
AL/HR-TP-1995-0040 

DESKTOP DECISION TRAINING (DDT) 
SYSTEM DESIGN DOCUMENT 

A 
R 
M 
S 
T 
R 
O 
N 
G 

L 
A 
B 
O 
R 
A 
T 
O 
R 
Y 

Brian Van de Wetering 

Systems Engineering Associates 
2204 Garnet Avenue Suite 303 

San Diego CA   92109-3771 

Sharon K. Garcia 

HUMAN RESOURCES DIRECTORATE 
TECHNICAL TRAINING RESEARCH DIVISION 

7909 Lindbergh Drive 
Brooks AFB TX  78235-5352 

19961106 152 
January 1996 

interim Technical Paper for Period January 1994 - December 1994 

Approved for public release; distribution is unlimited. 

AIR FORCE MATERIEL COMMAND 
BROOKS AIR FORCE BASE, TEXAS 

■iß QüM.rr? IMSPEGSSB 3, 



DISCLAIMER NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



NOTICES 

When Government drawings, specifications, or other data are used for any purpose other 
than in connection with a definitely Government-related procurement, the United States 
Government incurs no responsibility or any obligation whatsoever. The fact that the 
Government may have formulated or in any way supplied the said drawings, 
specifications, or other data, is not to be regarded by implication, or otherwise in any 
manner construed, as licensing the holder, "or any other person or corporation; or as 
conveying any rights or permission to manufacture, use, or sell any patented invention 
that may in any way be related thereto. 

The Office of Public Affairs has reviewed this paper, and it is releasable to the 
National Technical Information Service, where it will be available to the general public, 
including foreign nationals. 

This paper has been reviewed and is approved for publication. 

SJiARON K. GARCIA 
Project Scientist 
Technical Training Research Division 

JAMES B. BUSHMAN, Lt Col, USAF 
Chief, Technical Training Research Division 

3^4? 
i BRUCE GOULD 

Technical Director 
Technical Training Research Division 



REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
January 1996 

3. REPORT TYPE AND DATES COVERED 

Interim - January 1994-December 1994 
4. TITLE AND SUBTITLE 

Desktop Decision Training (DDT) System Design Document 

6. AUTHOR(S) 

Brian Van de Wetering 
Sharon K. Garcia 

5. FUNDING NUMBERS 

C-F33615-91-C-0007 
PE -62205F 
PR-1121 
TA-10 
WU-76 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Systems Engineering Associates 
2204 Garnet Avenue, Suite 303 
San Diego, CA 92109-3771 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Armstrong Laboratory 
Human Resources Directorate 
Technical Training Research Division 
7909 Lindbergh Drive 
Brooks Air Force Base, Texas 78235-5352 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AL/HR-TP-1995-0040 

11. SUPPLEMENTARY NOTES 

Armstrong Laboratory Technical Monitor: Dr. Sharon K. Garcia; (210) 536-2932 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This paper describes the software design of the Desktop Decision Training (DDT) system. It documents how the system's 
software implements an instructional strategy to train complex decision-making skills to personnel in the Logistics Command 
and Control domain. This paper is intended to be a pragmatic guide for the DDT's software programmers and technical 
management personnel. 

14. SUBJECT TERMS 
Command and Control 
Decision Making 
Instructional Design 

Instructional Strategy 
Logistics 
Simulation 

15. NUMBER OF PAGES 
58 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 
Standard Form 298 (Rev 2-89) Prescribed by ANSI Std Z-39-18 
298-102   COMPUTER GENERATED NSN 7540-01-280-5500 



Table of Contents 

Page 

Preface vi 

Summary vii 

1. Purpose and Scope r 1 

2. Architecture Overview 2 

3. Exercise Architecture 6 

3.1. Logistics Simulation 7 

3.1.1. Objects 7 

3.1.2. Associations 11 

3.2. The Case Engine 12 

3.2.1. The Causal Story 13 

3.2.2. Logistics Simulation Change 15 

3.2.3. Case Engine Objects „16 

3.3. User Interface 17 

3.3.1. Message Desk 18 

3.3.2. Data Query Screen 20 

3.3.3. Agency Query Screen 21 

3.3.4. "To Do" List 22 

3.3.5. Goal/Option Workbench 24 

3.4. Scenario Database 25 

3.5. Case Pool 29 

in 



Table of Contents (Continued) 

Page 

4.   Lesson Architecture 32 

References 35 

Apendix A.   Detailed Object Model Descriptions 37 

A.l   Objects 37 

A.2   Events .50 

List of Figures 

Figure Page 

1 The DDT's Instruction Includes Both Lessons and Exercises 3 

2 The DDT Includes Four Databases and Six Software Processes 4 

3 DDT Exercises Include User Interface, Simulation, and Case 

Engine Partitions 6 

4 DDT's Logistic Simulation Models the Manufacture, Resupply,. 

and Consumption of Commodities 7 

5 DDT's Case Engine Applies Simulation Changes Based Upon a Causal 

Story 13 

6 A Causal Story Contains Messages and Information deposits 14 

7 Message Desk Screen Snapshot 19 

IV 



List of Figures (Continued^ 

Figure Page 

8 Data Query Screen Snapshot 20 

9 Agency Query Screen Snapshot 22 

10 "To Do" List Screen Snapshot 23 

11 Goal/Option Screen Snapshot 24 

12 Lesson Organization 32 



PREFACE 

This paper describes the software design of the Desktop Decision Trainer (DDT) 

developed in support of "Desktop Training for Logistics Command and Control (LC )," 

research and development effort. This project is being accomplished under Contract No. 

F33615-91-C-0007, with Systems Engineering Associates (SEA), San Diego, CA. 

Management of this project is being provided by the Human Resources Directorate, 

Technical Training Research Division, Instructional Design Branch (AL/HRTC). 

VI 



Summary 

Logistics Command and Control (LC2) units must ensure that core and augmentee 

personnel are fully trained in the critical combat skills of decision making. At present, existing 

training capabilities are inadequate. They consist primarily of expensive and manpower- 

intensive exercises, which afford only sporadic training opportunities. These opportunities are 

considered insufficient to achieve and maintain the skill levels required for successful combat 

operations. The need for more accessible, more affordable, and less manpower-intensive training 

continues to exist. 

In 1991, the USAF Logistics Plans and Concepts Directorate (USAF/LGXX) tasked the 

Human Resources Directorate (HR) to develop an improved training technology for Logistics 

Command and Control Centers throughout the United States Air Force. The objective was to 

provide a means of training logistics personnel in the combat-critical task of decision making. In 

response, HR let a contract with Systems Engineering Associates (SEA) to produce a desktop 

decision trainer which would provide individual instruction and. enable students to practice 

solving realistic logistics problems within a simulation environment. The project began in 

February 1992, and will conclude in February 1997. 

This paper describes the software design of the decision trainer, and in particular, how the 

system implements the instructional strategies developed to teach decision-making skills. 

Vll 



1.        Purpose and Scope 

This document describes the software design of the Desktop Decision Trainer 

(DDT). The document is a companion to the DDT System Requirements Document 

(Brecke & Garcia, 1995). The System Requirements Document identified system 

features required to implement the DDT's instructional methodology. This document 

describes how the system's software implements those features. It is intended as a 

pragmatic guide for the DDT's software programmers and technical management 

personnel. 

Section 3 presents an overview of the DDT's software architecture. It describes 

each of the system's primary processes and databases and their interactions. Sections 4 

and 5 provide more detailed descriptions of the software partitions implemented in Beta 

Version 0.1 of the DDT.1 These partitions include the system's lessons and exercises. 

Section 4 describes the system's exercise software. This software was produced using 

object-oriented design techniques. Section 4 identifies the major objects used to 

implement DDT exercises and describes each object's purpose, attributes, and operations. 

Section 5 describes the system's lessons. This software was produced using ToolBook 

(Ver. 1.53), a commercial authoring package produced by Asymentrix, Inc. Section 5 

describes the organization of DDT lessons in relation to ToolBook's book- and page- 

oriented authoring paradigm. 

Sections 1, 2, and 3 are intended to be reviewed by all readers of this document. 

Readers of Section 4 should be familiar with object-oriented software design and 

implementation. Readers of Section 5 should be familiar with the operation of ToolBook. 

Each section includes references that provide this background information. 

JBeta Version 0.1 of the DDT was released on 31 December 1993. It is a preliminary prototype prepared 

during Phase 2 of Contract F33615-91-C-0007 and includes two lessons and three exercises. 



2.     Architecture Overview 

A software system like that of the DDT is a collection of software components 

that work together to achieve common goals. The DDT's System Requirements 

Document (Brecke & Garcia, 1995) describes the DDT's goals. This section provides an 

overview of the DDT's organization, or architecture, by identifying each DDT software 

component and its relationship with other components. 

The DDT's architecture has been fashioned to: 

□ Satisfy requirements stated in the DDT's System Requirements 

Document. 

□ Facilitate implementation and maintenance of the system's software. 

□ Separate features supporting authoring of instructional strategy from 

features supporting authoring of lesson content. 

□ Maximize the use of commercial off-the-shelf (COTS) software. 

□ Minimize the amount of custom software that must be developed. 

□ Minimize potential disruption to the system caused by the inevitable 

evolution of computer operating systems and hardware. 

□ Ensure adequate performance on a personal computer (PC) platform that 

will be common on the desktops of Air Force logistics personnel during 

the summer of 1994. 

O Allow emerging multimedia effects to be incorporated into the system 

with minimum disruption. 

The DDT presents lessons and exercises to a student. Lessons present knowledge, 

while exercises provide a simulated logistics problem-solving environment to apply this 

knowledge. Figure 1 illustrates this organization of instruction. 



Figure 1. The DDT's instruction. 

'Lessons 
It 

rüessons O' Practice 
Exercises 

• Lessons ,  i B 
Practice 
Exercises 

1,  .  _.     ..._.: 

Practice 
Exercises 

Level n 

TIME CONSTRAINT 

COMPLEXITY 

Flhiais® I PiPOltoll^ip® J* 

UNCERTAINTY 

Level 1 
"Epitome Level" 

Figure 2 illustrates the software architecture used to implement lessons and 

exercises. "Ovals" represent processes and programs in this diagram, and "boxes" 

represent databases. 

The system's instructional atom database includes all of its instructional content. 

This database is made up of instructional atoms, which are individual lessons and 

exercises (Figure 2) Instructional atoms are created by authoring applications and are 

displayed by presentation applications. This architecture introduces minimal constraints 

upon the content of lessons and exercises (instructional atoms); it allows virtually any 

kind of instruction to be used, as long as the instruction is accompanied by an authoring 

program and a presentation program. These programs may be COTS products or custom 

software. Beta version 0.1 of the DDT, for example, includes a COTS product, 



ToolBook, to author and produce lessons, and a custom software program to present 

exercises. 

Figure 2. The DDT databases and software processes. 

ÄReport 
Generator 

Outline ID 

Instr.Atom 
 «     .. .■  

Authored!   Database 
Atoms    *    . 

Atoms Presentation 
Applications 

Outline1 

,   0utline      ,f   Database: 

The outline database illustrated in Figure 2 includes instructional strategies for 

courses. Each strategy identifies the instructional atoms that will be presented in a course 

and constrains their presentation. For example, an instructional strategy that includes 

minimum learner control may dictate a strict presentation sequence for a course's atoms, 

while a strategy that provides maximum learner control may remove all constraints upon 

the sequence of atom presentation. The DDT's instructional atom database and its course 

outline database separate the system's instructional content from instructional strategy. 

Course outlines are produced by an outline builder and are executed by the 

system's sequencer. The outline builder resembles an authoring application, but instead 

of enabling the production of instructional atoms, it enables production of course 



outlines. The DDT's sequencer is responsible for invoking presentation applications (and 

thus displaying instructional atoms) in accordance with a course outline. 

Information regarding a learner's performance is recorded by the sequencer in the 

DDT's performance database. The system's report generator organizes performance data 

for display and printing. 

The DDT's final database, the operator database, identifies operators and classifies 

them as learners, instructors, authors, or researchers. It also associates each operator with 

a course and a strategy. The system's administrator process manages this database and 

provides the system's login services. 

Beta version 0.1 of the DDT includes implementations of the system's 

instructional atom database, as well as the authoring and presentation applications needed 

to present the system's initial lessons and exercises. The following sections discuss the 

organization of these components in more detail. Section 4 describes the custom software 

that presents DDT exercises, and Section 5 describes the use of COTS software to present 

initial DDT lessons. 



3.     Exercise Architecture 

Figure 3, depicts the DDT's exercise presentation software. It consists of five 

elements: a logistics simulation, a case engine, a user interface, a scenario database, and a 

case pool. The logistics simulation provides a low-fidelity simulation of a logistics 

environment. The DDT's case engine provides a mechanism for introducing instructor- 

specified problems into the simulation. The user interface provides a "point-and-click" 

environment that allows a student to work on simulated logistics problems. The scenario 

in Figure 3 is a large data file that contains all of the simulation's initial conditions. The 

case pool is a data file containing problem specifications for the case engine. Each of 

these software partitions and data files is described in more detail in the following 

sections. 

Figure 3. DDT exercises. 

User Interface: 
Queries/ 

Implemented 
Option 

11 Messages 

'causal 
story" 

Logistics 

imulation 

Simulation 
Changes 

Case 
Engine 

Scenario 
Data 

'•'   Scenario 

Information 
Deposits 
"causal 

story" 

Case Case 
Pool . 



3.1. Logistics Simulation 

The DDT's logistics simulation provides the student with a set of simulated 

objects that correspond to items in an actual logistics environment. The student interacts 

with these objects through the user interface. In Figure 4, these objects include resources, 

such as fuel or transport planes, agencies, shipments, freight missions, and schedules. 

The DDT's simulation is designed to emulate a logistics operation's sustainment phase, in 

which manufacturers provide resources to logistics agencies, who in turn resupply 

operational agencies in the field, who account for the consumption of resources. The 

simulation software has been designed and implemented using object-oriented 

programming techniques. Its software partitions therefore consist of objects, associations 

between objects, and events that occur as these objects interact. Section 3.1.1 describes 

the major software objects used in the simulation. Section 3.1.2 describes the primary 

associations or relationships between those objects. And Section 3.1.3 describes events 

that occur as objects interact. Appendix A provides more detailed descriptions of these 

objects, associations, and events. 

Figure 4. DDT's logistic simulation. 

Supplier 
Agencies 

Resupply 

RESOURCES" 

Freight Mission Schedules 
Shipment Schedules :;y; 
Freight Missions 
Shipments 

Field 
Agencies 

Consumption 

I RESOURCES 

3.1.1.   Objects 

Objects are software modules that include both data and program logic. They are 

used in the DDT's logistics simulation to represent items that are familiar to logisticians, 

such as operational units, supplies, and transportation vehicles. Objects are a useful way 

to organize a software in a simulation like the DDT's logistics simulation because they 

allow programmers to construct complex software behaviors using relatively small, 



autonomous modules. Objects are also useful because they allow programmers to 

organize software in a way that relates directly to the actual situations the software is 

supposed to model. The primary objects used by beta version 0.1 of the DDT are 

described below. Appendix A contains more detailed descriptions of these objects. 

Agency 

An agency is a place or an organization. It may be an operational unit such as a 

starfighter wing, or it may be a supply depot, a transportation command, or a 

supplier/manufacturer. An agency can be an aggregate of several other agencies. In this 

case, the agencies are considered to be collocated and there is no need to transport 

resources between them. Agencies own or have jurisdiction over resources and other 

agencies. 

Resource 

A resource is any physical entity, e.g., starfighters, fuel canisters, beer, 

compressed biomass cakes, fighter pilots, or mechanics. 

Vehicle 

A vehicle is a resource capable of moving commodities from one agency to 

another. 

Commodity 

A commodity is a resource whose supply the student must manage. 

Consumable 

A consumable is a commodity that is used up, e.g., beer, fuel, and food. 

Consumables have a one-way transportation flow from supplier to consumer. 

Repairable 

A repairable is a commodity that is refurbished after it has been used, e.g., 

starfighter engines, guidance systems, and R2D2 units. Repairables have a two-way 



transportation flow between the supplier and the consumer; refurbished units are sent to 

the consumer and spent units are returned to the supplier. 

Proto-Resource 

A proto-resource is an object that is a pattern for an actual resource. There is a 

proto-resource for each type of resource. Examples of resource types are fuel canisters, 

starfighters, hyper-warp freighters, and mechanics. A proto-resource contains the 

unchanging attributes that are common to all resources of a particular type. A proto- 

resource is associated with the indefinite article "a," e.g., "I need a starfighter engine." 

Resources, on the other hand, are associated with the definite articles "the" and "that," 

e.g., "I am shipping that starfighter engine." The subclass tree for proto-resources is 

homomorphic with the subclass tree for resources. 

Route 

A route consists of two agencies and a list of one or more proto-vehicles and 

describes a transportation corridor between the agencies that supports the listed proto- 

vehicles. 

Freight Mission 

A freight mission consists an origin agency, a destination agency, a vehicle, and 

an ordered list of routes. A freight mission describes a trip from the origin agency to the 

destination agency following the routes on the ordered list. 

Freight Mission Schedule 

A freight mission schedule consists of an origin agency, a destination agency, a 

proto-vehicle, and an ordered list of routes. A freight mission schedule may also be 

connected to zero or more shipment schedules. A freight mission schedule describes a 

recurring freight mission and originates freight missions according to its schedule. 

Shipment 

A shipment consists of an origin agency, a destination agency, a commodity, one 

or more freight missions, and an ordered list of zero or more transfer point agencies. A 



shipment describes the movement of a commodity from the origin agency to the 

destination agency. A shipment must adhere to certain constraints of space and time. A 

commodity cannot be in two places at once, so all freight mission departure/arrival 

intervals at transfer points must be mutually exclusive. Since a commodity cannot 

magically jump from one place to another, adjacent freight missions in the ordered list 

must intersect at a transfer point. A shipment transfers ownership of the commodity from 

the origin agency to the destination agency. 

Shipment Schedule 

A shipment schedule is a pattern for shipments. A shipment schedule describes 

the recurring movement of a commodity from one agency to another; and it consists of an 

origin agency, a destination agency, a proto-commodity, one or more freight mission 

schedules, and an ordered.list of transfer point agencies. The same time and space 

restrictions that apply to the shipment also apply to the shipment schedule. 

Consumption 

A consumption object consists of an agency and a proto-commodity and describes 

the consumption ofthat type of commodity by the agency. A consumption association 

has attributes of consumption rate and demand threshold. A consumption association 

object is responsible for destroying commodity objects and drains commodities put of the 

simulation. 

Supply 

A supply object consists of two agencies and a proto-commodity. One of the 

agencies is the supplier and the other is the recipient. The supply association describes 

the recurring flow of commodity objects from the supplier to the recipient. This transfer 

of commodities occurs by "magic," without the need for vehicles, freight missions, or 

shipments. The supply association is responsible for creating the commodity objects, and 

it pumps commodities into the simulation. 

10 



3.1.2.   Associations 

Associations are relationships between objects. For example, when a person is 

employed by a firm, the person and the firm enjoy an employment association. 

Associations are useful because they provide a convenient way to represent such 

relationships. Associations can be implemented as attributes of an object or as separate 

objects. For example, if a program has objects that represent people, these objects may 

have an attribute that identifies the firm that currently employs each person. Or the 

program may have separate objects, called employment objects, that identify each firm 

and person currently engaged in an employment relationship. 

In the DDT, associations are implemented both as attributes and as separate 

objects, to provide greater flexibility and a more accurate simulation. In general, cases 

where the association itself has attributes are modeled as objects, for example a 

consumption association between an agency and a commodity. Associations modeled as 

objects have already been discussed in section 3.1.1. The remaining associations 

modeled in the DDT as attributes are summarized below. 

Location 

Location is an association between an agency and a resource, or between a freight 

mission and a resource. Location associations are changed in response to arrival and 

departure events. Aggregation of agencies implies collocation. For example, if Starbase 

10 consists of the 11th SSFS, the 21st SSFS, the 23rd IC2S, and the 24th SSS, then these 

agencies would be treated as if they were in the same place; resources located at Starbase 

10 could be accessed by the 24th SSS without transportation. 

Ownership 

Ownership is an association between an agency and a resource, an agency and 

another agency, an agency and a freight mission, an agency and a freight mission 

schedule, an agency and a shipment, or an agency and a shipment schedule. In an 

ownership association between agencies, one is the owner and the other is the chattel. 

Ownership establishes jurisdiction; only an owner can grant permission for a resource. 

11 



Ownership is transitive. For example, if agency A owns agency B and agency B owns 

vehicle C , then agency A owns vehicle C. 

Instantiation 

Instantiation is an association between an object and another object that serves as 

its pattern. A resource is always an instance of a proto-resource and inherits attributes 

from it. Likewise, a freight mission can be an instance of a freight mission schedule, and 

a shipment can be an instance of a shipment schedule. 

3.2. The Case Engine 

As illustrated in figure 5, a case consists of two main elements: the causal story, 

and logistics simulation changes. The story provides explanatory information about why 

certain logistics events (e.g., shortages, consumption increases, etc.) have occurred. In 

many cases, the details of the story influence how the student is expected to react to the 

problem. The elements that make up the story are structured to allow the student to 

"discover" the story and to permit evaluation of the student's discovery process. 

Logistics simulation changes are a description of the changes that need to be made 

to the logistics simulation to "cause" the logistics event associated with case. Sections 

3.2.1 and 3.2.2, respectively, discuss the causal story and the logistics simulation changes 

in more detail. Section 3.2.3 contains detailed descriptions of objects that make up a 

case. 

12 



Figure 5. DDT's case engine. 

ICase^ 
■; >-\+vt&is*::*i~'»A L j^A.t.* ttrt&'fc..'.•+/& 

Causal Story 
Available through user interfä [•-A8SB 

jfef-j "Enemy attack destroys half of the   I j 
starfighter fuel caniste/s at R 

! starbaselO" hi 

&m 
\sm 

i?^-^>**«£« • •• •• -■ *V* ■ 

L .d   Simulation Changes 
to logistics simulation 

-,«'iy 

"Remove half of the inventory of    i, j 
starfighter fuel canisters at l|l 

starbase 10" fill 

^ 

r 

L
 ^■^»-'•■•j 

3.2.1.   The Causal Story 

As illustrated in figure 6, the causal story consists primarily of messages and 

information deposits. Messages, like mail, are unsolicited information. They arrive at 

the message desk during the course of a decision making episode (DME); the student can 

open them and view their contents and can file or otherwise dispose of them. Information 

deposits, such as those resulting from a student's phone call, are solicited communication. 

The student must explicitly query an agency to get the information contained in an 

information deposit. 

Each information deposit is associated with a responding agency and an eliciting 

topic and contains information that is presented when the student asks the agency about 

that topic. A topic is a word or short phrase that can serve as the object of a student's 

query of an agency. This word or phrase will have appeared in some information 

previously viewed by the student. 

13 



Figure 6. A causal story. 

Messages        Messages" 

___i 

Sent by agencies to the user's message desk 

Causal Story 
Available to user through Agency queries 

Both messages and information deposits communicate their information using an 

information packet. An information packet is the smallest element of information and 

contains the actual text or pictures that present the information to the student. Currently, 

three types of information packets are envisioned: an object linking & embedding (OLE) 

packet, a query packet, and a text packet. An OLE packet will display OLE objects such 

14 



as Video for Windows, digital audio, or MIDI files. A text packet will display the 

contents of a simple text file. A query packet will display the results of a query of the 

state of some part of the logistics simulation. Only the text packet will be implemented 

in this phase. 

3.2.2.   Logistics Simulation Changes 

Logistics simulation changes are a description of the changes that need to be made 

to the logistics simulation to "cause" the logistics event associated with a case. There are 

five different types of logistics simulations changes: adding resources, removing 

resources, tagging resources, and adjusting consumption and supply rates. 

Resources can be added to the simulation. Adding resources might be necessary to 

give the student specific options for correcting a shortage. Resources can be removed 

from the simulation. If commodities are removed, it will cause a possible one-time 

shortage. If transportation resources are removed, it will cause a possible supply rate 

problem. 

Resources can be tagged with information that relates both to the story and to the 

resources' behavior in the simulation. For example, food kits might be marked as 

contaminated and not available for consumption. This would cause a shortage of food 

kits. The food kits, however, would appear normal if the student formulated a query 

about food kits. Only when the student asked about an appropriate topic would the 

information about the contaminated food kits be revealed. 

Consumption rates can be changed. An increase in consumption at a particular 

agency will cause a shortfall if the student does not adjust the appropriate shipment 

schedules. Supply rates can be changed. An decrease in supply from a particular agency 

will cause a shortfall if the student does not adjust other supply rates or adjust shipment 

schedules. 

15 



3.2.3.   Case Engine Objects 

Like the rest of the DDT's exercises, its case engine was designed and 

implemented using object-oriented programming techniques. Following are descriptions 

of the primary objects that make up the DDT's case engine. More detailed descriptions of 

the objects associated with a case appear in Appendix A. 

Case Object 

The following diagram shows the objects that make up a case. The case object is 

responsible for managing active topics and for providing feedback about problem 

identification and uncertainty reduction. 

Causal Story Case 

Information Deposit Message Topic 

Information Packet 

Simulation Change 
Description 

Message 

A message has a subject, a delivery time that indicates when during the DME it 

should be delivered, and a sending agency. Some messages in a case are simply 

delivered when their delivery time arrives, while others are associated with information 

deposits and are delivered only after the student has discovered the deposit. 

Information Deposit 

An information deposit consists of several elements: an eliciting topic, an 

immediate response, a follow-up message, and a rebuff. The eliciting topic is the topic 

for which the information deposit is a response. The immediate response is sent to the 

16 



Student as soon as the query is made. The follow-up message is sent some time after the 

initial query. The rebuff is presented if the user asks about the same topic again. 

Topic 

A topic is a word or a short phrase that can serve as the object of a user's query of 

an agency. The topic contains a description of the conditions under which it becomes 

available. For example, the topic of "destroyed fuel canisters" would become available 

after the student had viewed a message about an enemy attack at Starbase 10 or the 

student had read a report listing the shortage. 

Information Packet 

Information packets are the objects that contain the actual content of a message or 

information deposit. That information might be delivered as text, audio, or video. An 

information packet is tagged with information about the types of information it contains 

(e.g., situation, option set, option feasibility, option effects, distracter), allowing the case 

to provide feedback about the user's uncertainty reduction. 

Simulation Change Objects 

These objects describe and effect the changes to the logistics simulation necessary 

to "cause" the logistics event associated with a case. They contain the information 

necessary to describe the change. 

3.3. User Interface 

The purpose of the user interface is allow the user to interact with the objects that 

make up the logistics simulation and a case. The user interface has five primary 

components: 

□ The message desk, where incoming messages arrive and the user can read 

them. 

□ The data query screen, where the user can get information about the 

current states of commodities, freight missions, shipments, and schedules. 

17 



□ The agency query screen, where the user can ask specific question of 

agencies. 

□ The "to do" list, where the user identifies and prioritizes the cases 

presented. 

□ The goal/option workbench, where the user sets goals and formulates 

solutions. 

The user interface serves two functions: (1) It allows the user to navigate among 

these activities and, (2) Allows the user to perform these activities by interacting with 

simulation and case objects. The user interface runs under Microsoft Windows version 

3.1 and is consistent with many user interface conventions in that environment. C code 

and standard Windows Application Program Interface(API) calls create the link between 

the simulation and case objects and what the user sees and does on the screen. A 

prototype created with ToolBook serves as the specification for the user interface. 

Sections 3.3.1 through 3.3.5 describe in more detail each of the user interface 

components. 

3.3.1.   Message Desk 

The message desk provides an environment where the user interacts with message 

objects and the information packets they contain. These objects are described in section 

3.2.3 and appendix A. The message desk is where the user reads messages and where 

messages first appear when they arrive. As illustrated in Figure 7, Windows API code 

represents each message object as either an open or a closed envelope on the message 

desk. The user can open and read a message by double clicking the envelope. When this 

happens, the API code that manages the envelopes asks the appropriate message to 

display its information packet. 

18 



Figure 7. Message desk screen. 

»H^^^^H 

The user may also dispose of messages by dragging the envelope to one of the 

icons in the lower right corner of the screen. This causes the message object to be 

transferred to a different screen maintained by the user interface or to disappear entirely. 

Messages that are forwarded or put in the circular file disappear, while messages moved 

to the "to do" list or the message file appear subsequently on those screens. 

The message desk is implemented as a maximized child window of the main 

screen. The message envelopes are child windows of the message desk with special 

callback functions that facilitate the drag-and-drop interaction. The image on the 

background of the message desk is a bitmap that is loaded at run-time. 

19 



3.3.2.   Data Query Screen 

The data query screens allow the user to find out information about objects in the 

logistics simulation. Four data query screens display information about commodities, 

vehicles, freight mission schedules, and shipment schedules. These simulation objects 

are described in section 3.1. Figure 8 shows the screen for freight mission schedules, but 

the other three look very much the same. The large list box at the top of the screen 

displays the results of the query, and the three small list boxes at the bottom allow the 

user to restrict the parameters of the query. In the freight mission schedule data query 

screen, the user can look at lists of freight missions based on their source agency, 

destination agency, or type of vehicle. 

Figure 8. Data query screen snapshot 

ii^^i^H W^WSMSSSMSS^S^^^EL an 

Trans p o rtati o n M i s s i o n 
[ FlyShortyl - Leg 1 travels from Warner Robins to Luna every 3 hours by Shorty with an average free capacity of 2862.2 st. and 701.0 mt. 

Leg 2 travels from Luna to Warner Robins every 3 hours by Shorty with an average free capacity of 3000.0 St. and 800.0 mt. 
The next mission is scheduled to leave Warner Robins at Day 1. Monday 1+ Ü0 

| FlyShorty2 Leg 1 travels from Herpes to SlarBaselO every hour by Shorty with an average free capacity of 24+4.1 st and 523 5 mt. 
Leg 2 travels from StarBaselO to Herpes every hour by Shorty with an average free capacity of 3000.0 st. and 800.0 mt. 
The nest mission is scheduled to leave Herpes at Day 1, Monday 13:00. 

I FlyShorty3 Leg 1 travels from Ogden SFB to Luna every hour by Shorty with an average free capacity of 2490.0 st. and 556.5 mt. 
Leg 2 travels from Luna to Ogden SFB every hour by Shorty with an average free capacity of 3000.0 St. and 800.0 mt. 

' The next mission is scheduled to leave Ogden SFB at Day I.Monday 13:00. 

JVarpI '    Leg Itravelsfrom Luna to Herpes every 12 hours by Milofant with an average free capacity of 1+323.0 st. and 2682.0 mt. 
" Leg 2 travels from Herpes to Luna every 12 hours by Milofant with an average free capacity of 21000.0 st. and 6000.0 mt. 

The nest mission is scheduled to leave Luna at Day 1, Monday 20:00. 

Source 

lNe(fi*pp3(|aJ<r 

E3 BEI 

mmMi 

Destination All Clear 

Enroutejk 
■D.C\-:...-*:«ll*&«:,k3ffl%j 

%i3««^rsärMB-c'^ 

fiiStSBB: 

Vehicle 
I Blaster 
| Booster 

I Fatso 
iMilo 
I FastMilo 
| Hyper Milo 

I MiloreK 
I §8ve»*! 

'AB_H; Clear! 

20 



In the example shown in figure 8, the query shows all freight mission schedules 

using the Shorty and Milofant transport ships. The user interface code fills the bottom 

three list boxes by looking at agency and proto-vehicle objects in the logistics simulation. 

Each time the user clicks on one of those three list boxes, the user interface looks for 

freight mission schedule objects in the logistics simulation that meet the specified 

criterion. The user interface then displays that information in the large list box. As with 

the message desk, the data query screens are maximized child windows of the main 

screen. The three boxes along the bottom of the screen are multiple-select list boxes, 

while the large viewing area is a single selection list box. 

3.3.3.   Agency Query Screen 

The agency query screens are where the user interacts with information deposit 

and topic objects. These objects are described in Section 3.2.3. There is an agency query 

screen for each agency in the logistics simulation. They all, however, appear the same as 

the screen depicted in figure 9. The student accesses information deposits for the agency 

by choosing a topic from the topic list and clicking on the ask button. 

If there is an information deposit at the agency for that topic, the immediate 

response will be displayed; otherwise, a default response will be displayed. User 

interface code looks at the case objects currently in the case engine to get a list of all the 

currently active topics and to determine if an appropriate information deposit exists. 

The agency query screen is a maximized child window of the main screen. The 

box at the bottom of the screen that contains the response is a child window of the agency 

query screen that is created and managed by the information packet object. 

21 



Figure 9. Agency query screen snapshot. 

3.3.4.   "To Do" List 

The "to do" list screen is where the user identifies and gives names to the cases 

that are presented during a DME. The case object is described in Section 3.2.3. The user 

should end up with a list of problems on the "to do" list that corresponds exactly to the 

cases presented in the DME and that are prioritized according to their urgency by 

examining the contents of each message and assigning it to the appropriate problem. 

To accomplish this, the user may 

□ Create a problem by dragging an envelope onto the "to do" list and 

entering a new problem name into the resulting dialogue box. 

22 



D Double-click on a problem line on the "to do" list to bring up the dialogue 

box to change the name of the problem, or remove the problem by clicking 

on the remove button. 

□ Add pertinent messages to a problem by dragging the message into the 

lower part of the problem dialogue box. 

□ Rearrange (prioritize) the problems on the "to do" list by clicking and 

dragging a problem line to a new position. 

The user may also double-click on messages and read them just as on the message 

desk. The problem dialogue box is implemented as a non-modal dialogue box. Each 

problem line on the "to do" list is implemented as a child window of the "to do" list 

screen with a callback function that facilitates the special drag-and-drop interaction of 

prioritizing problems. 

Figure 10. "To Do" list screen snapshot. 

I^pp-^PPPI^^ 

23 



3.3.5.   Goal/Option Workbench 

The goal/option screen is where the user formulates solutions to the problem 

presented by the case object. To solve a problem, the user creates new logistics 

simulation objects. As illustrated by the screen depicted in figure 11, the user may create 

freight missions, freight mission schedules, shipments, and shipment schedules. These 

objects are described in section 3.1.1. A solution option will usually consist of a 

combination of several of these types of objects. For example, the user might need to 

create a new freight mission in order to have transportation for a new shipment. 

Figure 11. Goal/option screen snapshot. 

The user interface of the goal/option screen allows the user to specify all of the 

necessary attributes for these new objects. The attributes of new objects are stored 

temporarily until the user chooses to implement an option, then the objects are created 

24 



and introduced into the logistics simulation. The options box and the forms that allow the 

user to enter attributes for new objects are implemented as modal dialogue boxes. 

3.4. Scenario Database 

The scenario database is a large data file that contains specifications for all of the 

objects that make up the initial environment for the exercises (i.e., the scenario). This file 

contains specifications for instances of each type of object described in section 3.1.1. 

Proto-resources must be defined so that it is known what kinds of things exist in the 

world. The following shows definitions of a consumable and a vehicle. 

$ CREATEFRAME FuelCakes INSTANCE 

FuelCakes ASSERTRELATION AKO ProtoConsumable 

FuelCakes ADDSLOTVALUE Name IS Fuel=Canister,=Compressed=Biomass 

FuelCakes ADDSLOTVALUE Weight IS 2.0 

FuelCakes ADDSLOTVALUE Volume IS 2.0 

FuelCakes ADDSLOTVALUE Criticality IS 1 

FuelCakes ADDSLOTVALUE Stockid IS =16F-CB54 

FuelCakes ADDSLOTVALUE ColloquialName IS Fuel=Cakes 

FuelCakes ADDSLOTVALUE ComType IS F_TYPE 

FuelCakes ADDSLOTVALUE ShippingContainer IS PL 

FuelCakes ADDSLOTVALUE QuanityPerContainer IS 100 

FuelCakes ADDSLOTVALUE ShelfLife IS 30 

25 



$ CREATEFRAME FastMilo INSTANCE 

FastMilo ASSERTRELATION AKO Proto Vehicle 

FastMilo ADDSLOTVALUE Name IS FastMilo 

FastMilo ADDSLOTVALUE Abbreviation IS LHLW 

FastMilo ADDSLOTVALUE Drive IS WARP 

FastMilo ADDSLOTVALUE WeightCapacity IS 5500 

FastMilo ADDSLOTVALUE VolumeCapacity IS 1800 

FastMilo ADDSLOTVALUE Mode IS SHIP 

FastMilo ADDSLOTVALUE Cost IS MED_COST 

FastMilo ADDSLOTVALUE OffensiveCapability IS MIN 

FastMilo ADDSLOTVALUE DefensiveCapability IS MIN 

FastMilo ADDSLOTVALUE Speed IS 938000 

FastMilo ADDSLOTVALUE Range IS LONG_RANGE 

FastMilo ADDSLOTVALUE Cargo IS LIGHT 

All of the agencies that exist in this world must be defined as shown in the 

example below. 

$ CREATEFRAME InterventionWingl INSTANCE 

InterventionWingl ASSERTRELATION AKO Agency 

InterventionWingl ADDSLOTVALUE Name IS =lst=Intervention=Wing 

InterventionWingl ADDSLOTVALUE Commander IS Teri=Weeks 

InterventionWingl ADDSLOTVALUE FAD IS 0 

InterventionWingl ASSERTRELATION LOCATION Nellis 

InterventionWingl ASSERTRELATION OWNED BY StarForcelnterventionCommand 

The scenario database also contains specifications for initial stores of 

consumables and fleets of vehicles as shown below. 

26 



$ CREATEFRAME FuelCakel INSTANCE 

FuelCakel ASSERTRELATION AKO Consumable 

FuelCakel ADDSLOTVALUE Owning Agency IS StarDepotSLCll 

FuelCakel ADDSLOTVALUE Kind IS FuelCakes 

FuelCakel ADDSLOTVALUE Location IS Provo 

FuelCakel ADDSLOTVALUE Number IS 3300 

FuelCakel ADDSLOTVALUE TimeCreated IS 0 

FuelCakel ADDSLOTVALUE Manufacturer IS EMPTY 

FuelCakel ADDSLOTVALUE ConditionCode IS 0 

$ CREATEFRAME FastMilo_Luna INSTANCE 

FastMilo_Luna ASSERTRELATION AKO Vehicle 

FastMilo_Luna ADDSLOTVALUE Kind IS FastMilo 

FastMilo_Luna ADDSLOTVALUE OwningAgency IS SpaceliftWing 

FastMiloJLuna ADDSLOTVALUE Location IS Luna 

FastMilo Luna ADDSLOTVALUE Number IS 9 

27 



$ CREATEFRAME BusterBombJJsel INSTANCE 

//BusterBomb_Usel ASSERTRELATION AKO Consumption 

//BusterBombJJsel ADDSLOTVALUE ProtoCommodity IS BusterBomb 

//BusterBomb_Usel ADDSLOTVALUE OwningAgency IS 

BaseSupplyAgencySB 10 

//BusterBomb_Usel ADDSLOTVALUE ConsumeAmount IS 12.5 

//BusterBombJJsel ADDSLOTVALUE Consumelnterval IS 1 

//BusterBombJUsel ADDSLOTVALUE Supply Window IS 30 

//BusterBombJJsel ADDSLOTVALUE PhaseShift IS 0 $ CREATEFRAME 

Supply_BusterBomb INSTANCE 

Supply_BusterBomb ASSERTRELATION AKO Supply 

Supply_BusterBomb ADDSLOTVALUE FromAgency IS ACME 

Supply_BusterBomb ADDSLOTVALUE ToAgency IS StarDepotSLC15 

SupplyJBusterBomb ADDSLOTVALUE CommodityType IS BusterBomb 

Supply_BusterBomb ADDSLOTVALUE Supply Amount IS 14 

Supply_BusterBomb ADDSLOTVALUE Supplylnterval IS 24 

Supply_BusterBomb ADDSLOTVALUE MaxAmount IS 0 

Supply_BusterBomb ADDSLOTVALUE Maxlnterval IS 0 

Supply JBusterBomb ADDSLOTVALUE PhaseShift IS 0$ CREATEFRAME 

Ship_BusterBomb2 INSTANCE 

Ship_BusterBomb2 ASSERTRELATION AKO ShipmentSchedule 

Ship_BusterBomb2 ADDSLOTVALUE AgencyList ALL-OF (StarDepotSLC15 

Ogden Luna Herpes BaseSupplyAgencySB 10) 

Ship_BusterBomb2 ADDSLOTVALUE Source IS StarDepotSLC15 

Ship_BusterBomb2 ADDSLOTVALUE Destination IS BaseSupplyAgencySB 10 

Ship_BusterBomb2 ADDSLOTVALUE MissionScheduleList ALL-OF 

(RunRover6 FlyShorty3 Warp2 FlyShorty2) 

Ship_BusterBomb2 ADDSLOTVALUE TheCommodity IS BusterBomb 

Ship_BusterBomb2 ADDSLOTVALUE Frequency IS 12 

28 



Ship_BusterBomb2 ADDSLOTVALUE PhaseShift IS 2 

Ship_BusterBomb2 ADDSLOTVALUE NumberResources IS 7 

$ CREATEFRAME Warp2 INSTANCE 

Warp2 ASSERTRELATION AKO FreightMissionSchedule 

Warp2 ADDSLOTVALUE OwningAgency IS SpaceliftWing 

Warp2 ADDSLOTVALUE FromAgency IS Luna 

Warp2 ADDSLOTVALUE ToAgency IS Luna 

Warp2 ADDSLOTVALUE TheProtoVehicle IS Milorex 

Warp2 ADDSLOTVALUE RouteList ALL-OF (Luna_to_Herpes 

Luna_to_Herpes) 

Warp2 ADDSLOTVALUE Frequency IS 48 

Warp2 ADDSLOTVALUE PhaseShift IS 0 

3.5.  Case Pool 

The case pool is a part of the scenario database file that contains specifications for 

all of the objects that make up the cases. From this pool, cases may be chosen for 

presentation during the DMEs of an exercise. This file contains specifications for 

instances of each type of object described in Section 3.2. The syntax of these 

specifications is identical to that for the objects in the scenario. The following shows 

examples of case objects as they appear in the case pool. 

29 



$ CREATEFRAME Maldroit_resp2 INSTANCE 

Maldroit_resp2 ASSERTRELATION AKO TextPacket 

Maldroit_resp2 ADDSLOTVALUE PacType IS" SITUATION 

Maldroit_resp2 ADDSLOTVALUE PacName IS Maldroit_resp2 

Maldroit_resp2 ADDSLOTVALUE PacCase IS Case2 

Maldroit_resp2 ADDSLOTVALUE TextFile IS maldresp.txt 

$ CREATEFRAME Case2InitialMessage INSTANCE 

Case2InitialMessage ASSERTRELATION AKO Message 

Case2InitialMessage ADDSLOTVALUE InfoPac IS Case2MsglTP 

Case2InitialMessage ADDSLOTVALUE ShowTime IS 0 

Case2InitialMessage ADDSLOTVALUE Priority IS Low=Priority 

Case2InitialMessage ADDSLOTVALUE ID IS AN=ID 

Case2InitialMessage ADDSLOTVALUE Label IS Food=kit=contamination 

Case2InitialMessage ADDSLOTVALUE TheAgency IS MaterielStorageSB5 

$ CREATEFRAME Case2_Topic2 INSTANCE 

Case2_Topic2 ASSERTRELATION AKO Topic 

Case2_Topic2 ADDSLOTVALUE TopicName IS 

MALDROIT=foodkit=contamination 

Case2_Topic2 ADDSLOTVALUE ActivationConditions IS "Case2MsglTP" 

$ CREATEFRAME Case2_IDl INSTANCE 

Case2_IDl ASSERTRELATION AKO InformationDeposit 

Case2_IDl ADDSLOTVALUE TheMessage IS Case2_IDl_FU_Msg 

Case2_IDl ADDSLOTVALUE TheTopic IS Case2_Topicl 

Case2_IDl ADDSLOTVALUE OpeningPacket IS Case2_IDl_IR 

Case2_IDl ADDSLOTVALUE RebuffPacket IS Case2_IDl_RB 

Case2_IDl ADDSLOTVALUE TheAgency IS MaterielStorageSBlO 

30 



$ CREATEFRAME Casel INSTANCE 

Casel ASSERTRELATION AKO DDTCase 

Casel ADDSLOTVALUE TopicList ALL-OF (GossipJTopicl Casel_Topicl 

Casel_Topic2) 

Casel ADDSLOTVALUE MessageList ALL-OF (CasellnitialMessage 

Case3_Msgl) 

Casel ADDSLOTVALUE InfoDepositList ALL-OF (CaselJDl Casel_ID2 

Casel_ID3 Casel_ID4BattleNews21stID SB5GossipID SB6GossipID 

SB7GossipID SB8GossipID) 

Casel ADDSLOTVALUE SimChangerList ALL-OF (FCRemChanger) 

$ CREATEFRAME FCRemChanger INSTANCE 

FCRemChanger ASSERTRELATION AKO RemoveChanger 

FCRemChanger ADDSLOTVALUE TheProtoResource IS FighterCans 

FCRemChanger ADDSLOTVALUE Amount IS 2000 

FCRemChanger ADDSLOTVALUE Location IS StarBaselO ' 

FCRemChanger ADDSLOTVALUE Owner IS BaseSupplyAgencySB 10 

31 



4.     Lesson Architecture 

The DDT lessons are created and presented using ToolBook. ToolBook  , 

applications are subdivided into books, backgrounds, pages, and objects. An object is a 

graphical or interactive element on the screen such as a button or a text field. A page is a 

screen containing objects. A page sits on top of a background, which may also contain 

objects. Several pages may use the same background. Therefore, objects that appear on a 

large number of pages can be put on the background and need only be specified once. A 

book is a collection of pages that fits into a single file. 

Figure 12. Lesson organization. 

m   
Lesson 

Lesson n 

1 Lesson j 
Lesson 1 

Post-Instructional 
Segment 

r1- Instructional- 

Segments 

Pre-lnstructional 
Segment 

Optional 

Mandatory 

Instructional Segment 

Advance 
Organizer 

Attention 
Grabber 

Objective 

Pre-lnstruction 

Help      .       . .. 
r" ' 8  example. 

Demo 

r- ■ 11 Practice!! 

1   Generality 

Instruction 

Summary 

Synthesizer 

Test 

Post-Instruction 

As figure 12 illustrates, the DDT lessons are subdivided into lessons, segments, 

and lesson elements. These subdivisions of a ToolBook application are used in a 

32 



structured fashion to create the subdivisions of a DDT lesson. Each lesson consists of 

one book. Each segment consists of a collection of backgrounds and pages. Each 

segment includes: 

□ A background and single page that contains all of the pre-instructional and post- 

instructional elements as objects. 

D   A background and collection of pages that contain the generality. 

□ A background and collection of pages that contain the practice items, where each 

practice item is a page. 

□ A background and collection of pages that contain the test items, where each test 

item is a page. 

Where elements contain relatively large amounts of information, or where there 

are large numbers of very similar elements, they are implemented as a background and a 

collection of pages, while those elements that contain a small amount of information are 

implemented as objects on a single page. 

The lessons also contain a large number of graphics, and a variety of commercial 

tools are used to create them. Ultimately all graphics are imported into ToolBook 

applications as Windows bitmap files, so Windows Paintbrush is almost always used for 

final composition and touchup. Corel Photo-Paint is used to edit photo-realistic images 

and to adjust the dithering effect necessary to display them on a 16-color device. Many 

of those images come from public-domain NASA archives, while others are created using 

tools such as Imagine and CorelDraw. CorelDraw is a sophisticated two-dimensional 

graphics design and illustration tool, and Imagine is a three-dimensional solids modeling 

and rendering tool. 

33 



References 

Brecke, F. H., & Garcia, S. K. (1995). Training methodology for logistic decision 

making. (AL/HR-TR-1995-0095). Armstrong Laboratory, Human Resources 

Directorate, Brooks Air Force Base, Texas. 

Brecke, F. H., & Garcia, S. K. (in press). Desktop decision training system 

requirements document. Armstrong Laboratory, Human Resources Directorate, Brooks 

Air Force Base, Texas. 

35 



Appendix A.   Detailed Object Model Descriptions 

This appendix gives a more detailed description of the object model discussed in 

the body of this document. This includes descriptions of the objects and the events that 

cause them to change state. 

A.1  Objects 

For each object in the following sections there is a description, a list of attributes, 

and a state transition diagram. In some cases, the list of attributes or state transition 

diagram may be omitted where appropriate for the object. 

Agency: 

Agency 

An agency is a place or an organization. An agency can be an operational unit 

such as a starfighter wing, a supply depot, a transportation command, or a supplier or 

manufacturer. It can also be an aggregate of several other agencies. In this case, the 

agencies in the aggregate are considered to be collocated, and there is no need to transport 

resources between them. Agencies have ownership/jurisdiction over resources and other 

agencies. 

Attributes: 

Name 

Commander 

Commander Picture 

Priority (Force Activity Designator (FAD)) 

Minimum Stopover Time 

37 



Resource: 

Resource 

Vehicle Commodity 

X 
Consumable       Equipment      Reparable 

A resource is a superclass that represents a physical entity, e.g., starfighters, fuel 

canisters, beer, compressed biomass cakes, fighter pilots, mechanics. 

Attributes: 

Number 

Usable/Unusable Tag 

Vehicle: 

A vehicle is a resource that is capable of moving commodities from one agency to 

another. 

Commodity: 

A commodity is a resource whose supply the student must manage. 

Attributes: 

Creation Date 

Condition Code 

Manufacturer 

Consumable: 

A consumable is a commodity that is used up, e.g., beer, fuel, food. For 

consumables there is a one-way transportation flow from supplier to consumer. 

38 



Repairable: 

An repairable is a commodity that is refurbished after it has served its purpose, 

e.g., starfighter engines, guidance systems, R2D2 units. For repairables, there is a two- 

way transportation flow from supplier to consumer; refurbished units are sent to the 

consumer, "spent" units are returned to the supplier. 

Proto-Resource: 

Proto-Resource 

Proto-Vehicle Proto-Commodity jo 

Proto-Consumable Proto-Equipment 
1 

Proto-Reparable 

A proto-resource is an object that describes or serves as a pattern for an actual 

resource. For example, there would be an instance of a proto-resource for each 

type of resource, such as fuel canisters, starfighters, hyper-warp freighters, or 

mechanics. A proto-resource contains the unchanging attributes that are common 

to all actual resources of a particular type. A proto-resource participates in 

associations that have the same semantics as the indefinite article "a," e.g., "I need 

a starfighter engine." Resources, on the other hand, participate in associations that 

have the same semantics as the definite article "the" or "that," e.g., "I am shipping 

that starfighter engine." As the diagram illustrates, the subclass tree for proto- 

resources is homomorphic with the subclass tree for resources. 

Attributes: 

Name 

Proto-Vehicle: 

Attributes: 

Weight Capacity 

Volume Capacity 

39 



Speed 

Range 

Cargo 

Drive 

Cost 

Defensive Capability 

Offensive Capability 

Proto-Commodity: 

Attributes: 

Weight 

Volume 

Colloquial Name 

Stock ID Number 

Criticality 

Proto-Consumable: 

Attributes: 

Shipping Container 

Quantity per Container 

Shelf Life 

Route: 

Route 

Agency Proto-Vehicle Agency 

A route consists of two agencies and a list of one or more proto-vehicles and 

describes a transportation corridor between the agencies that supports the listed proto- 

vehicles. 

40 



Attributes: 

Distance 

Safety 

Freight Mission: 

Freight Mission 

Origin 

Agency Agency Vehicle 
I 

Shipment 
1 {ordered} 

Route 

A freight mission consists of two agencies, an origin and a destination, a vehicle, 

and an ordered list of routes. A freight mission describes a trip from the origin agency to 

the destination agency following the routes on the ordered list. 

[Created by 
leg schedule] 

[Created by 
student request} 

>{ Tentative 

Implemen tation 

Pending 

[Time to depart & 
vehicle available] 
/acquire vehicle 

Enroute 
Destruction 
/destroy vehicle 

[Time to depart & 
vehicle not 
available] 

Cancelled 

[Time to 
depart] 

Completed )< 

[Time to arrive & 
intermediate 
destination] 

[Time to arrive & 
final destination] 

>{ Destroyed 

±Jt- 
Shipment 

Freight Mission 
Schedule 

Departure : 

 Cancellation 

-(•>- 

State Transition Diagram 

Freight Mission Schedule: 

Freight Mission 
Schedule 

Y- 
Oriqin Destination 1 florae 

Agency Agency Proto-Vehicle Shipment 
Schedule 

Route 

A freight mission schedule consists of two agencies (an origin and a destination), 

a proto-vehicle, and an ordered list of routes. A freight mission schedule may also be 

connected to zero or more shipment schedules. A freight mission schedule describes a 

41 



recurring freight mission. A freight mission schedule will "spawn" freight missions 

according to its schedule. 

Attributes: 

Frequency 

Phase Shift 

[Created by 
0       s<uden. request]^ Jentatjve -® 

student request 
/create mission 

[Departure time 
reached & mission 
does not exist] 
/create mission 

State Transition Diagram 

Shipment: 

Shipment 

o 
Origin Destination 1 

Agency Transfer 
points     | {ordered} Agency Commodity Freight Mission 

Agency 

A shipment consists of two agencies (an origin and a destination), a commodity, 

one or more freight missions, and an ordered list of zero or more transfer point agencies. 

A shipment describes the movement of a commodity from the origin agency to the 

destination agency. The constituents of a shipment must adhere to certain constraints of 

space and time. Since a commodity cannot be in two places at once, all departure/arrival 

intervals of the freight missions at transfer points must be mutually exclusive. A 

commodity cannot magically jump from one place to another.   Adjacent freight missions 

in the ordered list, therefore, intersect at a transfer point. A shipment transfers ownership 

of the commodity from the origin to the destination agency. 

Attributes: 

Urgency 

42 



[Created by 
student request] 

[Created by 
shipment 
schedule] 

V Tentative 
Abandonment 

Im piemen tation 

t TT 

Arrival 
[Transfer point reached] 

/change location 
or commodity & 
unload 

/   n        ,. \ .  / \ [Destination reacneaj       /_ , , 
^Pending^-5^^ ►( |n transit)      /changelocalion  »(Completed 

[Departing current       V { s antj ownership 

Arrival 
[Destination reached] 

location] 
/cbanqe location ■ 
or commodity & 

Destroyed W- 

of commodity & unload 
Destruction 
/destroy commodity 

Cancelled &- 

State Transition Diagram 

Shipment Schedule: 

Shipment Schedule 

Y 
Origin De stination 1 

Agency Transfer 
points      . {ordered} * Agency Proto-Com m od ity Freight mission 

Schedule 

A shipment schedule describes or serves as a pattern for actual shipments. A 

shipment schedule describes the recurring movement of a commodity from one agency to 

another. A shipment schedule consists of two agencies, (an origin and a destination), a 

proto-commodity, one or more freight mission schedules, and an ordered list of transfer 

point agencies. The same time/space restrictions apply to the shipment schedule as apply 

to the shipment. 

Attributes: 

Frequency 

Phase Shift 

Quantity 

43 



[Created by 

[Created by 
scenario 
initialization] 

Cancellation 
[Shipment not 
created] 

/Create shipment 

"student request] f 
 —-—K Tentative 

Abandonment 

Implementation 

Departure 
[Departing origin & 
time to go] 

w /Create shipment & 
-1—^    acquire commodity 

Active 
 --.    aci 

ivet 

Departure 
[Pending shipment 
at departure point] 

Departure 

*1 Shipment 

State Transition Diagram 

Consumption: 

Consumption 

Agency Proto-Commodity 

A consumption object consists of an agency and a proto-commodity and describes 

the consumption ofthat type of commodity by the agency. A consumption association 

object is responsible for destroying commodity objects and serves as a sort of a drain of 

commodities out of the simulation. 

[Consumption interval expires, 
commodity not available] 
/Log shortfall 

v; default U- 

[Consumption interval expires, 
commodity available] 

/Destroy commodity 

Attributes: 

Consumption Amount 

Consumption Interval 

Phase Shift 

Desired Stockpile Level 

44 



Supply: 

Supply 

Supply Rate: 

Supplier Recipient 

Agency Agency Proto-Commodity 

A supply object consists of two agencies and a proto-commodity. One of the 

agencies is the supplier and the other is the recipient. The supply association describes 

the recurring flow of commodity objects from the supplier to the recipient. This transfer 

of commodities occurs by "magic" without the need for vehicles, freight missions, or 

shipments. A supply association is responsible for creating the commodity objects and 

serves as sort of a pump of commodities into the simulation. 

Attributes: 

Supply Amount 

Supply Interval 

Phase Shift 

Maximum Supply Amount 

Maximum Supply Interval 

default 
> 

[Supply interval expires] 
/Create commodity, 
transfer ownership/location 

State Transition Diagram 

Case Object: 

Causal Story Case 

..r: 

Information Deposit Message Topic 

Information Packet 

Simulation Change 
Description 

45 



The preceding diagram shows the objects that make up a case. The case object is 

responsible for managing active topics and for providing feedback about problem 

identification and uncertainty reduction. 

Message: 

Message 
 »  

Agency 

Information Packet 

A message is essentially a container for an information packet. A message has an 

attribute describing the subject of the message, an attribute that indicates when during the 

DME it should be delivered, and an association with the sending agency. Some messages 

in a case are simply delivered when their delivery time arrives, while others are 

associated with information deposits and are delivered only after the student has 

discovered the deposit. The next section, information deposit, describes this mechanism 

in more detail. Messages appear as closed envelopes on the message desk when they 

have been delivered. 

Attributes: 

Priority 

ID Number 

Subject 

Delivery Time 

[Part of Information^- 
Deposit] i 

[Created by 
scenario 
initialization] 

V Inactive 

T T 

/Calculate delivery time 

Pending 

[Delivery time arrives] 
/Put on message desk 
and alert student 

Delivered 

State Transition Diagram 

46 



Messages are instantiated from the database when a case is read in. Some 

messages are instantiated as part of an information deposit and start in the inactive state, 

while others are instantiated in the pending state. Messages in the pending state do 

nothing until they receive a "send" event with a delivery time from their information 

deposit. Then they are associated with their sending agency, go into the pending state, 

and await delivery.   Messages in the pending state monitor simulation time clicks until 

their delivery time arrives, then notify the message desk and transition to the delivered 

state. 

Information Deposit: 

Information Deposit 

0 
Initial response Rebuff 

Information Packet Information Packet Message Topic 

An information deposit consists of an eliciting topic, an immediate response, a 

follow-up message, and a rebuff. The eliciting topic is the topic for which the 

information deposit is a response. The immediate response is an information packet that 

is presented to the student as soon as the query is made. The follow-up message is a 

message that is "sent" to the student at some time after the initial query. The rebuff is an 

information packet that is presented to the student if the student asks about the same topic 

again. 

/Instantiate from 
_  database 

A* Unseen 

  Display 
/--- _       ^.„Y'fw I /Display contents 

Seen 

H Display 
/Display contents 

State Transition Diagram 

Each information deposit is instantiated from the database and starts in the 

undiscovered state. When an information deposit receives a discovery event from its 

agency, it checks the topic to see if it matches its eliciting topic. If it matches, and the 

information deposit is in the undiscovered state, the information deposit transitions to the 

47 



discovered state, sending a "send" event to its follow-up message and a display event to 

its immediate response information packet. When an information deposit receives a 

discovery event in the discovered state and the eliciting topic matches, it sends a display 

event to its rebuff information packet and remains in the discovered state. 

Topic 

A topic is a word or short phrase that can serve as the object of a student's query 

of an agency. The topic contains a description, called the activation conditions, of the 

conditions under which it becomes available to the student as a possible object of a query. 

These conditions are represented as a Boolean expression of information packet 

identifiers and the operators "and" and "or." The information packet identifiers "evaluate 

true" if the information packet has already been viewed by the student. For example, the 

topic of "destroyed fuel canisters" would become available after the student had viewed a 

message about an enemy attack at Starbase 10 or after the student had read a report listing 

the shortage. 

Attributes: 

Key word 

Activation conditions 

N^   Evaluate 
~W   Unavailable )      /Evaluate Activation Conditions 

{Activation Conditions false] 

Evaluate 
/Evaluate Activation Conditions 
[Activation Conditions true] 

Available 

State Transition Diagram 

A topic is in the available state when its activation conditions evaluate true and it 

is in the unavailable state when they evaluate false. The case object is responsible for 

maintaining state information for all the topics in the case. When a topic receives a 

evaluate event from the case, it evaluates its activation conditions and notifies the case 

object about the result. The following diagram illustrates this behavior. 

48 



Information Packet 

Information Packet 

A 

OLE Packet Query Packet Text Packet 

An information packet is actually a superclass,  with a virtual display method. 

Subclasses of information packets are differentiated based on the form of the information 

they contain. Currently three subclasses are envisioned: an OLE packet, a query packet, 

and a text packet. An information packet is tagged with information about the types of 

information it contains (e.g., situation, option set, option feasibility, option effects, 

distracter), allowing the case to provide feedback about the student's uncertainty 

reduction. 

Attributes: 

Information type 

/Instantiate from 
^   database 

>( Unseen 

Case    4 
Display 
/Display contents 

Seen 

~f[Disi LJ/Di: 
Display 
/Display contents 

State Transition Diagram 

An information packet is instantiated at the time the case is read in from the 

database. All information packets are specified in the database. When the packet 

receives a display event, it displays or otherwise presents its contents to the student. 

Additionally, if it is the first display event, it sends a "view" event to its case so that the 

case can update the active topics. 

49 



Simulation Change Objects: 

Simulation Change 

/\ 

Addition Removal Marking 

Consumption 
Adjustment 

Supply 
Adjustment 

These objects describe and effect the changes to the logistics simulation necessary 

to "cause" the logistics event associated with case. There are five different simulation 

change subclasses, each corresponding to a different type of change. 

A.2 Events 

In the preceding sections we described the possible patterns of objects and 

attributes that can exist in the system. A particular set of attribute values held by an 

object is its state. Over time the objects interact with one another, resulting in changes to 

their states. These interactions are called events. Usually, an event is generated by one 

object and stimulates a change in state of other objects that recognize that event. The 

following sections describe most of the events listed in the state transition diagrams in the 

preceding sections. 

Departure (freight mission, agency) 

This event is generated by a freight mission whenever the time arrives for it to 

depart an agency. For the origin agency, the departure time is an attribute of the freight 

mission. For intermediate agencies, the departure time is the arrival time plus any 

stopover or loading overhead. This event is sent to any shipments connected with the 

freight mission and to the freight mission's parent freight mission schedule if there is one. 

Shipments and shipment schedules are the final recipients of departure events (the freight 

mission schedule forwards the event to its shipment schedules). When a shipment 

receives a departure event, it decides whether or not to load itself onto the freight 

mission. When a shipment schedule receives a departure event, it decides whether or not 

50 



to create a shipment and pass it the departure event, to pass the departure event to an 

already created shipment, or to do nothing. 

Arrival (freight mission, agency) 

This event is generated by a freight mission whenever the time arrives for it to 

arrive at an agency. The arrival time is the departure time plus travel time. This event is 

sent to any shipments connected with the freight mission. When a shipment receives an 

arrival event, it decides whether or not to unload itself from the freight mission. 

Cancellation (freight mission) 

This event is generated by a freight mission when its departure time has arrived 

and there is no vehicle of the proper type that is owned by its parent agency, located at 

the origin of the freight mission, and not already committed to something else. This 

event is sent to any shipments connected with the freight mission and to the freight 

mission's parent freight mission schedule if there is one. When a shipment schedule 

receives a cancellation event, it creates a new shipment without acquiring the associated 

commodity and forwards the cancellation event to it. When a shipment receives a 

cancellation event, it sends a stockpile change event to the destination agency. 

Destruction (freight mission): 

This event is generated by a freight mission when it receives a scripted event 

indicating that it has been destroyed. This event is sent to any shipments connected with 

the freight mission and to the freight mission's parent freight mission schedule if there is 

one. When a shipment schedule receives a destruction event, it creates a new shipment 

without acquiring the associated commodity and forwards the destruction event to it. 

When a shipment receives a cancellation event, it destroys any associated commodity and 

sends a stockpile change event to the destination agency. 

Implementation: 

This event is sent to freight missions, freight mission schedules, shipments, and 

shipment schedules when they are in the tentative state and the student has decided to 

51 



implement them. This event causes the corresponding object to change to an active or a 

pending state. 

Consume (proto-commodity, amount): 

This event is generated by a consumption object and is sent to an agency to 

instruct it to destroy a certain amount of a particular commodity. 

52 


