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Abstract 

In this technical memo a significant observation on a fundamental limitation to space-time 

adaptive processing in practical airborne environments is briefly discussed. This observation is a 

result of extensive analysis of measured airborne data from the Multichannel Airborne Radar 

Measurements program. In particular, the problem of nonhomogeneous data and its impact on 

the estimation of the interference covariance matrix, a critical operation in space-time adaptive 

processing, is considered. 

1.0 Background 

Excellent overviews of space-time adaptive processing (STAP) are given in [1-3]. In 

short, STAP is the practical implementation of an optimum two-dimensional filter in the angle- 

Doppler domain. Degrees of freedom in both space (angle) and time (Doppler) are employed to 

maximize signal-to-interference ratio (SIR) to improve detection of weak and/or low velocity 

targets by an airborne surveillance radar. 

Optimum filtering implies known statistics a priori, a situation only valid in a theoretical 

study. In practice, unknown statistics are estimated from available data, leading to the adaptive 

processor. The adaptive weights are computed via 

*k-s
HRk
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for range cell, k, where s and Rk are the space-time steering vector and sample interference 

covariance matrix, respectively [1]. Note that the optimum weights follow from (1) by replacing 

the sample interference covariance matrix, Rk, with the known interference covariance matrix, Rk, 

for range cell k. Thus, the critical unknown in the adaptive implementation is the interference 

covariance matrix. The maximum likelihood estimate is commonly used to estimate Rk as [2-3] 

V7E¥"i  "* (2) 

where X, are space-time data vectors assumed to be independent and identically distributed (iid). 

While theory and computer simulations assume a sufficient quantity of iid data to 

accurately compute (2), such that averaging over larger K leads to convergence between optimal 

and adaptive implementations, preliminary analysis of measured multichannel airborne data from 

the Multichannel Airborne Radar Measurements (MCARM) program indicates that 

nonhomogeneous features of the actual airborne environment force (2) to converge to an 

"average" value which may differ significantly from the true interference covariance matrix 

characterizing range cell, k. See reference [4] for a brief description of the MCARM program. 

This "averaging" limits the detection performance potential improvement of STAP previously 

identified through extensive computer simulations using modeled, homogeneous, iid data. One 

approach to improving STAP performance is careful selection of the secondary data, X„ used to 

compute (2). 

2.0 Observations From Analysis of Measured Airborne Data 

In this section, brief analysis of MCARM data is discussed to better understand the impact 

of nonhomogeneous interference and data selection for sample covariance matrix formulation on 



ST AP performance. For example, Figure 1 shows a plot of the modified sample matrix inversion 

(MSMI) test statistic [5], 

1* 
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versus range for Doppler filter 10 using measured MCARM data from file "t3r40575". This 

analysis uses the Factored Time-Space (FTS) architecture, which amounts to Doppler processing 

followed by adaptive beamforming [2-3]. The interference covariance matrix is computed via (2) 

for all three curves in Figure 1, where the only difference is the selection of secondary data, Xt. 

The interference covariance matrix is computed using 2NS = 44 data vectors, where Ns is the 

number of spatial channels, symmetrically windowed about the range cell under test to arrive at 

the solid line labeled "2NJSW". This symmetric windowing approach is depicted in Figure 2. 

Alternately, the dotted curve labeled "2N_NHD" is computed using a single interference 

covariance matrix estimate for all range cells shown. In this case, the interference covariance 

matrix estimate is computed via (2) by selecting 44 nonconsecutive data vectors determined to be 

most homogeneous in covariance structure to each other. The "generalized inner product", 

*k-x?*?xk (4) 

is employed to test the homogeneity of the Doppler-filtered data vector from range cell k, as 

described in [6]. Nonconsecutive selection of secondary data is depicted in Figure 3. Finally, the 

dashed curve labeled "2N_HP" is computed using a single covariance matrix over all indicated 

range by selecting 44 data vectors with the highest estimated power content (inner product), 



Y* - x?xk, (5) 

to compute (2). In all three covariance estimation methods, the same superset of secondary data 

is used in the computation of (2) for a fair comparison. 

A synthetic target has been injected into range bin 290, Doppler 10, broadside (0 degrees 

azimuth). Applying a fixed threshold to the data, recalling that the MSMI test statistic has an 

embedded constant false alarm rate (CFAR) characteristic [5], one observes that the false alarms 

increase dramatically for the case where a unique interference covariance matrix is estimated for 

each range cell by symmetric windowing (solid curve, "2N_SW"). The performance improves 

greatly for the dotted and dashed curves, where the injected target is readily identified and clutter 

suppression is improved merely by differing the training strategy (secondary data selection) used 

to compute the sample interference covariance matrix via (2). 

To further understand the previous results and their impact on STAP performance, 

consider Figure 4 showing estimates of the interference at Doppler 10 versus azimuth for four 

range cells spaced roughly 0.5 nmi apart. A one-dimensional slice through the two-dimensional 

transformed data (ie., 2-D FFT) produces the results in Figure 4. No averaging over range has 

been applied to preserve local interference characteristics. Note that the peaks of the interference 

, move several degrees from range cell to range cell, indicating nonhomogeneity. Thus, both null 

depth and null placement are critical issues impacted by the averaging process in (2) used to 

estimate the interference covariance matrix. 

Next, consider the adapted filter spatial response patterns for range cell 290, Doppler 10, 

resulting from the three different covariance matrix training strategies previously discussed, as 



shown in Figure 5. All three filter responses vary considerably even though the adaptive weights 

were computed from the same superset of secondary, further confirming the effects of 

nonhomogeneous data and the potential impact of training data selection schemes. The solid line 

shows the spatial response for the symmetric windowing method. The wider notch centered just 

right of 20 degrees roughly corresponds to averaging all interference peaks shown in Figure 4 and 

yields the poorest performance. Of the four cells shown, only range cell 300 has been identified 

as "homogeneous", via (4), to a majority of the surrounding cells in its covariance structure, 

thereby explaining the shift of the main null slightly to the left of 20 degrees when the most 

"homogeneous" data is used for covariance estimation (dotted line, "2N_NHD"). Also note that 

mainbeam gain has not diminished. Finally, range cells 290,295 and 300 have been identified as 

including the highest power content, and thus the "average" of their peaks explains the slight 

migration of the main null slightly further left when cells with highest power content are used to 

estimate the covariance matrix (dashed line, "2N_HP"). Note, however, the significant loss of 

mainbeam gain in the look direction of zero degrees. 

3.0 Conclusions 

The conclusions are twofold. First, in a nonhomogeneous environment, the averaging 

process used to compute (2) leads to "average" performance for the range cells under 

consideration, which may differ significantly from the optimum scenario. This averaging process 

limits the effectiveness of STAP, where the adaptive processor no longer converges to the 

optimum filter, but to some average filter response based on the varying characteristics of the 

nonhomogeneous secondary data. Secondly, secondary data selection greatly affects the adaptive 

filter performance in a practical, nonhomogeneous environment, as demonstrated through the 



analysis of a specific MCARM data file. Thus, it appears that development of better training 

strategies is essential to improved STAP detection performance potential in practical situations. 

Furthermore, these improved training strategies may greatly impact STAP performance in the 

presence of electronic warfare [7]. 
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Figure 2 Symmetric Windowing Approach to Secondary Data Selection and Interference 
Covariance Estimation for Range Cell k. 
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Figure 3 Nonconsecutive Selection of Secondary Data Based on (4) or (5) to Compute a Single 
Covariance Matrix Applied to all M Range Cells Under Test. 

Estimated Interference, Doppler 10, file: t3r40575 
20 

10- 

8-10 

-20 

-30 

-40 

o 285 

+ 290 

* 295 

• 300 

+       * *       4.    • 

.    •      .      •   * *   n° 2° • 

.    .   /   +    v*v  "° 
• +++        • *****+. +«     " +• ° 

+    •       + 

*    o 
o        +++ 

»+. •/   + 

00°° +     * °Ooo00 

* + * 

-40 -30 -20 -10 0 10 20 30 40 
degrees 

Figure 4 Estimates of Interference Vs. Azimuth Over Range, Doppler 10 (5 Bins~0.5 nmi). 

8 



m 

FTS Adapted Patterns, Doppler 10, file: t3r40575 
105 r                i                 i                 i              i                 i                 i 

100 V      Y     /     x\    /'        v \ 
■ i\    /v-    '      *\/        * \ 

- 

95 
1  \       \ !         >•':           «  \ 

90 

y
 

. 
. 

/ 

'V /    '   *- — 
l/;:                  1   ' \ v 1     ' 

85 /    \  \                     s- i 

1      \  \   ■              ■/'' V\ /    7 

80 i    V.'    W 
•'     v>  '■■{ 

'.   ^       7 
\    X   / 

75 \ ' •   / 
1V '   / 

70 -  2N_SW 

2N NHD 
65 - - 2N_HP 

en i              i   i     i 1 1 1  1 t 

-40 -30        -20 -10 0 10 20 30 40 
degrees 

Figure 5 Adapted Spatial Response Patterns, Doppler 10, Range 290. 
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