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Abstract 

An approach to creating Amorphous Recurrent Neural Networks (ARNN) using Genetic 
Algorithms (GA) called 2pGA has been developed and shown to be effective in evolving neural 
networks for the control and stabilization of both linear and nonlinear plants, the optimal control 
for a nonlinear regulator problem, the XOR problem, and an amplitude modulation (AM) 
detector. This new approach consists of a two-phase GA with the first phase using a set of 
Lindenmayer System (L-System) production rules to evolve the NN architectures, and the second 
phase using genetic hill-climbing for connectivity weight tuning. The resulting amorphous (non- 
layered) recurrent NNs are real-valued as opposed to the binary-valued nets generated by the 
original GANNET program. Integral absolute error was the fitness function used in these 
experiments. 

A striking indirect result of this research is the few number of neurons which are required to effect 
the compensation and stabilization. Typical networks are from 4-15 neurons. 

The inclusion of a neural insertion/deletion operator in both the 2pGA and GANNET2 methods 
allows for the size of the NN to be evolved. This capability has been used to develop an empirical 
relationship between problem complexity and the required NN complexity. Problem complexity is 
measured by the number of symbols required to differentiate among binary patterns in a pattern 
recognition task. NN complexity is measured by number of neurons. While not yet definitive, 
empirical data from ARNNs evolved by GANNET2 show what appears to be a logarithmic 
relationship between the complexity of a regular expression and the size of a recurrent neural 
network which recognize it. Additional experiments are being performed to extend the region of 
evolved data to improve our confidence in this conclusion. 



1 Introduction to Evolved Amorphous Neural Networks 

Amorphous neural networks have no identifiable layered structure which makes them less 
amenable to mathematical analysis than other structures, yet more similar to their biological 
counterparts. GMU is unique in its approach to the complete evolution of amorphous NNs 
including their structure, weights and threshold, size, and selection of input and output neurons. 

The inherent recurrence of amorphous recurrent NNs (ARNN) makes them capable of responding 
to inputs differently depending on the preceding sequence of inputs. Amorphous neural networks 
are spatially as well as temporally context-sensitive in that they respond both to the current 
parallel input as well as to the preceding inputs. The result of this is that the ARNNs have both a 
short-term and long-term memory. Short-term in that they can store recent events in their volatile 
recurrent connections and long-term in that the structure has been evolved based on evolutionary 
pressure in the face of a training environment. 

Conventional NNs are layered and usually are not recurrent. Without recurrence there is no 
memory and hence no potential for previous-state-dependent behavior (e.g., finite state machine 
behavior). This research demonstrates the ability of genetic algorithms to evolve amorphous 
recurrent neural networks which are capable of mapping input vectors to output vectors as well as 
behaving like finite state machines (e.g., counters and nonlinear controllers). The genetic 
algorithm approach allows us to apply a fitness function which includes evolutionary pressure to 
minimize the size of the NN as well as to insure that the NN operates in the desired manner. 
Others who have used GAs to evolve NNs have fixed the network architecture and size and 
evolved the weights, or, have evolved the architecture and used backpropagation to find the 
weights. GMU's approach completely evolves all aspects of amorphous neural networks. 

1.1       Assessment of the current state of the art in GA/NN 

■'An extensive literature search, performed during fall of 1994 and covering the previous five years, 
-yieldedTJDly 15 papers &T significance to"the field of genetically engineered neurocontrollers —~ 
(GENC). There are three major areas of research in GENC: 

1) the NN optimization problem, 
2) the adaptive control problem, and, 
3) the study of emergent behavior or properties that arise as a result of the 

optimization process. 

In the NN optimization problem, three approaches are taken: 

1) evolution of weights/biases while holding the NN structure constant, 
2) evolution of weights, biases, and the NN structure, and, 



3)       a hybrid approach which combines the evolution of the structure with a more 
common training approach such as back-propagation. 

The emphasis in the literature is on the first two approaches with the static feedforward network 
being the most popular but with recurrent networks being used in many applications. It remains a 
problem that the structure of the appropriate NN for an application is problem specific. The 
interest in recurrent NNs rather than feedforward networks seems to stem from the thought that 
the oscillatory nature of recurrent networks leads to the construction of a control system 
consisting of a multiplicity of coupled oscillators which allow for "seamless" switching from one 
mode of operation to another. 

Adaptive control with GENC can be subdivided into direct and indirect approaches with the 
indirect approach {a priori specification of a plant model prior to evolution) being the more 
popular. Its popularity stems from the difficulty in establishing a fitness function which is not 
dominated by highly nonlinear measures and sensitive to deviations from expected values of states 
or inputs. This indirect approach to adaptive control can be implemented either on-line or off- 
line, with off-line being the more popular. The current trend in the literature is towards 
"immunized neurocontrollers" which have both a long term and short term evolutionary process. 

Thorough testing of the evolutionary properties of our first program to evolve artificial NNs using 
genetic algorithms (GANNET) has revealed several deficiencies which have been resolved. The 
GANNET program evolves the amorphous (non-layered, recurrent) binary-valued NNs in its 
entirety including weights, interconnect structure, input neurons, and output neurons. Its first 
deficiency is in the genome structure itself which limits the number of neurons to 256. The 
number of neurons has been increased in GANNET2 in anticipation of the larger networks 
required to solve complex control problems. GANNET also has complete connectivity making 
the GA crossover operator very disruptive of the NN structure causing a second problem.   Since 
one of the underlying principles of GAs is that of preserving partial solutions from multiple 
population members and recombining them into more effective offspring, the fact that the neurons 

•' could be connected from one end of the genome to the other makes for an unacceptably high 
-probability'that the crossover operatorwül destroy evolved subnetworks which contributed to 

forming an effective solution of the larger problem GANNET2 reflects this change in genome 
structure in that the "spanning" distance of neuron connectivity on the genome is controlled. The 
effect of this is to generate networks with high local connectivity and sparse long distance 
connectivity. 

A third difficulty with GANNET is that it is binary-valued which means that continuously valued 
inputs and outputs must be represented by ordered combinations of inputs and outputs. This 
requirement lays an additional burden on the GA. GANNET2 does not resolve this problem but 
2pGA does. GANNET2 is being used to continue the study of NN complexity as a function of 
problem complexity using serial strings which are 1-bit wide, hence this is not a problem. The 
2-phase GA, 2pGA is real-valued and is the method used in developing the controllers, 
stabilizers, and solving other demonstration problems. 



The result of our experience with the limitations of binary-valued GAs has led us to develop a 
new genetic algorithm approach based on Lindenmayer systems in which there is a two-phase 
evolutionary process for evolving NNs. This two-phase approach uses a Lindenmayer system for 
the parallel rewriting of the genetic code strings. In the first phase of the approach, a GA is used 
to evolve the production rules (L-system like) which generates the structures of the neural 
networks. The fitness of each set of production rules is determined by a second GA which is used 
to fine-tune the weights of the NNs generated by these production rules. The neurons themselves 
have real-valued inputs rather than binary-valued inputs. This relieves the GA from the 
requirement to correctly order the parallel binary inputs which represent an analog value as well 
as also select the outputs in the correct parallel order for generation of an analog control value. 

1.2      Genetic Algorithms 

Since 1975, when Holland [1] first published his book Adaptation in Natural and Artificial 
Systems, the computational paradigm of genetic algorithms has received favor as method for 
implementing adaptive systems, and also as a method for searching numerical spaces or 
optimizing functions. The field of Artificial Neural Networks marked its beginning in 1943 when 
McCulloch and Pitts [2] published their paper A Logical Calculus of Ideas Immanent in Nervous 
Activity.' In the late 1980s, experiments were performed to examine the feasibility of specifying 
neural network parameters using Genetic Algorithms. 

Researchers have applied Genetic Algorithms (GAs) to problems such as task scheduling, and 
function optimization, as well as to the task of specifying some or all aspects of an artificial neural 
network. When applied by researchers, GAs computationally utilize the natural evolutionary 
process as first described by Darwin in his The Origin of Species [3] to evolve a solution to a 
given problem. 

Pseudo-code describing the Canonical Genetic Algorithm (the natural version) [4] appears below: 

Randomly generate an initial population M(0) 
-    v      whfle(l) -^"■'—— --—     ~~   •     — ■>■■■ --    •       -. ■      ~   -_ 

Compute and save the fitness u(m) for each individual m in current population 

M(t) 

Define selection probabilities p(m) for each individual m in M(t) so that p(m) is 
proportional to u(m) 

Generate M(t+1) by probabilistically selecting individuals from M(t) to produce 
offspring via genetic operators 

} 



The first step is to randomly generate values for the individuals which make up the population of 
parents. Then, the process enters a loop and continues indefinitely evaluating individuals' 
fitnesses, probabilistically selecting individuals for reproduction as a function of their fitness, and 
generating new individuals using genetic operators. 

When used as a computational tool, as it is in this research, the process works essentially the 
same. Evaluation is performed using a user-specified fitness function which yields a numeric 
value that evaluates the usefulness of the individual with regard to solving the problem. After 
evaluating the fitness, decisions need to be made about which individuals to keep for the next 
generation. This is known as the population maintenance step, and can take on a variety of forms. 
Typically, the fitness of the parents and its offspring are compared and the fittest is retained to be 
used as a new parent. Furthermore, a GA will generally select certain individuals from the 
population of new parents to be used more or less often (or not at all) to generate the offspring. 
After selecting which individuals will be. used to generate the offspring, a step unique to the 
computational version of the GA takes place. The major difference between the computational 
and natural versions of GAs is that at some point in the loop, termination conditions are checked, 
and the process is terminated if a termination condition is reached. In this implementation, after 
each evaluation of fitness, a decision is made about whether to continue the evolutionary process 
or not. If an individual solution is found which has the appropriate level of fitness or if too many 
generations have passed without sufficiently good results, then the program terminates. Each 
pass through the loop is considered a generation. Provided that the evolutionary process doesn't 
terminate, genetic operators are applied to each population of parents in order to generate a 
population of offsprings. 

Genetic operators typically consist of crossover and mutation. In GANNET1 and GANNET2, a 
special case of the mutation operator, known as resi ze, is also utilized which probabilistically 
alters the size of the neural network. After resizing, the process restarts by evaluating the newly 
generated population of individuals. 

•1.3      Neural Networks 

Artificial neural networks, hereinafter referred to as neural networks (NNs), have been applied to 

\ J I 
(1) 

many different problems such as pattern recognition, nonlinear control, and the traveling salesman 
problem The building block ofaNN is the neuron [5]. A neuron's behavior is based upon the 
squashed summation of the negated threshold value, and the product of neuron input values and 
weights as described in Equation (1). ms is the threshold (DC offset) term, w.. are the weights 
which determine the behavior, n/t) are the values of the inputs to the neuron and n/t+1) is the 



output of the neuron, n/t) and n/t+1) take on values of either 1 or 0, as does the squashing 
function Q(x), described in Equation (2) 

NNs are formed by connecting specified neuronal outputs to neuronal inputs, designating certain 

| 1   ifx.O; (2) 
^v ' 0   otherwise 

neuronal inputs to take input from the environment and designating certain neuronal outputs to 
act as environmental outputs. 

1.4      Combinations of GAs and NNs 

A NN consists of three parts: neuronal weight values and squashing function (also known, and 
referred to later, as neuronal behavior), neuronal interconnections, and network connections to 
the environment. A search of the literature revealed three distinct methods of applying GAs to the 
evolution of NNs. The first method involves manually selecting a fixed topology while altering 
connection weights using genetic algorithms. Montana [6] and Whitley [7] both first decide on a 
topology and then specify weight values using GAs. 

The second application of GAs to evolving NNs specifies a NN architecture or topology while 
using another method to find the weights of the NN. In Miller et al. [8] a procedure is presented 
that evaluates fitness after generating an interconnection structure and applies the back 
propogation algorithm for a fixed number of epochs. Harp and Samad [9] take this notion a step 
further and evolve a NNs structure, size and learning parameters while still using 
backpropogation to find connection weight values. These approaches are problematic because 
they don't allow for amorphous (non-layered) recurrent NNs and each NN instantiation's fitness 
measure is computationally intensive. 

A-third method involves creating NNs by completely evolving both their structure and weights    ^ 
using the GA approach. This third type of NN is called an AMmorphous neural NETwork 
(AMNET) because there is no identifiable layered structure, they may be recursive, and they may 
have multiple neurons serving as input neurons for one source. Research carried out at George 
Mason University by Spofford [25] in 1990 resulted in the first AMNET. Spofford named his 
software Genetic Algorithm Neural NETwork (GANNET), a program written in C that uses GAs 
to evolve NNs for a variety of problems and under varying conditions. GANNET was the first 
attempt at evolving all components of a neural network and is described further below. Since 
GANNET, there have been other attempts at evolving AMNETs. 

Harvey, et al [10] have written software which evolves AMNETs that adaptively control an 
autonomous mobile robot. They use continuous, real-valued networks with unrestricted 
connections and time delay between units. Their neurons have two types of inputs: normal and 
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veto. Normal inputs to neurons are traditional weighted inputs which get summed and have a 
squashing function applied, as opposed to the veto input to a neuron which activates when a 
threshold is exceed. The veto inputs connect to the^utput of another neuron. When the veto 
input is activated, all normal outputs from that neuron change to zero (turn off). The veto 
mechanism is included to better model biological neural networks. 

The most important component of this research deals with the development of a method for 
evolving neural networks which can control nonlinear systems having been given nothing more 
than training data. Sometimes the training data consists of a linear or nonlinear model of the plant 
and a desired fitness function. An approach which we call the two-phase genetic algorithm 
(2pGA) has been developed under this grant which evolves modular recurrent neural networks 
(NNs). It first uses a GA to evolve a near optimal architecture of NNs for specific problems and 
then fine-tunes the weights and biases of the NN using a second GA. The 1 stGA uses the 
production-rule-based (PRB) techniques to encoding architectures of arbitrary NNs and evolves 
the production rules instead of evolving NNs directly. The 2ndGA uses genetic hill-climbing to 
train the NN and determine part of the fitness of the individual in 1 stGA. 

One goal of this research was to establish an empirical relationship between required network size 
and problem complexity. Multiple complexity measures were investigated and determined to be 
equivalent. Pattern recognition problems were researched specifically as they were less difficult to 
implement than other complexity measures and yet can be shown to be equivalent to them.   NNs 
were evolved to solve selected problems using the r e s i z e operator to evolve networks with the 
minimal number of neurons. The details of the experiments plus the results of the comparison of 
problem complexity with minimal evolved network size appears later. 

2 Two-Phase Genetic Algorithm 

The original approach of using binary-valued NNs as in our earlier GANNET program has been 
found to be difficult to use for real-valued control problems since it can be shown that it evolves, 

■in essence, a logic circuit of minimal size, albeit one with memory. This type of network is 
typically called a Boolean net. Whilerthis is of value to digital logic design and finite state 
machine synthesis, and the approach can be readily adapted to the minimization of multi- 
input/multi-output functions, it is of limited value to the generation of non-bang-bang controllers. 
The difficulty arises in that real-valued inputs and outputs must be encoded as multi-bit 
binary-valued inputs and outputs. This appears to put an inordinate amount of pressure on the 
evolutionary strategy which requires excessive computer time to evolve effective solutions. We 
have switched approaches to the evolution of real-valued neural networks using a two-layered 
GA. The first GA is a meta-GA in that it evolves the production rules for the generation of real- 
valued NN structures. The second GA essentially trains the weights of the resulting NNs using 
genetic hill-climbing. The evaluation of the resulting NNs is then used by the first GA to modify 
the production rules for the generation of the next population. 

11 



This approach, called a two-phase genetic algorithm (2pGA), has been developed in order to 
evolve modular, amorphous recurrent neural networks (ARNNs). It combines two GAs to evolve 
a near-optimal architecture of NNs. The first GA (IstGA) uses a production-rule based technique, 
called a Lindenmayer system or L-System, to encode architectures for generating NNs of arbitrary 
size and form. 

2.1       Contemporary Approaches to Evolving NNs 

Using the techniques of evolutionary computation to evolve neural networks has received wide 
attention in recent years [11][12][13][14]. The key to successfully applying genetic algorithms to 
the evolution of neural networks is in the encoding of a neural network into its genotype. Direct 
encoding of a neural network, e.g. connectivity matrix, normally suffers from the problem of 
scalability, the production of non-functional offsprings by the crossover operator, and/or by 
having a large chromosome size, even though neural networks described by connectivity matrices 
have been shown to work in some cases [15]. Some researchers encode the parameters for 
specific NN architectures (e.g. feedforward NNs) [16]. These approaches have good scalability, 
but are restricted to specific architectures. The idea of using biological metaphors in designing 
neural networks has stimulated different approaches [17][18][19]. 

Lindenmayer system-like (L-system) [20] production rules are sometimes used to model the 
growth of neural networks. Instead of directly encoding a neural network, a set of production 
rules can be encoded as the genotype. A genetic algorithm or genetic programming (GP) [21] can 
then be used to evolve these production rules. Another idea borrowed from nature is modularity. 
There is much evidence indicating that the modular organization of the brain exists at different 
anatomical scales [22]. Preliminary results also show that using modularity in designing NNs can 
improve their performance. From the implementation point-of-view, modular neural networks, as 
compared to fully interconnected neural networks, can be more easily implemented in VLSI. 

Among the production-rule based encoding techniques, Boers and Kuiper's biological metaphors 
•• [17] and Gruau's Cellular Encoding (CE) [18] are very promising approaches. In the Boers et al. 

method, two L-systems are used to model the growth of feedforward NNs. These L-systems, 
which are encoded into fixed length binary strings according to a, so-called, genetic code table are 
evolved by a conventional GA. The fitness is determined by a traditional learning algorithm (error 
back-propagation training algorithm). The Boers et al. method is very biologically plausible and, 
although the preliminary results of this approach are promising, the coding mechanism is 
inefficient in that the coding mechanism does not guarantee that chromosomes always produce 
usable production rules. 

In Gruau's CE, the development of an NN is done by utilizing a grammar tree, which is a program 
tree that specifies how the NN is to be constructed, based on an axiom and an initial network 
graph. Each individual (genotype) in the GA is itself a grammar tree, which is used to produce a 
NN (phenotype) with bipolar weights (± 1) and binary thresholds (0 or 1). The resulting NN is 
used for learning Boolean functions. Gruau uses a rewriting operator, R, for recurrent use of total 
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or part of the grammar tree to make it possible to develop a family of NNs for a class of specific 
problems. Gruau's CE is efficient and has desirable properties, such as completeness, closure, 
modularity, and scalability. . - - 

Most of the approaches focus on optimizing feedforward NNs. As an alternative, an approach 
called two-phase genetic algorithm (2pGA), which uses techniques similar to those used in 
[ 17,18], is used here to evolve the NNs for control and stabilization of linear and nonlinear 
systems. Our approach combines two GAs to evolve the architectures of a population of NNs 
first, then determines the weights and biases of the evolved NNs. It is shown later in the summary 
that 2pGA has been used to evolve modular recurrent neural networks which can compensate 
stable linear system, stabilize unstable linear systems, compensate nonlinear systems, and stabilize 
unstable, nonlinear systems. The detail of this new approach are discussed in the next section. 

istGA Neural  Network 
I pst antislor 

2ndGA 

net _strudure_ informal ion 

Neural  Network 
Simulator 

SDecific-cot>lerr= 

2.2      Two-phase Genetic Algorithm Implementation 

The procedure for evolving neural networks using 2pGA is divided into two stages. The first- 
stage determines the NN's architecture, with the second-stage fine-tuning its weights and biases. 

The above idea is based on the conjecture 
that the initial architecture is not only 
important for rapid learning, but that it also 
induces the system to generalize its learned 
behavior to instances not previously 
encountered [22]. The advantage of this 
kind of decomposition is that it greatly 
reduces the search space compared to that 
which evolves architectures and weights of 
neural networks simultaneously [15]. The 

. block diagram of 2pGA is shown in Figure 
1. The first GA (1 stGA) uses a 

..  _A production-rule-based encoding technique 
Figure 1 Block diagram of 2pGA. tQ evolye ^ architectures Each individual 

in the 1 stGA is a CE like grammar tree. Its fitness is determined by the second GA (2ndGA), 
which is a more conventional GA and is used to evolve the weights and biases for each network 
specified by an individual produced by the 1 stGA. The 2ndGA terminates in the Mh generation, a 
fixed number chosen by the designer apriori. A value which is mapped from the statistical data 
(e.g the average fitness, the best-so-far fitness , etc.) of the 2ndGA in the N-th generation will be 
the major part of the fitness of each individual in the 1 stGA. One of the possible mappings which 
was cho sen for this implementation is: 

j       :;tness 
slnna-lenolh 

Fitness. ,r. = A * BestSoFarFitnesslndGA + ( 1-X ) * AverageFitness2ndGA 'IstGA (3) 

13 



where X is a value such that 0 < k < 1 . After IstGA rinds a near-optimal architecture for the 
specific problem, the weights and biases may be fine-tuned by 2ndGA or any of a number of other 
traditional training algorithms. 

The inputs to the NN Instantiator & Simulator (NNIS) are the chromosomes (individuals) in the 
1 stGA and 2ndGA. The outputs from the NNIS are the information about how much space is 
required to represent each individual in 2ndGA and the fitness for each individual in 2ndGA. The 
tasks of the NNIS are to 

1) interpret the chromosomes which are produced by 1 stGA into production rules 
(program trees), 

2) use these rules to produce the NN by applying the program trees to a user selected 
axiom, 

3) output the structure information for each resulting NN, 
4) determine the required string length in 2ndGA for an individual for the given 

architecture of the NN, 
5) interpret the chromosome produced by 2ndGA into the weights and biases for the 

associated NN, and, 
6) perform the simulation for the NN on the specified test problems. 

2.3      The Phase-I Genetic Algorithm (1 stGA) 

The task of 1 stGA is to evolve architectures of modular recurrent NNs. It uses production-rule 
based encoding techniques. Gruau's CE encodes both the architecture and the Boolean weights of 
a neural network and Boers' methods are currently only applicable to feedforward neural 
networks. For these reasons, their approaches cannot be used directly to suit our purposes.   An 
alternative which combines and expands on the ideas of Boers and Gruau is used instead. A 
relative connect string (RCS) representation of NNs, which is able to represent modular recurrent  . 
NNs, is inspired from the relative skip strings (RSS) [17] of Boers et al. which is able to represent 

• feedforward NNs only. A Gruau CE-like grammar tree is used to produce the desired string, 
thereby overcoming the inefficiency inherent in Boers' encoding mechanism. 

2.3.1    The Relative Connect String Representation 

The alphabet used in the strings is S = {A-Z, 0-9, +, -,), ( }. The syntax of the terms used in 
relative connect strings is defined by the following grammar: 

<network> :=   <module> 
<module> :=   (<nodes>) I (<nodes><module>) I (<module><module>) 
<nodes> :=   <node> I <node><nodes> 
<node> :=   <feedback_links><letterXfeedforward_links> 
<feedback links>    :=   -<number> I -<numberXfeedback_links> 
<feedforward_links> :="  +<number> I +<number><feedforward_links> 
<number> :=  <digit> I <digitxnumber> 
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<digit> 
<letter> 

0 
A 

1 
B 

A letter in the string is interpreted as a neuron. A positive number (e.g. +k) behind the letter 
(neuron), which is called the feedforward link value, is interpreted as a feedforward link, which 
means that the neuron connects to the fc-th node/module (calculate from the node the number 
associated) on the right of the letter. A negative number (e.g. -k) before the letter, which is called 
feedback link value, is interpreted as a feedback link, which means that the neuron connects to the 
k-th node/module on the left of the letter. A feedback-to-self connection is indicated by -0. The 
absence of a number or the number +0 means there is no link to other neurons. If k=l, it means 
that there is a link from the associated neuron to its nearest neighbor node/module. If k is so large" 
that the link will go out of the range, it is assumed to indicate a connection to the furthest 
node/module in the string. 

An input node of a module is a node that does not receive feedforward input from within the 
module. An output node of a module is a node that has no feedforward output to other nodes 
within the module. A link from module one (Ml) to module two (M2) is interpreted as the 
output(s) of Ml are connected to the input(s) of M2. A NN itself can be considered as a module, 
so input(s) and output(s) of a NN are determined by the input(s) and the output(s) of the module 
which defines the NN. 

Careful observation of this formulation shows that the relative connect strings can represent any 
architecture of NNs. For the NNs in Figure 2, their relative connect strings are 
(B+2+3B+1+2+3B+2B+1B ) and (B+2+3B+1+2-2B-2B ) for (a) and (b), respectively. Where 
link values +0 is omitted. 

2.3.2   The Modified Cellular 
Encoding (MCE) 

J5ince the mechanism to produce 
strings in Boers et al. is less 
efficient compared to the cellular 
encoding (grammar tree) used by 
Gruau, a CE-like grammar tree, 
called modified cellular encoding 
(MCE), is used to produce the 
desired strings. For each cell there 
is a file of feedforward link 
registers, denoted as FFLRs, and a 

Figure 2 Some examples of neural networks. ffle of fee(iback link registers, 

denoted as FBLRs, associated it. -FFLRs and FBLRs are used to store 
<feedforward_links> and <f eedback_links>, respectively. Each cell has a reading 
head which points to a node of a grammar tree and rewrites and/or modifies itself according to the 

(a)  A  feedforward   NN 
with   string  representation 

(B*2*3B*W-3B-2B-IB> 

(b)   A   recurrent   NN 
with   strino   reoresentBt jon 
•    (B*2*3E^1*2-2B-2B) 
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program symbol which labels the node of the grammar tree. After executing the program symbol 
the reading head will point to it's subtree. If there is no subtree of the pointed-to node, then the 
cell loses its reading head after executing the program symbol and becomes a neurons/module.   ■ 
The axiom of the grammar is (B) or (-0B) which means that the size of FFLRs and FBLRs for the 
single cell is 1 and the value in the current FFLR is 0 and the current FBLR is nothing (null pr 0). 
The axiom corresponds to the initial network string. The reading head pointed to the root of the 
grammar tree A set of program symbols used in MCE is Y = {Seq, Par, AddFFL, AddFBL, 
RemFFL, RemFBL, FFLR+, FFLR-, FBLR+, FBLR-, ShiftFF, ShiftFB }, where Seq and Par, 
which are similar to these used in CE, are two division program symbols to expand the size of 
NNs; AddFFL, AddFBL, RemFFL, and RemFBL are four program symbols to add/delete a link; 
FFLR+ FFLR-, FBLR+, FBLR-, ShiftFF, and ShiftFB six program symbols to adjust links. The 
main difference between the MCE and CE is that MCE only requires a maximum arity for each 
program symbol. 

Grammar trees which can produce the NNs of Figure 2 are shown in Figure 3. The procedure of 
the development of the strings for Figure 2(a) is that (B) - (B+JB) - (B+1B+1B) - 
( (B+2B+1)(B+2B+1)B ) - ( (B+2B+1+1)(B+2B+1)B ) - ( (B+2B+1+2)(B+2B+1)B ). The 
procedure for Figure 2(b) is that (B)~((BB))-( (B+1BB+1B) ) - ( (B+2B+1B+0-1B) ) -• 
((B+2+1B+1+1-1B-2B) ) - ( (B+2+2B+1+2-2B-2B) ) - ( (B+2+3B+1+2-2B-2B) ). It can be 
noticed that to develop recurrent NNs from axiom (B ) is more difficult than to develop 
feedforward NNs from (B ). 

2.3.3   The Genetic Operators and 
Fitness in 1 stGA 

An individual in 1 stGA is a grammar 
tree whose structure is almost the same 
as that used in GP, so the genetic 
operators in GP can be used here and all 

' advantages of the operators in GP, such 
as cio sure under-cro ssover and 
mutation, will be inherited. In addition 
to the crossover and mutation, 
encapsulation will be used more 
frequently in the 1 stGA than in 
conventional GP. It is hoped that the 
modularity will be found by using £ 3 Grammar trees for the example NNs. 
encapsulation. The dynamically formed       te .,,,     ^  , • .  .v 
module (a subtree in the grammar tree) which is denoted as M„ 1=1,2,..., will be added into the 
set of program symbols r and the associated subtree will be stored in a module pool. Smce the 
maximum arity of the program symbols used in 1 stGA is less than or equal to two, binary trees 
are chosen to represent the program trees. 

(8J For the NN in Flg.2.(B) (b) For the NN in Flg2.lt>) 
UB*2*3B*h2-2B-26i) 
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Since we encode input(s) and output(s) of NNs into grammar trees, the correct number of inputs 
and outputs of NNs is desired. So it is better to add a extra term in the fitness function to reward 
the NNs which have the correct number of inputs and outputs.- - 

2.4      The Phase-II Genetic Algorithm (2ndGA) 

Since there is no good algorithm to train arbitrary, recurrent NNs, a GA is a good alternative. The 
2ndGA used here is similar to the GA proposed by Montana and Davis [12]. It has several 
differences from the more traditional GAs. One is that it uses the (u+A)-selection of evolutionary 
strategy [23] to select the new population. Other major differences are that it uses real-valued 
encodings, small population size, and relatively high mutation rates. This kind of GA is also called 
a genetic hill-climber (GHC). The individual in the 2ndGA is a fixed length string consisting of all 
weights/biases of a NN. Each weight/bias is represented by a floating point (i.e., real-valued 
encoding). The size of the fixed length string and the fitness are determined by the NN 
Instantiator & Simulator. 

Two kinds of crossover operations are used in 2ndGA. One is similar to the uniform crossover 
where the weights/biases of the offsprings are randomly selected from their two parents. Another 
is called average crossover where the weights/biases of the offsprings are the weighted sum of 
their parents. There are also two kinds of mutation used in 2ndGA. One is similar to Montana's 
unbiased-mutate-weights where a randomly selected weight/bias is replaced by a randomly 
selected real value according to a two-side exponential distribution with a mean of 0.0 and a mean 
absolute value of 1.0. Another is similar to the mutation used in evolutionary strategy where a 
randomly selected weight/bias is modified by adding some Gaussian distributed white noise. 

There are two major reasons for using a genetic hill-climber as 2ndGA. One of the reasons is that 
GHC can overcome the competing conventions problems (different genotypes map into the same 
or equivalent phenotypes even though their genotypes are quite different) in some way [11]. 
Another reason is to reduce the training time, since the population size is small. The big drawback 

•■ of using GHC is that it cannot guarantee the GA is producing a global search. One way to 
overcome this disadvantage is to make several runs instead of one run, although this may become 
time consuming. 

The 2ndGA can also be used to fine-tune the weights and biases for the NNs produced by 2pGA. 
This can be done by using a larger population size and a larger maximum generation than these 
usedin2pGA. 
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2.5      2pGA Experimental 
Results 

In order to demonstrate the 
capability of 2pGA to evolve a 
wide variety of solutions to both 
linear and nonlinear problems, a 
series of experiments were 
performed including the 
traditional XOR problem, an 
amplitude modulation (AM) 
detector, various linear 
controllers, and finally nonlinear 
controllers. The results of these 
experiments are reported here. 

Figure 4 shows the neural 
network which is a result of 

Figure 4 Evolved NN for XOR problem. applying 2pGA to the XOR 
problem Both the evolved tree describing the NN and the resulting NN itself are shown in the 
figure. The neurons in this example use the logsig function. The floating point value in the neuron 
means the bias of the neuron. The values near the links mean the weights of the network and 
unrelated weights and biases are not shown. The string representation of the produced networks 
is (B+2+3B+1+2-0B-0B). It can be noticed that some program symbols do not affect the 
functioning of the final neural network, for example the 1 output neuron is useless. The weights 
in this structure were then fine-tuned with a second GA to correctly solve the XOR problem 

The second experiment involved the evolution of an amplitude modulation (AM) detector, an 
inherently nonlinear function which is implemented using a diode or a thresholding device. The 

■ input signal of the NN is shown in Figure 5 (the figures referred to here start on page 22) with 
output of the NN shown in Figured. The evolved NN is drawn in Figure 7 and consists of 7 
neurons, not all of which are needed. Because of the recurrence of the network, it takes 8 times 
to go through the NN to produce a result. 

The third test case run on 2pGA consists of a hard-disk read/write head controller. This case is 
adapted from the Matlab Control System ToolBox. The original step response is drawn in Figure 
8. 2pGA evolved a NN of 29 neurons to stabilize the plant. The controlled system's step response 
is drawn in Figure 9. 

The next three test cases are built around compensation of first, second, and third order linear 
plants and were formulated to test the robustness of the procedure in the face of increasing levels 
of plant complexity. This was also a test of the sensitivity of the parameters associated with 
2pGA. For example, the compensators evolved for these three plants were all developed using 
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the same parameters such as convergence_time of 2, a sample rate of 0.05 seconds, and 80 
samples. The fitness function which was used to evaluate the evolved system is the well-known 
integral absolute error. - - ■ - 

Case four is a first order plant with a single pole at s = -1. A neural network was evolved to put 
in the feedback path. Figure 10 shows the step response with the dashed line representing the 
highly underdamped original response, and the solid line the result with the evolved 4-neuron, NN 
compensator. In case five, 2pGA evolved a 5-neuron NN to stabilize a second order plant with 
two poles at s = -1 and -2. Figure 11 is the result for this 2-order, stable linear system, the 
dashed line being the uncompensated response and the solid line with the evolved NN in the 
feedback path. The final test in this sequence, case six, applied 2pGA to a stable, linear, third- 
order system. This system had poles at s = -1, -2, and -3. The results of this experiment were 
similar to the earlier two and are shown in Figure 12. Compensation of the third-order, linear 
plant required an evolved NN size of 10. Cases 4 through 6 demonstrate the ability of 2pGA to 
evolve compensator neural networks which can improve the time-domain response of stable linear 
systems, at least up to 3rd order. Two more experiments were run in order to test the ability of 
2pGA to stabilize linear unstable plants. 

Case 7 developed a stabilizing feedback NN for a first-order unstable plant with a pole at 5 = +1. 
The solid line of Figure 13 shows the open-loop response, and the dashed line shows the step 
response when a 15-neuron feedback NN is used. Cases 8 and 9 developed 5-neuron, stabilizing 
feedback NNs for second and third order unstable systems. These systems were comprised of 
poles at s = +1, -2, and also -3 for the third order system The open loop (solid line) and 
stabilized (dashed line) step responses are shown in Figure 14 and Figure 15. A typical NN for 
stabilizing a 2nd-order, unstable, linear plant is shown in Figure 16 along with its associated tree 
in Figure 17. 

A final test to establish the robustness of the evolved NN stabilization technique is to use one of 
the evolved NNs as the stabilizer and evaluate its ability to stabilize the unstable linear system 
while the exact position of the pole in the RHP is varied. This was done with a second-order 
system consisting of a LH-pole at 2 and the-RII pole varied about its nominal, evolved NN value 
of 1 Remember that the same fitness criterion is utilized for the evolution of the stabilizers for the 
unstable systems as was used for the compensation of the stable systems, namely integral absolute 
error. That is a constant fitness function throughout all of these experiments. 

Figure 18 shows the value of the integral absolute error and demonstrates that for small 
variations about the nominal pole position, a single evolved NN is able to stabilize the system 

Encouraged by the results of the linear stable and unstable plant compensator experiments, the 
investigation was expanded to include nonlinear plants Case 10 is a 2nd-order linear stable plant 
followed by a nonlinear component, the function exp (1.5). The results of this case are plotted in 
Figure 19. Since this is a nonlinear plant whose behavior is sensitive to input level, three different 
values of step input were used for evolution of the NN. These correspond to a step input of 1 
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with a desired output of 0.5, a step input of 2 with a desired output of 1, and a step input of 4 
with a desired output of 2. It can clearly be seen that the 2pGA was able to evolve a single NN 
controller to improve the performance of a plant containing a nonlinearity in the forward path, 
again only using integral absolute error as a fitness function. The lines in Figure 19 correspond to 
the response to the three different step inputs: / (dashed), 2 (dot-dash), and 4 (solid). This 
compensator only required 3 neurons audit is shown in Figure 20. 

As a final set of experiments to demonstrate the ability of an evolved NN to control a nonlinear 
plant, the second example used by Goh [24] was implemented so as to have a basis for 
comparison.   Goh's second example is a two state system which is nonlinear in the control: 

xx = -x, + 0.5Xj2 + 0.2x2u 

x, = 0.1x2 + u + w3 (4) 

which is unstable. The control objective is to construct a state feedback controller such that the 
performance index 

j = I  f (xTQx + uTRu)dt (5) 

with the penalty that 

Q 
1  o 

0   1 
(6) 

and r - 1. -     -• 

For this final Case 11, the following parameters were used by the 2pGA program and all used a 
sample interval of (Ts) = 0.05 for the plant simulation. 
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NN Structure GA NN Coarse Weight Tuning 
GA 

NN Fine Weight Tuning 
GA 

Population 50 40 200 

Generation 20 20 300- 

Crossover 0.6 0.6 0.6 

Mutation 0.2 0.2 0.2 

Since this is a regulator problem, the training data sets were generated by randomly creating 20 
pairs of initial states (state vectors) in the range [-1,1]. Each pair of initial states uses 100 sample 
points. 

Figure 21, Figure 22, and Figure 23 are the simulation results corresponding to initial states of 
(1,1), (0.5, 0.5), and (2,2), for the evolved NN of Figure 24. 

While a little more complex than some of the earlier examples, the evolved NN is still quite small 
and therefore easy to implement as well as having fast execution. The evolved NN tree which 
generates the NN of Figure 24 is shown in Figure 25. 

21 



20 3D *0 50 80 70 »0 
ae *o so 60 TO » 

Figure 5 Amplitude modulated input signal.       Figure 6 Detected AM signal. 

Output 

Figure 7 Evolved NN implementing AM 
detector. Figure 8 Hard disk head plant step response. 
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Figure 9 Step response of hard disk when Figure 10 Step response of first order system 
stabilized using evolved NN. with evolved NN compensator. 
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Figure 11 Step response of second order 
system with evolved NN compensator. 

Figure 12 Step response of third order linear 
system with evolved NN compensator. 
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Figure 13 Open-loop and NN stabilized 
response of first order unstable linear system. Figure 16 NN evolved for stabilization of 

unstable 2nd order system. 
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Figure 15 Open-loop and NN stabilized 
response of 3-rd order system with one pole in    Figure 14 Step-response of NN compensated, 
RH of S-plane. 2nd order' unstaWe linear svstenL 
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Figure 17 Tree structure of evolved NN for 
stabilization of 2nd order unstable plant. 

Figure 18 Value of integral absolute error 
fitness function of stabilized system as unstable 
pole is varied with stabilizing NN remaining 
fixed. 

0.0032 / \     ) 2.es 

Output 

Figure 19 Compensated response of 2nd order 
plant with exponential function to 3 different       Figure 20 NN compensator for 2nd order plant 
step input values. with exponential function in forward path. 
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Figure 25 Evolved tree which generates the NN structure for controlling the plant of example 2 
in Goh's paper. 

3 Evaluating Neural Network Complexity Using GANNET 

The second *goaIof this research is to~empiricaIly derive an upper bound on the computational 
resources required by a neural network to solve a problem of a given complexity. Specifically, it 
is desired to find the minimum number of neurons required to solve various problems of 
increasing complexity such that a relationship could be established between the two. Knowing the 
relationship between NN size and problem complexity allows one to estimate the cost of 
constructing a NN for a particular task, the time required to train the NN, and the minimum 
throughput time which is related to the bandwidth of the control system 

The discussion which follows includes two topics which are intertwined followed by the results of 
the experiment. The first is the binary-valued GA program developed at GMU to evolve 
amorphous recurrent networks (ARNN) and the modifications made to it to perform this study. 
The second is the various methods of measuring the complexity of a problem and the criteria used 
for selecting a suitable complexity measure. Complexity measures involving pattern recognition 
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problems were researched and detailed and a method of measuring problem complexity was 
selected, as were test problems. NNs were then evolved to solve selected problems with genetic 
pressure applied to evolve networks with the minimal number of neurons. 

3.1      Genetic Algorithm, Neural NETwork (GANNET) 

The GANNET (Genetic Algorithm, Neural NETwork) software, written in 1990 by Spofford [25] 
consists of approximately 4500 lines of ANSI C code. GANNET was developed to answer the 
question: 'Can a genetic algorithm be used to evolve all aspects of a neural network?' Indeed, 
GANNET was used by Spofford to evolve a full specification for NNs which solved four different 
problems: 

1. Exclusive-OR(two-bit parity) problem 
2. 26 letter recognition problem 
3. 37 character recognition problem 
4. 3-bit counter problem 

GANNET evolves recurrent neural networks which use hard-limiting, bi-polar neurons to solve 
these problems. Each neuron accepts two or four inputs from either the training data sets or from 
another neuron. Problems are presented to GANNET in the form of input and output data sets, 
which GANNET is expected to correlate. 

GANNET begins the genetic process by randomly generating a population of NNs based upon the 
values of the initialization parameters. Each NN in this population is evaluated using the fitness 
function, which evaluates how well a network solves the problem. The fitness function used by 
GANNET allows the experimenter to optimize the networks based on one or more of three 
criteria: 

a) correct output for a given input, 
b) minimal time to result convergence, and, 
c) minimal network size"    "'"■' 

A neural network is considered to converge if its output values remain consistent for two 
iterations. If a network is found which solves the problem, then GANNET terminates. If it does 
not find a solution which meets the termination criteria, it continues by mating the population and 
applying genetic operators to the mated pairs. 

GANNET utilizes the genetic operators of mutation, crossover, neuron insertion/deletion 
(resize). After the genetic operators are applied, a new population is formed, and the 
evolutionary process begins again. This new population of NNs is evaluated in the same manner 
as the initial, randomly generated population was evaluated. The process continues until the 
desired fitness level is reached, or'the maximum permitted number of epochs is reached. 
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The GANNET code was expanded from its original approximately 4500 lines of code to 6000 
lines of code.   The code was thoroughly commented and several operational and ancillary options 
were added. The genetic representation of the NN and its implementation was modified such that 
the crossover operator can be configured to be less destructive. 

3.2 Operation of, and Upgrades to, GANNET 

In an effort to make the GANNET program easier to understand and use for the NN complexity 
study, it was rewritten in a form that makes it self-similar to the process itself. The order of the 
items in the configuration file are now in the order that they are used, and variables are declared in 
the order that they are used in each function. A thorough review of the GANNET software was 
performed, which entailed adding numerous comments, replacing generic variable names with 
self-descriptive names, eliminating several minor programming errors, and incorporating 
improvements to GANNET's operation which became apparent after extended use. This analysis 
and rethinking of GANNET has lead to the addition of 14 configuration parameters, new 
procedures, and modifications to the current modes of operation. Previous modes of operation 
were maintained in most cases as legacy code. The format of the improved GANNET (version 
2.0) is described in the text that follows, with remarks made about changes that have occurred. 

This section begins with an overview of the configuration parameters that control the operation of 
an experiment within GANNET followed by a review of the genetic representation of the neural 
networks, a description of the operation of neural networks by GANNET, and finally, an in-depth 
examination of the genetic process itself. 

3.3 GANNET Configuration Parameters 

GANNET 2.0 has 47 configuration parameters, 41 of which affect the genetic process. The 
remaining six parameters are considered ancillary and are used to specify file names and how often 
statistics should be recorded. Of the 41 parameters which impact the genetic process, four are 

•' used to initialize the genetic code and GA process, five define the structure of the networks, four 
control how neuronal behavior occurs, and three are used to specify termination conditions. 

The naming convention for the parameters has several patterns. Binary valued parameter names 
which name both behavior possibilities act in the first named format when the parameter is set to 
one, and in the second named format when set to zero. Binary parameters with only one format 
named behave in that format when the parameter is set to one. Alternatively, the one parameter 
which has three values, conf. co_bi t_word_or_neu, behaves in the first named manner 
when set to zero, and the last named manner when set to two. Many of the parameters which 
accept a range of values act differently when set to zero. For instance, if 
conf. s tat s_int erval is set to zero, no statistics will be recorded. Or, if 
conf. co_mean_dis t is set to zero, then the crossover operator will be disabled. 
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Of the 39 parameters in GANNET 1.0, all but 6 have survived to version 2.0. 
conf. save_memory, which was set by appending a -s to the command line when starting a 
GANNET session, is not a part of version 2.0. This parameter allowed genetic code to be saved 
to the hard disk if the machine didn't have enough RAM available. Due to the addition of new 
population maintenance routines, all genetic code is maintained in RAM. Many of the parameters 
names have changed from version 1.0 to 2.0 in order to support the naming convention described 
above. Further, the configuration parameters of GANNET 1.0 did not follow a format which was 
easy to remember. Consequently, they were reordered in a format that follows program execution 
and hence makes them easier to use. conf.biased was deleted will be described in the 
neuronal behavior section, conf. norm_cross, and conf. mutate_s, which allowed for 
genetic crossover to take place, was deleted due to the fact that no useful results were obtained 
from its use. All crossover is now normal; the no longer existent genetic crossover mode is 
described in the crossover section, conf. s table_per and conf. conv_per were also 
deleted. These parameters held values used to control how many cycles the network was sent 
through before a valid output was accepted. These parameters were replaced by the new 
parameter, conf .dead_states. The parameter conf. fit_wt_convrg_time was also 
used as a part of this old method, and still exists, however it is just a place holder and should 
always be set to 0.0.   These changes are further described in the following sections. 

conf. inp_noise was deleted as was its related code since little use could be found for adding 
input noise to the training patterns, and the maintenance of the code which performed this task 
was time consuming. The GANNET 2.0 configuration parameters are shown in the following 
table. 

exp  name1 Suffix for configuration and other files 

data  name1'" Suffix for input and output training data files 

cur   gen1 Current generation 

seed  create_gen_code2 Initialization seed 
— 

seed  evolve   loop2 Seed before entering loop 

mean  init_net_size2 Mean of initial number of neurons 

dev_init_net_size2 Deviation in initial number of neurons 

max  net_size Maximum number of neurons 

— 
pop  size- Population size (must be even) 

dead  states" Number of dead states sent in to inputs after sequence 

net   ins3. Number of inputs to network 
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net outs- 

io sets 

neu ins- 

max span dist3,n 

sum or full behav4,n 

input_states i,n 

behav_lookup 4,n 

fixed outs3 

clear neu out' 

Number of outputs from network 

Number of training data sets 

Number of inputs per neuron (2 or 4) 

Number of neus (in either direction)across genome conns 
are allowed to span   

Neuronal behavior based on summation or full 
functionality 

Number of states (2 or 3) accepted by neuron input 

Whether behavior should be looked up or generated from 
weights   

Network outputs fixed or determined by bid 

uni_or_abs_out_pats 

sim dif 

bit_or_entire_out_pat 

fit wt io 

fit_wt_convrg_time 

fit wt net size 

increment -fitness" - 

increment size" 

indiv_or_pop_seln 

max  age 

top_heavy 

quota_scale 

best  interval1,0 

stats   interval1,0 

Clear neurons' outputs at each cycle 

Network output patterns merely unique or required to be 
same as output file   

Similarity vs. difference count weight for I/O fitness 

Count bits or pat 

Fitness weight of input / output performance 

Fitness weight of minimal convergence time (not 
operational) 

Fitness weight of minimal net size 

Fitness required to advance to next set of training patterns 

Number of training patterns to add to training set at each 
increment 

Save nets by comparing against parents or population 

Maximum age of networks 

Top heavy 

Probability that high fitness nets will mate twice 

Best net reporting interval 

Statistic reporting interval 
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stats detail or sim l.n 

term gen 5,0 

Detailed or simple reports 

term  fit5'0 

term fit mean or any 5,n 

cloning" 

co norm or gen 

co bit word or neu" 

co mean distc 

mu bit or word
c 

mu mean dist inc 

mu mean dist behav0 

mu mean dist obid
c 

resize probc 

Termination generation 

Termination fitness 

Use mean or any net's fitness to check for termination 

Permit identical genotypes to mate with each other  

Normal or genetic crossover 

Crossover Format: bit or network 

Mean distance to next c/o point per neuron 

Mutate at bit or word level 

Mean distance to neuronal input connection mutation per 
net   

Mean distance to neuronal behavior mutation per net 

Mean distance to network output bid mutation per net 

Probability of resize 

Key for Parameter Table: 

0 = value of zero has special effect on behavior 
1. = Ancillary parameter-- Doesn't affect genetic process 
2 = Initialization parameter 
3 = Structural parameter 
4 = Neuronal Behavior Configuration 
5 = Termination condition parameter 
n = new parameter to version 2.0 of GANNET 

3.4      Genetic Representation of Neural Networks 

In order to understand GANNETs operation, one must first have an understanding of the 
genotypic representation of the neural networks which is distinctly different from that of 2pGA. 
GANNET uses twelve or more bytes per neuron in the genotype. The first twelve bytes are used 
to describe the neuron itself as shown in the following table. 
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Neuron Input Connections Neuron Behavior Network   ' 
Output Bid 

BYTES 
1-&2 

BYTES 
3&4 

BYTES 
5&6 

BYTES 
7&8 

BYTES 
9&10 

(may use more 
depending on 
configuration) 

BYTES 
11&12 

3.4.1    Neuronal Connectivity 

The description of the connectivity from the environmental inputs and between neurons is 
maintained by the first eight bytes of the destination neurons. GANNET allows for either two- 
input or four-input neurons as configured by the con f. neu_ins parameter. If GANNET is 
configured for two-input neurons, then the last four of these bytes are unused. There were 
concerns about the crossover operator's effect on network topology. 

De Jong [26] hypothesized that by limiting the distance across the genotype that neurons can 
connect to other neurons, the crossover operator will have less of an opportunity to be 
destructive to a network. Without this limitation, connections would be permitted to span the 
distance of the chromosome and connections would be broken more often when crossover occurs. 
Hence, the new version of GANNET allows for a maximum span distance to be specified. The 
value in conf .max_span_dist is the number of neurons away in either direction from the 
present neuron from which it may receive input. All neurons are also allowed to connect to any 
of the network inputs. For instance, if conf .max_span_dist is set to 0, then the neuron may 
only take input from itself, or from any of the network inputs to the network. However, if this 
value is 4, then the neuron can take input from a total of nine neurons: from itself, and the eight 
neurons (four on each side) which are closest to it in genotypic space. If the present neuron is at 
the end or beginning of the genotype and is permitted to connect to neurons beyond the beginning 
or end, then it may connect to the neurons at the end or beginning of the genotype, respectively. 
Hence, the genotype is best thought of a seamless loop, rather than a string with a beginning and 
an end. 

GANNET translates from 16-bit genotypic representation of input connections to phenotypic 
values of network inputs and based on the conf. max_span_di s t and conf. net_ins 
parameters. First, it is determined whether there are more neurons in the network than the region 
of permitted connections, i.e., it is determined whether the maximum permitted span distance is 
affecting the representation. The genotypic value is converted from its distributed format which 
ranges from 0 to 65535 down to a compact form which has a range that is equal to the number of 
network inputs and neurons to which it is permitted to connect. Next, it is determined whether 
the neuron input is connected to a network input or another neuron. This is determined by 
whether the compact value is less than the number of network inputs, in which case it is 
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connected to a network input. Otherwise, it is considered to be connected to a neuron. Because 
the input connection field is kept in distributed format ranging from 0 to 65535 during the genetic 
operations of crossover and mutation, it will still describe a valid phenotypic structure no matter 
what effect the operators have. 

Previously, the maximum genotype length was 250 neurons long, and each connection was 
described by an absolute reference to a neuron in the genotype using eight bits. Furthermore, 
GANNET could not evolve recurrent neural networks which had more than 250 neurons or 
inputs. 

3.4.2   Neuronal Behavior 

GANNETs neurons accept binary- or ternary-valued inputs and produce binary-valued outputs. 
Savage [27] notes that for the relation/: {-1, 1}" - {-1,1 }m, which corresponds to a binary input, 
binary output neuron with n inputs and m outputs, there are 2(m(2")} distinct functions, or 
behaviors, that a neuron can have. For a neuron with n binary valued inputs, there are 2" possible 
input combinations; because the output is also binary valued, there are 2(2"} possible behaviors 
resulting from each set of input combinations. This means that there are: 

2p2) = 16 distinct behaviors for two-input neurons with binary valued inputs 
2(2*} = 65,536 distinct behaviors for four-input neurons with binary valued inputs 

GANNET provides for three different methods of implementing a neuron's behavior: 

a. Simple Neuron Model (SNM) using weights 
b. Simple Neuron Model (SNM) using a lookup table 
c. Full Neuronal Functionality 

The conf . sum_or_f ull_behav option provides for two methods of interpreting the 
•' behavior description, either using summation of thresholds and products of input values and 

weights as specified by the Simple Neuron Model, or; providing full functionality and treating 
each neuron as if it was a fully configurable logic gate. 

3.5      Simple Neuron Model (Summation) Neuronal Behavior 

The Simple Neuron Model (SNM), as termed by Spofford, is a minor variation of the model 
proposed by McCulloch and Pitts [2]. Its difference lies in the squashing function wherein 
GANNET uses the sgn (*) function in place of the ©(*) unit step function. 

77. (t + 1) = sgn {£ wy».(0 - \it\ (7) 
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It calculates neuronal behavior based upon the squashed summation of the negated threshold 
value, and the product of neuron input values and weight as described in Equation (7). ß} is the 
threshold (DC offset) term, ws are the weights, both of which determine the neuron's behavior. 
n(t) are the values of the inputs to the neuron and n/t+1) is the output of the neuron. The sgn(*) 
function is hard-limiting, and results in values of-1 and +1 as described in Equation (8). 

sg<*) = {_\   otherwise (8) 

In GANNET, when using the SNM, the weights and threshold can take on one of eight integer 
values between -4 and +3, hence they each require three bits of storage. For both neuronal 
behavior modes, the permissible input values match those found at the output and are -1 or +1. 
For four input neurons, Spofford found that although the weights and bias consisted of fifteen bits 
which allowed for 215 = 32,768 different combinations, many of them generated the same 
behaviors. Spofford found through exhaustive numerical analysis that there are only 1882 unique 
behaviors that could be described by combinations of weight and bias values. These 1882 
behaviors were found by indexing through all of the unique behaviors that could be generated by a 
hard-limiting neuron with integer weights and a threshold varying between -4 and +3. These 
unique behaviors are looked-up from the ben a v4 . da t a file by GANNET. Similarly, for two 
input neurons, there are nine bits which would allow for 29 = 512 different behaviors, yet only 
fourteen of them are unique and are listed in the behav2 . data file. These behaviors are the 
linearly separable, or threshold, functions which are described at length by Hurst et al. [28] 
Linearly separable functions are those functions which have a hyperplane in the input space 
separating all of tiaeflX) = 0 outputs from Xhef(X) =J outputs. Hurst et al. also found that there 
are 104 linearly separable functions out of a total 2(2'} = 256 possible boolean functions for gates 
with three inputs, and there are 325,262 linearly separable functions out of a total of 
2(25) = 4,294,967,296 Boolean functions for gates with five inputs. 

The conf. behav_lookup configuration option controls whether behavior is obtained from a 
■' lookup table where only one example of the unique behaviors appears (behav_lookup = 1) or 

if the behavior is obtained usinglhree'bit encoded weights (behav_'löokup = 0). Typically, the 
lookup table provides the best performance. The use of this option in the weight mode will be 
described later. Note that this option is only applicable when using the SNM, that is, when 
conf . sum_or_f ull_behav = 1. 

With the SNM behavior restored for both two and four input neurons, GANNET maps from the 
sixteen-bit (genotypic) behavior description to the SNM (phenotypic) description by dividing the 
genotypic value by the number that provides each of the 1882 or fourteen behaviors an equal 
opportunity to be selected. It should be noted that the behavior files previously used the combo, 
prefk. The prefix was changed to behav to enhance clarity. 

GANNET 1.0, when utilizing the SNM, allows for a second method of mapping from the 
genotypic behavior description to the phenotypic description for the four input neuron case. If 
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conf. biased_sel_of_behav is set, rather than giving all 1882 behaviors an equal 
opportunity to be chosen, GANNET used a biased search which favored the selection of some 
behaviors. This parameter was provided by Spofford, and it was not obvious why this method 
would be useful, hence it was deleted for version 2.0. 

3.5.1   Full Neuronal Behavior 

The SNM behavior mode only allows for fourteen out of a possible sixteen behaviors for a two- 
input neuron, and 1882 out of a possible 65536 behaviors for a four-input neuron. Because so 
many behaviors were left out by the SNM, GANNET was upgraded to support a second form of 
neuronal behavior. When conf. sum_or_f ull_behav is set to zero, the neurons operate 
with full functionality.   If configured for full behavior, GANNET uses either the least significant 
four bits or all sixteen bits of the behavior genotype for two and four-input neurons, respectively, 
when calculating the output of a neuron. 

if t0 > J3"=1-s.w. > tx then x=l; otherwise x=-l (9) 

Version 1.0 of GANNET did support full functionality for two-input neurons.   The two-input 
neurons utilized two threshold values as described in Equation (9). The behav2 . data . full 
file was used, which has sixteen sets of weight and threshold values and allow for all sixteen 
behaviors listed in the following table to be generated. The linearly separable version of the two- 
input SNM was disabled, but the behavior file with the rest of the GANNET files was provided. 
Hence, in GANNET 2.0, the previously unused file behav2 .data was reactivated for the SNM 
mode for two input neurons. behav2 . data . full is no longer used to provide full 
functionality; instead, the sixteen possible behaviors are selected based upon the value of the four 
least significant bits in the behavior field of the genotype as described above. 

Of the sixteen possible behaviors for binary valued, two-input neurons, fourteen can be generated 
' by the SNM binary-valued neuron having two inputs. The Exclusive-OR, and Exclusive-NOR, 
"which correspond to behaviors 01102 = 610 and 100i,~- 910 cannot be generated by the SNM, 
hence there are only fourteen behaviors for the SNM mode. These two behaviors cannot be 
generated by the SNM because they are not linearly separable. An excellent review of linear 
separability and its relation to neurons is provided by Abu-Mostafa in [29]. The following table 
shows behaviors for a two-input neuron with binary valued input states 

Behavior 
Number 

Inputs Output Name 

0 00 
01 
10 
11 

0 
0 
0 
0 

Ground 
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Behavior Inputs Output Name 
Number - 

1 00 1 NAND 
01 0 
10 0 
11 0 

2 00 0 
01 1 
10 0 
11 0 

3 00 1 Invert 
01 1 first 
10 0 input 
11 0 

4 00 0 
01 0 
10 1 
11 0 

5 00 1 Invert 
01 0 second 
10 1 input 
11 0 

6 00 0 XOR 
01 1 
10 1 

-~ 11 0 

7 00 1 NOR 
01 1 
10 1 
11 0 

8 00 0 AND 
01 0 
10 0 

111 1 

37 



Behavior 
Number 

Inputs Output Name 

9 00 
01 
10 
11 

1 
0 
0 
1 

XNOR 

10 00 
01 
10 
11 

0 
1 
0 
1 

second 
input 

11 00 
01 
10 
11 

1 
1 
0 
1 

12 00 
01 
10 
11 

0 
0 
1 
1 

first 
input 

13 00 
01 
10 
11 

1 
0 
1 
1 

14 00 
01 
10 
11 

0 
1 
1 
1 

OR 

15 00 
01 
10 
11 

1 
1 
1 
1 

V+ 

3.5.2   Ternary Valued Inputs to Neurons 

When GANNET was first used to evolve recurrent networks which recognized regular languages, 
it became apparent that it would have to be upgraded to support three different input values to the 
neurons. The problem of sending in a variable length string serially to a network and having it 
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compute whether the string was a valid word for a given language cannot be easily done with 
neurons having binary-valued inputs. This is because there is no easy way to indicate when the 
end of the string has been reached. Ternary-valued inputs allow a third "dead state" can be sent 
into the environmental input of the network. 

A third value for an input state was first implemented using the SNM with weights, and using the 
value 0 as the third input state. The lookup table couldn't be used for the SNM since it was set up 
to work with only the -1 and 1 input states. Difficulty was encountered with evolving solutions to 
many of the language recognizers. Recalling the boost in problem solving ability that the fully 
functional neurons provided for binary-valued inputs, fully functional neurons with ternary-valued 
inputs were implemented. A new configuration parameter, conf. input_s tates was 
established along with modifications to the GANNET code to support this operation. 

Savage's [27] equation can be further generalized for the relation/: {a„ ^-.^Y ~ (bi> b2-bx}'" 
and shown through simple enumeration that there are x(m(v"» distinct behaviors that a neuron can 
have. Hence, a neuron with four ternary-valued inputs and one binary-valued output could take 
on any one of 2(1'34) =281 = 2.41 x 1024 behaviors, and would require log2 (2

81) = 81 bits to 
represent the behavior. These 81 bits are stored in three 32 bit long integers in the C code for 
GANNET. 

3.5.3   Determining Network Outputs 

GANNET has two modes of operation for selecting which neurons will provide output from the 
network as selected by conf. f ixed_outs. When using fixed outputs, GANNET takes its 
environmental outputs from neurons 1 through n, where n is the number of outputs. If GANNET 
is not configured for fixed outputs, the seventh and eighth bits are used by each neuron to 'bid' on 

the opportunity to become a network output. 
Outputs are selected by finding the neurons with 
bid values that are closest to the division lines. 
Division lines are pre-selected by dividing the 
search space into as many sections as there are 
outputs. An example is shown in Figure 26. 

JJEORONS CBOSIH 
AS OUTPUTS 

163B4 
Output 2 

Figure 26 Determining output neurons. In 
this example, four neurons (out of a total of 
thirteen in the network) are selected as 
network outputs. Taken from [25]. 

3.6      Network Operation 

In operating on a dataset, GANNET begins by 
setting the present state of every neuronal output 
to zero if indicated by 
conf .clear_neu_out.  Then, it sets the 
value of each neuronal input to either the first bit 
from the environmental input or to the value of 
the neuron's previous output as specified by the 
connection structure for a given network. It then 
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calculates the output of each neuron based on these values. These two activities, setting inputs 
for each neuron and calculating the next output value of each neuron in a network, is a cycle. 
GANNET continues with cycles for each remaining bit in the input pattern. Then, the process 
continues with cycles for the number of dead states configured for the experiment as specified in 
conf. dead_s tates. The value 0 is sent in as input to the network if configured for ternary 
valued neuronal inputs. If the experiment is configured for binary valued inputs, then the value of 
the last bit sent in on the given environmental input is fed in for each dead state.   After all of the 
dead states have been sent into the network, the value of the neurons selected to be environmental 
output neurons are taken as the outputs. 

Previously, GANNET didn't allow for data to be fed serially into a network. It only accepted data 
in parallel. That is, an input pattern of some fixed number of bits would be repetitively applied to 
the environmental inputs of a network until an output was obtained. GANNET had an elaborate 
mechanism for evaluating the quality of a network's output in order to decide for how many 
cycles to apply the input pattern to the network. This mechanism evaluated whether the output 
value remained the same for a certain number of cycles (after an initial set of cycles had past) or 
varied. If it varied, then it was considered to be an invalid response and hence received a low 
fitness evaluation. This mechanism was eliminated and replaced with the code that sent in the 
configured number of dead states after each training pattern. 

Several advantages were found in having the ability to send a pattern to a network in serial (which 
didn't preclude the use of two or more inputs, hence it could still be parallel at the same time it 
was serial). These advantages are outlined in following table. 

Input Mode: 
Can emulate a flip-flop 
Inputs required to solve 
parity problem of n bits 

Time steps required to 
solve parityproblem of n 

bits 

Can accept variable length 
 input data 

Minimal size network 
architecture  

Parallel 
No 

n 

equation a function of 
n and the number of 
inputs per neuron; 

typically < n. 

No 

Feedforward 

Serial (and Parallel) 
Yes 

Yes 

Recurrent 

The notion that a feedforward network architecture is the only useful architecture for networks 
that can accept data only in parallel is expressed in the conjecture: 

Conjecture: If data required for a given pattern recognition problem is fed into a network 
in parallel, the minimal size network will always be feed-forward. 
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Create Inital Population of Parents and Children 
or load genetic data from previously created file 

Evaluate Parents 
Generate Phenotypic Representation 

Test and Record Fitnes6  

This conjecture is made based upon a Gedanken experiment in an effort to solve a parity problem 
of some number of bits. The parity problem is quite easily solved with two neurons constructed 
to form a flip-flop when the input is fed in serially. Hence, one might believe that it would be 
easiest to solve this problem in parallel by using neurons to act as "glue logic" to multiplex the 
data into the flip-flop. However, when one works to implement this multiplexer, it is obvious that 
the gates required to build the multiplexer exceed the requirements of a solution to the parity 
problem in a feedforward manner. 

Because networks that accept data in parallel can't accept variable length data, and because it is 
desired to evaluate the number of neurons required by networks to solve various regular language 
recognition problems which require variable length data, it was decided to modify GANNET to 
allow it to accept its input in serial. GANNET's ability to accept more than one input at a time 
and hence accept data in parallel was retained. Each dataset is terminated by a carriage return in 

the training data file. The data 
is fed into the network starting 
with the first bit listed through 
the last bit before the carriage 
return.   

3.6.1    Genetic Process 

The process which GANNET 
uses to generate neural 
networks was significantly 
modified. The original format 
of this process appears in 
Figure 27, and its modification 
appears in Figure 28. The 
order of two sub-processes 
were moved; previously, the 
allocation of reproduction 
quotas took place at the entry 
point to the loop. Now, 
reproduction quotas are 
allocated after the population is 
maintained. This change allows 
for three important sub- 
processes to occur 
consecutively. That is, the 
population is now evaluated, 
maintained, and prepared for 
mating without any 
interference. The other change 

Allocate Reproduction Quotas 
Setup fittest parents to mate twice of go configured 

Add Noise to Training Data 
if no configured 

Mate Parents 
baaed upn reproduction quota« A network cize 

j    Crossover Parents to Create Children 
1 two children created per couple 

I Mutate and Resize each Child 

Evaluate Children 
Generate Phenotypic Representation 

Test and Record Fitness  

„ ,t   . x/r aintaJn~P^>pt5l**inn 
Compare Parent« and Children 

Replace Parent if Child ha« Greater Filnea« 

Record Statistics 
If ao configured 

Increment Parents' Ages and Generation  | 

Termination Generation 01 

Check "\      Fitness not reached 
Termination^ 
Conditions: 
enerations < 

Termination Generation or   x Frm"*/ 

Fitness reached 

Record Statistics and Save Genetic Code] 

Figure 27 Flow chart of GANNET 1.0 operation. 

41 



Create Inital Population of Parents and Children 
or load genetic data from previously created file 

Evaluate Parents and Childrenr<- 
Generale Phenotypic Representation 
 Test and Record Fitness  

If 
' there is aN 

network with 
/ appropriate fitness, >- 

\and not all datasets/ 
are in use, add/ 

Ndatasetfi/ 

add datasets 

/    don't add datasets 

Maintain Population 
Keep best half of total population 

Allocate Reproduction Quotas 
Setup fittest parents to mate twice of ao configured 

Termination Generation or 

Fitnessireached 

/       \ 
/ Check \ 

/   Termination^-. 
<x      Conditions:     / 
\fjenerations or 

^Fitness/ 7ermmation Generation or 

Fitnesa not reached 

Record Statistics 
 If ao configured  

Mate Parents 
based upn reproduction quotas A network Bize 

|    Crossover Parents to Create Children 
two children created per couple 

| Mutate and Resize each Child        j 

I I    Increment Parents'Ages and Generation  | 
I I  

>T   Record Statistics and Save Genetic Code! 

Figure 28 Flowchart of GANNET 2.0. 

in sequence occurred relative to 
incrementing the parents' ages. 
Now, parents' ages are incremented 
immediately after children are 
generated so that when population 
maintenance takes place, it can use a 
more accurate count of the number 
of generations that a network has 
been around for deciding whether to 
keep it or not. However, the most 
significant change to the genetic 
process is that the point of entry to 
the loop was changed. Previously, 
after randomly generating the first 
population of NNs, GANNET 
would have to evaluate them 
(outside of the loop), and then enter 
the loop by mating the members of 
the population and reproducing. 
Now, GANNET randomly generates 
the NNs and goes to the point of the 
loop which evaluates the population. 
Even though the same function was 
called to perform both population 
evaluations, the new version is more 
concise since only one section of 
code is dedicated to evaluating the 
population. Furthermore, this 
modification allows for termination 
conditions to be checked before 

perfoiLuing any reproduction. A. is important-to check the termination conditions before 
reproducing because it is important to see if the reproduction process has had anything to do with 
the success in solving the problem. 

3.6.2   Initializing GANNET 

GANNET begins the initialization process by setting the configuration parameters to default 
values, followed by an attempt to read the configuration file. This file has its suffix specified by 
the user in the command line when calling GANNET. If this file is not found, GANNET prompts 
the user for the configuration parameters and stores them to disk. GANNET then allocates 
memory for an entire population's parent and child genetic code and genetic dimensions based on 
conf.pop   size. 
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GANNET continues by reading in the training data from the input and output files which are held 
in files with prefixes of input., and output., and suffix as specified in the configuration file. 
If there is more or less training data than would be expected, an error message is written to the 
history file and GANNET terminates. Previously, GANNET would only terminate if there wasn't 
enough data. GANNET takes training data in as files containing 0s and Is which represent the 
patterns to be learned. GANNET translates each value of 0 in these files as a -1 for the network. 

Next, the neuronal behavior files, behav2 . data and behav4 . data, which are used to 
translate behavior descriptions from genotype to phenotype, are loaded. The statistics and best 
network files are opened and prepared. GANNET then attempts to read in the genetic dimensions 
file. If the file exists, then it reads the file in, followed by the genetic code file, otherwise, 
GANNET randomly creates the genetic code. 

If GANNET has to create an initial set of parents, it first seeds the random number generator with 
the value found in conf. seed_create_gen_code. Next, the first location where crossover 
should be toggled is randomly selected using a Poisson distribution at a rate prescribed by 
conf. co_me an_di s t. The values for the entire population's dimensions are set to default 
values, except for the number of neurons. The number of neurons for each network is randomly 
selected using the value in conf. mean_init_net_size and then sampling the random 
variable specified by the uniform distribution across two times the value in 
conf. dev_ini t_net_si ze. This is done to select network sizes which vary in both 
directions around the specified mean size. After randomly selecting the size of each network in 
the initial population, values for the neural input connections, neural behavior, and network 
output bids are randomly selected across a uniform distribution in genetic space. 

Previously, the section of code which calculates the location of next crossover point using a 
Poisson random variable didn't allow for the direct specification of an average rate. Rather, the 
value supplied by the user in conf. co_mean_dis t was a floating point value that varied 
between 0.0 and 1.0 and had indeterminable units. This method of generating a Poisson random 
variable was also used by GANNET for selecting mutation points in the genetic code    > 
(cönf .mu_me'an_dist_in, conf .Tnu'2_itrea?ii_di'-st_behav,      -~ - 
conf .mu_mean_dist_obid, conf .mu_mean_dist_co). In all of these places, it was 
replaced with a Poisson random variable generator which takes as input a direct specification of 
the average distance to the next incidence per network. This code was copied from Numerical 
Recipes in C [30] for my personal use in this experiment. The publicly available version of 
GANNET does not include this code, but simply a call to it. 

The value for these four parameters indicates the average distance to the next bit of activity per 
network. For instance, a value of 0.5 for behavior mutation would provide, on average, two 
mutations of the behavior information per network; a value of 4 for crossover would apply the 
crossover operator on every fourth child. 

43 



After the genetic code is accessed, either by opening the file it is in and reading it into memory or 
by randomly generating it, the current generation is set from the value in conf. cur_gen. 
Next, the random number generator is seeded for the evolutionary process using the value in 
conf. seed_evol ve_loop.  From here, GANNET enters the evolutionary loop. • 

Previously, when GANNET allocated memory for the genetic code, it a priori assumed that each 
network would have up to 250 neurons in it. Now, GANNET allows for up to 65535 neurons, 
butit only takes up the amount of memory as specified by conf .max_net_size.   Further, 
memory would be allocated for output bidding and for genetic crossover even if parameters which 
use these fields weren't selected. Now, GANNET only allocates memory for the output bidding 
part of the genotype if the memory will get used. 

3.6.3 Evolutionary Loop 

The evolutionary process involves many steps which continue until either of the termination 
conditions are met as described in Figure 28. GANNET's process begins by measuring the fitness 
of each child, promoting the children to replace their parents if the children have a higher fitness, 
allocating reproduction quotas, recording statistics, checking the termination conditions, mating 
the parents, applying the genetic operators to the mated couples to generate a new set of children. 
After the children are generated, the ages of each parent are incremented, as is the generation 
counter, and the loop returns to its beginning and starts again by evaluating the new children. 

3.6.4 Fitness Evaluation 

GANNET was designed with three fitness functions which can be scaled as desired to make up 
the total fitness function. The I/O fitness function measures how well a network produces outputs 
when presented with input patterns which are a part of its dataset.   The reduce neuron fitness 
function provides a result based upon how many neurons there are in a network, with increasing 
fitness being allocated to those networks with the fewest number of neurons. The role that each 
of these measures plays in determining the fitness of a given network is prescribed by 
conf. fit wt  io, and conf. f it'^wt_ne"t_size.~Tue values of these parameters must   -"- 
sum to 1.0. 

GANNET begins evaluating a network by translating it from genotypic to phenotypic space as 
described in the representation section, above. Then, it enters a loop which tests each dataset on 
the network as described in the network operations section, above. Results from the test of each 
dataset in use are used by the fitness functions to come up with a final fitness function for each 
network. 

The I/O fitness function in GANNET is configured by three binary valued parameters: 
conf .uni_or_abs_out_pats, conf. sim_dif, and 
conf. bi t_or_entire_out j>at- GANNET can award I/O fitness points based either 
upon the absolute representation or based on free representation. If configured for absolute 
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representation (conf. uni_or_abs_out_pats = 0), GANNET compares each bit of the 
actual output pattern with each bit of the desired output pattern in the output .suffix file. 
Depending on the setting of the conf .bit_or_entire_out_pat parameter, 
GANNET either returns a score that represents the percentage of correct bits out of the total 
number of bits in the output training set (conf. bi t_or_entire_out_pat = 1), or the 
percentage of correct patterns out of the total number of training patterns 
(conf .bit_or_entire_out_pat = 0). 

When configured for free representation (conf. uni_or_abs_out_pats = 1), GANNET 
compares every possible pair of output patterns once. If the two desired patterns under 
comparison are the same, GANNET awards one point per actual bit 
(conf .bit_or_entire_out_pat = 1) or actual pattern 
(conf. bi t_or_entire_out_pat = 0) which are the same. Alternatively, if the pair of 
desired patterns is different, then a point is awarded only if the actual patterns are different, 
regardless of the setting of conf. bit_or_ent ire_out_pat. After each pair of patterns is 
compared, the I/O fitness is calculated as a function of conf. sim_di f. The greater the value 
of this parameter, the more influence the presence or absence of desired similarities in pairs of 
output patterns have on the I/O fitness. If this parameter is equal to zero, then the fitness is based 
solely on the percentage of actual unique bits/patterns that exist out of the total number of desired 
unique bits/patterns. 

3.6.5 Dataset Presentation 

In order to regulate how much of the training data is tested against the networks, functionally was 
added to GANNET so that the datasets used to test each network could be incrementally added 
as networks were evolved which did a better job of solving the problem When GANNET starts, 
it randomly selects enough datasets such that there are datasets that have two different outputs. 
Then, after each time the entire population has been evaluated, it checks to see if there is a 
network that has a high enough fitness that more datasets should be added to the problem. If so, 

'" and if there are datasets left to be enabled, the configured number of datasets are enabled and the 
~ population is re-evaluated. If the'curfent population doesn't have a high enough fitness, then 

GANNET continues with the evolutionary process, entering the maintain population function. 

3.6.6 Population Maintenance 

After evaluating the child which just was created, a decision must be made about whether to keep 
the child or replace it with one of the parents. GANNET has three parameters which direct the 
method which GANNET uses to maintain the population of networks: 
conf .indiv_or_pop_sel, conf .max_age, and conf . top_heavy. 
conf. indiv_or_pop_sel,   when set, uses the management scheme which was provided 
with GANNET 1.0. Each child is. compared with the parent that first contributed genetic 
information to the child, and the child is replaced if that parent has a greater fitness, as long as the 
parent hasnt reached the maximum permitted age. If the program is configured to operate in the 
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top heavy mode as specified by a set bit in the conf. top_heavy parameter, and if either of the 
two parents has a fitness which is greater than the highest fitness found in the previous generation 
(and also greater than that of the child), then the child will get replaced by that parent. This 
replacement will happen regardless of the age ofthat parent. If both parents meet these 
conditions, then GANNET defaults to saving the first parent picked to be a part of the couple. 
The top_heavy parameter is good for maintaining the fittest members of the population if a 
maximum age is set. Alternatively, conf. max_age can be set to zero, and thus no network 
will be deleted just because it is too old, and conf. top_heavy will have no effect. 

The conf. indiv_or_pop_sel is a new parameter which was added to allow for a new 
method of population maintenance for GANNET 2.0. When this parameter is cleared, decisions 
about saving parents are made after every child has had its fitness evaluated. The entire 
population of parents and children are sorted based upon fitness, and the fittest are kept as 
parents. If a network has an age equal to or older than conf. max_age, then its fitness is set to 
zero. The conf. top_heavy parameter has no effect when the entire population is sorted and 
maintained as one. 

Nissen [31 ] defines two methods of population maintenance from the field of evolutionary 
strategies: The first consists of generating A offspring from \x parents and putting both A and ß 
phenotypes into competition with each other. This is named as (A+/z)-ES, and corresponds to the 
method of population maintenance just mentioned. In the second form, denoted by (A,//)-ES. all 
parents are eliminated at each generation and only children survive. This would occur if 
conf. max_age were set to 1. A variant of the (A+//)-ES form is GANNET's original method 
of population maintenance. The difference is that the child is compared with the parents that 
created it. This variant form might be denoted by (A^^-ES. 

In the (Ai+AtjJ-ES method, parents are only compared with their children to make the decision 
about keeping or eliminating the parents. In itself, it was hypothesized that this would allow for 
some very unfit parents or children to remain in the population since there is no way to compare 
'parents with other parents or children with other children at this stage of the game. It was further 
hypothesized that it would be better if the parents and the children could be compared with each 
other as a group when deciding which network descriptions should stay in the gene pool. Granted 
the new set of parents are sorted and given reproduction allocations before being mated, but there 
is no way to sort both populations of parents and children at the same time. It is believed that it 
would be better to use a (A+//)-ES form 

Previously, there were two separate arrays for the parents and child code, and another two arrays 
for their dimensions. Also, GANNET operated by copying parents to be saved into child array, 
then moving a pointer from the old parent array to the child array. Now, one array is used to 
store both parents and children's code, and a second array holds all of their dimensions. This 
change was necessitated by the addition of the (A+//)-ES population maintenance scheme. 
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3.6.7 Allocation of Reproduction Quotas 

After deciding which networks should be saved as parents, the program allocates authorizations 
to mate and reproduce for each parent (0, 1, or 2 times), and returns the number of the parent 
which has highest fitness. Using Stochastic Universal Sampling as proposed by Baker [32] and 
described in SpofFord's [25] thesis, authorization to reproduce is calculated as a function of the 
fitness of each network and the value of the conf. quota_scale configuration parameter. 
In essence, the conf. quota_scale parameter gives the fittest parents two allowances to 
reproduce and prohibits the least fit parents from having any chance to reproduce. A value of 0.0 
gives all members of the population one chance of reproducing; whereas, a value of 1.0 gives the 
upper half of the population a second reproduction quota an average of 25% of the time, while 
reducing the lower half of the population as ranked in fitness to zero quota 25% of the time. The 
higher or lower the fitness, the greater the chance of having a deviation from one in the 
reproduction quota. 

3.6.8 Termination Criteria 

After checking to see if statistics should be recorded, two conditions are checked to see if the 
evolutionary process should be terminated. First, if the number of generations for the current 
execution of GANNET exceeds conf.max_gen, then GANNET terminates. For instance, 
GANNET can be restarted by calling it again from the operating system prompt, and it will reset 
its generation counter and run for another period of generations as specified by this parameter as 
long as the fitness termination condition doesn't take effect. 

GANNET will also terminate if based upon the values of pre-existing parameter 
conf . term_f it and new parameter conf. term_fit_mean_or_any. If 
conf. term_f it_mean_or_any is set, GANNET operates in its original mode, that is, it 
terminates if the average fitness of the parents population reaches the fitness specified in 
conf. term_f it. However, if this new parameter is cleared, GANNET terminates if any 

'network reaches the fitness specified in conf. term_f it. When GANNET terminates, it stops 
at this point m'the evolutionary'loop',' and performs theactions described below in close up shop. - 
GANNET continues the evolutionary cycle if neither of these conditions are met. 

3.6.9 Statistics Recording 

After allocating reproduction quotas, GANNET determines whether best network data and 
statistics should be recorded as specified by the conf. bes t_interval and 
conf. s t ats_interval parameters. These parameters specify how often, in generations, 
data is to be stored to the files that hold it. If these parameters are set to 0, then the data will not 
be recorded. If it is found that either of these pieces of data is to be recorded at the present 
generation, then it is. Best network data consists of a phenotypic (structural) description of the 
network in the parents population with the highest fitness. Statistics data can take on one of two 
formats as specified by the new configuration parameter conf. stats_detail_or_sim. 
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Detailed statistics are recorded when this parameter is set, and are explained in Spofford's thesis. 
Simple statistics are recorded when this parameter is cleared, and consist of the generation 
number and the fitness of the parent with the highest fitness. 

3.6.10 Mating 

After generating noise in the input training patterns if so configured, GANNET begins the mating 
and reproduction process. This process is performed on two parents at a time. First, two 
networks are selected by the mate ()   function. Networks are paired as a function of the 
previously allocated reproduction quotas, their size, and the conf. cloning parameter. 

The mating process begins by randomly selecting a network out of the population of parents and 
testing it to see if it has one or more reproduction allocations. If it does, then it becomes the first 
partner of the couple. If not, GANNET searches across the population until it finds a parent that 
does meet this requirement. Next, GANNET begins its search for a second partner by scanning 
the population for a parent with reproduction authorization which is the same size as the first 
partner. If one is found, then it becomes the second partner and the mate () function concludes 
so that the two selected partners can reproduce. Otherwise, GANNET continues searching for a 
second parent by expanding the desired network size conditions by one neuron in each direction 
after the entire population is searched without positive results at the present size restrictions. 

In GANNET 1.0, it was found that if a parent was selected as a first partner when it had more 
than one authorization quota, the program favored selecting the same parent as its second partner. 
This result, named cloning, intuitively seems worthless, since crossing over two of the same 
genome will result in the same genome, and no new networks will be generated. A network can 
be selected for reproduction 0, 1, or 2 times per generation. After randomly selecting the first 
eligible parent, the original code looks for a second parent that has exactly the same number of 
neurons as the first parent. The code does not reject the second parent chosen if it is the same as 
the first parent. GANNET 2.0 was modified so that a parent can't reproduce with another 
•instantiation of itself if conf. cloning is cleared.   If conf. cloning is cleared, the program 
rejects the second parent chosen if it is the same -as the first parent.   When GANNET was first 
modified in this manner, it would get stuck in endless loops anytime two or four of the same 
parent were all that were remaining in the population. Subsequently, GANNET was modified to 
accept cloning if there are two or four parents left to be mated in the population. 

3.6.11 Crossover 

After two parents are selected to be mates, GANNET enters thereproduceO function and 
generates two new children networks by applying the genetic operators of crossover to the mates, 
and then applying mutation and resize to the children. GANNET performs crossover in one of 
two methods as configured by the new parameter c on f. c o_b i t_wo r d_o r_n eu.  If this 
parameter is set to 0, crossover is performed at the bit level, meaning that any bit in the genome 
can be a crossover point. This is the only format in which GANNET 1.0 would operate. 
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It was hypothesized that the crossover operator is generally destructive when working to 
crossover data that is internal to a neuron. Hence, a new crossover function was written for 
GÄNNET 2.0 which allows crossover to occur only at the divisions between each neuron in a 
network. Selected when conf. co_bi t_word_or_neu is set to 2, this mode preserves the 
genetic descriptions of the input connections, behaviors, and output bids of each neuron. Setting 
this parameter to 7 is an error, as this setting is reserved for future use. 

3.6.12 Crossover Overview 

GANNET utilizes Appoint crossover, which means that there can be any number of crossover 
sites on the genotype. When generating the two new children in bit oriented crossover, the 
software incrementally examines the two mates' genotypes, and if either mate has a bit set in the 
extra array, crossover will be toggled on or off at the location of the set bit. Alternatively, if 
performing neuron oriented crossover, if any of the bits are set in the extra array which 
corresponds to a given neuron, then crossover will occur at the break between the given neuron 
and the next neuron. The crossover operator then copies each parent's array into one or the other 
children's array, depending upon whether crossover is on or off. The bits or neurons at which 
crossover is toggled are randomly generated using a Poisson random variable at each generation 
at a rate specified by conf. co_mean_di s t. 

For bit oriented crossover, GANNET crosses over genetic data in two separate segments which 
can be thought of as the biological analog of chromosomes. One chromosome, known as the 
input/behavior chromosome, holds the genetic data describing the four input connections to the 
neuron and behavior for each neuron in the network. The second chromosome, known as the 
output bidding chromosome, holds the genetic data for each neuron's bid to become an output 
neuron. 

3.6.13 Crossover Process 

■• GANNET begins the bit-oriented crossover process by comparing the number of neurons in each 
parent recording these values for future reference. This is important because when a child is 
made, there will be no genetic information available during the last part of the crossover process if 
the parents have differing sizes. Next, the crossover operator turns crossover off for both 
chromosomes. Hence, when the process starts, genetic data from the first parent is copied to the 
first child, and genetic data from the second parent is copied to the second child for both 
chromosomes. When crossover first gets toggled, genetic data will go from each parent to the 
opposite child. 

The crossover operator continues by incrementing through both parents, one byte at a time, 
copying data from the parents to the children as indicated by the bitmask. The bitmask consists of 
one byte and is computed as a function of the toggle bits. The toggle bits are taken, one byte at a 
time, from either the crossover field of the genetic code or by testing to see if the next toggle bit 
(as randomly selected using a Poisson random variable) is in the range of the current byte. The 
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source of the crossover location data is prescribed by the setting of conf. co_norm_or_gen. 
For each bit in a byte of toggle bits, crossover is turned on if it was previously turned off, or 
turned off if it was previously on. There can be more than one bit set in the toggle bits byte. The 
actual change as to which parent is contributing genetic information to a child doesn't occur until 
the bit after the toggle bit which is set. 

In order to compute the bitmask for the current byte, the program first determines whether the 
current byte being operated on is with the input/behavior chromosome or the output bidding 
chromosome, and whether crossover is on or off for said chromosome. Next, the program 
increments through the toggle bits byte and either sets the bits in the bitmask high or low 
depending upon whether crossover is on or off, respectively. While incrementing bit-by-bit 
through the toggle bits byte, when a high bit is found, crossover is toggled, and the remaining bits 
in the bitmask are set appropriately. This section of code completes by updating the semaphore 
which indicates the crossover status for either the input/behavior chromosome or the output 
bidding chromosome. 

Both children have genetic data contributed to them in the manner listed above until the end of the 
shorter of the two parents is reached. At this point, the child which was receiving neuron input 
and behavior genetic code from the second parent is provided with an exact copy of the remaining 
data from the larger parent, while the other child receives no more data. If both parents are of 
equal length, then the procedure listed above is moot. With the actual crossover operation 
completed, the size of each child is loaded into the child info array, and the bred and age statistics 
are reset to zero. 

The neuron oriented crossover process occurs in the same manner, except that the entire string of 
genetic code is treated as one chromosome. The value of the Poisson random variable generated 
is divided by the number of bits in each neuron such that a distance can be specified to the next 
neuron (as opposed to the next bit) where crossover should occur. Hence, the value for 
conf. co_mean_di st indicates the mean distance, in networks, to the next crossover position 

•'no matter what the setting of conf . co_bit_word_or_neu. 

3.6.14 Crossover Details 

The crossover function, which generates two new children by applying the crossover operator to 
those selected parents, had many flaws in the previous version of GANNET. A bug was found in 
the crossover operator. Crossover performed on a neuron's behavior field is performed two bytes 
at a time; however, the crossover routine works on each byte, one at a time. Spofford's original  • 
version was written to work on the lower byte first, then the upper byte. Included with the 
segment of code which is called to work on the lower byte is the code to perform the actual 
crossover. The result was that information which was kept in the upper byte wouldn't get crossed 
over if the bitmask indicated it should be. The crossover bug was rectified such that work on the 
upper byte gets performed before work on the lower byte does. 
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GANNET had a strange way of selecting which child is to be the longer child. Previously, when 
the end of the shorter parent was reached, GANNET would dump any surplus genetic code from 
the longer parent to the child which was receiving code from the second parent. The second _ 
parent is the parent that was selected second during the mating process. GANNET 2.0 was 
reprogrammed such that the longer child is the child who is currently receiving neuronal input and 
behavior code from the longer parent when genotypic information runs out from the shorter 
parent. 

3.6.15 Mutation 

GANNET's mutate () function allows for mutations to occur to the genetic code at the bit level 
or at the word level as prescribed by conf. mutate_bit_or_word. The genotype is broken 
up into four sections for the purpose of the mutation operator. Sections consist of the four two- 
byte neuronal input connections field, the two-byte neuronal behavior field, the two-byte output 
bid field, and the twelve-byte toggle bit field for genetic crossover. Each section has its own 
independent configuration parameter in which to specify the rate of mutation applied to it. 
However, if GANNET is configured to mutate at the word level, only the first three sections will 
perform in this manner; the<;ode which holds toggle bits for genetic crossover will continue to 
operate at the bit level. 

After performing crossover and generating two children, the mutate () function is called and 
operates on each child one at a time. It begins by testing to see if the next incidence of mutation 
for each section was randomly selected or not; if not, it randomly selects the locations of the next 
mutations. GANNET allows for all four sections to have unique mutation rates as specified by 
the conf.mu_mean_dist_in,conf.mu_mean_dist_behav, 
conf .mu_mean_dist_obid,   and conf .mu_mean_dist_co parameters, which 
respectively correspond to the input connections, behavior, output bid and genetic crossover 
toggle point mutation rates. Each section is tested in turn to see if it should be mutated. For each 
section of the genotype, the randomly generated value of the variable which indicates where the 
next mutation should occur is tested to see if its pointing to a bit in the current child. If so, the 

' number of the neuron which has the bit in it to be mutated is calculated, and the value of 
conf. mut at e_bi t is tested. If GANNET is configured for bit level mutation, then a two byte 
bitmask is created which has a high bit where the mutation is supposed to take place. This 
bitmask is bitwise XORed with the selected neuron's field, and the result is written back into that 
field. If GANNET is configured for word level mutation, then the two-byte field holding the 
selected bit is reselected by writing to it with a randomly chosen, uniformly distributed, two-byte 
value. After writing the mutated value to this field, the distance to the next bit or field to be 
mutated is randomly selected. 

If word level mutation is selected, it doesnt apply to the genetic crossover section. The genetic 
crossover section will continue to operate in a bit oriented manner. Also, it should be noted that 
the input connection section only mutates one two-byte value, and not all four two-byte values, 
when word level mutation is selected. 
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3.6.16 Resize Operator 

The r e s i z e () function randomly inserts or deletes a neuron out of a network with a uniformly 
distributed probability specified by conf. resize_prob. If the test to see if resizing should 
take place passes, then resize samples a Bernoulli random variable to select whether it should 
insert or delete a neuron. If the network has "only one neuron, or has only as many neurons as 
network outputs, then a neuron deletion is prohibited. If the network has the maximum permitted 
number of neurons as specified by conf. max_net_si ze, then neuron insertion is prohibited. 

As long as one of the conditions above is satisfied, the deletion or insertion process begins: The 
position for the action to occur in the genotype is randomly selected using a uniform distribution 
across the entire genotype, and each input is checked to see if it references a neuron that appears 
beyond the action point. If it does, then the reference is incremented or decremented as 
appropriate. If neuron deletion is chosen, this function continues by copying genotypic 
information over the neuron to be deleted from the neuron above it, and continues for each 
remaining neuron in the genotype. Alternatively, if insertion is chosen, it copies information into a 
new space above the top of the genotype from the last neuron, and continues such that a duplicate 
neuron is inserted at the point of action. Also, the information regarding the number of neurons in 
the network is updated. 

The r e s i z e ()   operator can be disruptive to network performance in many ways. When using 
fixed outputs, the network outputs will be disrupted if the resize occurs in the first part of the 
genome where the neurons are that are providing output to the network. However, if 
conf. f ixed_outs is cleared, the networks will be more robust under the resize operator, 
since only one network output has the same chance of being affected. 

3.6.17 Close Up Shop and Other Files 

After GANNET reaches one of its termination conditions, the close_up_shop () function is 
■• called. This function records the best network and statistics information for the current 

population of parents, and then stores all of the genetic code and genetic dimensions so that it can 
be used later. 

A great amount of time is spent working with GANNET's configuration files when working with 
it. A configuration file setup utility was developed. This utility establishes a set of configuration 
files for testing the upgraded options and also provides a shell script for initiating these 
experiments. This utility has the prefix cg_, which is short for configuration [file] generation. 
Its suffix is the name of the set of training data to be used for the experiment such as xor, alp or 
par5bit. The name of the script file which executes each of these experiments is the name of the 
set of training data. 

In order to generate accurate configuration files for GANNET 2.0 based upon configuration files 
used with GANNET 1.0, a utility was written which measured the mean value generated by 
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Spofford's Poisson random number generator. This file is called poidevmean. c, and prompts 
the user for a value between 0.0 and 1.0. It returns the mean, taken over 1000 trials, of 
Spofford's Poisson random number generator. This is how the rates for crossover and mutation 
were calculated for the configuration files which have a pound sign (#) in them. This symbol 
indicates that the configuration file is based upon an original experiment evaluated by Spofford. 

4 Complexity Measures 

The literature contains many instances of complexity measures being applied in the field of neural 
networks in the literature. Three distinct applications in the field were found: 

1) measuring the complexity of the problem to be learned by the neural network [33] 
2) measuring the complexity of the neural network structure itself [34] 
3) measuring the complexity of the meta-problem of training the neural network [35] 

Typically, a comparison has been made in the literature between two of the three applications. 
Hence, there are three comparisons which can be made: 

1) a comparison between the complexity of training a neural network and the 
complexity of problems to be learned 

2) a comparison between the complexity of the training algorithm and the structure of 
the network. 

3) a comparison between the required structure of the network and the complexity of 
problems to be learned. 

It is this last comparison which is addressed here. Applications of complexity to three different 
aspects of the neural network paradigm, and corresponding complexity measures. 

Lindgren et al. [36] exemplify the first comparison, that of comparing the complexity of the meta- 
problem of training a neural network with a measure of the complexity of the problem to be 
learned. The complexity of the learning process was quantified by required learning time; 
Effective Measure Complexity (EMC) was used to quantify the complexity of selected finite 
automata. They utilized GAs to evolve discrete, recurrent neural networks for recognizing words 
in the regular languages associated with the finite automata. The evolutionary process used in 
Lindgren's paper was only the mutation operator. Limited results suggest that the learning time 
increases exponentially as a function of EMC. 

Only one reference was found concerning the second comparison, that of the complexity of the 
meta-problem of the training algorithm versus the complexity of the network. Research 
performed in this area typically compared the training complexity with the problem complexity as 
well. Judd [35] was the only example of research found in this area. 
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Complexity Aspects 
Complexity of 
problem to be 
learned 

Complexity of 
network structure 

Complexity of 
network training 
algorithm 

Complexity 
Measures 

Effective Measure 
Complexity 

Kolmogorov 
Complexity 

Circuit Complexity 

Number of points to 
be distinguished 
(Hamming Distance) 

Number of Neurons 

Interconnections 

Weights 

Time/ 
Computational steps 
required: 
Computational 
Complexity (P vs. 
NP, etc.) 

Many papers were found in the area of comparing neural network structures with the complexity 
of the problem solved by it. Abu-Mostafa and St. Jacques [33] and McEliece et al. [37] evaluate 
the information capacity of the Hopfield networks by comparing the maximum number of unique 
patterns that can be stored by a network with the network size. In another approach, Parberry 
[34] theoretically establishes upper and lower bounds for the number of neurons required by 
feedforward networks to solve problems of various complexities. The complexity of problems is 
measured using circuit complexity. 

The research documented in this thesis is also concerned with establishing a relationship between 
problem complexity and network structural complexity. However, the concern here is with much 
more than just evaluating the information capacity of a network. The ability for neural networks 
to store information is only one aspect of what makes them useful; the other aspect is their ability 
to compute the answer to a problem. In this case, the problem is the same as chosen by Lindgren 

' et al. [36], that of recognizing whether a given binary string is a part of a regular language. The 
problem complexity is also measured using EMC, and the number of neurons required to solve a 
problem is taken as a measure of network structural complexity. 

.4.1      Measuring Problem Complexity 

Establishing an empirical relationship between problem complexity and the minimum network size 
required to recognize it will enable one to estimate, or at least upper bound, the amount of 
computational resources needed to solve problems which are equally complex. A thorough review 
of problem complexity measures was performed. Two distinct types of analytical problems solved 
by neural networks were found: 
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1) Mapping from input to output with numeric sequences:  {0,1}N -> {0,1}M 

2) Recognizing regular languages or performing some other "computation" on the 
data 

The first type of problem, when solved by GANNET, takes patterns into the network in parallel, 
and sends the results out in parallel. It doesn't require state memory, and uses an environmental 
input for each bit in the input pattern. The second type of problem, that of recognizing regular 
languages, is best solved using a network which has state memory and which also has the word to 
be recognized serially clocked into one input. A solution will typically utilize a network with a 
recurrent architecture. 

A concerted effort was first made towards finding an empirical relationship between the 
complexity of mapping problems and the required number of neurons. Problem complexity was 
to be measured utilizing circuit complexity. It was found, however, that evaluating the number of 
neurons required to solve a problem of specified circuit complexity is best performed 
theoretically, rather than empirically. Parberry [34] has found many such relations, theoretically 
establishing upper and lower bounds for the number of neurons required for various problems. 

Because theoretical work had already answered the questions that were sought to be answered 
empirically, this research has been redirected toward measuring the empirical relationship between 
the complexity of recognizing regular languages and the required number of neurons. Effective 
Measure Complexity (EMC), which is defined in the next section, is utilized to evaluate the 
complexity of the regular languages used in this research. 

4.2      Effective Measure Complexity 

Effective Measure Complexity (EMC), as defined by Grassberger [38] and Lindgren et al. [36], 
measure the complexity of a finite automata based upon the Shannon information, or entropy, 
added as each successive word length is extended by one bit. For words in a language, the 
entropy of the words of a given length m is: 

Hm = ~ £/>o (Pj log2 p(aj bits. (10) 

where p(aj is the probability that the finite automata will generate the word om. For m=0, H0= 0 
since there aren't any words of length 0. 

Entropy is a good complexity measure in itself for some applications. Entropy measures the 
uncertainty of a random variable, or the number of bits needed on average to describe the random 
variable [39]. In the case of words of a given length, the entropy measures the average number of 
bits that would be required to describe the value of the word in a transmission based upon the 
probabilities of having to transmifeach word. Because words of various lengths are recognized, 
and because they are recognized by evaluating each letter in the word one at a time, the 
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differential entropy must be considered. The information needed to predict sm (the last letter of 
the word om ) if given the first m-J bits (am.j) is represented by: 

Ah   = H   - H   . (11) 

form>0 

Where m is the length of the word. It should be noted that AH>0, since Hm is non-decreasing 
with m, that is, Hm>Hm.j. Grassberger points out that "it is intuitively obvious that the uncertainty 
about 5m+; cannot increase if more and more of its predecessors are known." Hence, AH, is the 
uncertainty of the value of one bit for any word in the language since no information is provided 
by H0. Next, the average amount by which the uncertainty of om changes is considered: 

A2 Hm - Atfmtl - LHm (12) 

for m > 0 

Where A2Hm is the average amount by which the uncertainty of sm+] decreases due to knowledge 
of sm, which when negated (km = - A2Hm ) can also be interpreted as the information in correlations 
of length m. EMC is then defined to be the sum of these average uncertainties for each 
correlation of length m: 

TI= - £mA2tf   = kcoir-mave = hm^ (Hm- m-S]) (13) 
m=0 

EMC can also be written as the product of the total redundant information due to correlations for 
a given word kcorr = £" km, and the average correlation length m^, or as the limit of the difference 

' between the total entropy and the measure entropy of a given word as the length ofthat word 
goes to infinity. The measure entropy of a word is the product of its length and which is the 
Shannon entropy per letter. The sum kcorT + ^ = 1 represents the decomposition of the a priori 
information per symbol. 

A C program was written to calculate the EMC for any stationary regular language. EMC was 
calculated for the languages listed in the following table. The table contains regular languages, 
their EMC, and the minimum number of neurons required to evolve a language recognizer 
ascending by EMC. 
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ID Regular Language EMC Minimum 
Net Size 
Found 

Notes 

M 0* 0 1 Accepts words with zero or 
more 0s 

N (01)* 0 2 Accepts words with zero or 
more 01s 

C (0+1)* 0 1 Accepts any word 

D (0+01)* 0.251629 2 no 11s 

E (0+01+011)* 0.333333 2 no Ills 

F (0+01+011+0111)* 0.370951 4 no 1111s 

B (00+010+100)* 0.47 4 

a (00+1)* 0.9183 2 no lO^'l 

J (000+1)* 1.46 2 nol03n-'lnorl03n"2l 

H (00+11)* 1.5 2 

K (0000+1)* 1.750 3 nolO^'lnorlO^lnorlO411-3! 

L (000+111)* 2.20 7 

Details of calculating EMC for languages A and D appear in [36], 
and an example of calculating language H appears in [38]. As an 
example, the EMC for language B will be calculated. This 
language can also be represented by the finite automata in Figure 
29. The brunt of the task is to calculate the information in 
correlations of length m, which means calculating the probabilities 
of the sequences. For length zero, the calculation is straightforward: 
k0=l-Hj 

p(0) = 6/8 

Figure 29: Finite Automata    P(V ~ 2/8 

for Regular Language B: H} = -(6/8 log2 6/8 + 2/8 log2 2/8) = 0.8112 

(00+010+100)* *0= 1-0.8113 = 0.1887 
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For length m = /, kj = 2Hj - H2; it becomes challenging since H2 must be calculated. One must 
consider every possible route of length m+I = 2 throughout the automata in generating 2m+J = 4 
possible sequences. Further, those edges which lead to states that have less than the maximum 
number of edges of all states x must be considered x times. Since the maximum number of edges 
emanating from any one state is x = 3 (state 0), each second edge must be considered 3 times. 
The calculation is best done by considering each edge at a time. Edges are numbered by their 
start state and destination state separated by a comma. From state 0, there are three edges, all 
other states provide only one edge. 

States, Edges, and Patterns of Depth 2 generated by the given edge for Regular Language B. 

State Edae Possibilities 

0 0,1 00, 00, 00 

0 0,2 01,01,01 

0 0,4 10, 10, 10 

1 1,0 00,01,00 

2 2,3 10, 10,10 

-> 3,0 00, 00, 01 

4 4,5 00, 00, 00 

5 5,0 00, 00, 01 

This gives total probabilities of observing the sub-sequences as listed below. 

■ p(00)=     12/24 = 0.5000 

p(01)=       4/24 = 0.2500 

p(10)=       4/24 = 0.2500 

p(ll)=       0/24 = 0.0 

The entropy calculation gives H2= 1.5, and k, = 0.1226.   This process of calculating information 
in correlations of length m continues until a desired level of accuracy for the value of EMC is 
achieved (or until one's computational resources are exhausted). EMC for this language was 
calculated on an Intel Paragon. Calculations were only possible up to m= 17, which took 23 
hours, and resulted in the EMC of 0.47 for this automata, with an accuracy of +/-0.018.   The 
results for each value appear in the table below of parameters required for calculating EMC of 
Regular Language B: (00+010+100)*. 
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m Hm AHm A2Hm Hm/m 

-l -1.00000000 

0 0.00000000 1.00000000 -0.18872188 

l 0.81127812 0.81127812 -0.12255625 0.81127812 

2 1.5000000 0.68872188 -0.03628189 0.75000000 

■3 2.15243998 0.65243998 -0.00029480 0.71747999 

4 2.80458517 0.65214519 -0.01226616 0.70114629 

5 3.44446420 0.63987903 -0.00151344 0.68889284 

6 4.08282978 0.63836559 -0.00079367 0.68047163 

7 4.72040170 0.63757192 -0.00464728 0.67434310 

8 5.35332634 0.63292464 -0.00127684 0.66916579 

9 5.98497414 0.63164780 -0.00204545 0.66499713 

10 6.61457649 0.62 9 602 3 5 -0.00216089 0.66145765 

11 7.24201795 0.62744146 -0.00136488 0.65836527 

12 7.86809453 0.62607658 -0.00199575 ■ 0.65567454 

13 8.49217537 0.62408083 -0.00137919 0.65324426 

14 9.11487701 0.62270164 -0.00143330 0.65106264 

15 9.73614536 0.62126835 -0.00156295 0.64907636 

16 10.35585075 0.61970539 -0.00115713 0.64724067 

17 10.97439901 0.61854827 -0.00132486 0.64555288 

18 " 11.59162242 0.61722340 0.64397902 

EMC can be used to characterize other problems besides regular languages, including data of 
greater than one dimension. The interested reader is referred to Grassberger [38] for further 
details. 

Note that EMC can only be calculated on stationary regular languages [38]. That is, the valid 
strings in a language must be translation independent, and cannot be described as having a special 
sequence occur only once in a string. Hence, the finite automaton used to generate test data 
allowed for all edges to be reached at some point in the sequence, repetitively; none of the finite 
automata can have edges which when traversed made them never again traversable. Examples of 
non-stationary finite automata appear in Figure 30. 
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4.3 Complexity Measure vs. Required Network Size Comparison Results 

Neural Networks of minimal size were evolved to recognize each of the languages previously 
listed. Difficulty was encountered utilizing the resize functionality of GANNET, so network 
sizes were fixed for each trial. After a solution to a problem was found at a given size, a trial was 
made for the next descending size for 10,000 generations to validate that the minimum size had 
been found. Each of the networks utilized neurons with full functionality and three input states. 
The third input state was used to accept dead states, which were fed into the network after the 
word so that the entire word could be "analyzed" by the network. 

While not yet definitive, there does appear to be a logarithmic relationship between the 
complexity of a regular expression which is recognized and the number of nurons required by a 
recurrent amorphous network as evolved by GANNET2. A graph of EMC vs. the smallest 
network size evolved appears in Figure 31 for values of complexity greater than 1.4. This is a 
semilog plot with the log of the number of neurons being plotted against the regular language 
complexity. It can be seen that there is a linear relationship between these variables. The dashed 
line extrapolates the data to estimate that a regular language with a complexity of 2.4 would 
require approximately 10 neurons of this type to recognize the language. Values of complexity 
less than 1.4 are not included in this graph since they result in NNs of inconsistent and seemingly 
unrealistic sizes for their complexity.   Additional experiments will be undertaken to evolve NNs 
for more complex languages to further support the conclusion of a logarithmic relationship 
between NN size and langauge complexity. 

4.4 Further Work 

As GANNET has been upgraded and utilized to recognize regular languages, several ideas have 
manifested themselves which may warrant further investigation. 

Figure 30 Two Examples of Non-Stationary 
Finite Automata: 1*0 and 10*.   Minus(-) 
indicates start state; plus(+) indicates stop. 
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Figure 31 Effective Measure Complexity 
vs. Minimum Number of Neurons required 
to recognize test regular languages. 
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4.4.1 Crossover 

GANNET should have a parameter that allows for crossover to occur at the byte/word level, as 
mutation does. It is hypothesized that for a neural network to be evolved using crossover, it 
would be best to separate the genotype into three separate chromosomes: neural input 
connections, neural behavior, and bid to become output, rather than one as it is now implemented. 
Furthermore, independent rates of crossover should be able to be selected for these three 
chromosomes, in the same way that the mutation operator allows for separate rates. 

4.4.2 Resize 

The r e s i z e () function works well, and has an easy to understand way to specify how often it 
should act. The only upgrade which might be necessary would be one that treated the 
connections at the point of action with more care. Presently, neurons receiving input from the 
neuron that is deleted now receive input from the neuron below it. It might make more sense to 
have neurons receiving input from the deleted neuron take input from one of the four (or two if 
GANNET is using two input neurons) inputs that were provided to the deleted neuron. When a 
neuron is inserted, that neuron's output doesn't connect to anything without another mutation 
taking place, so there is no sense in trying to make that process any cleaner. 

4.4.3 Automatic Dataset Reduction 

It was found that GÄNNET's ability to find solutions to problems was enhanced when starting a 
new attempt to solve a problem for which it previously had been unable to find one. There were 
many cases where GANNET wouldn't be able to find a solution to a problem in the first 5000 
generations, but when it was restarted using the same set of evolved neurons on a new collection 
of randomly selected training datasets, it would find a solution within a few hundred generations. 
It is presumed that this enhancement is due to the fact that the set of active datasets used to train 
the network is reset. This observation can be thought of as GANNET being caught in a local 

■■minima of the solution space, and it being reset and climbing to the global minima by taking 
another path. Hence, a possible upgrade would be to subtract all or some datasets from the 
current collection of datasets if GANNET hasn't found a network with a higher fitness after some 
configurable number of generations. 

5 Summary 

An approach called two-phase genetic algorithm (2pGA) has been developed which has been used 
to evolve modular, recurrent NNs. It combines two GAs, the first is used to evolve a near optimal 
architecture of NNs for specific problems, then a second GA is used to fine-tune the weights and 
biases of the NN structure produced by the first GA. The first GA uses production-rule based 
techniques to encode architectures of arbitrary NNs. The second GA uses a genetic hill-climber 
to evolve the weights and biases o"f the evolved NN structure. The fitness of the second GA is 
used to determine the fitness of the individuals in the first GA. It is felt that not only is the 2pGA 
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biologically plausible, but has been demonstrated in this research to enable one to achieve 
excellent results in evolving NNs for controlling linear and nonlinear plants up to 3rd order, 
stabilizing unstable plants up to 3rd order, as well as finding the optimal control for a nonlinear 
regulator problem. In order to demonstrate the capability of 2pGA to evolve a wide variety of 
solutions in addition to linear and nonlinear control problems, a series of experiments were 
performed including the traditional XOR problem and an amplitude modulation (AM) detector. 

While not yet definitive, experiments performed under this grant show that there appears to be a 
logarithmic relationship between the complexity of a language represented by a regular expression 
and the size of a recurrent neural network which recognize it. The size of the recurrent NN is 
measured by the minimum number of neurons required by a recurrent amorphous network as 
evolved by GANNET2. Additional experiments are being performed to extend the region of 
evolved data to improve our confidence in this conclusion. 
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