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Foreword

Warfare is as old as recorded human history. War has been especially prevalent in the last 500
years with the increasing conflict between large nation states. A great amount of analysis and
thought has been given to the "Art of War". Nine principles of War have been defined: Objective,
Offensive, Mass, Economy of Force, Maneuver, Unity of Command, Security, Surprise, and
Simplicity. Despite these accepted principles, the science of war has remained elusive. Since
World War II, investigators have searched for a theory on the physics of war--"De Physica Belli".
Efforts have been more successful with the prominent rise of Operations Research as an analysis
tool to assist combat operations. Dr. Bruce W. Fowler uses these modern analytical tools to seek the
answer to the following question in this report--"Is there any scientific basis to describe the physics
of war?" This report provides the answer to this question. His approach to a physics of war is the
application of Lanchestrian attrition mechanics which first appeared in theory in the early 1900's.

Dr. Fowler introduces Lanchester's work and then examines whether Lanchester really was the
"father of attrition theory" and the resulting force ratios and attrition coefficients. Lanchester
initially claimed that mirriproved tactics, training, doctrine, and morale were not amenable to
mathematical analysis. Once the reader generally understands Lanchester's Differential Equations
and their solutions, Dr. Fowler proceeds to introduce variations on a theme by carrying Attrition
Theory forward until the late 1980s. Some of the topics covered are: stochastic versus deterministic
representations; homogeneous versus non-homogeneous forces; dependencies of attrition and
attrition rates on time and range, not just on force strength; aggregation and disaggregation;
Quantified Judgment Models; Bonder-Farrell Attrition Theory and Ancker-Gafarian Attrition

Theory.

iii




"De Physica Belli" is intended to be a general reference and introduction to attrition theory ‘
suitable for the combat soldier, the student-soldier, or the military analyst. The manuscript succeeds
in that respect and provides a good overall summary of the state-of-practice in attrition theory
through 1990. However, given the great advances in modeling, simulation and computational power
since 1990, it would not be surprising to see future updates to this work. The mathematical tools of
complexity theory, fractal dimensions, fuzzy logic, information theory and the power of scientific
visualization of data in interactive computer simulations may offer new and exciting insights into
the physics of war. These new developments will most certainly provide opportunities to conduct

experiments in the science of warfare that go beyond the limitations inherent in the analysis of

historical data.
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PREFACE

This is a book about war.

It is the result of several years interest in the modeling and simulation of
warfare. It neither praises nor decries war: war is a social activity of mankind and as
such can be avoided or denied no more than any other interaction of man with others
of his kind. Clausewitz tells us that war is an extension of policy by other means,
while Mao tells us that power grows from the end of a gun. Clearly then, war is social
and at best is governed by such social rules as the participants are willing and able to

apply.

Why should a physicist write a book about war? The answer has two parts. A
physicist, more than most of humanity, looks at the world around him and continually
asks "Why?" He applies logic, patience, stubborn determination, and mathematics to
the question. :

That "Why?" question brought me to the subject of war, and continues to lead
me through investigations and studies of it. It also led to writing this book so that
others could ask that question with greater efficiency by using what little stubborn-
ness | have been able to apply.

Man has apparently practiced war as long as he has existed. The tool making
tradition/development of man is clear. While the application of early chipped rock tools
such as choppers and hand axes to warfare can be questioned, the question arises not
from the likelihood of their application, but to the nature of warfare in that social
environment. Warfare today is viewed as being national in scope (even civil war) and
reflecting some cultural conflict (which itself raises the question of how warfare can
exist without the benefit of agriculture.) In neolithic times, nations as such did not
exist, but familial and tribal level social groups most likely did, and conflict between
such groups probably had all of the cultural aspects of war as we think of it. The
earliest evidence of warfare as conflict between two (or more) collected forces is
found in Neolithic cave paintings'. Most Historians neglect warfare prior to the
Macedonian Juggernaut of Philip and Alexander, although we now have evidence that
the social development of war, its institutions and mechanism is fundamentally older.?
This is partly due to the lack of recorded history and partly because Macedonia (under
Philip) was the first western nation. However, as Jones® notes, the primary reason
was the emergence, with the Macedonian nation, of the Macedonian army as the first
balanced, combined arms army.

The Romans made no strong distinction between technical knowledge and its
military applications. Neither, apparently, do the Russians, America's overt rival (until
recently?) for dominance of Civilization. In America, we practice an oscillating love-
hate relationship with things military. For several years now, this country has practiced
an academic apathy for matters of warfare. To this end, there are almost no avenues
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Preface

for disseminating information on warfare research.

This book is not primarily just for the soldier. By that | do not mean that the
soldier should not read it, but | recognize that the profession of soldier is not given to
mathematics and analysis. It is however, much given to the rigorous study of
stubbornness and patience, to the art of concerted action and deliberate inaction. To
the average soldier, a book of analysis would be a punishment no matter how
couched. To the occasional soldier with a bent for mathematics and analysis, it would
be of insightful use. If | have done my task well, it may even be of abiding and
delightful value.

In this book, we limit ourselves (primarily) to some of the aspects of formal war.
Formal war is a term that distinguishes warfare characterized by the use on both sides
of trained troops under discipline with a rigorous chain of command and a set of
formalized goals. Informal warfare such as riots, civic disturbances, terrorism,
inquisition, and other spontaneously constituted conflict are thus excluded. (The
special case of guerilla conflict is somewhat of a grey area and we shall treat some
of the combat aspects of such conflict.) The scope of this book is limited to treating
some of the aspects of formal war.

Of particular concern will be the tactical level of formal warfare (or just warfare,
as shall hereafter be used synonymously.) The strategic or (recently rediscovered in
this country) operational levels of warfare will be devoted little attention. This
limitation is dictated not solely by desire but by the fact that the tactical level of
warfare is most strongly associated with attrition and attrition is the part of warfare
that has been examined most deeply. -

It must be noted that the practice of war is an art. However, art has its
technical aspects. Just as painting is an art form, it too has its technical aspects - the
optical and material technology associated with perspective, color, the functioning of
the human eye, the production of paint and canvas. Similarly, the art of war has
technical components that support its execution. This book deals with some of those
technical components.

This does not mean that this book is intended to have an audience of soldiers.
As the execution and appreciation of painting cannot be totally technical, the
execution and appreciation of warfare cannot be totally technical as well. But in both
instances, there are technical factors and contributions to both the execution and
appreciation of painting and warfare. The painter cannot successfully practice his art
without knowledge and use of the technical aspects of his tools and methods. Neither
can the manufacturer of art supplies be ignorant of the technical aspects of painting
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Preface

and satisfy the needs of the painter to practice his art. In a like manner, the soldier
cannot practice his art without some technical knowledge. Nor can the supporter of
the soldier, the technologist or analyst of war, satisfy the needs of the soldier without
knowledge of the technical aspects of war. This book, then, is of interest to both the
soldier and the technologist of war.

Most books about warfare are historic in nature, ranging from memoirs such as
Xenophon's The Persian Expedition*, Gaius Julius Caesar's The Conquest of Gaul®, and
Donn Albert Starry's Armored Combat in Vietnam®, through tactical and strategic
treatises such as Frederick the Great's On the Art of War’, Jomini's The Art of War®,
and von Clausewitz's Vom Kreig (On War)®. (The latter category seldom seen on
bookstore shelves.) Some historical analysis of warfare has found its way into print,
ranging from Dehlbriick's History of the Art of War' to Trevor Dupuy's Numbers,
Predictions and War''. The modeling of warfare has its origins in the analysis of
history. This is amply evidenced in Lanchester's Aircraft in Warfare: The Dawn of the
Fourth Age'?, Osipov’'s articles'®, and Fiske's The Navy as a Fighting Machine'*.
(Discussed briefly in Chapter Il.) Books on the technical aspects of the modeling of
warfare are rare, the exceptions being Dupuy's book and Taylor's Force-on-Force
Attrition Modelling'®, the former describing an empirical approach from historical data
which sadly, despite its.aesthetic form, lacks any theoretical foundation which admits
the introduction of technological advances (which as Ferrill notes increasingly
dominates the nature of warfare,) and the latter giving no attention to historical
insights and scant attention to the underlying mechanics of attrition processes.

What this book is, is a combination of historical (both in the classic sense and
in the sense of the discipline) and technical (mostly the latter) analyses of warfare
models. The approach is somewhat mathematical. A knowledge of the integral
calculus and elementary probability theory is assumed; that level of sophistication
seems to be the minimum requisite to consider the subject in depth, and is probably
enough to dissuade the average professional soldier from reading further. That is not
altogether a misplaced view; as | have said, the practice of war is an art form and this
book is not primarily concerned with the art form. However, to borrow a model from
my own profession, a physicist will gather knowledge (and tools) from a mathematics
book without having the depth of understanding of the proofs of the theorems that is
required of the mathematician. Rather, the physicist largely accepts the proofs’ validity
at face value and uses them as tools in the practice of his profession. So too may the
soldier make use of the material in this book, using the results of the derivations and
analyses as tools. Fundamentally, however, this book is concerned with the analysis
of warfare, and as such, is of interest to the more analytically inclined of the
community. This book will not likely ever be mentioned in the same breath or be of
comparable value to the soldier as Vom Kreig; it may be of some use to the technical
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community that supports the soldier in the pursuit of his art form by providing him
with the materiel and doctrinal tools of his trade.

Of necessity, much of this book is concerned with the attrition process of
warfare. This is partly due to our fascination with that aspect of war, and partly due
to the preponderance of the literature on that aspect. Presumably, attrition is more
amenable to analysis than other aspects of war!

While this book does not portray itself to be an historical work, some data on
historical warfare is included to address salient points in the mathematical theory and
provide insight in the analyses. Of necessity, those data are limited; warfare is not,
and never will be, a strictly scientific subject. We cannot conduct scientific
experiments on warfare. The control problems aside, moral and economic factors
preclude such experiments. As a result, considerable uncertainty must and does exist
in the historical data. Of necessity then, the data must be culled. (I am not an
historian, and detractors may claim that | have been overselective in my choices or
have been deficient in the exhaustiveness of my scholarship. | cannot defend myself
on the historical selections except to state that | have attempted to be honest in my
selections.) In many cases, the culling of historical data is dictated by the requisites
of the mathematics - a minimum of numeric data is necessary and only battles for
which that minimum can be found can be subjected to analyses of the types presented
here. Much of this data, as | have stated, is uncertain; in particular, meaningful data
on the actual duration of the vast majority of battles is wanting, or at best, suspect.
Even force strengths are uncertain, with contradictory reports often being the norm.

Within these limitations, this book presents few conclusions. Rather, it attempts
to lend insight into the dynamics of warfare. The reader should remember that this is
an immature discipline. It has few laws and is predictive in only the most cursory
sense. (We do not mean here the Laws of War; they are the laws of the art of war,
not laws in a technical sense.) Still, the discipline offers considerable promise in terms
of developing into something which will be a contributor to man's understanding of
his universe. May this book serve in some manner to hasten that day.

There is, | hope, a wider audience for this book than the professional soldier.
The core group for which this book is written are the students, those who practice the
peripheral professions of war and must learn their trade and continually update and
expand their understanding of it. These students include the developers of weapons
and doctrine, the analysts and users of combat simulations, the civilian and soldier
managers of military programs, their counterparts in the defense industry, and even

academia.
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0. Introduction

0.A Can we Define the Question?

Is there a physics to warfare? Or perhaps a better way of asking that question
would be "Is there any scientific basis to describe the processes of war?" That may
still not be clear, so we shall examine the two key ideas in the question(s): science
and war.

The logical starting point is to examine the dictionary. The Random House
Dictionary’ defines science as:
"(1) a branch of knowledge or study dealing with a body of acts or
truths systematically arranged and showing the operation of general
laws."
and war as:
"(1) a major armed conflict as between nations."
The American Joint Chiefs of Staff defines neither in their Dictionary of Military Terms 2
while our chief competitors (until recently) the Soviet Union, provided a long
description definition of war® (voyna):
"War is an armed conflict between states (coalitions of states) or
between striving antagonistic classes within a state (civil war) to gain
their economic and political ends."

Finally, we find that physics* is
"The study of those aspects of nature which can be understood in a
fundamental way in terms of elementary principles and laws."

These dry definitions do indeed allow us to ask over questions in a (hopefully)
more meaningful way: Are these general laws or elementary principles - operating in
the armed conflicts between states? Obviously, | (and others) must have some reason
to believe that there are, | would not have written this book advancing to describe
some of our knowledge (and offer, our lack of it). Equally obviously, if | do not move
on to something a little less dry then their definitions, you, the reader, will cease to
read. ‘

0.B Lies, Lies, and Dammed Lies

Our common vision of the scientist is largely shaped by science fiction movies
that portray scientists as mad, cackling men (and occasionally women) who perform
diabolical experiments without regard for the social consequences of their acts. Part
of this is true. Scientists do perform experiments (and develop theory based on these
experiments) to uncover and understand the fundamental principles of the universe
around us - science and experiments are fundamentally linked! It is not generally true
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that scientists are either mad or cackling, and they are generally quite concerned about
the social consequence of their efforts - witness the volume of writings and efforts by
scientists about the efforts by scientists about the effects and morality of nuclear war.
In recent years, considerable consideration has been given to the social and political
efforts of science. As Michael Simon® notes in his review of Alan Chalmer's book
Science and Its Fabrication "the distinction between good and bad science is a useful
one, but it is not one that can be clearly drawn. The goal of science, as Chalmer
understands it, is not certainty but improvement or growth."

War, to most of us and including the soldier, is a terrible thing. That makes its
study a paradox. Clearly, we want to study it so that we may avoid its occurrence,
or given its occurrence, complete it in as limiting a fashion as possible. That is the
universal approach of the modern military professional. The negative side is that if we
understand war better, we may apply that understanding to practice it. This paradox
is a fundamental example of the two edged nature of knowledge in general and
science in particular.

Clearly, war has not been the subject of exhaustive scientific study. There are
several reasons for this, and | cannot delude the reader into thinking that my list of
reasons is exhaustion. | do believe they are illustrative and reasonably comprehensive,
however.

Because of its very terribleness, war does not attract scientists to study it. Nor,
are many soldiers scientist or visa versa. The nature of the two professions do not
allow them to mingle effectively. This does not mean that soldiers do not study war,
quite the contrary. Many soldiers are dedicated students and learned scholars of war,
but that knowledge tends to be historic and practical in nature. This study, over
several centuries, has produced considerable result and theory, but it is a scholarly
rather than a scientific type of knowledge. This must not be belittled. This knowledge
is important and we shall examine it not only later in this chapter, but throughout this
book as well.

As we have already stated, our interest here is the physics of war, or at least
of the processes of ground conflict, and this means in particular that we want to
examine those processes which are describable in a quantifiable manner. In simple, we
want to examine those parts of war that can be described in the exacting vocabulary
of mathematics. This is not easily done for two reasons.

First, the soldier is not, as a member of a profession, given to the daily use of

math as a tool. Like most of our citizenry, he (or she) is not generally adept at using

math as a tool for understanding and describing his world. This results both from our
cultural approach to the teaching (or non-teaching - see Appendix X) of math and to
practical, accomplishment orientation of his profession. Many professions have this
non mathematical character, but that should not preclude the soldier from seeking
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greater personél and professional knowledge from efforts like this one.

The second reason, which finally brings us to some meat among all this
philosophical rabbit food, is the fundamental linkage between science and experiment.
By its very nature, war is not truly amendable to experiment. We cannot, in the
interest of science, go into the laboratory and conduct war as an experiment. To
coolly conduct measured experiments in war where lives are taken is both ethically
and morally impossible. Nor can we make complete use of military field trials and
exercises as experiments for two reasons: first, to make detailed measurements of
such would completely compromise them - the influence of the observer is disastrous,
and second, these trials and exercises are not war and any knowledge that we gain
from them is fiercely tainted with uncertainty of the most vicious type. We do not
even know what the nature and magnitude of the uncertainties are.

Our only recourse therefore, is history. We can only use what data is available
from the battles and wars that have been fought in the past. As we have noted, this
is the principle approach of the modern professional soldier - to study the history of
war. Can we have however derive scientific knowledge from history?

I will not try to be exhaustive in this introductory chapter, but can sketch none
of the most obvious basis for what scientific knowledge we can derive from history
and thereby lay a basis for the mathematical theory that we will be describing in the
rest of this book.

Until recently, the numerical data on war was not readily accessible, if we can
say it is today. There are however, scholarly works of history that describe wars,
campaigns, and battles and in these works there are a few numbers. Because of the
largely theoretical nature of this book, we have limited our search for historical
numbers to sources which compile many battles and looked there for numbers
describing the battles. From these compilations, we developed databases of selected
battles. The criterion for selecting (and rejecting) battles was very simple - there had
to be a minimum amount of recorded numeric data about a battle in the compilation.
This culling process is extreme, it reduces the number to something on the order of
1-2 percent of the total battles. Thus, we immediately must view the resulting list
with great trepidation, who knows how we have inadvertently slanted and distorted
the view that we may derive from these data!

All of these concerns aside, let us at lest look at one, fairly general, set of
dates. This one is taken from a historical compilation of battles entitled Brassey's
Battles,® named after the company that published the compilation. We shall describe
the source, and the nature of the data base in question detail in Chapter IX, but for
now, we are primarily interested in what we may learn about these battles.

This database consists of 107 battles, one of our largest. The earliest battle is
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Marathon fought in -490 C.E.. The most recent battle is Goose Green, fought in 1987.
The basic data, consisting of the date, combatants, their initial and final (numerical)
strengths, and the durations of the battles (in days) are shown in Table 0.1.

Most of these battles were short affairs, lasting a day or less. A few were
longer. They represent only a small fraction of the battles fought in the last two-and-a-
half millennia, but, as given by our source, they are, for a human and therefore non-
exhaustive search, the only ones that have five pieces of numeric information: the
initial and final strengths of the two sides, and the duration of the battle. Actually, the
culling criteria as somewhat stronger than this - have also culled battles that did not
end in a controlled manner - no routs. With one exception, all these battles ended with
both armies enact. While there have been many battles that have turned into routs,
our intention here is to examine what we may hopefully call normal battles, even if
they may not prove with further study to be normal.

Our prescription, for now, will be to examine the contents of this database to
see if these are any describable patterns in the data here. We will not attempt, at this
time, to perform any type of statistical analysis of these data. What we are interested
in are clear patterns that would indicate the possibility of quantitative relationships.

First, examine the way that the force strengths of the battles are distributed by
the date of the battle. This is shown in Figure 0.1. The only pattern that we may see
here is that most of the battles were fought in the last 500 years. Is this meaningful?
Has civilization over the last five centuries become more warlike, or is this the result
of better, more thorough recordings. | suspect the latter is our meaningful explanation.

Next, examine the same force strengths, as a function of the battle's duration.
This is shown in Figure 0.2. Again, the only pattern that we discern is that most of
these battles were short - but we have already noted this. If we look at this data in
a Ing-log plot., Figure 0.3, we see a wider spread of the data, indicating more
v- ation, but no striking pattern. At best, we may only speculate that the shorter
be.iles seem more likely to have the data we need recorded. A leap of speculation
could be that most battles only last a day because of the difficulty of fighting at night,
and almost all last only a few days because of the intensity of battle.

We must recall that even during war, battles are relatively rare. Troops from
both sides must concentrate in the same locality at the same time. Except under
unusual operational circumstances, the commanders of both sides must want to fight.
Since the purpose of these meetings is too often a decision - | win, you loose, - we
would expect battles to be intense, and it is this very intensity that will make them
rare since the armies cannot fight another battle until they have rebuilt their strength.

How intense are these battles? To examine this, let us compare the ratio of
each sides final to initial strength. This ratio is just the fraction of surviving strength
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at the end of the battle. The forces in each battle have been arbitrarily divided into
two sides - Red and Blue. (Actually the division was decided by the authors of the
historical collection. The first side named in the description of the battle is the Blue
side.) | have made no attempt to determine which side won or lost, merely divided
them.

The cross plot of these ratio's is shown in Figure 0.4. Note that except for the
eight battles explicitly called out, none of thee battles end with either force having a
surviving force less than 60 percent of its original strength and the majority were
considerably more. Clearly then, only 8 out of 107 (less than 10 percent) of these
battles could be said to be particularly vicious.

But what is vicious? At the personal level, the two most obvious question are
"Did we win?", and "Was I/my friends/relations killed or wounded?" The first question
we will consider later in the book when we examine theories of winning. The second
guestion is one that we must inure ourselves against. As callous as it may seem, our
approach here must be to accept that some of the troops engaged in a battle will be
killed and content ourselves at this time with how many, functionally, that are not.
If we do just that, and take the data plotted in Figure 0.4, and ask in how many
battles was the servicing fraction between x and x+ —x, we get the distribution in
Figure 0.5. There are two distributions, one each for the blue and red forces. These
curves show what we had surmised from Figure 0.4, that few of these battles took
more than a 40 percent toll in strength.

We note that these two distributions are not identical, but are similar in shape.
Since the assignment of which force was on each side was arbitrary, we should not
expect any strong relationship between them. But if these two curves are similar, may
they not be perceived as two sets of random samples from the same distribution? At
this point, we have no reason not to view them as such, and to combine the two
curves. If we do this, and divide by the total number of forces (twice the number of
battles) we get the solid curve in Figure 0.6, which is just the joint frequency
distribution of the surviving fraction for these 107 battles.

The dashed curve in this figure is the integral of the frequency distribution. This
curve is obviously a negative exponential of the loss fraction ( = 1- surviving fraction.)
We may read the curve in the following manner: for any given surviving fraction value,
the probability that corresponds to the curve is the probability that the surviving
fraction will be smaller than the surviving fraction value. For example, there is a 20
percent probability that the surviving fraction after a battle (if we accept this data as
representative) will be 75 percent or less. Similarly, there is a 50 percent probability
that the surviving fraction after a battle will be about 87.5 percent or less (and
obviously, an equal probability that it will be more.). While this is surely a lot, it is a
great difference from the view of battles as duels to the death. Clearly, the
preservation of the force, if not of individual life, is a major consideration in these

0-5
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normal battles.

Let us now turn to examination of the structure of the loses and final force
strengths in terms of the initial force strengths. These data are plotted in Figure 0.6
for the Blue force. While there is no striking pattern for the loses, then most certainly
is for the final force strengths. As we may see, for initial force strengths, less the
about 150,000, there is a clear upper edge to the data, and very little spread to the
data as a whole. This behavior is repeated for the Red force, shown in Figure 0.7.

To confirm this, we again combined the two sets of data. In Figure 0.8, we plot
the loses to both sides in all battles, and find no obvious pattern. In Figure 0.9;
however, where we plot the final force strengths, there is an obvious pattern. Clearly,
there is an upper edge which looks remarkably straight, which seems to set an upper
limit on how much the final force strength is, and a less obvious, but still strong
indication of a lower limit. Further, there is very little spread to the data. On the basis
of just the knowledge that the final strength must be no greater than the initial
strength, we would expect the lower triangular half of the graph to be peppered with
data points. The skeptic may be tempted to advance that the sharp upper boundary
is just the straight line across the graph, but closer examination will show this
apparent straight line to have a slope less than one.

This data represents an historical foundation for a physics of warfare. Clearly,
the final force strength must be viewed as being functionally dependent on the initial
force strength. Equally clearly, it must also depend functionally on other factors, but
it is not obvious what these are from the figures we have presented here.

In the following chapters, we shall develop the mathematical basis of one of the
most compact of the few theories of attrition, that of Lanchester. Having done this to
a reasonable level, we will then reexamine these and other historical data in light of
the theory of attrition. Having made this comparison, we shall then broaden our scope
to examine other theories of attrition and warfare, and examine the uses of the theory
in practice.

Before commencin'g on this mathematical journey of theory, we shall finish this
chapter with a brief discussion of some of the fundamental principles of war as
developed by centuries of scholarly study.

0.C The Principles of War

_ The historical study of war by soldiers and historians has taken the form of
many theories of tactics, strategy, and rules of war. Previous attempts have even tried
to associate the use of mathematical models in understanding warfare. These
attempts, notably those of Jomini, have been roundly denounced by even more
students, notably Clausewitz himself. This debate appears to have at its heart the
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fundamental values of the soldier. The adherents of these theories and methods see
them as useful for understanding the practice of war. By their nature they attempt to
reduce the environment of the battlefield and the theater of war to simple chunks that
can be analyzed. This simplicity is the root of their critics' complaints that these
chunks are too simple, are unrealistic, and misleading. This illustrates the fundamental
difference between the practical necessity imposed on the field soldier and the ivory
tower, start simple and improve, approach of the scientist.

Interestingly enough, despite the aversion to the application of quantitative
analysis to war, all students of war advance some form of analytical discipline. In
Clausewitz's case, it is called Critical Analysis or Kritik. We must conclude that the
soldier is not blind to the value of analysis, but will always temper his valuation of it
to its accuracy and applicability in his sternly pragmatic world view. The ultimate test

of the scientist applies strongly here - is it accurate? In this regard, there is common

ground.

Of the analyses conducted over the years, the most profound products have
been the Principles of War. These principles are the direct result of the evolution of
decisive, persisting (in Jones' terminology) and even total war that has evolved on the
past few centuries. Their applicability beyond the scope of conventional warfare to
non conventional, guerrilla, or even economic warfare has been argued, not without
elements of general validity. Even Clausewitz, who decried the tendency to view
warfare in terms of fixed rules because of his vision of its chaotic nature, found some
guiding principles to be necessary for any comprehensive theory. Because of their
fundamental importance to forming a vision of warfare, we present them here in a
modified form as they appear in the U.S. Army's Field Manual 100-5, Operations:’

The Principle of the Objective states that every military operation be
directed towards a clearly defined, decisive, and attainable objective. This means
that no action should be taken in warfare that does not have some definite, even
explicit, goal, and that that goal be meaningful, and attainable. Obviously, this
implies that there is some common plan for the force and that that plan is shared,
clear, and realistic. _

The Principle of Offensive states that the most effective and decisive way
to attain a goal is by taking offensive action and/or by maintaining the initiative.
Initiative is a concept based on the idea of being able to take actions that force
one's opponent to respond to, rather than the other way about., Offensive action,
which may be strategic and/or tactical, is viewed as being decisive. While it has
been possible to maintain initiative while being purely defensive, these cases are
viewed as being historically rare. Of note is the special case of being strategically
offensive while being tactically defensive. The situation leading to the Battle of the
Alamo is an example. This principle obviously builds on the Principle of the
Objective.



i

The Principle of Mass (or Concentration) states that combat power should
be concentrated at the decisive place and time. In this case, combat power may
not just mean superior numbers, but superior fighting capability. This principle
does not suggest that forces should be concentrated all of the time. It does suggest
that forces should be concentrated at the right place at the right time to achieve
decisive results. This principle is most obviously linked to the theories of attrition
that we shall describe in subsequent chapters.

The Principle of Economy of Force states that only minimal combat power
should be allocated to secondary efforts. This means that the army may be divided
to pursue several goals but that the Principle of Mass should apply for the primary
effort. While clearly permitting division, this principle surfaces the difficulty of
knowing exactly what effort will be primary while providing enough force to
achieve the secondary goals.

The Principle of Maneuver states that one's enemy may be placed in a
position of disadvantage through the flexible application of combat power. At a
superficial level, this principle seems to suggest that by moving one's forces, the
enemy is placed at a disadvantage, thus maintaining or seizing the initiative. This
principle means this, of course, but it also implies a flexibility to move and realign
one's forces. )

The Principle of Unity of Command states that there be only one
responsible commander who direct the efforts to achieve an objective. This
Principle addresses a question of biblical importance, how to serve two masters?
Additionally, it applies the Principles of Mass and Economy of Force, suggesting
the necessity of common goals, clear objectives, and a rigorous chain of
responsibility.

The Principle of Security dictates that one must not allow the enemy to
acquire an unexpected advantage. In one sense, this is the opposite of the Principle
of Maneuver applied to one's own forces - don't allow the enemy to gain
advantage. At the same time, it states that initiative must not be lost, and
pragmatically, Don't Be Surprised!

The Principle of Surprise states that it is desirable to strike one's enemy
at a time and/or place, and/or in a manner that he is physically or psychologically
unprepared for. This is the reciprocal of the Principle of Security.

‘The Principle of Simplicity states that plans should be clear and
uncomplicated and that orders be concise and understandable. This is a pragmatic
reinforcement to the Principle of the Objective. It is dignified with a special
acronym: KISS - Keep It Simple, Stupid!




These are the Principles of War. Other nations have other sets of principles, but
these tend to have great commonality in form and content, if not number and name.
These principle form a fairly comprehensive set of rules for conducting military
operations, although we see that they might equally well be applied to many human
activities. They are a set in the sense that they are interrelated and reinforcing. They
are not quantifiable, and are analytic only in a subjective sense. Because they are an
embodiment of a theory of warfare however, they must be considered in any
quantitative formulation of war, and we shall refer to them during the progress of this

book.
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|. Definitions and Background

I.A. Introduction

This book is not per se a text on modeling in the general sense.- This chapter
however, is included to provide the reader with either a (bare) minimum of background
on the general topic, or a commonalty of understanding of definitions, descriptions,
etc.

My terms do not, in general, always agree with those in common use in
different sections of the community. The techniques and vocabulary of modeling (and
simulation and gaming) in physics are different from those used in other disciplines
(such as Operations Research.) Even those who are familiar with the discipline wiill
quickly find that | have not been loath to invent new terms or develop new techniques
when the occasion warrants and | could find no historical usage.

I.B Definitions and Descriptions

The description of the mechanics of warfare is a task in modeling and
simulation. These latter terms are frequently used synonymously; the purpose of this
section is to address the definitions and descriptions of these terms.

First, a model is a mapping of reality into comprehensibility. A model may
always be expressed in informational symbology, which include, but are not limited
to, words and mathematics. Griff Callahan of Georgia Tech uses the definition:

"Modeling is creating representations of specific human
perceptions of reality, using imitative or analogous physical
or abstract systems to serve as a basis for language.™

In simplest terms, a model is a representation of some aspect of reality in terms
which can be absorbed and manipulated by the human mind.

In general, a model will only express one facet of reality, although that facet
may be complex. ldeally, a model will also be invertible or reversible. Unfortunately,
this is not always the case.

The process of developing a model is known as modeling.

A simulation, on the other hand, is a tool for expressing the world in
understandable terms, constructed from one or more models and a set of logical rules
for relating models’ interaction. Dr. Callahan uses the definition:

"Simulation is the use of computers or other devices as
tools for experimentation with models."

Definitions - 1




Finally, gaming is the use of one or more simulations to gain understanding or
insight. Dr. Callahan uses the definition:
"Gaming is simulation involving human operators in a
competition played according to rules and decided by
superior skills or good fortune."

To illustrate the differences among these three, let us consider the use of a
‘model’ airplane and a wind tunnel to understand the flight characteristics of the ‘real’
airplane. The 'model’ airplane is a model of the real airplane, and the wind tunnel is
a model of the environment that the “real’ airplane operates in - the atmosphere. The
combination of ‘model” airplane and wind tunnel are a simulation of the flight of the
‘real’ airplane in its ‘real’ environment. The use of the simuilation - operation of the
wind tunnel with the ‘model” airplane in it - is gaming of the flight of the airplane.

In summary, we may distinguish among models, simulations, and gaming by
their nature. A model is abstract, a simulation is concrete (in the sense of an
implementation of one or more models,) and gaming is active (the simulation (or tool)
is used.) Although we may, and many practitioners do, use these terms almost
synonymously, we shall attempt to make distinctions among them. Models are
representations of reality while simulations are collections of one or more models for
experimental or calculational purposes. Fundamentally, simulations are used to
generate numbers from the models.

In practice, the distinction among the three terms becomes indistinct. What
- does remain distinct however, are the actions associated with these:

® modeling is the development of models,

® simulating is the construction of simulations, and

® gaming is the pursuit of understanding.

{Being the author allows me from time to time to insert extraneous and even
outre comments, often on nonquantifiable subjects such as morals or ethics. Many
of these comments are my opinions, but being in charge, they appear in black and
white, and the unwary reader may erroneously decide that | am passing on arcane
knowledge. Sometimes this will be the case; other times, | will only be relating war
stories or expressing sour grapes.

One of the loudest of my pet peeves is the question of documentation of a
model versus documentation of a simulation. The documentation of a model should
be complete enough that a simulation can be constructed embodying it. The
documentation of a simulation should be sufficiently complete that the documentation
of the model(s) can either be found or is included, and the logical interplay of the
model(s) in the simulation is fully explained. Alternately, the documentation of a
simulation should be sufficiently complete that the average simulationist can
reconstruct the simulation from the documentation (and its references.) To my mind

Definitions - 2



this is the ultimate test of documentation; completeness for a simulation - can
someone who has never used the simulation, or built a similar simulation, build this
simulation? If the answer is not yes, then the documentation is inadequate.}

I.C. A Distinctive, lllustrative Example

A model of a gunman’s performance may be a probability of kill as a
mathematical function of several variables such as the accuracy of the aim and fire,
the muzzle velocity, the shape and mass of the bullet, the range to the target, the
atmospheric density and wind velocity, the intensity and spectrum of the light
conditions in the area, the size and shape of the target, the density and strength of
the target’s constituent materials, and the response of the target to a hit (at a given
place.) The model is supported by assumptions, conditions, and (presumably,)
verification data. (We shall discuss the theory of mathematical duels in this book.
The mathematical duel, which we shall simply call a duel in the chapter dealing with
mathematical duels, is a special class of war models. Regretfully, there is an
ambiguity in the use of the term "duel”. Whenever possible, we will use the term
formal duel to represent an historical duel; the term duel as a synonym for a
mathematical duel.)

We may use this model to build a simulation of a formal duel between two
gentlemen. (A formal duel differs from a gunfight in that shots are executed
according to a set formula (or model.) Only gentlemen fight duels.) As a simplifica-
tion, we shall assume that the duel continues until one (or both) of the gunmen is
incapacitated or dead. The simulation may be diagrammed as in Figure (I-1).

If we examine this diagram, we notice that random numbers are generated in
the simulation to determine the outcome of each exchange of gunfire. Technically,
there must be a model in the simulation to generate random numbers of the proper
distribution, but such models are not, at this time, germane to this discussion.
Further, most computer libraries, and many simulation programs (such as LOTUS
1-2-3, TK! Solver, and MATHCAD,) incorporate one or more random number
generators. While random number generators are much used in warfare simulations,
their anatomy and physiology are not subjects central to the modeling of warfare.
Interested readers should consult a standard text on numerical methods. (e.g.
Carnahan, Luther and Wilkes?) This simulation can be used to investigate the likely
outcome of a formal duel between two gunmen (i.e. the duel may be gamed.) We
note again that the simulation incorporates the model(s) in a logical framework of rules
that may be used to game a ‘real world’ event, either past or future, for the purpose
of generating understanding.

In passing, we also note that the development of models (modeling) implies the
reverse gaming of a simulation.

Definitions - 3




Event Sequence Simulation

I Generate R1, R2 pr—————

Exchange Shots I

A or B Dead?

N
Honor Satisfied?
| Y

GGATECH AL

Figure I-1. Duel Simulation

[.D. Types of Simulations

While many authors devote much space to a taxonomy of simulations (or
models, depending on their terminology and definitions,®) we shall here only briefly
describe the different types of warfare simulations.

The most complex of warfare simulations are the iconic, where the model is
itself the simulation.

Another type of simulation is the analog simulation; this type of simulation
includes parables.

The largest category of types of simulations are the symbolic simulations.
These include mechanistic simulations {such as a slide rule,) informational simulations
(such as a computer program,) and mixed simulations (such as board games.)
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Informational (and mixed) simulations may be either deterministic or stochastic
(probabilistic.) Deterministic simulations are those of pure cause and effect; they are
not infrequently simulations of the expected values of stochastic models (such as the
Lanchester Differential Equations.) Stochastic simulations, also known as Monte Carlo
simulations, are usually sequenced by event or time ordering (or, in some cases, both.)

The simulation of the formal duel described in Chapter I.C is an example of an
event sequenced simulation. A simulation of a gunfight (where the execution of shots
does not occur on a one-to-one, common time start basis,) could be either event or
time sequenced (since the shots are not fired simultaneously.) In practice, time and
event sequencing are equivalent in philosophy, but care must be taken to ensure that
the simulation does not incorrectly favor one side over the other (introduce "unreal’
results) because of the choice of sequencing. This is shown in Figure (I-2). Notice
that the sequences of the events are different. This can represent a problem only if
the ‘real world’ is misrepresented. For example, in an event sequenced gunfight

Event vs. Time Sequencing

Two processes, A and B, have events Ai and
Bj, which occur at times T(Ai) and T(Bj)

TE) . TE? T(e3) T(®4)

] l I
I P I I I I
T(A1) T(A2) T(A3) T(A4) T(A5)

1 1 |
Event Sequenced Simulations execute the
events in the order of their occurrence:
T(A1),T(B1),T(A2),T(A3),T(B2),T(A4),T(B3),

Time Sequenced Simulations execute all
events in a time interval as if they were
simultaneous:
T(A1),T(A2),T(B1);T(A3),T(A4),T(B2);T(A5),

GATECH Al

Figure I-2. Sequencing Choices
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simulation, a gunman may be allowed to fire after he has been killed. Alternately, in
a time sequenced gunfight simulation, the likelihood of both gunfighters dying may be
skewed by stopping the simulation too soon (while the killing bullet is in flight. This
is an extreme example, but the more complex the simulation, the more likely that such

unrealities will creep in.)
I.E. Characteristics of Simulations

Simulations are also often described by characteristics such as the scale of the
simulation. Two simulations may emulate combat between two companies of troops,
but one simulaan may use combat units which are squads while the other simulation
may use combat units which are individual troops (or even weapon systems.)

Other characteristics are abstraction versus detail or resolution versus detail.
Not all models in the simulation may incorporate the same level of detail in all aspects.

A further consideration is the representation of time and space. Few
simulations represent time and/or space continuously. In event sequenced simula-
tions, time dependence may even be hidden or removed. In simulations of only
ground troops (at a relatively low level of resolution,) space may be represented only
two dimensionally.

Because any simulation must incorporate logical rules to turn itself off, outcome
assessment is a characteristic of simulations. As we shall see in the next chapter
when we discuss Lanchester’s work, a simulation using Lanchester’s equations as a
model may use a conclusion (total attrition or annihilation of one force) as an outcome
assessment.

Finally, simulations may be classified (those used for war gaming at least,) on
the basis of how they represent the force. Most conflict simulations are force-on-
force; these however may be many-on-many, few-on-few, or one-on-one. Some
conflict simulations are one sided (often artillery simulations.) A special class of
conflict simulations used in the design of weapons are the engineering simulations.

I.F. War and Simulation

So far, most of our terminology has been fairly general. We now need to get
a bit more specific about war. War has many levels, processes and components.
Many of these are amenable to modeling and simulation, but not all of them are
represented by models in the formal sense. This may seem contradictory, but will
become clearer as we continue.

If we take the simple national view of war, then prior to the outbreak of war,
there was some opposite non-war state - peace. That state ends in some fashion for
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tow (or more) nations and war begins. The common contemporary view, ala
Clausewitz, is that this transition results from politics. The causes of war,* and even
the early stages of war,® have been studied and we shall not dwell on them here.?

In modern states, there will be standing (i.e., existing) military forces which,
depending on the magnitude and duration of the war, may have to be augmented.
These forces must be equipped and supplied, trained and moved to the battle, and
battles fought. Clausewitz tells us, in a rather dismissive manner, that those actions
that are not associated with battles (and their interactions,) are merely preparations
for war. War proper is a psychological and physical endeavor for victory.

While there is a great deal of merit to this division, modern experience leads us
to believe that war is a national experience that goes far beyond the interaction of
military forces on the battlefield. It is useful, however, to drawn an increasing series
of distinctions between the processes of "war", and the "preparation for war".

To accomplish this series, it is useful to introduce a hierarchial system of

strategic (or war) levels as propounded by Luttwak:®

® Grand Strategic,

® Theater,

® Operational,

® Tactical, and

® Technical.
The Grand Strategic level is concerned with the question of war in the large. It is
inherently political and economic, as well as military, in nature. The Theater level is
concerned with some geographic region where conflict does or may occur. This level
serves as a bridge between the highly political Grand Strategy level and the highly
military Operational level.

The Operational level is "a middle ground where methods of war contend and
battles unfold." The effects at this level are characterized by the contention of armed
forces. There are two extremes at this level: attrition and relational maneuver.
Neither exists in a pure state. Attritional warfare is the literal grinding away of the
enemy’s forces, both men and equipment. Relational maneuver warfare (which is
basically the same as Liddell Hart’s indirect approach,?) seeks to incapacitate the
enemy by systemic disruption. These two approaches, attrition and disruption, are
fundamental to battle. In contemporary terms, they may be thought of as being
"bottoms up” and "top down" approaches to war. Attrition is a bottoms up approach
to winning war by wearing down the number of basic military components that make
up the military forces. Relational maneuver is a top down approach to prevent the
enemy from using his force effectively and decisively.

® We shall consider several models associated with the non-combat aspects of war in later
chapters.
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Both of these approaches are organizationally oriented. Military forces are not
simple collections of men and equipment. These forces have an organizational
structure to make them effective. Denial of that effectiveness has two fundamental
forms - attrition and disruption. Attrition reduces the effectiveness of a military
organization through its component parts. Disruption reduces the effectiveness at the
organizational level itself.

The tactical level of war (in Luttwak’s hierarchy,) is primarily concerned with
the battlefield interactions of these organizations (admittedly at a low level,) and their
components. The technical level is primarily concerned with the interactions of the
components, usually on a one-on-one basis, and is largely dominated by matters of
physics, engineering, and doctrine. The majority of this book is concerned with
discussing some analytical tools and techniques for describing these two levels of

war.

At the Grand Strategy level of war, the primary concern is political and
economic. Questions concerning the production (and development) of war materials,
their transport, and the recruitment, training, and transport of troops are amenable to
modeling and simuiation. Indeed, there are extensive simulations of these process in
place. Additionally, there are political and national will/morale processes, which, being
human dominated, are less amenable to modeling and simulation. At this level, the
interactions of the military forces have importance primarily as they effect these latter
processes although there are exceptions such as the tactical questions of convoy
attrition on supply.®

As we proceed down the hierarchy, the logistical questions of supply, transport
and training become less important and the interactions of the military forces become
more important. This trend culminates at the tactical and technical levels where the
availability of men and materials, their training state and the nature of tactical doctrine
become essentially parametric.

Except at the technical level, which is dominated by physical processes, all of
these levels have considerable psychological or human components. At the tactical
level, morale and willingness to fight (or surrender,) are potentially important factors,
and the reader must be warned that it is in this psychologi: il area that models and
simulations of war, at whatever level, are most primitive and ad hoc. As we shall see,
the tactical models that we discuss do not, in and of themselves, consider termination
of combat except in limiting mathematical form.

®* The convoy question is a classic of military operations research. Although we are concerned here
with the Grand Strategy level of war, the effective transportation of men and materiel across oceans
has an operational/tactical component concerned with protecting the transporting vessels from
attrition.
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Admittedly, some of the technical models that we will discuss do have human
components, but these components are essentially physiological rather than
psychological in nature. In general, the psychological aspects and processes of war
are those which are the least represented in combat simulations.® '

I.G. Combat and Simulations

As we have previously stated, much of this book is concerned with the tactical
and technical levels of war. Our central focus will be on models of combat processes.
Although we shall speak in general of combat, most of our discussion will be
concerned with duels® or engagements, and battles.® To a slight extent, we shall be
concerned with the operational level of war which is primarily concerned with
campaigns. Campaigns may be thought of as an orchestrated (hopefully) series of
battles. What raises this series above the tactical level is the non-combat processes
which occur (e.g., relational maneuver.)

At the technical and tactical levels of war, the primary modeling interest is the
interactions between the individual weapon systems. One-on-one engagements are
usually considered to be technical for Army weapons, but tactical for Air Force and
Navy weapons. This can be seen easily by considering that most warships and
warplanes carry more than one weapon system.

The interactions between two weapon systems (with crew,) or between a
weapon system with crew and a man (men) or vehicle are probabilistic in nature,
That is, if an infantryman fires his rifle at an enemy rifleman, there is some probability
that a hit will occur. This probabilistic nature is fundamental to our approach to
combat processes, and largely determines the two approaches to the modeling and
simulation of combat.

¢ An actual argument may be made that there are social processes in the simulation community
that act to prevent development and inclusion of psychological models.

¢ Duels, as used hereafter, have a fairly rigorous mathematical formulation. They are considerably
more general than our picture here of two men shooting at each other. We shall briefly review duel
theory in a later chapter.

¢ We will make a somewhat confusing use of the terms engagement and battle. We shall use the
term engagement to mean both the firing of a weapon at a target, and the overall combat processes
in combat between two or more forces. The term battle will tend to be reserved for one or more
engagements (second meaning) and possibly maneuver, reinforcement, resupply, etc.

f This does not mean that there are combat processes or subprocesses that are actually or

practically deterministic. They do exist, as we shall see. In a general sense, however, they are the
exception rather than the rule.
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These two basic approaches are specification and aggregation of the forces.
The specification approach is more obviously probabilistic in nature. For this reason,
simulations built using this approach are commonly referred to as Monte Carlo or
Stochastic simulations. Under this approach, each individual weapon system/platform
is represented explicitty. Combat processes are represented individually and
probabilistically. That is, each time an infantryman fires at an enemy, the simulation
generates a random number to determine whether a hit occurs or not. A key technical
concern of these simulations is thus the generation of these random numbers.
Because of the individual representation of each weapon system, these simulations
tend to be quite large in size and may require multiple executions to arrive at
statistically significant results.

The aggregation approach lumps together weapon systems. Forces are usually
represented by their strengths (numbers.) Different types of aggregation may be used
on the basis of weapon system and/or organization type. Combat processes are
represented by rate of change of force strength. These rates are usually the expected
values (and occasionally the standard deviations,) of the relevant combat processes.
For this reason, simulations based on aggregation are often referred to as deterministic
or expected value. These simulations may be smaller in size than specification
simulations, and generally do not require multiple executions. Key technical concerns
with aggregation simulations are how the rates are calculated from the combat
process models, and the form and technique of solution of the force strength

relations.

In general, the same probabilistic combat process models go into both types of
simulations. The two types of simulations differ in how the expected values (and
standard deviations,) of the processes which make up the entire battle are calculated.
In Monte Carlo simulations, the expected values for the battle are calculated by the
simulation. In aggregated simulations, the expected values of individual engagements
are calculated before the simulation is executed. There are several significant
differences between these two types of simulations, but the most important
commonality is that they share combat process models. Thus, if we know these
models, we know what goes into each type of simulation.

The aggregation models of the changes in force strength are the philosophical
basis for the aggregated simulations, and arguably, for the Monte Carlo simulations
as well. From a theoretical standpoint, these models are essentially all attrition
models - the other combat processes do not have the theoretical framework that

attrition does!

The theory for these models was initiated at the start of the Twentieth Century
by four men. One of them, Lanchester, is generally credited with the basic work
although, as we shall see, the question of who was the founder of attrition theory is
largely moot. The next chapter reviews the lives and contributions of these four
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pioneers.
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Il. LITERATURE REVIEW |

I1LA. Introduction

This chapter is the first of several which review the literature of the dynamics
of warfare. This chapter is devoted to the origins of that literature. As such, it is
devoted to the work of the four founders of the discipline: Lanchester, Osipov, Fiske,
and Chase; an Englishman, a Russian, and two Americans.

Il.B. Frederick William Lanchester

Who is this man whose name is uniquely associated with the dynamics of
warfare? What little' we know indicates that Lanchester was a Research and
Development engineer of great accomplishment, a pioneer in the development of
automobiles, aircraft, and operations research. The latter is of primary interest here.

In retrospect and in the context of our own day, it seems obvious now that
Lanchester continuously sought out problems and solved them, but was not greatly
concerned with turning his solutions to practical applications. in this he typifies the
developing discipline of bellum dynamics; he pursued (what are now) academic
problems without the benefit of an academic environment. As a result, many of his
accomplishments found no recognition until years later; indeed, his efforts consistently
verged on the edge of failure because of their non-application to Civilization’s affairs.
His work on warfare dynamics typifies this; performed during World War |, it found
little or no application during World War il and recognition only in the years following
that war.?

This is not to portray that the man was a failure. Rather, he was draped in
most of the scientific honors that Imperial England could bestow save only
knighthood. Only in the area of economic success could Lanchester be reckoned a
failure, especially in the automobile industry.

It is, however, in the field of operations research that he has become a
demigod, immortalized in the uitimate award of that field.

The seminal contribution of Lanchester to operations research is contained in

* Until recently, it was commonly believed that Lanchester's theories were not widely known.
However, the recently {19887?) discovered correspondence of (then) Captain J. V. Chase, USN, of
1921 indicates, at least, his, and presumably, his correspondent’s familiarity with the concepts. It
seems reasonable that the work of Lanchester enjoyed some attention within the officer corps of the
U.S. Navy prior to World War Il. It was only after that war, possibly due to the development of the
digital computer, that an industry based on Lanchester’s work came into being.
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his book Aircraft in Warfare: The Dawn of the Fourth Arm published in 1916,%2 now
sadly out of print and difficult to find in any but the most venerable of libraries.
(Indeed, the copy that | was able to study was provided under interlibrary loan from
the United States Military Academy library.)

This work runs to nineteen chapters, of which V, VI, and XVIII are most
relevant to the subject at hand. The foliowing text presents a brief outline of the
material contained in those chapters, as it applies to Bellum Mechanics.

The Principle of Concentration which underlies what would become known as

the Lanchester Equations begins Chapter V, dated October 21, 1914.

The Principle of Concentration: the force with the greater

strength, all other factors being equal, will inflict the greater

damage.
This principle is illustrated by the difference between ancient and modern warfare.
In ancient warfare, combat is typified by an essentially linear interaction of troops at
a combat interface engaged in a one-on-one (short range) manner. (The use of long
range weapons such as the crossbow or the longbow is conveniently ignored.) In
modern warfare, combat is typified by a more areal interaction of troops in @ many-on-
many (long range) manner.

The Principle of Concentration leads directly to the definition of the Quadratic
Lanchester Differential Equation:

"If, we assume equal individual fighting value, and the
combatants otherwise (as to ‘cover,” etc.) on terms of
equality, each man will in a given time score, on the
average, a certain number of hits that are effective;
consequently, the number of men knocked out per unit time
will be directly proportional to the numeric strength of the
opposing force. Putting this in mathematical language, and
employing symbol b to represent the numerical strength of
the ‘Blue’ force and r for the ‘Red’, we have:

db
b _ .. . 1 (11.B-1)
7 rc..(1)
and
I bk o (11.B-7)
dt

in which t is time and c and k are constants (c = k if the
fighting values of the individual forces are equal).”
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{In contemporary terms, the constants c and k are called attrition or kill rates. They
will be designated throughout this book by Greek letters, usually a and R.}

The Principle of Concentration is illustrated by an example: Consider two forces
of 1000 men each. The red force is divided into two units of 500 men each which
serially engage the single (1000 man) unit of the blue force. {Lanchester introduces
his differential equations and the state solutions to them, but not the explicit time
solutions. We shall develop these in Chapter Ill, but we introduce here the state
solution of the Quadratic Lanchester Differential Equation: :

B®- B = % (42 - AD) (11.B-3)

where: B, A are the force strengths of the 'Blue’ and 'Red’ (Amber) forces,

respectively,
B,, A, are the initial force strengths of the ’Blue’ and 'Red’ forces,

respectively, and
a, R are the attrition rates (kills per unit time per man) for the 'Blue’ force
against the ‘Red’ force, and the ‘Red’ force against the "Blue’ force, respectively.

If we take the attrition rates to be equal, then the two serial combats may be
modelled:

First Engagement
B, = 1000 A, = 500
B = 866 A =0
Second Engagement
B, = 866 A, = 500
B = 707 A =0
This example, which depicts the Blue force totally destroying the Red force (100%

loss) with only moderate loss {30%) to itself by being able to concentrate, illustrates
the Principle of Concentration and supports the axiom of war that forces are not to
be divided.

It seems equally obvious that this example is for illustrative purposes only.
Battles do not proceed (usually - we discuss this in a later chapter) to the complete
destruction of one force (which Lanchester calls a conclusion.) Unfortunately,
Lanchester introduces, almost immediately, this mathematical concept of victory
prediction as complete attrition of one force - the concept remains with us to this day.

in his book, Lanchester presents a graph to depict the general weakness of a
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divided force. Rather than reproduce the graph here, we instead take an algebraic
approach. Again let the initial force strengths of B and A be the same, and let the
attrition rates for the two forces be equal. We rewrite the state solution, Equation

(11.B-3), in the form
BZ - BO = A2 - AO' o (11.B-4)

(We have dropped the attrition rates @ and B since they are equal and cancel - the
ratio a/R has a value of one.)

If the battle is fought through to a conclusion, then one of the two forces is
completely attrited. Since the initial force strengths are givens, the 'victor’ is entirely
decided by the sign of the right hand side of this equation. If the right hand side is
positive, the Blue force is the victor (or survivor); if negative, the Red force is the
victor: if zero, a draw occurs {which presumably ends in mutual destruction!)

Since the combat occurs serially, we may write the initial Red force strength
squared as

A2 = N2 X%+ N2 (1 - X)P, (11.B-5)

where N is the initial total strength of the Red force, and X is the fraction of the Red
force in the first unit. S

Since the initial strength of the Blue force is also N, the state solution, Equation
(11.B.-4) may be rewritten, using Equation (lI.B-5), as

B2 - 42 = N2 (2X - 2X2). (11.B-6)

We may immediately see from Equation (Il.B-6) that any division of the Red force
results in a Blue force victory (assuming the combat is carried to a conclusion) since

2X - 2x2>0,X<1, (11.B-7)

Only if X = 1 (an undivided Red force) does the combat become a draw.

We may further see that Blue force losses are minimized when X = 0.5 (an
even division.) This example addresses only the case where the two forces and their
attrition rates are equal. The Quadratic Lanchester Law - Principle of Concentration
can be used to develop cases which predict an advantage for the division of forces.
An example of this would be a division of the Red force where part of the force is
used to execute a flank attack on the Blue force. (The combat is now not serial, but
staggered.) In this case, it is convenient to write the state solution in the form
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g2 - B 42 . BZ - B AZ. (11.B-8)
« o

The initial Red force strength squared, times the ratio of attrition rates, is

Ba2-B ppyz. B N2y xp (11.B-9)
o y @y

where a,, a, are the attrition rates against the frontal attack and flank attack units,
respectively. (Note that the attrition rate of the Red force against the Blue force is the
same for both the frontal and flank attack units (i.e. B); it is the attrition rate(s) of the
Blue force against the Red force that changes with force engaged.)

If, for convenience, we assume that the attrition rates for frontal attack are the
same for both forces, and that the forces again have the same initial force strength,
then we may write

B2-A2-N2(1 -Xx2) - B A2 (1 -x) (1.B-10)
o2

This equation shows that (for example,) if 10% of the Red force is put into the flank
attack, and if the vulnerability of that force to attrition by the Blue force is reduced,
through surprise or whatever, by a factor of at least 20, then the victory will be Red’s

“rather than Blue’s.

Lanchester is apologist in defending the validity of counting the humbers which
comprise the forces on the grounds that the counting will be done anyway. He
further asserts that training and morale are not suited to theoretical discussion, the
performance of weapons is. The use of weapons in combat is dependent on the
morale and training of the troops. If the troops are not trained, they cannot use their
weapons. Nor, if their morale suffers, are they likely to use their weapons. It is not
that these have no effect; rather, Lanchester asserts, they are not amenable to
analysis. The question of what constitutes the strength of a unit is best expressed by
two quotes:

"The fighting strengths of the two forces are equal when

the square of the numeric strength, multiplied by the

fighting value of the individual units, are equal.”
and

"The fighting strength of a force may be broadly defined as

proportional to the square of its numerical strength

multiplied by the fighting value of its individual units.”
This is basically the same as we demonstrated in the previous example for adding
forces.

-5




If the attrition rate of a machine gun is 16 times that of a rifleman, then 250
machine guns (with crews) have the force strength of 1000 riflemen. In an
engagement between a force of riflemen and a force of machine guns, the individual
machine gun will (on the average) receive four times as much fire as an individual
rifleman would under the circumstances. This is true if the fire of the riflemen is
aimed (as in the Boer War - Lanchester’s example.)

If on the other hand, fire is distributed without such pinpoint aiming over the
area covered by the force, then the machine gun will receive only slightly greater fire
than a single rifleman would (given a slightly larger area for the machine gun,) and
may actually be less. For example, say that both forces hold an area of 10 square
kilometers. This equates to 1,000 m? per rifleman or 4,000 m? per machine gun.
Both are subjected to fire from an area weapon with an area of effectiveness of 100
m2. This translates into an attrition rate of 0.1 rifleman per fire, but only 0.025
machine guns per fire.

This line of reasoning leads to the Linear Lanchester Differential Equations:

a4 -a A B,

“1; v (I.B-11)
9B _ _p B 4,

dt

where A and B are the force strengths of the Red and Blue forces respectively, and
a and R are the attrition rates. {Note that these a and B are different from the
previous ones for the Quadratic Lanchester Differential Equation.} Lanchester notes
that in this case where fire is directed against an area and not against an individual,
the rate of loss is independent of numbers and dependent only on the efficiency of the
weapons. In this case, there is no value in concentration. This case is cited as being
more appropriate for describing ancient combat, not because the weapons are long
range, but because the units were only engaged along a linear interface and thus the
numbers engaged at any moment, on either side, were approximately equal. We may
note however, that in modern terms, the Linear Lanchester Differential Equations are
normally appropriate for describing the use of what the Russians call Weapons of
Mass Destruction, in particular nuclear and chemical weapons. (Whether they are
appropriate for biological weapons depends on the exact vector(s). We shall comment
further on this in a later chapter.)

It is interesting to note that even in ancient combat, there appears to be
advantage in concentration in the line. Notable ancient success stories such as the
Greek phalanx and the Roman legion enjoyed considerable increase in force strength
by, in effect, concentrating more men into the linear interface. Notably, this was the
result of better tactics, training, doctrine, and/or morale, which Lanchester states are
not amenable to analysis.
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The principle historical analysis presented by Lanchester to illustrate the
Quadratic Law and the Principle of Concentration is the Battle of Trafalgar (1805).
Here the British fleet (40 ships) under Admiral Lord Nelson divided the French Fleet
(46 ships) and engaged the rear half at a force ratio of 32:23. This gave a total force
strength of

British French
(32)? + (8)? (23)? + (23)2
1088 1058

which should, if carried to a conclusion, have resulted in a draw.

The dynamics of ship motion were such that a significant period of time would
be required for the front half of the French fleet to sail back to the aid of its rear half.
Further, Nelson used 8 of his ships to slow this process. Thus, in the main battle
area, the force strength ratio was ’

British - French
(32)2 (23)2
1024 529

Which gives a force strength ratio, British to French of approximately 2:1. This
- analysis is based on an operational memorandum prepared by Nelson before the battle
and the actual forces are somewhat different. The outcome was not.

1. McCloskey, Joseph F., "Of Horseless Carriages, Flying Machines, and Operations Research”,
Operations Research, 4 141-147, 1956.

2. Lanchester, Frederick W., Aircraft in Warfare: The Dawn of the Fourth Arm, Constable and
Company, LTD., London, 1916.
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[1.C. Osipov

In their book Forecasting in Military Affairs, Chuyev and Mikhaylov' devote
approximately two pages (out of 230) to the area of Lanchester’s equation as partial
contents of a section on Differential Equation Models in a chapter on Military
Formalism models. Most of that two pages of text consists of two example: one is
concerned with the Quadratic Lanchester Differential Equations and their state
solution, and the other is concerned with a transport theory outgrowth (which we
shall treat in a later chapter.) No mention is made of the Linear Lanchester Differential
Equations, nor does the example present any numeric data (a relative rarity among
Russian authors who seem enamored with including numerous tables of data in their
works -perhaps an indication of the lack of computational capability avail-able to the
student? Or a potential embarrassment to the state since historic casualty data would

be needed?)

What is most startling in these two pages is the claim that the "Lanchester
equations"” had been put forward by Osipov earlier. No reference to this work by
Osipov is given.

Searches for the work proved fruitless, given the paucity of real information.
For a while, | ascribed Osipov to be another piece of Russian hype, claiming the
development of Lanchester’s equations just as they had similarly claimed to have
invented everything from the Franklin stove to the fundamental theorem of the
calculus. Subsequently this ascription proved to be false. The Library of Congress
yielded up to Dr. Allan Rehm five articles by one M. Osipov? all published during
1915. Subsequently, Dr. Rehm advised me that two separate translations had been
made, one by Dr. Helmbold and another by Deborah Couiter-Harris®> of the Soviet
Army Studies Office at Ft. Leavenworth. He was kind enough to provide me with a
copy of the latter. The remainder of this section is based on that translation. (Where
there are "direct"” quotes, they should be taken in the context of the translation.
Subsequently, Drs. Helmbold and Rehm have made their own translation.?)

It is clear from Osipov’s articles that he developed his theory of combat
independently of Lanchester and Fiske. Not only are the tone and texture of the
material different, but there is significant new material and philosophy. Further,
despite his protestations that he is (was) neither a specialist in military history nor
skilled in the practice of military matters, he is, manifestly by his knowledge and
arguments, a student of both. He also has a knowledge of mathematics and
statistics, although it also seems unlikely that he is either a professional mathemati-
cian or statistician. His ability to communicate in writing is evident, even in English
translation, yet his antipathy to the press would seem to indicate that he is not a
journalist. If we proceed with this fanciful analysis, we would be led to speculate that
M. Osipov is a teacher (this would explain his communication skills and his well
rounded, but apparently introductory knowledge of history and mathematics,) who
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served in the army during the Great War.

Osipov begins his article by considering history. He almost immediately
provides a list of 38 battles spanning the century from 1805 to 1905. This list
excludes battles between "regular troops and disorganized elements of uncivilized
countries” (colonial battles,) and "battles where one side has a fortress or strong
temporary fortifications." While he does not consider the duration of the battles, he
does list initial force strengths and losses (equivalent to final force strengths) for both
sides. These are organized by stronger force versus weaker force (initially) rather than
by victor-loser or attacker-defender. However, of the 38 battles, 28 were won by the
stronger side. These are shown in Table (ll.1).

Just as Lanchester introduced the Law of Concentration, Osipov introduces the
Law of Distribution of Losses (or just Law of Losses):
"Law of Distribution of Loses: The strongest side has less losses than
the weaker side.”
If we take (in our preceding notation) Red to be the stronger side and Blue to be the
weaker, then we may write this mathematically as

(I.c-1)
Ay - A< By - B.

We immediately see an apparent conflict between Lanchester and Osipov since the
Law of Distribution of Losses states that Lanchester’s Quadratic Law does not hold.
This however, is not the case if we consider the role of the attrition rate constant/-
function. If we compare this equation to Lanchester’s linear law state solution, we
find that the Law of Distribution of Losses gives us the requirement that

<1 (1.C-2)

L2
p

for the Linear law. For the Square law, a somewhat more complicated situation
exists. To investigate this, it is convenient to write the square law state solution in
the form,

B4 + A4, - A) = a (B, + B)(B, - B), (I.C-3)

which we may rewrite as

o (B, + B) (11.C-4)

(Ao - 4) = (Bo - B),

B4, + 4)

since the right hand side is, by the Law of Distribution of Losses, less than blue’s
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losses (B, - B), this equation reduces to

11.C-5
a(B, + B) < B4y + A), (1.C-5)

or
< (4, + A) (1n.C-6)
(Bo + B).

o

p
We may define the losses as a = (A, - A) and b = (B, -B), which allows us to rewrite
Equation (I1.C-6) as

o . (2A0 - a) (H.C-7)
B (230 - b)

Since A, > B, by postulate (and convention), and a < b by the Law of Distribution
of Losses, it immediately follows that

24, - a) > 2B, - b), (h.c-8)

so that the ratio a/8 is less than some number greater than one for Lanchester’s
square law. Thus, there is no conflict between Lanchester and Osipov on the basis
of the mathematical formulation of the Law of Concentration and the Law of
Distribution of Losses. It remains to be seen if this is supported by historical

evidence.

This historical evidence is one of the primary contributions of Osipov in his
articles. As we have stated, Osipov presents a table of 38 battles. The dates of
these battles span the century 1805-1905. Most are drawn from the Napoleonic era
(1805-1815) or during the thirty year period 1850-1870. (Crimean War, Second War
of Italian Independence, Austro-Prussian War, and Franco-Prussian War). (We shall
examine these data in greater detail in a later chapter devoted to historical insights.
Our comments in this chapter will be limited to a review of Osipov’s five articles).

Of these 38 battles, Osipov notes that 28 were victorious for the force with the
greater numbers. (We note that Osipov rounds all of his numbers, usually to
thousands. This gives rise to some calculations which appear more definite in their
significance than if rounding had not been performed. This is especially true in the
statistical inferences that Osipov draws). From a companion of losses in these
battles, Osipov concludes that, in general, the stronger side takes fewer losses than
the weaker side in a battle. He quickly notes, however, that there are many other
factors which influence the outcome of the battles. What is significant in that in the
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consideration of the battles as an aggregate data set, the effects of these factors are
decreased and the effects of pure numbers may be seen. (This is one of Osipov’s
significant new contributions. By aggregating these battle data, he in essence takes
a scientific approach to the problem, asserting that factors other than pure numeric
strengths may be treated as random error sources (relative to the calculation at hand),
which cancel out in the mean).

Osipov next describes a "simplest method of calculating losses” which is to all
intents and purposes is Lanchester’s Quadratic Attrition differential equation. He
writes the state solution as

(11.C-9)
A? - AZ = B? - B, 2,
where: A= A,-a
B’ = B, - b.
He further advances the approximation
(n.c-10)

Ay a = By b,

based on examination of his table of historical data. (In Lanchestrian terms, Osipov
is stating that history indicates that most battles stop far from a conclusion. We will
examine this in more detail in a later chapter).

Next, using a calculus argument, and introducing an attrition rate (identical for
both sides), Osipov derives the analytic Quadratic Law solutions as a function of time.
Tables of the cosh and sinh functions are presented since they would not normally (?)
be available to the reader, and example calculations are presented. Osipov then
notes that the time solutions are "not appropriate for application to military history,
because a (attrition rate) and t (time) are unknown". This statement recognizes two
fundamental problems in the analysis of historical data:

. how to get battle duration data, (a very difficult undertaking), and

» how to use it why you have it, since combat is not continuous.

(Again, we shall treat this in more detail in the chapter on historical insight). In the
process of developing further examples, Osipov presents the Quadratic Law solutions
for distinct (i.e. different) attrition rates, but claims that the derivation is so similar to
the previous one that he will not take the space to belabor it. He does, however,
present the "modified state solution, Equation (Il.B-3).

Osipov next introduces consideration of a force comprised of two different
weapon systems (rifles and some other weapon such as machine guns or direct fire
artillery). With the assumption that the second type of weapon takes no casualties
(is not atritted) he writes the Quadratic solutions as

- 11




_ BN, | si
(A + -EMO) = (Ao + -EMO) cosh(a?) - (Bo + -;No) sinh(a?) (.C-11) .

(B + -"-No) - (BO R ENO) cosh(a?) - (Ao + P-Mo) sinh(a: 1),
o o o

where: B is the attrition rate for the second type of weapon (e.g. machine guns)
a is the attrition rate for the first type of weapon (rifles)
A,, B, are the initial number of rifle bearing troops (assumed one to one)

for each side respectively, and,
M,, N, are the initial (constant) number of weapons of the second type.

The state solution is

(A + ":iMo)2 - (Ao + 'B'Mo)z "'(B + —ENQ)Z - (Bo + _ENO)Z. .c-12)
.« « o o

Note that Osipov states that this formalism is valid only if the number of second type
of weapons is not atritted.

Osipov goes on to state that this technique of normalizing the attrition of
additional weapons may be extended to third, fourth, etc. types of weapon systems
so long as they are not atritted. He also expands the state solution for small losses .
as

(42 - 42 - B2 - B®) ~ 2B (am, - B - 0. (1.C-13)
o

He then proceeds to calculate the ratio f/a, the relative attrition of artillery (in this
case) to rifles and finds it is a number ~ 123 -143, for these Napoleonic battles.

One of the concepts Osipov introduces is the "correlation of losses”. He
compares the actual losses to a calculation based on the other strength numbers.
While there is no basis for the association, it is still interesting to postulate th:* this
type of calculation maybe the genesis of the "Correlation of Forces™ practiced in the
Russian armed forces today. Certainly, a logical connection can be made between the
types and forms of the calculations.

Osipov introduces the differential equation

JAdA = JBdB (I1.C-14)

based on his analysis of the historical data. This gives rise to the state solution
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(11.C-15)
A% _ oY - o2 - B3,

In the correlation of losses calculation, Osipov calculates the losses for the stronger
sides using the state solutions for the Quadratic Law (from Equations (Il.B-3) and
(11.C-10), respectfully) and the 3/2 law (Equation (II.C-15) above). The difference
between this calculated loss and the actual loss is treated as an error term and the
aggregate for the 38 battles is treated to an error analysis. (Osipov rounds to
thousands here, resulting in a tidier result than would be found otherwise. The
numbers in the Table li-2 are not rounded due to the way that the table was formed).
He finds average errors of 22% for the exact quadratic law state solution, 15% for
the approximate quadratic law state solution and 0.7% for the approximate 3/2 law
state solution. Further, the mean is essentially the median for the 3/2 law calculation.
He concludes that the 3/2 law most clearly describes this type of battle.

He further concludes that for small battles (< 75,000), the quadratic law may
be more relevant than the 3/2 law. For force strengths >75,000, the 3/2 law
appears to be more relevant. Osipov does note, however, that the rationale for the
3/2 law is purely empirical while the quadratic law is better founded theoretically.
(We shall examine the 3/2 law in greater detail in the chapter on Osipovian combat.
Since Osipov and Lanchester appear to have independently developed mathematic
attrition theories with many points in common, we shall adopt the following
nomenclature: The quadratic and linear attrition processes will continue to be referred
to as Lanchestrian rather than as the more cumbersome Lanchestrian - Osipovian,
attrition process other than quadratic and linear, will be termed Osipovian in
recognition of the greater generality of Osipov’s empirical consideration of attrition).

Osipov next proceeds to consider further the statistical aspects of his theory.
He examines error sources such as leadership, morale, reserves, artillery, weapons
quality on terrain and improvements, large number of fighting units, density of fighting
units and (considered to be systematic errors). He examines the concept that battles
terminate when one side has taken 20% losses.

Osipov concludes by stating that the dependance of losses on the numerical
strength of the forces exists but cannot be verified except on a statistical basis.
However, the stronger side has less losses than the weaker side. (Law of distribution
of losses). He does not present his theory as other than an example of the application
of existing military principles.

It seems likely that Osipov’s papers were not all that well received by the
Russian media when they were published. Certainly we do not know what happened
to Osipov following their publication. We do know that they have been used, in some
form, in the Military Operations Research community of the USSR.

fh-13




1. Chuyev, Yu. V., and Yu. B. Mikhaylov, Forecasting in Military Affairs, Moscow, 1975, Volume
16 in Soviet Military Thought, U.S. Government Printing Office, Washington.

2. Osipov, M.,"The Effect of the Quantitative Strength of Fighting-Sides on the Losses", Voennie
Shornik, 3-7, 1915.

3. Coulter-Harris, Doborah, "Translation of The Effect of the Quantitative Strength of Fighting-
Sides on the Losses", Soviet Army Studies Office, Ft. Leavenworth, KS, 1987.

4, Helmbold, Robert L., and Allan S. Rehm, trans., M. Osipov, "The Influence of the Numerical
Strength of ENgaged Forces on their Casualties™, U.S. Army Concepts Analysis Agancy, Bethesda, MD,
Research Paper CAA-RP-91-2, September 1991

IN-14



Stronger Weaker
Force Start Losses Force Start Losses
Austerlitz Allies 83 27 | French 75 12 | 1805
Jena French 74 4 | Prussians 43 12 | 1806
Auershtedt Prussians 48 8 | French 30 7 | 1806
Preisish French 80 25 | Russians 64 26 | 1807
Freiland French 85 12 | Russians 60 15 | 1807
Aspern Austrians 75 25 | French 70 35 1809
Wagram French 160 25 | Austrians 124 25 1809
Borodino French 130 35 | Russians 103 40 | 1812
Berezina Russians 75 6 | French 45 15 | 1812
Bautsen French 163 18 | Allies 96 12 | 1813
Ganau - “French 75 15 | Allies 50 9 | 1813
Drezden Allies 160 20 | French 125 15 | 1813
Keiptsig 1-Allies 300 50 | French 200 60 1813
Katsbach Allies 75 3 | French 65 | 12 | 1813
Liutsen French 157 15 | Aliies 92 12 | 1813
Dennevits French 70 9 | Allies 57 9 | 1813
Kul'm Allies 46 9 | French 35 10 | 1813
Laon Allies . 100 2 | French 45 6 | 1814
Kpaon French 30 18 | Russians 18 5 1814
Waterloo Allies 100 22 | French 72 32 | 1815
Lun’i French 120 11 | Prussians 85 11 1815
Grokhoro Russians 72 9 | Poles 56 12 | 1831
Al'ma Allies 62 3 | Russians 34 6 | 1854
Chernaia Allies 62 2 | Russians 56 8 | 1854
Inkerman Russian 90 12 | Allies 63 3 1854
Col’ferino Austrian 170 20 | French 150 18 | 18569
Madzhenta Austrians 58 10 | French 54 5 | 1859
Kustotsa Austrians 70 8 | Iltalians 51 8 | 1866
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Battle Stronger Weaker Date
Force Start Losses Force Start Losses |

Kenigrets Prussians 222 10 | Austrians 215 43 1866
Mets Germans 200 6 | French 173 20 | 1870

Gravelot Germans 220 20 | French 130 12 1870
Mars LaTour | French 125 16 | Germans 65 16 | 1870
Vert German 100 10 | French 45 5 | 1870
Sedan Germans 245 9 | French 124 17 | 1870
Aladzha Russians 60 2 | Turks 36 15 | 1877
Shabh Russians 212 40 | Japanese 157 20 1904
“Liaoian Russians 150 18 | Japanese 120 24 | 1904
Mukden Russians 300 59 | Japanese 280 70 1905
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Stronger Force Weaker Force Quadratic "Quadratic”
Start Losses Start Losses Errors

Austerlitz 83 27 75 12 -16 -17 -16
Jena 74 4 43 12 3 2 5
Auershtedt 48 8 30 7 -3 -4 -3
Preisish 80 25 64 26 -6 -5 -2
Freiland 856 12 60 15 -2 -2 0
Aspern 75 25 70 35 6 7 8
Wagram 160 25 124 25 -6 -6 -3
Borodino 130 35 103 40 -6 -4 0
Berezina 75 6 45 15 2 3 5
Bautsen 163 18 96 12 -11 -11 -9
Ganau 75 15 50 9 -9 -9 -8
Drezden 160 20 125 15 -8 -9 -7
Keiptsig 300 50 200 60 -13 -10 -2
Katsbach 75 3 65 12 8 7 8
Liutsen 157 15 92 12 -8 -8 -6
Dennevits 70 9 57 9 -1 -2 -1
Kul'm 46 9 35 10 -1 -2 -1
Laon 100 2 45 6 1 0 2
Kpaon 30 18 18 5 -15 -15 -15
Waterloo 100 22 72 32 -2 1 5
Lun'i 120 1 85 1 -3 -4 -2
Grokhoro 72 9 56 12 0 0 1
Al'ma 62 3 34 6 1 0 1
Chernaia 62 2 56 8 6 5

Inkerman 90 12 63 3 -9 -10 -10
Col'ferino 170 20 150 18 -4 -5 -4
Madzhenta 58 10 54 5 -5 -6 -6
Kustotsa 70 8 51 8 -2 -3 -2
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Battle Stronger  Force Weaker Force Quadratic "Quadratic” 3/2
Start Losses Start Losses Errors
Kenigrets 222 10 215 43 32 31 32
Mets 200 6 173 20 12 11 12
Gravelot 220 20 130 12 -13 -13 -11
Mars LaTour 125 16 65 16 -8 -8 -5
Vert 100 10 45 5 -7 -8 -7
Sedan 245 9 124 17 0 -1 3
Aladzha 60 2 36 15 6 7 9
Shabh 212 40 157 20 -25 -26 -23
Liaoian 150 18 120 24 1 1 3
Mukden 300 59 280 70 5 6 8
Quadratic "Quadratic” 3/2
20.0% 156.0% | 0.7%

Osipov’s Errors
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II.D. Fiske

Rear Admiral Bradley A. Fiske is regarded as a folk hero in the U.S. Navy. He
was one of the primary operators in the military, technical, and political process of
bringing the Navy into the Twentieth Century; of taking the technical advances of the
late Nineteenth Century that made the transition from steam-driven wooden vessels
to metal vessels possible. He was responsible for numerous naval inventions which
spread the capabilities of modern technology through everyday maratine tasks. He
was one of the architects of the operational innovations that integrated the new navy
from a collection of ships into a viable military force. Thirdly, he was progenitor of
the office of Chief of Naval Operations and the institutionalization of the General Staff
in the U.S. Navy.

In 1905, Fiske wrote his eighty page essay "American Naval Policy” which was
the Naval Institute (which he helped found, and of which he was later President,) prize
essay of that year. In that essay, he introduced the concepts that we now think of
as Lanchester’s Quadratic Law (State Solution) and the Law of Concentration. This
essay (until recently - see next section) gives rise to arguments that Fiske invented
Attrition Theory.

While Fiske was prolific as an author, most of his writings have not been widely
known outside of Naval circles. Of particular note, therefore, is the recent publication
of Fiske’s 1916/1918 The Navy as a Fighting Machine.! The 1916 edition met in
1917 enthusiastic review when published in England. From an European standpoint,
this clearly makes Fiske a contemporary of Lanchester and Osipov in advancing (in
print) the precepts of attrition theory.

In The Navy as a Fighting Machine, which incorporates an expansion of his
prize essay as well as other material, Fiske discusses the implications of the Quadratic
Law State Solution in a Naval context, much as Lanchester did with the Battle of
Trafalgar, but in greater detail. He does not, however, extend his discussion to
include any exact mathematical formalism of the state solution. (The 1918 edition
notes the existence of such a formalism - see the next section.)

While he does not formulate an attrition theory in mathematical terms, Fiske
does describe such a theory in words, and we can trans-late those words into
mathematics. In particular, ‘Fiske’s attrition equations’ take the form,

A(t+nAd) = A(+(n-1)A1) - « At B(t+(n-1)As), (1.D-1)
B(t+nAt) = B(t+(n-1)Az7) - p At A@z+(n-1)A9),

where we have adopted the force strength and attrition rate notation (i.e. A, B and
a, B) introduced earlier in describing Lanchester’s attrition theory, and n here indicates
the number of time periods of duration At which have transpired since battle began.
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(Fiskian attrition is discrete in time rather than continuous as he describes it.)

Before proceeding with this discussion, it is useful at this time to define the
finite difference operation. This is given by

(11.D-2)
AA(®) = A(t+ A7) - A().

We will develop the finite difference formalism of attrition theory in a more complete
manner in a later chapter.

By using the finite difference operator A, Equation (I1.D-2), we may rewrite
'Fiske’s attrition equations’ as

AA@+(r-1)AD) = -a At B(t+(n-1)Ad), (11.D-3)
AB(e+(n-1)A7) = -B Az A(t+(n-1)A0). |

We may ‘read’ these equations as: the change in the strength of a force (Fiske related
this primarily to number of ships, but makes it clear that he is distinguishing combat
power from mere numbers.) over a period of time At is negative (the force strength
decreases,) and is equal to a damage coefficient (attrition rate constant/function
multiplied by time period At - Lanchestrian terminology) times the strength of the
opposing force at the beginning of the period. The right hand side of Equations (11.D-
3) are the losses to the respective forces during the period.

(I have taken the liberty of introducing the damage coefficient to permit these
equation to be written as equalities rather than as proportionalities as Fiske’s
discussion would literally indicate. He does discuss the damage causing process of
combat and devotes considerable concern to the effectiveness of the units of the
forces to cause damage - thus apparently not allowing the two forces to have distinct
damage coefficients. For convenience of discussion, | have equated this damage
coefficient to the attrition rate constant/ function multiplied by the time period. This
allows the general form (for general t' = t + mAt) of Equations (Il.D-3) to be
rewritten (after a slight rearrangement,) as )

AA

_At_(t,l = -a B(t), (11.D-4)
A B(t) -

VI BA(t),

which, if we take the limit as At - O reduces to
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- -e B(t), (11.D-5)
_571_3 ) - _pa),

since the left hand side of Equations (I1.D-4) are, in the limit, just the definitions of the
derivatives. Thus, Fiske’s words are, in some approximate manner, mathematically
equivalent to Lanchester’s quadratic attrition differential equations, Equations (Il.B-1)
and (ll.B-2).)

In his discussion of attrition, Fiske clearly identifies the condition that the
‘damage coefficient’ (attrition rate constant/ function) must truly be a constant. From
a mathematical standpoint, this constraint of constancy represents an assumption for
his analysis. Fiske further rightly notes that, for his analysis, knowledge of the length
of the time period is unnecessary - rather, only the value of the ‘"damage coefficient’
(he uses a value of 0.1 in his examples,) is necessary. This is correct only if supple-
mented by one more constraint - the ‘damage coefficients’ of the two forces are
equal. Fiske explains this equality by citing the common armament (and thereby
common damage caused by a hit,) of ships of the two forces. This view is reasonably
well founded in terms of the historical development of warships in the period
considered by Fiske.

Fiske notes that the duration of combat to a conclusion (in Lanchestrian
terminology,) depends on the ratio of force strengths. He apparently arrived at this
observation empirically from his examples rather than from analytical analyses such
as would be possible from Osipov’s explicit time solutions.

Finally, Fiske states that "the difference in fighting forces cannot be measured
in units of material and personnel only, though they furnish the most accurate general
guide. Two other factors of great importance enter, the factors of skill and morale.”
In this regard, Fiske strikes the same note as Osipov.

Fiske also describes, in detail, what we know as the Principle of Concentration.
He also states that "every contest weakens the loser more that it does the winner".
This statement may be argued to be a corollary to Lanchester’s Principle of
Concentration and Osipov’s Law of Distribution of Losses if we take the stronger
force to be the likely winner {from an attrition sense.) In keeping with our previous
discussions, we shall refer to this statement as Fiske’s Principle of Winning.

While Fiske clearly has an earlier claim to the introduction of the concepts of

Quadratic Law attrition theory, the scope of his contribution to the formalism of the
theory is also clearly less than that of Lanchester and Osipov.
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Il.E. Chase

The fourth of our attrition theory pioneers is Jehu Valentine Chase. In a

footnote® in his 1918 edition The Navy as a Fighting Machine, Fiske® cites
(then) Lt. Chase’s 1902 Naval War College Paper "Sea Fights: A Mathematical
Investigation of the Effect of Superiority of Foree in". This brief mathematical paper
(]| 3 pages) was initially classified and was not declassified until 1972. Wayne
Hughes (CAPT., U.S. Navy Ret.), one of the editors of the 1988 republication of
Fiske’s book, includes this essay as an appendix? and decries the hiding of this work.
Surely, in light of the publication of Lanchester’s book, this continued safeguarding
of Fiske’s document for those 56 years must come under question.

Also included in the appendix is an extract from a 1921 letter written by (then)
CAPT. Chase (He eventually held the rank of Rear Admiral.) in which he discusses the
Quadratic Law/Principle of Concentration and the counteracting considerations of
survivability of the force in terms of how a Naval force is designed - many smaller
ships are more survivable than a few small ships. {The question of survivability in the
context of attrition theory is a subject which we will treat in a later chapter.)

In his original paper, Chase describes his own version of Quadratic Law
attrition. To do this, he first introduces the concept of "sudden” versus "continuous
gradual destruction™ (i.e. attrition). In modern terminology, continuous gradual
destruction is usually referred to as "graceful degradation™.® In brief, this concept
holds that the attrition of units (or more generally, reduction of system performance,)
occurs in an essentially continual manner. The concept of sudden destruction holds
that attrition is punctuated and total - a unit is either totally effective or totally
ineffective, and the change occurs over a short period of time (often treated as
instantaneous.) An example of this which is frequently offered is the attrition of tanks
by modern weapons. Until a tank is hit, its effectiveness is not usually considered to
be diminished; however, once the tank is hit, the probability of kill given a hit is
sufficiently great (in most cases,) that the tank is "killed". This occurs over a period
of time which is of the order of fractions of a second. (The consideration of the
transition from sudden to continuous gradual attrition is a subject of great importance
in the conjugate theory of attrition rate constants/functions.)

If a unit, on the other hand, is comprised of several tanks, then the unit is not
"killed" until all the tanks in the unit have been individually "killed”. Further, each
time that a tank is "killed”, the effectiveness of the unit is reduced by an amount
approximately equal to the fraction of the unit that the tank represents (for a ten tank
company. each "kill" reduces the effectiveness of the unit by 10% - this view

® |Isn’t it amazing that the most interesting information comes from footnotes? Both Osipov and
Chase were introduced that way.
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neglects any contribution to the unit’s effectiveness of morale or other psychological,
training, or tactical influences.) Nonetheless, this simple example illustrates the basic
idea of continuous gradual destruction. Such a concept is applicable to Naval
warships which have a large number of weapon systems and other assets such as
engines, ammunition stores, and command and control systems which contribute to
its total effectiveness and which effectiveness is only completely exhausted when
some sizable portion of the ship’s weapon systems and other assets are rendered
individually ineffective.

Chase acknowledges that sudden destruction does occur for ships (which he
was solely concerned with) due to ramming, running aground at speed, or torpedo
impact (for smaller ships,) but that for gunfire, attrition of the ship as a whole is
gradual. In other words, it takes several (many) gunfire hits to disable a ship. Since
these hits may be presumed to impact in a random manner, [We will consider the
statistics of this process in a later chapter on attrition processes.] the actually
punctuated but drawn out process can be approximated as a continuous process.

Chase defines the following quantities:

m,n are the number of ships on each side (that are engaged in combat
with each other,)

a,, a, are the units of "life” of each type of ship (each side is implicitly
assumed to have only one type of ship, but the two sides may each be comprised of
a different type of ship - this reflects the continued, at that time, theory of using the
Line of Battle and the fact that ships are usually produced in series with relatively little
difference among ships of the same series,)

b,.. b, are the units of "destruction” per time which each ship (of each

side) can produce,
D,.. D, are the damage received by each ship (at a given instant of time,)

and

y, z are the "destructive power" of each m, n ship at a given instant of
time.
[l have taken the liberty of changing the subscripts designating the two forces from
the numbers used by Chase to letters to reduce confusion.]

In addition, total damage is spread equally over all ships on a given side; ships
are tacitly assumed never to actually sink (this is a moot point and open to some
interpretation,) the units of "destruction” may be thought of as essentially the number
of ‘independent’ [We will define this distinction in a later chapter, however, repeated
hits on an already destroyed weapon system or asset cause little additional damage
and are thus not "independent” in reducing the effectiveness of the ship.] hits per
time, and the units of "life" as the number of hits that a ship may take :.efore it can
no longer fight (sink?) '

Chase provides the relational equations
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a,y =b, (a, - D,), (II.E-1)
zZ= bn (an - Dn)’

which state that the product of the number of "life" units and the instantaneous
"destructive power" of a ship are equal to the product of the "destructive” rate of that
ship and the difference between the "life" of the ship and the damage the ship has
received. In words, this equation is
finitial "life")(instantaneous "destructive power)
= ("destructive” rate)(instantaneous "life"” remaining)

If we note that the damage received D,,,, D,,, and the "destructive power" y, z, of each
ship are time dependent, we may use the definitions of the "destructive power",

D () = 1":- fotvz(t’) dt’,

D) =~ [oe)

(H.E-2)

to form pairs of "attrition” differential equations in D, D,, ory, z. (We will not treat
these differential equations explicitly here since they were not part of Chase’s
exposition, but delay their explicit solution for a later chapter.)

Chase then equates Equations (ll.E-1) and (ll.E-2) (appropriately,) and
differentiates with respect to time. This gives

dy n

am

- - -——— z,

by dt (I1.E-3)
Gdz_ _m,

b dt n’’

b4

which are Quadratic Law-type attrition differential equations. Time may -be removed
from these equations to yield the single differential equation,

by dy _ n® 2z (I1.E-4)

"ydy = L zdz. (Il.E-5)
m

Rather than integréte this in the usual definite form, Chase does the integration
indefinitely to yield
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2
a, b, y2 = L C, (11.E-6)
a b m2

which is the state solution for Chase attrition. The boundary conditions on Equation
(11.E-6) may be found by examining Equations (Il.E-1) and (ll.E-2), and noting that at
t = 0, D, and D, are zero, (assuming y and z are well defined and behaved in a
mathematical sense.) Thus, att = 0,y = b,, and z = b,. This gives a value for C

of '

C = b2 [a'" b _ ”—2] : (I.E-7)

If the battle continues to a conclusion (in a Lanchestrian sense - the concept is
independently introduced by Chase without comment,) then the "destructive power”
of one side becomes zero. Chase selects z = 0 at the conclusion; this gives a state

solution

: 2
n 2y y? = b2 | Sn e b _ 22| (Il.E-8)
all bm am bm mz

Chase then uses this equation to solve for the damage received by each ship of the
surviving force at the conclusion,

a
a, - |- (ma,b, - n*a,b,) (I1.E-9)

m \bm

m

Since the damage received by each ship of the destroyed force is just
D, =a, ' (11.E-10)

- by implication of the conclusion condition (total destruction!) the ratio of the total
damage to the surviving force to the total damage to the des:ayed force is

m - m- - n

mD a \ a b ("E-11)

m

nD, a, n

Chase also considers the case of a draw (where the two fleets are equally
matched.) This gives, from Equation (ll.E-9) (since y and z are both zero at
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conclusion,)

m2a b =n%a_ b, (11.E-12)

Finally, if the ships on both sides are equivalent (Chase’s term is "similar” - life
and damage rates are equal for the two forces,) the total damage ratio becomes

mDy _m - ym? - n? (I1.E-13)
nD, n
while the draw condition becomes
n=m.. (.E-14)

It is illuminating that Chase does not elaborate his mathematics with
explanation - apparently he felt such to be unnecessary. As such, he represents the
opposite extreme from the other three pioneers, especially Fiske.

1. Fiske, Bradley A., Rear Admiral, U.S. Navy, The Navy as a Fighting Machine, Naval Institute
Press, Annapolis, MD, 1988.

2. "Lieutenant J. V. C‘ha_séis Force-on-Force Effectiveness Model for Battle Lines", Appendix C
in Fiske.

*

3. Callahan, Leslie G., Jr., Ph.D., and COL (USA Ret.), "Modeling, Simulation and Gaming of
Warfare - Course Overview", Ninth Annual Course on Modeling, Simulation and Gaming of Warfare,
Georgia Institute of Technology, Atlanta, GA, August 1988.
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II.F. Conclusion

Of the three pioneers, Chase clearly has the claim for earliest advancement of
attrition theory. The classification of his paper, removing it from public consideration
compromises that claim, effectively reducing that claim to an academic footnote. Had
his paper not been hidden, the terseness of the development would have limited it to
a military audience with mathematical faculty and intellectual inquisitiveness adequate
to flesh out the theory - a markedly more limited community than that which could
read and debate the works of the other three pioneers. Albeit, an argument may be
raised that had the paper not been classified, Chase would have expanded his brief
paper into a more robust exposition of attrition theory. As fetching as this argument
may be, especially in terms of its effect on subsequent history, such considerations
are of the nature of science fiction, and the fact remains that Chase’s work was
buried from the light of scientific day.

Neglecting therefore, Chase’s claim to primacy, the question still remains of
which pioneer should be considered to be first? If we compare the works of the other
three, there is still Fiske’s 1905 prize essay which first introduced the Quadratic Law
concept but lacked an firm mathematical underpinning (nor did the 1916/1918 book
rectify this shortfall.) Next appears to be Lanchester with his 1914 article, followed
by Osipov with his series of articles in 1915. Both Lanchester and Osipov clearly laid
down firm mathematical bases for their theories. Both clearly built different
frameworks around their theories.

The question of primacy is moot and cloudy. Chase published first and had the
claim of primacy effectively denied him by government instrumentality. Fiske clearly
put'ished second but failed to provide a mathematical formalism. Lanchester and
Osipov published next, within manths of each other. Concurrency of their work
cannot be easily dismissed from what we know today. If we consider the impact of
the publications on the public, it is clear that Fiske and Lanchester (based on Chase’s
letter of 1S21,) were the better known. Chase was known only in cleared U.S. Navy
circles and Osipov was known only in Russia (?). Thus, we come full circle, finding
that the best claim to being ‘father’ of attrition theory seems to be Lanchester’s.

None of this discussion of primacy is rezlly meaningful. Who was first is not
really a measure of who (or what) is important to attrition theory. Regardless of who
we select as 'father’, and for traditional reasons, we will continue to use Lanchester
and the permutations and labels based on his name as the standard, what is really
important are the contributions of these pioneers to the theory of attrition. These
contributions are considerable, including the mathematical theories of Chase,
Lanchester, and Osipov, Lanchester’s Principle of Concentration, Osipov’s Law of
Distribution of Losses, Fiske’s Principle of Winning, and Chase’s Concept of
Continuous Gradual Destruction. These and other contributions, and developments
from these are the subject matter of the rest of this book.
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. MATHEMATICAL THEORY I:
Fundamental Solutions of the Lanchester Attrition Differential
Equations

.A. Introduction

In this section, we present a brief review of the mathematical methods used in
solving the Lanchester differential equations as they have been presented thus far.

As stated in the previous chapter, the general form of the Lanchester
differential equations is

YA a4,

- -BB"A. (1.A-1)
dt

dB
t

As part of this, we will be concerned with three palrs of differential equations which
give rise to: the linear law

dA - —aAB, (11.A-2)
dt

and
dt

the square (quadratic) law
dA - _aB, (l.A-4)
dt

and

HLLA-

dB _ _BA; ( 5)
dt

and the mixed law
dA - -aB, (11l.A-6)
dt

and
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dB _ _BAB. (.A-7)
dt

The first two sets of these differential equations, which give rise to the linear and
square laws, have an exchange symmetry of the form (a,B,) © (8,A,) which allow the
construction of the mathematical form of the second solution, B(t), from the
mathematical form of the first solution, A(t), by the use of this symmetry. The
differential equations giving rise to the mixed law do not possess such a symmetry
and the mathematical forms of the two solutions, A(t) and B(t), must be constructed

separately.

I1l.B. State Solutions

If the force strengths are assumed to be explicit functions of time, then each
pair of differential equations above may be combined into one equation by removing
time as a variable. This, in the linear law case, we may write

a4
a _dA dt
dB dt dB
- dr (n1.8B-1)
_dA . ~®AB _ aAdB
dB -BBA BAB
= ¢
p
This equation may be integrated directly as
A B
ll.B-2
ﬁfdA’ = ade’. ( )
49 By
which yields
(111.B-3)

BA - Ay) = «(B - By),

from which the origin of the term ’linear law’ may be clearly seen since this is the

equation of a straight line. Equation (Il.B-3) is known as the state solution for the
linear law.

Equation (lll.B-3) simply states that the strength of one force (say A) at any
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time t is linearly related to the strength of the other force at the same time. This
equation tells us very little (per se) of the time dependence of A or B, only about their
mutual and direct dependence on each other.

The ’'square law’ differential equations may be solved in the same manner for
the differential equations (lll.A-4) and (lll.A-5):

a4
d _dd dt
dB dt dB
ar (111.B-4)
_d4 _ -ceB
dB -pA
- uB
A’
This equation may be integrated directly as
A B
(1i1.B-5)
pfA'dA’= o [B' dB/,
4 By
which yields
(111.B-6)

B(42 - A3 = «(B? - By),

which is the ’‘square law’ state solution. (Normally, the factors of 2 in the
denominators are dropped since they occur on both sides of the equation.)

The ‘'mixed law’ differential equations may be solved in the same manner as the
previous two, by elimination of parametric time:

dA
da _dA dt
dB dt dB
dr (.B-7)
dB -BBA
= &
BA

This equation may be integrated directly as
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A B
111.B-8
pfA’ dA’ = ade’, ( )
49 By
which yields
(111.B-9)

—g—(A2 - AY = «(B - By,

which demonstrates the ‘mixed’ nature of the state solution of differential equations
(lll.A-6) and (lil.A-7).

Several mathematical insights may be drawn from the state solutions. One of
the most common of these is the development of so-called victory conditions. Ifitis
assumed that the two forces battle until only one force remains, and that complete
annihilation (battle to a conclusion in a Lanchestrian sense,) may be called victory,
then equations (ll1.B-3), (lll.B-6) and (1ll.B-9) may be rewritten in the forms:

(1.B-10)
aBo - ﬂAo = aB - pA,
(t.B-11)
«B2 - BAZ = «B? - PA?,
and
(111.B-12)

B, - %Aé -oB - P42

where all of the initial force strengths {’,” subscripted terms) have been moved onto
the left hand side of equations (lll.B-10) - (ll1.B-12). Since the two fc:ces battle until
only one retains any strength, then either A = 0, or B = 0, at the battle’s end. Thus,
in all three cases, the right hand side of these equations are either positive or negative
depending on whether B or A ‘wins’ {respectively.) That is, if B ‘wins’, the right hand
side of any of these three equations will be positive, while if A ‘wins’, the right hand
side of any of the equations will be negative by virtue of the minus sign. (Recall that
A and B are by definition nonnegative.)

Notice that since these are ‘equations’, the same conditions must apply to the
left hand side as to the right. We may thus write:
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<0 (A wins),
2 2 .
By - BAg > 0 (B wins)
<0 (A wins),
and
«B, BAO >0 (B wins)
<0 (A wins).
By rearrangement then, we can write
B
2% 5 4 (B wins)
B4y
<1 (A wins),
aBo

>1 (B wins)

® i
<1 (4 wins),

and

2a B,

BAo

> >1 (B wins)

<1 (4 wins),

(111.B-13)
(11.B-14)
(11.B-15)
(11.B-16)
(111.B-17)
(11.B-18)

If any of these three (equations (l11.B-16) - (I11.B-18)) are equalities, then the prediction

is for a draw or ‘tie’ {mutual annihilation?)

It may be noted that these ‘victory’ conditions are for a battle where one force
is completely destroyed. From an historical standpoint, such battles are relatively

rare. We shall examine conclusive battles in a later chapter.

Further, as we shall discuss later, even when one force is reduced completely,

the form of the relevant differential equations seem to be changed.
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I.C. Direct Methods of Solution

The state solutions are useful, but they convey imperfect information about the
actual time dependence of the force strengths. In this section, we shall address two
direct methods of solution of the square law differential equations, the method of
substitution and the method of Frobenius.

Before continuing, it is worthwhile noting that the Lanchester differential
equations are first order only. This means that only one boundary condition may be
imposed on each solution. As we shall see, this sometimes leads to some less than
satisfying conditions. It does have the satisfying result of assuring us that the
solution we arrive at is the unique solution.

i.c.1. Method of Substitution

The square law differential equations (Equations (lll.A-4) and (ill.A-5)) may be
solved directly by substitution. If we take one of the two differential equations and
differentiate it with respect to time, we get

fé _ —iq-B dB (1n.c-1)

de? dt d

We normally assume that the attrition coefficients are time independent,® so the first
term on the right hand side of Equation (l11.C-1) is zero. The second right hand side
term is just the other Lanchester differential equation of the pair. If we substitute
Equation (lll.A-5) into this equation, we get
2 -
d A _ —aBA, (11.C-2)
de?

“and if we define:
(H1.C-3)

we see that the resulting differential equation (of the second order)

2 We shall consider time (and range,) dependent attrition coefficients in later
chapters.
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(111.C-4)

has the solutions

AG) - Cet + Dev, (I11.C-5)

Since we will be applying initial conditions, (making A and B take on values of A, and
B, att = 0,) it is more useful to write the solution as

(111.C-6)
A(t) = C sinh(yt) + D cosh(yt)

and we can calculate the solution for B by either direct differentiation of Equation
(l11.C-6), or by symmetry. If we calculate it by differentiation, the solution may be
immediately seen as '

B(t) = -X D sinh(y?) - X C cosh(y?). (I1.C-7)
o o

(Note that even though we have a second order differential equation, the boundary
(in this case, initial) conditions imposed are the same as would be imposed for the pair
of first order differential equations. Thus, we are neither requiring nor introducing
any new information. That is, we require Equations (I11.C-6) (A(t)) and (lll.C-7) (the
derivative of A(t) or just B(t)) to have the proper behavior at t = 0.)

We now invoke the properties of the hyperbolic sine and cosine, namely that
sinh(0) = O, and
cosh(0) = 1,

to write:
I1i.C-8
4 - D, ( )
and
I11.C-9
B, - Y C, (ln.C-9)
o

which may be substituted back into Equations (l11.C-6) and (lll.C-7) to yield:
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(111.C-10)
A(z) = A, cosh(y?) - \J—% B, sinh(yt),

and

B (.c-11)
B(t) = B, cosh(y?) - J-;— A, sinh(y1),

from which the symmetry of exchange of (a, By) & (8, A) is obvious. These two
equations are the explicit time solutions of the Lanchester square law differential

equations.

The linear and mixed law differential equations cannot be solved by substitution
since they continually mix the two force strengths with repeated differentiation.
Thus, the method of substitution is of value only in solving the linear law differential
equations. '

Hi.C.2. Method of Frobenius

In the solution by the method of Frobenius, we assume that the time solutions
of the Lanchester differential equations may be represented as power series in time:

- m.c-12
Alt) = Y a,t", ( )
n=0

and similarly for B(t).

If we differentiate the series and substitute them into the square law differential
equations, Equations (lll.A-4) and (Ill.A-5), we get (after adjusting the indices on the
left,) '

E (n+1) a,,t"

n=0

(.c-13)

-o Z b, t",
n=0

and
{H.c-14)

i (ﬂ+1) bn+1 t" —ﬁ 2“: a, t".
n=0 n=0

If we now require that each term in the series be linearly independent, we may equate

terms with common powers of t. This gives,
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a _ __«

n+1 n+1 n?
and

b.=- B a.

n+1 n+1 n

By adjusting indices and substituting, this becomes

and similarly for the b,,.

From the initial conditions,

(11.C-15)

(n.c-16)

(11.C-17)

(1M.C-18)

ao = Ao,
b, = By,
and
81 = -a Bo,
b, = -8 A,.
We notice |mmed|ately that the result is an alternating series in odd and even powers
of t. That is: -
y2
a, = )
2 (2)(1) Ao
a, = - ,
? (3)(2) %
a. = ___Y_____
4 4o,
@@ @(1)
¥4
as = -0 —— Bo,
G)@E)(2)
or

,Yn
a, = -~ Ay, (n even)
n!

n1

i -9

= Bo, (n odd)

= \I_g n'Bo, (n odd)

(l.C-19)




and upon substitution back into the series, this yields

Ar) =4, Y TE - J_-"‘- B, ¥ L&
0 nz% nl B0 nzo nl (111.C-20)
n even n odd

= A, cosh(y?) - \J—% B, sinh(yt),

which is the same as Equation (lll.C-11).

Unfortunately, the method of Frobenius is also not useful for solving the linear
and mixed equations because the differential equations are not linear. To solve these
differential equations, we must turn to some other, more general method to find
solutions to the other Lanchester differential equations.

i.p. Normal Forms

The method that permits general solution of the Lanchester differential
equations presented thus far is the normal forms method. It is so called because the
state solutions of the differential equations must be developed first.

Before proceeding, we note that for the square and linear laws, an exchange
symmetry (a,B,) & (B,A,) exists. Because of this symmetry, we shall not have to
explicitly derive solutions for both of the differential equations of these pairs. This
symmetry, sadly, is not the case for the mixed law, and solutions for both of these
differential equations will have to be developed.

H.D.1 Linear Lanchester Equations

To demonstrate the normal forms method of solution, we begin with one of the
linear law differential equations (Equations (lll.A-2) and (lll.A-3)) and write the direct

integration solution as

} dA'  _ _]dt, (111.D-1)
I pl ’
,*A' B o

and we rewrite Equation (l11.B-3), the state solution as

, / (1.D-2)
aB = BA - ﬂAo + aBo,

and substitute the state solution directly into the denominator of the left hand side of
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Equation (l11.D-1) to yield

I da’ e (11.D-3)
AfopA’— BAy + @By Jar.

fo

the right hand side integral of this equation can be performed directly as an
elementary integral; the left hand side integral may be taken from Appendix A ,
integral (A-1) with parameters: -

a=§8

b = BA, - aB, = A, (a 'victory’ condition (conclusion) statement).

The resulting integrations have the form

A .D-4
_2 o284 _q) Y - -y, (111.D-4)
A, A, Ao

where : At =t - t,.

Substitution of the limits on the right hand side and rearrangement yield

coth™ 2BA® _ 4| - coth™ 2P4, _ 1| + -A—‘At, (Ili.D-5)
A, A, 2

We may now make use of the identity ‘

coth'(x) = |n("+1 (H-b-6)
2 \x-1)
to write (after some rearrangement)
A2) = 4, 4 _ (1.D-7)
BA, - aBye ™

The solution for B(t) can be formed from Equation (lll.D-7) by using the symmetry
properties; that is, by swapping a and 8, and A, and B,.

111.D.2 Square Lanchester Equations

The square law differential equations may be solved in the same manner. We
may rewrite Equation (l11.B-6) as
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(111.D-8)

B = JEA’* + B2 - Ba2
o o

and substitute it into a direct integration solution of Equation (lll.A-4). This yields

A(D) dA’ t
f = —afdt’. (1.D-9)

The left hand side integral is again found in Appendix A, integral (A-2) with
parameters

_B
= (11.D-10)

b=B:- %Aé,

and define:

o, , (H.D-11)
A, = a By - BAj. o

Evaluation of the integrals yields

AQ) (11.D-12)
Esinh"(’——B—A’] | = -aAr,
(! Aa Ao
sinh™ I—B—A
in [ A, )

sinh(u - v) = sinh(x) cosh(v) - cosh(x) sinh(x),

which rearranges to

_ 5 (1.D-13)
= sinh™"! ™ Ag| -vAtx,
2

and use the identity
(1.D-14)

to get
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B
\j: 40 - \[: Ay Coshly 43 (111.D-15)

- oosh[sinh“[ B Ao]
A4

sinh-(x) = cosh™'({x2+1),

sinh(y A?),

and use the identity
(l.D-16)

and the state solution to reduce this to

o (1.D-17)
A(t) = A, cosh(y At) - E B, sinh(y Az).

identical to Equation (l1I.C-10), the time solution of the square law Lanchester
differential equations.

1.D.3 Mixed Lanchester Equations
The final exercise of the indirect method is the solution of the mixed law

Lanchester differential equations, Equations (lll.A-6) and (lll.A-7). To arrive at this
solution, we must rewrite the state solutions of the mixed law, Equation (lll.B-9) as,

B - —B—A’z . A”_, (111.D-18)
20 o
where:
.D-
A = aB, - £A§ (iN.D-19)
2
We substitute Equation (ll1.D-18) into the direct solution
A
[—— fdt' ~(I.D-20)
Ay BA/z m
2 o

This integral has two different forms depending on whether A, is greater or less than
zero. We shall treat the former case first. If we make use of integral (A-3) from
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Appendix A and apply the argument addition rule for tangents, we may write

2], ®

ml

Ay - | — tan(nt) i
A(f) = \ B A >0, (I1.D-21)
1 + A ‘2& Itan(nt)
where:
[ B1A,l (11.D-22)
n-= .

The A(t) solution when A, < 0, may be derived from Equation (lll.D-21) by

noting that when A, becomes negative, then n -» in, and that tan(int) = 7 tanh(nt).
Thus, we may write

2|,
Ay + ~— tanh(nt) _
A(?) = \ B A <0 (H1.D-23)

1+ A |2Ii tanhn:) .

The B(t) solution can be found by either performing the normal form integration of the
other attrition differential equation, or by substituting Equations (111.D-21) and
(11.D-23), respectively, back into the rewritten attrition differential equation,

B(z) - 1 i“l_ (1.D-24)
a dt

This allows us to write the two solutions, after some algebra, as

B(Y) = B, sec*(n1)

» A, >0,

1 + 4, 2|BA | tan(nt)]2

(111.D-25)

and
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n <0, (11.D-26)

llII.E. Force Ratio

One of the quantities which is of interest in attrition theory is the force ratio;
that is, the ratio of the two force strengths. If the force ratio is represented by p(t),
then it is defined by

o(f) = A(L) (111.E-1)
B(r)

Before calculating the derivative of this quantity to form its attrition differential
equation, we note in passing that, at most, the quadratic Lanchester differential
equations will possess a closed form solution for the force ratio, but not either the
linear or the mixed Lanchester differential equations. This sad situation is predicted
by the fact that the time dependent solutions of both of these sets of differential
equations contain their state solutions explicitly in the time dependent portions of the
solutions. Only the quadratic solutions do not contain the state solution in such a
way.

We may calculate the time derivative of the force ratio,
dpo _1d4 A dB (111.E-2)
d¢ Bd  pedt’
into which we may substitute Equations (lli.A-1) to yield,

dp 2-n - 2
— = -aA°" + BT A%,
dt P

(I1.E-3)

from which we may see that the right hand side reduces to a function of p only if n
= 2! Thus,

(Ill.E-4)

We may solve this exact differential equation using the same techniques that we used
for the mixed Lanchester differential equations, giving a solution
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po - Otanh(yt)
po tanh(y?)
)

(I11.E-5)

p(t) =
1 -

This result could, of course, have been derived directly from Equations (111.C-10) and
(11.C-11), although that method would not have been as theoretically useful. The
force ratios of the other two types of attrition, linear and mixed, can be formed by
direct ratioing; however, the resulting ratios cannot be mathematically manipulated to
remove the initial force strengths explicitly.

I1I.F. Summary of Solutions

This concludes the development of the basic solutions of the Lanchester
differential equations. We present here, for the use of those who do not choose to
follow the mathematics, or who may wish to use these as a reference, a summary of

Linear Equations

- A HI.F-1
A(r) = 4, . -AAr” SR ( )
BA, - aBye
-A I.F-2
B(t) = Bo L A At. ( )
aBo - BAOe 1
(IIl.F-3)

A-' = BAO = aBo

Quadratic Equations

A(?) = 4, cosh(yt) - & B, sinh(y?), (I1l.F-4)

B(t) = B, cosh(y?) - % 4, sinh(y?), (IL.F-5)
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po — Stanh(yr)
po tanh(y?r)
o

p(r) =
1 -

A, = aBf - BAg

- /aB

o) = 28

Mixed Equations

214,
= tan(n?)
\ B , A > 0’

. ' B )
1 + 4, 2IAmltan(nt)

B, sec?(nt)

Ao—

A(z) =

, 4, >0,

+ B
1 + A, 27A ] tan(nt)]z

B(z) =

m-17

(111.F-6)

(IL.F-7)

(I1.F-8)

(lIl.F-9)

(N.F-10)

(HL.F-11)

(l.F-12)



Ay + 2'?"" tanh(n?)

\ LA, <0.
1+ 4, ,Zli |tanh('qt)

B, sech®(nt)

A(t) =

,A <0’

2|4,

1+ A4, b tanh(n t)r

i -18
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(I.F-14)

(N.F-15)
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IV. ASSUMPTIONS AND SOLUTIONS

IV.A. Introduction

Any model can be expressed in informational symbology. In the case of
Lanchestrian (and Osepovian) attrition theory, the models are commonly expressed in
three parts:

® a typical statement of what the model describes,

® a pair (normally) of coupled differential equations (which imply a
solution), and
' ® a set of assumptions.
This chapter then is a general overview of the models that comprise basic
Lanchestrian attrition theory.

Although it may seem somewhat premature, much of the discussion in this
chapter centers on the elementary nature of the attrition rate constants/functions. In
Chapter V, we will initially introduce the Ironman Analyses which lay the groundwork
for the relationship between the attrition differential equations and the attrition rate
constants/functions. .This early discussion is, however, important in initiating the
understanding of the interdependence between the two parts of Lanchestrian attrition
mechanics: the theory of the attrition differential equations, and the conjugate theory
of the attrition rate constants/functions.



IV.B. Lanchester’s Linear Law.

The Linear Lanchester Law describes combat between two forces. The rate of the
attrition is given by the differential equations

44 _ _ 4B, (IV.B-1)
dt
4B _ _p4B. (IV.B-2)
dt

The state solution for these differential equations, derived in Chapter lll, is
a(B - By) = B(A - 4p), (1IvV.B-3)

the explicit time solutions of the differential equations are derived in that chapter as
well.

We note here that a multiplicative increase in attrition rate constant/function is
equivalent to a multiplicative increase in force strength. If, for example, blue has an
attrition rate twice that of red’s, then blue’s force strength need only be more than
half red’s to force victory (in the sense of a conclusion). If technology is used to this
end, then its influence is direct and more efficient (of the two cases, linear and

guadratic ).
IV.B.1. Linear Law Assumptions.
The assumptions associated with this law are (following Dolansky’ and Karr?):

1.) The two forces A (for amber or red) and B (for blue) are engaged in combat.

2.) The units of the two forces are within weapons range of all units of
the other side.

3.) The attrition rates are known and constant.

4a.) Each unit is aware of the general location of enemy units but is
unaware of the effect of fire.

Bba.) Fire is uniformly distributed over the area occupied by enemy units.

IV
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6.a) The occupied area remains constant, units redisperse within the area

or
4b.) Each unit is aware of the specific location of enemy units and the
effect of fire is known, but enemy units are hard to attrit, or are few in
number (i.e. Hard to find.)

5b.) Fire from surviving units is uniformly distributed against enemy units.
We shall examine some of the implications of these assumptions.

Assumption (1) is perhaps the simplest and, at once, the most crucial. It seems
intuitive that the model will only apply if combat is actually occurring. What must be
noted is that combat is not a continuous process - it tends to be punctuated. Care
must be taken to apply the model only when combat actually occurs.

This naturally leads to the concept (example here Agincourt & from Men at
War?) that attrition must be time dependent. Further, it leads to the idea of time
scales of combat. As we shall examine in a later chapter, the accommodation of
attrition rates between theory and actuality (history) depends on the time scale that
we consider. If we are interested in the losses per day, many of the actual combat
processes become hidden. Historical data for combat losses seldom are available at
time scales below one day. At this time scale, the dynamics of target acquisition
become less important. Attrition rates are dominated by the ratio of enemy units
killed (per day) to friendly rounds fired.

From a mathematical standpoint, the Lanchester differential equations freely
admit introduction of a scaling fraction which is the time interval divided by the total
time in combat. Either the time or the attrition rates may be scaled with this factor.
If, for example, a unit is actively engaged in combat for an hour in a day, the only
attrition caused by that unit (and possible suffered by it as well - attrition does not
necessarily have to be symmetric in time,) occurs during that hour. This attrition
translates directly into an attrition rate (which has units of inverse time - per minute
or per hour), which is valid while the unit is engaged in combat. If the unit were
continuously engaged in combat during the entire day, then the total attrition of that
unit would be described by integration of the appropriate differential equation over the
whole day’s time. This, however, is not the case since (by premise) combat occurs
only during one hour of the day. The total attrition of enemy units by that unit occurs
only during that hour. To reconcile this limited attrition period with a total day of
warfare for this unit, we may introduce a scaling fact £ (which in this case has the
value 24 - the number of hours in a day). This factor may be viewed as multiplying
the time (which transforms combat time into elapsed time) or dividing the attrition rate
{(which transforms the in-combat attrition rate into an effective (daily) attrition rate).
As we shall see in a later chapter, this problem is largely alleviated by the introduction
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of attrition rates which are sensitive to the presence of enemy forces (such as range
and/or time dependent attrition rates,) if not the actual state of combat.

Dolansky includes in Assumption (1) that the units engaged are identical but
notes that this holds for only the simplest of Lanchester "type" models - he goes on .
to elaborate heterogeneous force Lanchester "type" models, which we discuss briefly

in Chapter ().

This restriction gives occasion to treat an interesting case which illustrates the
impact of military doctrine on attrition as well as the fundamental Lanchestrian
question of what constitutes a unit. Some years ago, the-doctrine of the Soviet
Army, supposedly as a result of poor tank gun accuracy was that a tank platoon (3
tanks at that time, in that type of unit) would engage a single target collectively. The
platoon leader would select a target. All three tanks would then take aim and fire
together at that target. The unit of Soviet tank forces at that time was thus a

platoon.

The tank forces of the NATO powers at that time, for the purpose of
comparison, acquired and fired as individuals. Firing doctrine for NATO did not
prescribe any type of deliberate mass firings (except perhaps accidentally or at
responsive command discretion). Thus, the unit of NATO tank forces could be
presumed to be an individual tank.

The consequences of these two doctrines in terms of attrition rates (and their
calculation) will be discussed in a later chapter. Still, this difference points up some
of the difficulty which arises in determining what actually comprises a unit in a
Lanchestrian sense. T

This difficulty is further demonstrated by Assumption (2), that each unit be
within weapon range of all units on the other side. If we consider the case of combat
in line with edged weapons (the Roman legions and their foes comes to mind as an
example), then the lethal range of a weapon (sword, and/or non-thrown spear) is 1-2
meters. [f the linear density of troops is ~ 1 per meter, then the Lanchestrian theory
would seem to apply at about the level of one soldier fighting with one soldier. (This
also make old Douglas Fairbanks movies seem to be correct in a Lanchestrian sense!)
The unit would thus be the individual soldier. Description of combat ala Lanchester
under these circumstances would seem then to be violated. A more reasonable
assumption (which appears to yield the same result) would be that there are always
targets within weapons range of all units. If we adopt this assumption, then as long
as Assumption (1) holds, the result is the desired one. In terms of our Roman
example, if the enemy line is maintained, then each Roman soldier in the Roman front
line (engaged in combat) has 2-3 targets in range (in the enemy front line.)

The interpretation that presents itself, however, is that some areal structuring
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of the attrition process is necessary. This is supported if we examine the frontage of
troops in combat as a function of time (Dupuy® - We examine this in a later chapter)
and compare this to weapon ranges. This interpretation is consistent with our revised
Assumption (2). :

The third assumption, that the attrition rates are known and constant is also
open to discussion. Dolansky states that the attrition rates are difficult to evaluate
(see the earlier discussion in this section of the difficulty of time scale adjustment).
In principle, attrition rate constants/functions are calculable using Bonder’s Equation
(Chapter Xll) although difficult to verify historically. Further, attrition rates for those
factors of greatest interest, new weapons (the result of either new technology or
human inventiveness), and new doctrine, inherently cannot be verified in terms of
history. (We invoke a tacit, invisible subassumption here that warfare experiments -

we do not include training and operational exercises with troops because of their
controlled nature - cannot be conducted for whatever moral,ethical, and/or budgetary
reasons.)

In spite of these difficulties, if we accept the applicability of Bonder’s theory
of attrition rates (that acceptance being an obvious, but defended premise of this
volume), then the assumption that the attrition rates are known is satisfied; the
assumption that the attrition rates are constant is much more difficult to accept or
defend. In general, weapons’ performance are range dependent. Further, there is
considerable reason to believe that attrition rates should be time dependent as well.
From a mathematical standpoint, constant attrition rates permit simple, straight
forward closed form solutions of the Lanchester differential equations. Beyond this,
however, assumption of constant attrition rates seems inconsistent with much of
what we know of combat. It seems, therefore that this assumption is necessary not
for the applicability of the Lanchester differential equations, but of the simple closed
form solutions.

Assumptions (4a), (5a) and (6a) are generally supportive of what we think of
as non line-of-sight weapon systems units - generally classical artillery (post American
War Between The States) - whose operation is dependent on target acquisition
information from other units and, because of a variety of position and time
uncertainties, have only general knowledge of the position of enemy units. This
uncertainty is mollified somewhat by the areal lethality of the weapon. These
assumptions tend to be associated with the Lanchester linear law and lead to its
identification with indirect fire weapons. The other pair of assumptions (4b) and (5b)
are supportive of line-of-sight weapon units under conditions where targets are hard
to attrit. This pair of assumptions is generally not associated with the linear law in
much of the literature, although classically, of course, Lanchester associated the linear
law with ancient combat, which was entirely line of sight attrition (except perhaps for
some siege weapons(?), which are a special case).
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The combination of assumptions (1) and (4b) seem to conflict with Lanchester’s
identification of the linear law with ancient combat. The law is assumed valid only
when units are engaged in combat, and for ancient personal weapons, this effectively
means that the units are in contact. It is then difficult to reconcile how the enemy
units could be hard to find. The answer, of course, is that the units are not, while in
contact, hard to find, but rather that because the forces are in contact, the rate of
engagement is dependent on the product of densities of the two forces. This
situation is directly comparable to a chemical reaction where the rate of the reaction
is dependent on the concentration (densities) of the two (in this case?) reactant
chemicals (forces). This analogy will be even more usefully applied in a later chapter
on attrition processes where we develop the model of attrition as a scattering process.
(It is interesting to note, using this analogy, that this type of chemical reaction
description is valid when the reactants are completely mixed, as in a solution. A
different form occurs when the reaction only occurs at (or in the region of) an
interface.) This, has significant impact on attrition theory interpretation if we pursue
the analogy. If this rate form is valid when the reactants are mixed, then the
implication is that the forces must be mixed as well. This occurs only in a melee
situation. Is then the norm of applying the Lanchester Linear Law to ancient combat
melee combat only? Are ordered forms of ancient combat, such as those practiced
in the phalanx and the legion, not described by such? This is indeed so as we shall
see when we look at alternate forms of attrition "laws" such as those of Osipov and
Helmbold. Among other things, we shall see there that the form of the attrition
differential equation depends on the structure of the forces engaged, and that as that
structure changes, so does the form of the differential equations.

We shall further see, in this chapter and in the chapter on the calculation of
direct fire attrition rates that the form of the attrition rate can be either linear law-like
or square law-like - a (not completely) general form is a combination which we shall
consider in detail in another later chapter. We note, however, that Lanchestrian
(Osipovian?) attrition theorists in the Soviet Union seem to sometimes perform both
linear and square law calculations and use the two calculations as a bounded envelope
about the "real" answers. Although we shall defer consideration of the linear law as
descriptive of direct fire/line-of-sight/ point attrition to a later section, we will consider
here the more normal association of the linear law as descriptive of indirect fire/ non
line-of-sight area attrition. We may see the form of the attrition differential equation
directly if in a somewhat simplified manner. Recalling Equation (IV.B-1), we may think
of the entire red (A) force as occupying some area L. The number of red units per
area is A/L. If each blue (B) fire kills all of the A force in a given area d about the
impact point of munition, then the number of A force that is killed per blue fire is

Ad (IV.B-4)
L
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If each blue unit fires m times in a given regular interval of time (e.g. rounds per
minute), and we ignore such factors as overlapping lethal areas, shots outside of the
occupied area L, and any question of target acquisition or weapon down time, then
the number of A force units that are killed per blue unit per time (tg ) is Ad m

Adm (IV.B-5)
L

Since the number of blue units is B, then the number of A force killed per time
is just

dTm A B, (IV.B-6)

which is the attrition differential equation where

o = dm (IV.B-7)

L

is the attrition rate. The minus sign, of course, arises because the total number of the
A force is decreasing. The resulting attrition differential equation is simply,

44 _ _ 4B, (IV.B-8)

dt

which is a linear law attrition differential equation.

This also leads us to an understanding of the meaning of the attrition rates a
and 8. We may see that a is the number of A force units killed (by B) per B unit per
time, per A unit. As we have seen in the simple development just above, it is not
really the total number of A force units which is important, but rather their (areal)
density. In fact, this leads to a sometimes stated assumption of indirect fire attrition
theory - that forces are continuously redistributed over time (during combat) to keep
a (changing) but constant areal density. Unfortunately, the presence of the red force
strength as a factor in the attrition differential equation sometimes leads to confusion
since the area of the forces dispersion is usually embedded in the attrition rate
constant/function. This confusion can be somewhat alleviated (especially if closed
form solutions are not being developed), by rewriting Equation (IV.B-1) as

dA /
daA _ _ B, (IV.B-9)
dt * Pa

where: Pa (areal) density of A
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A/L, and
a’ = revised attrition rate constant/function.

(A similar parallel set of machinations can be performed for the other half of the
combat attrition process that which occurs to B. For brevity we leave that as an
exercise to the reader). Equation (IV.B-9) is a quadratic law differential equation. In
keeping with the quadratic law (alternate) assumptions (specifically assumption (6b),)
if the ratio of force strength to area occupied (that is, Pa,) remains constant, a
quadratic law differential equation describes the attrition process.

If we do not neglect the target acquisition time, we must introduce a simple
search and acquisition model. We have already defined the area density of Red units
as pA (= A/LA.) Let us postulate a search process where each unit of the Blue force
searches an area lg at any given time, with a probability p,, of finding a red unit in lg
(if a unit is present; we shall consider the effect of false detections in a later chapter;)
and that the Blue unit searches areas of size |, at a rate v; (number of areas per time -
the area searched per time is just Iy vz.) The area per Red unit is just p,' = L,/A.
The time required for a Blue unit to have searched an area which contains a Red unit

is thus

LA
- ALy, | (IV.B-10)

(pAleB)'1.

Since there is a probability p,, of the Blue unit detecting the Red unit, the
probable number of areas that the Blue unit must search to find a Red unit is increased
by a factor p,,”. The search time then becomes

LA
gy = ———,
Algvep,, (IV.B-11)
= (PalaVsPu)

We have earlier defined the time to kill (tg,) as
ty = pdm. (1V.B-12)

The total time to attrit a Red unit, including search and acquisition time (using these
simple models,) is just
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toawris = g * Lo (IV.B-13)

and the attrition rate is

-1
© = pamries (IV.B-14)
(2 + t)7".

If the search time is much greater than the kill time (i.e. tg, > > tg,) then we
may ignore tg, in the above attrition rate, and the attrition rate has the (approximate)
form

o =p, v, P,. (IV.B-15)

Now if p, is constant, then the situation which we described earlier, namely that of
the quadratic law assumption (6b) being valid, and the resulting differential equation
has the form

44 _ B, (IV.B-16)

which is a quadratic law attrition differential equation. If, on the other hand, p, is not
constant, then square law assumption (6a) is valid, and the resulting differential
equation has the form

44 _ _ 4B, (IV.B-17)

which is a linear law attrition differential equation, and where:

ot = BVBPac (IV.B-18)
LA

We shall further consider the interrelationship of search and kill times in Chapter VI
which deals with combined law differential equations and assumptions.
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IV.B.2 Linear Law State Solution

Even though a is the attrition rate constant/function for the attrition of the A force,
in the state solution, it is associated with the B force. This association occurs
because a may also be interpreted with the effectiveness of the B force in attriting A.
Note that we may interpret aB as the number of A units killed per time per A unit.
The quantity A,, defined by

A, = aB, - BA,, (IV.B-19)
is the difference in kills per time between the two forces at the beginning of the
engagement. In terms of the Lanchestrian concept of combat to a conclusion, this
difference is the predictor of victory. If A, > O then the blue (B) force generates a

larger number of kills per time than does its foe, the red (A) force. In this case, if the
combat is carried to a conclusion, then the blue force will be the victor with

%w=&-%%, (IV.B-20)

units remaining.

(We shall discuss the historical perspective of combat to a conclusion in
Chapter XIiL.) ’

If A, < O, then the red (A) force generates more kills per time than does its foe,
the blue (B) force. Thus, at the end of such a conclusive combat, the red force will
be the victor with

%m=%—%%, (IV.B-21)

units remaining.

If A, = O, then the combat, if carried to a conclusion, results in a draw service
both forces generate the same number of kills per time.

To examine the mathematical properties of the linear law, it is convenient to
write the state solution, Equation (IV.B-3) in the form
p-B4. 2% (IV.B-22)
o o

Mathematically, this is the equation of a straight line. (We have arbitrarily
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chosen the red force strength (A) to serve as the independent variable while the blue
force strength (B) serves as the dependent variable. Although we do this because

(i) A comes before B in the alphabet, and

(i) we commonly associate blue with the friendly forces
(except in the old Confederacy) and red with the enemy
forces,

some convention needs to be established to provide a consistent basis for
comparison. The reader is free to adopt the other convention, if desired, as an
exercise). If we plot Equation (IV.B-23) in the normal manner with A = 0, B = O at

State Solution
Linear Lanchester Equation

:22 ]
140 /
120 =
100 =
80 S =

o888
i

FOo—B80—90—100

S+QI30=~( 00-0T OC~-0

Red Force Strength

the origin of the axes (As shown in Figure (IV.B-1)), then we may see that the
quantity B/a is the slope of the line.

=84 (IV.B-23)

All solutions of the attrition differential equations (IV.A.1) and (IV.A.2) for these
values of a and B (actually for this value of the ratio f/a ! in our convention) will lie
parallel to this line. This line represents the case of a draw, when A; = 0). This line
also divides the graph into two regions, an upper and a lower region. The upper
region contains those combats where the blue force is victorious (in the sense of
conclusion), where A, > 0. The lower region contains those combats where the red
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force is victorious, where A, < 0.

We may now examine combats in terms of the intercepts of the solutions with
the axis. In the upper region, the state solution line must intercept the B force
strength axis at zero A force strength. It does so at value A,/a. We see now another
interpretation of A,; it is the number of kills per time remaining to the victor at the end
of a conclusive combat; it "represents” the power or ability of the victorious force to
enter further combat. Further, divided by the appropriate attrition rate constant/
function, A, is the force strength of the victor at the conclusion of combat, (Note
that in our convention, a plus sign here indicates a Blue force victory; a minus sign
indicates a Red force victory). These cases are shown in Figures (IV.B-2) and (IV.B-3)
respectively. The values of a and £ are held constant (and equal). In Figure (IV.B-2),
the initial Blue force strength is increased by 50%. Note that this 50% is the entirety
of the Blue force remaining at the conclusion. (The graph is read in a right to left
manner. The battle begins at the upper right hand edge [above the draw line], and
proceeds down and to the left). In figure (IV.B-3), the initial Blue force strength is

50% less than in the draw case. Note that 50% of the Red force remains at
conclusion. This points up one way to win a victory (under conclusion condmons )
the side with the larger force (numbers) wins.

State Solution

B
! Linear Lanchester Equation
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Another way to win is to change the attrition rate constants/ functions. Recall ‘

the (simple) definition (model) of the attrition rate constants/functions.

_ %™ (IV.B-24)
LA
and
g = M (IV.B-25)
LB
where: d,, dg = lethal area of A, B force shot,

m,, mg = rate of fire of A, B unit, and

L., Ly = area occupied by A, B forces.
There are basically three ways to change the attrition rate model. We shall examine
each of these in turn holding the initial force strengths of both forces fixed at the
values in the draw case, and holding fixed the three parameters:

® |ethal area per fire,

® rate of fire per unit, and

® occupied area of the Red force.

The first way to change the attrition rate constants/functions is to change the
area occupied by the Blue force. This has no effect on the rate of attrition of the Red
force. Rather, it decreases the number of Blue units struck by each Red unit fire - it
decreases the rate of attrition of the Blue force. In other words, if we double the area

State Solution
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J Linear Lanchester Equation
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that the Blue force occupies, a becomes ¥z of its previous value. This case is plotted
in Figure (IV.B-4). This change is most likely doctrinal in nature, assuming the Blue
force’s infrastructure, such as Command, Control, and Communication, can support
the dispersal. Notice that dispersing the force this way may violate Assumption (2)
since all of the Blue force may no longer be in weapons range of all of the Red force.

State Solution

Linear Lanchester Equation
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The second and third ways to change the attrition rate constants/functions are
for Blue (in this case) to increase the lethal area of his munitions and/or to increase

State Solution
Linear Lanchester Equation
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his rate of fire. Lethal area can be increased achieved by adopting larger
weapons/munitions (which usually decreases the rate of fire), or by technological
improvement of the munition (such as better explosives). The rate of fire can be
increased by training the weapon crews better, or again by technological
improvements, such as by incorporating automatic loading. If we double either of
these parameters, B doubles over its draw case value while a stays the same. This
case is shown in Figure (IV.B-5). (Note: This is identical to Figure (IV.B-4).) If we
double both parameters, 8 quadruples over its draw case value while a stays the
same. This case is shown in Figure (IV.B-6).

State Solution

Linear Lanchester Equation

TQIJO0~»(p OO~0T OC-0

Red Force Strength

These investigations display the general characteristics of indirect fire combat
as described by Lanchester’s linear law:
' ® M:zximum force dispersion, consistent with weapon
effectiveness minimizes losses. (We note in passing that
this is also the case when direct fire attrition is described
by the linear law. It also applies to the use of weapons of
mass destruction - nuclear and chemical weapons).

® [ncreased weapons effectiveness decreases casualties.

® Economy of force is manifested in the use of minimum
force strength to effect the mission (casualties are linear).
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1V.B.3. Linear Law Time Solution

The time solution of the Lanchester linear attrition differential equation , derived in
Chapter Ill are

A,
A(r) = Ay e (IV.B-26)
pAo - aBoe— 1
and
A —A1At
B(r) = B, ! —, (IV.B-27) |
BAO - aBoe- 1 ‘
where:
A, = BAy-aB,. (IV.B-28)

We note immediately that we cannot obviously solve these equations for a draw case
- both equations (IV.B-26) and (IV.B-27) appear to be zero when A, = 0. (The
general case of draw solutions are considered in Chapter Vi.) They can however, be
solved for A; # 0. The draw case can be considered if we expand the exponential
terms in Equations (IV.B-26) and (IV.B-27) to first order in A,,

e:tA1At o 1 + A1At, (IV.B‘ZQ)

which we substitute into those two equations (after we rearrange equation (IV.B-27)
to have only one exponential term. This yields
A,

: (IV.B-30)
BA, - «By(1 - A At)

A(r) = A,

and
A,

, (IV.B-31)
6Ao(1 + A1At) = aBo

B(t) = B,

-which reduces, using the definition of A, to
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A(r) = —A"_—, (IV.B-32)
1 + aByAt

and

B(t) = B . (IV.B-33)
1 + BAyAt

To calculate particular solutions of these equations, we must first compute
values of @ and B, and assume some initial force strengths.. As examples we take,

A, = 100, and
B, = 200.
The attrition rates, in the simplest case of kill dominated attrition, are
_ %™ (IV.B-34)
LA
and
g = LM (IV.B-35)
LB
where: d, dg = lethal area of A, B force shot,

m,, mg = rate of fire of A, B unit, and
L., Lg = area occupied by A, B forces.

For A, to be zero, £ must be twice a. We take initially then,

LA = 100 km?,
dg = 1 km?, and
mg = 5 min™.

This gives @ = 5 x 102 min™'. If we take Ly = L,, m, = mg, and d, = 2 km?, then
B = 10" min"". This satisfies the draw case condition. A plot of equations (1V.B-32)
and (IV.B-33) for these parameters are given in Figure (IV.B-7).

Variations for doubled/halved force strengths and doubled occupation area, rate
of fire/lethal area are shown in subsequent figures. Since these examples deviate
from the draw case, the force strengths were calculated using Equations (IV.B-26) and
(IV.B-27). Note how the draw shifts to Blue/Red victory in a conclusion sense.
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\ ‘ Linear Law Time Solutions

Force Strength Draw Case

Figure IV.B-7

@

Linear Law Time Solutions
Force Strength Doubled Blue Force

Time

Figure 1V.B-8

IV-19




Linear Law Time Solutions
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. | Linear Law Time Solutions

Force Strength Doubled Red Rate of Fire or Lethal Area
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Figure IV.B-11

Linear Law Time Solutions.
F°fcze°gﬂ!n§th Doubled Red Rate of Fire and Lethal Area
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Figure IV.B-12
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IV.C. Lanchester’s Square Law

The square Lanchester law also describes combat between two forces. The rate of
attrition is given by the differential equations

44 _ 4B, (IV.C-1)
dt

and
4B _ g4, (IV.C-2)
dt

The state solution for these differential equation, derived in Chapter lll, is

o (B2 - BY) = B(42 - 47). (IV.C-3)

The explicit time solutions of these differential equations are derived in that chapter
as well.

In the square law case, as in the linear law case, an increase in attrition rate
constant/function is equivalent to a multiplication increase in force power. (Such an
increase in attrition rate constant/function increases force strength only as the square
root since force power (total force kills per time) is the attrition rate constant/function
times the square of the force strength rather than as the force strength directly in the
linear law). [f for example, Blue has an attrition rate constant/function twice Red’s,
then Blue’s force strength need only be slightly more than 70% of Red’s force
strength to force victory (again, in the sense of a conclusion). If technology is used
to this end, then its influence is still direct, but is less efficient (of the two cases)
since the attrition rate constant/function must quadruple for every factor of two that
the enemy force strength increases.

This is a direct statement of Lanchester’s Principle of Concentration.

IV.C.1. Square Law Assumptions

The assumptions associated with the square law are, again following Dolansky,
and Karr:

1.) The two forces A (for amber or red) and B (for blue) are engaged in
combat.

2.) The units of the two forces are within weapons range of all units of
the other side.
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3.) The attrition rates are known and constant.

4a.) Each friendly unit is aware of the specific location of enemy units
and the effect of fire is known.

Ha.) Fire is uniformly distributed over surviving enemy units.

6.a) Targets are either numerous or are acquired at a constant rate (i.e.
are easy to find.)

or
4b.) Each friendly unit is aware of the general location of enemy units
but the effect of fire is generally unknown.

5b.) Fire from surviving friendly units is uniformly distributed over the
area occupied by enemy units.

6b.) The area occupied by surviving units contracts to maintain a
constant density of units.

We notice immediately that the first three assumptions, (1)-(3), are the same
as those advanced for the linear law. The reader is referred to the previous section
for discussion of those assumptions. We shall concentrate here on the "new"
assumptions which apply to the square law.

Assumptions (4a), (5a) and (6a) are those commonly associated with the square
law as a model of line-of-sight weapon systems units - generally classical infantry and
cavalry/armor units, and artillery units firing directly. (Artillery units were
predominantly direct fire until after the period of the American Civil War/War of
Southern Independence circa 1861-1865 C.E.) These assumptions describe direct fire
combat when targets are easy to find and the attrition rate process is dominated
directly by the rate of fire/kill rather than by the target location/identification process.
(As described by assumptions (4b) and (5b) of the linear law). Assumptions (4a) -
(6a) are those which we have seen support indirect fire combat and the comments in
the previous section are still applicable, but are modified by assumption (6b). In this
case, the quantity '

o, = 2o (IV.C-4)
L,

(and its conjugate) are conserved through the combat. As a result, the area occupied
by each force L,, L; , are now time dependent, and have the form
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L, = p, 4, (IV.C-5)

so that the attrition rate has the form

o = AB

i | (IV.C-6)

and the square form of the Lanchester differential equations arise. The indirect fire
attrition rate constant/function for constant density of forces is related to that for
constant area occupied by forces (designated by and a, and a,, respectively) is

a, =a, L, (IV.C-7)

where L, here is the area occupied by the initial forces.

If we again consider the search and acquisition time in the attrition rates, the
search model previously described in section IV.B may be used. The search time is

again

t, = Ly
Bs AleBpAa (IV-C'S)
= (pAleApAa)-1'
The kill time is just
tBk = (rp)’1’ (IVC-Q)

where r is the rate of fire of the weapon, and p is the probability of kill per shot. The
total time to attrit a Red unit, including search and acquisition time (using these simple

models,) is just
(IV.C-10)

Ypanrie = tps + tpis

and the attrition rate is (again)

If the search time is much greater than the kill time (i.e. tz > > tg,) then we
may ignore tg, in the above attrition rate, and the attrition rate is again,
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-1
« = Tpouri 1 (IV.C-11)
(25 + tz)7".

o« =p,lg Vg Dy (IV.C-12)

Now if p, is constant, then quadratic law assumption (6b) is valid, and the resulting
differential equation has the form

44 _ _, B, (IV.C-13)
dt

which is a quadratic law attrition differential equation (regardless of the type of
attrition.) If, on the other hand, p, is not constant, then square law assumption (6a)
is valid, and the resulting differential equation is a linear law attrition differential
equation,

44 _ _4* 4 B, (IV.C-14)
dt

where:
ot = 398 P (IV.C-15)

L,

If the kill time is much greater than the search time (i.e. 15, < < tg,,) then we
may ignore tg, in the above attrition rate, and the attrition rate has the (approximate)
form

« =rp, (IV.C-16)

and the resulting attrition differential equation is quadratic.

The interrelationship of search and kill times will be further considered in
Chapter VII which deals with combined law differential equations and assumptions.

On a historical basis, one would expect the actuality of combat to 'see-saw’
between the linear and square law descriptions of indirect fire combat. Initially, units
would be distributed over an area and would remain so for some time. Then,
casualties having occurred in a non-uniform manner, the surviving units might be
redistributed (over a lesser area) to fill gaps but reverting to approximately their
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original density. During the period of redistribution, we might expect that the square
law form would hold. This view, of course, is somewhat simplistic (but no more so
than the model itself). It will also depend on whether combat is continued (and to
what intensity,) while the units are redistributed. Alternatively, the area occupied by
the forces will tend to remain somewhat constant even when casualties occur due to
the need to maintain a force presence in those areas. This is a subject that we shall
also take up in Chapter VII.

It is worth commenting that one of the assumptions in the Lanchester model
describing indirect fire units (or those affected by indi-rect fire) is that such units are
uniformly distributed. This is only approximately so. The individual weapon systems
may be approximately uniformly distributed over an area (or a line) with some degree
of concentration, but by their very nature, the portions of the force which are not
(usually) attriters, (i.e., command and supply units,) by their very nature are
concentrated and not so distributed. The model is too simplistic (at this level of
development and discussion) to consider these units or the effects of their attrition.
This concentration is why target location has become crucial for indirect fire systems -

the need to selectively engage these control and support units which are not
efficiently attrited under the normal assumptive conditions.
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IV.C.2. Square Law State Solution

To consider the square law as descriptive of direct fire / line-of-sight/point
attrition, we again perform a simple analysis. Consider that each Blue fire is directed
against one Red unit at a time (assuming a unit to be the simplest level of weapon -
system, such as a tank or an individual soldier. If the unit is larger - a squad or
platoon, say - then this condition still applies but the unit attrition is fractional. We
shall illustrate this later when we analyze the example of the Soviet tank platoon as
unit). Associated with each unit is a rate of fire (fires per time) of r, and a probability
of kill per shot of p,. If target location/identification time is small compared to time
to kill once the target is located (a situation dictated by assumptions (4b) and (5b}),
and the target unit is engaged until killed (and (!) ammunition supply is ignored), then
the time to kill a Red unit is just (r, p,)", and the attrition rate is just

€ =T, Py (IV.V-;|7)
which is yields a linear attrition differential equation.
If we again define the quantity A, as
A, = «B? - BAZ, (IV.V-18)
which is the kills per time difference between the two forces. As with A,, this is the
predictor of victory in the Lanchestrian sense of combat to a conclusion. As before,

if A, > O, then the blue force generates more kills per time than does its foe, and if
combat is carried to a conclusion, then the blue force will be the victor with

2 2 .V-19
By = BO”BAO (IV.V-19)
units remaining.

If A, < 0O, then the red force generates more kills per time than does the blue
force, and at the end of a conclusive combat, the red force will be the victor with

4, = |42 - 2p? (IV.V-20)
fnal 5o

units remaining.

If A, = O, then the combat, if carried to a conclusion, results in a draw since
both forces generate the same number of kills per time.
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It is again convenient to write the state solution in a form when the red force .
strength is the dependent variable and the blue force strength is the independent

variable,
B = ‘EAz , B2 (IV.V-21)
o o

If we plot this function for A, = 0, we get a graph of the same form as Figure
(IV.B-1), except that the slope is

‘ _[_3__ (IV.V-22)
o
This follows since
g-|B 4 (IV.V-23)
Ne ™’

when A, =0

Since equation (IV.C-21) is quadratic rather than linear, solutions for various .
combats will not lie parallel to this line (for the same ratio a/B), as they did in the
linear case. They will, however, lie either above or below this line, respectively,
whenever A, < 0,or A, > 0. As before, if A, > O, the solution will graph above
this line and Blue will be victorious (in a conclusive combat). If A, < O, the solution
will graph below the line and Red will be victorious.

We now examine, in the same manner as previously, combats in terms of the
intercepts of the solutions with the axis. In the upper region, the state solution curve
intercepts the B force strength axis at zero A force strength. It does so at value
V/(A,/a). The quantity A,/a again represents the number of kills per time remaining to
the victor at the end of a conclusive combat. The quantity V/(A,/a) is the force
strength of the victor at the conclusion of combat.

As before, we examine the effect of force strength on the outcome of the
battle. This is shown in Figures (IV.C-1) and (IV.C-2) for an increase and a decrease
in the initial Blue force strength of 50% over the draw case. Note that in the latter
case, a Red victory, the Red force strength at conclusion, the interaction of the state
solution curve with the A force strength axis, isV/(-A,/8). In the square law case, we
must worry about the sign of A, explicitly since the argument of the square root must
be positive. These curves show that one way for Blue to win is to have more units
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‘ than Red (for the same attrition rate constant/function).
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The other way for Blue to win is to change the attrition rate constant/function.
This cannot be done by increasing the area occupied as in the linear case; it can only
be done by increasing either the rate of fire or the lethality of the munitions (increasing
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the probability of kill). If we double either the probability of kill or the rate of fire, the
Blue attrition rate is doubled in value (com-pared to the draw case). The result of this
is shown in Figure (IV.C-3). If we double both, the Blue attrition rate is quadrupled
in value. This result is shown in Figure (IV.C-4). As in the square law case, the
attrition rate can be changed through either training or technology. Both rate of fire
and probability of kill can be increased by developing the skills of the loader (assuming
a manual loader,) or the skills of the gunner, respectively. Similarly, by incorporating
an automatic loader (increasing the rate of fire when the unit is kill limited,) or
improving the accuracy of the weapon and/or the lethality of the munition (increasing
probability of kill,) the attrition rate can be increased.

State Solutions
Square Lanchester Equation

oc -~

o0 =0

Tr@Q 3O~ D

Figure IV.C-3
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. State Solutions
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Figure IV.C-4
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IV.C.3. Square Law Time Solution

The square law time solutions, derived in Chapter Ill, are:

A(t) = A, cosh(yz) - & B, sinh(yz),

Ay . (1IV.C-24)
B(t) = B, cosh(yt) - 3 sinh(yt),
where:
A2 = aBg - BAg!
Y =vab, (IV.C-25)
= | &
p

It is not obvious that these equations are valid for the draw case. To show this, we
first rewrite A, in the form,

A, = (VaBy - VBAg) (VaBy + VBA,). (IV.C-26)
We see that the draw condition A, = O means that
-~ JaB, - B4, = 0, (IV.C-27)
or ,. |
JEBO = VB4, (IV.C-28)

(This is also the result that we would have gotten if we had solved Equation (IV.C-25)
directly.)

If we now consider the alternate solution forms in Appendix C:

2/BA(t) = (VBA, - VaBy)e'™ + (YBAy + VaBy)e v,  (IV.C-29)

and

2/aB(t) = (VaB, - VBAy)e™™ + (YaB, + VBAy)e v,  (IV.C-30)

and substitute Equation (IV.C-27) into these equations, we obtain,
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2/BA(t) = (VBA, + YeBy)e ™™, (IvV.C-31)
and

2/aB(t) = (VB + VBAy)e™™, (IvV.C-32)

And now substitute Equations (IV.C-28) into these two equations, and perform some
minor algebra, '

A(t) = Ay e ™™ (IV.C-33)
B(t) = By e, '

result. (We shall derive these equations from the attrition differential equations in
Chapter VLI.)

For an example of the draw case, we again take
A, = 100, and
B, = 200.
The ratio 8/a must be 4. From the simple model of attrition,

@ =TpPg (IV.C-34)
B = Ty Dy

we see that this may be satisfied if:

(i.) I'A = 4 fB

(ii.) | pa = 4 ps

(iii.) | ra =2rg, and py = 2 pg

(iv.) | ra = 2 x 15 and py = 2 pg/X
where x > 0. For the purpose of this example, we will take case (iii.) above, and use
rg = 3 min”, and
pg = 0.25.
This results in @ = 0.75 min™, 8 = 3.00 min", A, = 0.00, y = 1.50 min”, and § =
0.50. A plot of these particular solutions for the draw case, Equations (IV.C-33) are
given in Figure (IV.C-5). While the ultimate convergence of the two solutions ate
force strengths of zero is not shown in this figure (in the interest of keeping a
reasonable span on the chart,) that end is clearly indicated. As with the linear law
conclusion condition, the square law conclusion condition can be changed in two
ways, by changing the initial force strengths and by changing the attrition rate
constants/ functions. Each of these variations is depicted in subsequent figures.
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Square Law Time Solutions
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Figure IV.C-b

Figure (IV.C-6) depicts the result if the initial Blue force strength is doubled.
This changes to conclusion condition from its zero value for the draw case to a
positive value. The rapid attrition of the Red force and the decreased attrition of the
Blue force is clearly shown. Halving the initial Blue force strength has the opposite
effect, as shown in Figure (IV.C-7).

Square Law Time Solutions

Force Strength Douhled Blue Force Strength

Figure IV.C-6
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Figure IV.C-7

Changing the attrition rate has a less pronounced effect on the conclusion
condition than does changing the initial force strength since the conclusion condition
is linear in the attrition rates but quadratic (from whence the name) in the initial force
strength. If the Blue force’s rate of fire or probability of kill are doubled, the Blue
force attrition rate doubles. Comparison with the draw and doubled initial Blue force
strength cases, Figures (IV.C-5) and (IV.C-6), respectively, shows the intermediary
form of the solutions. Doubling both the rate of fire and the probability of kill of the
Blue force has the effect of quadrupling the Blue force attrition rate. In terms of the
conclusion condition, this is equivalent to doubling the initial Blue force strength. It
also has the effect of doubling the value of y, so that the attrition process occurs
twice as fast as in that of doubling the initial Blue force strength. Comparison with
Figure (IV.C-8), the doubled initial Blue force strength shows the same relative losses
in both cases: Blue looses 12% of its units in both cases while Red loses 100% of its
units, but the attrition process takes half as long in the quadrupled attrition rate case
due to the doubling of y. ' ‘
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1V.D. Lanchester’s Mixed Law

The mixed Lanchester law is not explicitly mentioned by Lanchester in Aircraft
in Warfare; rather, it is suggested by the existence of the linear and quadratic (square)
Lanchester laws and the assumptions advanced in the preceding sections. As is the
case with the linear and quadratic laws, the mixed law describes combat between two
forces. The rate of attrition is driven by the differential equations

a4 _ _, B, | (IV.D-1)
dt

which is identical to equation (IV.B.1), and

dB _ -B A B, (IV.D-2)
dt

which is identical to equation (IV.A.2). The state solution for these differential
equations, derived in Chapter lll, is

(B - By) = -g-(A2 - 43). (IV.D-3)

The explicit time solutions of these differential equations are also derived in Chapter
lll. They differ from the solutions for the linear and quadratic attrition differential
equations in that the form of the solution depends on the sign of the quantity

m

A = aBo - -g—Ag (IvV.D-4)

Actually the solutions can be cast into a single functional form if the parameter A, is
treated as a complex variable due to the equivalence of the functions tanh(z) and
tan(z) for complex argument z. We will not pursue that uniformity here as the
mathematics involved are beyond the scope of this book and the resulting functional
form does not directly contribute to the discussion of the mixed law.

As in the linear and square law cases, an increase in attrition rate
constant/function translates into an increase in force power. For the linear law force
(here the Blue force,) an increase in attrition rate constant/function is a direct
multiplier of force power while for the quadratic law force (here the Red force,) an
increase in attrition rate constant/function directly multiplies force power as the
square root of the attrition rate constant/function divided by two. (This factor of two
in the denominator must be carried through in the mixed law case because it does not
cancel as is the case with the linear law.) This means that if technology is used to
increase the attrition rate constant/function, it is more effectively applied to the Blue
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force than to the Red force. More exactly, if technology is used to increase Blue’s
attrition rate constant/function (alpha) by a factor of two, Red can maintain parity only
by increasing its attrition rate constant/function by a factor of four.

IV.D.1 Mixed Law Assumptions

The assumptions associated with the mixed law can be carried over directly u
from the assumptions associated with the linear and quadratic laws, described
previously in Sections IV.B.1 and IV.C.1. The linear law assumptions imply either
point attrition (usually direct fire) against targets which are difficult to find or area
attrition (usually indirect fire) against a target array whose density changes over time
so that the area covered by the target force remains constant. The square law
assumptions, on the other hand, imply either point attrition against a target array
whose members are easy to find or area attrition against a target array whose density
remains constant over time, the area covered by the target force changing over time
to keep this density constant. This cross association allows us to describe many
types of combat by the three combinations of attrition rate differential equations:
linear-linear, quadratic-quadratic, and linear-quadratic (or quadratic-linear.) This
association is summarized in Tables IV.D.1 and IV.D.2 which cross correlate the type
of fire (direct or area), force disposition (area or density constant), and the density
(high or low) to show the type combination of attrition rate differential equations.

In this case, the characteristics direct/area fire, area/density constant, high/low
density have been chosen to signify particular aspects of the Lanchester law
assumptions. The terminology direct fire is used to signify point attrition while area
fire signifies area attrition. Constant density signifies that the force in question
maintains a constant areal density of units, thus normally reducing its area of
coverage as the number of units decreases through attrition while constant area
signifies that the force occupies a constant area during the combat, but that its areal
density normally decreases during combat. High density indicates that the units of
the force are sufficiently concentrated that target acquisition is fast, while low density
signifies that target acquisition is slow, compared to target destruction. This
introduction of two different characteristics of unit areal density should, for now, be
considered as independent - a force may have a density which is kept constant but
which still may be either low or high. Similarly, a force may have a variable density
which at any given instant of time may be either high or low. We shall examine these
distinctions in density in greater detail in the later chapters of this work which deal
with attrition rate constants/functions. The student may also anticipate that we will
also deal with some other considerations such as transitions between constant and
variable density (constant area occupied,) and the gradations between high and low
density which here only serve as limits on whether target acquisition or target
destruction processes are dominant.
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Some further explanation is also necessary. The student will have noted that
the type of fire: area or direct, is the crucial factor on whether constant/variable or
high/low density are important in the type of combat being described by one of the
three models/laws. What may not have been as obvious is that the attrition
differential equation form (linear or quadratic,) for a given force is defined by the
density characteristics of that force and the fire type of the opposing force. As an
example, the differential equation describing the losses of the red force will be
quadratic if the blue force is using direct fire weapons and the red force has high
density. The differential equation would be linear if the blue fire were still direct but
the red force’s density were low.

Examination of this table reveals that inclusion of the mixed law permits the
modeling of combat between forces in a manner which the strict linear and quadratic

laws would not permit. Specifically, we see that the linear law would allow

consideration of the following forms of combat:

Table IV.D.1
Red Blue
Area Fire, Density Constant Area Fire, Density Constant
Direct Fire, Low Density Direct Fire, Low Density
Area Fire, Low Density Direct Fire, Density Constant

Direct Fire, Density Constant | Area Fire, Low Density

This short table illustrates the cross relationship between fire type for one force and
the density characteristics of the other force. The same table for the quadratic law
is:
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Table IV.D.2

Red Blue
Area Fire, Area Constant Area Fire, Area Constant
Direct Fire, High Density Direct Fire, High Density
Area Fire, High Density Direct Fire, Area Constant
Direct Fire, Area Constant Area Fire, High Density

It is readily obvious that out of 16 possible combinations of fire type and
density characteristics (4 per force,) that the original linear and quadratic Lanchester
laws will only admit to modeling 8 combinations. The rest of the possible
combinations fall under the mixed law. (Note that these 16 combinations are not
exhaustive - they merely cover the extremes permitted under the basic assumptions
associated with the Lanchester laws.)
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IV.D.2 Mixed Law State Solution

As in the previous cases, the quantity A, is a measure of the forces remaining
if the combat is carried to a conclusion. Unlike the A’s defined in the linear and
quadratic law cases, this A is not symmetric in the force strengths. Thus, a small
change in the red force strength (we have explicitly assumed that the red force is
linear-like while the blue force is quadratic-like - this can be reversed with only the
necessary symmetric swapping of force strengths and attrition rates,) will have a
much greater effect on the value of Am than will an equal change in the blue force
strength. While we might normally expect a to be much larger than g to correct for
this, we must note that the attrition rates are constants (or functions,) and therefore
only point values. Thus, in mixed combat, there is a great advantage to the linear-like
force in greater numbers if the combat were to be carried to a conclusion. This can
readily be seen in Figure (IV.D-1) where we plot blue force strength versus red force
strength for two value of Am which are equal in magnitude but opposite in sign. The
draw case, unlike the other two state solutions, is not a straight line, but ratheris a
parabola. This form is the direct result of the asymmetric nature of the state solution.
The curvature of the graph is readily apparent. However, just as the state solutions
for the linear and quadratic state solutions are symmetric about the draw case for
opposite values of (delta), so too are the solutions for the mixed law. This symmetry
is somewhat more difficult to see due to the curvature of the draw case. If the
student can imagine transforming the draw case state solution to a straight line, and
mentally repeat these operations on the two other state solutions in the figure, then
the symmetric arrangement can be visualized.
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Note that changes in the value of A, cause different values in the remaining
. force strength at conclusion. Of course, the draw case results in zero force strength
on both sides. Thus each side takes 100% losses. For a A, value of 15 however,
the red force takes 100% losses, while the blue force takes 25% losses. Alternately,
for a A,, value of -15, the blue force takes 100% losses, while the red force takes
about 35% losses. This asymmetry is the direct result of the values of the attrition
rates , and illustrates the effect only of changing the attrition rates, not the initial
force strengths.
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IV.D.3 Mixed Law Time Solution

The time solution of the Lanchester mixed attrition differential equation for red
force linear-like, and blue force quadratic-like, derived in Chapter lll, are

2|A
4, —\ |4, tan(n?)
A(?) = B A, >0
1 + A, '2& | tan(n1)
2
B(1) - B, sec(nz) A >0
1+ 4, 2|i ltan(qz)J2
and
2
Ag +\ |4 | tanh(n 1)
A(t) = - 3 , A, <0
1+4 h
0 2[A ] tanh(nz)
- 2
B() - B, sech(nt) A <0
1 + 4, 2|ﬁ | tanh(nt)Jz
where:
| BlA,]
TN 2

We note immediately that there are two forms of these solutions which depend
on the sign of A,,. We can directly reduce these solutions for the draw case if we
note that tanh(x) = tan(x) -» x and sec(x) = sech(x) - 1 as x = O (to first order in x).

This allows us to write
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Ag + 2]4] (n?)
AQr) = A LA <0

1+4, gli () (IV.D-8)
B(z) = B, LA <0

+ I B |
[1 Ay 2]Am[(nt)J2

From the definition of n, these equations may be rewritten as

A, - |A |t
M -l <0
+B obt - (IV.D-9)
B(t) = —2—, A, <0.
[1 +A0Bt]2

Since the draw case means that A = 0, we must rewrite Equation (IV.D-5a) or (IV.D-
6a) as

4

—_, (IV.D-10)
1 +A4,pt

A(t) =

while Equation (IV.D-5b) or (IV.D-6b) may be used without alteration since it does not
explicitly contain A,,.

The explicit time solutions for these two values of A, are shown in Figures
(IV.D-2) and (IV.DC-3) for the Red and Blue force strengths, respectively. As in the
previous figures presented in this chapter, the units of the time variable are chosen
arbitrarily. It may be seen that the positive Am solution reaches zero faster (Red force
- quadratic-like) than the negative (delta)m solution (Blue force - linear-like) does.

Another way to vary the value of Am is to alter the values of a and 8. The
changes of the solutions for variations of +50% in the value of 8 are shown in
Figures (IV.D-4) and (IV.D-5) for the Red and Blue force strengths, respectively.
These variations are executed relative to the case of A, = 15. As noted earlier, the
effect of the variation in B scales as a square root change in A,. Although it is
difficult to see, the effect of these variations on the time solutions are approximately
equal in relative magnitude for these effective small variations in the solutions.
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Variations in a of similar magnitude (+50%) are shown in Figures (IV.D-6) and
(IV.D-7) for the Red and Blue force strengths, respectively. Note the relatively greater
changes in the shapes of the solutions. This is the result of relatively greater changes
in the values of Am about the base case (15) value. The changes in the Blue force
strength solutions are actually less than those due to the variations in §; the changes
in the Red force strength solutions are decidedly pronounced.
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The other way to vary the solutions is to alter the value of the initial force
strengths. Variations in the value of the initial Red force strength (B,) of +50% are
shown in Figures (IV.D-8) and (IV.D-9). As expected, the Red force strength time
solutions are essentially parallel. Variations in the value of the initial Blue force
strength (A,) of £50% are shown in Figures (IV.D-10) and (IV.D-11). Again, the Blue
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Mixed Law Time Solutions
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