paper. 

3 Important Experimental Observations 

During the course of our experiments we made several observations that help to explain the empir- 
ical behavior of the method and to improve selection strategies. We summarize the most relevant 
observations below. 

3.1 Low Activity Level 

The first observation is that, on the average, relatively few nodes are active during an execution of 
refine. This was observed earlier by Norbert Schienker and Bob Tarjan [personal communication] 
and Joel Wein [personal communication]. Even for moderate-size problems of several hundred nodes 
about 1% of the nodes are active; the fraction of active nodes goes down as the problem size increases.' 
Of course, the exact number of active nodes depends on the selection strategy and on the example 
structure. However, we found the number to be low for all the combinations we tried. 

The low activity level has important implications. For example, the first-in, first-out (FIFO) 
selection strategy works better then the worst-case bound suggests. Also, because of the low activity 
level, non-trivial data structure is required for the first-active (FA) implementation, which otherwise 
spends most of its time scanning the node list in search of the next active node. These implications 
are discussed in more detail in the next section. 

3.2 Outdated Prices 

We say that the prices are current if every node with an excess from which a node with a deficit can 
be reached in the residual graph has an admissible arc going out of it. One way to compute current 
prices is to add e to reduced costs, compute shortest path distances to the nodes with deficits, and 
add these distances to the corresponding prices. We call this computation price update. Note that if 
the prices are current, there is an admissible path from every node with excess to a node with deficit. 
In this case pushes move, flow excesses towards flow deficits (with respect to the topological order of 
the admissible graph). 

Prices are outdated if they differ significantly from any set of current prices. If the prices are 
outdated, flow excesses do not necessarily move toward the deficits. We found that the prices tend to 
stay outdated. This helps to explain the behavior of some of the algorithms. 

In the context of the maximum flow problem, price updates can be performed by a breadth- 
first search computation, and therefore are very efficient. In fact, their use is crucial to a good 
implementation of push-relabel maximum flow algorithms. Our experience with price updates in the 
context of the minimum-cost flow problem is discussed in the next section. 

I 
I 



■103- 

3.3    Relabelings Dominate Pushes 

In our experiments, the number of pushes was about twice the number of relabelings However 
a relabehng requires more work than a push, so the relabeling work dominates that of pushing' 
This makes ,t unlikely that the use of dynamic trees, as described in [7], will improve the praS 
performance of the method, especially since the constant factors associated with th^dynamic tret 
are quite high. ^jn-auu^ trees 

4     Operation Orderings 

4.1 Discharge Operation 

The lower-level ordering is given by the discharge operation. This operation processes an active node 
by pushing flow out of it or, if no admissible arc is available for pushing, by relabeling the node One 
variation of this operation stops when the node becomes inactive; another variation sfops ehher when 
thenode becomes inactive or is relabeled. We found that the former version performs better m most 

4.2 First-Active Implementation 

^^•fT (FA) T Plemen*at ion ttd the dos^ related wave implementation are good from 
M TT^ *T.°fJ,ieW- Th6Se imPlementat*<™ Process active nodes in the topoloScal order 
induced by the admissible graph. The FA implementation starts a new pass as soon ^^11 
reveled and the wave implementation does not start a new pass until ail nols Le b J processed 
Our experiments indicate that these selection strategies are very competitive with each otheoiTor 
another may be a little better depending on an instance. The FA implementation is e^erto^hl 
and code, so we concentrate on this implementation. aescnbe 

Recall that the FA implementation selects an active node with no active oredere^nrc   TT,   •     , 
mentation described! in (7] Maintains the nodes in a linked list according «S^™, ^Ä 
the admissible graph. Because of the low activity level however thfc Lw^t Pf?

10S1CaI ordermS of 

In theoretical work, this problem came up in the context of an implementation that „«* J 

IZ H ^ £ rber °f PUSh °Perati0nS W- The proposed s^Tto^elZ^^ 
trees. However, this data structure is quite complicated and as a re^lt tl,* ,-™c+ + 7 * 
with it is probably quite big. The theoretical mot^tio, for usZTt^äTT t ^^^ 
introducing a logarithmic faLr into the running tiTbound JTtte cttext o^ ," ^ "^ 
discussed here (which does not use dynamic trJs), this SLL^b^al^^^ 
course m practice one uses the data structure that works best in any case P* * 

by lowing the ieW ma*ed path from the ,oo, tZt^l^ZtZ^ 



■1U4- 

introduced by this data structure are relatively large. We obtained a better implementation using a 
priority queue. We refer to this implementation as the PFA implementation throughout the rest of 
the paper. 

The PFA implementation maintains topological numbers on nodes. These numbers are updated 
during relabelings. The priority queue maintains active nodes ordered by their topological numbers. 
Note that the PFA implementation is very much like the FIFO implementation, except that the 
topological numbers are maintained and a priority queue is used instead of a fifo queue. We use a 
&-ary heaps to implement the priority queue data structure. 

There are two reasons why the priority queue implementation is better then the tree-based im- 
plementation. First, the constant factors for heaps are better then those for trees. Second, the tree 
contains all nodes, and the priority queue contains only active nodes; because of the low activity, the 
number of the active nodes is much smaller then the total number of nodes. 

The corresponding implementation of the wave algorithm is slightly more complicated and needs 
two priority queues. 

4.3 First-in First-out Implementation 

The FIFO implementation is the simplest - and the fastest one so far. This implementation does not 
require any modifications to benefit from the low activity level. 

The best known bound on the FIFO implementation of refine is 0(nA) [4, 7]. A better bound was 
conjectured in [4]. As far as we know, this conjecture may still be true, since no u{nz) lower bound is 
known. Our experiments tend to support the conjecture. 

4.4 Maximum Excess Implementation 

The maximum excess selection rule was proposed in [5]. The maximum excess algorithm implemen- 
tation is similar to the PFA implementation but uses node excesses as keys and does not maintain 
the topological numbers. The major difference is that if more flow is pushed into an already active 
node, its key must be increased. Therefore, unlike the PFA and FIFO implementations, the maximum 
excess implementation requires operations on nodes already in the active queue. 

4.5 Comparison and Discussion 

The PFA implementation runs much faster the the FA implemented that uses a linked list. This is 
due to the low activity level. The linked list implementation spends most of its time scanning the list 
in search of an active node; the priority queue implementation is designed to make the search for the 
next active node more efficient, and it succeeds. 

The FIFO implementation is currently the fastest one we have. Although the theoretical bound for 
the PFA implementation is better than that of the FIFO implementation, the practical performance 
of the PFA implementation is worse. The number of push and relabel operations is about the same 
for the two implementations (see Section 7). The reason for the running time difference is clear: the 
priority queue operations are much more expensive than the fifo queue operations. Maintaining the 

0 



•105- 

topological numbering of nodes also adds to the running time of the PFA implementation, but this 
cost is small 

Preliminary experiments suggest that the number of push and relabel operations is slightly lower 
for the maximum excess implementation as compared to the FIFO implementation However the 
running time is higher. This due to the fact that the maximum excess implementation required the 
increase-key operation on the priority queue, since a node excess can increase if more flow I pushed 
into this node. Thus a push may require a relatively expensive priority queue operation wMch is 
not the case for the FIFO and PFA implementations. The need for the increase-key operation also 
slows down other priority queue operations. We will report on experiments with the maimum excess 
implementation at the workshop. «^mima excess 

An interesting observation is that, on the same problem instance, the number of push and relabel 
operations does not change too much among these implementations, although the SÄT^^H 
are quite different. This is probably due to outdated prices, which make it°har*tlZiteU^ 
selection of the next active node to process. Thus the simplest and most efficient strategy - FIFO _ 

^ Although our FIFO implementation is currently the fastest, the PFA implementation performance 
is also quite reasonable. It is possible that a heuristic improves the PFA irrmW^t ?eit°"n^e 

more than the FIFO implementation. Both implementation, le^fr^ZZ "* " 

5    Heuristics 

Pricing-out Pricing out is a simple technique that, to our knowledee was T,PVPT »«»A • 
natorial minimum-cost flow algorithms (although similar, but m^d L h^X i" L" 
simplex codes). The heuristic involves «removing« some arcs from he graph ÄÄ ^ 
very effective - it improves the algorithm performance by a factor of 1 fTwbl t^T ? T*?** 
to implement. The theoretical justification^ of this technoZ Mots 'if tt c^TJ^Z 
e-optimal and the absolute value of an arc cost exceeds 2ne tfc* ™*h ™i v i ^™nt.i?

rculatl011 * 
the flow on this arc. Pricing out is done after eve"execu fon of ennWifht 2f r ^ "* ***** 
its cost is negligible compared to the cost of refine. With a careful implementation, 

fhlt^W nemeDt, TLe f°?OWing heUriStk W3S SUgSeSted in N- This Juristic is based on the fact that refine may produce a solution which is not only € ODtimal W alCrt ,u   r     / , ° 

If a Bellman-Ford computation is much more efficient than a refine comDuta.H™ *„A *i 

We intend to reevaluate the above conclusion after refine and Bellman-Ford implementations are 



•106- 

tightened.  Since the usefulness of this heuristic depends on the relative speeds of the two routines 
the conclusion may change. 

Price refinement can be also done using a minimum-mean cycle computation [8, 9], which may 
turn out to be superior to our current way of doing the refinement. 

One reason why price refinement is attractive in practice is as follows. It seems that a Bellman- 
Ford computation is always faster then a refine computation, so even if the success ratio is small, the 
running time cannot increase too much because of the price refinement. 

Finally, note that the running time of refine is higher for bigger scaling factors, but the running 
time of a Bellman-Ford computation does not depend on the scaling factor. Therefore price refinement 
is cheaper for bigger scaling factors. The success ratio, however, may decrease as the scaling factor 
grows. 

Price updates Price updates are performed during refine when enough work has been done to 
amortize the cost of a price update. Thus price updates are guaranteed not to increase execution time 
by more than a constant factor. A price update is performed by adding e to reduced costs, computing 
shortest path distances to the nodes with deficit in the residual graph, and adding the distances to 
the prices. After a price update, the prices are current, but they tend to become outdated quickly. 

Price updates are supposed to reduce the number of push and relabel operations, but this happens 
only if the updates are frequent enough. (See Section 7.) In our current implementation, price updates 
are done using the Bellman-Ford algorithm, which makes the updates prohibitively expensive. We plan 
to experiment with using Dijkstra's algorithm to do the updates. 

Maintaining Current Prices One can maintain current prices by modifying a relabel operation 
as described in [5] in the context of the maximum flow problem. We plan to implement this version 
of the algorithm. Although this version is unlikely to be practical, it may give some insight into the 
behavior of the method. In particular, it is likely that maintaining current prices reduces the number 
of push operations significantly. 

Scaling Factor Selection The performance of the cost scaling method depends on the choice of 
the scaling factor. As the scaling factor grows, the number of scaling iterations decreases but the 
refinement time increases. It is important to choose a scaling factor that minimizes the running time. 
Although there seem to be no clear winner here, scaling factors of 4, 5, 6, 7, and 8 give best results. 
The scaling factors of 2 and 10 or greater are bad. See Section 7 for experimental results. 

6    Example Generator 

Our example generator produces relatively hard instances of the minimum-cost circulation problem. 
Currently our program does not work with more general transportation problems. We plan to modify 
the program to accept these problems and experiment with Netgen and other examples before the 
DIMACS workshop. 



-107- 

no heuristics 
time 

pricing out 
time 

and price refinement 
time (success ratio) 

13 (.50) 
13 (.29) 
12 (.30) 
11 (.30) 
10 (.25) 
10 (.38) 
11 (.38) 
13 (.38) 
19 (.45) 
15 (.36) 
14 (.30) 
15 (.30) 
14 (.25) 
15 (.38) 
14 (.38) 
15 (.38) 

527 (.30) 
970 (.30) 

Figure 1: Pricing out and price refinement heuristics applied to the FIFO algorithm. 

Our generator is based on the maximum flow generator of Ul   rm,™a    + 

on it. The distance from a node of the mesh to the^S^hwÄJ «>, i» & ^ ^ 
directions is one, and the torus dimensions are xZTmZ^rlc^ eraT   1  ^^^ 
mesh. I* this graph, every node ha. out-degree 6X + £   To conSuc   Ä ^ ^ °f ^ 

the mesh. The capacity ^^ Z^l^^Z^^^^ ^ *t * 
(v, w) is selected umformly at random from the interval [-MAXCOST... MISCOST] 

We experimented with two kinds of examoles  \n„aro» ^A ^ J 

somewhat different kinds of problems. q * ^ ""* naJr°W' which tend *> ^e 

7    Experimental Results 

In this section we present some experimental results obtained on SUN SPADP , 
interpret these results.   The resuLs are preliminary    Forexample   *Z >     ^station and 
simplify modification and debugging   The ontimiS ™ •   ' T     "^ C°de is written to 

workshop wHl be 2-4 times ^efZtltZ^l^Z^^  W^ *" ^ D™ACS 

study of heuristic and data structures will allow us to ~S£onat MdT f-° ^ *"* ^^ 
our code is stable, we Intend to do more complete ^S^^^^T^^^ 

In this section, all running times are in CPU seconds, excluding the input and output times. Note 



-108- 

grid scaling FIFO PFA 

example n            m factor time pushes relabelings time pushes relabelings 

30x30 900        9,000 2 13 406,208 241,918 17 418,090 241,406 

3 11 353,729 196,931 15 386,328 211,663 

4 11 312,794 188,881 13 312,050 185,290 

5 11 350,159 198,283 14 377,182 212,173 

6. 10 339,634 206,916 15 357,370 216,121 

7 11 390,543 226,340 15 394,145 230,353 

8 12 375,009 230,700 15 410,026 250,143 

9 14 477,358 275,097 20 596,981 345,701 

180x5 900        9,000 2 19 610,633 357,731 22 570,129 327,828 

3 15 534,576 302,571 19 473,778 261,325 

4 14 469,107 281,760 18 439,539 259,546 

5 15 521,069 295,607 19 500,290 285,739 

6 14 469,683 283,537 18 466,610 281,333 

7 16 527,481 307,552 19 524,144 304,754 

8 14 543,783 327,661 21 569,948 343,028 

9 17 672,136 389,310 21 537,600 316,813 

100 x 100 10,000    200,000 6 508 8,279,438 5,095,941 619 9,031,503 5,550,991 

1000 x 10 • 10,000    200,000 6 944 16,103,893 9,784,584 1,000 14,314,893 8,728,827 

Figure 2: FIFO vs. PFA implementations. Both implementations use the pricing out heuristic. 

also that our internal representation of the graph is symmetric and thus contains twice the number of 
arcs m indicated in the tables. 

The table in Figure 1 gives running times for several variations of the FIFO algorithm and several 
values of the scaling factor. First we give times for the algorithm with no heuristics added. Next we 
add the pricing out heuristic. Running times are reduced, in some cases by nearly a factor of two. 

Next we add the price refinement heuristic while keeping the pricing out one. (Note that pricing 
out speeds up both refine and Bellman-Ford computations.) The running times do not seem to be 
affected much. 

As far as the scaling factors go, there are no clear winners, but there are clear losers. In particular, 
2 is a looser. Large scaling factors also seem to be bad. Scaling factors from 4 to 8 seem to do best. 

The table in Figure 2 compares the FIFO and the PFA implementations. Only the pricing out 
heuristic is used in both implementations. The table gives the running times as well as the count 
of push and relabel operations. This count is very closely correlated with the running time. Recall, 
however, that the PFA implementation is more expensive because of the priority queue operations 
involved. (The number of discharge operations is usually almost as large as the number of push 
operations, and each discharge involves a queue operation; pushes may cause queue operations as 
well.) Also note the correlation between the number of pushes and relabelings; the latter is usually 
slightly less then half of the former. 

The number of push and relabel operations for the two algorithms is close. The FIFO algorithm 
uses a slightly smaller number of operations on square meshes (which tend to be easier); the PFA 

^Tf 



•109- 

grid 
example m 

30 x 30        900        9,000 

BFS 
factor time 

180x5 900 9,000 

0.05 
0.1 
0.2 
0.5 
1.0 
1.5 
2.0 
2.5 

100 x 100    10,000    200,000 

1000 x 10    10,000    200,000 

0.05 
0.1 
0.2 
0.5 
1.0 
1.5 
2.0 
2.5 

0.05 
0.1 
0.5 

0.05 
0.1 
0.5 

12 
11 
13 
14 
15 
15 
16 
18 
16 
19 
19 
18 
19 
22 
21 
25 

FIFO 
pushes relabelings 

532 

616 

640 

373,482 

292,328 

304,323 
256,100 

197,816 
169,468 

146,317 

143,618 

203,302 

155,028 

157,012 

126,810 

93,444 

78,267 

65,190 

63,310 

time 

470,397 

564,042 

445,891 

347,113 

275,710 

242,878 
195,393 

207,857 

252,237 

294,675 
228,765 

171,145 
131,063 

112,343 

88,120 

92,819 
8,232,855 
8,537,182 

7,071,649 

4,426,040 

4,479,448 

3,523,917 
1,110 
1,084 
1,437 

24,098,347 
20,394,470 
14,440,673 

12,480,779 
10,389,212 
7,244,118 

16 
17 
18 
23 
24 
33 
31 
33 
26 
27 
32 
29 
34 
37 
48 

 49_ 
697 
936 

1,016 

PFA 
pushes relabelings 

356,075 
392,047 
339,017 
372,583 
307,707 
320,053 
247,729 
228,948 
641,541 
675,190 
705,363 
497,594 
427,756 
382,439 
401,268 
346,570 

10,411,190 
13,067,271 
10,407,340 

193,878 
209,683 
180,021 
191,612 
156,981 
162,814 
124,741 
114,947 
353,096 
365,025 
372,539 
257,677 
216,223 
191,918 
200,569 
172,003 

1,824 
2,002 
1,947 

23,454,282 
23,296,675 
19,394,078 

5,715,802 
6,999,114 
5,409,219 

12,888,609 
12,461,325 
10,054,807 

Figure 3: Price updates in FIFO and PFA algorithms. Both 
and scaling factor 6. 

algorithms use the pricing out heuristic 

algorithm has a slightly smaller number of operations on long and thin meshes (which are harder). In 
all cases, the number of operations is quite close, and the PFA algorithm looses 5% to 50%, mostly 
because of the extra overhead involved. 

Figure 3 illustrates the effect of the price update heuristic on the FIFO and PFA algorithms. The 
update frequency is adjusted by the update factor parameter; the update frequency is proportional to 
the parameter value. Although the number of push and relabel operations tends to decrease as the 
update factor increases, this decrease is not monotone and seems unpredictable. On the positive side 
frequent updates decrease the number of operations, especially the number of relabelings. On the 
negative side, for our current implementation, the cost of performing the updates exceeds the savings 
due to the reduced number of pushes and relabelings. 

Comparing figures 2 and 3, we get an unexpected result: the number of operations may increase 
due to price updates, if the price updates are infrequent. In the context of the maximum flow problem 
this does not seem happen. We feel that understanding this phenomena is important and may lead to 
a more effective way to update prices. 



■110- 

8    Conclusion 

We made significant progress in the study of experimental performance of the push-relabel method, 
and have identified several promising directions to continue the research. 

Although not optimized, our current FIFO implementation is fast. It solves hard examples with 
a thousand nodes and ten thousand arcs in under a minute. Hard examples with ten thousand nodes 
and two hundred thousand arcs are solved in under twenty minutes. This size is close to the maximum 
that can be executed on our machine (with 24M of memory) and not cause paging. (We are about 
to take delivery of a SPARC-2 with 64M of memory, however.) We would like to emphasize that our 
examples seem to be hard. For the maximum flow problem, our grid examples require time that is by 
almost an order of magnitude greater then the Netgen examples of comparable size; the same is likely 
to happen for the transportation problem. 

As we have mentioned, we expect to get significantly faster code using both low and high level 
improvements. We expect that our final implementation will solve any problem that fits in 64M of 
memory in minutes, and smaller or easier problems in seconds. 

From Jinn.Stanford.EDUIango Tue Aug 20 00:28:48 PDT 1991 Received: by alice; Tue Aug 20 03:25:29 
EDT 1991 Received: by inet.att.com; Tue Aug 20 03:25 EDT 1991 Received: by Jinn.Stanford.EDU (4.0/25- 
eef) id AA18161; Tue, 20 Aug 91 00:28:48 PDT Date: Tue, 20 Aug 91 00:28:48 PDT From: Andrew Goldberg 
jango@jinn.stanford.edui Message-Id: j9108200728.AA18161@Jinn.Stanford.EDUi To: dsj@research.att.com 
Subject: abstract.bbl Status: RO 

References 

[1] R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding Minimum-Cost Flows by Double 
Scaling. Technical Report STAN-CS-88-1227, Department of Computer Science, Stanford University, 1988. 

[2] R. G. Bland and D. L. Jensen. On the Computational Behavior of a Polynomial-Time Network Flow 
Algorithm. Technical Report 661, School of Operations Research and Industrial Engineering, Cornell 
University, 1985. 

[3] E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation 
Soviet Math. Dokl, 11:1277-1280, 1970. 

[4] A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., 
January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987). 

[5] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. 
Mach., 35:921-940, 1988. A preliminary version appeared in Proc. 18th ACM Symp. on Theory of Comp., 
136-146, 1986. 

[6] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Canceling Negative Cycles. J. 
Assoc. Comput. Mach., 36, 1989. A preliminary version appeared in Proc. 20th ACM Symp. on Theory of 
Comp., 388-397, 1988. 

[7] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math, 
of Oper. Res., 15:430-466, 1990. A preliminary version appeared in Proc. 19th ACM Symp. on Theory of 
Comp., 7-18, 1987. 

[8] R. M. Karp. A Characterization of the Minimum Cycle Mean in a Digraph. Discrete Math., 23:309-311, 
1978. 

IB 



-111. 

[9] R. M. Karp and J. B. Orlin. Parametric Shortest Path Algorithms with an Application to Cyclic Staffing 
Discrete Applied Math., 3:37-45, 1981. 

[10] A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows   Soviet Math 
Dot, 15:434-437, 1974. 


