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Foreword 

Warfare is as old as recorded human history. War has been especially prevalent in the last 500 

years with the increasing conflict between large nation states. A great amount of analysis and 

thought has been given to the "Art of War". Nine principles of War have been defined: Objective, 

Offensive, Mass, Economy of Force, Maneuver, Unity of Command, Security, Surprise, and 

Simplicity. Despite these accepted principles, the science of war has remained elusive. Since 

World War II, investigators have searched for a theory on the physics of war~"De Physica Belli". 

Efforts have been more successful with the prominent rise of Operations Research as an analysis 

tool to assist combat operations. Dr. Bruce W. Fowler uses these modern analytical tools to seek the 

answer to the following question in this report—"Is there any scientific basis to describe the physics 

of war?" This report provides the answer to this question. His approach to a physics of war is the 

application of Lanchestrian attrition mechanics which first appeared in theory in the early 1900's. 

Dr. Fowler introduces Lanchester's work and then examines whether Lanchester really was the 

"father of attrition theory" and the resulting force ratios and attrition coefficients. Lanchester 

initially claimed that improved tactics, training, doctrine, and morale were not amenable to 

mathematical analysis. Once the reader generally understands Lanchester's Differential Equations 

and their solutions, Dr. Fowler proceeds to introduce variations on a theme by carrying Attrition 

Theory forward until the late 1980s. Some of the topics covered are: stochastic versus deterministic 

representations; homogeneous versus non-homogeneous forces; dependencies of attrition and 

attrition rates on time and range, not just on force strength; aggregation and disaggregation; 

Quantified Judgment Models; Bonder-Farrell Attrition Theory and Ancker-Gafarian Attrition 

Theory. 

in 



"De Physica Belli" is intended to be a general reference and introduction to attrition theory 

suitable for the combat soldier, the student-soldier, or the military analyst. The manuscript succeeds 

in that respect and provides a good overall summary of the state-of-practice in attrition theory 

through 1990. However, given the great advances in modeling, simulation and computational power 

since 1990, it would not be surprising to see future updates to this work. The mathematical tools of 

complexity theory, fractal dimensions, fuzzy logic, information theory and the power of scientific 

visualization of data in interactive computer simulations may offer new and exciting insights into 

the physics of war. These new developments will most certainly provide opportunities to conduct 

experiments in the science of warfare that go beyond the limitations inherent in the analysis of 

historical data. 

IV 
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PREFACE 
This is a book about war. 

It is the result of several years interest in the modeling and simulation of 
warfare. It neither praises nor decries war: war is a social activity of mankind and as 
such can be avoided or denied no more than any other interaction of man with others 
of his kind. Clausewitz tells us that war is an extension of policy by other means, 
while Mao tells us that power grows from the end of a gun. Clearly then, war is social 
and at best is governed by such social rules as the participants are willing and able to 
apply. 

Why should a physicist write a book about war? The answer has two parts. A 
physicist, more than most of humanity, looks at the world around him and continually 
asks "Why?" He applies logic, patience, stubborn determination, and mathematics to 
the question. 

That "Why?" question brought me to the subject of war, and continues to lead 
me through investigations and studies of it. It also led to writing this book so that 
others could ask that question with greater efficiency by using what little stubborn- 
ness I have been able to apply. 

Man has apparently practiced war as long as he has existed. The tool making 
tradition/development of man is clear. While the application of early chipped rock tools 
such as choppers and hand axes to warfare can be questioned, the question arises not 
from the likelihood of their application, but to the nature of warfare in that social 
environment. Warfare today is viewed as being national in scope (even civil war) and 
reflecting some cultural conflict (which itself raises the question of how warfare can 
exist without the benefit of agriculture.) In neolithic times, nations as such did not 
exist, but familial and tribal level social groups most likely did, and conflict between 
such groups probably had all of the cultural aspects of war as we think of it. The 
earliest evidence of warfare as conflict between two (or more) collected forces is 
found in Neolithic cave paintings1. Most Historians neglect warfare prior to the 
Macedonian Juggernaut of Philip and Alexander, although we now have evidence that 
the social development of war, its institutions and mechanism is fundamentally older.2 

This is partly due to the lack of recorded history and partly because Macedonia (under 
Philip) was the first western nation. However, as Jones3 notes, the primary reason 
was the emergence, with the Macedonian nation, of the Macedonian army as the first 
balanced, combined arms army. 

The Romans made no strong distinction between technical knowledge and its 
military applications. Neither, apparently, do the Russians, America's overt rival (until 
recently?) for dominance of Civilization. In America, we practice an oscillating love- 
hate relationship with things military. For several years now, this country has practiced 
an academic apathy for matters of warfare. To this end, there are almost no avenues 
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Preface 

for disseminating information on warfare research. 

This book is not primarily just for the soldier. By that I do not mean that the 
soldier should not read it, but I recognize that the profession of soldier is not given to 
mathematics and analysis. It is however, much given to the rigorous study of 
stubbornness and patience, to the art of concerted action and deliberate inaction. To 
the average soldier, a book of analysis would be a punishment no matter how 
couched. To the occasional soldier with a bent for mathematics and analysis, it would 
be of insightful use. If I have done my task well, it may even be of abiding and 
delightful value. 

In this book, we limit ourselves (primarily) to some of the aspects of formal war. 
Formal war is a term that distinguishes warfare characterized by the use on both sides 
of trained troops under discipline with a rigorous chain of command and a set of 
formalized goals. Informal warfare such as riots, civic disturbances, terrorism, 
inquisition, and other spontaneously constituted conflict are thus excluded. (The 
special case of guerilla conflict is somewhat of a grey area and we shall treat some 
of the combat aspects of such conflict.) The scope of this book is limited to treating 
some of the aspects of formal war. 

Of particular concern will be the tactical level of formal warfare (or just warfare, 
as shall hereafter be used synonymously.) The strategic or (recently rediscovered in 
this country) operational levels of warfare will be devoted little attention. This 
limitation is dictated not solely by desire but by the fact that the tactical level of 
warfare is most strongly associated with attrition and attrition is the part of warfare 
that has been examined most deeply. 

It must be noted that the practice of war is an art. However, art has its 
technical aspects. Just as painting is an art form, it too has its technical aspects - the 
optical and material technology associated with perspective, color, the functioning of 
the human eye, the production of paint and canvas. Similarly, the art of war has 
technical components that support its execution. This book deals with some of those 
technical components. 

This does not mean that this book is intended to have an audience of soldiers. 
As the execution and appreciation of painting cannot be totally technical, the 
execution and appreciation of warfare cannot be totally technical as well. But in both 
instances, there are technical factors and contributions to both the execution and 
appreciation of painting and warfare. The painter cannot successfully practice his art 
without knowledge and use of the technical aspects of his tools and methods. Neither 
can the manufacturer of art supplies be ignorant of the technical aspects of painting 
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and satisfy the needs of the painter to practice his art. In a like manner, the soldier 
cannot practice his art without some technical knowledge. Nor can the supporter of 
the soldier, the technologist or analyst of war, satisfy the needs of the soldier without 
knowledge of the technical aspects of war. This book, then, is of interest to both the 
soldier and the technologist of war. 

Most books about warfare are historic in nature, ranging from memoirs such as 
Xenophon's The Persian Expedition4, Gaius Julius Caesar's The Conquest of Gaul5, and 
Donn Albert Starry's Armored Combat in Vietnam6, through tactical and strategic 
treatises such as Frederick the Great's On the Art of War7, Jomini's The Art of War8, 
and von Clausewitz's Vom Kreig (On War)9. (The latter category seldom seen on 
bookstore shelves.) Some historical analysis of warfare has found its way into print, 
ranging from Dehlbrück's History of the Art of War10 to Trevor Dupuy's Numbers, 
Predictions and War11. The modeling of warfare has its origins in the analysis of 
history. This is amply evidenced in Lanchester's Aircraft in Warfare: The Dawn of the 
Fourth Age12, Osipov's articles13, and Fiske's The Navy as a Fighting Machine14. 
(Discussed briefly in Chapter II.) Books on the technical aspects of the modeling of 
warfare are rare, the exceptions being Dupuy's book and Taylor's Force-on-Force 
Attrition Modelling15, the former describing an empirical approach from historical data 
which sadly, despite its aesthetic form, lacks any theoretical foundation which admits 
the introduction of technological advances (which as Ferrill notes increasingly 
dominates the nature of warfare,) and the latter giving no attention to historical 
insights and scant attention to the underlying mechanics of attrition processes. 

What this book is, is a combination of historical (both in the classic sense and 
in the sense of the discipline) and technical (mostly the latter) analyses of warfare 
models. The approach is somewhat mathematical. A knowledge of the integral 
calculus and elementary probability theory is assumed; that level of sophistication 
seems to be the minimum requisite to consider the subject in depth, and is probably 
enough to dissuade the average professional soldier from reading further. That is not 
altogether a misplaced view; as I have said, the practice of war is an art form and this 
book is not primarily concerned with the art form. However, to borrow a model from 
my own profession, a physicist will gather knowledge (and tools) from a mathematics 
book without having the depth of understanding of the proofs of the theorems that is 
required of the mathematician. Rather, the physicist largely accepts the proofs' validity 
at face value and uses them as tools in the practice of his profession. So too may the 
soldier make use of the material in this book, using the results of the derivations and 
analyses as tools. Fundamentally, however, this book is concerned with the analysis 
of warfare, and as such, is of interest to the more analytically inclined of the 
community. This book will not likely ever be mentioned in the same breath or be of 
comparable value to the soldier as Vom Kreig; it may be of some use to the technical 
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community that supports the soldier in the pursuit of his art form by providing him 
with the materiel and doctrinal tools of his trade. 

Of necessity, much of this book is concerned with the attrition process of 
warfare. This is partly due to our fascination with that aspect of war, and partly due 
to the preponderance of the literature on that aspect. Presumably, attrition is more 
amenable to analysis than other aspects of war! 

While this book does not portray itself to be an historical work, some data on 
historical warfare is included to address salient points in the mathematical theory and 
provide insight in the analyses. Of necessity, those data are limited; warfare is not, 
and never will be, a strictly scientific subject. We cannot conduct scientific 
experiments on warfare. The control problems aside, moral and economic factors 
preclude such experiments. As a result, considerable uncertainty must and does exist 
in the historical data. Of necessity then, the data must be culled. (I am not an 
historian, and detractors may claim that I have been overselective in my choices or 
have been deficient in the exhaustiveness of my scholarship. I cannot defend myself 
on the historical selections except to state that I have attempted to be honest in my 
selections.) In many cases, the culling of historical data is dictated by the requisites 
of the mathematics - a minimum of numeric data is necessary and only battles for 
which that minimum can be found can be subjected to analyses of the types presented 
here. Much of this data, as I have stated, is uncertain; in particular, meaningful data 
on the actual duration of the vast majority of battles is wanting, or at best, suspect. 
Even force strengths are uncertain, with contradictory reports often being the norm. 

Within these limitations, this book presents few conclusions. Rather, it attempts 
to lend insight into the dynamics of warfare. The reader should remember that this is 
an immature discipline. It has few laws and is predictive in only the most cursory 
sense. (We do not mean here the Laws of War; they are the laws of the art of war, 
not laws in a technical sense.) Still, the discipline offers considerable promise in terms 
of developing into something which will be a contributor to man's understanding of 
his universe.   May this book serve in some manner to hasten that day. 

There is, I hope, a wider audience for this book than the professional soldier. 
The core group for which this book is written are the students, those who practice the 
peripheral professions of war and must learn their trade and continually update and 
expand their understanding of it. These students include the developers of weapons 
and doctrine, the analysts and users of combat simulations, the civilian and soldier 
managers of military programs, their counterparts in the defense industry, and even 
academia. 
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0. Introduction 

O.A   Can we Define the Question? 

Is there a physics to warfare? Or perhaps a better way of asking that question 
would be "Is there any scientific basis to describe the processes of war?" That may 
still not be clear, so we shall examine the two key ideas in the question(s): science 
and war. 

The logical starting point is to examine the dictionary. The Random House 
Dictionary1 defines science as: 

"(1)    a branch of knowledge or study dealing with a body of acts or 
truths systematically arranged and showing the operation of general 
laws." 

and war as: 
"(1)    a major armed conflict as between nations." 

The American Joint Chiefs of Staff defines neither in their Dictionary of Military Terms2 

while our chief competitors (until recently) the Soviet Union,  provided a long 
description definition of war3 (voyna): 

"War is an armed conflict between states (coalitions of states) or 
between striving antagonistic classes within a state (civil war) to gain 
their economic and political ends." 

Finally, we find that physics4 is 
"The study of those aspects of nature which can be understood in a 
fundamental way in terms of elementary principles and laws." 

These dry definitions do indeed allow us to ask over questions in a (hopefully) 
more meaningful way: Are these general laws or elementary principles - operating in 
the armed conflicts between states? Obviously, I (and others) must have some reason 
to believe that there are, I would not have written this book advancing to describe 
some of our knowledge (and offer, our lack of it). Equally obviously, if I do not move 
on to something a little less dry then their definitions, you, the reader, will cease to 
read. 

0.B      Lies, Lies, and Dammed Lies 

Our common vision of the scientist is largely shaped by science fiction movies 
that portray scientists as mad, cackling men (and occasionally women) who perform 
diabolical experiments without regard for the social consequences of their acts. Part 
of this is true. Scientists do perform experiments (and develop theory based on these 
experiments) to uncover and understand the fundamental principles of the universe 
around us - science and experiments are fundamentally linked! It is not generally true 
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that scientists are either mad or cackling, and they are generally quite concerned about 
the social consequence of their efforts - witness the volume of writings and efforts by 
scientists about the efforts by scientists about the effects and morality of nuclear war. 
In recent years, considerable consideration has been given to the social and political 
efforts of science. As Michael Simon5 notes in his review of Alan Chalmer's book 
Science and Its Fabrication "the distinction between good and bad science is a useful 
one, but it is not one that can be clearly drawn. The goal of science, as Chalmer 
understands it, is not certainty but improvement or growth." 

War, to most of us and including the soldier, is a terrible thing. That makes its 
study a paradox. Clearly, we want to study it so that we may avoid its occurrence, 
or given its occurrence, complete it in as limiting a fashion as possible. That is the 
universal approach of the modern military professional. The negative side is that if we 
understand war better, we may apply that understanding to practice it. This paradox 
is a fundamental example of the two edged nature of knowledge in general and 
science in particular. 

Clearly, war has not been the subject of exhaustive scientific study. There are 
several reasons for this, and I cannot delude the reader into thinking that my list of 
reasons is exhaustion. I do believe they are illustrative and reasonably comprehensive, 
however. 

Because of its very terribleness, war does not attract scientists to study it. Nor, 
are many soldiers scientist or visa versa. The nature of the two professions do not 
allow them to mingle effectively. This does not mean that soldiers do not study war, 
quite the contrary. Many soldiers are dedicated students and learned scholars of war, 
but that knowledge tends to be historic and practical in nature. This study, over 
several centuries, has produced considerable result and theory, but it is a scholarly 
rather than a scientific type of knowledge. This must not be belittled. This knowledge 
is important and we shall examine it not only later in this chapter, but throughout this 
book as well. 

As we have already stated, our interest here is the physics of war, or at least 
of the processes of ground conflict, and this means in particular that we want to 
examine those processes which are describable in a quantifiable manner. In simple, we 
want to examine those parts of war that can be described in the exacting vocabulary 
of mathematics. This is not easily done for two reasons. 

First, the soldier is not, as a member of a profession, given to the daily use of 
math as a tool. Like most of our citizenry, he (or she) is not generally adept at using 
math as a tool for understanding and describing his world. This results both from our 
cultural approach to the teaching (or non-teaching - see Appendix X) of math and to 
practical, accomplishment orientation of his profession. Many professions have this 
non mathematical character, but that should not preclude the soldier from seeking 
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greater personal and  professional knowledge from efforts like this one. 

The second reason, which finally brings us to some meat among all this 
philosophical rabbit food, is the fundamental linkage between science and experiment. 
By its very nature, war is not truly amendable to experiment. We cannot, in the 
interest of science, go into the laboratory and conduct war as an experiment. To 
coolly conduct measured experiments in war where lives are taken is both ethically 
and morally impossible. Nor can we make complete use of military field trials and 
exercises as experiments for two reasons: first, to make detailed measurements of 
such would completely compromise them - the influence of the observer is disastrous, 
and second, these trials and exercises are not war and any knowledge that we gain 
from them is fiercely tainted with uncertainty of the most vicious type. We do not 
even know what the nature and magnitude of the uncertainties are. 

Our only recourse therefore, is history. We can only use what data is available 
from the battles and wars that have been fought in the past. As we have noted, this 
is the principle approach of the modern professional soldier - to study the history of 
war.   Can we have however derive scientific knowledge from history? 

I will not try to be exhaustive in this introductory chapter, but can sketch none 
of the most obvious basis for what scientific knowledge we can derive from history 
and thereby lay a basis for the mathematical theory that we will be describing in the 
rest of this book. 

Until recently, the numerical data on war was not readily accessible, if we can 
say it is today. There are however, scholarly works of history that describe wars, 
campaigns, and battles and in these works there are a few numbers. Because of the 
largely theoretical nature of this book, we have limited our search for historical 
numbers to sources which compile many battles and looked there for numbers 
describing the battles. From these compilations, we developed databases of selected 
battles. The criterion for selecting (and rejecting) battles was very simple - there had 
to be a minimum amount of recorded numeric data about a battle in the compilation. 
This culling process is extreme, it reduces the number to something on the order of 
1-2 percent of the total battles. Thus, we immediately must view the resulting list 
with great trepidation, who knows how we have inadvertently slanted and distorted 
the view that we may derive from these data! 

All of these concerns aside, let us at lest look at one, fairly general, set of 
dates. This one is taken from a historical compilation of battles entitled Brassey's 
Battles,6 named after the company that published the compilation. We shall describe 
the source, and the nature of the data base in question detail in Chapter IX, but for 
now, we are primarily interested in what we may learn about these battles. 

This database consists of 107 battles, one of our largest. The earliest battle is 
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Marathon fought in -490 C.E.. The most recent battle is Goose Green, fought in 1987. 
The basic data, consisting of the date, combatants, their initial and final (numerical) 
strengths, and the durations of the battles (in days) are shown in Table 0.1. 

Most of these battles were short affairs, lasting a day or less. A few were 
longer. They represent only a small fraction of the battles fought in the last two-and-a- 
half millennia, but, as given by our source, they a/e, for a human and therefore non- 
exhaustive search, the only ones that have five pieces of numeric information: the 
initial and final strengths of the two sides, and the duration of the battle. Actually, the 
culling criteria as somewhat stronger than this - have also culled battles that did not 
end in a controlled manner - no routs. With one exception, all these battles ended with 
both armies enact. While there have been many battles that have turned into routs, 
our intention here is to examine what we may hopefully call normal battles, even if 
they may not prove with further study to be normal. 

Our prescription, for now, will be to examine the contents of this database to 
see if these are any describable patterns in the data here. We will not attempt, at this 
time, to perform any type of statistical analysis of these data. What we are interested 
in are clear patterns that would indicate the possibility of quantitative relationships. 

First, examine the way that the force strengths of the battles are distributed by 
the date of the battle. This is shown in Figure 0.1. The only pattern that we may see 
here is that most of the battles were fought in the last 500 years. Is this meaningful? 
Has civilization over the last five centuries become more warlike, or is this the result 
of better, more thorough recordings. I suspect the latter is our meaningful explanation. 

Next, examine the same force strengths, as a function of the battle's duration. 
This is shown in Figure 0.2. Again, the only pattern that we discern is that most of 
these battles were short - but we have already noted this. If we look at this data in 
a log-log plot., Figure 0.3, we see a wider spread of the data, indicating more 
v ation, but no striking pattern. At best, we may only speculate that the shorter 
be..Lies seem more likely to have the data we need recorded. A leap of speculation 
could be that most battles only last a day because of the difficulty of fighting at night, 
and almost all last only a few days because of the intensity of battle. 

We must recall that even during war, battles are relatively rare. Troops from 
both sides must concentrate in the same locality at the same time. Except under 
unusual operational circumstances, the commanders of both sides must want to fight. 
Since the purpose of these meetings is too often a decision -1 win, you loose, - we 
would expect battles to be intense, and it is this very intensity that will make them 
rare since the armies cannot fight another battle until they have rebuilt their strength. 

How intense are these battles? To examine this, let us compare the ratio of 
each sides final to initial strength. This ratio is just the fraction of surviving strength 
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at the end of the battle. The forces in each battle have been arbitrarily divided into 
two sides - Red and Blue. (Actually the division was decided by the authors of the 
historical collection. The first side named in the description of the battle is the Blue 
side.) I have made no attempt to determine which side won or lost, merely divided 
them. 

The cross plot of these ratio's is shown in Figure 0.4. Note that except for the 
eight battles explicitly called out, none of thee battles end with either force having a 
surviving force less than 60 percent of its original strength and the majority were 
considerably more. Clearly then, only 8 out of 107 (less than 10 percent) of these 
battles could be said to be particularly vicious. 

But what is vicious? At the personal level, the two most obvious question are 
"Did we win?", and "Was l/my friends/relations killed or wounded?" The first question 
we will consider later in the book when we examine theories of winning. The second 
question is one that we must inure ourselves against. As callous as it may seem, our 
approach here must be to accept that some of the troops engaged in a battle will be 
killed and content ourselves at this time with how many, functionally, that are not. 
If we do just that, and take the data plotted in Figure 0.4, and ask in how many 
battles was the servicing fraction between x and x + —x, we get the distribution in 
Figure 0.5. There are two distributions, one each for the blue and red forces. These 
curves show what we had surmised from Figure 0.4, that few of these battles took 
more than a 40 percent toll in strength. 

We note that these two distributions are not identical, but are similar in shape. 
Since the assignment of which force was on each side was arbitrary, we should not 
expect any strong relationship between them. But if these two curves are similar, may 
they not be perceived as two sets of random samples from the same distribution? At 
this point, we have no reason not to view them as such, and to combine the two 
curves. If we do this, and divide by the total number of forces (twice the number of 
battles) we get the solid curve in Figure 0.6, which is just the joint frequency 
distribution of the surviving fraction for these 107 battles. 

The dashed curve in this figure is the integral of the frequency distribution. This 
curve is obviously a negative exponential of the loss fraction (= 1 - surviving fraction.) 
We may read the curve in the following manner: for any given surviving fraction value, 
the probability that corresponds to the curve is the probability that the surviving 
fraction will be smaller than the surviving fraction value. For example, there is a 20 
percent probability that the surviving fraction after a battle (if we accept this data as 
representative) will be 75 percent or less. Similarly, there is a 50 percent probability 
that the surviving fraction after a battle will be about 87.5 percent or less (and 
obviously, an equal probability that it will be more.). While this is surely a lot, it is a 
great difference from the view of battles as duels to the death. Clearly, the 
preservation of the force, if not of individual life, is a major consideration in these 
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normal battles. 

Let us now turn to examination of the structure of the loses and final force 
strengths in terms of the initial force strengths. These data are plotted in Figure 0.6 
for the Blue force. While there is no striking pattern for the loses, then most certainly 
is for the final force strengths. As we may see, for initial force strengths, less the 
about 150,000, there is a clear upper edge to the data, and very little spread to the 
data as a whole.  This behavior is repeated for the Red force, shown in Figure 0.7. 

To confirm this, we again combined the two sets of data. In Figure 0.8, we plot 
the loses to both sides in all battles, and find no obvious pattern. In Figure 0.9; 
however, where we plot the final force strengths, there is an obvious pattern. Clearly, 
there is an upper edge which looks remarkably straight, which seems to set an upper 
limit on how much the final force strength is, and a less obvious, but still strong 
indication of a lower limit. Further, there is very little spread to the data. On the basis 
of just the knowledge that the final strength must be no greater than the initial 
strength, we would expect the lower triangular half of the graph to be peppered with 
data points. The skeptic may be tempted to advance that the sharp upper boundary 
is just the straight line across the graph, but closer examination will show this 
apparent straight line to have a slope less than one. 

This data represents an historical foundation for a physics of warfare. Clearly, 
the final force strength must be viewed as being functionally dependent on the initial 
force strength. Equally clearly, it must also depend functionally on other factors, but 
it is not obvious what these are from the figures we have presented here. 

In the following chapters, we shall develop the mathematical basis of one of the 
most compact of the few theories of attrition, that of Lanchester. Having done this to 
a reasonable level, we will then reexamine these and other historical data in light of 
the theory of attrition. Having made this comparison, we shall then broaden our scope 
to examine other theories of attrition and warfare, and examine the uses of the theory 
in practice. 

Before commencing on this mathematical journey of theory, we shall finish this 
chapter with a brief discussion of some of the fundamental principles of war as 
developed by centuries of scholarly study. 

O.C   The Principles of War 

The historical study of war by soldiers and historians has taken the form of 
many theories of tactics, strategy, and rules of war. Previous attempts have even tried 
to associate the use of mathematical models in understanding warfare. These 
attempts, notably those of Jomini, have been roundly denounced by even more 
students, notably Clausewitz himself. This debate appears to have at its heart the 
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fundamental values of the soldier. The adherents of these theories and methods see 
them as useful for understanding the practice of war. By their nature they attempt to 
reduce the environment of the battlefield and the theater of war to simple chunks that 
can be analyzed. This simplicity is the root of their critics' complaints that these 
chunks are too simple, are unrealistic, and misleading. This illustrates the fundamental 
difference between the practical necessity imposed on the field soldier and the ivory 
tower, start simple and improve, approach of the scientist. 

Interestingly enough, despite the aversion to the application of quantitative 
analysis to war, all students of war advance some form of analytical discipline. In 
Clausewitz's case, it is called Critical Analysis or Kritik. We must conclude that the 
soldier is not blind to the value of analysis, but will always temper his valuation of it 
to its accuracy and applicability in his sternly pragmatic world view. The ultimate test 
of the scientist applies strongly here - is it accurate? In this regard, there is common 
ground. 

Of the analyses conducted over the years, the most profound products have 
been the Principles of War. These principles are the direct result of the evolution of 
decisive, persisting (in Jones' terminology) and even total war that has evolved on the 
past few centuries. Their applicability beyond the scope of conventional warfare to 
non conventional, guerrilla, or even economic warfare has been argued, not without 
elements of general validity. Even Clausewitz, who decried the tendency to view 
warfare in terms of fixed rules because of his vision of its chaotic nature, found some 
guiding principles to be necessary for any comprehensive theory. Because of their 
fundamental importance to forming a vision of warfare, we present them here in a 
modified form as they appear in the U.S. Army's Field Manual 100-5, Operations:7 

The Principle of the Objective states that every military operation be 
directed towards a clearly defined, decisive, and attainable objective. This means 
that no action should be taken in warfare that does not have some definite, even 
explicit, goal, and that that goal be meaningful, and attainable. Obviously, this 
implies that there is some common plan for the force and that that plan is shared, 
clear, and realistic. 

The Principle of Offensive states that the most effective and decisive way 
to attain a goal is by taking offensive action and/or by maintaining the initiative. 
Initiative is a concept based on the idea of being able to take actions that force 
one's opponent to respond to, rather than the other way about., Offensive action, 
which may be strategic and/or tactical, is viewed as being decisive. While it has 
been possible to maintain initiative while being purely defensive, these cases are 
viewed as being historically rare. Of note is the special case of being strategically 
offensive while being tactically defensive. The situation leading to the Battle of the 
Alamo is an example. This principle obviously builds on the Principle of the 
Objective. 
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The Principle of Mass (or Concentration) states that combat power should 
be concentrated at the decisive place and time. In this case, combat power may 
not just mean superior numbers, but superior fighting capability. This principle 
does not suggest that forces should be concentrated all of the time. It does suggest 
that forces should be concentrated at the right place at the right time to achieve 
decisive results. This principle is most obviously linked to the theories of attrition 
that we shall describe in subsequent chapters. 

The Principle of Economy of Force states that only minimal combat power 
should be allocated to secondary efforts. This means that the army may be divided 
to pursue several goals but that the Principle of Mass should apply for the primary 
effort. While clearly permitting division, this principle surfaces the difficulty of 
knowing exactly what effort will be primary while providing enough force to 
achieve the secondary goals. 

The Principle of Maneuver states that one's enemy may be placed in a 
position of disadvantage through the flexible application of combat power. At a 
superficial level, this principle seems to suggest that by moving one's forces, the 
enemy is placed at a disadvantage, thus maintaining or seizing the initiative. This 
principle means this, of course, but it also implies a flexibility to move and realign 
one's forces. 

The Principle of Unity of Command states that there be only one 
responsible commander who direct the efforts to achieve an objective. This 
Principle addresses a question of biblical importance, how to serve two masters? 
Additionally, it applies the Principles of Mass and Economy of Force, suggesting 
the necessity of common goals, clear objectives, and a rigorous chain of 
responsibility. 

The Principle of Security dictates that one must not allow the enemy to 
acquire an unexpected advantage. In one sense, this is the opposite of the Principle 
of Maneuver applied to one's own forces - don't allow the enemy to gain 
advantage. At the same time, it states that initiative must not be lost, and 
pragmatically, Don't Be Surprised! 

The Principle of Surprise states that it is desirable to strike one's enemy 
at a time and/or place, and/or in a manner that he is physically or psychologically 
unprepared for. This is the reciprocal of the Principle of Security. 

The Principle of Simplicity states that plans should be clear and 
uncomplicated and that orders be concise and understandable. This is a pragmatic 
reinforcement to the Principle of the Objective. It is dignified with a special 
acronym: KISS - Keep It Simple, Stupid! 
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These are the Principles of War. Other nations have other sets of principles, but 
these tend to have great commonality in form and content, if not number and name. 
These principle form a fairly comprehensive set of rules for conducting military 
operations, although we see that they might equally well be applied to many human 
activities. They are a set in the sense that they are interrelated and reinforcing. They 
are not quantifiable, and are analytic only in a subjective sense. Because they are an 
embodiment of a theory of warfare however, they must be considered in any 
quantitative formulation of war, and we shall refer to them during the progress of this 
book. 
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I. Definitions and Background 

I.A.   Introduction 

This book is not perse a text on modeling in the general sense. This chapter 
however, is included to provide the reader with either a (bare) minimum of background 
on the general topic, or a commonalty of understanding of definitions, descriptions, 
etc. 

My terms do not, in general, always agree with those in common use in 
different sections of the community. The techniques and vocabulary of modeling (and 
simulation and gaming) in physics are different from those used in other disciplines 
(such as Operations Research.) Even those who are familiar with the discipline will 
quickly find that I have not been loath to invent new terms or develop new techniques 
when the occasion warrants and I could find no historical usage. 

I.B    Definitions and Descriptions 

The description of the mechanics of warfare is a task in modeling and 
simulation. These latter terms are frequently used synonymously; the purpose of this 
section is to address the definitions and descriptions of these terms. 

First, a model is a mapping of reality into comprehensibility.   A model may 
always be expressed in informational symbology, which  include, but are not limited 
to, words and mathematics.    Griff Callahan of Georgia Tech uses the definition: 

"Modeling is creating representations of specific human 
perceptions of reality, using imitative or analogous physical 
or abstract systems to serve as a basis for language."1 

In simplest terms, a model is a representation of some aspect of reality in terms 
which can be absorbed and manipulated by the human mind. 

In general, a model will only express one facet of reality, although that facet 
may be complex. Ideally, a model will also be invertible or reversible. Unfortunately, 
this is not always the case. 

The process of developing a model is known as modeling. 

A simulation, on the other hand, is a tool for expressing the world in 
understandable terms, constructed from one or more models and a set of logical rules 
for relating models' interaction.  Dr. Callahan uses the definition: 

"Simulation is the use of computers or other devices as 
tools for experimentation with models." 
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Finally, gaming is the use of one or more simulations to gain understanding or 
insight.  Dr. Callahan uses the definition: 

"Gaming is simulation involving human operators in a 
competition played according to rules and decided by 
superior skills or good fortune." 

To illustrate the differences among these three, let us consider the use of a 
'model' airplane and a wind tunnel to understand the flight characteristics of the 'real' 
airplane. The 'model' airplane is a model of the real airplane, and the wind tunnel is 
a model of the environment that the 'real' airplane operates in - the atmosphere. The 
combination of 'model' airplane and wind tunnel are a simulation of the flight of the 
'real' airplane in its 'real' environment. The use of the simulation - operation of the 
wind tunnel with the 'model' airplane in it - is gaming of the flight of the airplane. 

In summary, we may distinguish among models, simulations, and gaming by 
their nature. A model is abstract, a simulation is concrete (in the sense of an 
implementation of one or more models,) and gaming is active (the simulation (or tool) 
is used.) Although we may, and many practitioners do, use these terms almost 
synonymously, we shall attempt to make distinctions among them. Models are 
representations of reality while simulations are collections of one or more models for 
experimental or calculational purposes. Fundamentally, simulations are used to 
generate numbers from the models. 

In practice, the distinction among the three terms becomes indistinct. What 
does remain distinct however, are the actions associated with these: 

• modeling is the development of models, 
• simulating is the construction of simulations, and 
• gaming is the pursuit of understanding. 

{Being the author allows me from time to time to insert extraneous and even 
outre comments, often on nonquantifiable subjects such as morals or ethics. Many 
of these comments are my opinions, but being in charge, they appear in black and 
white, and the unwary reader may erroneously decide that I am passing on arcane 
knowledge. Sometimes this will be the case; other times, I will only be relating war 
stories or expressing sour grapes. 

One of the loudest of my pet peeves is the question of documentation of a 
model versus documentation of a simulation. The documentation of a model should 
be complete enough that a simulation can be constructed embodying it. The 
documentation of a simulation should be sufficiently complete that the documentation 
of the model(s) can either be found or is included, and the logical interplay Of the 
model(s) in the simulation is fully explained. Alternately, the documentation of a 
simulation should be sufficiently complete that the average simulationist can 
reconstruct the simulation from the documentation (and its references.) To my mind 
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this is the ultimate test of documentation; completeness for a simulation - can 
someone who has never used the simulation, or built a similar simulation, build this 
simulation?  If the answer is not yes, then the documentation is inadequate.} 

I.C.   A Distinctive, Illustrative Example 

A model of a gunman's performance may be a probability of kill as a 
mathematical function of several variables such as the accuracy of the aim and fire, 
the muzzle velocity, the shape and mass of the bullet, the range to the target, the 
atmospheric density and wind velocity, the intensity and spectrum of the light 
conditions in the area, the size and shape of the target, the density and strength of 
the target's constituent materials, and the response of the target to a hit (at a given 
place.) The model is supported by assumptions, conditions, and (presumably,) 
verification data. (We shall discuss the theory of mathematical duels in this book. 
The mathematical duel, which we shall simply call a duel in the chapter dealing with 
mathematical duels, is a special class of war models. Regretfully, there is an 
ambiguity in the use of the term "duel". Whenever possible, we will use the term 
formal duel to represent an historical duel; the term duel as a synonym for a 
mathematical duel.) 

We may use this model to build a simulation of a formal duel between two 
gentlemen. (A formal duel differs from a gunfight in that shots are executed 
according to a set formula (or model.) Only gentlemen fight duels.) As a simplifica- 
tion, we shall assume that the duel continues until one (or both) of the gunmen is 
incapacitated or dead. The simulation may be diagrammed as in Figure (1-1). 

If we examine this diagram, we notice that random numbers are generated in 
the simulation to determine the outcome of each exchange of gunfire. Technically, 
there must be a model in the simulation to generate random numbers of the proper 
distribution, but such models are not, at this time, germane to this discussion. 
Further, most computer libraries, and many simulation programs (such as LOTUS 
1-2-3, TK! Solver, and MATHCAD,) incorporate one or more random number 
generators. While random number generators are much used in warfare simulations, 
their anatomy and physiology are not subjects central to the modeling of warfare. 
Interested readers should consult a standard text on numerical methods, (e.g. 
Carnahan, Luther and Wilkes2) This simulation can be used to investigate the likely 
outcome of a formal duel between two gunmen (i.e. the duel may be gamed.) We 
note again that the simulation incorporates the model(s) in a logical framework of rules 
that may be used to game a 'real world' event, either past or future, for the purpose 
of generating understanding. 

In passing, we also note that the development of models (modeling) implies the 
reverse gaming of a simulation. 
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Event Sequence Simulation 

Generate R1,R2 

Exchange Shots 

END 
L GGATECHAL 

Figure 1-1. Duel Simulation 

I.D. Types of Simulations 

While many authors devote much space to a taxonomy of simulations (or 
models, depending on their terminology and definitions,3) we shall here only briefly 
describe the different types of warfare simulations. 

The most complex of warfare simulations are the iconic, where the model is 
itself the simulation. 

Another type of simulation is the analog simulation; this type of simulation 
includes parables. 

The largest category of types of simulations are the symbolic simulations. 
These include mechanistic simulations (such as a slide rule,) informational simulations 
(such as a computer program,) and mixed simulations (such as board games.) 
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Informational (and mixed) simulations may be either deterministic or stochastic 
(probabilistic.) Deterministic simulations are those of pure cause and effect; they are 
not infrequently simulations of the expected values of stochastic models (such as the 
Lanchester Differential Equations.) Stochastic simulations, also known as Monte Carlo 
simulations, are usually sequenced by event or time ordering (or, in some cases, both.) 

The simulation of the formal duel described in Chapter I.C is an example of an 
event sequenced simulation. A simulation of a gunfight (where the execution of shots 
does not occur on a one-to-one, common time start basis,) could be either event or 
time sequenced (since the shots are not fired simultaneously.) In practice, time and 
event sequencing are equivalent in philosophy, but care must be taken to ensure that 
the simulation does not incorrectly favor one side over the other (introduce 'unreal' 
results) because of the choice of sequencing. This is shown in Figure (1-2). Notice 
that the sequences of the events are different. This can represent a problem only if 
the 'real world' is misrepresented.   For example, in an event sequenced gunfight 

Event vs. Time Sequencing 
Two processes, A and B, have events Ai and 
Bj, which occur at times T(Ai) and T(Bj) 

T(B1) T(B2) T(B3) T(B4) 

T(A1) T(A2) T(A3) T(A4) T(A5) 

T 
Event Sequenced Simulations execute the 
events in the order of their occurrence: 
T(A1)IT(B1),T(A2),T(A3),T(B2),T(A4),T(B3), 

Time Sequenced Simulations execute all 
events in a time interval as if they were 
simultaneous: 
T(A1),T(A2),T(B1);T(A3),T(A4),T(B2);T(A5), 

GA TECH Al 

Figure I-2. Sequencing Choices 
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simulation, a gunman may be allowed to fire after he has been killed. Alternately, in 
a time sequenced gunfight simulation, the likelihood of both gunfighters dying may be 
skewed by stopping the simulation too soon (while the killing bullet is in flight. This 
is an extreme example, but the more complex the simulation, the more likely that such 
unrealities will creep in.) 

I.E. Characteristics of Simulations 

Simulations are also often described by characteristics such as the scale of the 
simulation. Two simulations may emulate combat between two companies of troops, 
but one simulation may use combat units which are squads while the other simulation 
may use combat units which are individual troops (or even weapon systems.) 

Other characteristics are abstraction versus detail or resolution versus detail. 
Not all models in the simulation may incorporate the same level of detail in all aspects. 

A further consideration is the representation of time and space. Few 
simulations represent time and/or space continuously. In event sequenced simula- 
tions, time dependence may even be hidden or removed. In simulations of only 
ground troops (at a relatively low level of resolution,) space may be represented only 
two dimensionally. 

Because any simulation must incorporate logical rules to turn itself off, outcome 
assessment is a characteristic of simulations. As we shall see in the next chapter 
when we discuss Lanchester's work, a simulation using Lanchester's equations as a 
model may use a conclusion (total attrition or annihilation of one force) as an outcome 
assessment. 

Finally, simulations may be classified (those used for war gaming at least,) on 
the basis of how they represent the force. Most conflict simulations are force-on- 
force; these however may be many-on-many, few-on-few, or one-on-one. Some 
conflict simulations are one sided (often artillery simulations.) A special class of 
conflict simulations used in the design of weapons are the engineering simulations. 

I.F.    War and Simulation 

So far, most of our terminology has been fairly general. We now need to get 
a bit more specific about war. War has many levels, processes and components. 
Many of these are amenable to modeling and simulation, but not all of them are 
represented by models in the formal sense. This may seem contradictory, but will 
become clearer as we continue. 

If we take the simple national view of war, then prior to the outbreak of war, 
there was some opposite non-war state - peace. That state ends in some fashion for 

Definitions - 6 



tow (or more) nations and war begins. The common contemporary view, ala 
Clausewitz, is that this transition results from politics. The causes of war,4 and even 
the early stages of war,5 have been studied and we shall not dwell on them here.3 

In modern states, there will be standing (i.e., existing) military forces which, 
depending on the magnitude and duration of the war, may have to be augmented. 
These forces must be equipped and supplied, trained and moved to the battle, and 
battles fought. Clausewitz tells us, in a rather dismissive manner, that those actions 
that are not associated with battles (and their interactions,) are merely preparations 
for war.  War proper is a psychological and physical endeavor for victory. 

While there is a great deal of merit to this division, modern experience leads us 
to believe that war is a national experience that goes far beyond the interaction of 
military forces on the battlefield. It is useful, however, to drawn an increasing series 
of distinctions between the processes of "war", and the "preparation for war". 

To accomplish this series, it is useful to introduce a hierarchial system of 
strategic (or war) levels as propounded by Luttwak:6 

• Grand Strategic, 
• Theater, 
• Operational, 
• Tactical, and 
• Technical. 

The Grand Strategic level is concerned with the question of war in the large. It is 
inherently political and economic, as well as military, in nature. The Theater level is 
concerned with some geographic region where conflict does or may occur. This level 
serves as a bridge between the highly political Grand Strategy level and the highly 
military Operational level. 

The Operational level is "a middle ground where methods of war contend and 
battles unfold." The effects at this level are characterized by the contention of armed 
forces. There are two extremes at this level: attrition and relational maneuver. 
Neither exists in a pure state. Attritional warfare is the literal grinding away of the 
enemy's forces, both men and equipment. Relational maneuver warfare (which is 
basically the same as Liddell Hart's indirect approach,7) seeks to incapacitate the 
enemy by systemic disruption. These two approaches, attrition and disruption, are 
fundamental to battle. In contemporary terms, they may be thought of as being 
"bottoms up" and "top down" approaches to war. Attrition is a bottoms up approach 
to winning war by wearing down the number of basic military components that make 
up the military forces. Relational maneuver is a top down approach to prevent the 
enemy from using his force effectively and decisively. 

'   We shall consider several models associated with the non-combat aspects of war in later 
chapters. 
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Both of these approaches are organizationally oriented. Military forces are not 
simple collections of men and equipment. These forces have an organizational 
structure to make them effective. Denial of that effectiveness has two fundamental 
forms - attrition and disruption. Attrition reduces the effectiveness of a military 
organization through its component parts. Disruption reduces the effectiveness at the 
organizational level itself. 

The tactical level of war (in Luttwak's hierarchy,) is primarily concerned with 
the battlefield interactions of these organizations (admittedly at a low level,) and their 
components. The technical level is primarily concerned with the interactions of the 
components, usually on a one-on-one basis, and is largely dominated by matters of 
physics, engineering, and doctrine. The majority of this book is concerned with 
discussing some analytical tools and techniques for describing these two levels of 
war. 

At the Grand Strategy level of war, the primary concern is political and 
economic. Questions concerning the production (and development) of war materials, 
their transport, and the recruitment, training, and transport of troops are amenable to 
modeling and simulation. Indeed, there are extensive simulations of these process in 
place. Additionally, there are political and national will/morale processes, which, being 
human dominated, are less amenable to modeling and simulation. At this level, the 
interactions of the military forces have importance primarily as they effect these latter 
processes although there are exceptions such as the tactical questions of convoy 
attrition on supply.b 

As we proceed down the hierarchy, the logistical questions of supply, transport 
and training become less important and the interactions of the military forces become 
more important. This trend culminates at the tactical and technical levels where the 
availability of men and materials, their training state and the nature of tactical doctrine 
become essentially parametric. 

Except at the technical level, which is dominated by physical processes, all of 
these levels have considerable psychological or human components. At the tactical 
level, morale and willingness to fight (or surrender,) are potentially important factors, 
and the reader must be warned that it is in this psychology 3l area that models and 
simulations of war, at whatever level, are most primitive and ad hoc. As we shall see, 
the tactical models that we discuss do not, in and of themselves, consider termination 
of combat except in limiting mathematical form. 

b The convoy question is a classic of military operations research. Although we are concerned here 
with the Grand Strategy level of war, the effective transportation of men and materiel across oceans 
has an operational/tactical component concerned with protecting the transporting vessels from 
attrition. 
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Admittedly, some of the technical models that we will discuss do have human 
components, but these components are essentially physiological rather than 
psychological in nature. In general, the psychological aspects and processes of war 
are those which are the least represented in combat simulations.0 

I.G.   Combat and Simulations 

As we have previously stated, much of this book is concerned with the tactical 
and technical levels of war. Our central focus will be on models of combat processes. 
Although we shall speak in general of combat, most of our discussion will be 
concerned with duelsd or engagements, and battles.6 To a slight extent, we shall be 
concerned with the operational level of war which is primarily concerned with 
campaigns. Campaigns may be thought of as an orchestrated (hopefully) series of 
battles. What raises this series above the tactical level is the non-combat processes 
which occur (e.g., relational maneuver.) 

At the technical and tactical levels of war, the primary modeling interest is the 
interactions between the individual weapon systems. One-on-one engagements are 
usually considered to be technical for Army weapons, but tactical for Air Force and 
Navy weapons. This can be seen easily by considering that most warships and 
warplanes carry more than one weapon system. 

The interactions between two weapon systems (with crew,) or between a 
weapon system with crew and a man (men) or vehicle are probabilistic in nature, 
That is, if an infantryman fires his rifle at an enemy rifleman, there is some probability 
that a hit will occur. This probabilistic nature is fundamental to our approach to 
combat processes, and largely determines the two approaches to the modeling and 
simulation of combat.' 

An actual argument may be made that there are social processes in the simulation community 
that act to prevent development and inclusion of psychological models. 

d Duels, as used hereafter, have a fairly rigorous mathematical formulation. They are considerably 
more general than our picture here of two men shooting at each other. We shall briefly review duel 
theory in a later chapter. 

e We will make a somewhat confusing use of the terms engagement and battle. We shall use the 
term engagement to mean both the firing of a weapon at a target, and the overall combat processes 
in combat between two or more forces. The term battle will tend to be reserved for one or more 
engagements (second meaning) and possibly maneuver, reinforcement, resupply, etc. 

' This does not mean that there are combat processes or subprocesses that are actually or 
practically deterministic. They do exist, as we shall see. In a general sense, however, they are the 
exception rather than the rule. 
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These two basic approaches are specification and aggregation of the forces. 
The specification approach is more obviously probabilistic in nature. For this reason, 
simulations built using this approach are commonly referred to as Monte Carlo or 
Stochastic simulations. Under this approach, each individual weapon system/platform 
is represented explicitly. Combat processes are represented individually and 
probabilistically. That is, each time an infantryman fires at an enemy, the simulation 
generates a random number to determine whether a hit occurs or not. A key technical 
concern of these simulations is thus the generation of these random numbers. 
Because of the individual representation of each weapon system, these simulations 
tend to be quite large in size and may require multiple executions to arrive at 
statistically significant results. 

The aggregation approach lumps together weapon systems. Forces are usually 
represented by their strengths (numbers.) Different types of aggregation may be used 
on the basis of weapon system and/or organization type. Combat processes are 
represented by rate of change of force strength. These rates are usually the expected 
values (and occasionally the standard deviations,) of the relevant combat processes. 
For this reason, simulations based on aggregation are often referred to as deterministic 
or expected value. These simulations may be smaller in size than specification 
simulations, and generally do not require multiple executions. Key technical concerns 
with aggregation simulations are how the rates are calculated from the combat 
process models, and the form and technique of solution of the force strength 
relations. 

In general, the same probabilistic combat process models go into both types of 
simulations. The two types of simulations differ in how the expected values (and 
standard deviations,) of the processes which make up the entire battle are calculated. 
In Monte Carlo simulations, the expected values for the battle are calculated by the 
simulation. In aggregated simulations, the expected values of individual engagements 
are calculated before the simulation is executed. There are several significant 
differences between these two types of simulations, but the most important 
commonality is that they share combat process models. Thus, if we know these 
models, we know what goes into each type of simulation. 

The aggregation models of the changes in force strength are the philosophical 
basis for the aggregated simulations, and arguably, for the Monte Carlo simulations 
as well. From a theoretical standpoint, these models are essentially all attrition 
models - the other combat processes do not have the theoretical framework that 
attrition does! 

The theory for these models was initiated at the start of the Twentieth Century 
by four men. One of them, Lanchester, is generally credited with the basic work 
although, as we shall see, the question of who was the founder of attrition theory is 
largely moot.   The next chapter reviews the lives and contributions of these four 
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pioneers. 

References 

1. Callahan, Leslie G., "Modeling, Simulation, and Gaming of Warfare", Twelfth Annual Course 
on Modeling, Simulation and Gaming of Warfare, School of Industrial and Systems Engineering, Georgia 
Tech Continuing Education, Atlanta, GA, 13-16 August 1991. 

2. Carnahan, Bruce, H. A. Luther, and James 0. Wilkes, Applied Numerical Methods, John Wiley 
and Sons, New York, 1969. 

3. Hughes, Wayne P., Jr., ed., Military Modeling, Military Operations Research Society, 
Alexandria, VA, 1984. 

4. Wright, Quincy, A Study of War, University of Chicago Press, Chicago, IL, 1942. 

5. Ivanov, S., The Initial Period of War, Moscow, 1974, Soviet Military Thought Series No. 20. 

6. Luttwak, Edward N., Strategy: The Logic of War and Peace, Harvard University Press, 
Cambridge, 1987. 

7. Liddell Hart, B. H., Strategy, Frederick A. Praeger, New York, 1967. 

Definitions - 11 



II. LITERATURE REVIEW I 

H.A. Introduction 

This chapter is the first of several which review the literature of the dynamics 
of warfare. This chapter is devoted to the origins of that literature. As such, it is 
devoted to the work of the four founders of the discipline: Lanchester, Osipov, Fiske, 
and Chase; an Englishman, a Russian, and two Americans. 

II.B. Frederick William Lanchester 

Who is this man whose name is uniquely associated with the dynamics of 
warfare? What little1 we know indicates that Lanchester was a Research and 
Development engineer of great accomplishment, a pioneer in the development of 
automobiles, aircraft, and operations research. The latter is of primary interest here. 

In retrospect and in the context of our own day, it seems obvious now that 
Lanchester continuously sought out problems and solved them, but was not greatly 
concerned with turning his solutions to practical applications. In this he typifies the 
developing discipline of bellum dynamics; he pursued (what are now) academic 
problems without the benefit of an academic environment. As a result, many of his 
accomplishments found no recognition until years later; indeed, his efforts consistently 
verged on the edge of failure because of their non-application to Civilization's affairs. 
His work on warfare dynamics typifies this; performed during World War I, it found 
little or no application during World War II and recognition only in the years following 
that war.3 

This is not to portray that the man was a failure. Rather, he was draped in 
most of the scientific honors that Imperial England could bestow save only 
knighthood. Only in the area of economic success could Lanchester be reckoned a 
failure, especially in the automobile industry. 

It is, however, in the field of operations research that he has become a 
demigod, immortalized in the ultimate award of that field. 

The seminal contribution of Lanchester to operations research is contained in 

8 Until recently, it was commonly believed that Lanchester's theories were not widely known. 
However, the recently (1988?) discovered correspondence of (then) Captain J. V. Chase, USN, of 
1921 indicates, at least, his, and presumably, his correspondent's familiarity with the concepts. It 
seems reasonable that the work of Lanchester enjoyed some attention within the officer corps of the 
U.S. Navy prior to World War II. It was only after that war, possibly due to the development of the 
digital computer, that an industry based on Lanchester's work came into being. 
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his book Aircraft in Warfare: The Dawn of the Fourth Arm published in 1916, now 
sadly out of print and difficult to find in any but the most venerable of libraries. 
(Indeed, the copy that I was able to study was provided under interlibrary loan from 
the United States Military Academy library.) 

This work runs to nineteen chapters, of which V, VI, and XVIII are most 
relevant to the subject at hand. The following text presents a brief outline of the 
material contained in those chapters, as it applies to Bellum Mechanics. 

The Principle of Concentration which underlies what would become known as 
the Lanchester Equations begins Chapter V, dated October 21, 1914. 

The Principle of Concentration: the force with the greater 
strength, ail other factors being equal, will inflict the greater 
damage. 

This principle is illustrated by the difference between ancient and modern warfare. 
In ancient warfare, combat is typified by an essentially linear interaction of troops at 
a combat interface engaged in a one-on-one (short range) manner.  (The use of long 
range weapons such as the crossbow or the longbow is conveniently ignored.)   In 
modern warfare, combat is typified by a more areal interaction of troops in a many-on- 
many (long range) manner. 

The Principle of Concentration leads directly to the definition of the Quadratic 
Lanchester Differential Equation: 

"If, we assume equal individual fighting value, and the 
combatants otherwise (as to 'cover,' etc.) on terms of 
equality, each man will in a given time score, on the 
average, a certain number of hits that are effective; 
consequently, the number of men knocked out per unit time 
will be directly proportional to the numeric strength of the 
opposing force. Putting this in mathematical language, and 
employing symbol b to represent the numerical strength of 
the 'Blue' force and r for the 'Red', we have: 

(!) (II.B-1) db _ 
dt 

-r c ( 

dr _ 
dt 

-b k  

and 

.(2) (ll-B-2 

in which t is time and c and k are constants (c = k if the 
fighting values of the individual forces are equal)." 



{In contemporary terms, the constants c and k are called attrition or kill rates, 
will be designated throughout this book by Greek letters, usually a and ß.} 

They 

The Principle of Concentration is illustrated by an example: Consider two forces 
of 1000 men each. The red force is divided into two units of 500 men each which 
serially engage the single (1000 man) unit of the blue force. {Lanchester introduces 
his differential equations and the state solutions to them, but not the explicit time 
solutions. We shall develop these in Chapter III, but we introduce here the state 
solution of the Quadratic Lanchester Differential Equation: 

*-BJ-|M2-4) (II.B-3) 

where: B, A are the force strengths of the 'Blue' and 'Red' (Amber) forces, 
respectively, 

B0, A0 are the initial force strengths of the 'Blue' and 'Red' forces, 
respectively, and 

a, ß are the attrition rates (kills per unit time per man) for the 'Blue' force 
against the 'Red' force, and the 'Red' force against the 'Blue' force, respectively. 

If we take the attrition rates to be equal, then the two serial combats may be 
modelled: 

First Engagement 

B0 = 1000 A0 = 500 

B   =   866 A =    0 

Second Engagement 

B0 =   866 A0 = 500 

B   =   707 A =    0 

h depicts the Blue force toi tally destroying th 
loss) with only moderate loss (30%) to itself by being able to concentrate, illustrates 
the Principle of Concentration and supports the axiom of war that forces are not to 
be divided. 

It seems equally obvious that this example is for illustrative purposes only. 
Battles do not proceed (usually - we discuss this in a later chapter) to the complete 
destruction of one force (which Lanchester calls a conclusion.) Unfortunately, 
Lanchester introduces, almost immediately, this mathematical concept of victory 
prediction as complete attrition of one force - the concept remains with us to this day. 

In his book, Lanchester presents a graph to depict the general weakness of a 



divided force. Rather than reproduce the graph here, we instead take an algebraic 
approach. Again let the initial force strengths of B and A be the same, and let the 
attrition rates for the two forces be equal. We rewrite the state solution, Equation 
(II.B-3), in the form 

a« - B2
0 - A2 - A\. t"-B-4> 

(We have dropped the attrition rates a and ß since they are equal and cancel - the 
ratio a/R> has a value of one.) 

If the battle is fought through to a conclusion, then one of the two forces is 
completely attrited. Since the initial force strengths are givens, the 'victor' is entirely 
decided by the sign of the right hand side of this equation. If the right hand side is 
positive, the Blue force is the victor (or survivor); if negative, the Red force is the 
victor; if zero, a draw occurs (which presumably ends in mutual destruction!) 

Since the combat occurs serially, we may write the initial Red force strength 
squared as 

AZ = NZXZ
+NZ(1 -x)2, <"-B-5) 

where N is the initial total strength of the Red force, and X is the fraction of the Red 
force in the first unit. 

Since the initial strength of the Blue force is also N, the state solution, Equation 
(II.B.-4) may be rewritten, using Equation (II.B-5), as 

Bz -Az = NZ(2X-2XZ). {IIB"6) 

We may immediately see from Equation (II.B-6) that any division of the Red force 
results in a Blue force victory (assuming the combat is carried to a conclusion) since 

2X -2X2>0, X< 1, (ILB"7) 

Only if X = 1 (an undivided Red force) does the combat become a draw. 

We may further see that Blue force losses are minimized when X = 0.5 (an 
even division.) This example addresses only the case where the two forces and their 
attrition rates are equal. The Quadratic Lanchester Law - Principle of Concentration 
can be used to develop cases which predict an advantage for the division of forces. 
An example of this would be a division of the Red force where part of the force is 
used to execute a flank attack on the Blue force. (The combat is now not serial, but 
staggered.) In this case, it is convenient to write the state solution in the form 
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fi2 - 1 Ä* = BI - 1 AZ
0. (II.B-8) 

a a 

The initial Red force strength squared, times the ratio of attrition rates, is 

1 At = -£- AT2 X2 + -5- tf2 (1 - X)2, (II.B-9) 
a a1 a2 

where a,, a2 are the attrition rates against the frontal attack and flank attack units, 
respectively. (Note that the attrition rate of the Red force against the Blue force is the 
same for both the frontal and flank attack units (i.e. ß); it is the attrition rate(s) of the 
Blue force against the Red force that changes with force engaged.) 

If, for convenience, we assume that the attrition rates for frontal attack are the 
same for both forces, and that the forces again have the same initial force strength, 
then we may write 

Bz - A2 = N2 (1 - X2) - -£- N2 (1 - X)2. (II.B-10) 
a2 

This equation shows that (for example,) if 10% of the Red force is put into the flank 
attack, and if the vulnerability of that force to attrition by the Blue force is reduced, 
through surprise or whatever, by a factor of at least 20, then the victory will be Red's 
rather than Blue's. 

Lanchester is apologist in defending the validity of counting the numbers which 
comprise the forces on the grounds that the counting will be done anyway. He 
further asserts that training and morale are not suited to theoretical discussion, the 
performance of weapons is. The use of weapons in combat is dependent on the 
morale and training of the troops. If the troops are not trained, they cannot use their 
weapons. Nor, if their morale suffers, are they likely to use their weapons. It is not 
that these have no effect; rather, Lanchester asserts, they are not amenable to 
analysis. The question of what constitutes the strength of a unit is best expressed by 
two quotes: 

"The fighting strengths of the two forces are equal when 
the square of the numeric strength,  multiplied  by the 
fighting value of the individual units, are equal." 

and 
"The fighting strength of a force may be broadly defined as 
proportional   to   the   square   of  its   numerical   strength 
multiplied by the fighting value of its individual units." 

This is basically the same as we demonstrated in the previous example for adding 
forces. 
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If the attrition rate of a machine gun is 16 times that of a rifleman, then 250 
machine guns (with crews) have the force strength of 1000 riflemen. In an 
engagement between a force of riflemen and a force of machine guns, the individual 
machine gun will (on the average) receive four times as much fire as an individual 
rifleman would under the circumstances. This is true if the fire of the riflemen is 
aimed (as in the Boer War - Lanchester's example.) 

If on the other hand, fire is distributed without such pinpoint aiming over the 
area covered by the force, then the machine gun will receive only slightly greater fire 
than a single rifleman would (given a slightly larger area for the machine gun,) and 
may actually be less. For example, say that both forces hold an area of 10 square 
kilometers. This equates to 1,000 m2 per rifleman or 4,000 m2 per machine gun. 
Both are subjected to fire from an area weapon with an area of effectiveness of 100 
m2. This translates into an attrition rate of 0.1 rifleman per fire, but only 0.025 
machine guns per fire. 

This line of reasoning leads to the Linear Lanchester Differential Equations: 

4A = -aAB, 
dt (II.B-11) 

^ = -ß2M, 
dt 

where A and B are the force strengths of the Red and Blue forces respectively, and 
a and ß are the attrition rates. {Note that these a and ß are different from the 
previous ones for the Quadratic Lanchester Differential Equation.} Lanchester notes 
that in this case where fire is directed against an area and not against an individual, 
the rate of loss is independent of numbers and dependent only on the efficiency of the 
weapons. In this case, there is no value in concentration. This case is cited as being 
more appropriate for describing ancient combat, not because the weapons are long 
range, but because the units were only engaged along a linear interface and thus the 
numbers engaged at any moment, on either side, were approximately equal. We may 
note however, that in modern terms, the Linear Lanchester Differential Equations are 
normally appropriate for describing the use of what the Russians call Weapons of 
Mass Destruction, in particular nuclear and chemical weapons. (Whether they are 
appropriate for biological weapons depends on the exact vector(s). We shall comment 
further on this in a later chapter.) 

It is interesting to note that even in ancient combat, there appears to be 
advantage in concentration in the line. Notable ancient success stories such as the 
Greek phalanx and the Roman legion enjoyed considerable increase in force strength 
by, in effect, concentrating more men into the linear interface. Notably, this was the 
result of better tactics, training, doctrine, and/or morale, which Lanchester states are 
not amenable to analysis. 
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The principle historical analysis presented by Lanchester to illustrate the 
Quadratic Law and the Principle of Concentration is the Battle of Trafalgar (1805). 
Here the British fleet (40 ships) under Admiral Lord Nelson divided the French Fleet 
(46 ships) and engaged the rear half at a force ratio of 32:23. This gave a total force 
strength of 

British French 

(32)2 + (8)2 (23)2 + (23)2 

1088 1058 
which should, if carried to a conclusion, have resulted in a draw. 

The dynamics of ship motion were such that a significant period of time would 
be required for the front half of the French fleet to sail back to the aid of its rear half. 
Further, Nelson used 8 of his ships to slow this process. Thus, in the main battle 
area, the force strength ratio was 

British French 

.    (32)2 (23)2 

1024 529 
Which gives a force strength ratio, British to French of approximately 2:1. This 
analysis is based on an operational memorandum prepared by Nelson before the battle 
and the actual forces are somewhat different.  The outcome was not. 

1. McCloskey, Joseph F., "Of Horseless Carriages, Flying Machines, and Operations Research", 
Operations Research, 4 141-147, 1956. 

2. Lanchester, Frederick W., Aircraft in Warfare: The Dawn of the Fourth Arm, Constable and 
Company, LTD., London, 1916. 
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II.C. Osipov 

In their book Forecasting in Military Affairs, Chuyev and Mikhaylov1 devote 
approximately two pages (out of 230) to the area of Lanchester's equation as partial 
contents of a section on Differential Equation Models in a chapter on Military 
Formalism models. Most of that two pages of text consists of two example: one is 
concerned with the Quadratic Lanchester Differential Equations and their state 
solution, and the other is concerned with a transport theory outgrowth (which we 
shall treat in a later chapter.) No mention is made of the Linear Lanchester Differential 
Equations, nor does the example present any numeric data (a relative rarity among 
Russian authors who seem enamored with including numerous tables of data in their 
works -perhaps an indication of the lack of computational capability avail-able to the 
student? Or a potential embarrassment to the state since historic casualty data would 
be needed?) 

What is most startling in these two pages is the claim that the "Lanchester 
equations" had been put forward by Osipov earlier. No reference to this work by 
Osipov is given. 

Searches for the work proved fruitless, given the paucity of real information. 
For a while, I ascribed Osipov to be another piece of Russian hype, claiming the 
development of Lanchester's equations just as they had similarly claimed to have 
invented everything from the Franklin stove to the fundamental theorem of the 
calculus. Subsequently this ascription proved to be false. The Library of Congress 
yielded up to Dr. Allan Rehm five articles by one M. Osipov2 all published during 
1915. Subsequently, Dr. Rehm advised me that two separate translations had been 
made, one by Dr. Helmbold and another by Deborah Coulter-Harris3 of the Soviet 
Army Studies Office at Ft. Leavenworth. He was kind enough to provide me with a 
copy of the latter. The remainder of this section is based on that translation. (Where 
there are "direct" quotes, they should be taken in the context of the translation. 
Subsequently, Drs. Helmbold and Rehm have made their own translation.4) 

It is clear from Osipov's articles that he developed his theory of combat 
independently of Lanchester and Fiske. Not only are the tone and texture of the 
material different, but there is significant new material and philosophy. Further, 
despite his protestations that he is (was) neither a specialist in military history nor 
skilled in the practice of military matters, he is, manifestly by his knowledge and 
arguments, a student of both. He also has a knowledge of mathematics and 
statistics, although it also seems unlikely that he is either a professional mathemati- 
cian or statistician. His ability to communicate in writing is evident, even in English 
translation, yet his antipathy to the press would seem to indicate that he is not a 
journalist. If we proceed with this fanciful analysis, we would be led to speculate that 
M. Osipov is a teacher (this would explain his communication skills and his well 
rounded, but apparently introductory knowledge of history and mathematics,) who 
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served in the army during the Great War. 

Osipov begins his article by considering history. He almost immediately 
provides a list of 38 battles spanning the century from 1805 to 1905. This list 
excludes battles between "regular troops and disorganized elements of uncivilized 
countries" (colonial battles,) and "battles where one side has a fortress or strong 
temporary fortifications." While he does not consider the duration of the battles, he 
does list initial force strengths and losses (equivalent to final force strengths) for both 
sides. These are organized by stronger force versus weaker force (initially) rather than 
by victor-loser or attacker-defender. However, of the 38 battles, 28 were won by the 
stronger side.  These are shown in Table (11.1). 

Just as Lanchester introduced the Law of Concentration, Osipov introduces the 
Law of Distribution of Losses (or just Law of Losses): 

"Law of Distribution of Loses: The strongest side has less losses than 
the weaker side." 

If we take (in our preceding notation) Red to be the stronger side and Blue to be the 
weaker, then we may write this mathematically as 

(II.C-1) 
A0-A<B0-B. 

We immediately see an apparent conflict between Lanchester and Osipov since the 
Law of Distribution of Losses states that Lanchester's Quadratic Law does not hold. 
This however, is not the case if we consider the role of the attrition rate constant/- 
function. If we compare this equation to Lanchester's linear law state solution, we 
find that the Law of Distribution of Losses gives us the requirement that 

a < . (II.C-2) 

ß        ' 

for the Linear law. For the Square law, a somewhat more complicated situation 
exists. To investigate this, it is convenient to write the square law state solution in 
the form, 

(II.C-3) 
ß(^0 + A)(A0 - A) = a(B0 * B)(B0 - B), 

which we may rewrite as 

tt(B„ + B) (M.C-4) 
^ _ A) - Ji^TJ) (*° _ * 

since the right hand side is, by the Law of Distribution of Losses, less than blue's 
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losses (B0 - B), this equation reduces to 
(II.C-5) 

a(B0 + 5) < ß(A0 +A), 

or 

« < 
(A0 + A) (II.C-6) 

ß      (B0 * B)' 

We may define the losses as a = (AQ - A) and b = (B0 -B), which allows us to rewrite 
Equation (II.C-6) as 

« < (2A0 - a) (II.C-7) 

ß      (250 - b) 

Since A0 > B0 by postulate (and convention), and a < b by the Law of Distribution 
of Losses, it immediately follows that 

(II.C-8) 
(2A0 - a) > (2B0 - b), 

so that the ratio alß is less than some number greater than one for Lanchester's 
square law. Thus, there is no conflict between Lanchester and Osipov on the basis 
of the mathematical formulation of the Law of Concentration and the Law of 
Distribution of Losses. It remains to be seen if this is supported by historical 
evidence. 

This historical evidence is one of the primary contributions of Osipov in his 
articles. As we have stated, Osipov presents a table of 38 battles. The dates of 
these battles span the century 1805-1905. Most are drawn from the Napoleonic era 
(1805-1815) or during the thirty year period 1850-1870. (Crimean War, Second War 
of Italian Independence, Austro-Prussian War, and Franco-Prussian War). (We shall 
examine these data in greater detail in a later chapter devoted to historical insights. 
Our comments in this chapter will be limited to a review of Osipov's five articles). 

Of these 38 battles, Osipov notes that 28 were victorious for the force with the 
greater numbers. (We note that Osipov rounds all of his numbers, usually to 
thousands. This gives rise to some calculations which appear more definite in their 
significance than if rounding had not been performed. This is especially true in the 
statistical inferences that Osipov draws). From a companion of losses in these 
battles, Osipov concludes that, in general, the stronger side takes fewer losses than 
the weaker side in a battle. He quickly notes, however, that there are many other 
factors which influence the outcome of the battles. What is significant in that in the 
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consideration of the battles as an aggregate data set, the effects of these factors are 
decreased and the effects of pure numbers may be seen. (This is one of Osipov's 
significant new contributions. By aggregating these battle data, he in essence takes 
a scientific approach to the problem, asserting that factors other than pure numeric 
strengths may be treated as random error sources (relative to the calculation at hand), 
which cancel out in the mean). 

Osipov next describes a "simplest method of calculating losses" which is to all 
intents and purposes is Lanchester's Quadratic Attrition differential equation. He 
writes the state solution as 

(II.C-9) 
o = D    ~ Do ° A* - Al =B* -BQ 2, 

where: A' = A0 - a 
B' = B0 - b. 

He further advances the approximation 

D (II.C-10) 
A0 a = B0 b, 

based on examination of his table of historical data. (In Lanchestrian terms, Osipov 
is stating that history indicates that most battles stop far from a conclusion. We will 
examine this in more detail in a later chapter). 

Next, using a calculus argument, and introducing an attrition rate (identical for 
both sides), Osipov derives the analytic Quadratic Law solutions as a function of time. 
Tables of the cosh and sinh functions are presented since they would not normally (?) 
be available to the reader, and example calculations are presented. Osipov then 
notes that the time solutions are "not appropriate for application to military history, 
because a (attrition rate) and t (time) are unknown". This statement recognizes two 
fundamental problems in the analysis of historical data: 

* how to get battle duration data, (a very difficult undertaking), and 
* how to use it why you have it, since combat is not continuous. 

(Again, we shall treat this in more detail in the chapter on historical insight). In the 
process of developing further examples, Osipov presents the Quadratic Law solutions 
for distinct (i.e. different) attrition rates, but claims that the derivation is so similar to 
the previous one that he will not take the space to belabor it. He does, however, 
present the "modified state solution, Equation (II.B-3). 

Osipov next introduces consideration of a force comprised of two different 
weapon systems (rifles and some other weapon such as machine guns or direct fire 
artillery). With the assumption that the second type of weapon takes no casualties 
(is not atritted) he writes the Quadratic solutions as 
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+ 1 \A + -*-M0 \=\A0 + -^M0 + I, 
a a 

cosh(af) - B0 + $-NQ\ S\r\h(at) 
\ a     / (II.C-11) 

(B + -£-W0] = IB0 + £jV0] cosh(af) - Li0 + -2-M0j sinhM, 

where: /? is the attrition rate for the second type of weapon (e.g. machine guns) 
a is the attrition rate for the first type of weapon (rifles) 
A0, B0 are the initial number of rifle bearing troops (assumed one to one) 

for each side respectively, and, 
M0, N0 are the initial (constant) number of weapons of the second type. 

The state solution is 

\2 
A + -Z-Mc 

a 

( ß     \2     (        R     \z     ( ß     \2 

An * ±Mn    =  B + ±Nn    -  Bn + £-N0  . 
a    / a '0 a    / 

.C-12) 

Note that Osipov states that this formalism is valid only if the number of second type 
of weapons is not atritted. 

Osipov goes on to state that this technique of normalizing the attrition of 
additional weapons may be extended to third, fourth, etc. types of weapon systems 
so long as they are not atritted. He also expands the state solution for small losses 
as 

(4 - A2) - {Bl - B2) + 2l(«M0 - bNQ) = 0. 
a 

.C-13) 

He then proceeds to calculate the ratio ßla, the relative attrition of artillery (in this 
case) to rifles and finds it is a number ~ 123 -143, for these Napoleonic battles. 

One of the concepts Osipov introduces is the "correlation of losses". He 
compares the actual losses to a calculation based on the other strength numbers. 
While there is no basis for the association, it is still interesting to postulate thct this 
type of calculation maybe the genesis of the "Correlation of Forces" practiced in the 
Russian armed forces today. Certainly, a logical connection can be made between the 
types and forms of the calculations. 

Osipov introduces the differential equation 

4ÄdA = sfBdB, 
.C-14) 

based on his analysis of the historical data.  This gives rise to the state solution 
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it* - A* - J* - rf1. '"'C"15) 

In the correlation of losses calculation, Osipov calculates the losses for the stronger 
sides using the state solutions for the Quadratic Law (from Equations (II.B-3) and 
(II.C-10), respectfully) and the 3/2 law (Equation (II.C-15) above). The difference 
between this calculated loss and the actual loss is treated as an error term and the 
aggregate for the 38 battles is treated to an error analysis. (Osipov rounds to 
thousands here, resulting in a tidier result than would be found otherwise. The 
numbers in the Table II-2 are not rounded due to the way that the table was formed). 
He finds average errors of 22% for the exact quadratic law state solution, 15% for 
the approximate quadratic law state solution and 0.7% for the approximate 3/2 law 
state solution. Further, the mean is essentially the median for the 3/2 law calculation. 
He concludes that the 3/2 law most clearly describes this type of battle. 

He further concludes that for small battles (< 75,000), the quadratic law may 
be more relevant than the 3/2 law. For force strengths > 75,000, the 3/2 law 
appears to be more relevant. Osipov does note, however, that the rationale for the 
3/2 law is purely empirical while the quadratic law is better founded theoretically. 
(We shall examine the 3/2 law in greater detail in the chapter on Osipovian combat. 
Since Osipov and Lanchester appear to have independently developed mathematic 

attrition theories with many points in common, we shall adopt the following 
nomenclature: The quadratic and linear attrition processes will continue to be referred 
to as Lanchestrian rather than as the more cumbersome Lanchestrian - Osipovian, 
attrition process other than quadratic and linear, will be termed Osipovian in 
recognition of the greater generality of Osipov's empirical consideration of attrition). 

Osipov next proceeds to consider further the statistical aspects of his theory. 
He examines error sources such as leadership, morale, reserves, artillery, weapons 
quality on terrain and improvements, large number of fighting units, density of fighting 
units and (considered to be systematic errors). He examines the concept that battles 
terminate when one side has taken 20% losses. 

Osipov concludes by stating that the dependance of losses on the numerical 
strength of the forces exists but cannot be verified except on a statistical basis. 
However, the stronger side has less losses than the weaker side. (Law of distribution 
of losses). He does not present his theory as other than an example of the application 
of existing military principles. 

It seems likely that Osipov's papers were not all that well received by the 
Russian media when they were published. Certainly we do not know what happened 
to Osipov following their publication. We do know that they have been used, in some 
form, in the Military Operations Research community of the USSR. 
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Battle Stronger 

Force Start Losses 

Weaker 

Force Start Losses 

Date 

Austerlitz Allies 83 27 French 75 12 1805 

Jena French 74 4 Prussians 43 12 1806 

Auershtedt Prussians 48 8 French 30 7 1806 

Preisish French 80 25 Russians 64 26 1807 

Freiland French 85 12 Russians 60 15 1807 

Aspern Austrians 75 25 French 70 35 1809 

Wagram French 160 25 Austrians 124 25 1809 

Borodino French 130 35 Russians 103 40 1812 

Berezina Russians 75 6 French 45 15 1812 

Bautsen French 163 18 Allies 96 12 1813 

Ganau French 75 15 Allies 50 9 1813 

Drezden Allies 160 20 French 125 15 1813 

Keiptsig Allies 300 50 French 200 60 1813 

Katsbach Allies 75 3 French 65 12 1813 

Liutsen French 157 15 Allies 92 12 1813 

Dennevits French 70 9 Allies 57 9 1813 

Kul'm Allies 46 9 French 35 10 1813 

Laon Allies 100 2 French 45 6 1814 

Kpaon French 30 18 Russians 18 5 1814 

Waterloo Allies 100 22 French 72 32 1815 

Lun'i French 120 11 Prussians 85 11 1815 

Grokhoro Russians 72 9 Poles 56 12 1831 

Al'ma Allies 62 3 Russians 34 6 1854 

Chernaia Allies 62 2 Russians 56 8 1854 

Inkerman Russian 90 12 Allies 63 3 1854 

Col'ferino Austrian 170 20 French 150 18 1859 

Madzhenta Austrians 58 10 French 54 5 1859 

Kustotsa Austrians 70 8 Italians 51 8 1866 
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Battle Stronger 

Force Start Losses 

Weaker 

Force Start Losses 

Date 

Kenigrets Prussians 222 10 Austrians 215 43 1866 

Mets Germans 200 6 French 173 20 1870 

Gravelot Germans 220 20 French 130 12 1870 

Mars LaTour French 125 16 Germans 65 16 1870 

Vert German 100 10 French 45 5 1870 

Sedan Germans 245 9 French 124 17 1870 

Aladzha Russians 60 2 Turks 36 15 1877 

Shabh Russians 212 40 Japanese 157 20 1904 

' Liaoian Russians 150 18 Japanese 120 24 1904 

Mukden Russians 300 59 Japanese 280 70 1905 
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Battle Stronger 

Start 

Force 

Losses 

Weaker 

Start 

Force 

Losses 

Quadratic "Quadratic" 

Errors 

3/2 

Austerlitz 83 27 75 12 -16 -17 -16 

Jena 74 4 43 12 3 2 5 

Auershtedt 48 8 30 7 -3 -4 -3 

Preisish 80 25 64 26 -6 -5 -2 

Freiland 85 12 60 15 -2 -2 0 

Aspern 75 25 70 35 6 7 8 

Wagram 160 25 124 25 -6 -6 -3 

Borodino 130 35 103 40 -6 -4 0 

Berezina 75 6 45 15 2 3 5 

Bautsen 163 18 96 12 -11 -11 -9 

Ganau 75 15 50 9 -9 -9 -8 

Drezden 160 20 125 15 -8 -9 -7 

Keiptsig 300 50 200 60 -13 -10 -2 

Katsbach 75 3 65 12 8 7 8 

Liutsen 157 15 92 12 -8 -8 -6 

Dennevits 70 9 57 9 -1 -2 -1 

Kul'm 46 9 35 10 -1 -2 -1 

Laon 100 2 45 6 1 0 2 

Kpaon 30 18 18 5 -15 -15 -15 

Waterloo 100 22 72 32 -2 1 5 

Lun'i 120 11 85 11 -3 -4 -2 

Grokhoro 72 9 56 12 0 0 1 

Al'ma 62 3 34 6 1 0 1 

Chernaia 62 2 56 8 6 5 5 

Inkerman 90 12 63 3 -9 -10 -10 

Col'ferino 170 20 150 18 -4 -5 -4 

Madzhenta 58 10 54 5 -5 -6 -6 

Kustotsa 70 8 51 8 -2 -3 -2 
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Battle Stronger 

Start 

Force 

Losses 

Weaker 

Start 

Force 

Losses 

Quadratic "Quadratic" 

Errors 

3/2 

Kenigrets 222 10 215 43 32 31 32 

Mets 200 6 173 20 12 11 12 

Gravelot 220 20 130 12 -13 -13 -11 

Mars LaTour 125 16 65 16 -8 -8 -5 

Vert 100 10 45 5 -7 -8 -7 

Sedan 245 9 124 17 0 -1 3 

Aladzha 60 2 36 15 6 7 9 

Shabh 212 40 157 20 -25 -26 -23 

Liaoian 150 18 120 24 1 1 3 

Mukden 300 59 280 70 5 6 8 

Quadratic "Quadratic" 3/2 

20.0% 15.0% 0.7% 

Osipov's Errors 
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II.D. Fiske 

Rear Admiral Bradley A. Fiske is regarded as a folk hero in the U.S. Navy. He 
was one of the primary operators in the military, technical, and political process of 
bringing the Navy into the Twentieth Century; of taking the technical advances of the 
late Nineteenth Century that made the transition from steam-driven wooden vessels 
to metal vessels possible. He was responsible for numerous naval inventions which 
spread the capabilities of modern technology through everyday maratine tasks. He 
was one of the architects of the operational innovations that integrated the new navy 
from a collection of ships into a viable military force. Thirdly, he was progenitor of 
the office of Chief of Naval Operations and the institutionalization of the General Staff 
in the U.S. Navy. 

In 1905, Fiske wrote his eighty page essay "American Naval Policy" which was 
the Naval Institute (which he helped found, and of which he was later President,) prize 
essay of that year. In that essay, he introduced the concepts that we now think of 
as Lanchester's Quadratic Law (State Solution) and the Law of Concentration. This 
essay (until recently - see next section) gives rise to arguments that Fiske invented 
Attrition Theory. 

While Fiske was prolific as an author, most of his writings have not been widely 
known outside of Naval circles. Of particular note, therefore, is the recent publication 
of Fiske's 1916/1918 The Navy as a Fighting Machine.1 The 1916 edition met in 
1917 enthusiastic review when published in England. From an European standpoint, 
this clearly makes Fiske a contemporary of Lanchester and Osipov in advancing (in 
print) the precepts of attrition theory. 

In The Navy as a Fighting Machine, which incorporates an expansion of his 
prize essay as well as other material, Fiske discusses the implications of the Quadratic 
Law State Solution in a Naval context, much as Lanchester did with the Battle of 
Trafalgar, but in greater detail. He does not, however, extend his discussion to 
include any exact mathematical formalism of the state solution. (The 1918 edition 
notes the existence of such a formalism - see the next section.) 

While he does not formulate an attrition theory in mathematical terms, Fiske 
does describe such a theory in words, and we can trans-late those words into 
mathematics.   In particular, 'Fiske's attrition equations' take the form, 

A(t+nAt) = A(t + (n-1)At) - a At B(t + (n-^At), (II.D-1) 
B(t+nAt) = B(t + (n--\)At) - ß At A(t + (n-"\)At), 

where we have adopted the force strength and attrition rate notation (i.e. A, B and 
a, ß) introduced earlier in describing Lanchester's attrition theory, and n here indicates 
the number of time periods of duration At which have transpired since battle began. 
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(Fiskian attrition is discrete in time rather than continuous as he describes it.) 

Before proceeding with this discussion, it is useful at this time to define the 
finite difference operation. This is given by 

(II.D-2) 
AA(t) =A(t + At) -A(t). 

We will develop the finite difference formalism of attrition theory in a more complete 
manner in a later chapter. 

By using the finite difference operator A, Equation (II.D-2), we may rewrite 
'Fiske's attrition equations' as 

A,4(r + (n-1)Ar) = -a Ar B(f + (n-1)Ar), <"-D-3) 

A5(r+(n-1)Ar) = -ßAr^(r+(n-1)Ar). 

We may 'read' these equations as: the change in the strength of a force (Fiske related 
this primarily to number of ships, but makes it clear that he is distinguishing combat 
power from mere numbers.) over a period of time At is negative (the force strength 
decreases,) and is equal to a damage coefficient (attrition rate constant/function 
multiplied by time"period At - Lanchestrian terminology) times the strength of the 
opposing force at the beginning of the period. The right hand side of Equations (II.D- 
3) are the losses to the respective forces during the period. 

(I have taken the liberty of introducing the damage coefficient to permit these 
equation to be written as equalities rather than as proportionalities as Fiske's 
discussion would literally indicate. He does discuss the damage causing process of 
combat and devotes considerable concern to the effectiveness of the units of the 
forces to cause damage - thus apparently not allowing the two forces to have distinct 
damage coefficients. For convenience of discussion, I have equated this damage 
coefficient to the attrition rate constant/ function multiplied by the time period. This 
allows the general form (for general t' = t + mAt) of Equations (II.D-3) to be 
rewritten (after a slight rearrangement,) as 

fr^ - -*w („.D.4, 
^i - -M(0. 
Ar 

which, if we take the limit as At -* 0 reduces to 
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f1 - -«& (N.D-5) 

^ - -MM. at 

since the left hand side of Equations (II.D-4) are, in the limit, just the definitions of the 
derivatives. Thus, Fiske's words are, in some approximate manner, mathematically 
equivalent to Lanchester's quadratic attrition differential equations, Equations (II.B-1) 
and (II.B-2).) 

In his discussion of attrition, Fiske clearly identifies the condition that the 
'damage coefficient' (attrition rate constant/function) must truly be a constant. From 
a mathematical standpoint, this constraint of constancy represents an assumption for 
his analysis. Fiske further rightly notes that, for his analysis, knowledge of the length 
of the time period is unnecessary - rather, only the value of the 'damage coefficient' 
(he uses a value of 0.1 in his examples,) is necessary. This is correct only if supple- 
mented by one more constraint - the 'damage coefficients' of the two forces are 
equal. Fiske explains this equality by citing the common armament (and thereby 
common damage caused by a hit,) of ships of the two forces. This view is reasonably 
well founded in terms of the historical development of warships in the period 
considered by Fiske. 

Fiske notes that the duration of combat to a conclusion (in Lanchestrian 
terminology,) depends on the ratio of force strengths. He apparently arrived at this 
observation empirically from his examples rather than from analytical analyses such 
as would be possible from Osipov's explicit time solutions. 

Finally, Fiske states that "the difference in fighting forces cannot be measured 
in units of material and personnel only, though they furnish the most accurate general 
guide. Two other factors of great importance enter, the factors of skill and morale." 
In this regard, Fiske strikes the same note as Osipov. 

Fiske also describes, in detail, what we know as the Principle of Concentration. 
He also states that "every contest weakens the loser more that it does the winner". 
This statement may be argued to be a corollary to Lanchester's Principle of 
Concentration and Osipov's Law of Distribution of Losses if we take the stronger 
force to be the likely winner (from an attrition sense.) In keeping with our previous 
discussions, we shall refer to this statement as Fiske's Principle of Winning. 

While Fiske clearly has an earlier claim to the introduction of the concepts of 
Quadratic Law attrition theory, the scope of his contribution to the formalism of the 
theory is also clearly less than that of Lanchester and Osipov. 
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1. Fiske, Bradley A., Rear Admiral, U.S. Navy, The Navy as a Fighting Machine, Naval Institute 
Press, Annapolis, MD, 1988. 
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U.E. Chase 

The fourth of our attrition theory pioneers is Jehu Valentine Chase. In a 
footnote8 in his 1918 edition The Navy as a Fighting Machine, Fiske1 cites 
(then) Lt. Chase's 1902 Naval War College Paper "Sea Fights: A Mathematical 
Investigation of the Effect of Superiority of Force in". This brief mathematical paper 
(|| 3 pages) was initially classified and was not declassified until 1972. Wayne 
Hughes (CAPT., U.S. Navy Ret.), one of the editors of the 1988 republication of 
Fiske's book, includes this essay as an appendix2 and decries the hiding of this work. 
Surely, in light of the publication of Lanchester's book, this continued safeguarding 
of Fiske's document for those 56 years must come under question. 

Also included in the appendix is an extract from a 1921 letter written by (then) 
CAPT. Chase (He eventually held the rank of Rear Admiral.) in which he discusses the 
Quadratic Law/Principle of Concentration and the counteracting considerations of 
survivability of the force in terms of how a Naval force is designed - many smaller 
ships are more survivable than a few small ships. (The question of survivability in the 
context of attrition theory is a subject which we will treat in a later chapter.) 

In his original paper, Chase describes his own version of Quadratic Law 
attrition. To do this, he first introduces the concept of "sudden" versus "continuous 
gradual destruction" (i.e. attrition). In modern terminology, continuous gradual 
destruction is usually referred to as "graceful degradation".3 In brief, this concept 
holds that the attrition of units (or more generally, reduction of system performance,) 
occurs in an essentially continual manner. The concept of sudden destruction holds 
that attrition is punctuated and total - a unit is either totally effective or totally 
ineffective, and the change occurs over a short period of time (often treated as 
instantaneous.) An example of this which is frequently offered is the attrition of tanks 
by modern weapons. Until a tank is hit, its effectiveness is not usually considered to 
be diminished; however, once the tank is hit, the probability of kill given a hit is 
sufficiently great (in most cases,) that the tank is "killed". This occurs over a period 
of time which is of the order of fractions of a second. (The consideration of the 
transition from sudden to continuous gradual attrition is a subject of great importance 
in the conjugate theory of attrition rate constants/functions.) 

If a unit, on the other hand, is comprised of several tanks, then the unit is not 
"killed" until all the tanks in the unit have been individually "killed". Further, each 
time that a tank is "killed", the effectiveness of the unit is reduced by an amount 
approximately equal to the fraction of the unit that the tank represents (for a ten tank 
company, each "kill" reduces the effectiveness of the unit by 10% - this view 

8 Isn't it amazing that the most interesting information comes from footnotes?  Both Osipov and 
Chase were introduced that way. 
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neglects any contribution to the unit's effectiveness of morale or other psychological, 
training, or tactical influences.) Nonetheless, this simple example illustrates the basic 
idea of continuous gradual destruction. Such a concept is applicable to Naval 
warships which have a large number of weapon systems and other assets such as 
engines, ammunition stores, and command and control systems which contribute to 
its total effectiveness and which effectiveness is only completely exhausted when 
some sizable portion of the ship's weapon systems and other assets are rendered 
individually ineffective. 

Chase acknowledges that sudden destruction does occur for ships (which he 
was solely concerned with) due to ramming, running aground at speed, or torpedo 
impact (for smaller ships,) but that for gunfire, attrition of the ship as a whole is 
gradual. In other words, it takes several (many) gunfire hits to disable a ship. Since 
these hits may be presumed to impact in a random manner, [We will consider the 
statistics of this process in a later chapter on attrition processes.] the actually 
punctuated but drawn out process can be approximated as a continuous process. 

Chase defines the following quantities: 
m,n are the number of ships on each side (that are engaged in combat 

with each other,) 
am, an are the units of "life" of each type of ship (each side is implicitly 

assumed to have only one type of ship, but the two sides may each be comprised of 
a different type of ship - this reflects the continued, at that time, theory of using the 
Line of Battle and the fact that ships are usually produced in series with relatively little 
difference among ships of the same series,) 

bm, bn are the units of "destruction" per time which each ship (of each 
side) can produce, 

Dm, Dn are the damage received by each ship (at a given instant of time,) 
and 

y, z are the "destructive power" of each m, n ship at a given instant of 
time. 
[I have taken the liberty of changing the subscripts designating the two forces from 
the numbers used by Chase to letters to reduce confusion.] 

In addition, total damage is spread equally over all ships on a given side; ships 
are tacitly assumed never to actually sink (this is a moot point and open to some 
interpretation,) the units of "destruction" may be thought of as essentially the number 
of 'independent' [We will define this distinction in a later chapter, however, repeated 
hits on an already destroyed weapon system or asset cause little additional damage 
and are thus not "independent" in reducing the effectiveness of the ship.] hits per 
time, and the units of "life" as the number of hits that a ship may take before it can 
no longer fight (sink?) 

Chase provides the relational equations 
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a
my  = K (am  - Dm)> (II.E-1) 

an *  = K K  ~ Dn)> 

which state that the product of the number of "life" units and the instantaneous 
"destructive power" of a ship are equal to the product of the "destructive" rate of that 
ship and the difference between the "life" of the ship and the damage the ship has 
received.  In words, this equation is 

(initial "life")(instantaneous "destructivepower) 
= ("destructive"rate)(instantaneous "life"remaining) 

If we note that the damage received Dm, Dn, and the "destructive power" y, z, of each 
ship are time dependent, we may use the definitions of the "destructive power", 

Dm(t) = ~ H^dt', 
»    ° (II.E-2) 

Dn(t) = ■*■ /; y(t>) dt>, 

to form pairs of "attrition" differential equations in Dm, Dn, or y, z. (We will not treat 
these differential equations explicitly here since they were not part of Chase's 
exposition, but delay their explicit solution for a later chapter.) 

Chase   then   equates   Equations   (II.E-1)   and   (II.E-2)   (appropriately,)  and 
differentiates with respect to time.  This gives 

^m dy _ _n_ 
hmdt        m (H.E-3) 
fn dz = _m 
bn dt n 

which are Quadratic Law-type attrition differential equations. Time may be removed 
from these equations to yield the single differential equation, 

am K dy = **_ Zf (II.E-4) 
anbm d*      m2 y' 

which may be written in an exact form, 

a», K n2 

-=—^ y dy = — z dz. (H-E-5) 
an bm m2 

Rather than integrate this in the usual definite form, Chase does the integration 
indefinitely to yield 
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(II.E-6) 

which is the state solution for Chase attrition. The boundary conditions on Equation 
(II.E-6) may be found by examining Equations (II.E-1) and (II.E-2), and noting that at 
t = 0, Dm and Dn are zero, (assuming y and z are well defined and behaved in a 
mathematical sense.) Thus, at t = 0, y = bm and z = bn. This gives a value for C 
of 

C = bt 
am K 

<*nbn 

n 
m' 

(II.E-7) 

If the battle continues to a conclusion (in a Lanchestrian sense - the concept is 
independently introduced by Chase without comment,) then the "destructive power" 
of one side becomes zero. Chase selects z = 0 at the conclusion; this gives a state 
solution 

ÜL-JL y2 = b„ 

ft      m 

ft      n 

a   b m    m 

n 
mr 

(II.E-8) 

Chase then uses this equation to solve for the damage received by each ship of the 
surviving force at the conclusion, 

&m ~ 

A» = 
\ 

a 
— (™ "A " nzah) r       * mm n   it* (II.E-9) 

m 

Since the damage received by each ship of the destroyed force is just 

D   = a. (II.E-10) 
ft It* 

by implication of the conclusion condition (total destruction!) the ratio of the total 
damage to the surviving force to the total damage to the dest oyed force is 

"3. 
n D„ 

m 

m 
~\ 

m2        „2 anK m   - n   
mm 

a n n 

(II.E-11! 

Chase also considers the case of a draw (where the two fleets are equally 
matched.)    This gives, from Equation (II.E-9) (since y and z are both zero at 
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conclusion,) 

«.2 m *.K'****>.. (II-E-12) 
mm «     n 

Finally, if the ships on both sides are equivalent (Chase's term is "similar" - life 
and damage rates are equal for the two forces,) the total damage ratio becomes 

w Dm _ m - \jmz - n2 
(II.E-13) 

nDn n 

while the draw condition becomes 

n = m. (H-E-14) 

It is illuminating that Chase does not elaborate his mathematics with 
explanation - apparently he felt such to be unnecessary. As such, he represents the 
opposite extreme from the other three pioneers, especially Fiske. 

1. Fiske, Bradley A., Rear Admiral, U.S. Navy, The Navy as a Fighting Machine, Naval Institute 
Press, Annapolis, MD, 1988. 

2. "Lieutenant J. V. Chase's Force-on-Force Effectiveness Model for Battle Lines", Appendix C 
in Fiske. 

3. Callahan, Leslie G., Jr., Ph.D., and COL (USA Ret.), "Modeling, Simulation and Gaming of 
Warfare - Course Overview", Ninth Annual Course on Modeling, Simulation and Gaming of Warfare, 
Georgia Institute of Technology, Atlanta, GA, August 1988. 
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II.F.   Conclusion 

Of the three pioneers, Chase clearly has the claim for earliest advancement of 
attrition theory. The classification of his paper, removing it from public consideration 
compromises that claim, effectively reducing that claim to an academic footnote. Had 
his paper not been hidden, the terseness of the development would have limited it to 
a military audience with mathematical faculty and intellectual inquisitiveness adequate 
to flesh out the theory - a markedly more limited community than that which could 
read and debate the works of the other three pioneers. Albeit, an argument may be 
raised that had the paper not been classified, Chase would have expanded his brief 
paper into a more robust exposition of attrition theory. As fetching as this argument 
may be, especially in terms of its effect on subsequent history, such considerations 
are of the nature of science fiction, and the fact remains that Chase's work was 
buried from the light of scientific day. 

Neglecting therefore, Chase's claim to primacy, the question still remains of 
which pioneer should be considered to be first? If we compare the works of the other 
three, there is still Fiske's 1905 prize essay which first introduced the Quadratic Law 
concept but lacked an firm mathematical underpinning (nor did the 1916/1918 book 
rectify this shortfall.) Next appears to be Lanchester with his 1914 article, followed 
by Osipov with his series of articles in 1915. Both Lanchester and Osipov clearly laid 
down firm mathematical bases for their theories. Both clearly built different 
frameworks around their theories. 

The question of primacy is moot and cloudy. Chase published first and had the 
claim of primacy effectively denied him by government instrumentality. Fiske clearly 
pub'ished second but failed to provide a mathematical formalism. Lanchester and 
Osipov published next, within months of each other. Concurrency of their work 
cannot be easily dismissed from what we know today. If we consider the impact of 
the publications on the public, it is clear that Fiske and Lanchester (based on Chase's 
letter of 1S21,) were the better known. Chase was known only in cleared U.S. Navy 
circles and Osipov was known only in Russia (?).. Thus, we come full circle, finding 
that the best claim to being 'father' of attrition theory seems to be Lanchester's. 

None of this discussion of primacy is really meaningful. Who was first is not 
really a measure of who (or what) is important to attrition theory. Regardless of who 
we select as 'father', and for traditional reasons, we will continue to use Lanchester 
and the permutations and labels based on his name as the standard, what is really 
important are the contributions of these pioneers to the theory of attrition. These 
contributions are considerable, including the mathematical theories of Chase, 
Lanchester, and Osipov, Lanchester's Principle of Concentration, Osipov's Law of 
Distribution of Losses, Fiske's Principle of Winning, and Chase's Concept of 
Continuous Gradual Destruction. These and other contributions, and developments 
from these are the subject matter of the rest of this book. 
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III. MATHEMATICAL THEORY I: 
Fundamental Solutions of the Lanchester Attrition Differential 

Equations 

III.A. Introduction 

In this section, we present a brief review of the mathematical methods used in 
solving the Lanchester differential equations as they have been presented thus far. 

As stated  in the previous chapter, the general form of the  Lanchester 
differential equations is 

— = -aAz-"B,      @. = -ß52"M. (III.A-1) 
dt dt 

As part of this, we will be concerned with three pairs of differential equations which 
give rise to: the linear law 

dA 4B (III.A-2) 
= -a AB, 

and 

the square (quadratic) law 

and 

and the mixed law 

dt 

dB _ _RB. (III.A-3) 

dA - (III.A-4) 
dt 

dB        n .. (III.A-5) 

dA _       „ (III.A-6) —— - -an, 
dt 

and 
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^ - -IAB. (,l,-A-7) 

dt 

The first two sets of these differential equations, which give rise to the linear and 
square laws, have an exchange symmetry of the form (a,B0) <* (ß,A0) which allow the 
construction of the mathematical form of the second solution, B(t), from the 
mathematical form of the first solution, A(t), by the use of this symmetry. The 
differential equations giving rise to the mixed law do not possess such a symmetry 
and the mathematical forms of the two solutions, A(t) and B(t), must be constructed 
separately. 

III.B. State Solutions 

If the force strengths are assumed to be explicit functions of time, then each 
pair of differential equations above may be combined into one equation by removing 
time as a variable. This, in the linear law case, we may write 

dA 
dt       dA   dt 
dB     dt   dB 
dt (lll-B-1) 

= dA       _  -aAB   _ aAB 
dB -$BA        ßAfi 

=  ß' 

This equation may be integrated directly as 

AB 
(III.B-2) 

which yields 

tfdA' = afdB', 
4) *o 

V(A - AJ = a(B - B0), (,II■B"3, 

from which the origin of the term 'linear law' may be clearly seen since this is the 
equation of a straight line. Equation (III.B-3) is known as the state solution for the 
linear law. 

Equation (III.B-3) simply states that the strength of one force (say A) at any 
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time t is linearly related to the strength of the other force at the same time. This 
equation tells us very little (per se) of the time dependence of A or B, only about their 
mutual and direct dependence on each other. 

The 'square law' differential equations may be solved in the same manner for 
the differential equations (III.A-4) and (III.A-5): 

dA 
dt dA dt 
dB dt dB 
dt 

dA -aB 
dB -$A 
aB 
$A 

(III.B-4) 

This equation may be integrated directly as 

A B 

p{A' dA1 = aJB' dB1, 
AQ BQ 

which yields 

$(AZ -Al) = a(B2 -BI), 

(III.B-5) 

.B-6) 

which  is the  'square law'  state solution.     (Normally, the factors of  2  in the 
denominators are dropped since they occur on both sides of the equation.) 

The 'mixed law' differential equations may be solved in the same manner as the 
previous two, by elimination of parametric time: 

dA 
dt   _ dA   dt 
dB     dt   dB 
dT (IILB-7) 

dA -aB 
dB -$BA 

a 
=  VA 

This equation may be integrated directly as 
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which yields 

ßJV dA' = a [dB', 

|(^2-4) = *(B-B0), 

B (III.B-8) 

.B-9) 

which demonstrates the 'mixed' nature of the state solution of differential equations 
(III.A-6) and (III.A-7). 

Several mathematical insights may be drawn from the state solutions. One of 
the most common of these is the development of so-called victory conditions. If it is 
assumed that the two forces battle until only one force remains, and that complete 
annihilation (battle to a conclusion in a Lanchestrian sense,) may be called victory, 
then equations (III.B-3), (III.B-6) and (III.B-9) may be rewritten in the forms: 

(III.B-10) 
aB0 - ßA0 = aB - ß4, 

(III.B-11: 
aßo " ß^o = a*2 - ß^ 

and 

ß   2        „      ß .2 III.B-12) 

2 2 '0 

where all of the initial force strengths C0' subscripted terms) have been moved onto 
the left hand side of equations (III.B-10) - (III.B-12). Since the two forces battle until 
only one retains any strength, then either A = 0, or B = 0, at the battle's end. Thus, 
in all three cases, the right hand side of these equations are either positive or negative 
depending on whether B or A 'wins' (respectively.) That is, if B 'wins', the right hand 
side of any of these three equations will be positive, while if A 'wins', the right hand 
side of any of the equations will be negative by virtue of the minus sign. (Recall that 
A and B are by definition nonnegative.) 

Notice that since these are 'equations', the same conditions must apply to the 
left hand side as to the right.  We may thus write: 

-4 



aB0 - ß40 > 0    (B wins) 
< 0    (A wins), 

(III.B-13) 

< 0     (4 wins), 

(III.B-14) 

and 

<xB0 - -j^J > 0    (5 wins) 

< 0    (4 wins). 

(III.B-15) 

By rearrangement then, we can write 

ß^c 
> 1 

< 1 

(B wins) 

(A wins), 

(III.B-16) 

a£, 

ß4 
- > 1     (B wins) 

< 1     (A wins), 

.B-17) 

and 

2a.B{ 

ß4 
0 > 1     {B wins) 

< 1     (A wins), 

(III.B-18) 

If any of these three (equations (III.B-16) - (III.B-18)) are equalities, then the prediction 
is for a draw or 'tie' (mutual annihilation?) 

It may be noted that these 'victory' conditions are for a battle where one force 
is completely destroyed. From an historical standpoint, such battles are relatively 
rare.  We shall examine conclusive battles in a later chapter. 

Further, as we shall discuss later, even when one force is reduced completely, 
the form of the relevant differential equations seem to be changed. 
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III.C. Direct Methods of Solution 

The state solutions are useful, but they convey imperfect information about the 
actual time dependence of the force strengths. In this section, we shall address two 
direct methods of solution of the square law differential equations, the method of 
substitution and the method of Frobenius. 

Before continuing, it is worthwhile noting that the Lanchester differential 
equations are first order only. This means that only one boundary condition may be 
imposed on each solution. As we shall see, this sometimes leads to some less than 
satisfying conditions. It does have the satisfying result of assuring us that the 
solution we arrive at is the unique solution. 

III.C.1.      Method of Substitution 

The square law differential equations (Equations (III.A-4) and (III.A-5)) may be 
solved directly by substitution. If we take one of the two differential equations and 
differentiate it with respect to time, we get 

d2A        daB        dB (IIIC-1) 
dt2 dt dt 

We normally assume that the attrition coefficients are time independent," so the first 
term on the right hand side of Equation (III.C-1) is zero. The second right hand side 
term is just the other Lanchester differential equation of the pair. If we substitute 
Equation (III.A-5) into this equation, we get 

d2A RA (III.C-2) 

dt2 

and if we define: 

aß  = Y2. 

we see that the resulting differential equation (of the second order) 

(III.C-3) 

a   We shall consider time (and range,) dependent attrition coefficients in later 
chapters. 



d*A       2, Cll-C-4) 

7i~ = Y A' dr 

has the solutions 
(III.C-5) 

A(t) = Cet< + Def, 

Since we will be applying initial conditions, (making A and B take on values of A0 and 
B0 at t = 0,)  it is more useful to write the solution as 

(III.C-6) 
A(t) = C sinhfyf) + D cosh(yf) 

and we can calculate the solution for B by either direct differentiation of Equation 
(III.C-6), or by symmetry. If we calculate it by differentiation, the solution may be 
immediately seen as 

v v ._,   v (III.C-7) 
B(t) = --*- D s\r\h{yt) - -f- C cosh(yf). 

a a 

(Note that even though we have a second order differential equation, the boundary 
(in this case, initial) conditions imposed are the same as would be imposed for the pair 
of first order differential equations. Thus, we are neither requiring nor introducing 
any new information. That is, we require Equations (III.C-6) (A(t)) and (III.C-7) (the 
derivative of A(t) or just B(t)) to have the proper behavior at t = 0.) 

We now invoke the properties of the hyperbolic sine and cosine, namely that 
sinh(0) = 0, and 
cosh(0) = 1, 

to write: 

A0 = D, 

and 

a 

which may be substituted back into Equations (III.C-6) and (III.C-7) to yield: 

(III.C-8) 

(III.C-9) 
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— (III.C-10) 
A(t) = A0 cosh(vf) - . -| B0 s\nh(yt), 

and 

(III.C-11; 
B(t) = B0 coshfr*) - X-A0 s\nh(yt), 

\ a 

from which the symmetry of exchange of (a, B0) & (ß, A0) is obvious. These two 
equations are the explicit time solutions of the Lanchester square law differential 
equations. 

The linear and mixed law differential equations cannot be solved by substitution 
since they continually mix the two force strengths with repeated differentiation. 
Thus, the method of substitution is of value only in solving the linear law differential 
equations. 

III.C.2.       Method of Frobenius 

In the solution by the method of Frobenius, we assume that the time solutions 
of the Lanchester differential equations may be represented as power series in time: 

(III.C-12) 

and similarly for B(t). 

If we differentiate the series and substitute them into the square law differential 
equations, Equations (III.A-4) and (III.A-5), we get (after adjusting the indices on the 
left,) 

(III.C-13) 
£   Oi + D a„+1 f = -a £  bnt\ 
n=0 n=0 

and 

(III.C-14) 
E  (n + 1) *B+1 '" = -P E «»'"■ 
n=0 »=0 

If we now require that each term in the series be linearly independent, we may equate 
terms with common powers of t.  This gives, 
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a    u (III.C-15) 

and 
ß (III.C-16) 

By adjusting indices and substituting, this becomes 

v2 (III.C-17) 
ö"+2 = (n + 1)(n+2) a"' 

and similarly for the bn 

From the initial conditions, 

b0 = B0, 
and 

a! = - a B0, 
b, = -ß A0. 

We notice immediately that the result is an alternating series in odd and even powers 
of t.  That is: 

Y2 

Or,    = An, 
2     (2)(1)   ° 

Y2 
a3 - "a "(3)(2) Ä0' (III.C-18) 

Y4 

H = (4)(3)(2)(1) i4°' 
Y4 

a_ = -a Bm 
(5)(4)(3)(2)    °' 

or 

an = J- ^0,   (n even) 
n! 

= -a ^— B0,   (n odd) 
n! 

III-9 
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and upon substitution back into the series, this yields 

iW=\?vi ß    °  £o    n\ (III.C-20) 
n odd 

Nß 
4 B0 sinh(yf). = A0 coshfr*) 

which is the same as Equation (III.C-11). 

Unfortunately, the method of Frobenius is also not useful for solving the linear 
and mixed equations because the differential equations are not linear. To solve these 
differential equations, we must turn to some other, more general method to find 
solutions to the other Lanchester differential equations. 

Ill.D. Normal Forms 

The method that permits general solution of the Lanchester differential 
equations presented thus far is the normal forms method. It is so called because the 
state solutions of the differential equations must be developed first. 

Before proceeding, we note that for the square and linear laws, an exchange 
symmetry (a,B0) «* (yff,A0) exists. Because of this symmetry, we shall not have to 
explicitly derive solutions for both of the differential equations of these pairs. This 
symmetry, sadly, is not the case for the mixed law, and solutions for both of these 
differential equations will have to be developed. 

III.D.1        Linear Lanchester Equations 

To demonstrate the normal forms method of solution, we begin with one of the 
linear law differential equations (Equations (III.A-2) and (III.A-3)) and write the direct 
integration solution as 

\   dA> \dt, I'»-0-1' 

and we rewrite Equation (III.B-3), the state solution as 
(III.D-2) 

aB' = $A' - ßA0 + aB0, 

and substitute the state solution directly into the denominator of the left hand side of 
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Equation (III.D-1) to yield 

r dA' = -)dt>, 
(III.D-3) 

the right hand side integral of this equation can be performed directly as an 
elementary integral; the left hand side integral may be taken from Appendix A , 
integral (A-1) with parameters: 

a = ß 
b = ßA0 - aB0 = A., (a 'victory' condition (conclusion) statement). 

The resulting integrations have the form 

cotff1 (2M-i) 
A, 

Mt) 
= -At, 

(III.D-4) 

where : At = t - V 

Substitution of the limits on the right hand side and rearrangement yield 

(III.D-5) 
— - 1    + —-Af, 

A, 
coth- (llM - 1I . coth-'fi^ - l) * 4iA». 

We may now make use of the identity 

coth"1(x) = I lnf^4 
2     \x-"\ 

to write (after some rearrangement) 

A(t)=A0 

(III.D-6) 

.D-7) 

ßA0 - aB0e -A, A» 

The solution for B(t) can be formed from Equation (III.D-7) by using the symmetry 
properties; that is, by swapping a and ß, and A0 and B0. 

III.D.2        Square Lanchester Equations 

The square law differential equations may be solved in the same manner. We 
may rewrite Equation (III.B-6) as 
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B i _ 

N 
lAM + Bl - 14. 

.D-8) 

a 

and substitute it into a direct integration solution of Equation (III.A-4).This yields 

A{t) 

/- 
4> 

dA1 

\ 
±A* - ^A$ + 50

2 

= -a.[dt'. (III.D-9) 

a a 0 T no 

The left hand side integral is again found in Appendix A, integral (A-2) with 
parameters 

a 

b - BQ - —AQ, 
a 

(III.D-10) 

and define: 

A2 = aB0 - $A0. 
(III.D-11: 

Evaluation of the integrals yields 

, £■ sinh" 
N « IN 

±A> 
A2       / 

Mt) 

I 
4> 

= -aAt, 
(III.D-12) 

which rearranges to 

sinh" 
IN A2 1 

= sinh-1 

IN*2       ) 
-yAt, 

(III.D-13) 

and use the identity 

sinh(« - v) = sinh(«) cosh(v) - coshfa) sinh(«), 
(III.D-14) 

to get 
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N A2 
£- i40 cosh(y Af) 

NAi 

- cosh sinn-1 

IN4.  1 
sinh(yAf), 

.D-15) 

and use the identity 

sinh-1(*) = cosrf1(vk*+l"), 
.D-16) 

and the state solution to reduce this to 

A(t) = A0 cosh(yAf) - , -| B0 sinh(yAf) 
1     r 

.D-17) 

identical to Equation (III.C-10), the time solution of the square law Lanchester 
differential equations. 

III.D.3        Mixed Lanchester Equations 

The final exercise of the indirect method is the solution of the mixed law 
Lanchester differential equations, Equations (III.A-6) and (III.A-7). To arrive at this 
solution, we must rewrite the state solutions of the mixed law, Equation (III.B-9) as, 

,       ß      ft     K (III.D-18) 

2a a 

where: 

ß   2 I.D-19) 

We substitute Equation (III.D-18) into the direct solution 

m        ... t 
(III.D-20) 

2 a 

This integral has two different forms depending on whether Am is greater or less than 
zero.   We shall treat the former case first. If we make use of integral (A-3) from 
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Appendix A and apply the argument addition rule for tangents, we may write 

(III.D-21; 

where: 

PIA.I 
N    2 

An   ~ 

A(t) - 

2IA, 

N    ß      -A  >0, 

1 +A ß 
N 2|A„ 

-tanft f) 

(III.D-22) 

The A(t) solution when Am < 0, may be derived from Equation (III.D-21) by 
noting that when Am becomes negative, then n -* in, and that tan(/7?t) = / tanh(/?t). 
Thus, we may write 

A(t) = 
AQ + 

2IA ml 

P 
tanh(Ti t) 

1    +Ar JL-tanhfof) 
^2|AJ 

•. K < 0. 
(III.D-23) 

The B(t) solution can be found by either performing the normal form integration of the 
other attrition differential equation, or by substituting Equations (III.D-21) and 
(III.D-23), respectively, back into the rewritten attrition differential equation, 

m - -1 £ ■ a at 

This allows us to write the two solutions, after some algebra, as 

B0 sec^ti t) 

I.D-24) 

B(t) = - r 12 

1  +^oN 

ß     tan(ti t) 

. K > 0, (III.D-25) 

and 
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B(t) = 
B0 sech2(r\t) 

1    +Ar 

N iiSjMKnO 

:. A   <0, (III.D-26) 

I.E. Force Ratio 

One of the quantities which is of interest in attrition theory is the force ratio; 
that is, the ratio of the two force strengths. If the force ratio is represented by p(t), 
then it is defined by 

'w"« 

(III.E-1: 

Before calculating the derivative of this quantity to form its attrition differential 
equation, we note in passing that, at most, the quadratic Lanchester differential 
equations will possess a closed form solution for the force ratio, but not either the 
linear or the mixed Lanchester differential equations. This sad situation is predicted 
by the fact that the time dependent solutions of both of these sets of differential 
equations contain their state solutions explicitly in the time dependent portions of the 
solutions. Only the quadratic solutions do not contain the state solution in such a 
way. 

We may calculate the time derivative of the force ratio, 

dp = ±dA _  A_dB 
dt       Bdt       Bzdt 

(III.E-2) 

into which we may substitute Equations (III.A-1) to yield, 

& = -aA
z-n + $B-nA2, 

dt 

(III.E-3) 

from which we may see that the right hand side reduces to a function of p only if n 
= 2!  Thus, 

df>   - R~2 

dt 
= ßp' - a. 

I.E-4) 

We may solve this exact differential equation using the same techniques that we used 
for the mixed Lanchester differential equations, giving a solution 
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o(t) -   Po - »tenhfrfl (||I E.5) 

1     Po tanh(YQ' 

This result could, of course, have been derived directly from Equations (III.C-10) and 
(III.C-11), although that method would not have been as theoretically useful. The 
force ratios of the other two types of attrition, linear and mixed, can be formed by 
direct ratioing; however, the resulting ratios cannot be mathematically manipulated to 
remove the initial force strengths explicitly. 

III.F. Summary of Solutions 

This concludes the development of the basic solutions of the Lanchester 
differential equations. We present here, for the use of those who do not choose to 
follow the mathematics, or who may wish to use these as a reference, a summary of 
the relevant solutions for each set of differential equations: 

Linear Equations 

A, (III.F-1) AM=A°- r-^- ßA0 - aB0e 

-A1 (III.F-2) 

A, = ß^o - afl0 

Quadratic Equations 

A(t) = A0 cosh(yf) - b B0 sinh(vf), 

B(t) = B0 cosh(y*) - 4 Ao sinh(vO. 
o 
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(III.F-5) 



Pit) - 
p0 - 6tanh(yQ 

1 _ p0tanh(YQ 
(III.F-6) 

A2 = aB0 - ßi40 

(III.F-7) 

Y = {ä§ 
.F-8) 

6 = 
N ß 

.F-9) 

>"> ■ « 

(III.F-10) 

Mixed Equations 

An - 
A(t) = 

0   N   P 
2IA 

— tanftO 

1 +An 

. Am>0, 

N2iijtanM 

(III.F-11) 

B{t) = - 
B0 sec^(tif) 

1     +^0 ß 
2|AJ 

2 

tan(ti f) 

. A« > °. (III.F-12) 
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A(t) = 
Ao + 

2IA 

N   ß 
a± tanhftf) 

1 + 4, 

. A   <0. 

-Ltanh(tif) 
N2IAJ 

(III.F-13) 

B(t) = 
B0 sech2(r\t) 

1   + A« 
N 2JA-|tanh(T1f) 

. AM < 0, (III.F-14) 

il = 
PIA 

>»   2 

.F-15) 

1.2 Am   =   «50   "  -|4>- 
(III.F-16) 
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IV. ASSUMPTIONS AND SOLUTIONS 

IV.A. Introduction 

Any model can be expressed in informational symbology. In the case of 
Lanchestrian (and Osepovian) attrition theory, the models are commonly expressed in 
three parts: 

• a typical statement of what the model describes, 
• a pair (normally) of coupled differential equations (which imply a 

solution), and 
• a set of assumptions. 

This  chapter then  is  a  general overview of the  models that  comprise  basic 
Lanchestrian attrition theory. 

Although it may seem somewhat premature, much of the discussion in this 
chapter centers on the elementary nature of the attrition rate constants/functions. In 
Chapter V, we will initially introduce the Ironman Analyses which lay the groundwork 
for the relationship between the attrition differential equations and the attrition rate 
constants/functions. This early discussion is, however, important in initiating the 
understanding of the interdependence between the two parts of Lanchestrian attrition 
mechanics: the theory of the attrition differential equations, and the conjugate theory 
of the attrition rate constants/functions. 
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IV.B. Lanchester's Linear Law. 

The Linear Lanchester Law describes combat between two forces. The rate of the 
attrition is given by the differential equations 

41 = -aAB, (IV.B-1) 
dt 

41 = -$AB. (IV.B-2) 
dt 

The state solution for these differential equations, derived in Chapter III, is 

a(B-B0) = V(A-A0), (IV.B-3) 

the explicit time solutions of the differential equations are derived in that chapter as 
well. 

We note here that a multiplicative increase in attrition rate constant/function is 
equivalent to a multiplicative increase in force strength. If, for example, blue has an 
attrition rate twice that of red's, then blue's force strength need only be more than 
half red's to force victory (in the sense of a conclusion). If technology is used to this 
end, then its influence is direct and more efficient (of the two cases, linear and 
quadratic ). 

IV.B.1.      Linear Law Assumptions. 

The assumptions associated with this law are (following Dolansky1 and Karr2): 

1.) The two forces A (for amber or red) and B (for blue) are engaged in combat. 

2.) The units of the two forces are within weapons range of all units of 
the other side. 

3.) The attrition rates are known and constant. 

4a.)   Each unit is aware of the general location of enemy units but is 
unaware of the effect of fire. 

5a.)  Fire is uniformly distributed over the area occupied by enemy units. 
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6.a) The occupied area remains constant, units redisperse within the area 

or 
4b.) Each unit is aware of the specific location of enemy units and the 
effect of fire is known, but enemy units are hard to attrit, or are few in 
number (i.e. Hard to find.) 

5b.)  Fire from surviving units is uniformly distributed against enemy units. 

We shall examine some of the implications of these assumptions. 

Assumption (1) is perhaps the simplest and, at once, the most crucial. It seems 
intuitive that the model will only apply if combat is actually occurring. What must be 
noted is that combat is not a continuous process - it tends to be punctuated. Care 
must be taken to apply the model only when combat actually occurs. 

This naturally leads to the concept (example here Agincourt & from Men at 
War?) that attrition must be time dependent. Further, it leads to the idea of time 
scales of combat. As we shall examine in a later chapter, the accommodation of 
attrition rates between theory and actuality (history) depends on the time scale that 
we consider. If we are interested in the losses per day, many of the actual combat 
processes become hidden. Historical data for combat losses seldom are available at 
time scales below one day. At this time scale, the dynamics of target acquisition 
become less important. Attrition rates are dominated by the ratio of enemy units 
killed (per day) to friendly rounds fired. 

From a mathematical standpoint, the Lanchester differential equations freely 
admit introduction of a scaling fraction which is the time interval divided by the total 
time in combat. Either the time or the attrition rates may be scaled with this factor. 
If, for example, a unit is actively engaged in combat for an hour in a day, the only 
attrition caused by that unit (and possible suffered by it as well - attrition does not 
necessarily have to be symmetric in time,) occurs during that hour. This attrition 
translates directly into an attrition rate (which has units of inverse time - per minute 
or per hour), which is valid while the unit is engaged in combat. If the unit were 
continuously engaged in combat during the entire day, then the total attrition of that 
unit would be described by integration of the appropriate differential equation over the 
whole day's time. This, however, is not the case since (by premise) combat occurs 
only during one hour of the day. The total attrition of enemy units by that unit occurs 
only during that hour. To reconcile this limited attrition period with a total day of 
warfare for this unit, we may introduce a scaling fact f (which in this case has the 
value 24 - the number of hours in a day). This factor may be viewed as multiplying 
the time (which transforms combat time into elapsed time) or dividing the attrition rate 
(which transforms the in-combat attrition rate into an effective (daily) attrition rate). 
As we shall see in a later chapter, this problem is largely alleviated by the introduction 
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of attrition rates which are sensitive to the presence of enemy forces (such as range 
and/or time dependent attrition rates,) if not the actual state of combat. 

Dolansky includes in Assumption (1) that the units engaged are identical but 
notes that this holds for only the simplest of Lanchester "type" models - he goes on 
to elaborate heterogeneous force Lanchester "type" models, which we discuss briefly 
in Chapter ( ). 

This restriction gives occasion to treat an interesting case which illustrates the 
impact of military doctrine on attrition as well as the fundamental Lanchestrian 
question of what constitutes a unit. Some years ago, the doctrine of the Soviet 
Army, supposedly as a result of poor tank gun accuracy was that a tank platoon (3 
tanks at that time, in that type of unit) would engage a single target collectively. The 
platoon leader would select a target. All three tanks would then take aim and fire 
together at that target. The unit of Soviet tank forces at that time was thus a 
platoon. 

The tank forces of the NATO powers at that time, for the purpose of 
comparison, acquired and fired as individuals. Firing doctrine for NATO did not 
prescribe any type of deliberate mass firings (except perhaps accidentally or at 
responsive command discretion). Thus, the unit of NATO tank forces could be 
presumed to be an individual tank. 

The consequences of these two doctrines in terms of attrition rates (and their 
calculation) will be discussed in a later chapter. Still, this difference points up some 
of the difficulty which arises in determining what actually comprises a unit in a 
Lanchestrian sense. 

This difficulty is further demonstrated by Assumption (2), that each unit be 
within weapon range of all units on the other side. If we consider the case of combat 
in line with edged weapons (the Roman legions and their foes comes to mind as an 
example), then the lethal range of a weapon (sword, and/or non-thrown spear) is 1-2 
meters. If the linear density of troops is ~ 1 per meter, then the Lanchestrian theory 
would seem to apply at about the level of one soldier fighting with one soldier. (This 
also make old Douglas Fairbanks movies seem to be correct in a Lanchestrian sense!) 
The unit would thus be the individual soldier. Description of combat ala Lanchester 
under these circumstances would seem then to be violated. A more reasonable 
assumption (which appears to yield the same result) would be that there are always 
targets within weapons range of all units. If we adopt this assumption, then as long 
as Assumption (1) holds, the result is the desired one. In terms of our Roman 
example, if the enemy line is maintained, then each Roman soldier in the Roman front 
line (engaged in combat) has 2-3 targets in range (in the enemy front line.) 

The interpretation that presents itself, however, is that some areal structuring 
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of the attrition process is necessary. This is supported if we examine the frontage of 
troops in combat as a function of time (Dupuy3 - We examine this in a later chapter) 
and compare this to weapon ranges. This interpretation is consistent with our revised 
Assumption (2). 

The third assumption, that the attrition rates are known and constant is also 
open to discussion. Dolansky states that the attrition rates are difficult to evaluate 
(see the earlier discussion in this section of the difficulty of time scale adjustment). 
In principle, attrition rate constants/functions are calculable using Bonder's Equation 
(Chapter XII) although difficult to verify historically. Further, attrition rates for those 
factors of greatest interest, new weapons (the result of either new technology or 
human inventiveness), and new doctrine, inherently cannot be verified in terms of 
history. (We invoke a tacit, invisible subassumption here that warfare experiments - 
we do not include training and operational exercises with troops because of their 

controlled nature - cannot be conducted for whatever moral,ethical, and/or budgetary 
reasons.) 

In spite of these difficulties, if we accept the applicability of Bonder's theory 
of attrition rates (that acceptance being an obvious, but defended premise of this 
volume), then the assumption that the attrition rates are known is satisfied; the 
assumption that the attrition rates are constant is much more difficult to accept or 
defend. In general, weapons' performance are range dependent. Further, there is 
considerable reason to believe that attrition rates should be time dependent as well. 
From a mathematical standpoint, constant attrition rates permit simple, straight 
forward closed form solutions of the Lanchester differential equations. Beyond this, 
however, assumption of constant attrition rates seems inconsistent with much of 
what we know of combat. It seems, therefore that this assumption is necessary not 
for the applicability of the Lanchester differential equations, but of the simple closed 
form solutions. 

Assumptions (4a), (5a) and (6a) are generally supportive of what we think of 
as non line-of-sight weapon systems units - generally classical artillery (post American 
War Between The States) - whose operation is dependent on target acquisition 
information from other units and, because of a variety of position and time 
uncertainties, have only general knowledge of the position of enemy units. This 
uncertainty is mollified somewhat by the areal lethality of the weapon. These 
assumptions tend to be associated with the Lanchester linear law and lead to its 
identification with indirect fire weapons. The other pair of assumptions (4b) and (5b) 
are supportive of line-of-sight weapon units under conditions where targets are hard 
to attrit. This pair of assumptions is generally not associated with the linear law in 
much of the literature, although classically, of course, Lanchester associated the linear 
law with ancient combat, which was entirely line of sight attrition (except perhaps for 
some siege weapons(?), which are a special case). 

IV- 5 



The combination of assumptions (1) and (4b) seem to conflict with Lanchester's 
identification of the linear law with ancient combat. The law is assumed valid only 
when units are engaged in combat, and for ancient personal weapons, this effectively 
means that the units are in contact. It is then difficult to reconcile how the enemy 
units could be hard to find. The answer, of course, is that the units are not, while in 
contact, hard to find, but rather that because the forces are in contact, the rate of 
engagement is dependent on the product of densities of the two forces. This 
situation is directly comparable to a chemical reaction where the rate of the reaction 
is dependent on the concentration (densities) of the two (in this case?) reactant 
chemicals (forces). This analogy will be even more usefully applied in a later chapter 
on attrition processes where we develop the model of attrition as a scattering process. 
(It is interesting to note, using this analogy, that this type of chemical reaction 
description is valid when the reactants are completely mixed, as in a solution. A 
different form occurs when the reaction only occurs at (or in the region of) an 
interface.) This, has significant impact on attrition theory interpretation if we pursue 
the analogy. If this rate form is valid when the reactants are mixed, then the 
implication is that the forces must be mixed as well. This occurs only in a melee 
situation. Is then the norm of applying the Lanchester Linear Law to ancient combat 
melee combat only? Are ordered forms of ancient combat, such as those practiced 
in the phalanx and the legion, not described by such? This is indeed so as we shall 
see when we look at alternate forms of attrition "laws" such as those of Osipov and 
Helmbold. Among other things, we shall see there that the form of the attrition 
differential equation depends on the structure of the forces engaged, and that as that 
structure changes, so does the form of the differential equations. 

We shall further see, in this chapter and in the chapter on the calculation of 
direct fire attrition rates that the form of the attrition rate can be either linear law-like 
or square law-like - a (not completely) general form is a combination which we shall 
consider in detail in another later chapter. We note, however, that Lanchestrian 
(Osipovian?) attrition theorists in the Soviet Union seem to sometimes perform both 
linear and square law calculations and use the two calculations as a bounded envelope 
about the "real" answers. Although we shall defer consideration of the linear law as 
descriptive of direct fire/line-of-sight/ point attrition to a later section, we will consider 
here the more normal association of the linear law as descriptive of indirect fire/ non 
line-of-sight area attrition. We may see the form of the attrition differential equation 
directly if in a somewhat simplified manner. Recalling Equation (IV.B-1), we may think 
of the entire red (A) force as occupying some area L. The number of red units per 
area is A/L. If each blue (B) fire kills all of the A force in a given area d about the 
impact point of munition, then the number of A force that is killed per blue fire is 

±A . (IV.B-4) 
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If each blue unit fires m times in a given regular interval of time (e.g. rounds per 
minute), and we ignore such factors as overlapping lethal areas, shots outside of the 
occupied area L, and any question of target acquisition or weapon down time, then 
the number of A force units that are killed per blue unit per time (tBk) is A d m 

M™ . (IV.B-5) 

Since the number of blue units is B, then the number of A force killed per time 
is just 

— AB, (IV.B-6) 

which is the attrition differential equation where 

a = ^, (IV.B-7) 

is the attrition rate. The minus sign, of course, arises because the total number of the 
A force is decreasing. The resulting attrition differential equation is simply, 

— = -aAB, (IV.B-8) 
dt 

which is a linear law attrition differential equation. 

This also leads us to an understanding of the meaning of the attrition rates a 
and ß. We may see that a is the number of A force units killed (by B) per B unit per 
time, per A unit. As we have seen in the simple development just above, it is not 
really the total number of A force units which is important, but rather their (areal) 
density. In fact, this leads to a sometimes stated assumption of indirect fire attrition 
theory - that forces are continuously redistributed over time (during combat) to keep 
a (changing) but constant areal density. Unfortunately, the presence of the red force 
strength as a factor in the attrition differential equation sometimes leads to confusion 
since the area of the forces dispersion is usually embedded in the attrition rate 
constant/function. This confusion can be somewhat alleviated (especially if closed 
form solutions are not being developed), by rewriting Equation (IV.B-1) as 

f^ = -a' pA B, (IV.B-9) 
dt 

where: pA       =       (areal) density of A 
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=       A/L, and 
a'        =       revised attrition rate constant/function. 

(A similar parallel set of machinations can be performed for the other half of the 
combat attrition process that which occurs to B. For brevity we leave that as an 
exercise to the reader). Equation (IV.B-9) is a quadratic law differential equation. In 
keeping with the quadratic law (alternate) assumptions (specifically assumption (6b),) 
if the ratio of force strength to area occupied (that is, pAl) remains constant, a 
quadratic law differential equation describes the attrition process. 

If we do not neglect the target acquisition time, we must introduce a simple 
search and acquisition model. We have already defined the area density of Red units 
as pA (= A/LA.) Let us postulate a search process where each unit of the Blue force 
searches an area lB at any given time, with a probability pAa of finding a red unit in lB 

(if a unit is present; we shall consider the effect of false detections in a later chapter;) 
and that the Blue unit searches areas of size lB at a rate vB (number of areas per time - 
the area searched per time is just lB vB.) The area per Red unit is just /?A"1 = LA/A. 

The time required for a Blue unit to have searched an area which contains a Red unit 
is thus 

LA 

AlBxB'°r (IV.B-10) 

(PA
V

S) 
-1 

Since there is a probability pAa of the Blue unit detecting the Red unit, the 
probable number of areas that the Blue unit must search to find a Red unit is increased 
by a factor pAa"1.  The search time then becomes 

LA 

AlBxB?Aa' (IV.B-11) 

= (PAVS/>J~
1
. 

We have earlier defined the time to kill (tBk) as 

tBk = pAdm. (IV.B-12) 

The total time to attrit a Red unit, including search and acquisition time (using these 
simple models,) is just 

IV-8 



W ****». (IV.B-13) 

and the attrition rate is 

_   -1 
a - hatttrit' (IV.B-14) 

= ('* + W)"1 

If the search time is much greater than the kill time (i.e. t^ > > tBk,) then we 
may ignore tBk in the above attrition rate, and the attrition rate has the (approximate) 
form 

Now if pA is constant, then the situation which we described earlier, namely that of 
the quadratic law assumption (6b) being valid, and the resulting differential equation 
has the form 

^i = -aB, (IV.B-16) 
dt 

which is a quadratic law attrition differential equation. If, on the other hand, pA is not 
constant, then square law assumption (6a) is valid, and the resulting differential 
equation has the form 

— = -a* AB, (IV.B-17) 
dt 

which is a linear law attrition differential equation, and where: 

a* = 1
*
V

BPM _ (IV.B-18) 
LA 

We shall further consider the interrelationship of search and kill times in Chapter VII 
which deals with combined law differential equations and assumptions. 
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Operations Research 1_2 344-358, 1964. 

2. Karr, Alan F., "Lanchester Attrition Processes and Theatre Level Combat 
Models", pp 89-126 in Shubik, Martin, ed., Mathematics of Conflict, North Holland, 
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IV.B.2       Linear Law State Solution 

Even though a is the attrition rate constant/function for the attrition of the A force, 
in the state solution, it is associated with the B force. This association occurs 
because a may also be interpreted with the effectiveness of the B force in attriting A. 
Note that we may interpret aB as the number of A units killed per time per A unit. 
The quantity A,, defined by 

A, = aJB0 - ß40, (IV.B-19) 

is the difference in kills per time between the two forces at the beginning of the 
engagement. In terms of the Lanchestrian concept of combat to a conclusion, this 
difference is the predictor of victory. If AT > 0 then the blue (B) force generates a 
larger number of kills per time than does its foe, the red (A) force. In this case, if the 
combat is carried to a conclusion, then the blue force will be the victor with 

Bm = B0 - &A0, (IV.B-20) 

units remaining. 

(We shall discuss the historical perspective of combat to a conclusion in 
Chapter XIII.) 

If AT < 0, then the red (A) force generates more kills per time than does its foe, 
the blue (B) force. Thus, at the end of such a conclusive combat, the red force will 
be the victor with 

Afinal=A0-±B0, (IV.B-21) 

units remaining. 

If A, = 0 , then the combat, if carried to a conclusion, results in a draw service 
both forces generate the same number of kills per time. 

To examine the mathematical properties of the linear law, it is convenient to 
write the state solution, Equation (IV.B-3) in the form 

B = IA + -^1. (IV.B-22) 
a a 

Mathematically, this is the equation of a straight line.   (We have arbitrarily 
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chosen the red force strength (A) to serve as the independent variable while the blue 
force strength (B) serves as the dependent variable. Although we do this because 

(i) A comes before B in the alphabet, and 

(ii) we commonly associate blue with the friendly forces 
(except in the old Confederacy) and red with the enemy 
forces, 

some convention needs to be established to provide a consistent basis for 
comparison. The reader is free to adopt the other convention, if desired, as an 
exercise). If we plot Equation (IV.B-23) in the normal manner with A = 0, B = 0 at 

B                           State Solution 
i                            Linear Lanchester Equation 
U       200                                          - 
e 

180_ 
F    ieo_ 
o 
r       140_ 
°       120_ 
e 

ioo_ 
S         80_ 

J          -0. 
e        40_ 
n         20 _ 
?      o. 

!        -   4 - 

h                                                           Rad Force Strength 

the origin of the axes (As shown in Figure (IV.B-1)), then we may see that the 
quantity ßla is the slope of the line. 

_ ß B = 2-A. 
a 

(IV.B-23) 

All solutions of the attrition differential equations (IV.A.1) and (IV.A.2) for these 
values of a and ß (actually for this value of the ratio ßla ! in our convention) will lie 
parallel to this line. This line represents the case of a draw, when A-, = 0). This line 
also divides the graph into two regions, an upper and a lower region. The upper 
region contains those combats where the blue force is victorious (in the sense of 
conclusion), where A, > 0. The lower region contains those combats where the red 
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force is victorious, where A, < 0. 

We may now examine combats in terms of the intercepts of the solutions with 
the axis. In the upper region, the state solution line must intercept the B force 
strength axis at zero A force strength. It does so at value A-,/a. We see now another 
interpretation of A^ it is the number of kills per time remaining to the victor at the end 
of a conclusive combat; it "represents" the power or ability of the victorious force to 
enter further combat. Further, divided by the appropriate attrition rate constant/ 
function, A, is the force strength of the victor at the conclusion of combat, (Note 
that in our convention, a plus sign here indicates a Blue force victory; a minus sign 
indicates a Red force victory). These cases are shown in Figures (IV.B-2) and (IV.B-3) 
respectively. The values of a and ß are held constant (and equal). In Figure (IV.B-2), 
the initial Blue force strength is increased by 50%. Note that this 50% is the entirety 
of the Blue force remaining at the conclusion. (The graph is read in a right to left 
manner. The battle begins at the upper right hand edge [above the draw line], and 
proceeds down and to the left). In figure (IV.B-3), the initial Blue force strength is 
50% less than in the draw case. Note that 50% of the Red force remains at 
conclusion. This points up one way to win a victory (under conclusion conditions,) 
the side with the larger force (numbers) wins. 
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Another way to win is to change the attrition rate constants/ functions. Recall 
the (simple) definition (model) of the attrition rate constants/functions. 

a = 
dBmB (IV.B-24) 

and 

P = 
dAmA (IV.B-25) 

where: dA, dB = lethal area of A, B force shot, 
mA' mB = rate of fire of A, B unit, and 
LA, LB = area occupied by A, B forces. 

There are basically three ways to change the attrition rate model. We shall examine 
each of these in turn holding the initial force strengths of both forces fixed at the 
values in the draw case, and holding fixed the three parameters: 

• lethal area per fire, 
• rate of fire per unit, and 
• occupied area of the Red force. 

The first way to change the attrition rate constants/functions is to change the 
area occupied by the Blue force. This has no effect on the rate of attrition of the Red 
force. Rather, it decreases the number of Blue units struck by each Red unit fire - it 
decreases the rate of attrition of the Blue force. In other words, if we double the area 
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that the Blue force occupies, a becomes Vz of its previous value. This case is plotted 
in Figure (IV.B-4). This change is most likely doctrinal in nature, assuming the Blue 
force's infrastructure, such as Command, Control, and Communication, can support 
the dispersal. Notice that dispersing the force this way may violate Assumption (2) 
since all of the Blue force may no longer be in weapons range of all of the Red force. 
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The second and third ways to change the attrition rate constants/functions are 
for Blue (in this case) to increase the lethal area of his munitions and/or to increase 
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his rate of fire. Lethal area can be increased achieved by adopting larger 
weapons/munitions (which usually decreases the rate of fire), or by technological 
improvement of the munition (such as better explosives). The rate of fire can be 
increased by training the weapon crews better, or again by technological 
improvements, such as by incorporating automatic loading. If we double either of 
these parameters, ß doubles over its draw case value while a stays the same. This 
case is shown in Figure (IV.B-5). (Note: This is identical to Figure (IV.B-4).) If we 
double both parameters, ß quadruples over its draw case value while a stays the 
same.  This case is shown in Figure (IV.B-6). 
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These investigations display the general characteristics of indirect fire combat 
as described by Lanchester's linear law: 

• Maximum force dispersion, consistent with weapon 
effectiveness minimizes losses. (We note in passing that 
this is also the case when direct fire attrition is described 
by the linear law. It also applies to the use of weapons of 
mass destruction - nuclear and chemical weapons). 

• Increased weapons effectiveness decreases casualties. 

• Economy of force is manifested in the use of minimum 
force strength to effect the mission (casualties are linear). 
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IV.B.3.      Linear Law Time Solution 

The time solution of the Lanchester linear attrition differential equation , derived in 
Chapter III are 

A(t) = A0 5  (IV.B-26) 
ß^0 - oß0e'

4,Ä' 

and 

where: 

B(t) = B0  
Al €    1 ' (IV.B-27) 

ßA0 - aBQe-^f 

A, = $A0-aB0. (IV.B-28) 

We note immediately that we cannot obviously solve these equations for a draw case 
- both equations (IV.B-26) and (IV.B-27) appear to be zero when A, = 0. (The 
general case of draw solutions are considered in Chapter VI.) They can however, be 
solved for A, jt 0. The draw case can be considered if we expand the exponential 
terms in Equations (IV.B-26) and (IV.B-27) to first order in A1# 

e±AlA'~1 ± A, A*, (IV.B-29) 

which we substitute into those two equations (after we rearrange equation (IV.B-27) 
to have only one exponential term. This yields 

A(t) = A0 - ^ , (IV.B-30) 

and 

B(t) = B0 ^ , (IV.B-31: 0 ß^0(1 + A, A*) - aB0 

which reduces, using the definition of A, to 
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A(t) =  ^ , (IV.B-32) 
1  + aBQAt 

and 

B(t) =  2° . (IV.B-33) 
1 + $A0At 

To calculate particular solutions of these equations, we must first compute 
values of a and ß, and assume some initial force strengths.  As examples we take, 

A0 = 100, and 
B0 = 200. 

The attrition rates, in the simplest case of kill dominated attrition, are 

a = ^5* (IV.B-34) 
LA 

and 

B = ^±, (IV.B-35) 

where: dA, dB = lethal area of A, B force shot, 
mA' mB = rate of fire of A' B ur,it, and 
LA, LB = area occupied by A, B forces. 

For AT to be zero, ß must be twice a. We take initially then, 
LA = 100 km2, 
dB = 1 km2, and 
mB = 5 min"1. 

This gives a = 5 x 10"2 min"1.   If we take LB = LA, mA = mB, and dA = 2 km2, then 
ß = 10"1 min"1. This satisfies the draw case condition. A plot of equations (IV.B-32) 
and (IV.B-33) for these parameters are given in Figure (IV.B-7). 

Variations for doubled/halved force strengths and doubled occupation area, rate 
of fire/lethal area are shown in subsequent figures. Since these examples deviate 
from the draw case, the force strengths were calculated using Equations (IV.B-26) and 
(IV.B-27).  Note how the draw shifts to Blue/Red victory in a conclusion sense. 
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Linear Law Time Solutions 
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IV.C. Lanchester's Square Law 

The square Lanchester law also describes combat between two forces.  The rate of 
attrition is given by the differential equations 

4A = -aB, (IV.C-1) 
dt 

and 

^ = -QA. (IV.C-2) 
dt 

The state solution for these differential equation, derived in Chapter III, is 

a(52 - Bl) - HAZ ~ Al). CV.C-3) 

The explicit time solutions of these differential equations are derived in that chapter 
as well. 

In the square law case, as in the linear law case, an increase in attrition rate 
constant/function is equivalent to a multiplication increase in force power. (Such an 
increase in attrition rate constant/function increases force strength only as the square 
root since force power (total force kills per time) is the attrition rate constant/function 
times the square of the force strength rather than as the force strength directly in the 
linear law). If for example, Blue has an attrition rate constant/function twice Red's, 
then Blue's force strength need only be slightly more than 70% of Red's force 
strength to force victory (again, in the sense of a conclusion). If technology is used 
to this end, then its influence is still direct, but is less efficient (of the two cases) 
since the attrition rate constant/function must quadruple for every factor of two that 
the enemy force strength increases. 

This is a direct statement of Lanchester's Principle of Concentration. 

IV.C. 1.      Square Law Assumptions 

The assumptions associated with the square law are, again following Dolansky, 
and Karr: 

1.) The two forces A (for amber or red) and B (for blue) are engaged in 
combat. 

2.) The units of the two forces are within weapons range of all units of 
the other side. 
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3.) The attrition rates are known and constant. 

4a.) Each friendly unit is aware of the specific location of enemy units 
and the effect of fire is known. 

5a.) Fire is uniformly distributed over surviving enemy units. 

6.a) Targets are either numerous or are acquired at a constant rate (i.e. 
are easy to find.) 

or 
4b.) Each friendly unit is aware of the general location of enemy units 
but the effect of fire is generally unknown. 

5b.) Fire from surviving friendly units is uniformly distributed over the 
area occupied by enemy units. 

6b.) The area occupied by surviving units contracts to maintain a 
constant density of units. 

We notice immediately that the first three assumptions, (1)-(3), are the same 
as those advanced for the linear law. The reader is referred to the previous section 
for discussion of those assumptions. We shall concentrate here on the "new" 
assumptions which apply to the square law. 

Assumptions (4a), (5a) and (6a) are those commonly associated with the square 
law as a model of line-of-sight weapon systems units - generally classical infantry and 
cavalry/armor units, and artillery units firing directly. (Artillery units were 
predominantly direct fire until after the period of the American Civil War/War of 
Southern Independence circa 1861-1865 C.E.) These assumptions describe direct fire 
combat when targets are easy to find and the attrition rate process is dominated 
directly by the rate of fire/kill rather than by the target location/identification process. 
(As described by assumptions (4b) and (5b) of the linear law). Assumptions (4a) - 
(6a) are those which we have seen support indirect fire combat and the comments in 
the previous section are still applicable, but are modified by assumption (6b). In this 
case, the quantity 

PA = ^°, (IV.C-4) 
LA 

(and its conjugate) are conserved through the combat. As a result, the area occupied 
by each force LA, LB, are now time dependent, and have the form 
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LA - P, A, (IV.C-5) 

so that the attrition rate has the form 

a = -2-2- AB 

= h^l AB (IV.C-6) 
PAA 

= d*mB B 
PA 

and the square form of the Lanchester differential equations arise. The indirect fire 
attrition rate constant/function for constant density of forces is related to that for 
constant area occupied by forces (designated by and ap and aA, respectively) is 

a   = aA LA, (IV.C-7) 
""p A     A' 

where LA here is the area occupied by the initial forces. 

If we again consider the search and acquisition time in the attrition rates, the 
search model previously described in section IV.B may be used. The search time is 
again 

. -   LA 

The kill time is just 

- (fti'jV*.)"1- 

tm-tor. (IV.C-9) 

where r is the rate of fire of the weapon, and p is the probability of kill per shot. The 
total time to attrit a Red unit, including search and acquisition time (using these simple 
models,) is just 

t        =t    +t, (IV.C-10) 
Haunt       lBs       lBk' 

and the attrition rate is (again) 

If the search time is much greater than the kill time (i.e. tBs > > tBk,) then we 
may ignore tBk in the above attrition rate, and the attrition rate is again, 
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a = t~ Battrit (IV.C-11) 
■Bs  + *«) = ('* + h  ^ 

«   =   9AlB^PAa- (IV.C-12) 

Now if yoA is constant, then quadratic law assumption (6b) is valid, and the resulting 
differential equation has the form 

4A = -a B, (IV.C-13) 
dt 

which is a quadratic law attrition differential equation (regardless of the type of 
attrition.) If, on the other hand, pA is not constant, then square law assumption (6a) 
is valid, and the resulting differential equation is a linear law attrition differential 
equation, 

dt 

where: 

^ = -a* AB, (IV.C-14) 

a* = lsvBPAa^ (IV.C-15) 
LA 

If the kill time is much greater than the search time (i.e. tBs < < tBk,) then we 
may ignore tBs in the above attrition rate, and the attrition rate has the (approximate) 
form 

a = r p, 

and the resulting attrition differential equation is quadratic. 

(IV.C-16) 

The interrelationship of search and kill times will be further considered in 
Chapter VII which deals with combined law differential equations and assumptions. 

On a historical basis, one would expect the actuality of combat to 'see-saw' 
between the linear and square law descriptions of indirect fire combat. Initially, units 
would be distributed over an area and would remain so for some time. Then, 
casualties having occurred in a non-uniform manner, the surviving units might be 
redistributed (over a lesser area) to fill gaps but reverting to approximately their 

IV-25 



original density. During the period of redistribution, we might expect that the square 
law form would hold. This view, of course, is somewhat simplistic (but no more so 
than the model itself). It will also depend on whether combat is continued (and to 
what intensity,) while the units are redistributed. Alternatively, the area occupied by 
the forces will tend to remain somewhat constant even when casualties occur due to 
the need to maintain a force presence in those areas. This is a subject that we shall 
also take up in Chapter VII. 

It is worth commenting that one of the assumptions in the Lanchester model 
describing indirect fire units (or those affected by indi-rect fire) is that such units are 
uniformly distributed. This is only approximately so. The individual weapon systems 
may be approximately uniformly distributed over an area (or a line) with some degree 
of concentration, but by their very nature, the portions of the force which are not 
(usually) attriters, (i.e., command and supply units,) by their very nature are 
concentrated and not so distributed. The model is too simplistic (at this level of 
development and discussion) to consider these units or the effects of their attrition. 
This concentration is why target location has become crucial for indirect fire systems - 
the need to selectively engage these control and support units which are not 

efficiently attrited under the normal assumptive conditions. 

• 
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IV.C.2.      Square Law State Solution 

To consider the square law as descriptive of direct fire / line-of-sight/point 
attrition, we again perform a simple analysis. Consider that each Blue fire is directed 
against one Red unit at a time (assuming a unit to be the simplest level of weapon 
system, such as a tank or an individual soldier. If the unit is larger - a squad or 
platoon, say - then this condition still applies but the unit attrition is fractional. We 
shall illustrate this later when we analyze the example of the Soviet tank platoon as 
unit). Associated with each unit is a rate of fire (fires per time) of ru and a probability 
of kill per shot of pu. If target location/identification time is small compared to time 
to kill once the target is located (a situation dictated by assumptions (4b) and (5b)), 
and the target unit is engaged until killed (and (!) ammunition supply is ignored), then 
the time to kill a Red unit is just (ru pu)"\ and the attrition rate is just 

a = ru pu, 

which is yields a linear attrition differential equation 

If we again define the quantity A2 as 

A2 ■ aB0 - $AQ, 

(IV.V-17) 

2     »'2 (IV.V-18) 

which is the kills per time difference between the two forces. As with A2, this is the 
predictor of victory in the Lanchestrian sense of combat to a conclusion. As before, 
if A2 > 0, then the blue force generates more kills per time than does its foe, and if 
combat is carried to a conclusion, then the blue force will be the victor with 

Bfinal 
\ 

B2 _   ß AZ (IV.V-19) 
a 

units remaining. 

If A2 < 0, then the red force generates more kills per time than does the blue 
force, and at the end of a conclusive combat, the red force will be the victor with 

^filial 
Ai _ « a2 (IV.V-20) 

units remaining. 

If A2 = 0, then the combat, if carried to a conclusion, results in a draw since 
both  forces generate the same number of kills per time. 
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It is again convenient to write the state solution in a form when the red force 
strength is the dependent variable and the blue force strength is the independent 
variable, 

B = 
N 

±A* 
a 

(IV.V-21; 
a 

If we plot this function for A2   = 0 , we get a graph of the same form as Figure 
(IV.B-1), except that the slope is 

ß (IV.V-22) 

This follows since 

B = 
^ 

A, (IV.V-23) 
a 

when A2   = 0 

Since equation (IV.C-21) is quadratic rather than linear, solutions for various 
combats will not lie parallel to this line (for the same ratio alß), as they did in the 
linear case. They will, however, lie either above or below this line, respectively, 
whenever A2 < 0, or A2 > 0 . As before, if A2 > 0, the solution will graph above 
this line and Blue will be victorious (in a conclusive combat). If A2 < 0, the solution 
will graph below the line and Red will be victorious. 

We now examine, in the same manner as previously, combats in terms of the 
intercepts of the solutions with the axis. In the upper region, the state solution curve 
intercepts the B force strength axis at zero A force strength. It does so at value 
V(A2/a). The quantity A2/a again represents the number of kills per time remaining to 
the victor at the end of a conclusive combat. The quantity "/(A2/or) is the force 
strength of the victor at the conclusion of combat. 

As before, we examine the effect of force strength on the outcome of the 
battle. This is shown in Figures (IV.C-1) and (IV.C-2) for an increase and a decrease 
in the initial Blue force strength of 50% over the draw case. Note that in the latter 
case, a Red victory, the Red force strength at conclusion, the interaction of the state 
solution curve with the A force strength axis, \sV(-A2/ß). In the square law case, we 
must worry about the sign of A2 explicitly since the argument of the square root must 
be positive.  These curves show that one way for Blue to win is to have more units 
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than Red (for the same attrition rate constant/function). 
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The other way for Blue to win is to change the attrition rate constant/function. 
This cannot be done by increasing the area occupied as in the linear case; it can only 
be done by increasing either the rate of fire or the lethality of the munitions (increasing 
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the probability of kill). If we double either the probability of kill or the rate of fire, the 
Blue attrition rate is doubled in value (corn-pared to the draw case). The result of this 
is shown in Figure (IV.C-3). If we double both, the Blue attrition rate is quadrupled 
in value. This result is shown in Figure (IV.C-4). As in the square law case, the 
attrition rate can be changed through either training or technology. Both rate of fire 
and probability of kill can be increased by developing the skills of the loader (assuming 
a manual loader,) or the skills of the gunner, respectively. Similarly, by incorporating 
an automatic loader (increasing the rate of fire when the unit is kill limited,) or 
improving the accuracy of the weapon and/or the lethality of the munition (increasing 
probability of kill,) the attrition rate can be increased. 
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IV.C.3.      Square Law Time Solution 

The square law time solutions, derived in Chapter III, are 

A(t) = A0 COSh(yf) -6B0 sinh(yf)» 

6 

where: 

A (IV.C-24) 
B(t) = B0 cosh(yO - -f sinh(vO. 

A2 = « BQ ~ PA)> 

Y = v'aß. 

6^ 

a 

ß' 

(IV.C-25) 

It is not obvious that these equations are valid for the draw case.   To show this, we 
first rewrite A2 in the form, 

A2 = (ftBo - TMo) (fiBo + /Mo)- (IV.C-26) 

We see that the draw condition A2 = 0 means that 

- Ji* - VM. - 0. (IV.C-271 

or 

^*-VPV (lvx-28) 

(This is also the result that we would have gotten if we had solved Equation (IV.C-25) 
directly.) 

If we now consider the alternate solution forms in Appendix C: 

2fiA(t) = (v/Mo " fiBo)*rAt + (i/Mo + V^)«"**.        (IV.C-29) 

and 

2ftB(t) = {ftBQ - ^A0)e
yAt + (\M) * ^A0)e~^\        (IV.C-30) 

and substitute Equation (IV.C-27) into these equations, we obtain, 
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2/M(0 = (T/MO 
+ ^B0)e"<At, (IV.C-31: 

and 

2y^5(f) = (M) + /ß^o)e"YAf. (IV.C-32) 

And now substitute Equations (IV.C-28) into these two equations, and perform some 
minor algebra, 

A(t) = A0 e-i" 
B(t) = B0 e-^\ 

(IV.C-33) 

result. (We shall derive these equations from the attrition differential equations in 
Chapter VI.) 

For an example of the draw case, we again take 
A0 = 100, and 
B0 = 200. 

The ratio ßla must be 4.   From the simple model of attrition, 

a = rB PB (IV.C-34) 
ß = rA PA> 

we see that this may be satisfied if: 

(i.) rA = 4 rB 

(ii.) PA = 4 PB 

(iii.) rA = 2 rB, and pA = 2 pB 

(iv.) rA = 2 x rB, and pA = 2 pB/x 
where x > 0. For the purpose of this example, we will take case (iii.) above, and use 

rB = 3 min"1, and 
pB = 0.25. 

This results in a = 0.75 min1, ß = 3.00 min1, A2 = 0.00, y = 1.50 min1, and 6 = 
0.50. A plot of these particular solutions for the draw case, Equations (IV.C-33) are 
given in Figure (IV.C-5). While the ultimate convergence of the two solutions ate 
force strengths of zero is not shown in this figure (in the interest of keeping a 
reasonable span on the chart,) that end is clearly indicated. As with the linear law 
conclusion condition, the square law conclusion condition can be changed in two 
ways, by changing the initial force strengths and by changing the attrition rate 
constants/ functions.  Each of these variations is depicted in subsequent figures. 
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Figure (IV.C-6) depicts the result if the initial Blue force strength is doubled. 
This changes to conclusion condition from its zero value for the draw case to a 
positive value. The rapid attrition of the Red force and the decreased attrition of the 
Blue force is clearly shown. Halving the initial Blue force strength has the opposite 

effect, as shown in Figure (IV.C-7) 
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Changing the attrition rate has a less pronounced effect on the conclusion 
condition than does changing the initial force strength since the conclusion condition 
is linear in the attrition rates but quadratic (from whence the name) in the initial force 
strength. If the Blue force's rate of fire or probability of kill are doubled, the Blue 
force attrition rate doubles. Comparison with the draw and doubled initial Blue force 
strength cases, Figures (IV.C-5) and (IV.C-6), respectively, shows the intermediary 
form of the solutions. Doubling both the rate of fire and the probability of kill of the 
Blue force has the effect of quadrupling the Blue force attrition rate. In terms of the 
conclusion condition, this is equivalent to doubling the initial Blue force strength. It 
also has the effect of doubling the value of y, so that the attrition process occurs 
twice as fast as in that of doubling the initial Blue force strength. Comparison with 
Figure (IV.C-6), the doubled initial Blue force strength shows the same relative losses 
in both cases: Blue looses 12% of its units in both cases while Red loses 100% of its 
units, but the attrition process takes half as long in the quadrupled attrition rate case 
due to the doubling of y. 
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IV.D. Lanchester's Mixed Law 

The mixed Lanchester law is not explicitly mentioned by Lanchester in Aircraft 
in Warfare; rather, it is suggested by the existence of the linear and quadratic (square) 
Lanchester laws and the assumptions advanced in the preceding sections. As is the 
case with the linear and quadratic laws, the mixed law describes combat between two 
forces.   The rate of attrition is driven by the differential equations 

äA = -a B, (IV.D-1) 
dt 

which is identical to equation (IV.B.1), and 

*l = -$AB, (IV.D-2) 
dt 

which is identical to equation (IV.A.2). The state solution for these differential 
equations, derived in Chapter III, is 

«(5-50)=|u2-4). (IV.D-3) 

The explicit time solutions of these differential equations are also derived in Chapter 
III. They differ from the solutions for the linear and quadratic attrition differential 
equations in that the form of the solution depends on the sign of the quantity 

A_ - aBn - $rAl (IV.D-4) m >0       "g^O 

Actually the solutions can be cast into a single functional form if the parameter Am is 
treated as a complex variable due to the equivalence of the functions tanh(z) and 
tan(z) for complex argument z. We will not pursue that uniformity here as the 
mathematics involved are beyond the scope of this book and the resulting functional 
form does not directly contribute to the discussion of the mixed law. 

As in the linear and square law cases, an increase in attrition rate 
constant/function translates into an increase in force power. For the linear law force 
(here the Blue force,) an increase in attrition rate constant/function is a direct 
multiplier of force power while for the quadratic law force (here the Red force,) an 
increase in attrition rate constant/function directly multiplies force power as the 
square root of the attrition rate constant/function divided by two. (This factor of two 
in the denominator must be carried through in the mixed law case because it does not 
cancel as is the case with the linear law.) This means that if technology is used to 
increase the attrition rate constant/function, it is more effectively applied to the Blue 
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force than to the Red force. More exactly, if technology is used to increase Blue's 
attrition rate constant/function (alpha) by a factor of two, Red can maintain parity only 
by increasing its attrition rate constant/function by a factor of four. 

1V.D.1        Mixed Law Assumptions 

The assumptions associated with the mixed law can be carried over directly u 
from the assumptions associated with the linear and quadratic laws, described 
previously in Sections IV.B.1 and IV.C.1. The linear law assumptions imply either 
point attrition (usually direct fire) against targets which are difficult to find or area 
attrition (usually indirect fire) against a target array whose density changes over time 
so that the area covered by the target force remains constant. The square law 
assumptions, on the other hand, imply either point attrition against a target array 
whose members are easy to find or area attrition against a target array whose density 
remains constant over time, the area covered by the target force changing over time 
to keep this density constant. This cross association allows us to describe many 
types of combat by the three combinations of attrition rate differential equations: 
linear-linear, quadratic-quadratic, and linear-quadratic (or quadratic-linear.) This 
association is summarized in Tables IV.D. 1 and IV.D.2 which cross correlate the type 
of fire (direct or area), force disposition (area or density constant), and the density 
(high or low) to show the type combination of attrition rate differential equations. 

In this case, the characteristics direct/area fire, area/density constant, high/low 
density have been chosen to signify particular aspects of the Lanchester law 
assumptions. The terminology direct fire is used to signify point attrition while area 
fire signifies area attrition. Constant density signifies that the force in question 
maintains a constant areal density of units, thus normally reducing its area of 
coverage as the number of units decreases through attrition while constant area 
signifies that the force occupies a constant area during the combat, but that its areal 
density normally decreases during combat. High density indicates that the units of 
the force are sufficiently concentrated that target acquisition is fast, while low density 
signifies that target acquisition is slow, compared to target destruction. This 
introduction of two different characteristics of unit areal density should, for now, be 
considered as independent - a force may have a density which is kept constant but 
which still may be either low or high. Similarly, a force may have a variable density 
which at any given instant of time may be either high or low. We shall examine these 
distinctions in density in greater detail in the later chapters of this work which deal 
with attrition rate constants/functions. The student may also anticipate that we will 
also deal with some other considerations such as transitions between constant and 
variable density (constant area occupied,) and the gradations between high and low 
density which here only serve as limits on whether target acquisition or target 
destruction processes are dominant. 
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Some further explanation is also necessary. The student will have noted that 
the type of fire: area or direct, is the crucial factor on whether constant/variable or 
high/low density are important in the type of combat being described by one of the 
three models/laws. What may not have been as obvious is that the attrition 
differential equation form (linear or quadratic,) for a given force is defined by the 
density characteristics of that force and the fire type of the opposing force. As an 
example, the differential equation describing the losses of the red force will be 
quadratic if the blue force is using direct fire weapons and the red force has high 
density. The differential equation would be linear if the blue fire were still direct but 
the red force's density were low. 

Examination of this table reveals that inclusion of the mixed law permits the 
modeling of combat between forces in a manner which the strict linear and quadratic 
laws would not permit.    Specifically, we see that the linear law would allow 
consideration of the following forms of combat: 
Table IV.D.1 

Red Blue 

Area Fire, Density Constant Area Fire, Density Constant 

Direct Fire, Low Density Direct Fire, Low Density 

Area Fire, Low Density Direct Fire, Density Constant 

Direct Fire, Density Constant Area Fire, Low Density 

This short table illustrates the cross relationship between fire type for one force and 
the density characteristics of the other force. The same table for the quadratic law 
is: 

IV-38 



Table IV.D.2 

Red Blue 

Area Fire, Area Constant Area Fire, Area Constant 

Direct Fire, High Density Direct Fire, High Density 

Area Fire, High Density Direct Fire, Area Constant 

Direct Fire, Area Constant Area Fire, High Density 

It is readily obvious that out of 16 possible combinations of fire type and 
density characteristics (4 per force,) that the original linear and quadratic Lanchester 
laws will only admit to modeling 8 combinations. The rest of the possible 
combinations.fall under the mixed law. (Note that these 16 combinations are not 
exhaustive - they merely cover the extremes permitted under the basic assumptions 
associated with the Lanchester laws.) 
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IV.D.2       Mixed Law State Solution 

As in the previous cases, the quantity Am is a measure of the forces remaining 
if the combat is carried to a conclusion. Unlike the A's defined in the linear and 
quadratic law cases, this A is not symmetric in the force strengths. Thus, a small 
change in the red force strength (we have explicitly assumed that the red force is 
linear-like while the blue force is quadratic-like - this can be reversed with only the 
necessary symmetric swapping of force strengths and attrition rates,) will have a 
much greater effect on the value of Am than will an equal change in the blue force 
strength. While we might normally expect a to be much larger than ß to correct for 
this, we must note that the attrition rates are constants (or functions,) and therefore 
only point values. Thus, in mixed combat, there is a great advantage to the linear-like 
force in greater numbers if the combat were to be carried to a conclusion. This can 
readily be seen in Figure (IV.D-1) where we plot blue force strength versus red force 
strength for two value of Am which are equal in magnitude but opposite in sign. The 
draw case, unlike the other two state solutions, is not a straight line, but rather is a 
parabola. This form is the direct result of the asymmetric nature of the state solution. 
The curvature of the graph is readily apparent. However, just as the state solutions 
for the linear and quadratic state solutions are symmetric about the draw case for 
opposite values of (delta), so too are the solutions for the mixed law. This symmetry 
is somewhat more difficult to see due to the curvature of the draw case. If the 
student can imagine transforming the draw case state solution to a straight line, and 
mentally repeat these operations on the two other state solutions in the figure, then 
the symmetric arrangement can be visualized. 
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Note that changes in the value of Am cause different values in the remaining 
force strength at conclusion. Of course, the draw case results in zero force strength 
on both sides. Thus each side takes 100% losses. For a Am value of 15 however, 
the red force takes 100% losses, while the blue force takes 25% losses. Alternately, 
for a Am value of -15, the blue force takes 100% losses, while the red force takes 
about 35% losses. This asymmetry is the direct result of the values of the attrition 
rates , and illustrates the effect only of changing the attrition rates, not the initial 
force strengths. 

IV-41 



IV.D.3       Mixed Law Time Solution 

The time solution of the Lanchester mixed attrition differential equation for red 
force linear-like, and blue force quadratic-like, derived in Chapter III, are 

and 

where: 

A(t) = > 

2IA 

ß 
2-L tan(tif) 

1 +A* 
^ jh

tanM 
,K>° 

B{t) - - 
B0 sec(r\t)2 

1  +An 

'\ 2UJtan(T,f) 

;. A   > 0 

(IV.D-5) 

4> + 

A{t) 
A0 

+ A     

=   °   N   P 
2 AM|       L,    v 
 — tanh(iif) 

ß A„<0 

1 +A°\ 2|A~l tanh(nr) 

'   *m 

B{t) = 

' I        HI  I 

B0 sech(r\tf 
A   < 0 

1  +A0 N^tanh<„r) 
t *        m 

(IV.D-6) 

Tl   = 
N 

PIA. (IV.D-7) 

We note immediately that there are two forms of these solutions which depend 
on the sign of Am. We can directly reduce these solutions for the draw case if we 
note that tanh(x) = tan(x) -» x and sec(x) = sech(x) -» 1 as x -» 0 (to first order in x). 
This allows us to write 
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An   + 
2IA 

A(t) = 
0   N   ß ̂  dO 

. A< 0 

1  +A 
N 2|A, 

(i0 (IV.D-8) 

B(t) - 50 *       in 

1   + Ae 
N 2|Am 

OiO 

From the definition of q, these equations may be rewritten as 

A(t) = 
AQ - \Am\t 

-r^ Aw<0 
1 +40ß* 

5(f) = 
ßn 

(IV.D-9) 

1  *AoPtf 
, A   < 0. 

Since the draw case means that A = 0, we must rewrite Equation (IV.D-5a) or (IV.D- 
6a) as 

A(t) = 
1 +A0ßf 

(IV.D-10) 

while Equation (IV.D-5b) or (IV.D-6Ö) may be used without alteration since it does not 
explicitly contain Am. 

The explicit time solutions for these two values of Am are shown in Figures 
(IV.D-2) and (IV.DC-3) for the Red and Blue force strengths, respectively. As in the 
previous figures presented in this chapter, the units of the time variable are chosen 
arbitrarily. It may be seen that the positive Am solution reaches zero faster (Red force 
- quadratic-like) than the negative (delta)m solution (Blue force - linear-like) does. 

Another way to vary the value of Am is to alter the values of a and ß. The 
changes of the solutions for variations of ±50% in the value of ß are shown in 
Figures (IV.D-4) and (IV.D-5) for the Red and Blue force strengths, respectively. 
These variations are executed relative to the case of Am = 15. As noted earlier, the 
effect of the variation in ß scales as a square root change in AQ. Although it is 
difficult to see, the effect of these variations on the time solutions are approximately 
equal in relative magnitude for these effective small variations in the solutions. 
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Mixed Law Time Solutions 
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Figure IV.D-3 

Variations in a of similar magnitude (± 50%) are shown in Figures (IV.D-6) and 
(IV.D-7) for the Red and Blue force strengths, respectively. Note the relatively greater 
changes in the shapes of the solutions. This is the result of relatively greater changes 
in the values of Am about the base case (15) value. The changes in the Blue force 
strength solutions are actually less than those due to the variations in ß; the changes 
in the Red force strength solutions are decidedly pronounced. 
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The other way to vary the solutions is to alter the value of the initial force 
strengths. Variations in the value of the initial Red force strength (B0) of ±50% are 
shown in Figures (IV.D-8) and (IV.D-9). As expected, the Red force strength time 
solutions are essentially parallel. Variations in the value of the initial Blue force 
strength (A0) of ± 50% are shown in Figures (IV.D-10) and (IV.D-11). Again, the Blue 
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force strength time solutions are essentially parallel. We see here effects much as 
predicted from the form of the state solution. Increasing the initial strength of the Red 
force prolongs the duration of the battle (if carried to a conclusion or a percentage 
loss), while increasing the initial strength of the Blue force shortens the battle (under 
the same conditions.) For the cases studied here (admittedly for positive Am,) indicate 
that increases in initial force strength tend to favor the linear-like force more than the 
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square-like force while increases in the quadratic-like attrition rate (a) tend to favor the 
square-like force more than the linear-like force (/?). 
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Figure IV.D-10 
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IV.E Force Ratio 

The time solution for the force ratio were derived in Chapter III. As noted in that 
chapter, the force ratio, defined by 

P(0- 
p0 - 6 tanh(yf) 

Po ' (IV-E"1: 

1 - -^ tanh(yf) 

where y and 6 were defined in Section IV.C, can only be defined in closed form for 
the quadratic Lanchester law. The force ratio can be calculated for the linear and 
mixed Lanchester laws, but only from the explicit time solutions (or from one of the 
pair of time solution equations and the state solution,) but the force ratio for these 
laws cannot be explicitly defined only in terms of the initial force ratio and the attrition 
rate constants. This can only be done for the quadratic Lanchester law. 

The cases of initial force strength and attrition rate variations presented in 
Section IV.C are reproduced in Figures (IV.E-1) and (IV.E-2), respectively. The draw 
case clearly shows the constancy of the force ratio. This follows from the fact that 
the initial force ratio for the draw case is exactly equal to 6. (The student can easily 
confirm this for himself - we shall explicitly derive this result in the next chapter.) 
Since changing the initial Blue force strength completely shifts the sign of A2 to be 
positive (doubling B0) or negative (halving B0,) the variation of the value of p on [0,oo) 
is clearly indicated in Figure (IV.E-1), although we have truncated the halved Blue 
solution shy of conclusion to avoid warping the figure excessively. The effect of 
increasing the Blue attrition rate parameters (Rate Of Fire and Probability of Kill - using 
the simple attrition model developed in Section IV.C,) shows the same behavior that 
we had earlier noted in that section - namely that changes in the attrition rate have 
an effect which scales as the square of changes in initial force strength. 
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IV.F Final Note 

In the next chapter, we will present the Ironman analyses which provide further 
insight into the nature of the attrition rate constants/functions. This chapter builds 
on the mathematical tools which were built in Chapter III, and the analyses and 
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assumptions laid down in this chapter. 

In Chapter VI, we will derive several additional mathematics tools and equations 
which are useful in the study of Lanchestrian attrition mechanics. These will include 
formal derivations of the draw case attrition time solutions which have been sketched 
in this chapter as ad hoc. The remainder of the expositions to be presented in that 
chapter will largely deal with approximations necessary for consideration of more 
complicated attrition differential equations than the pure Lanchestrian forms described 
in this and the last chapter. 
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V. THE IRONMAN ANALYSES 

V.A. Introduction 

This chapter is devoted to what I call the Ironman Analyses. At times, I have 
used the term Ironman Theorems because these analyses can be cast in the form of 
theorems. However, with the time and cogitation taken in developing these analyses, 
I find that they lack the rigor to honestly be called theorems and that terming them 
analyses is more useful. 

The Ironman Analyses are a tool for understanding the nature of the Lanchester 
Equations and their accompanying attrition rates. As we shall see, the Lanchester 
Equations and the attrition rates are a dualism. The one defines the other. The 
analyses bring the interpretation that the Lanchester Differential Equations are actually 
the definitions of the attrition rates. 

The motivation for the Ironman Analyses arises from Bonder's work. In his 
thesis, he provides what is called here Bonder's Equations, 

a=ri. (V.A-1) 

where a is the attrition rate and T is the expected time for one unit to kill another 
(enemy) unit. Bonder presents this equation without adequate analytical 
underpinnings. Despite its apparent and intuitive correctness, some additional basis 
for this equation seemed to be needed. Thus, the Ironman Analyses. 

Central to these analyses is the concept of the Ironman. In simplest terms, an 
Ironman is a foe who cannot be destroyed or attrited. As such, a force comprised of 
Ironmen cannot change with time. That force is a constant. The attrition rate acting 
on it is zero. As a result, the pair of Lanchester Differential Equations effectively 
reduces to one equation which has a simple solution. This solution provides a direct 
definition of the attrition rate acting on the Ironman force's foe. 

The Ironman Analyses represent a special, restrictive case of the Lanchester 
Differential Equations or, perhaps more generally, of the transport theory of warfare. 
As a class, they are comparable to the gedanken or thought experiments of Quantum 
Mechanics. They provide a similar function in providing insight into the processes of 
attrition just as the thought experiments of Quantum Mechanics provide insight into 
its workings. 

We shall be concerned with two types of Ironman Analyses in this chapter: 
deterministic and statistical. The deterministic analyses are straightforward from the 
basic   Lanchester   Differential   Equations.        The   statistical   analyses   are   less 
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straightforward, but yield greater insight into the interplay of possible statistical forces 
with attrition. Further, they lay a groundwork for developing the statistical forms of 
Lanchester's Equations in a subsequent chapter. 

V.B. Deterministic Linear Ironman 

Since the Ironman cannot be attrited, the  Linear Lanchester Differential 
Equations, Equations (III.A-2) and (III.A-3) reduce to 

dA A n 

d7 = -"AB°' 
B(t) = B0, 

ß =0, 

(V.B-1! 

if we take the B force to be comprised of Ironmen. For convenience, we shall restrict 
the B force to have a strength of one. As a result, Equation (V.B-1) can be solved 
directly as 

A(t) = A0 e-*< (V.B-2) 

which we will also write in the form 

a t = In 
KMt) 

(V.B-3) 

If we now take this equation for a particular characteristic time r to be the time to kill 
one enemy unit, then 

a x = In 

This may be rewritten as 

a T = -In 

A„ -1 

1-±] 

(V.B-4) 

(V.B-5) 

which we may expand to first order since A0 >   1   by assumption  (using the 
logarithmic expansion formula.) This gives, 

-1 
a T - A0 , (V.B-6) 

or 
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a «K)-1. (V.B-7) 

As an example, let us now consider a combat unit that requires some amount 
of time t, to find the target and then fires on the target at intervals t2. Let us further 
stipulate that every time the target takes fire, it loses a fraction f of its strength. The 
strength of the force as a function of time may be written immediately as 

A(t, +nt2) =(1 -f)nA0, (V.B-8) 

after the force has been fired on n times. (For the sake of maintaining the discussion, 
we shall not rigorously require that n be treated as an integer.) 

If we now relax the requirement, for the moment, that n be an integer, we may 
calculate a value for the (probably less than 1) number of fires necessary to kill on 
target, n*.   Obviously 

T -t, +n*f2, (V.B-9) 

and n* may be obtained from 

(1 -/r*^0=A0-i, (V.B-10) 

if we assume f < 1, as 

Thus, 

and the attrition rate is just 

JIV4>-1- (V-B-11: 

x =fc + -A., (V.B-12) 1    /V 

a -  $- . (V.B-13) 

If we cannot make the assumption that f < 1, then equation (V.B-10) may be 
rearranged, the logarithm taken, to yield, 

V-3 



n~ = 

In 1-J- 

ln(1 -/) 
1 

A0 ln(1 - f) > "0  >   '» 

(V.B-14) 

which gives an attrition rate of 

,-1 

a = V »n(1 -/) 

t, ln(1 -/) + *2 In 

ln(1 -/) 
4>'i ln(1 -/) -^ 

, AQ > 1. 

(V.B-15) 

Note that since ln( 1 - f ) < 1, the minus sign in front of the t2 does not decrease the 
denominator. 

We shall examine the consequences of the linear attrition rate further in the 
analysis of the statistical forms of the linear Lanchester Equations. 

V.C. Deterministic Quadratic Lanchester Equations 

Under the assumptions of the Ironman Analysis, the Quadratic Lanchester Differential 
Equations develop in an identical manner as the linear equations.  They become, 

— - -a B. 
dt 

B(t) = B0, 
ß =0. 

(V.C-1) 

For convenience, we again take the Ironman force to have a strength of one. 
The solution to the differential equation is then 

A{t) = AQ - a t, (V.C-2) 

and if we again adopt a characteristic time, the quadratic attrition rate takes the form 
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a = 
Äo " ^(T) (V.C-3) 

In this quadratic case, the meaning of the characteristic time seems clear if we 
interpret it as the time required to attrit the A force's strength by one.  That is 

A(x) =4,-1. (V.C-4) 

If we adopt a simple model of a combat unit that takes time t-, to find the target and 
thereafter fires at intervals t2 with a (constant) single shot kill probability p, the 
expected number of shots fired to kill the target is 1/p. The quadratic attrition rate 
for this unit is 

a = 1 
t2" (V.C-5) 

'i + - 

V.D. Comment on the Combat Unit 

The type of unit described above obeys what is known as a geometric 
probability distribution. This distribution describes a sequence of (presumably 
identical) trials (shots) which may be infinite in number. The distribution states that 
the probability of the event (in our case, a kill,) occurring on the nth trial is (1 - p)n1 p 
where p is the probability that the event will occur on the first (or any other) trial. 

The form of the distribution can be directly seen if one considers that the 
probability of the event not occurring (commonly called a failure) on the first trial is 
(1 - p). The probability of the event occurring (commonly called a success) on the 
second trial is the probability of the first trial being a failure [(1 - p)] times the 
independent probability of the second event being a success [p]. The conditional (or 
total) probability of the second event being a success is then (1 - p) p. 

Similarly, the total probability of success on the third trial is the probability of 
the first and second trials being failures [(1 - p)(1 - p) = (1 - p)2] times the conditional 
probability of success on the third trial [p] or (1 - p)3 p. 

As a model of a combat unit, this is exceedingly simple. The model requires 
that the probability of kill of the unit against its target be the same for each shot. 
Despite its simplicity, however, this model is of increasing validity as weapon systems 
improve. Thus, for modern weapon systems, this model may be valid, while for older 
weapon systems it may likely not be. 
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If p is the probability of kill per shot, and we designate the quantity (1 - p) by 
the variable q, then the total probability of kill after N shots is 

W=E«'~V (V-D-1) 

If we allow an infinite number of shots to be fired (or trials to be made,) the total 
probability of kill is 

which may be rewritten as 

PH-PE«', <V-D-3> 

by change of index.  This sum is exactly summable using, 

T^-Ex'. |x|<1, (V.D-4) 

which is called a geometric series.    Note that in our case, q  <   1  always.    An 
interesting corollary is the case where N shots are fired, that is 

yxJ = 1  ~x   . (V.D-5) 
h      1 -x 

From Equation (V.D-4), we may immediately see that Equation (V.D-3) sums to 

P(oo) =-£— = P = 1, (V.D-6) 
1  - q      p 

so that the distribution is normalized. 

We may calculate the time to kill the target (the expected time to kill) using this 
distribution.   Using 

T = t, + i t2, (V.D-7) 

where i is the number of shots fired, we may form the summation 
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<=■> (V.D-8) 

= h + hPY,^ (* + 1)> 
z=0 

where the factor t, comes through directly because it is deterministic, and < > 
indicates an ensemble average (expected value.) (In practice, the performance of the 
unit may have more than one probability distribution associated with it. For example, 
finding the target and killing the target may be represented by two different probability 
distributions. When more than one probability distribution is present, they are each 
treated in much the same manner as above.) We may evaluate the summation by 
noting that 

Wll = (j + 1) q\ (V.D-9) 
dq 

This gives 

<T> =f1 +t2pJ2^-. (V.D-10) 
i=i dq 

If we assume the summation and derivative to be mutually independent, then we may 
swap their order, and rewrite this as 

<x> =*, + fe/>-£-£*' 
dq i=o 

— t 

d + t2p 
dq 

+  t    n 

1 
1   -q 
1 

*1 hP (1 -4? 
-*1 

2 P* 

= h ♦±. 

(V.D-11) 

which is the result claimed in Equation (V.C-5). 

Note that this model becomes invalid if the firer is allowed only a finite number 
of shots (e.g. limited ammunition,) since either a rearm time must be introduced or a 
probability of the target surviving. In the latter case, the expected value of the time 
to kill becomes infinite. 
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Another distribution of interest is the Hypergeometric probability distribution. 
This distribution deals with a finite population of items (say N) which are of two types 
(say red and blue in color.) The quantity of interest described by this distribution is 
the number of items of a given type (color) that are selected given some total number 
of trials of selection. 

For example, if there are n red items (and thereby N - n blue items) and M items 
are selected ( M trials,) then the probability that m red items will be selected is 

(nVN-n\ 
\m\M-m) p(m) =  \m^m-m,t (V.D-12) 

[MI 

while the expectation value associated with this distribution is 

<m> = EM (V.D-13) 
N 

Yet another useful distribution is the Poisson. This distribution is used to 
describe the likelihood of a number of identical events occurring over a measurable 
interval (of time or distance usually.) Specifically, the probability of one event 
occurring over an interval dx is A dx. The probability of the event not occurring is (1 - 
A dx). By this definition, two or more events may not occur in the same interval dx. 
(On another note, we could say that the probability of n events occurring in interval 
dx is A" dxn.  The probability of any events occurring is 

CD 

P(n>0) = 52 (X dxf, (V.D-14) 
n = 1 

which we may immediately sum using the geometric series and some algebra as 

P(n>0) =     Xdx    . (V.D-15) 
1 - k dx 

The probability of no events occurring is one minus this quantity which we may 
expand as 

p(n > 0) « 1 - X dx - X2 dx2 - HOT. (V.D-16) 

As an approximation then, we may see that we must take 
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A2 dxz < 1, (V.D-17) 

to satisfactorily ignore multiple simultaneous events.) 

Returning now to our exposition on the Poisson probability distribution, the 
probability of n events occurring in the interval (0,x) is then 

P (x\ = 1A*)Ü e-** (V.D-18) 

and the expected number of events in the interval is 

<n>(x) = X x. (V.D-19) 

To put this in context, if a combat unit fires every At seconds and has a 
probability of kill p, then the expected number of kills over time is 

<kills>(t) = _ P t 
At 

(V.D-20) 

since A = p/At, and the probability of n kills is just 

nWs 
pt 
At 

.El 
At (V.D-21 

nl 

If we use our previous example from the geometric probability distribution, then 
the expected number of kills in time <T> is one, and the expected number of kills 
over an interval t is 

<Mlls> = 
<x> 

(V.D-22) 

and the probability of n kills in time t is 

n kills 
<T> 

ne   <T> (V.D-23) 
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V.E. Statistical Linear Lanchester Equation 

Let us consider the case where force A has an initial strength A0 spread over 
an area L and that force B fires every time interval At. Every fire has a effective area 
d with a probability of kill p. (We obviously neglect some delivery accuracy here.) 
After the first fire, A has taken loses 

AoPd =A   f.(f=PÄ) (V.E-1) 

-**('-¥)■ 
which is a fractional loss f. If we designate the strength of the A force after n fires 
as An, then the strength after one fire is 

4-4,(1-/)- (V.E-2) 

Two possible extremes may be considered here for the mobility and reactiveness of 
the A force: either force A can move rapidly enough to reposition itself (vm At §> Vd) 
where vm = movement rate of force A) or it cannot (vm At < Vd.) In the first case, 
the areal density of A, An/L is a constant over L. In the second case, the areal density 
is not constant over L.  We shall consider each of these cases in turn. 

The first case, where repositioning of forces is accomplished, is the simpler of 
the two cases. We may even extend the analysis to incorporate multiple firers in the 
B force. 

After n fires, the strength of the A force is either 

4, =4,0 -/)*"■ (V-E"3) 

if no two firers in the B force fire at the same point at the same time, or 

4, =4,(1 -*/)», (V.E-4) 

if all of the firers in the B force fire at the same point at the same time. 

Regardless of which extreme of B force firing doctrine we select, we require 
that 

/<1, (V.E-5) 

and 
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Bf< 1. (V.E-6) 

Not only are the individual fires of B not very lethal, but the total salvo fires of B are 
not very lethal. (Obviously this does not apply to weapons of mass destruction - 
nuclear, chemical or biological weapons, and the assumption of low lethality for salvo 
or volley fire is not necessarily valid.1) 

If we now relax the requirement that n be an integer (make the transition from 
impulsive to continuous attrition,) and replace it with the variable t/At, then Equations 
(V.E-3) and (V.E-4) may be rewritten as 

2L 
A9t) = A,(1 -/)A<, 

and 

A(t) -4,(1 -Bf) 

(V.E-7) 

t 

At (V.E-8) 

It is convenient to rewrite Equation (V.E-8) as 

A(t) =A0e 
-f-ln(1-B/) (V.E-9) 
At 

and since B f < 1, we may expand Equation (V.E-9) using 

ln(i +X)-,-£ + £.... (V.E-10) 
2       3 

and retain only the first order term, thus giving 

-*¥■■ (V.E-11) 
A(t)=A0e   ". 

Note that the use of Equation (V.E-10) with Equation (V.E-7) and the condition that 
f « 1, gives the same result. Thus, as long as f < 1 and B f < 1, the distribution of 
force B's fires is not important (to first order in f!) 

If we now differentiate Equation (V.E-11) with respect to time, we get 
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iA = -J-BA, (V.E-12) 
dt Af 

which is the Linear Lanchester Differential Equation with an attrition rate of 

Af (V.E-13) 
p d 

L At 

The attrition rate of the linear case is thus the ratio of the area of effect of the fire to 
the total area covered by the A force (d/L) divided by the expected time to kill for a 
fire (At/p). If we return to Equation (V.B-10), neglect t,, and expand the logarithm 
with Equation (V.D-10) using the same restriction, we get 

a - A (V.E-14) 
h 

which agrees with Equation (V.E-13). 

When the fire is too rapid for the A force to relocate, a more complex 
mathematical problem occurs. To facilitate our analysis, we shall restrict the B force 
so that all fires are at different places at the same time, and that several fires are 
repeated over time at the same aim point. We shall further assume that no difference 
need be drawn between those of the A force which have been killed as the result of 
a fire and those which have not, at least in terms of determining subsequent kills. 
That is, each subsequent fire 'kills' a fraction f of the A force in the area of effect (the 
kill area,) but some of that fraction may already have been killed. As an illustration, 
take f to be 1 %. The first fire kills 1 % of the A force in the kill area. The second fire 
also kills 1 % of the A force, but 1 % of that 1 % were already killed in the first fire. 
Thus the total fraction killed after the second fire is 1.99%, not 2.00%. 

One way of treating this reduction in the effective fraction killed is to note that 
the successive fraction killed by each fire obeys a Hypergeometric probability 
distribution. 

To further permit the analysis, we shall divide the A force into two parts, that 
initially not under fire and that initially under fire. If we define the part of the A force 
under fire as 
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a0  = 
A0d (V.E-15) 

we may write the initial force as 

An = An - Bn an + Bn a« (V.E-16) 

After n fires, but before any of the B force move their aim points, An has the form 

An = A0 -B0a0 + B0an, (V.E-17) 

where an is the part of a0 remaining alive in the kill area of a fire. Let us further denote 
by fn the fraction killed by the nth fire.  Thus 

(V.E-18) 

Equation (V.D-13) gives the expected number of live targets selected per fire if we 
rewrite it as 

fn *„-1   = 
fl»-i A ao (V.E-19) 

where: 
a,,.,      =    number of living targets out of a0, 
a0        =    total number of targets in kill area, 
f., a0    =    number of targets killed. 

This reduces to 

fn =/i- (V.E-20) 

Thus there is no difference in the fractional kill when we do not allow relocation from 
when we do. (Actually, if we applied this model to the case with relocation, the 
fractional kill would change. This is left as an exercise. What is significant here is 
that the same form of the kill rate can be found regardless of the limiting assumptions 
on the form of the engagement. The area fire is the critical and dominant factor.) 

One of the questions that arises is whether the use of the expected value of kill 
for each fire is valid. To demonstrate that the assumption of independent firing is 
adequate, we calculate the expected loss from two repeated fires. While each fire is 
described by a Hypergeometric probability distribution, we may simplify the 
mathematics by requiring that the effective area of the fire be small (equivalently, that 
the expected loss per fire is small.) In this case, we may replace the Hypergeometric 
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probability distribution with a binomial probability distribution.   The probability of n 
kills out of a population of N in the binomial probability distribution is 

P(N : n ) = r\ p" qN-\ (V.E-21; 

where:  p is the probability of a kill, and q = 1 - p. The loss from one fire is 

N 

<»> = E 
B=0 

N\p«qN-nn, 
n 

(V.E-22) 

however, it is easier to calculate the nonkilled fraction as 

N 

n=0 
(V.E-23) 

It is relatively straightforward to find that this summation is 

A,=qN=0-p)A0. (V.E-24) 

If we now calculate the nonkilled after two fires, we may write 

N rN\   »   v.„ 
N-n I 

»2 - £ "*■«*- E n=o\nj n/=0 

N-n 
^V"""'^-» -»').       (V.E-25) 

where the second summation is the expected value for the second fire which is 
weighted by the probable nonkilled (not the expected value) of the first fire. We may 
rewrite this as 

A2 = 
, N-n 

N-n 

{ n> ) -XfW w~ n' „N-n-n' 
p" q 

n=0 

= <?E        PnqN-n(N-n) 
n=o\n) 

= q2 N = (1  - pf N 
= (1  -P)2A0, 

(V.E-26) 

which confirms our contention. 
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V.F. Statistical Quadratic Lanchester Equation 

The statistical quadratic case does not differ greatly from the deterministic 
quadratic case for the analyses that we shall present here. In our first analysis, we 
shall consider the B force to fire on a unit of the A force every At with a probability 
of kill p. We shall take as doctrine that a firer will continue to fire at a target until it 
is killed. If p is small, so that the likelihood of kill is small, the early (before many 
targets are killed) form of A , but after n shots, is 

«-I 

K -4> -*E(1 -PYP. 
i=0 

We may rewrite this as 

B-1 

i=0 

and perform the summation 

An=A0 - Bp 
1   _ e" ln(1 - p ) 

1   _ c"n(1 -P) ' 

(V.F-1) 

(V.F-2) 

(V.F-3) 

which reduces to 

An = A0 - B [ 1 - e» ln(1 -p) 
}■ (V.F-4) 

Since p is small, we may use Equation (V.E-10) to approximate this as 

An=A0-B[^ -*-' ]. (V.F-5) 

and change from integer to temporal form as 

K = A0 - B 
-LE 

1 - e At (V.F-6) 

We may now take the derivative of A(t), with respect to time, and get 

-LE 
B e 

At 
*A   =   _P_Be    Lt 
dt 

(V.F-7) 

which has the form of the Quadratic Lanchester Differential Equation when t = 0, and 
we may identify the attrition rate as 
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a =   P-, (V.F-8) 
At 

the result for the deterministic case. Unfortunately, this analysis leads us to the 
conclusion that the deterministic form of the Quadratic Lanchester Differential 
Equation is wrong. To resolve this, we must reexamine the analysis in a different 
light. 

To resolve this incorrect form, we examine the process as being described by 
a Poisson probability distribution. (This relaxes the engage to kill restriction.) The B 
force fires B shots, each with individual probability of kill p, per time interval At. In 
Poisson probability distribution terms then, the probability of kill increment may be 
viewed in either of two ways: there is a probability of one kill of B p per time At, or 
there is a probability of one kill of p per time At/B. 

We may write the probability of n kills over time t as 

BPt 
(BjpjY g    Lt 

m - ^^— 
(V.F-9) 

and the expected value of kills over time is 

<„>(,) = ä-Pl, (V.F-10) 
At 

The mathematical form of the force strength of A is 

which has the derivative, 

A(t) =A0-B^, (V.F-11) 
At 

äA = __£_ B, (V.F-12) 
dt At 

which is exactly Lanchester's Quadratic Differential Equation. 

We could equally well have represented this with a binomial probability 
distribution.  The probability of n kills in time At is 
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which has the expected value 

(V.F-13) 

<n>=Bp. (V.F-14) 

Thus, 

^1 = A0 - B p, 
AZ=A,-Bp (V.F-15) 

= AQ-2Bp, 

(we have previously demonstrated the independence here.) 

An =A0 -nBp. (V.F-16) 

This may be used to write the finite difference as 

AA = -JL B, (V.F-17) 
At At 

which goes over to the time derivative directly since A(t) is jump discontinuous. 

V.G. Mixed Law 

Because the mixed Lanchester law describes combat between two forces whose 
individual attrition differential equations are linear and quadratic (individually,) in form, 
no separate Ironman Analysis is necessary doe to the inherent nature of relaxing 
attrition of one of the two forces involved in the Ironman Analysis. The analyses 
presented for the linear and quadratic Lanchester laws thus also apply to the mixed 
Lanchester Law. 

V.H. Summary/Conclusions 

These analyses are not presented as any rigorous proof of the validity of the 
Lanchester differential equations. Rather, they are intended to advance the concept 
that the Lanchester differential equations are definitions of the attrition rates rather 
than the opposite. In a later chapter, we shall examine the idea of a transport theory 
of combat. In that chapter, we shall consider the Lanchester differential equations 
both as scattering terms and as ensemble averages. 
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Before closing out the chapter, it is useful to consider the general from of the 
Lanchester differential equations, Equations (III.A-1). For our restrictions of B0 = 1, 
and ß = 0, these become a single differential equation, 

dA 
dt 

= -a A 2-n (v.H-i; 

which we may rewrite as 

dA B-1 

dt 
= -a(n - 1). (V.H-2) 

This equation has the appearance of being invalid for n = 1, the Linear Law case. 

If we solve Equation (V.H-2), we get 

AW -An
0~' = -ax(n-1). <v-H-3> 

For our assignment of T to be the time to kill one enemy unit, this equation may be 
rewritten as 

n-1 a x (n - 1) = AQ~   - (A0 - 1) vn-1 (V.H-4) 

Since A0 > 1 by assumption, we may rewrite and expand this equation, 

a T (n - 1) = J4Q     - A*~ 

.n-1      .n-1 
A0 A) 

1 \n-1 

1   -  — 

1   - 

^0  j 

n-1 1 (V.H-5) 

(» -IMS"2 

a x <* A0   , 

which is valid even for n = 1. This relation is useful since it gives us ? scaling 
equation in attrition rate constants across attrition order (n). For example, if we 
designate the attrition rate for attrition order n by an, and the attrition rate for the 
Quadratic Law (for which Equation (V.H-5) reduces to Bonder's Equation,) as a2, then 
Equation (V.H-5) gives us 

a„ = a, A n-2 
i2 n0 

(V.H-6) 
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Because a2 is commonly associated with direct fire, Equation (V.H-6) allows us 
to scale attrition rates for other attrition orders from the (presumably known, or at 
least, easily calculated,) Quadratic Law attrition rates. In fact, we may substitute 
Equation (V.H-6) back into Equations (III.A-1) to get differential equations of the form, 

dt 
B 

= -a2Ao~2Az-"B 

=  ~a2 
(    A   \2_" 

KAo) 

(V.H-7) 

which opens up a whole new arena of approximations. This will assume importance 
a we address the Osipov problem and subsequently. 

1. Helmbold, Robert L, "Volley Fire Models", Proceedings of the Workshop on Modeling and 
Simulation of Land Combat, Leslie G. Callahan, Jr., ed., Calloway Gardens, GA, sponsored by the 
Georgia Institute of Technology, Atlanta, GA, 28-31 March 1982, pp. 287-301. 
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VI. MATHEMATICAL THEORY II: 
Further Solutions of the 

Lanchester Attrition Differential Equations 

VI.A. Introduction 

This chapter deals with a 'pot pourri' of mathematical topics associated with 
the Lanchester attrition differential equations in their simplest forms as initially solved 
in Chapter III. In some instances, these topics deal with the limiting cases of 
previously considered problems while other topics deal with approximations, or 
alternate views or approaches to the attrition differential equations which will have 
relevance as we consider more elaborate forms of the attrition differential equations 
than the pure forms hereto considered. This chapter thus serves as a mathematical 
introduction to topics which we shall encounter in later chapters. As before, the 
student who is not mathematically inclined has the option of accepting the derivations 
at face value, and need merely note the results for future use. 

The first two topics in this chapter are the near-draw and draw solutions of the 
attrition differential equations. We recall the conclusion condition 

An = aBo - ^AQ, (VI.A-1) 

which in mathematical terms describes the state of the "winner" if combat is carried 
to a conclusion. (If An > 0, then the Blue force is the "winner" while if An < 0, then 
the Red force is the winner.) If An = 0 exactly, and combat is carried to a conclusion, 
then there is no "winner"; both sides are reduced to zero force strength. This is 
referred to as a draw condition or situation, and the attrition differential equations 
have special solutions. 

The draw case solutions have, of course, already been sketched in Chapter IV, 
but they were derived there by expanding the general exact time solutions. In this 
chapter, the draw case solutions are derived directly from the attrition differential 
equations without recourse to expansions and limits as An -» 0. 

If An is small, then a condition of near-draw occurs and there are special (but 
not necessarily unique) approximate solutions to the attrition differential equations. 

Another analytical (in the mathematical sense,) topic which we shall pursue is 
that of inverse solutions. Normally, we solve the attrition differential equations for 
explicit solutions of the force strengths as functions of time with initial force strengths 
and the attrition rates as parameters. Inverse solutions are explicit solutions of the 
attrition rates as functions of time with initial and final (or at least intermediary) force 
strengths as parameters. These solutions are useful in the analysis of historical data. 

VI- 1 



Next, we examine expressions of the attrition differential equations as attrition integral 
equations. This examination lays the basis for introducing approximate numerical 
techniques for the attrition differential equations 

Finally, we deal with a combined attrition differential equation and the quadratic 
law differential equations with reinforcements as introductions to a class of attrition 
differential equations which either do not possess state solutions or if they do, the 
state solutions are so complex as to limit their use in arriving at exact solutions of the 
differential equations. An example of such are differential equations which possess 
transcendental state solutions. Such differential equations cannot be solved using 
the powerful method of normal forms described in Chapter III. 
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VLB. Near-Draw Solutions 

The near-draw situation arises when the conclusion condition is small.    In 
mathematical terms, 

aBn > A, 
ß4">-A, 

(VI.B-1: 

which states that combat ends much before conclusion and normally refers to 
situations where the two forces are approximately evenly matched. This 
approximation may also be used to describe the early stages of combat before losses 
are too great. The general use of these solutions is to gain insight from differential 
equations which do not lend themselves to exact solutions. Note that the near-draw 
problem does not really have anything magic to do with &n being small; rather, it has 
to do with a short duration conflict in a mathematical sense. 

If the near-draw situation holds, then we may usually take the normal form 
expression of the state solution, 

B = 
a a 

(VI.B-2) 

(or the equivalent expression in A as a function of B,) and expand it as follows: 

B - W» A 
a. 

i* A- 

A + 

n 

1   + 

$An . 

K 
n ß An . 

A„ 

(VI.B-3) 

n ß A n-1 

which effectively linearizes the normal form expression. We note immediately that for 
the linear law attrition case, n = 1, this expression does not exist since the linear law 
normal form expression is already linear. Thus, the linear law attrition differential 
equations do not possess near-draw solutions of this form. 

VI.B.1 Near-Draw Linear Law Solutions 

A near-draw approximate solution for the linear Lanchester law can be derived 
by expanding the exact solutions. The process is essentially that used before in 
Section IV.B.3 to derive the draw case solutions.  In this instance, however, we use 
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the expansion, 

;±Alf - 1 ± A, t + —— ±   
A?*2 

(VI.B-4) 

and substitute it into the exact solutions, Equations (III.C.2) and (IV.A.14), 

A(t) - 

B(t) = 

4>*i 
ß^0 - aBQ €"Al' 

floA, 

$A0e^ - aB0 

(VI.B-5) 

to yield 

Ä(t)- 

B(t) = 

4>A< 

&A0 - aB0 1 - A,r + 
A2*2 

Bo^ 

P4, 1  + A^ + 
A2*2 

2   ) 
a fin 

(VI.B-6) 

These two equations may be rewritten as 

tit) -   
4>A, 

B(t) - 

ßi40 - afi0   + afi0 

50A1 

ß^0   - aB0 + ß^0 A^ + 
Aft2 

2 J 

(VI.B-7) 

We now use the definition of AT S ß A0 - a B0, to further rewrite these equations as 
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Mt) 

B(t) = 

A >A, 

A, + «50 

Ai 

A?/ 
2   J 

A, + ß^0 A^ + 
A??2] 

o 

(VI.B-8) 

and cancel terms A, in both numerator and denominator to get 

A(t) 

Bit) = 

1  + aB0 
(    *A t - 

Bn 

2  ) (VI.B-9) 

1  + P4> (       ^) t + —— 
2   J 

Note that if AT > 0 (Red "winner" at conclusion,) then the decrease in Red force 
strength, Equation (VI.B-9a) is retarded since the denominator increases in a slower 
fashion (due to the 'minus' A, term, while the decrease in Blue force strength, 
Equation (Vl.b-9b) is accelerated since the denominator increases faster (due to the 
'plus' AT term.)  The exact opposite occurs when A, < 0. 

The behavior of this approximation is demonstrated in the series of Figures 
(VI.B-1) - (VI.B-5). Figures (VI.B-1) and (VI.B-2) present both the exact and the 
approximate near-draw time solutions for values of A., of ±0.05, respectively. For 
this small value of A, little difference is evident in the two solutions. Figures (VI.B-3) 
and (VI.B-4) present the same curves, but for A., values of ±0.5, an increase of one 
order of magnitude. Some error can be discerned in the curves at long time 
(relatively). If, however, we double the value of AT to -1, as shown in Figure 
(VI.A.1-5), we discern the instability of the approximation. This instability occurs in 
the Blue force strength since A, is negative. The cause of this instability can be seen 
by noting that the denominator of Equation (VI.B-9a) has a positive part equal to 

1 + ßV, (VI.B-10) 

and a negative part equal to 

VI - 5 



ß4>V2 
(VI.B-11: 

Since the magnitude of A, is one, the negative part may be written as 

(VI.B-12) 

As long as t is sufficiently small that the negative part is less than the positive part, 
the denominator is well behaved. Once the value of t gets bigger than one, however, 
the denominator actually begins to get smaller, and the calculated force strength 
becomes larger instead of smaller. This effect is clearly incorrect. From this behavior, 
we can calculate the limits on time of the behavior of the approximate solutions, 
Equations (VI.B-9). One of the denominators of these equations will have a maximum 
value when 

t- |AJ- (VI.B-13) 

This value of time is the point where the approximation has definitely become 
incorrect, so use of the approximation should be limited to values of time which are 
a fraction of this value (say 1/3 or 1/2.) 
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Figure VI.B-1 

The student may note that this limitation on the validity of the approximation 
really is another statement of the smallness of Av  The approximation is good only 
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Linear Law Near-Draw Solutions 
Delta - 0.5 

F 
o 
r 
c 
e 

S 
t 
r 

n 
o 
t 
h 

Red Exact 
■■■■■■■■■■■■■■■■■■■■■-■■■^  Blue Exact 

^X^     Red Near-Draw 

^><C     Blue Near-Draw 

Si5 
Time (arbitrary units) 

Figure VI.B-3 

for small magnitude values of A,. Since the expansion that was used to derive the 
approximation was based on the product of A, and t being small, it is readily seen that 
this product must remain small for the approximation to be valid. Thus there is a 
balance between the value of A, and of t. As long as the battle is short enough in 
duration, a large value for AT is admissible. Conversely, for a small value of A1f long 
duration battles may be approximated. 
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VLB.2        Near-Draw Square Law Approximation 

For the square law, Equation (VI.B-3) may be explicitly rewritten as 

B = ß A + 
2ßA 

(VLB-14) 

which we may more usefully rewrite as 

B = 1 
2ßi4   + A2 (VI.B-15) 

8        2ßA      ' 

where 6 has been defined earlier in Chapter III. 

If we now substitute Equation (VI .B-15) into the appropriate square law attrition 
differential equation, Equation (III.A-4), 

dA 
dt 

a B, (IIIA-3), (VI. B-16) 

and rearrange the result slightly, we may write the exact differential equation 

2ß4 dA 
2&A2 + A2 

= -y dt. (VI. B-17) 

This equation may be directly integrated since the numerator is the exact derivative 
(to within a constant) of the denominator, 

d(2&Az + A2) = 4ß4 dA, (VI. B-18) 

to yield 

Mt) 
ln(2ßAz + A2)   |   = -2yt. (VI.B-19) 

A) 

The limits may be applied, and the antilogarithm taken, 

2ß       °     2ß 
(VI.B-20) 

We may rewrite Equation (VI.A.2.3) as 
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A{tf = Al e-*v - |i [ 1  -e-^l <VI-B"21> 

The functional form for A(t) may be formed by expanding the square root since A2 is, 
by assumption, small (the near-draw situation) to yield 

A(t) = A0 e-i* - -^- sinh(y*)- (VI.B-22) 

(Alternatively, if t is small, the first left hand side terms is larger than the second, 
regardless of the value of A2.) This equation, (VI.B-22) is the near draw approximation 
of the square law for the Red force strength. The equivalent equation for the Blue 
force strength may immediately be written using symmetry as 

B(t) = B0 e-v + -^- sinh(Yf). (VI.B-23) 
2UBQ 

We again compare the exact and approximate solutions in a series of figures, 
numbers (VI.B-6) - (VI.B-8). In the first figure, values of A2 = -200, and y = 0.14 are 
used. Quite good agreement can be seen despite the large magnitude of A2. 
(Remember, it is the size of A2 relative to the final force power that is important here, 
since we are allowing t to become large.) Somewhat worse agreement at long time 
may be seen in Figure (VI.B-7) where values of A2 = -2000 and y = 0.14 are used. 
We see however, that catastrophe occurs in Figure (VI.B-8). The catastrophe occurs 
when the second terms in Equations (VI.B-22) and (VI.B-24) become larger than the 
first terms. Mathematically, the catastrophe occurs since sinh(Kt) contains a term oc 
e*. The catastrophe may be avoided by ensuring that the approximations are not used 
when the second terms are large compared to the first terms. 
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Figure VI.B-8 
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VLB.3       Near-Draw Mixed Law Approximate Solutions 

As we would expect from what we have seen in the two preceding sections on 
linear and square law near-draw approximations, expansion of the conclusion 
condition for the mixed law is a mixed approach. The conclusion condition cannot be 
expanded for the Blue force since the conclusion condition is already linear in Blue 
force strength. Substitution of the conclusion condition in the Red force attrition 
differential equation thus would result in the exact differential equation whose solution 
was developed in Chapter III. This is exactly what we would expect from the Red 
force attrition differential equation being linear-like. 

Alternately, the conclusion condition for the Red force strength can be 
expanded and substituted into the Blue force attrition differential equation as an 
approximation. This is not a desirable prescription however, as it would result in an 
exact Red force strength solution and an approximate Blue force strength solution. 
A more useful approach is to proceed in the same manner that we sketched the mixed 
law draw case approximation in Section IV.D.  In this case we use the expansion 

sec(x) - 1 + < (VI.B-24) 
2 

and proceed as before in Section IV.D.  This allows us to write 

1 + ßv ' 
A(t) - A° " LJ , (VI.B-25) 

and 

B(t) - — 
1 + K m 

(1 + ß Vf 

(VI.B-26) 

We do not present figures depicting the behavior of these solutions, leaving them as 
an exercise for the student, but do note that care must be taken that the numerators 
of Equations (VI.B-25) and (VI.B-26) remain strictly positive (which depends on the 
sign of Am.) 
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VI. C Draw Solutions 

The draw situation arises when the conclusion condition is exactly zero. In 
other words, when the fighting power of the two forces are exactly equal. Unlike the 
near-draw solutions presented in the previous section, which are approximations and 
therefore not unique, the draw solutions are unique and exact, and as we shall 
examine later in the chapter on historical insight, enjoy a special place in Lanchester 
theory. 

As we have noted before, the draw situation is also a special case from an 
attrition, as well as a mathematical standpoint. If combat for the draw situation is 
carried to a conclusion, neither side will have any units remaining. This does not 
necessarily mean that the forces of both sides would be zero, but rather that they 
have no units capable of fighting. This is, however, a philosophical concept that we 
will not pursue further here. It is sufficient to assume that the mathematical 
interpretation is valid - that there are no units left on either side. 

(I am always reminded whenever I consider the draw solutions of a cartoon 
drawn by Gahan Wilson some years ago which shows a sole surviving soldier in CBR 
gear amidst the ruins of a battlefield, shouting "We won - I think.") 

VI.C.1        Quadratic Law Draw Solution 

(We depart here from the usual order: linear-quadratic-mixed; to allow the 
natural introduction of an approximation to the draw solutions for the linear and mixed 
law cases.) 

In the draw case for the quadratic law, the state solution reduces to 

aBz=fiAz, (VI.C-1) 

which we may simplify as 

B = 4, (VI.C-2) 
6 

and substitute into Equation (III.A-4) 

^ = -a B, (VI.C-3) 
dt 

(and its conjugate,) to get 
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4A = -Y A (VI.C-4) 
dt 

This differential equation has the direct (and immediate) solution 

A(t)=A0e-v, (VI.C-5) 

with a conjugate solution 

5(0 = B0 e-v. (VI.C-6) 

We may note immediately that in the draw situation, quadratic law combat is 
infinite in duration. If we compare this attrition process with any other quadratic law 
attrition, we find the draw situation to take the longest time. This factor will be of 
considerable impact when we investigate the historical insights of attrition. 

VI.C.2       Linear Law Draw Solution 

For the linear law draw case, the state solution reduces to 

B-±A, (VI.C-7) 
a 

which may be substituted into the appropriate attrition differential equation, equation 
(III.A-2), to yield 

äA = -$Az. (VI.C-8) 
dt 

This differential equation has the solution 

A{t) »       A°      . (VI.C-9) 
1 + ßV 

The solution for the Blue force strength may be formed using either symmetry, 
or from the same prescription as above, as 

B(t) = ** . (VI.C-10) 
1 + aB0t 

Note that because of the form of equation (VI.C-1), the denominators of equations 
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(VI.C-9) and (VI.C-10) are equal. Further, as was the case with the square law draw 
solution, the linear law draw situation battle is of infinite duration if fought to a 
conclusion. (Note that equations (VI.C-9) and (VI.C-10) follow directly from equations 
(VI.B-9) when A, = 0.) 

Earlier, we mentioned that the square law draw solutions would be developed 
first so as to naturally admit an approximate solution for the other two draw solutions. 
In the previous section, we derived the square law draw solutions which were simple 
exponentials in form. If we make use of the logarithm approximation introduced in the 
preceding chapter, 

ln(1 + x) « x, x small, (VI.C-11) 

then we may introduce an approximate form of equations (VI.C-9) and (VI.C-10), for 
small value of t, 

A(t)^A0e-^, M.C-M) 

and 

B(t) - B0 e-*B°\ <VI-C"13> 

These two equations are known as the exponential approximations for the linear law 
draw solutions. They are useful in comparisons among the three draw solution sets. 

VI.C.3       Mixed Law Draw Solutions 

For the draw solution of the mixed law, the state solution reduces to 

2*B=$A>, <VI-C-14> 

which may be substituted into the mixed law attrition differential equations, equations 
(III.A-6) and (III.A-7) to yield 

H = -1 A2, (square-like) (VI.C-15) 
dt 2 

and 

^ = -V^ßJ, (VLC"16) 
dt 

We note that the square-like attrition differential equation, equation (VI.C-15), has the 
same form as the linear law draw situation differential equation (VI.C-8), but differs 
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in the factor of V2, This differential equations has the solution 

An 
Mt) = 

1 + ßV (VI.C-17) 

Thus the rate of loss of Red units in this square-like solution is one-half of that in the 
linear law case. 

The solution of the linear-like differential equation, equation (VI.C-15), is 

B(t) = 
Bn 

I i— \2 

1 +iv^! 
i/5   J 

(VI.C-18) 

where y has the same definition introduced in Chapter III. 

These two solutions have the exponential approximations 

Mof 
A(t) - A0 e'  z  , 

(VI.C-19) 

which has one-half the rate of attrition of the linear law exponential approximation, 
and 

B(t) - B0 e-^f (VI.C-20) 

Note that the mixed law attritions proceed according to different time scales. 

As in the square and linear law draw cases, battle to a conclusion for the mixed 
law draw situation has infinite duration. 
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VI.D Inverse Solution 

Under normal conditions, the object of interest is the solution set of the 
Lanchester attrition differential equation with the initial force strengths as (boundary) 
conditions and the attrition rates as parameters. In this section, the object of interest 
is the square law solution set with initial and "final" force strengths as parameters to 
provide functional solutions for the attrition rates. We limit ourselves to the square 
law because the linear law is transcendental in the initial force strengths and attrition 
rates.  Further, we also limit ourselves to constant attrition rates. 

The square law time solutions may be written as 

A(t) = A0 cosh(yf) - b B0 sinh(Y* ), (VI.D-1) 

and 

B(t) = B0 COSh(yf ) - ^ sinh(Y*), (VI.D-2) 
6 

where: y = V(aß), and 
6 s V(a/&). 

If we assume that the initial force strengths A0 and B0, and the force strengths A(7") 
and B(r) at some time r are given, then these two equations have two unknown, y 
and 6 (or equivalently a and ß.) 

By eliminating 6, we may find after a bit of algebra, that 

cosh(YO = ^
0+^)i?(T). (V..D-3) 

A0B(x) + A(x)B0 

The student will note that this quantity is always positive, but may be infinite when 
A(r) and B(r) are zero; at the conclusion of a draw battle. If we next exploit the 
definition of the arc cosh function, 

cosh» = \n(x + v^^T ), (VLD-4) 

the above equation may be further reduced to 

yz = ln(A050 - A(x)B{x) + ^ - A{zf ) (B
2

0 - B{xf ) ),      <VI-D"5) 

which allows us to solve for y. 

Similarly, some algebra also allows us to write 
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§2 = 
Ao     A(z) (VI.D-6) 
BZo-B(x)z' 

which is just a restatement of the state solution. 

Equations (VI.D-5) and (VI.D-6), with the definitions of rand 6, may be used 
to calculate values of a and ß given the initial and final (or even intermediate) force 
strengths and the duration of the conflict. We shall return to these equations in the 
chapter on historical insights of attrition.* 

* The student with access to the limited DoD literature may wish to compare these equations with 
those derived by Robert L. Helmbold in "Lanchester Parameters for Some Battles of the last two 
hundred years". Combat Operations Research Staff Paper CORG-SP-122, 14 February 1961, 
AD481201, LIMITED. Because this book is limited to the "open" literature, we cannot include 
information that is either classified or limited, as Dr. Helmbold's report is. 
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VI.E. Integral Equation Formalism 

So far, we have considered only analytical solutions of the attrition differential 
equations and attrition rates which are constants. In subsequent chapters of this 
book, we shall encounter attrition differential equations for which we cannot find 
exact, analytical solutions and attrition rates which are not constant. Further, all of 
the Lanchester combat models that we have considered thus far have been for 
homogeneous forces (where the two opposing forces could be considered 
mathematically as only two homogeneous collections of units.) In subsequent 
chapters, we shall also consider heterogeneous forces. 

In this section, we introduce an alternate formalism for the attrition process 
where we replace the differential equations with integral equations. This 
representation, while exactly equivalent to the differential equation representation, 
serves several purposes: it facilitates the consideration of attrition processes for which 
we cannot necessarily find exact analytical solutions such as the many problems with 
heterogeneous forces and/or variable attrition rates, and it provides a natural basis for 
the discussion and development of numerical calculation methods which may be used 
with digital computers to find approximate solutions. (These are introduced in the 
next section.) 

To introduce the integral equation representation, we first write the quadratic 
law attrition differential equation in the form 

d_ 
dt 

'0 

ß 
(VI.E-1) 

where: 

'Ä (VI.E-2) 

is an array of force strengths and 

(0   « 

p o; 
(VI.E-3) 

is an array of attrition rate constants/functions. 
As a shorthand, we will denote the force strength array as [F], and the attrition rate 
array as [£]. This allows the square law attrition differential equation to be written in 
matrix form as 
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-f [F]--|C][F1. at 
(VI.E-4) 

(Whenever possible matrix notation such as this will be used to keep the notation 
compact. Only when some point of the exposition necessitates it will we explicit 
write the matrix equations in element form.) 

We next directly integrate both sides of equation {VI.E-1) with respect to time, 
and rearrange the result slightly (taking advantage of the fact that the left hand side 
of equation (VI.E-1) is an exact differential.) This gives 

(A(t + A*))     (A{t)\ 
B(t + Af) B(t), -/; 

t * At '0   a 
dt' (VI.E-5) 

This equation is the (exact) quadratic law attrition integral equation.   In array (or 
matrix) notation, this may be written as 

[F(t^At)]=[F(t)]-ft + ^[a[F(tf)]dtf. (VI.E-6) 

If we let t + At = t', since At only indicates some increment of time, equation (VI.E- 
5) may be substituted into itself, yielding (in the matrix notation of equation (VI.E-6), 
which we shall hereafter use interchangeably.) 

[F(t + Af)] =[F(t)]- fl +*'[<;] [F(t)]dt' 

.   +/; + A'[C]^7;'[C][F(*")Mr'/. 
(VI.E-7) 

The first integral on the right hand side contains a force strength array which is 
independent of the variable of integration, and indeed, is equal to the force strength 
array which is the leading term on the right hand side of the equation. As a result, 
we may rewrite this equation as 

[F(t + A0]=([1]-/; + A'[t]^')[F(*)] 

-lY^rndt' j'tK\w)\dt", 
(VI.E-8) 

where [1] is the identity matrix. 

At this point, we make use of a delicate point in the integration of matrices. 
Students who are unfamiliar with matrix algebra may wish to consult a text book on 
this subject. The delicate point is that we may bring the integral inside the matrix in 
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the first term since that integral has only one term. Thus 

/;•<•[<]*' = /, 
t + At '0   cc^l 

,ß  P, 
dt' 

/;+At o dt' /;+Af«dt' 

rAttdt' rAtodt' 
\jt        Jt       ) 

(VI.E-9) 

obviously, all the integrals over zeroes are themselves zero since the integrals are 
definite.  If we denote the integrals over the attrition rates as 

&(* + M) -Mt) = ft 
+ Af a(t') dt', (VI.E-10) 

and 

&(t + At) -Mt) = /' + A' H^dt', (VI.E-11! 

This notation (the underscore) takes into account that the attrition rates may be 
functions of time. We also make use of the finite difference operator A to further 
write these attrition rate integrals as Aa(t) and Aß(t), where the finite difference 
operator is defined by 

Af(t) = f(t + At) -f(t). <VI"E-12> 

The integral over the attrition rate matrix may then be written as 

fyAt[Qdt' = 
ASL(t)) 

[AUt)      0 
(VI.E-13) 

the integral equation may now be written 

[F(t + At)] =([1] - A[£](t) ) [F(t)] 

+ /; + A<KlC) dt' /;' KW") W)\ dt"'■ 
(VI.E-14) 

The substitution process may be repeated indefinitely to produce even more 
leading terms which are not integrals and a final term which is comprised of n 
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repeated integrals each over the attrition rate matrix times (finally) the force strength 
matrix, where n-1 is the number of substitutions of the primitive integral equation, 
equation (VI.E-5). 

The linear law attrition differential equations may be converted to integral 
equations in a similar manner except that we start by writing the differential 
equations, equations (III.A-2) and (III.A-3) as 

1 **.-«*, 
A dt 

(VI.E-15) 

and 

B dt 
(VI.E-16) 

These differential equations may be written in matrix form as 

[0   B-') 

'A*   ON 
d_ 
dt \ß. 

'0   a    A 

ß o) \B; 
(VI.E-17) 

or 

[jr-1] A [F] = _[C] [F], 
at 

(VI.E-18) 

where [F"1] is the diagonal matrix of inverse force strengths. At this point, we must 
introduce the concept of the inverse of a (square) matrix, defined by the equation 

nrw-wnr-m. (V,-E-19) 

where, as before, [1] is the identity matrix. The inverse matrix that we are interested 
in here is [F1]"1 given by 

'A  0N 

,0 Bt 

[F-1]-1 - 
\U   DJ 

The student may confirm that this is indeed the inverse of [F1]. 

We may now write equation (VI.E-18) as 

(VI.E-20) 
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dt 
[F] = -IF"1]"1 [C] in. (VI.E-21: 

Using the same integration prescription as for the quadratic equation, this becomes 

[F(t * At)] - \F(t)] - /;+ Af [F-1(0]'1 [C] [F(t')] dt', (VI.E-22) 

which may in turn be cross substituted to yield 

[F(t + Ar)] - [F(t)\ - /;+ A' [F-1(Or1 M [F(t)\ dt> (vi.E-23) 

+ /;
+ Af [F-1 (r')]"1 [C] dt' /;' [F-1 (r'OJ-1 [C] [^0] <*r". 

We may again perform the first integral as before except that the integration must be 
performed on the individual elements of the product of the two arrays [F1]'1 and [£]. 
That is 

A([E^riC])(t)=ft/'tdt'[F-T(tl)[C) 

'   fy^Odt'     ft
+AtaB(t')dt' 

"   f+ A'ßA(r') <*r'      r + At0dt' 
y t J t ) 

'    0       A&£(t^ 
= [AU(t)       0 

(VI.E-24) 

where: 

AaJL(t) = /'+A' a B{t') dt' 

A£A(t) = /'+A' ß A(t') dt'. 
(VI.E-25) 

The attrition rates may, again, be functions of time. Equation (VI.E-23) may now be 
rewritten as 

[F(t * At)] = ( [1] - A([El]-ni] ){t) ) [F(r)] (VI.E-26) 

+ /;
+Ar [F-V)F m dt' f< [F-VO] [c] [F(t")\ dt". 

The mixed equations may be transformed in the same manner:    the differential 
equations may be written in the form 
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d_ 
dt ß, 

(0   ^ 

iß o A 
(VI.E-27) 

or 

tä\  d 

dt 
[F] = -K] [F] . (VI.E-28) 

The matrix integral equations for the mixed law thus looks like equation (VI.E-17), 
except that [F1]"1 is replaced by [FB

1]"1 (or [FA"1]"1 if the Red force is linear-like.) 
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VI.F. Numerical Approximation 

Generally, we do not know the analytic form of the force strengths although 
we will normally know the analytic forms of the attrition rates if they are functions 
(assumed of time.) Thus the introduction of the integral equations does not inherently 
offer any advantage in finding analytical solutions for the force strengths. Frequently, 
the attrition differential equations are sufficiently complex that they cannot be solved 
directly. This is especially true if heterogenous forces or attrition rate functions are 
involved. In these cases, approximate solutions must be found, usually in numerical 
form using a digital computer." 

The student should not be daunted by the need for a computer, however. 
Viable attrition simulations applying these numerical methods of solution may be 
formed from the attrition models in this book using spreadsheet programs such as 
LOTUS 1-2-3 (R). Most of the calculations in this book were performed in 
spreadsheet simulations using LOTUS. The use of such spreadsheet simulations is 
multiply handy since the entire simulation is readily open to inspection - the internal 
workings and equations are not hidden in arcane computer code; the input boundary 
conditions, attrition parameters, and the attrition equations themselves are available 
for easy modification and examination of excursions; and, finally, the calculated 
solutions are easily displayed graphically using the spreadsheet program's graphics 
capabilities. The student who is familiar with these programs but may not find the 
exposition here sufficiently clear may wish to refer to Orvis' book1 which discusses 
the solution of differential equations (and other higher mathematical problems) using 
LOTUS. 

In the preceding section, we derived the matrix integral equation for the 
quadratic law as 

[F(t + At)] = [F(t)] - fr*' [C] [F(t')] dt'. (VI.F-1) 

The matrix integral equation for the linear law is 

[F(t + At)] = [F(t)] - /;+A' \F~\t')r [C] W)\ dt'. (VI.F-2) 

These equations readily lend themselves to numerical integration if we introduce one 
of a variety of integration approximations. Inherent to all of these approximations is 

Actually, an analog computer can be used, but analog computers are relatively rare today while 
digital computers are relatively common. See Leslie G. Callahan, Jr., and Glenn Crosby, "Lanchester 
Modeling of Small-Unit Combat, U.S. Army Missile Command Technical Report RD-CR-83-17, 
November 1981, AD8076783, LIMITED. 
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the requirement that some time interval At be set to a constant. The value of &t will 
be the critical factor in the accuracy of the approximate integration since all of the 
approximations we will use in this section will have errors of order At2. More 
complicated (that is, higher order in At) integration approximations may be used in a 
bootstrap manner, but these will not be discussed here as they bring much complexity 
an little insight into the approximation process. The student who is interested in these 
higher order approximations is referred to a standard text on numerical approximation 
such as Carnahan, Luther, and Wilkes.2 

It is not our purpose here to provide a textbook on numerical methods as 
applied to attrition mechanics, but rather to sketch the application of simple numerical 
methods which will be of use to the student in performing simple, but hopefully 
insightful calculations (such as spreadsheet calculations) in an independent manner. 

The first integral approximation that we introduce is the zeroth order or 
rectangular rule. In this case, the function under the integral is approximated by its 
value at the lower (or upper) limit of the integral. Thus 

ft
+*{ f(tf) dt> - f(t) At. (VI.F-3) 

This approximation is called the rectangular rule because the area represented by the 
integral is approximated by a rectangle of height f(t) and width At. 

If we use this approximation, the matrix quadratic equation becomes 

[F(t + At)] - ( [1] - [CM] A* ) [F(t)l (VI.F-4) 

It is useful, for the homogeneous force case, to write the individual elements of this 
matrix equation as 

A(t + At) « A(t) - a(t) B(t) At, (VI.F-5) 

and 

B(t + At) - B(t) - ß(f) A(t) At, (VI.F-6) 

Whence here, and later, we have (and will usually,) assume the attrition rates to be 
functions. 

Equations  (VI.F-5)  and   (VI.F-6)  may  be directly substituted   into  simple 
simulations such as an electronic spreadsheet. 

The matrix linear law integral equation may also be approximated using this 
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integration rule as 

[F(t + At)] - ( [1] - [F-\t))-' [C(t)] At ) [F(t)]. (VI.F-7) 

The individual elements of this equation, for the homogeneous force case, may be 
written as 

A(t + At) ~ A(T) - A(t) a(t) At B(t) 
= (1 - <t(t) B(t) At)A(t), 

(VI.F-8) 

and 

B(t + Ar) « B{T) - B(t) ß(f) AtA(t) 
= (1 - ß(*M(0 At)B(t). 

(VI.F-9) 

Note that both the quadratic and linear law force strength approximations, equations 
(VI.F-4)-(VI.F-9), can be solved directly. 

A more complicated integral approximation is the first order or trapezoid rule. 
In this case, the function is approximated by a straight line (first orderTaylor's series.) 
Thus 

rA7(0 dt> - f(-t+At) +f(t) 

J t 2 
(VI.F-10) 

If we use this rule, the matrix quadratic integral equation becomes 

[F(t + At)] - [F(t)\ - 
( \gt + At)] [F(t + At)] * U(t)] [F(t)] ) At (VI.F-11) 

which may be rewritten after some rearrangement as 

i (1] + WA»)] A, \ K,tAOl. (n]. miAi) m]. (VI.F-12) 

If we calculate the inverse of the leading term matrix on the left hand side of this 
equation, this is just 

[F(t+At)]j[n + [jäiApiAiy(^. Mt)] At [F(t)]. 
(VI.F-13) 

(The student should note that the first left hand side term in the above equation is a 
matrix inverse!) Since most simulations, especially those using spreadsheets, do not 
readily lend themselves to performing inverse matrix calculations, we shall devote a 
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little effort to simplifying this equation for the homogeneous force case. 

The matrix to be inverted is 

[1]+ [C(t)]M m 

1 

ß(f + Af) At 
2 

a(t + At) At 
2 

1 

(VI.F-14) 

Inspection allows us to write the inverse as 

([!]  ,   ICC01 A^ 

a(t + At) At 

$(t + At) At 1 

2 
?
m   at+At)} At \ D-, 

D- 
(VI.F-15) 

where: 

D = 1 _ a(t + At) ß(f + Af) Ar2 

4 
(VI.F-16) 

The student can readily confirm that this is the inverse matrix by performing the 
requisite matrix multiplication. 

We may now substitute this equation into equation (VI.E-13) to yield 

This equation may be multiplied out as 
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[F(t + At)] '[H -MlADlAl -IM1A1 

, K(t+At)\ Kit)] At2 

4 

\ 
D" [F(t)] 

( 1  _  g(f + Af) H^At2       (a(t + At) + a(t) ) At' 

Mt + At) + ß(f) ) At    1  _ a(t) ß(f + Af) Ar 
2 4 

(VI.F-18) 

zr1 [F(0]. 

The individual elements are 

and 

1 _ a(t+At) ß(f) At2 

A(t + At) «  A(t) 
y _ a(t + At) p(t + At) At2 

( a(t + At) + a(t) ) At B(f)> 

1  _ «ft+Afl ß(f + Af) At2 

4 J 

■j _ ß(f + Af) cc(f) Af2 

5(f + Af) -  B(t) 
1  _ a(t + At) $(t + At) At2 

4 
_ ( ßft + Af) + ß(f) ) At A(t)t 

' -j  _  a(t + At) $(t + At) At2 

(VI.F-19) 

(VI.F-20) 

These equations are readily usable in a spreadsheet simulation 

The matrix linear law integral equation may also be approximated using this 
rule, but the result is much less satisfying.  The form of this solution is 
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[F(t + At)\ = [F(t)] - [F-\t + At)]-i [C(r + AO] [F(t + At)] 
At 

At 
2      (VI.F-21: 

- [F-\t)F icwi W))^, 

which may be rearranged as 

M]  ,   [F-y + Apr1 [S(t + At)] At 
Mt + At)] = (VI.F-22) 

[F(t)]. (1]      [F-Ht)V [«*)] At 

The nonsatisfactory aspect of this approximation arises from the fact that [F1 (t + At)]"1 

is itself a function of the force strengths. Specifically, 

m  ,   [F'1(f + Af)]-1 [gt + At)] At 

'1   0' 

P  1, 
Al 
2 

1 

(A(t + At)        0     )(     0        a{t + At)\ 

,     0        B(t + At); ß(f + Af)        0     ) 
a(t + At) B(t + At) At' 

$(t + At) A{t + At) At 

2 

1 

(VI.F-23) 

There are at least two simple approaches to proceeding with this approximation. We 
may take equation (VI.E-22) and write out the elements. By cross substitution, 
B(t + At) and A(t + At) can be eliminated from the equations for A(t + At) and B(t + At) 
which are quadratic in these variable. These resulting quadratic equations can be 
solved algebraically. The alternate approach is to take the inverse of the above 
equation, 

Ml  ,   [F-\t + At)]-' [C(t + At)\ At 
1  1 2 

1 

ß(f + Af) A(t + At) At 
2 

_ «ft + AQ B(t + At) At' 
2 

1 

(VI.F-24) 

and approximate A(t + At) and B(t + At) with their zeroth order approximate solutions. 
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The resulting equation is directly solvable. Development of this equation is left as an 
exercise for the student. 

There are, of course, other numerical approximations which may be used, even 
for the simple homogeneous case considered as a theme here. Further techniques will 
be developed in later chapters as they become necessary. Key here is that we have 
laid the basis for the expositions on historical insights and heterogeneous forces to be 
covered in subsequent chapters. 

1. Orvis, William J., 1-2-3 for Scientists and Engineers, Sybex, San Francisco, 
1987. 

2. Carnahan, Brice, H. A. Luther, and James 0. Wilkes, Applied Numerical Methods, John Wiley 
and Sons, New York, 1969. 
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VI.G. A Combined Law Attrition Example 

In this section, we consider a set of combined law attrition differential equations, 

cb 
dt 
dA 
^ = -aB-$AB, (VI.G-1] 

and 

dB 
dt 

= -$ A - y AB, (VI.G-2) 

where the attrition of each force is both linear (area fire) and quadratic (direct fire.) 
The Red and Blue forces are considered to be comprised of units which both use 
weapons which have area and direct fire characteristics. This problem verges on a 
heterogeneous force situation (where there would be direct fire forces and area fire 
forces which all attrit each other,) but makes no distinction as to any differential 
losses between the two types of weapons, nor any distinction as to the composition 
of the units or forces. Any fire allocation fractions (the relative amount of each force 
allocated to each of the two types of fire) is assumed to be included in the attrition 
rates, which, for convenience, are also taken to be constants. An example of this 
type of force could be one comprised entirely of infantry units which completely 
integrate rifles (direct fire weapons) and machine guns (which have a beaten zone of 
fire - area weapons,) and attrition is such that no distinction in losses of the two types 
of weapons is made. This might occur if doctrine dictates that a constant ratio of 
rifles to machine guns is maintained in each unit as it takes losses. Soldiers in the 
units would then be presumed to be crosstrained in the use of both types of weapons 
and ammunition resupply would not be a problem. 

If we factor equations (VI.G-1) and (VI.G-2), and eliminate time as the 
independent variable, the single differential equation in the force strengths is 

dA m  (« + *A)B 
dB      (V+*B)A' 

which may be written in its exact form as 

A dA B dB 
a + $A       ß + \|r 

Integration of this exact differential equation gives the state solution as 

(VI.G-4) 
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<> - JL JJLLM.) = *Z*e. . _L ,nf P +*B ) (VKG_5 

This state solution is clearly transcendental - it cannot be written in a form which 
allows one force strength to be directly expressed in terms of the other force strength 
and the initial force strengths and attrition rates. Thus, the method of normal forms 
described in Chapter III cannot be applied to this problem. As such, it represents one 
of a class of problems which possess state solutions, but which cannot be solved 
using the normal forms method because of the complex form of the state solution. 

If we limit the solution to small losses only, where A and B do not greatly differ 
from A0 and B0, respectively, then the state solution may be expanded. (The validity 
of this approximation will be examined in the subsequent chapter on historical 
insights.) To perform this expansion, we write 

A = A0 - AA 
(VI.G-6) 

(VI.G-7) 

B = B0 - AB, 

and rewrite the state solution as 

Ad _ JL ,n(i - _*AA_) .M-± ,nfi -    *A* 
<l>        <|>2     {        a + $A0)       V        y*     { ß + i|r£0 

which may now be expanded using the previously defined expansion of the logarithm 
This gives 

2a + ^o  A4 _ 2ß + **o AB 
. A      ~~7~  ~ ~Z T—  ■ (VI.U-ö) 

(J)  2ß + i|rj?0   « + (M0 AA = "T   p   , ,.,„     n_       . ;   Afi. (VI.G-9) 

This approximate state solution may be written as 

^ 2ß + T|;J?0   a + < 

i|r    ß + ijr50   2a + $A0 

If we define the constant term on the right hand side as 9, then this equation may be 
rewritten, using the definitions of AA and AB, as 

A = dB + (A0 - BB0), (VI.G-10) 

a linear-like approximation to the state solution which is actually infinitely multiple 
order (linear plus quadratic plus all higher orders.) 

If equation  (VI.G-10)  is substituted  into  equation  (VI.G-2),  the  resulting 
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homogeneous differential equation is 

dB 
dt 

which has the solution 

= -(ß + i|rB) (62* - (A0 - BB0)), (VI.G-11) 

nt x      (A0 - BB0) (ß + T|r50) e~l*{A° " BBo)' m - QAn B(t) = — °L2L Z—2L ^o (VI.G-12) 
IMO -6(ß + HfBQ) e'MA° - *Bo) ~ m 

The Red force solution can be derived in the same manner, but for brevity is merely 
presented here as 

m *M*o - e*) - PMp  
tiio -e(ß +1),fi0)e-[f(/,°-e*<>)--pe]' 

Derivation of this equation is left as an exercise for the student. 

Examination of equations (VI.G-12) and (VI.G-13) reveals that the solutions of the two 
equations are linear-like in form. This is a direct result of the approximation process. 

While approximate time solutions of the force strengths could be calculated 
using numerical approximation, an analytical approximation technique was selected 
to be an example of how such approximations may be applied. In general, analytical 
approximations are preferred to numerical ones because of the portability of the 
approximations and the analytical solutions are easier to probe mathematically for 
insight, which is the ultimate goal of the techniques described in this book. Of 
course, an exact analytical solution is always the preferred result, but in many cases 
of greater complexity than the pure attrition differential equation forms of linear, 
quadratic, and mixed law, the state solution either does not exist or is transcendental 
(as in this example) and cannot be use in solving the differential equations. Failing 
thus to be able to solve the attrition differential equations exactly, the investigator is 
forced to make use of some method of approximation to find solutions. Both 
analytical and numerical approximations have their places and relative merits and 
demerits in the search for solutions. Approximate analytical solutions have the 
advantage that they are more easily manipulated on paper, and the interplay of 
parameters such as the attrition rates may be more clearly seen. They have the 
disadvantage that the approximation generally has limits on its applicability and care 
must be taken not to draw conclusions which are too general and transcend the limits 
of the approximation. Numerical approximations may actually be more generally 
accurate within the limits on the step size of the numerical integration, but they are 
hopelessly coupled (in most cases,) to the digital computer, and insight into the 
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interplay of parameters must be gained laboriously from repeated calculations. A good 
technical approach therefore is to make use of both types of approximation in working 
real problems, combining the insightful nature of the analytical approximations with 
the relative exactness of the numerical approximations. 

The differential equations of this example can, of course, be solved numerically, 
but it should be noted that the form of the matrix equations would be different from 
those derived in the preceding section. Using the notation of the preceding two 
sections, we may write the matrix integral equations for the differential equations of 
this section as 

mt+*t)]-[Ftt)]-f*A,ii:]intt)]dt' 

- /;+A'[F-v)r1 hi W)] dt>, 
(VI.G-14) 

where: [Q is the array of quadratic-like attrition rates, and 
[rj] is the array of linear-like attrition rates. 

If the student wishes to solve this integral equation numerically, care should be taken 
with use of the trapezoid rule because of the complexity of the resulting solutions. 
Use of the rectangular rule with a smaller time step size is fraught with much less 
difficulty. 

VI-36 



VI.H. Quadratic Lanchester Law with Reinforcements 

In the preceding section, we considered an example of a set of attrition 
differential equations which had a transcendental state solution. In this section we 
consider a set of attrition differential equations which do not possess a state solution 
at all. The problem that we consider here is that of the classic quadratic law 
differential equations with the addition that reinforcement of the forces is included. 
The differential equations are 

dA 
dt 

= -a B + a(f), (VI.H-1] 

and 

— = -$A+b(t), (VI.H-2) 
dt 

where a(t) and b(t) are the reinforcement rates of the red and blue forces, 
respectively. For generality, these reinforcement rates are assumed to be known 
functions of time: they may be constants or they may be punctuated - that is, 
reinforcements arrive only at certain times and in numbers. It is assumed that the 
reinforcement rates are not functions of the force strengths - that problem will be 
considered in a later chapter." 

This set of attrition differential equations does not possess a state solution 
since a(t) and b(t) are presumed to be functions of time. In the extreme case where 
the reinforcement rates are constant, then a state solution does exist. That special 
case is not considered here as its solution is a direct application of the methods 
developed earlier, largely in Chapter III. (The method of normal forms may be applied.) 

If we were to proceed to solve this set of attrition differential equations 
numerically, the matrix integral equation could be formed immediately as 

[F(t + At)] = [F(r)] - /;+Af [C] [Fit*)] dt' 

* /;+At Mt')} dt', 
(VI.H-3) 

where [R(t>] is the matrix of reinforcement rates. This integral equation can be solved 
numerically using the integration approximation techniques described in preceding 
sections of this chapter. We shall not invoke those techniques in this section (except 

Care must be taken when the reinforcement rates are punctuated when using numerical 
approximations. In an analytical sense they are represented by a Dirac delta function so that when 
they are carried over, these are replaced by one (or more) Kronecker delta functions. 
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as a sidebar,)  but we will  in the conclusion to this section  invoke a similar 
approximation. 

Rather than pursue a purely numerical approximation, the approach here will be 
to pursue an analytical solution to the maximum extent possible. Engel1 solved this 
problem for a(t) = 0 in his consideration of the Iwo Jima campaign of World War II. 
The derivation here parallels his technique but expands to the more general case 
where both forces have nonzero replacement rates. 

In solving the attrition differential equations, equations (VI.H-1) and (VI.H-2), use is 
made of the analytic solutions of the quadratic law attrition differential equations, 
equations (III.A-4) and (III.A-5), solved in Chapter III, to write solutions of the form 

A(t) =A*(t) cosh(yf) - ö B*(t). smh(yt), (VI.H-4) 

and 

B(t) = B*(t) cosh(yf) - 4*i& sinh(yf). 
6 

(VI.H-5) 

If we differentiate equations (VI.G-4) and (VI.G-5), and substitute both these 
equations and their derivatives into equations (VI.G-1) and (VI.G-2), and remove those 
terms represented by equations (VI.G-4) and (VI.G-5) (those undifferentiated in A*(t) 
and B*(t),) the resulting differential equations are 

cosh(yf) 4^ " 5 sinh(yf) — = a(t), 
dt dt 

(VI.H-6) 

and 

cosh(yf) *f- - 1 sinh(yt) j£ = b(t), 
dt o dt 

(VI.H-7) 

For this solution, it is convenient to write equations (VI.G-6) and (VI.G-7) in matrix 
form as 

'  cosh(yf)     -6 sinh(yf)' 

— sinh(yf)    cosh(y^) 
I   5 

d_ 
dt 

A*" V 
b) 

(VI.H-8) 

Since the leading matrix on the left hand side is hyperbolic, we make use of its inverse 
to rewrite equation (VI.G-8) as 

VI-38 



d_ 
dt 

A- ' cx)sh(yf)    6 sinh(yON 

1 
16 

sjnh(y0   oosh(yt) 

V 

P) 
(VI.H-9) 

This differential equation is exact since all of the terms on the left hand side are 
known, and can be readily solved as 

A' - r at' Jo 

cosh(YfO    6 sinhCyf7) 

— sinh(Yr')   cash(yt') 

V 
w 

/       N 
A 0 

KB*Oj 

(VI.H-10) 

which allows us to write the exact solution, Equations (VI.G-4) and (VI.G-5), as 

A(t) = A0 cosh(Y0 - ö B0 sinh(Yf) 

+ cosh(vf) f* dt' (a(t') cosh(yt') +6 b(t') sinh(yt'))   (VI.H-11] 

- 6 sinh(Yf) /' dt' b(t') cosh(Y0 - &1 sinh(Y0 

and 

B(t) = B0 cosh(Yf) - — sinh(Yf) 
6 

rt     A n(t'\ \     (VI.H-12) 
+ cosh(Yf) / dt1 b(t') cosher7) + ^ sinhCyr7) 

1 * 5 

- - sinh(Y*) f dt1 (a(t') cosh(Y^) - 6 b(t') sinh(YfO)- 

By using the properties of the hyperbolic functions for addition of arguments, 
equations (VI.G.8) may be rewritten in a more compact form as 

A(t) = A0 cosh(Yf) - S B0 sinh(Y0 

+ f* dt' a(t') cosh(Yf - yt') 

- Ö ft dt'b(t') sinh(yt -yt')t 

(VI.H-13) 

and 
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5(f) = B0 cosh(yO —- sinh(yf) 
5 

+ 
'o 
/' dt' b^) cosh(Y* - yt') (Vl.H-14) 

 f* dt' a{t') sinh(y* - yt'), 

which clearly shows, even by inspection, that equations (VI.G-13) and (VI.G-14) are 
the analytical solutions of equations (VI.G-1) and (VI.G-2). If a(t) and b(t), the 
reinforcement rates are integrable with respect to the hyperbolic functions, equations 
(VI.G-13) and (VI.G-14) are readily usable in calculations. 

In his 1954 paper, Engel also presents a finite difference (numerical) 
approximation to these equations which he uses to analyze the I wo Jima campaign. 
This approximation is necessitated because force strengths and reinforcement rates 
are known only for whole days - the structure of the reinforcement rates is not 
known. As we shall address in the subsequent chapter on historical insights, this lack 
of precise force structure information is one of the primary difficulties in historical 
analysis of Lanchester's Laws. As a prelude to that chapter, we here derive a pair of 
finite difference approximate solutions. 

The easiest way to form this approximation, rather than using equation (VI.G-3) 
is to start with equation (VI.G-13) (assuming that we can carry equation (VI.G-14) in 
parallel, but neglecting that derivation due to the cumbersome nature of the algebra,) 
written as 

A(t + At) = A0 COSh(Y* + yAf) -5B0 s\r\h(yt + yAt) 

f'o
+At dt' a(t') cosh(Yr + yAt - yt') (VI.H-15) 

6 r+A' dt' b(t') sinh(yf + yAt - yt'), 
J o 

which we expand to factor out terms in the hyperbolic functions of yAt. We next split 
the integrals into two parts, one over the interval 0 to t, and the other over the 
interval t to t + At, and collect terms. This allows us to clearly recognize the two 
terms that are just A(t) and B(t), equations (VI.G-13) and (VI.G-14), times cosh(KAt) 
and sinh(KAt), respectively.  If we replace these terms, this becomes 

+ 
'o 
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A(t + At) = A{t) cosh(YAf) - 5 B(t) sinh(vAf) 

+ f^1 dt' a{t') COSh(Yf + YAf - yt') (VI.H-16) 

- 6 T+Ar dt' b(t') sinh(Y* + yAt - yt'). 

The last analytical step is to change the variable of integration in the two integrals on 
the left hand side of this equation to have limits between 0 and At.  This gives 

A(t+At) = A(t) cosh(YAf) - 6 B(t) sinh(YAf) 

+ f** dt a(t + t') cosh(YAf - yt') (VI.H-17) 

- 8 f*' dt' b(t+t') sinh(YAf - yt'). 

This equation has the form of equation (VI.G-13). 

To this point, the solution is exact and analytic; it incorporates the finite 
difference in time without approximation. To proceed however, we now introduce 
two different approximations. The first of these is to apply the rectangular rule 
(described in an earlier section,) to obtain the result 

A(t + At) = A(t) cosh(YAf) - 6 B(t) sinh(YAf) (VI.H-18) 
+ a(t) cosh(YAf) - 6 b(t) sinh(YAf), 

while the corresponding Blue force strength approximation is 

B(t + At) = B(t) cosh(YAf) - 4&i sinh(YAf) 
5 (VI.H-19) 

+ b{t) cosh(YAf) - ^ sinh(YAf). 
8 

We note that we could equally well have applied the trapezoid rule to achieve a 
somewhat more accurate approximation. That development is left as an exercise for 
the student. 

An alternate approximation (that used by Engel) is to treat a(t) and b(t) as 
constant over the interval t to t + At with values of the lower limit. This allows the 
integrals to be performed analytically with the result, 

A(t+At) = A(t) cosh(YAf) - 8 B(t) sinh(YAf) 
+ a(t) sinhfrAf) _ b(t) (cosh(YAt) - 1)       (VI.H-20) 

Y ß 

The corresponding Blue force strength approximation is 
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B(t + At) = B(t) cosh(YAf) - ^ sinh(yAf) 
8 (VI.H-21) 

6(f) sinh(yAf) _ a(f) (cosh(yA*) - 1) 

Y a 

These equations are exactly the form presented by Engel except that there is only one 
replacement rate in his problem. 

The student will note that an alternate approach to Engel's problem would have 
been to use a bilinear approximation for the attrition rates, thus incorporating both 
upper and lower limit values of these rates. This approximation would have been 
slightly more accurate, but was not used. The technique used here does, however, 
illustrate an analytical approximation approach - the approximation of functions under 
the integral.  We will use this technique again in later problems. 

Although it is not necessarily clear at this point, the cosh(KAt)/sinh(KAt) 
approximation is also more accurate than the use of the rectangular and trapezoid 
rules. Derivation of this approximation arises from the repeated resubstitution of the 
integral equations that was mentioned in an earlier section. We will revisit this 
approximation in a later chapter when we consider explicitly timedependent attrition 
rates. 

1. Engel, J. H., "A Verification of Lanchester's Law", Operations Research, 2 163, 1954. 
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VII. MATHEMATICAL THEORY III: 
Solutions of the 

Osipovian Attrition 
Differential Equations 

VILA.        Introduction 

In Chapter II, we briefly reviewed the attrition theory of Osipov, in which we 
introduced the derivation of the (Lanchester-Osipov) Quadratic Law analytic solution, 
the analysis of historical data, and the 3/2 attribution law. In this chapter, we return 
to the study of Osipovian attrition by examining the other solutions of the Lanchester- 
Osipov attrition differential equations. Osipov himself was primarily concerned with 
the analysis of historical data, and dismissed the need to investigate the time solutions 
of the force numbers.8 Given the computational restrictions of the period, this is 
readily understandable. In today's period of easy numerical calculation by electronic 
means, the time solutions are useful. 

The general form of the attrition differential equations are: 

^ = -aA2~nB, (VII.A-1) 
dt 

and 

^- = -ß Bz-nA, (VII.A-2) 
dt 

where: A, B are the number of units of the red, blue forces, 
a, ß are the attrition rate constants/functions of the two forces, 
t is time, and 
n is the attrition order. 

We have seen previously that if n = 1, the resulting attrition differential equations 
give rise to what we traditionally know as Lanchester's Linear Law (and its associated 
solutions), and if n = 2, the attrition differential equations give rise to what we 
traditionally know as Lanchester's Quadratic Law (and its associated solutions) which 
we now know was also derived by Osipov and which was originally solved by him. 
If we were scrupulously correct, we should likely refer to this law as the Lanchester- 
Osipov Quadratic  Law (using alphabetic order of the  names)  or even  Chase- 
Lanchester-Osipov, but tradition in the literature has accustomed us to thinking of the 
law only as Lanchester's. In the interest of brevity, this connection will be maintained 

" Although he did publish the time solutions of the quadratic equations. 
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in this book. Unfortunately, this does not do justice to Osipov whose contribution is 
at least comparable to Lanchester's. Rather than restructure what we have come to 
think of the nomenclature of attrition theory, we shall adopt a new nomenclature 
based on the attrition order. If n has exactly integer values (normally one or two), we 
will continue to use the existing Lanchester nomenclature. If it is non integer, we will 
refer to the theory as Osipovian. If the value of the attrition order is unspecified, or 
the result is general, we will use the term Lanchester-Osipov whenever the usage is 
not too cumbersome or clarity is required. We will reserve reference to Chase or Fiske 
to the equation forms which bear close resemblance to those they developed. 

VII.B. The Lanchester-Osipov State Solution 

The Lanchester - Osipov (or just LO for brevity's sake), state solution may be derived 
in the same manner as before. We may take the attrition differential equations, 
Equations (VII.A-1) and (VII.A-2), and ratio then to form 

(VII.B-1) dA _ a A2'" B 
dB ß BZn A 

rewrite the fraction on the right hand side as 

dA 
dB 

a Bn' 

ß An- 

1 

1' 
(VII. B-2) 

and form the exact differential equation 

ß An^ dA = a fi""1 dB, (VII.B-3) 

which we may solve by direct integration as 

1 UH -AQ)=- (B* - Bo ). (VII.B-4) 

If we cancel the common denominators (which are just the attrition order), then 
the LO state solution 

ß [A* -An
0) = a (B* - Bn

0 ). (VN.B-5) 

results. From a mathematical sense, we note that this integration is general and does 
not depend on the attrition order as long as the attrition order is not equal to zero. A 
state solution still exists if the attrition order is zero, but it has a different form. (We 
shall consider the special case of zero attrition order in a later chapter.) 
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The LO state solution is generally true for any nonzero value of the attrition 
order. For integral values of the attrition order (normally one or two), this state 
solution becomes what we normally think of as the Lanchester Linear and Quadratic 
Law State Solutions, respectfully. If the attrition order has a value of 3/2, then this 
state solution becomes the Osipov 3/2 Law State Solution. 

VII.C.        Time Solution of the Osipov Attrition Differential Equations. 

In this section, the time solution of the Osipov attrition differential equations 
is derived. In terms of our new nomenclature, this restricts the attrition order to take 
on noninteger values. The techniques described in Chapter III, especially the powerful 
method of normal forms, do not apply because, in general, the required integrals do 
not exist. This may easily be seen if we rewrite the Equation (VII.B-5) state solution 
in the form, 

a A» = -^ Bn + — 
ß ß 

(VII.C-1 

where 

A„ B ß AQ - a BQ, (VII. C-2) 

is the general conclusion condition.  Equation (VII.C-1) may be rewritten as 

A = SL Bn + ±L 
ß ß 

M 
(VII.C-3) 

If we substitute this into the blue force attrition differential equation, Equation (VII.A- 
1) we get 

dB 
dt 

= -ß B 2-n « B" + A" 
M 

n 

ß ; 
(VII.C-4) 

which may be difficult to solve even if the attrition order is an integer, fundamentally 
being dependent on performing the B integration. For n = 1, the Linear Law case, and 
n = 2, the Quadratic Law case, these integrals exist, as we have seen. For n general 
in value (non-integer), this is not seem generally possible. 

Instead of proceeding in this manner, we make note of the differential 
properties of two functions of the force numbers.  We define 
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/, ^ ß A" + a 5», (VII.C-5) 
/2 ■ il Ä. 

which have derivatives 
and ,, 

— -nfiA     —+n«B     — (V||<C.6) 

= -2 n a ß/2> 

d/2 _ <M R + A dB 
dT = d7BAdT <v"-c-7> 

= -/2
2"Vi- 

Equation (VII.C-7) may be rewritten as 

^ = -(«-1)/,. <v»-c-8> 
dt 

If we differentiate this equation again, and substitute Equation (VII.C-6) into it, we 
get, 

^— = -("-D^- (VII.C-9) 

= 2« (n - 1) a ß/2. 

This nonlinear second order differential equation in f2 is daunting, but is directly 
solvable. We make the substitution 

/2=/2(0)«', ivii.c-10) 

which gives us a very complicated equation 

/8(0)-i ll(n - 1) [/(» - 1) - 1] «*-'>-* (Jj +/(» - 1) «*-'>-! ^) (VII.C-1 1) 
= 2»(»-1)Y2/2(0)ä', 

where we have replace a ß with y2.  We rearrange this into 
This still appears horribly difficult, but if we now select I to satisfy 

/ + 2-/(«-1)=0, (VII.C-13) 
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l(n - 1) [/(„ - 1) - 11 (^J +/(„ - 1) g& (VII.C-12) 

-2n(n -1) y2/2(0)2-*^42-z(''-1). 

/ =      2     , (VII.C-14) 

that is, 

n - 2' 

this reduces to 

2*("-1) fi£f +2J[«_Z_11 » J^I = 2 n (n - 1) y2/,(0)2-\ (VII.C-15) 
(« - 2)2    U J        " - 2     * rfr2 2 

We note that since we expect n < 2 as a rule, Equations {VII.C-10) will have the form 

M?) = Y ' (VII.C-16) 
g(t) 2-n 

so that g will increase with time. Recognizing this, we may comfortably rewrite 
Equation (VII.C-15) in a somewhat simpler form, 

„ (ä&f - (2 - R) g *& = n (2 - n)2 Y
2
/2(0)

2
"\ (VII.C-17) 

\dt ) dt2 

and apply a series solution of the form 

y=0 

Since Equation (VII.C-17) contains terms of order g2, we must have two indices 
of summation. Thus, on substitution of Equation (VII.C-18) into Equation (VII.C-17) 
we get 
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n   £   (j + 1)(k + 1)gj+1 gk+1t'+k 

- (2 - n)   £   (k + 1) (k + 2) g. gk+2 t^ (VH.C-19) 
j,k=0 

= n (2 - n)2 Y2 f2(0)2"n . 

This equation is still daunting, but we can simplify it still further by a simple 
trick - we note that the time t is always raised to the same power which 
is the sum of the indices j and k. We may therefore redefine our double 
summations with a new index of summation I (different from the previous one 
in this section!,) that is just the sum of j and k, and redefine one of the 
other indices, say k, so that it now runs only over values from zero to I. The 
student may wish to verify that by making this change of index, we neither 
introduce nor eliminate any terms. If we make this change, Equation (VII.C-19) 
becomes 

Et'E n <l - k + 1) (k + 1)g,.k+1 g, 
1-0 k-0 

- (2 - n) (k + 1) (k + 2) g, k gk,2 (VH.C-20) 
2-n n {2 - n)2 Y2 f2(0) 

We note that this equation has the happy property of having all time 
dependence on the right hand side of the equation outside the second 
summation. If we assume linear independence of the summation terms, we 
may decompose Equation (VII.C-20) term by term,  matching powers of time. 

Before preceding to this however, it is useful to backtrack at this point 
and determine the values of the first two terms in the g expansion. Clearly, 
the zeroth index term is one from Equation (VII.C-10). Since this is the only 
term in the g expansion that contributes to the value of g at t = 0, this 
assignment is necessary to assure that f2 has the proper value at t = 0. The 
first index term has a value given by Equation (VII.C-7), evaluated at t = 0. 
This action is just the application of the second (necessary) boundary 
condition. Thus, the first two terms in the g expansion have values: 

9o = 1 ' 
gi=   2_^f2(0)1_nfi(0) (VILC-21) 
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n g* - 2 (2 - n) g0 g2 = n (2 - n)2 y2 f2(0)2"n . (VH.C-22) 

We may now proceed to the decomposition of Equation (VII.C-20). For 
I = 0, the decomposition has the simple form, which, since g0 = 1, has the 
simple form, 

g2 =   n (2 - n) f2(0)2"2n (f^O)2 - 4 Y2 f2(0)n) . (VILC-23) 
8 

We note that the last term of Equation (VII.C-23) is just the state solution 
in terms of f, and f2. Further, the constant left hand side of Equation (VII.C- 
20) only contributes to the first, I = 0, decomposition term. Higher order in 
I decomposition terms (I  >  0), may be generally written as, 

j^t  (I - k + 1) (k + 1) g,.k+1 gk+1 - £  (k + 1) (k + 2) g,.k gk+2      ^j c_24) 

9i*2 = (I + 1) (I + 2) 

where we have used g0 = 1. This equation allows us to calculate the terms 
of the g expansion, starting with g0, gv and g2, in a    bootstrap fashion. 

VII.D Near Quadratic Behavior of the Osipov Time Solution 

Clearly, with n = 2, the mathematics of the preceding section is 
unnecessary, we may solve the attrition differential equations directly by the 
method of normal forms. It is valuable, however, to examine the behavior of 
our formalism when n   =  2. 

We may expand f2
n+1 about n = 2 by rewriting it as an exponential 

and expanding, 

fn-1   _       (n-1)ln(f2) 

.f,£jüüiÜ(„-2... (Vn-D-1) 

j-o        j! 

f2
n~1 = f. [ 1  + ln(f2) ( n - 2 ) ] , (Vn.D-2) 

The first order term  is then just 

f2 [ 1  + li.,.2 

which has a first derivative 
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füll = £i [ 1  + |n(fj (n-2)] + ^(n-2), (VH.D-3) 
dt dt 2 dt 

and a second derivative 

Ü!i:.ÜÜM,h(,1M„-2)].(^i!lf^^ln-2). ^TD4. 
dt2 dt2 dt f

2 dt2 (Vn.D-4) 
= 2n(n-1lY2fr 

and associated second order differential equation. 

This is a much more complicated (because of the ln(f2) term,) non-linear 
differential equation than we had before, but it is, in principle, solvable. 
Because this solution presents great difficulty and adds little to our exposition 
here that the formalism is extensible all the way to n = 2, we do not 
present that solution here. Rest assured however, that the mathematics 
continues to hold! 

It is possible to form approximate solutions to this differential equation, 
but we shall only indicate the approach here. Since the term ln(f2) is relatively 
small and changes slowly compared to f2, we can structure approximations 
based on using the initial value of f2. These tend to be valid only for small 
losses - the initial part of the engagement. In this case, Equation (VII.D-4) 
has exponential solutions with exponents iy given by 

ip = ± 
^ 

2 n (n - 1) 
(VILD-5) 

(2n - 3) + ln(f2(0)) (n - 2) 

Solutions can then be constructed with these exponents. 

VI.E.   The 3/2 Law 

Osipov has noted that for forces larger than 75,000 in strength, the 3/2 
law seems to agree better with historical data than does the Quadratic 
Law. In this section, we shall examine the behavior of the Osipov time 
solutions for n   =  3/2. 

For n   =  3/2,  Equation    (VII.C-9)    becomes 

VII-8 



1 

|2f/ _   3    2 (VH.E-1) 
"T7  Y     '2 ' 

dt2 2 

which has a solution that is an elliptic integral. Since the methodology 
advanced in section C of this chapter is still applicable, we shall not 
overwhelm the student with an exposition of elliptic integrals, leaving that to 
inspection of other texts. 

We shall examine the properties of the 3/2 Law in the next chapter 
when we present calculations. 

VII F Duration of the Conflict. 

One of the popular, and misused applications of attrition theory is to 
calculate the time to battle's end based on battle to a conclusion. This is 
especially true in the method used here to solve the general Osipov attrition 
differential equations. The f, function only goes to zero when both the red 
and blue forces have zero strength - only in the draw case. Alternately, the 
f2 function goes to zero when either the red or the blue force has zero 
strength. 

Clearly, it should be possible to extract the time t when the g function 
comes arbitrarily close to infinity (arbitrarily large). This value of time would 
correspond to a conclusion time within the definition used to determine that 
time. If the student has some inclination at this point that this is an entirely 
arbitrary definition then that is the case. The complexity of extracting the 
conclusion time from the g expansion (which incidentally, is no more difficult 
than extracting inverse tanh's,) for an arbitrarily defined value of g associated 
with some value of f2 merely points up the lack of utility of the concept. The 
concept of conclusion time has good mathematical meaning, if properly 
defined in a mathematical sense. It does not appear to have good meaning 
in the sense of the end of a battle. 

VII G Draw Solution. 

The ideal solution to deal with is the true draw case - that of a 
complete conclusion, An   =   0.  In this case, the state solution  reduces to 

a B n = ß A n , (VII.G-1) 
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which  we  may substitute  into  the  attrition  differential  equations,   Equations 
(VII.A-1) and  (VII.A-2). This gives 

dA        _. A A3.n 

dt 

and 

= -a (J) A3'n , (VH.G-2) 

— = -|B
3
-", (Vn.G-3) 

dt (J) 

where we have defined the new constant (j) as 

(Vn.G-4) ♦ -  I 
a 

\i 

for notational convenience. Since Equations (VII.G-2) and  (VII.G-3) are now 
homogeneous, they may be integrated directly and with some simple algebraic 
manipulation, give solutions of the forms, 

_  AQ  
A(t) ~ ' (VH.G-5) 

( 1  + cc4)(2 - n) A0
2"n t j2'" 

and 

Bo 

-n)Bo2-nt' i* 
B(t) = 

(VE.G-6) 

Note that the force strengths only become zero at infinite time. This, as we 
now recognize, is characteristic of draw cases - they have infinite conclusion 
times. 

It is interesting to examine the asymptotic properties of these solutions 
as n - 2. We may do this, for the A solution, Equation (VII.G-5), by rewriting 
it as 

ln(1  + acJ>(2-n)Ao"nt) 

A(tl = A„e -  . <VII-G-7> ^0 
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which as n becomes close enough to 2 so that we may expand the logarithm 
and  only keep the first order term,  has the form, 

A(t) = A   e"a(«)"A°2"nt ^-^ 

where   we   have   explicitly   written   4>.   As   n   becomes   exactly   2,   Equation 
(VII-G-8)  becomes 

A(t) = A0e'
Yt , (VII.G-9) 

which is the expected (desired) result. 

Similar results can be obtained for the B,  Equation  (VII.G-6). This  is left as 
an exercise. 

VII. H. Conclusion 

In this chapter, we have presented a solution method for the general 
Osipov- Lanchester attrition differential equations when both forces have the 
same attrition order n. Before closing out the chapter however, a word of 
warning is in order for the student who seeks to use the results of this 
chapter in simulation - to get numbers. There is a potential numerical 
instability in the form  of the solution that needs    accounting. 

The recursion solution for the g function expansion contains a term 
proportional to (n - 2). This term can become numerically unstable when n is 
sufficiently close to 2 and recursion is made. Accordingly, care should be 
taken in calculations to ensure that proper numerical techniques are used. 
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VIII. Osipovian Attrition 
Ironman Analysis and Solution Forms 

VIII.A.       Introduction 

In this chapter we take up the analysis of Osipovian attrition using the 
mathematical solutions developed in the previous chapter. As in Chapter V, we again 
take up the pursuit of Ironman Analysis to bring some further understanding to 
attrition mechanics. Additionally, we examine the nature of the solution by examining 
specific calculations, and give some attention to the nature of the attrition processes. 

VIII.B.        Osipov's 3/2 Law Iron Man Analysis. 

For the deterministic Ironman Analysis of Osipov's 3/2 Law, we have the 
differential equations 

Q = -a JA, (VIII.B-1) 
dt 

and 

HL = 0, (VIII.B-2) 
dt 

since we assume the Blue force to be comprised of one Ironman (who, by assumption; 
cannot be attrited). 

We may integrate Equation (VIII.B-1) directly since it is an exact differential 
equation, giving us the solution 

^4 = fi~Q -  «J, (VIII.B-3) 

where the Blue force strength, by assumption; is one. It is more convenient to write 
this equation in the form 

2 (^ - JÄ) = a t, (VIII.B-4) 

for analyzing the meaning of the attrition rate. 

One natural measure of the attrition rate immediately presents itself: Let us 
specify that t' is the time required for the Blue force (of one unit) to reduce the Red 
force strength from A0 to A0/4.  If we apply these conditions to equation (VIII.B-4), 
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force strength from A0 to A0/4.   If we apply these conditions to equation (VIII.B-4), 
the result is 

IÄQ = a' *', (VIII.B-5) 

or 

_ (VIII.B-6) 
t' ' 

that is, a' is the square root of the initial Red force strength divided by the time that 
it takes the Blue force (of one!) to reduce the Red force strength by 3/4ths. This is a 
mathematically natural way to define the attrition rate, but it is also a bit difficult to 
accept on a military basis - surely no force, incapable of inflicting losses on the other 
side, will allow a battle to proceed to the point of loosing 3/4ths of its strength except 
under the most unusual of circumstances such as combat to a conclusion or where 
A0 is very small. This is surely contrary to anything Osipov would conceive of in view 
of his insights into historical battles. Further, this definition strains the calculability 
of the attrition rate - there are far too many attrition options to be resolved in one unit 
achieving this number of kills. 

The student may, at this point, raise the question, "what of the Linear Law 
case?", and that question is valid. In the Linear Law Ironman Analysis (Section V.B), 
the attrition time T could have been defined as the period of time required to reduce 
A0 to e"1 of its initial value. This however, is a reduction of 66% (2/3), which is 
reasonably close to a 75% reduction. By assumption, the Linear Law commonly refers 
to indirect firea which implies that the Red force is incapable of knowing directly of 
its attrition effects on the Blue force. If, and we here assume that, Osipov's 3/2 Law 
may describe direct fire combat, then the Red force is aware of its alethality. Thus, 
this degree of attrition (75%) is not consistent wits the definition of an attrition time 
for the Osipov 3/2 Law. 

If instead, we advance the definition introduced for the Square Law, and used 
throughout Chapter V, that t" is the time required to reduce the Red force strength 
by one unit, then we may use equation (VIII.B-4) to write 

• The Linear Law may also apply to direct fire when targets are hard to find. 
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^ 
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= a" t", (VIII.B-7) 

which if we expand the radical, assuming A0 > 1, gives 

a 
fat» 

(VIII.B-8) 

which gives an attrition rate a" exactly AQ times smaller than a' and VA0 times smaller 
that the square law attrition rate. While this proposed definition is better than the first 
one, it is not satisfactory since it implies a rate of loss which is significantly less than 
that seen in the Square Law. We further note that if t' is linear in the individual 
attrition times, that is, 

yl  = 
AQt' (VIII.B-9) 

then a' and a" differ by a factor of 2. 

There is, of course, nothing inherently wrong with the suggestion of a different 
time scale for Osipov's 3/2 Law, even based on the assumption of common attrition 
mechanisms between the 3/2 and Square Laws. It is, however, an excessive 
complication which we do not need to incorporate now because it implies some 
discontinuity in assumptions between the Linear and Square Laws (since the 3/2 Law 
lies between them in attrition order) which we cannot justify based on what we have 
examined thus far. To resolve some of this question, we now turn to the general form 
of Osipovian attrition. 
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VIII.C.        General Osipovian Ironman Analysis 

For the  case of general attrition  order, the  Red  force  Ironman  Analysis 
differential equation is 

4* = -a A2'", (VIII.C-1) 
dt 

which has solutions 

4T1 -A»-' =«((1,-1), (VIII.C-2) 

where n ^ 1. 

If we again try the Square Law attrition time definition, that t" is the time 
required to attrit one unit, then the attrition rate is defined by 

A"-z 

„" = f°_ (VIII.C-3) 
t" ' 

which for the 3/2 Law gives 

„     V (VIII.C-4) 
a   = —, 

t" 

which is identical to Equation (VIII.B-6).  For the Square Law, we get 

,//-   1 a" = -!-, (VIII.C-5) 
t" 

which is the definition. While this proposed definition does give consistency, we will 
search farther along one more avenue of investigation before unconditionally adopting 
it. 

Let the attrition time r be the time required to attrit x units of the Red force 
with the restriction that x is small so that we may retain the freedom to expand the 
force strength terms.  Thus 

A = AQ - x. 

If we substitute this into equation (VIII.C-2), we get 
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A^ ~{A0 -xf~' =«t(«-1). (VIII.C-7) 

which we again expand and form the equation 

*4T2 = aT. (VIM.C-8) 

If we let x = A0
2n, then a = f\ which is Bonder's equation. Now, T is the time 

required to attrit A0
2n of the Red force. For the Square Law this is just one unit!, 

while for the 3/2 Law (and in general,) this time is force strength dependent. This 
does not violate any of the assumptions that we have introduced so far, but it does 
have the effect of introducing a degree of freedom which we must consider, that the 
attrition time is dependent on the force strength!3 Unfortunately, it seems to 
contradict the results we derived in Chapter V. We will examine this in the next 
section. 

a We do note in passing that if r is linear, then this result is equivalent to equation (VIII.B-8). 
This result should not surprise the student since the assumptions used in forming the two equations 
are mathematically equivalent. 

Further, recall that for the Linear Law case, n = 1, we have Ironman Solutions of the form 
ln(A0/A) = ar. 

If T is the time that it takes to attrit the Red force to A0 e"\ then this reduces to Bonder's Equation. 
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VIII.D.        Force Strength and Attrition 

In the assumptions associated with the Linear and Square Laws, the attrition 
form depends on whether the density of the force is a constant or varies, and that the 
weapons may attrit any unit in the battle (within range of the weapons). Let us now 
consider the consequences of these assumptions in greater detail. 

Consider a force arranged in a rectangular order. The area occupied by the 
force is described by dimensions of depth and width, d and w, respectively. The area 
occupied by the unit, a, is just the product of these two. Let the unit be arranged 
such that the average distance between elements along the depth of the unit is de and 
along the width is we. Then the number of elements (units) in the area is 

A=-f™-. (VIII.D-1) 

If we introduce the ratios 

f=-, (VIII.D-2) 
w 

and 

fe = —, (VIII.D-3) 

we may solve equation (VIII.D-1) for the number of units along the width (or depth) 
of the formation as 

w2 f 
A = —^-, (VIII.D-4) 

or 

w 

*e 
'w N/ 

Alternately, we may write the perimeter of the formation as 

fe A =N . (VIII.D-5) 
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p = 2 (w + d) 

= 2>v(W) = 2*(1 +f), (VIIID-6) 

which is related to the area by 

a = —E-J.—. (VIII.D-7) 
4(1 +/)2 

Since the density of the force is p = Aa, we may write the force strength as 

9P2f A =      H y J    . (VIII.D-8) 
4(1 +ff 

If we now use the proposed definition of attrition time advanced in the previous 
section, that r was the time required to attrit A0

2n units, then from equation (VIII.D-8) 
we may write 

A B-1    _ 
< 2 s     Vi-1 

9 P  f 
14(1 +ff) 

(VIII.D-9) 

and now explore what this fraction means in terms of the attrition order. If n = 3/2, 
then 2 - n = 1/2, and the result is 

A     c   r (VIII.D-10) A" = I y/p p, 

where f is a constant. If p is a constant, then this quantity varies only with the 
perimeter of the formation. This implies that attrition may only occur along the 
perimeter of the formation. 

If p is a variable, then this quantity varies with the square root of the force 
strength, which we see from equation (VIII.D-5) is related to the number of units 
along the width (or depth, and thereby the perimeter of the formation.) This implies 
that attrition may only occur along the perimeter of the formation. 

Notice that under the assumptions of either constant or variable density, which 
for area fire, give rise to both Linear and Quadratic Laws, the Osipov 3/2 Law 
develops if attrition is limited to the edge of the formation. 

For direct fire, if we assume targets are hard to find, then the Linear Law again 
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results, but if the targets are hard to kill, and the formation has a basis where f = fe, 
then 

Nw=y/Ä. (VIII.D-11) 

For direct fire, we may now see that the attrition rate may be defined by Bonder's 
equation when r is the time to kill one rank of the formation or by the formalism 
developed in Chapter V, assuming linear time. 

During most of history, battles were, ideally, fought between units arranged in 
rectangular formations of rank and file. This is true of the era of most of the battles 
which Osipov considered. Thus, Osipov's 3/2 Law may be viewed as representing 
combat which occurred in this manner - between rank and file formations with 
attrition limited to the front (or sides) of the formation. 

This interpretation is acceptable for direct fire weapons against this type of 
formation. Troops behind the first rank are hidden from view and fire by the ranks in 
front of them. Since direct fire in that period was usually aimed at the formation as 
a whole rather than at individual troops,1 the rearward troops were shielded and 
attrition occurred primarily at the perimeter of the formation. 

Equally clearly, however, this interpretation cannot be simply applied to indirect 
fire weapons which have an area coverage. While fire which landed to one side of the 
formation would tend to have much the same effect as direct fire, this will not explain 
fire which lands in the formation. Rather than postulate some strange type of attrition 
mechanism, let us write the force strength as 

A = pddPww, (VIII.D-12) 

where pd and pw are just the inverses of de and we. Both of these quantities are 
proportional to VA because of the assumption of a rank and file basis. Let us now 
assume that the linear density along the width of the formation is constant (a 
constant front to the enemy). Then, pw is a constant, but pd is not. Rather, it is 
proportional to VA. Changes in the structure of the force strength can then only 
occur along the depth. In other words, the Osipov 3/2 Law describes area fire against 
a formation when the width, depth, or perimeter of the formation is constant. 

This now leads us to an examination of the general form of Osipovian attrition. 
For area fire, a constant areal force density results in the Linear Law, a constant linear 
force density results in Osipov's 3/2 law, and a completely variable density results in 
the Square Law. Thus, the quantity (2-n) represents the fractional power of the area 
that the density of the unit is held constant over.  In the sense of fractals,2-3 

a -2 (2-n), (VIII.D-13) 
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a is the fractal dimension of force density under area fire. (For n = 1, a = 2, which 
has dimensions of length squared, or area. Forn = 3/2, o = 1, which is a dimension 
of length, while for n = 2, a = 0, which has no dimension - a point.) 

For direct fire, we have sketched that the attrition order may represent a 
tradeoff between acquisition time and killing time. When the units are widely enough 
spread that all units (in theory), can be seen and shot at, the Linear and Quadratic 
Laws result when one or the other of these is the most time consuming. For the 3/2 
Law, the two processes occur in the same manner, since units arranged across the 
battlefield must only be searched for in elevation, but not in azimuth (which again 
goes as VA) and attrition occurs only on the edges of the formation. Does the 
attrition order reflect some variation in the importance magnitude of the acquisition 
and kill times? The answer is no! The 3/2 Law equivalence is an accident which is a 
feature of the way that the units are arranged and attrition occurs. In direct fire 
attrition dominated by kill time, the attrition order n is a complex function of the force 
formation and where in that formation attrition can occur.  In its simplest terms, 

a' = 2 (n - 1 ), (VIII.D-14) 

is the fractional dimension over which attrition can occur. 

For the Linear Law case, n = 1, a' = 0, which we may interpret as point 
attrition against those points (individual elements) that have been acquired. For the 
3/2 Law case, n = 3/2, & = 1, which we interpret as attrition along a line (the 
width, depth, or perimeter of the formation, as appropriate.) For the Square Law, n 
= 2, a' = 2, which we interpret as attrition over the entire area of the formation. 

One of the questions that we have not addressed here is the way direct fire 
occurs in rank and file formations. While we have shown that keeping the number of 
troops in the front rank constant by decreasing (selectively) the number of files (or 
visa versa) keeps the attrition proportional to VA, we have not made the argument 
that since only one rank in a formation may safely and effectively fire at once, attrition 
is also proportional to VB and not to B. This argument leads to a different pair of 
attrition differential equations which have a linear state solution. We will discuss this 
pair of attrition differential equations in a later chapter on alternative attrition 
differential equations. By training and doctrine variations, several ranks may fire at 
once although this reduces the firing rate (but not necessarily the loss rate.) 

1. von Pivka, Otto, Armies of the Napoleonic Era, Tapinger Publishing Co., New York, 1979. 

2. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983. 

3. Schroder, Manfred, Fractals, Chaos, Power Laws, W. H. Freeman and Company, New York, 
1991. 
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VIII.E.        Assumptions of the Osipov 3/2 Law 

In this section, we present the assumptions associated with Osipov's 3/2 Law. 
Some of these have been discussed or developed in preceding sections. As we have 
described earlier, most of these assumptions are associated with rank and file 
formations of compact density used in warfare during the approximate period from 
(before) Alexander the Great (the Phalanx) to roughly World War I.1 These formations, 
and Osipov's 3/2 Law seem especially applicable during the early period of gunpowder 
warfare before rate of fire became high enough to force increased dispersal which in 
turn forced better training and shifted the influence of the acquisition process. 

Quite simply, when rate and density of fire (because of technological 
improvements) made attrition too fast for a rank and file formation to survive 
effectively (Pickett's Charge at the Battle of Gettysburg comes to mind as an 
example),2,3 the survival answer was to reduce the density of the formation and to 
depart from the rigid formation to take advantage of terrain for protection at the 
individual level. This dispersal in turn required changes in the training of the troops 
to operate more independently (to do target acquisition and shoot without the direct 
control of their commissioned and non-commissioned officers - a great liberalization 
of armies which leveled the class structure of the army, ended the nobility - commons 
split in the officer - enlisted ranks with profound political implications, and increased 
the officer : enlisted ratio to maintain some control.) This greater dispersal and 
independence in turn changed the very nature of attrition. Before, acquisition and 
killing were separate processes. Once acquisition ended, killing began and continued 
until stopped. Fire was primarily directed against multi-element formations rather 
than against individual elements. Thus, attrition mechanics may be viewed as shifting 
from 3/2 Law to Linear or Quadratic Law depending on the relative temporal 
importance of acquisition and engagement.. 

This shift may, however, be also viewed as a matter of scale as well. Battles 
after the American Civil War continued to this day to be fought with lines between the 
two forces. Despite an increase in depth of weapons' effective carry, which changed 
the dimensionality of attrition at the local level from a line (n = 3/2) to an area ( n = 
1 or n = 2,) battles continue to occur at interfaces between the two forces. Even 
today, with contemporary concepts of non-linear battlefields, independently operating 
Corps, and the echelonment of forces, combat still has a component that occurs along 
the edges of its forces' formations. The bankruptcy of the Osipovian 3/2 Law should, 
accordingly, not be too rapidly heralded, lest it be like Mark Twain's death. 

We may now state the assumptions, in the manner of Chapter IV, that we may 
relate to the Osipov 3/2 Law: 

1.)      The two forces A (for amber or red) and B (for blue) 
are engaged in combat. 
2.)      The units of the two forces are within weapons 
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or 

range of units of the other side. 
3.)      The attrition rates are known and constant. 
4a.)    Each unit is aware of the general location of enemy 
units but is unaware of the effect of fire. 
5a.)    Fire is uniformly distributed over the area occupied 
by enemy units. 
6a.)    The occupied front, or depth, or perimeter density of 
units remains constant, units redisperse within the area to 
keep this dimension constant. 

4b.)    Each unit is aware of the specific location of enemy 
units and the effect of fire is known. 
5b.)    Fire from surviving units is uniformly distributed 
against enemy units. 
6b.)    The area occupied by surviving units may contract to 
maintain a constant linear density of units along front, 
depth, or perimeter. 

We note immediately that assumptions 1 - 3 are identical to those that we have 
stated before in Chapter IV, except that we have modified assumption 2 to be 
consistent with our findings in that chapter about the limitations of weapons' range. 
Assumptions 4a - 6a are those for area fire, modified for the restriction that a 
constant linear density of formation is maintained. Assumptions 4b - 6b are those for 
point fire, again modified for the restriction that a constant linear density is 
maintained. Note the "may contract" in assumption 6b. If the formation maintains 
a constant frontal or side density (along ranks or files,) then the formation must 
contract. If a constant perimeter density is maintained, then the formation cannot 
contract although the density may decrease to keep a rectangular array of troops or 
a hole may appear in the center of the formation if the density along the perimeter is 
maintained (this is the tactic of forming a square so often used by the British in the 
Napoleonic Wars.) 
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VIII.F. Solutions of Osipov's 3/2 Law 

We may now turn our attention to the form of time solutions of the Osipov 3/2 
Law by examining some particular solutions. The calculation of attrition rates will use 
the equations derived in Section C of this chapter; calculations of the time solutions 
will use the numerical technique outlined in the last section of the preceding chapter 
to avoid the singularity in the analytical solution. For simplicity, we shall limit 
ourselves to formations which are square (approximately) both in terms of distance 
between troops within the formation and in terms of the arrangement of the 
formation. As in previous examples, we will use an initial red force strength, AQ, of 
100 units, and an initial Blue force strength, B0, of 200. 

F 
o 
r 
c 
e 

Osipov 3/2 Time Solutions 
Base Case 

0.3      0.4 
Time 

Figure (VII.F.1) 

As in previous examples, we shall take the attrition time for one kill (the Square 
Law attrition time) to be the inverse of the product of rate of fire, rf, and probability 
of kill, pk. As an approximation, since we have not laid any basis for the attrition 
mechanism in a rank and file formation (again deferred to a later chapter on attrition 
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rate theory,) we will assume that attrition occurs linearly. Thus, the attrition time for 
VA0 is just that factor times the attrition time for a single unit. For the base case, we 
take rf = 4 rounds per time period, and pk = 0.3 for both forces. We ignore the 
impact of acquisition time by assuming it to be small. For these parameters, the base 
case is shown in Figure (VIII.F.1). 

As we have noted in Chapter IV, the force power of the two sides can be 
modified by either changing the attrition rates or the initial force strengths. In the 
linear law case, we saw that a change of equal magnitude of either attrition rate or 
initial force strength had the same effect on the outcome of the engagement, while 
for the square law case, we saw that it was necessary to increase the attrition rate 
by a factor equal to the square of the factor of increase of the initial force strength 
to have the same effect. This is merely the Principle of Concentration, and it demon- 
strated the effect of technology on the outcome of the engagement. In the Osipov 
3/2 Law case, we would expect a situation intermediary between these two results 
just from the form of the state solution. 

F 
o 
r 
c 
e 

Osipov 3/2 Law Time Solutions 
Doubled Blue Rate of Fire 

0.3      0.4 
Time 

Figure (VII.F.2) 
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If we examine the effect of changing the attrition rates, we see that for a 
doubling of the Blue attrition rate (by doubling either rf or pk,) that the conclusion is 
indeed accelerated. This is shown in Figure (VIII.F.2). If we double both the rate of 
fire and the probability of kill, the conclusion is accelerated even more. This is shown 
in Figure (VIII.F.3). Note that in these succeeding cases, the losses for the Blue force 
decrease slightly and approximately linearly (a result of the initial choice of parame- 
ters,) with increase in attrition rate. 

F 
o 
r 
c 
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Osipov 3/2 Law Time Solutions 
Blue Force Doubled RoF and Pk 

Figure (VII.F.3) 
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If we double (Figure (VIII.F.4)) and halve (Figure (VIII.F.5)) the initial Blue force 
strength, a much more dramatic change occurs in the form of the engagement. When 
we double the initial Blue force strength, the engagement concludes in approximately 
the same period of time as doubling the Blue attrition rate, and Blue losses are 
approximately the same. If we halve the Blue initial force strength, however, we find 
the engagement lasting approximately as long as the base case, but losses to the Blue 
force increase dramatically while losses to the Red force decrease. This is, of course, 
the draw case. 
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Figure (VII.F.5) 
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VIII.G.       Comparison of the Square Law and Osipov's 3/2 Law 

One of the interesting questions which comes up (in the next chapter for 
instance,) is a comparison of the Square and 3/2 Laws. The state solutions of the 
two laws are different, but the attrition rates are also. To examine this question we 
calculate the particular solutions for the square and 3/2 laws using the parameters of 
the preceeding section and the appropriate time solutions. This is shown in Figure 
(VIII.G.1). The student should keep in mind while examining this figure that while the 
initial force strengths, and the rates of fire and probabilities of kill are identical for the 
two calculations, the attrition rates are decidedly different. The square law attrition 
rates are = rf pk, while the 3/2 law attrition rates are = rf pk/VA0. Thus the loss rate 
for the square law is = rf pk B, while the loss rate for the 3/2 law is = rf pkVA / VA0 

B. Since during the initial stages of the engagement A = A0, we should expect little 
difference between the two solutions, while for longer time, we should expect that 
the 3/2 law solution will decrease slower than the square law solution. This is exactly 
what is shown in the figure. 

The short time result is the more interesting of the two from a perspective of exam- 
ining the historical data. Since most battles result in few casualties, it will be difficult 
to tell the difference between the square and 3/2 laws. Only by examining the 
correlation of the attrition rates with initial force strengths can we tell the difference 
between the two solutions. 

VI H.H.        Conclusion 

In the Dawn of the Fourth Age: Aircraft in Warfare, Lanchester [,1916] makes 
the argument that ancient warfare was typified by the Linear Law. As a result of our 
investigations into the Ironman Analysis of General and 3/2 Osipovian Attrition, we 
are now in a position to hypothesize about the reasons for this. 

If we postulate that the armies of the ancient period were drawn up in a line, 
we may make a comparison with the rank and file formation. From a mathematical 
standpoint, the line formation is a rank and file formation comprised of a single file. 
The depth of the formation is kept constant. From what we have described, this 
would lead us to expect the attrition to proceed according to Osipov's 3/2 Law. 

This is not the case because the density of units along the front rank (the line) 
is not proportional to VA, but to A since the formation is always only one rank deep 
and the density of units in the line are either kept constant (and holes in the line are 
allowed to form,) or allowed to vary and thus the soldier - soldier ratio in contact 
changes. (The latter should shift to Square Law except that the holes allow the 
enemy to either pass through the line or redeploy and this is probably avoided.) Thus 
we may hypothesize that warfare in line gives rise to Linear Law attrition. 
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Figure (VIII.G.1) 
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IX. HISTORICAL PERSPECTIVES 

IX.A. Introduction 

One of the fundamental problems presented to the scientific study of attrition 
is the difficulty in acquiring data on the phenomena. First of all, experiments cannot 
be conducted - the very nature of war precludes deliberate scientific investigation on 
moral, ethical, philosophical and financial grounds. Numerous attempts have been 
made to simulate war in the form of training and test exercises but these have been 
flavored by the unrealities of referees, umpires, and rules, and the difficulty of 
gathering data in a meaningful manner. Recent efforts in analog combat simulation 
in this country, such as the National Training Center and the DARPA SIMNET Program 
offer some greater promise although, as Osipov would have possibly asserted, these 
simulations are primarily oriented to the teaching of military principles. Still even 
these simulations are flawed by the assumptions built into their underlying models. 

This leaves, of course, historical information. Data on the battles of the past 
are difficult to find and different sources of these data may contradict each other. 
Even the barest minimum of data is available only for very few battles. As a 
minimum, four data are needed for each battle - the initial and final force strength for 
each of the two sides. A fifth datum, the duration of the battle, is hard to find in any 
precise terms. For extended (many day) battles, force strength as a function of time 
would be exceedingly valuable, but this type of data has been found for only a few 
battles. 

Despite this lack, there have been several previous historical analyses. The first 
of these, recently rediscovered, was that of Osipov.1 Other analyses include the 
Battle of Iwo Jima of World War II,2 and the Inchon-Seoul campaign of the Korean- 
Chinese-American War (or Korean Police Action as it is often called in the United 
States).3 We will review several such analyses in Section B. 

The most elaborate of these appears to be that of Dupuy in the development 
of the Quantified Judgement Model (QJM),4 but since most of that data base has not 
been submitted to open scientific scrutiny, the extent of the data base and the validity 
of the QJM remain unknown. (This last statement should not be construed as 
criticism of COL Trevor Dupuy and his co-workers. The QJM and its associated data 
base at the History Evaluation Research Organization (HERO) are financial ventures in 
the finest American tradition. They exist as profit makers and cannot be thereby 
expected to the part of the open scientific literature. Useful portions of the QJM and 
the database which have appeared in unclassified part may be used here as applicable 
and properly cited.) 
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As part of the analyses in this chapter, five primary sources have been used in 
compiling some short (unfortunately) databases of battle data. In addition to the data 
of the preceding section, Osipov's data,1 and some data on World War I battles in 
Dupuy's Numbers, Predictions and War,2 these compendia of warfare data were 
found: Eggenberger's An Encyclopedia of Battles,5 describing 1,560 battles, Lafflin's 
Brassey's Battles covering some 7,000 battles,6 and Livermore's Numbers and Losses 
in the Civil War in America 1861-65.7 The data sets were gathered from each of 
these sources. There is some overlap of these data sets - that is, common battles. 
The force strengths enumerated by the authors/editors of these sources have been 
accepted without question. No resolution of conflicting numbers cited has been 
attempted. One special data base incorporating short battles (< 1 day in duration) for 
which fairly exact durations are cited (in minutes or hours) has been compiled to 
permit some superficial analysis of the time dependence of the battles. Another 
special data base has been constructed for battles that proceeded to, or nearly to, 
conclusions.  These battles are exceedingly rare, but do exist. 

The author of this work makes no pretense of being an historian. The 
assumption has been made that the collectors of these data are historians of sufficient 
credentials that their compendia may be used to gain insight. The philosophical 
approach taken is essentially that originally espoused by Osipov, that in the aggregate, 
the historical data can give insight into the attrition phenomena. The student is 
therefore challenged to accept the contents of this chapter with care and deliberation; 
more so than much of the rest of this work which has a technical foundation. As we 
shall see in the next section, the previous Lanchester analyses of historical data have 
not strongly supported the Lanchester attrition theory. Indeed, it has only been 
recently that Lanchester theory has been conditionally accepted by historians.8 

IX.B. Previous Historical Analyses. I 

The open literature (I suspect now that the Soviet Union has dissolved, and 
their military analysis is more available to us, we shall find similar analyses on their 
parts) contains two historical Lanchestrian analyses of heroic form, analyses of 
individual battles. I characterize these analyses as heroic because of the difficulty of 
acquiring periodic (usually daily or hourly) strength figures for both sides. This is a far 
cry from the minimum four (initial and final) strengths that is our fundamental criterion 
for the data bases of the following sections. 

Perhaps it is instructive that both of these battles/campaigns: Iwo Jima and 
Inchon-Seoul; are twentieth century so that record keeping has become a regular 
staff/historian activity. Perhaps the fact that one side involves Americans with their 
business-like approach to war transcends the geographic availability of the records. 
Nonetheless, the fact remains that these two analyses are cornerstones of quantita- 
tive military science, of the physics of war. 
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The Battle of I wo Jima occurred late in the Second World War (Pacific Theater). 
The island of Iwo Jima, an 8 square mile, triangular shaped rock in the Bonine group 
was viewed as a threat to bomber operations from Saipan against the Japanese 
mainland. Its threat value was mirrored by its desirability as a forward air base9. 

The invasion, conducted from 19 February through 24 March of 1945 by the 
Fifth Marine Amphibious Corps (consisting of the 3rd, 4th, and 5th Division) MG Harry 
Schmidt commanding, and supported by the U.S. Fifth Fleet, was a classic 2-up, 1- 
back  invasion which resulted in a successful occupation of the island by 11 March. 

The Battle of Iwo Jima was a conclusive battle in the sense that the Japanese 
forces were completely (?) destroyed. (We will discuss conclusive battles in a 
subsequent chapter.) Although Japanese organized fighting was considered to have 
concluded on 16 March, by 11 March, their forces had been contained in two small 
coastal regions. In his analysis, Engel was able to obtain detailed data on American 
force strengths (arrivals and casualties) on a daily basis, and the duration of the 
different phases of the battle. He also knew the initial and final (presumed zero) 
strengths of the Japanese force strengths and that they were neither reinforced nor 
evacuated. 

Table IX.B.1 American Force Strength Arrival Times 

Day of Battle U.S. Force Strength Increments 

0 54000 

1 0 

2 6000 

3 0 

4 0 

5 13000 

6 0 

The arrival times of American forces is given in Table IX.B.1 
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The battle lasted for 36 days and concluded with a total of 20,800 American 
casualties and 4,590 dead. The initial Japanese force strength was 21,500 (Depuy 
and Dupuy report 22,000). 

Both Engel and Busse make the assumption that the Lanchester Quadratic 
attrition differential equations with reinforcements (on one side,) are applicable. No 
consideration is made of any attrition order other than two. Both forces are 
approximated as homogeneous. The relevant equations are thus 

*A = -aJ + a, (IX.B-1) 
dt 

and 

*1 = -RA. (IX.B-2) 
dt 

where: A(t), J(t) are the effective American and Japanese force strengths, 
a, ß are the attrition rates, and 
a(t) is the American arrival rate. 

The solution of these equations has already been described in Chapter VI.H. 
Because data are available only on a daily basis, a numerical approximation (finite 
difference) was necessary. Since the Japanese received no reinforcements, the 
relevant (approximate) force strength solutions may be written from equations (VI.H- 
20) and (VI. H-21) as 

A(t+At) = A(t) cosh(vAf) - 6 B(t) sinh(yAr) 
a(t) sinh(yAf) (IX.B-3) 

and 

J{t+Lt) = J(t) cosh(yAf) - ^ sinh(YAf) 
6 (IX.B-4) 

a(t) (cosh(YAf) - 1) 
a 

The parameters y and 6 are (again) defined in the usual manner. 

The attrition rates for the entirety of the battle and the campaign were 
estimated by integrating Equations (IX.B-1) and (IX.B-2) numerically over the entire 
duration as 
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A[x) - A0 - -a£ B(t>) * £ «(O. (,X-B"5) 

0 0 

and 

*(?) -£0 - -ßE^O. (IX
-
B

"
6) 

o 

where T is the duration of the battle/campaign, and all sums run from t' = 0 to t' = 
T. The attrition rates are thus, 

a 2 , (IX.B-7) 

and 

*0 - A(x) + £ ii(0 
0 

E B(0 
0 

ß • 
B0 - B(x) 

X 

E ^(f 0 
0 

(IX.B-8) 

The attrition rates are thus averaged over the entire battle - it assumes the attrition 
pace of the battle is constant. While the student may view this as a strong and 
possible enormous assumption, reflection should renewal that this is almost a forced 
assumption. Given the nature of the data available and the conclusions we have made 
thus far in Lanchester attrition theory, the assumption of constant attrition rate is 
logical and natural. 

Since the data do not include daily Japanese force strengths, J(t) can only be 
calculated by recourse to the same attrition differential equations. There are no actual 
daily Japanese force strengths for comparison. There are actual daily American force 
strengths available (calculable from daily arrival and casualty data for comparison 
although Engel does not explicitly include these in his article.) 

Since Engel already had the actual daily American force strengths, he could 
examine the estimated daily American force strengths with the actual numbers even 
though he did not have the same detailed data on the Japanese. This comparison 
constitutes a strong test of Lanchester attrition theory with its fundamental 
assumption of constant attrition rate. 
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Needless to say, the comparison was made, and Engel found very close 
agreement with the actual data. Admittedly, there are daily fluctuations - differences 
between the actual and numerically estimated force strengths, but these differences 
were small percentages. The key point is not the attrition rates were assumed 
constant, but that the battle was simulated in a cumulative manner dictated by 
Lanchester attrition theory. This cummulation process tends to accumulate all the 
errors, inaccuracies, and differences. Thus, the simulation of the nth day of combat 
carries with it all of the errors and differences that the model has generated on all of 
the previous n-1 days of combat. 

Admittedly, we would expect some of these errors and differences to cancel, 
but the degree of consistent agreement that Engel found is a telling demonstration of 
the validity of Lanchester attrition theory. Clearly, this analysis is a strong argument 
that the Battle of Iwo Jima, to the degree that we have descriptive actual data, is 
described by Lanchester attrition theory. 

As a final note, Engel notes that there are other models that one could assume 
to analyze these data, and that these models could also have good agreement with 
the data, the model that he presents here is the simplest of these. If we place our 
trust in Occam's Razar, then this simplest of models is the valid one. 

Before we proceed to the next analysis, it seems worthwhile to comment on 
the assumption of constant attrition rates. Recall that Engel did not have detailed data 
on the daily Japanese force strengths, only their initial and final force strengths. If he 
had been able to get these data, then he could have used daily (rather than battle) 
averaged force strengths and have improved the agreement between actual and 
estimated force strengths. I will contend that while this may have reduced the 
difference between actual data estimates, it would only have clouded his actual 
contribution. Engel used the framework of Lanchester attrition theory to perform this 
analysis. The agreement of calculation with actual data constitutes reasonable 
demonstration of the applicability of the model. 

Obviously, the data analysis weakness of Engel's analysis is the lack of detailed 
Japanese daily force strengths. The second analysis that we describe here, of the 
Inchon-Seoul Campaign reported by Busse, set out to address.tnat very deficiency by 
using estimated enemy daily casualties (force strength) derived from intelligence. 

The Inchon-Seoul campaign, 15-26 September 1950, began with the 
amphibious launching of the American X Corps (1st Marine Division, 7th Infantry 
Division), MG Edward L. Almond commanding, at Inchon, Korea, on the Yellow Sea, 
and culminated with liberation of Seoul. This daring campaign, began by an 
amphibious landing like the Iwo Jima battle, enabled General Douglas MacArthur to 
regain the initiative, destroy the North Korean Army, and advance north to the Yellow 
River until the Chinese counteroffensive begun on 25 November. 
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The basic data for Busse's analysis are given in Table (IX.B2). 
Table IX.B.2. Inchon-Seoul Force Strengths and Reinforcements 

Day Marine Force 
Strength 

North Korean 
Reinforcements 

North Korean 
Force Strength 

0 25040 0 22150 

1 24844 0 21350 

2 24818 0 20500 

3 24742 3000 22750 

4 24640 500 22600 

5 24568 230 22100 

6 24421 6500 27675 

7 24190 0 25975 

8 24025 0 24375 

9 23882 2000 25305 

10 23593 0 24290 

11 23317 0 22390 

12 23114 3500 24640 

13 22925 0 23250 

14 22882 0 22710 

15 22813 0 22100 

16 22752 2000 23465 

17 22733 5000 28265 

18 22636 0 27835 

19 22598 0 26930 

The relevant attrition differential equations are 
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^ = -ßA + k(t), (IX.B-9) 
dt 

and 

dA -    „r     =   -CCÄ, 
dt 

where: A(t), K(t) are the American, (North) Korean force strength, 
a,ß are (again) the attrition rates, and 
k(t) is the (North) Korean reinforcement rate. 

Again in this case, only one side receives reinforcements, and since the data are daily 
in nature, we may write the numerical approximations for the force strength as 

A(t + At) = A(t) cosh (y At) - bK(t)s\nh(yAt) 
*(')/~,oh/    A.\        IN (IX.B-11) - -^(cosh(yA*) - 1), 

and 

K(t + At) = üT(f)cosh(YAr) - ^sinh(YAf) 
ö (IX.B-12) 

                 fc(f)sinh(yAQ 

Y 

from Equations (VI. H-20) and (VI. H-21). The parameters Kand 6 are (again) defined 
in the usual manner. 

Busse, like Engel, assumes a campaign averaged attrition rates. Since he has 
actual daily force strengths for both sides, Busse may calculate both of his attrition 
rates directly from numeric integration of the attrition differential equations. 

Since the values of a anc 3 are small compared to At, Busse approximates the 
cosh and sinh with one term Taylor series so that Equations (X.B-11) and (X.B-12) 
become 

A(t + At) -A(t) - aK(t)At, (IX.B-13) 

and 

K(t + At) - K(t) - £A(t)At + k(t)At. (IX.B-14) 
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The results of the calculations are shown in Figures (IX.B.1) - (IX.B.2). We note 
good agreement during the early part of the campaign, but decreasing agreement as 
the campaign progresses. This is to be expected due to the accumulation of errors in 
the method of numerical integration, and the approximation of constant attrition rates. 

Busse did not consider his analysis to be a general validation of Lanchester 
theory because he had to use a finite difference form of the solution. This is a strong 
point, but it is not compromising. The finite difference form is derived from the 
Lanchester Theory and thereby partakes of its assumptions and limitations. No 
mathematical theory may be applied to real data without approximation. Thus, the 
results of both Engel and Busse, while not conclusive, must be considered to support 
the applicability of Lanchester attrition theory. 

IX.C. Previous Historical Analyses. II 

As we earlier stated, there have been several other analyses of historical data 
in terms of Lanchester theory. If, for the moment, we exclude Osipov's analysis, and 
the analysis of the preceding section, we find two analyses, both cited in Dupuy's 
Numbers, Predictions, and Wars. These analyses are due to Dr. Daniel A. Williard, 
and Janice B. Fain. These analyses found that the attrition order of historical battles 
was approximately 2.5. In terms of the attrition differential equations, these analyses 
indicate a form of 

äA = -JL B . (IX.C-1) 
dt 4Ä 

which would lead us to believe that the rate of loss is inversely proportional to the 
square root of the force strength - the stronger a force the fewer casualties it takes. 
This result is used by Dupuy to argue the invalidity of Lanchester's theory. We note 
in passing that Equation (IX.C-1) is an Osipov type of attrition differential equation and 
that we can and do have an explicit time solution of this type of (paired) equation. 
We further note that we might subject the data to an Osipov type analysis for an 
attrition order of 5/2 and find good agreement - we will defer such considerations for 
the moment. 

The data in Williard's paper and the first Fain paper are not available for this 
work because of their limited nature (we restrict ourselves to open literature sources). 
The second Fain paper is, however, openly available and we may examine it to gain 
some insight into that analysis. The data used in this study were extracted from 
Bodart which was not available to this author, and the report does not exhaustively 
catalog the battles in Fain's data base (approximately 1100 battles). For our 
calculations here, we substitute other data bases drawn from other sources. We may 
only assume that they are similar. 
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The analyses of Williard and Fain were based on the idea of performing linear 
regression of what is essentially the state solution. (We translate this method into our 
own notation here for consistency sake). The Lanchester-Osipov state solution is 

ß Mo'-ii») = a (£0
n-2T). (IX.C-2) 

We may rewrite this as 

1 -£- Al 
AS 

^tf 1   - il 
BS 

(IX.C-3) 

As Osipov noted, and reiterated by Fain, most battles end when losses are still small 
(20-30%). It is therefore convenient to rewrite the final numbers using the loss 
functions introduced by Osipov.  In those terms 

A = A0 - a 
B = B0 - b, 

(IX.C-4) 

where a,b are the losses of the red, blue forces. 

We may write Equation (IX.C-3) as 

f \» 
1 - 1 a - a  B" - —  On 1    " 

V ^0  j ß _ 

_     1   __£. 
Bn 

(IX.C-5) 

and since a/A0, b/B0 are small compared to 1, we may write 

.n-1     _ a  „n-1 L 
A0    a = — BQ    t>, (IX.C-6) 

after cancelling a common factor of n. If we take the logarithm of the equation, we 
get 

(n-1)ln(40) + ln(a) = Inf-   + (n-1)ln(50) + ln(fc), 
Iß/ 

(IX.C-7) 

which we may rearrange as 
which we immediately see has the form of a straight line 
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In £   = in «   + (n-1) In *L , (IX.C-8) {-) = In '-) + („-1) |n 

y ' = c + dx, 

where c is the intercept and d is the slope of the line. If we curve fit an historic data 
base, where Y = ln(a/b), and x = ln(B0/A0) we can expect to find the fitted slope to 
be related to the attrition order. 

From the sources available to us a series of data bases were constructed. Even 
taken together, these data bases contain fewer total battles than does Fain's data 
base. These data bases consist of the following:8 

A data base which includes those battles with the requisite five data per battle, 
with battle duration expressed in days. These battles (108 in number) were drawn 
from Laffin and Eggenberger. Most of these battles were one day in duration - few are 
of more than 6 days in duration. These data are presented in Table (D.1) and will be 
referred to as Nominal Length Battles. 

The second data base was drawn from Livermore. Duration was calculated in 
days based on the inclusive dates of the battle. This data base consists of 49 battles, 
and is presented in Table (D.2), and will be referred to as Civil War Battles 

The next data base is drawn directly from Osipov. It does not include duration. 
This data base is given in Table (D.3), and will be referred to as Osipov's Battles. 

The fourth data base is somewhat arbitrarily formed of short battles, most less 
than one day in duration. An upper and lower bound on the duration of the battles 
(in hours) was placed in an attempt to facilitate the calculation of time dependence. 
These data are given in Table (D.4), and will be referred to as Short Battles. 

The fifth data base, consisting of World War I battles, is presented in Table 
(D.5).  There are all relatively long duration battles. 

A sixth data base was also developed for battles which were fought to, or near 
to, a conclusion. These battles will be discussed in a later chapter. 

Each of these data bases was subjected to a correlation analysis and to a linear 

■ These databases are presented explicitly in Appendix D. I apologize for the inconvenience to 
the student, but since we shall refer to these data in later chapters as well, and I do not want to 
continually reproduce the same data, I have chosen to locate them at the end of the book. 

IX - 11 



regression analysis ala Equation (IX.C-5).  The results of that analysis are presented 
in Table (X.C.1) 
Table IX.C.1 Data Set Analysis Using Willard's Formula 

DATA SET ATTRITION 
ORDER 

ERROR CORRELATION # BATTLES 

Nominal Length Bat- 
tles 

0.34 0.13 -0.44 108 

Civil War Battles -0.33 0.26 -0.53 49 

Osipov's Battles 0.80 0.61 -0.05 45 

Short Battles 0.58 0.20 -0.24 72 

WWI Battles 0.02 0.36 -0.65 12 

From this table, we see that the attrition order varies enormously from one data 
set to another. They evidently do not present an attrition order of 2.5. Lacking the 
data sets of Williard and Fain, we cannot speculate further on the discrepancies 
between these results and those of these two workers. We can, however, examine 
the validity of Equation (IX.C-8), which we shall do in the next chapter. 

IX.D Further Analysis of the Data Sets. 

In the process of performing the correlation analysis of the data sets, a curious 
feature was noted. The initial and final force strengths were found to be highly 
correlated.  This is shown in Table (IX.D.1) 
Table IX.D.1 Initial-Final Force Strength Correlations 

DATA SET A0-A Correlation B0-B Correlation 

Nominal Length Battles 0.98 0.98 

Civil War Battles 0.99 0.99 

Osipov's Battles 0.98 0.98 

Short Battles 0.99 0.99 

WWI Battles 0.98 0.98 
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These correlations are entirely too strong to be ignored. To illustrate this, the final 
and initial force strength are plotted in the following figures shown collectively in 
Table (IX.D.2). 
Table IX.D.2 Correlation Plots of the Data Sets 

DATA SET FIGURES FIGURES 

Nominal Length Battles IX.D.1 (Blue Force) IX.D.2 (Red Force) 

Civil War Battles IX.D.3 (Union) IX.D.4 (Confederate) 

Osipov's Battles IX.D.5 (Stronger Force) IX.D.6 (Weaker Force) 

Short Battles IX.D.7 (Attacker) IX.D.8 (Defender) 

WWI Battles IX.D.9 (Attacker) IX.D.10 (Defender) 

Examination of these figures reveals a high degree of linearity of the data. There 
is some scatter, part of which may be due to the uncertainties in the basic data. This 
degree of uncertainty, however, is not sufficient to negate the obvious conclusion that 
there is some (fairly simple) linear relationship between initial and final force strengths. 

It is also possible to postulate from this data that there is more than one linear 
relationship between the force strengths. In Figure (IX.D.1), a decided slope change 
may be seen for initial force strengths > 150,000 as compared to initial force 
strengths less than this value. A similar, but less well defined situation seems to exist 
for Figure (IX.D.2) (It is moot to draw too strong a conclusion for these nominal length 
battles as we draw no distinction between winner/looser or attacker/defender.) 

As we proceed to examine the other figures, we observe no slope change for 
the Civil War Battles (Figures IX.D.3 and IX.D.4), but none of these battles have initial 
force strength > 120,000. If we examine Osipov's Battles (recalling now that force 
strengths are given in thousands.) no clear slope change occurs for the Stronger Force 
until ~ 250,000 (Figures IX.D.5 and IX.D.6). For the Weaker Force, there is a weak 
slope change for ~ 175,000. This contrasts with Osipov's conjuncture that attrition 
order changes at ~ 175,000 force strength. For the Short Battles, (Figures IX.D.7 
and IX.D.8), there are weak slope changes for force strength ~ 100,000. The World 
War I data are shown in Figures IX.D.9 and IX.D.10. 

From these plots, we may conclude that there is a strong linear relationship 
between initial and final force strengths and that the slope of this relationship may 
change as the initial force strength increases (changing at 100,000 - 150,000). The 
exact quantification of these relationships may be calculated using linear regression, 
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but before we perform such an analysis, a short side trip is needed. 
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X. Arguments Against Lanchester Attrition Theory 

X.A  Introduction 

In the preceding chapter, we reviewed the Lanchester validation efforts of 
Engel1, Busse2, Willard3, and Fain4. The first two examined an individual battle/- 
campaign to test the merit of Lanchester Quadratic attrition while the latter two 
examined collections of battles to calculate attrition order. While the first efforts 
displayed some success, the latter resulted in an estimate of historical attrition order 
of ~ 2.5, substantially different from the value between 1 and 2 that we would have 
expected from Lanchester Theory. 

Having introduced the serpent into Eden, it is appropriate now that we review 
the chief arguments against Lanchester Theory before we continue our examination 
of history. 

One of the foremost critics of Lanchester Attrition Theory (LAT), as we have 
noted before, is Trevor Dupuy, whose Quantified Judgement Model (QJM) we will 
briefly review in the next chapter5-6. Dupuy's chief argument against Lanchester 
Theory is based on the Willard-Fain analysis. 

Another critic is Joshua Epstein, an analyst who also has an alternative combat 
model, (which we shall also review in the next chapter,) presents three major 
problems with Lanchester Theory:7,8 

(1) Why Withdraw? 
(2) No Trading Space for Time, and 
(3) No Diminishing Marginal Returns. 

We shall address each in turn. 

X.B. Why Withdraw? 

Epstein states that LAT does not contain any feedback, that "not one of the 
equations can capture the effort of withdrawal - a response to attrition - on the rate 
of attrition itself." This is a simplification whose apparent truth masks the basic 
assumptions of Lanchester Theory. 

Admittedly, Lanchester Theory does not contain any feedback mechanism to 
alter the attrition rates in a'withdrawal. Lanchester Theory is not a theory of combat3, 
but a theory of combat attrition; it should not be expected to automatically emulate 
these effects. This is not to say that the efforts of withdrawal on attrition cannot be 

"      For a somewhat consistent review, see Lepingwell, John W. R., "The Laws of Combat?" 
International Security, Summer 12. 89-134, 1987. 
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incorporated. These effects can be incorporated in the attrition rates via Bonder-Farrell 
Attrition Rate Theory (which we will discuss later in the book). Their effects do not 
occur automatically, however. 

Technically, Epstein's first criticism is valid, but only if one misinterprets what 
Lanchester Attrition Theory is. If one correctly views it as only a theory of attrition, 
than this criticism is reduced to a statement of limitation. 

X.C. No Trading Space for Time. 

The second criticism is that the conclusion time predicted by Lanchester Theory 
does not reflect withdrawal or movement. Again, the criticism is true but is 
fallaciously based on the idea that Lanchester Theory is a general theory of combat. 
Thus, this criticism not only carries forward the same misunderstanding of previous 
criticism, but compounds it by misinterpreting the nature of the conclusion time. 

The conclusion time is a mathematical convenience, a tool. It does not hold any 
relationship to actuality that his ever been demonstrated. If we accept the restriction 
that Lanchester Theory is a limited theory of attrition in combat only, then we must 
look elsewhere for models of the condition that initiate and terminate attrition! The 
conclusion time is most certainly not a model of that except under extraordinarily 
circumstances. 

We may sketch a set of Lanchester differential equations that incorporate withdrawal 
and trading space for time. Assume that the force strengths of the two sides are 
functions of time and position, and that the attrition rates are (at least) functions of 
position. In this case, we may write a pair of attrition differential equations 

at 

and 

^-Bir^t) = -P&.rjiik.t). (X.C-2) 
at 

with the supplemental trajectory equations, 

t 

at) =ao) + /v4(o^. {XC-3) 

0 

and 
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rjt) = rJLO) * / vrfO dt', (X.C-4) 

where: A,B are the time and position dependent force strengths, 
a, ß are the position dependent attrition rates, 
rA, rB are the time dependent positions of the two forces, respectively, 

and 
YA, yB are the time dependent velocities of the two forces, respectively. 

We now divide the engagement into two parts in time. For 0 < t < t,, we take 

*W - a' (X.C-5) 
VB(0 < Q. 

in the sense that | rA - rB | is decreasing, so that the A force is stationary (defending) 
and the B force is advancing (attacking). For t, < t < t2, we change yA so that 

v^ £ Q, (X.C-6) 

so that the A (defending) force is now withdrawing, and probably 

so that the defending force is withdrawing faster than the B force is advancing. The 
effective zeros of the attrition rates with range separation would thus define t2 at this 
separation as the close or end of the engagement. If we view the attrition rates as 
being given approximately (we will treat this in greater detail in the section of the 
book on attrition rate theory,) as 

a(£A'£a) " PBPkBPws(rA'!ji)' (X.C-8) 

(and similarly for /?,) 
where: pB is the Blue unit rate of fire, 

pkB is the Blue unit probability of kill per shot, and 
pL0S is the probability of Line Of Sight (LOS) between the two positions, 

and 
pL0S is a symmetric function in its arguments, that is, 

PLOS\ZA'Z&) 
= PLOS(Lä'LA)> 

then the attrition rates will become zero when pL0S becomes zero. (Distinctions 
between hull defilade and fully exposed target effects are, among other places, 
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contained in the pk's.) This effectively closes the engagement at some time (which we 
are liberty to designate t2,) given by the values of the positions. 

This division of the movement into two regions has the effect of modeling 
withdrawal and trading space for time in the engagement using Lanchester Attrition 
Theory. We could, of course, embellish the model by using different attrition rates for 
the two divisions, and probably should, but this embellishment is unnecessary to 
demonstrate our point that these two criticisms of Epstein's can be treated with LAT. 
Admittedly, this model does not incorporate feedback, as Epstein's model of the next 
chapter does, but it does allow us to address the two criticisms. 

X.D. No Diminishing Marginal Returns. 

This criticism relates to the quadratic State Solution. The argument is that if 
one force is twice the other, then the second force must have an attrition rate four 
times the first's to force a stalemate. As Epstein points out, this is not born out by 
history, although history also displays that the assumptions of Lanchester Theory have 
been violated as well. 

Simply put, it is possible for the state solution to apply, but only if the 
assumptions implicit in Lanchester Theory apply as well. As soon as one side becomes 
larger than the other, keeping all units in combat becomes problematical. As before, 
the criticism becomes limitation. 

X.E. Back to History. 

The criticism of Lanchester Attrition Theory thus come to be seen as turning on 
whether history will support the mathematics. As we have seen, Epstein's criticisms 
are fundamentally based in an expectation that Lanchester Theory is a general theory 
of combat, which it is not. Having eliminated the teeth of these criticisms of what is 
not, what remains is a question of whether the data of history will support Lanchester 
Theory? 

Basically then, the question comes down 10 the analysis of Willard and Fain. 
As we have seen , these give rise to attrition orders of ~ 2.5 in their calculations, and 
substantially other values for our data bases. We must therefore examine these data 
basis in some more detail. 

Before proceeding on this, we take time to examine the behavior of Willard's 
equation 
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In|£   = in i   + (n - 1) In 
(A \ An (X.E-I: 

under simulated conditions where we know n = 2. If we take a series of values for A0, 
generate from distributions A, B0., a and ß, and calculate B from the state solutions, 
how likely are we to get n = 2? We conducted just such an experiment, and found, 
for this experiment, that we got an average attrition order of 1.86 with a standard 
deviation of 0.75. This is a very large standard deviation, but it indicates that an 
attrition order of 2.5 is not as strong a deviation from the desired value between 1.5 
and 2 as we would expect. The noise in the method itself may be making the situation 
seem worse than it really is. 

Next, we tried another attrition equation based on the differential equation 
itself. 

M = -aAz-»B, (X.E-2) 
dt 

which we rewrite as 

^l = -anAB, (X.E-3) 
dt 

and integrate approximately as 

A- - A« . ILL* ( A0B0 +AB). (X.E-4) 

We expand the left hand side in the same manner as for Willard's equation and get 

Af a-±±(AQB0+AB), (X.E-5) 

where: 

a =A0 -A = Ail. (X.E-6) 

We rewrite Equation (X.E-5) as 
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In 2a 
A0B0 + AB 

= In(a-c) + (1  - n) In(i40), (X.E-7) 

and curve fit it (and the similar equation for B.) This gives an average attrition order 
of 1.94 with a standard deviation of 0.08. 

Next, we applied this fitting technique to the historical data introduced in the 
preceding chapter. The results are given in the Table.  

Data Set Attrition Order Standard Error Number of Bat- 
tles 

Nominal 1.883 0.065 108 

Civil War 2.097 0.125 49 

Osipov 2.124 0.139 38 

Short 1.838 0.066 72 

World War I 1.901 0.223 12 

This gives an average attrition order of 1.942, which is in the region, between 1.5 
and 2, sought by Willard and Fain. These results are much more consistent with what 
we would expect from Lanchester Theory, as demonstrated by the errors when 
compared to those calculated in the previous chapter. 

Why should this fitting method be better than Willard's formula? If we make 
scatter plots of the independent versus dependent variables for Willard's equation, 
equation (X.E-1) (i.e. In(a/b) versus ln(A0/B0)) and for our approximately integrated 
differential equation, equation (X.E-7) (i.e. ln(2a/(Ao B0 + A B)) versus ln(A0) and 
ln(2b/(A0 B0 + A B)) versus ln(B0)) we see an apparent reason. We present these for 
the Nominal Length Battles data set in Figures (IX.D.1) and (IX.D.2) respectively. 
Imagine how you woulr draw a straight line through these data (which is what the 
linear regression will do.) My intuitive guess for doing this in both figures would draw 
the line running from upper left to lower right. This intuition is completely wrong for 
the result we desire from Willard's formula since for n = 2 we would want a slope 
of one! The intuition is right for the appriximately integrated differential equation since 
for n = 2 we would want a slope of minus one. Further, notice the high degree of 
scatter in figure (IX.D.1) as compared to figure (IX.D.2). This tighter pattern in the 
second figure contributes to a better fit in the linear regression. Thus, while we would 
expect a better fit from Willard's formula, since it is based on exact integration and 
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incorporates the same approximation of loss representation as we used in the 
approximately integrated differential equation, it does not provide us with as compact 
a set of data as the latter equation. Despite the greater degree of approximation 
introduced in the approximately integrated differential equation approach, it therefore 
appears reasonable to accept it as a better estimator of attrition order than Willard's 
equation. 

There is another potential source of error that we should also recognize. In 
Willard's equation, the intercept of the fitted line is the logartithm of the ratio of the 
attrition rates, while in the approximately integrated differential equation, the intercept 
is the logarithm of the attrition rate. If we view the attrition rates during as random 
variables then the approximately integrated differential equation will fit the intercept 
(approximately) to the mean of the distribution. This is not the case with Willard's 
equation. An initial view would lead us to believe that the intercept for Willard's 
equation should be approximately zero if the two attrition rates are drawn from the 
same distribution and we are calculating the ratio of the mean of that distribution to 
the mean of the same distibution. This is not the case, however. What we are 
calculating is the mean of the logarithms of a set of sample draws from the 
distribution. The distribution of these ratios is considerably less well behaved than the 
distribution of the attrition rates. Any skewness in the distribution about the mean is 
magnified and this can lead to greater distortion in the data and the resulting fit. 
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XI.  Two Alternatives to Lanchester 

XI.A. Introduction. 

In the previous chapter, we reviewed some of the primary criticisms of 
Lanchester Attrition Theory, noting therein that two of the critics: Trevor Dupuy and 
Joshua Epstein had advanced combat models of their own as alternatives to (or 
improvements over) the Lanchester model. The purpose of this chapter is to briefly 
review each of these models to provide a basis of comparison between the bulk of the 
book and some of the alternatives. This review will be sketchy and cannot begin to 
do justice to the efforts of these two workers in developing their models. I apologize 
here and now for errors and omissions of explanation caused by my lack of under- 
standing. 

XI.B. The Quantified Judgement Model 

COL Trevor Dupuy is a well-know military historian; his Quantified Judgement 
Model (QJM) reflects that, being based on Clausewitz's "Law of Numbers" 

"If we ... strip the engagement of all the variables arising 
from its purpose and circumstances, and disregard (or strip 
out) the fighting value of the troops involved (which is a 
given quantity), we are left with the base concept of the 
engagement... in which the only distinguishing factor is the 
number of troops on either side. 
These numbers, therefore, will determine victory (and are) 
the most important factor in the outcome of an engage- 
ment... 
This ... would hold true for Greeks and Persians, for 
Englishmen and Maharattas, for Frenchmen and Germans "1 

The basic description of the QJM is Numbers, Predictions, and War2, updated 
by Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War3. 
The student must be prepared for diligent inspection when studying these texts. COL 
Dupuy is not a mathematician, his formulas are plagued with apparent inconsistencies 
and errors. Parameters that change with tactical era are not always vigorously 
identified, and some alternative definitions may border on being contradictory. Many 
of the formula are derived from historical data so they may not appear obviously 
logical, or agree with similar formula obtained by other means. We must keep in mind 
that there are two sets of messages here: the historical and the mathematical; and not 
allow the complexities and mistakes in the latter to destroy our learning from the 
former. 

The fundamental relationship of the QJM, taken from Clausewitz's Law of 

XI-1 



Numbers is the combat power of a side, defined by 

P = SVCev, (XI.B-1) 

where: S = Force Strength (which is different from the Lanchestrian), 
V = Operational Variables, and 
Cev = Combat Effectiveness Value. 

The Combat Effectiveness Value is judgmental factor, related by Dupuy to nationality 
and generalship, that modifies the combat power. Dupuy admits that "there is as yet 
no scientific way to forecast Cev's." 

The force strength is the summation over all the elements of the force of 

5=    £     wirihiZiWi, 
aUekmcnts 

where: Wj =   Operational Lethality Index, 
r;   = terrain factor, 
h| = weather factor, 
Zj = sensor factor, and 
Wj = air superiority factor. 

The Operational Lethality Index is calculated as the quotient of the Theoretical 
Lethality Index and the Dispersion Index (the area in km2 occupied by a force of 
100,000) which is a function of tactical era and situation. It represents a density of 
forces on the battlefield. The Theoretical Lethality Index formula depends on the type 
of weapon, and includes the technical characteristics of the weapon including 
lethality, accuracy, and vulnerability. Thus the Operational Lethality Index can be 
thought of as being proportional to the (Lanchestrian) Force Strength times the 
attrition rate. 

The Operational Variables V is a product of several factors including mobility, 
leadership, training, morale, logistics, military posture, terrain, weather, season, and 
vulnerability. This variable incorporates the type of engagement, and distinguishes 
attacker from defender. 

Dupuy predicts battle outcome based on two quantities: the Combat Power - 
the larger should be victorious, and the result formula 

R = Mt + E   + E   , (XI.B-3) "       "*■} sp cas' 

where: Mf    = mission accomplishment, 
Esp = spatial effectiveness, and 
Ecas = casualty effectiveness, 
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which should also be larger for the victor. The mission accomplishment is judgmental. 
Spatial effectiveness is calculated from both sides' force strength and advance rates. 
Casualty effectiveness is calculated from casualty predication formula. 

In summary, the QJM is a general model of combat based on historical develop- 
ment. It is considerably more complicated than the basic Lanchester model. Its chief 
drawbacks are its complexity, often contradictory formalism, its inherently judgmental 
components, and its lack of detailed consideration in a scientific sense. It is also a 
relatively fragile model. It must be used in an "all or nothing " form, it has no scientific 
basis for introducing new technology for consideration, and it may be too uniquely 
embedded in the warfare database of its origin. 

XI.C. The Epstein Model 

This model, considerably similar in form than the QJM, is documented in The 
Calculus of Conventional War4 and Strategy and Force Planning5. The model is 
structurally somewhat similar to Lanchester attrition. It has a finite difference form 
with time increments of days. 

The attacker ground lethality evolution equation is 

Ag(t) = AJt-V - <x(f-1) Ag(t-1) - C^-1), (XI.C-1) 

where: a(t-1) = attacker's total ground lethality attrition rate per day (on (0,1)) 
C^t) = attacker's ground lethality killed on day t by 

defender's close air support. 
Note that a is the defender's attrition rate in Lanchester terms, expressed as a fraction 
of the attacker's strength. In this model, instead of force strengths in numbers, the 
operant quantities are ground (and air) lethality. For homogeneous aggregation, it 
would seem that total force strength and force ground lethality are approximately 
linearly related by a constant? 

The defender ground lethality evolution equation is: 

Dg(t) = Dg(t-1) - 2^1 A,(M) - C^CM). (XI.C-2) 
r 

where: C^t) = defender's ground lethality killed on day t by 
attacker's close air support, and 

p = attacker's ground lethality killed per defender's ground 
lethality killed (average ground to ground exchange ratio.) 

The ground lethality rate is given by 
where: ag = attacher's ground-prosecution rate, 
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a(t) = a(t) 1 - _M£)J 
"WO , 

w(t) = defender's rate of withdrawal, and 
wMAX(t) = defender's maximum rate of withdrawal. 

The withdrawal rate has an evolution equation, 

w(t) = O.a^M) * a^, 

= w(*-1) + 
w MAX -W(M) 

1  - a dT 
( «</(0 " ««fr W'-1) > a<fr« 

(XI.C-3) 

(XI.C-4) 

where: 

* } Dlt) 
(XI.C-5) 

and     adT = defender's threshold attrition rate. 
The close air support aircraft surviving on with day t have the forms, 

AM - J>.(D (1 -«<*,)' 
saO-i) 

for the defender,and 

Aa(t) -AJLV{1 -*t 
\Sa(t-n 

(XI.C-6) 

(XI.C-7) 

where: ada, aaa = defender, attacker aircraft attrition rate per sorte, on (0,1), 
and Sd, Sa = defender, attacker sorte rate. 
The ground lethality killed by close air support aircraft are: 

C«D«0 - % DjLt) Kd 
1 - (1 " «*)' 

S;*t 

- 1 
a da 

(XI.C-8) 

and 

CJL*) = % 4,(0 Ka 
1 - (1 - os*+1 

-1 
a. 

(XI.C-9) 

where: L is the number of "lethality points" per division equivalent, 
V is the number of armored fighting vehicles per division 
equivalent, and 
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Kd, Ka are the defender, attacker Close Air Support kills of 
enemy AFVs. 

Epstein claims that this model incorporates feedback on both attacker and 
defender sides that moderates the battle. It clearly has feedback and while we have 
not exercised the model sufficiently to completely establish the extent of the 
feedback, it is already there. 

This model is more general than what we have seen so far in Lanchester theory. 
We do not believe it is as general as Lanchester theory in terms of admitting different 
aggregations' of forces. It has not been subjected to the validation efforts that the 
Lanchester Theory has. 

Perhaps the most difficult thing about this model however is an apparent 
tautology. The quantity p is defined as the ratio of attacker ground lethality killed to 
defender ground lethality killed. Thus 

D = 
LA^ (XI.C-10) 

where we have reintroduced the A notation. 

If we substitute equation (XI.C-10) into equation (XI.C-2) , we get, (changing 
to the A notation we are used to,) 

AAf(0 

P      AD« (X,C-11) 

which we may simplify as 

AAg(t) = -«(M) A^-1) - C^-1) ^1 . (XI.C-12) 

This is not the same as equation (XI.C-1) unless the last term reduces to C^t-I). 

This is the fundamental problem with the Epstein model. While it does have the 
feedback that allows trading space for time, it has no accommodation for calculating 
the attrition rates on the firm scientific basis that Lanchester theory does. It is useful 
for studying that feedback correlation, but not for evaluating the interplay of different 
force components and new weapons technology on the battlefield. 
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XI.D. Conclusion. 

We have examined both the QJM of Dupuy and the Epstein model. Both are 
more general models of combat than Lanchester Attrition Theory, and both are 
somewhat more specialized models which do not have the generality to allow for the 
evaluation of force components and technology. They provide useful insights into 
combat processes, but their greater "correctness" reduces their generality compared 
to the mechanics of Lanchester Attrition Theory. 
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XII. The Recent Unpleasantness 

XII. A.        Introduction 

As a child growing up in the South, I frequently heard little old ladies, at least 
my grandmother's age, using this term to refer to what we now seem to have settled 
into calling the Civil War.8 These ladies had learned the term from their grandmothers 
or even great-grandmothers, who may have experienced the shortages and emotions 
of the war itself, but assuredly had experienced the frustration and agony of 
Reconstruction. To these ladies, the War was not a matter of military effort, but the 
impact of the war on their daily lives. 

The Civil War was much closer to the people in those days. The rite of passage 
of becoming a teenager, and the Centennial of the war are irrevocably linked periods 
for me. The social acceptability of beards turned about within a matter of months and 
fashion retreated to hoop skirts and frock coats on such a multitude of occasions as 
to become the norm. No cemetery, less than a half century old, did not contain 
markers commemorating that the penultimate activity of the man interred thereunder 
was to serve in the war; his life and accomplishments afterwards being too mundane 
and colorless for memory 

While no Southron community has forgotten the war, most Northern 
communities have. Except for those whose economy is dominated by a battlefield or 
a war hero's home, the only Northern community with memory, that I have found, is 
Carlisle, PA, and their memory is largely limited to Stuart's raid of '63. Still, there are 
pockets of interest, evidenced by civilian commemorative units who reenact battles 
even in places where they never occurred, such as California and New Jersey. 

Modern liberals may decry this seeming worship of a war whose raison d'etre, 
in their minds, was largely racial. Still, the Civil War is also a matter of serious 
professional study, as evidenced by the fact that one in five of history books written 
in this country deal with the war. 

Well may we study the Civil War. Its influence on our society has been more 
profound than any war except the American Revolution, and its evolvement of the 
general populace was much more widespread. The span of its battles and engage- 
ments is enormously greater, with some authorities claiming the number exceeds five 
thousand. 

8     Also known as the War Between The States, the War of Southron Independence, the War 
of Northern Aggression, and the Second American Revolution, to cite only a few,  clearly with a 
Southern proclivity. 
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In our current age, there are still many lessons to be learned; many insights to 
be drawn from the war. In our current environment of high and rising technology, and 
the reduction of the sizes of the armed services in the demise of the Soviet Union, 
there is considerable information. By studying the war, we may hope to learn how 
armies adopt technology and develop tactics and doctrine. The advent of railroads, 
breech loading guns, rifling, and connodial bullets were no less military innovations in 
their day than electronics and guided weapons are in ours. 

In some cases, the technology was successfully digested into doctrine, as with 
railroads. Other technologies were not so successfully adopted. A case in point were 
longer range, more accurate, and higher rate of fire infantry weapons. This failure has 
been ascribed as the cause of high attrition rates, especially for the Confederacy.1,2 

We shall examine this in subsequent sections. 

Another area of interest is the rapid expansion of the armed forces from small 
professional cadres to large volunteer(?) establishments, and the development of 
organizational methods for intermixing and managing state (i.e. National Guard or 
Reserve) units with national (i.e. Active Component) units. While this was not the only 
time this has occurred in American history, it was the first time on the scale of a 
major national conflict rivaling the first and second world wars. Notable in this process 
(among other examples,) was how the armies were able to foster the growth and 
advancement of civilians who proved exceptional soldiers, as evidenced by men such 
as John Singleton Mosby and Joshua Lawrence Chamberlain, while surviving and 
culling inept, often political, appointed to high rank without benefit of training or 
extensive experience. 

Our interest here is to examine the Civil War as it provides evidence for and 
against Lanchester Attrition Theory. We are not primarily concerned with the political 
and many of the military aspects of the war. The battles and engagements are a 
source of data and because of the extensive study and documentation of the war, 
they are an almost unique source of such data. 

In examining the Civil War, we shall approximately follow the outline and much 
of the content of Weiss' seminal article on the war.3 We shall not attempt to 
completely reproduce that article here as it is readily available through professional 
and collegiate libraries. The student should study the article to fully ?preciate 
nuances and differences of interpretation between myself and Weiss. Oi eatment 
here will be somewhat different, as dictated by the needs of a textbook ther than 
a research paper, and reflecting some of the greater advantages now available in 
digital computers for data analysis. For the peace of mind of the student, especially 
the one not particularly mathematically or computer oriented, I will emphasize that 
most of the analysis presented here has been accomplished with a standard personal 

XII-2 



computer spreadsheet program,6 with only occasional use of a statistics program.0 

I wish to emphasize that I resort to the latter out of a desire for convenience and 
simplicity; all of the calculations could have been done with the spreadsheet program 
but with greater effort. (I would have had to put in the formulas explicitly.) 

XII.B. Data and Statistics 

In a footnote to the introduction of his paper, Weiss states that the work 
presented is "the result of the author's hobby." Be this as it may, it is clear from the 
article that hobbies do not have to be amateurish. This article amply demonstrates 
that the Victorian custom of scientific research as hobby did not die with that 
monarch. This paper is an excellent example of small science (i.e. funded not by some 
government or philanthropic organization, or conducted in some enormous university 
research laboratory,) at its best. 

Weiss briefly describes the previous efforts to apply Lanchester Theory to 
historical data: Engel and Willard; described in earlier chapters. Weiss notes that 
"Willard's conclusion that ""there is little value in a simple version of Lanchester's 
equations as a predictive tool, where the only known quantities are initial strengths"" 
is both a discouragement and a challenge." We have examined, in the preceding 
chapter, an alternative approach than Willard's to estimating attrition order, and we 
shall continue that analysis in this chapter. 

Weiss goes on to note, as we have, the relative wealth of data on the Civil 
War, its importance as a precursor of modern mechanized warfare, and the evidence 
arguing against "computerized war". Perhaps equally important, beyond the wealth 
of data, is the temporal and geographic compactness of these data. While this 
detracts from drawing general conclusions about WAR from the data, it also makes 
any trends and correlations easier to accept. Further, it provides a compact set of data 
that may provide insights that can be tested against the more general data sets, but 
which may have been hidden in their generality. (We do concede considerable tactical 
evolution during the progress of the war, as noted by military historians.4) 

b     I started out using Quattro Pro (r) from Borland, and upon shifting to a Windows(r) environ- 
ment, changed first to Excel(r), and then to Quattro Pro for Windows(r). This is not an endorsement 
for any spreadsheet program or any coding house. I merely want to emphasize that any personal 
computer, Macintosh, or workstation spreadsheet program will support most of the analysis and 
graphical presentation needed. 

c     While most spreadsheet programs will perform linear regression, they will not perform more 
elaborate statistical tests and calculations, such as correlations. There are a variety of programs 
that may be used to do these calculations, but I have used STASTIX(r) from Analytical Software for 
this effort because I was able to buy a copy at an Operations Research Society of America 
Convention. Thus, my selection was based on its ease. 
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Weiss draws his data from three sources: Phister5, Livermore,6 and Bodart.7 

The latter source is common in use with Willard. Of the three, only Livermore has 
been available to us. For convenience, we reproduce these data in Table (XII.B.1). As 
before, we include only those battles and engagement for which both initial and final 
force strengths of both sides are recorded; durations in days are also available. Weiss 
states that Livermore is the most meticulous of the three, that he designates winner 
and loser, and he distinguishes between assaults on fortified lines and other battles. 
While Livermore lists 64 battles, only 49 have complete data. 

He concludes after initial analysis that the cumulative losses on both sides are 
approximately equal when summed over the whole war. Further, casualties occur at 
approximately a constant rate for the Confederacy, with 1863 and 1865 being low 
rate years, and 1864 being a high rate year for the Union, obviously reflecting Grant's 
strategy.8 He also gives the distribution of number of Union battles by loss and 
shows that the number of battles is piecewise distributed by loss to the -2/3, -1, and - 
3/2 power. (Weiss presents figures showing the cumulative loss and the loss 
distribution that we do not reproduce here.) 

Weiss also examines other time behaviors and distributions. We present 
equivalent figures to his for our data set. In Figures (XII.B.1) - (XII.B.4), we show 
scatter plots of Union initial and final strengths, killed, and wounded plotted versus 
starting date of each battle or engagement. The equivalent data for the Confederate 
side is given in Figures (XII.B.5) - (XII.B.8). 

In Figure (XII.B.9), we present a scatter plot of battle duration versus date. 
Figure (XII.B. 10) shows Confederate:Union initial force strength ratios (i.e. C0/U0) ver- 
sus date.d Figure (XII.B.11) shows Confederate:Union loss ratios (i.e. AC/AU), versus 
date.6 The student is free to examine these figures in search of pattern or trend; I am 
unable to find one. This is consistent with our earlier investigations. We note that 
while Confederate losses become selectively more extreme in the latter part of the 
war, as noted by historians, attributing this to the greater tactical and operational 
sophistication of Union leaders, and the greater urgency of staving off thrusts toward 
Richmond. Regardless, Confederate losses (absolutely,) are less than Union losses in 
more than 57% of the battles in our data set. 

d     Weiss uses several force ratios in his paper. We present a table of some of the more widely 
accepted and used force ratios in Appendix E, and discuss them in greater detail in a later chapter. 

e The initial force strength ratio is oftem called the initial force ratio, l0; the ratio C/U is often 
called the remaining force ratio (often R, but not to be confused with Weiss' R in a later section of 
this chapter;) and the ratio of losses AC/AU, is the Loss Exchange Ratio, LER. 
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This does not however, paint a complete picture. An equally important quantity 
in this case, is the Fractional Exchange Ratio (FER) which shows the ratio of the 
relative losses for the two sides. If we define the fractional losses as 

for the Union side, and 

/u,sM, (XII.B-1) 

flc s A£, (XII.B-2) 

for the Confederate side, which show the fraction (on the interval [0,1],) of losses to 
each side, then the FER is just 

F„ - ^, (XII.B-3) 
ER 

fl,U 

for the Confederate:Union ratio. We could equally well express the Fractional 
Exchange Ratio as the inverse of this (for the UniomConfederate ratio) if we so chose. 
Our interest here is in relative Confederate losses compared to relative Union losses 
so we define the FER this way. The student should note that this is an asymmetric 
representation because it accentuates large Confederate losses relative to Union 
losses. A symmetric representation would be the Logarithmic Fractional Exchange 
Ratio which is just the logarithm of equation (XII.B-3). We plot the FER versus date in 
Figure (XII.B.12). Note the greater number of high FERs in the latter part of the war, 
which, if we believe our data set to be representative, and we really have few other 
options if we are to try to draw any numerical insights, indicate a deterioration of 
tactical options or innovation to control losses. In all, we note FERs < 1 in only about 
45% of the cases, which clearly supports the theses of historians such as McWhiney 
and Jamieson. Further, no less than six battles have FERs greater than 2 and four of 
these are greater than 4! This number is significant compared to our total data set (49 
battles) in demonstrating a Confederate willingness to accept high casualties despite 
their relative numerical inferiority and superiority as fighters indicated in the previous 
figure. 

Before continuing, it is worthwhile to establish the relationship between 
fractional loss ratios, and FER and Lanchester Attrition theory. If we start with the 
general form of the state solution, equation (VII.B-5), slightly rewritten as 

a( C0"-C») = ß( </0"-£/»). <x"-B-4> 

If we expand C and U to first order in losses (AC, AU) and perform some minor 
algebra, this becomes 
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aCo"1AC = ßC/o"1Af/, (XII.B-5) 

which we may conveniently rewrite in the form, 

aC^— = ß(/0
nM (XII.B-6) 

This equation may be recast immediately using equations (XII.B-1) and (XII.B-2) as 

„r* f   _ or/" f (XII.B-7) aco Ji,c " P^o Jt,U* 

which relates the fractional losses (as long as they are small,) to the initial force 
strengths and the attrition rates. Obviously, then the FER is just 

FER = lüLt (XII.B-8) 
aC0 

again providing the losses are small. Note that the attrition order is preserved. It is 
interesting to note that Lanchester theory predicts that the FER of a battles should be 
a constant during its progress. We shall examine this issue in greater detail later. 

Weiss also presents frequency distributions of force and casualty ratios. In 
keeping with his outline, we present the Confederate:Union initial force strength ratio 
frequency distribution in Figure (XII.B.13). The bin widths (0.2) for the frequency 
distributions are identical to those used by Weiss. Examination would lead us to 
speculate, except for the relative minima at force ratios on (0.8,1], that the 
distribution is Poisson or Gamma. Investigations of further distinctions, such as 
attacker/defender, or assault on fortified lines/other, might yield insights into the 
likelihood of attacking. 

The equivalent distribution for C:U final force strength ratios is given in Figure 
(XII.B.14). This distribution has the same general form as the distribution of initial 
force strength ratios. 

A similar consistency may be found in the frequency distributions of final to 
initial force strength ratios. These are given in Figures (XII.B.15) and (XII.B.16) for the 
Confederate and Union sides, respectively. In this case, the use of Weiss' bin sizes 
is ill chosen. (Weiss did not include these figures in his article.) Nonetheless, we shall 
investigate the relationship of final to initial force strengths in the next section. 

We also include several other distributions for general interest. Figures 
(XII.B.17) and (XII.B.18) show the frequency distributions of Confederate (Union) final 
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force strength to average Union (Confederate) force strength. The frequency 
distribution of the ratios of Confederate losses to Union losses is given in Figure 
(XII.B.19). None of these display any obvious type of pattern. 

The frequency distribution of battle duration is given in Figure (XII.B.20). It 
would appear likely that this distribution is close to being negative exponential. 

Next, in Figure (XII.B.21), we present the frequency distribution of C:U FER. The 
general shape again suggests a Poisson or Gamma distribution aside from the large 
frequencies in the 1.6, 5, and 6 bins. 

Finally, we examine losses. In Figure (XII.B.22), we present a scatter plot of 
Confederate losses versus Union losses. This figure is a logarithmic plot, but is fairly 
clearly a symmetric pattern about a line with slope of approximately one. This 
behavior supports Weiss' findings about approximately equal losses on both sides. 

In Figure (XII.B.23), we present a logarithmic scatter plot of C:U loss ratio 
versus U:C initial force ratio. We have not divided the data into two sets: attacks on 
fortified lines, and other; as Weiss did. Despite the scatter, there is a strong 
suggestion of a linear relationship with small negative slope. This is an interesting 
speculation. It implies that the Confederate forces were more effective against larger 
Union forces than against smaller ones. Does this further imply that Confederate 
leaders had a better command of Grand Tactics (Operational Art) than Union leaders 
had? This may be too strong an assertion, but it supports arguments of superior 
Southron generalship and makes a counter argument to McWhiney and Jamieson. 

XII.C.        Force Strengths and Attrition Order 

In this section, we temporarily depart from our general outline of following 
Weiss' article to examine some of the behavior of force strengths and attrition order. 
As we have already noted in conjunction with Figures (XII.B.15) and (XII.B. 16), the 
frequency distributions of final to initial force strength ratios are rather narrow. This 
merits additional consideration. 

In Figure (XII.C. 1), we present a scatter plot of Union final force strength versus 
Union initial force strength. As we noted in the preceding chapter, the degree of 
linearity shown in these Civil War data, indeed in all of our data sets, is striking. The 
equivalent scatter plot for the Confederate side, given in Figure (XII.C.2), is somewhat 
noisier, but similar and also striking. We may postulate that these data have the 
functional relationship, 
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$ final ~  ° $ initial* (XII.C-1; 

where S indicates force strength, and a is the slope of the line. The line has no 
intercept value since we would expect there to be no losses for a force of zero initial 
strength. If we curve fit these data, we obtain the slopes given in Table (XII.C.1) We 

Table XII.C.1 Homogeneous Final:Initial Force Strength Linear Relationships 

Side Slope Slope Standard 
Error 

R2 

Union 0.8852 0.0069 0.9926 

Confederate 0.8405 0.0116 0.9766 

may glean several insights from this information. First, on the average, Union forces 
lost about 11 % of their initial strength per battle while Confederate forces lost about 
16% of theirs per battle. This is another piece of evidence supporting the arguments 
advanced by McWhiney and Jamieson. The small slope standard errors and the large 
R2 values* indicate the relative goodness of the fit and strongly supports the concept 
of functional relationship between initial and final force strengths implicit in Lanchester 
Attrition Theory. The relatively large standard error and smaller R2 for the Confederate 
side reflects the greater spread in the data as shown in Figure (XII.C.2) as compared 
to Figure (XII.C.1). 

We may also examine the behavior of Confederate (Union) final force strength 
versus Union (Confederate) initial force strength. These scatter plots are given in 
Figures (XII.C.3) and (XII.C.4). We can immediately see that there is considerably 
greater scatter in these cross force plots than in Figures (XII.C.1) and (XII.C.2). If we 
curve fit these data using Equation (XII,C-1), we obtain the results given in Table 
(XII.C.2). The values of the slopes clearly reflect that C:U initial force ratios were 
generally less than one (57%), and that Confederate losses were generally relatively 
larger than Union losses. The relatively smaller values of R2 as compared to those in 
Table (XII.C.1) indicate the lesser tightness of the relationship to the data, but their 
essential equality hints at correlation. 

'      Recall that R2 is defined on the interval (0,1) and the closer its value to one, the better the 
correlation of data and fit. 
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Table XII.C.2 Heterogeneous Finahlnitial Force Strength Linear Relationships 

Initial Final Slope Slope Stan- 
dard Error 

R2 

Union Confederate 1.0684 0.0476 0.7741 

Confederate Union 0.6415 0.0275 0.7735 

We have previously examined the attrition order of these data with our 
approximately integrated differential equation (AIDE), which for our problem takes the 
form, 

In '—2AU    ) = In(aT) + (1 - n) \n(U0), 
U0C0 + uc 

(XII.C-2) 

for the Union, and 

In 
r_2AC__\ 
, uQc0 + uc 

= ln(pt) + (1 - ») ln(C0), 

Table XII.C.3, Attrition Orders and Average Attrition Rates 

(XII.C-3) 

Side Attrition 
Order 

Order 
Standard 
Deviation 

Average 
Attrition 

Rate 

Rate 
Standard 

Error 

R2 

Total 2.097 0.105 0.179 1.088 0.444 

Union 1.949 0.146 0.077 0.879 0.475 

Confeder- 
ate 

1.865 0.082 0.176 0.497 0.699 

for the Confederacy. The total is calculated by combining the two respective data 
sets. Now, since we fully recognize that there may be differences between Union and 
Confederate tactics, it is useful to separately examine the attrition order (and average 
attrition rate) of each side. We present these in Table (XII.C.3), and plots of the basic 
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data (left hand sides of equations (XII.C-2) and (XII.C-3) versus initial force strength) 
in figures (XII.C.5)-(XII.C7). We have added a line which corresponds to an attrition 
order of 2 for illustrative purposes only. 

If we examine these attrition orders, it seems reasonable to postulate that 
overall, for both sides, an attrition order of two (i.e. Quadratic Lanchester attrition,) 
is within a standard deviation of being accurate. Examination of the individual sides 
reveals smaller attrition orders, but for the Union, an attrition order of two is within 
a standard deviation. This is not the case for the Confederacy. Alternately, if we view 
our available choices of attrition order as 1, 3/2, or 2, then clearly these battles and 
engagements can be viewed as having attrition orders of 2. The equivalent plot for 
Willard's equation is given in figure (XII.C.8), for comparison. If we add the logarithm 
of the initial force strength to equations (XII.C-2) and (XII.C-3), and multiply by minus 
one, the result is a linear equation where the slope is the attrition order. We replot the 
Union and Confederate data using this adjusted AIDE in figures (XII.C.9) and 
(XII.C.10). The n = 2 illustrative line has also been plotted. 

Lacking a rigorous theory to explain attrition orders other than these, we can 
accept from these plots that the battles and engagements in our Civil War data set 
may be approximately described using the Quadratic Lanchester equations. The pundit 
may claim that the R2 values are fairly low, and this is indeed the case. We may reply 
however, that the R2 for this data set using Willard's equation is smaller yet (0.3466.) 
The pundit may also object that for this data set, we also have battle duration, so that 
we may explicitly remove the T from the slope and calculate the average attrition rate. 
If we do this, we find greater error, so we are forced to conclude that the quantity 
attrition rate times duration is more representative than are the two separately. 

The values of the attrition rates are surprising. It appears that the rate at which 
Union forces could inflict losses on Confederate forces is, on the average, more than 
twice as large as the rate that Confederate forces could inflict losses on Union forces. 
The standard errors are quite large however, so the matter demands closer attention. 
If we accept that the attrition order of these battles and engagements is approximate- 
ly two, then we can calculate the individual attrition rates using the approximately 
integrated differential equations for attrition order (n) of two. We present the scatter 
plot of these data in figure (XII.C-11). There is no obvious pattern here, but we can 
observe that the Confederacy's attrition rate exceeded 0.2 in ten cases, while the 
Union's only exceeded this value in eight cases. In only two cases did both exceed 
0.2 in the same battle. An interesting further investigation would be to examine the 
difference between attacker and defender. If we examine the relationship between 
attrition rate, and initial force strengths, shown in figure (XII.C-12), we note the 
interesting trend that the larger the initial force strength, the less likely that the 
attrition rate would be large. 
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To determine if there is a pattern lurking in these data, we calculated the 
frequency distributions of the attrition rates. These are shown in Figures (XII.C-13) 
and (XII.C-14) for Union and Confederate, respectively. The Union distribution could 
conceivably be Gamma, but what is striking is the Confederate distribution. While it 
has no evident form, it is clear that the Confederate forces were considerably more 
likely to fight fiercer than the Union forces. This explains the average values from the 
linear regression - the Union fought more consistently than the Confederacy in terms 
of attrition rate. 

XII.D. Meeting Engagements 

Who won? It is always difficult to determine the winner of a battle? In 
Clausewitzian terms, there is the question of whether the result was a military victory 
or a political victory? If it was a military victory, was it a victory at the tactical, 
operational, and/or strategic level? These questions are not easy to answer and 
discussion still takes place over several of the battles in our data set.0 

In this section, we return to the outline of Weiss' article. His next topic is 
meeting engagements, that is, battles and engagements that are not characterized by 
the preselection of terrain, or of its improvement, by either side. Weiss states that 
there were 22 battles in his data set that met these criteria. (Actually, there were 24, 
but Weiss discarded two as "indecisive" in outcome per his sources." 

Table XII.D.l, Average Casualty Ratio, Union/Confederate "Meeting Engagements" 

Winner Union Attacker Confederate Attacker 

Union 1.09(4) 1.06 (8) 

Confederate 1.14(4) 1.13(6) 

He presents tabular presentation of average casualty ratios, Table (XII.D.1),and 
average force rations, Table (XII.D.2), where the number of instances is given in 
parenthesis. The number of battles for each case are shown in these Tables 
parenthetically. Weiss notes that: 

•        arrival of additional units in the battles "washed out" initial effects, 

0     As a more recent example, consider Desert Storm. Today, 1993, there is still discussion 
about the nature of that campaign. Clearly, it was a military victory in the sense that the objectives 
were achieved. The consensus seems to be that it was a military victory at least at the tactical and 
operational levels. Was it a strategic victory? Was it a political victory? This is much less clear. 
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Table XII.D.2, Average Force Ratio; Confederate/Union "Meeting Engagements" 

Winner Union Attacker Confederate Attacker 

Union 0.62 (4) 0.70 (8) 

Confederate 1.14(4) 1.28 (6) 

• each battle consisted of a series of attacks and counterattacks 
(This is a hallmark of meeting engagements.), and 
• therefore, the designation of one said as attacker is faulty. 

Table XII.D.3. Meeting Engagement Attacker Superiority Statistics 

Attacker Battles with Force Super- 
iority 

Battles attacking 

Union 15 7 

Confederates 8 6 

Table XII.D.4. Average Force Ratio of Attacker 

Attacker Average ratio, Confederate/Union 

Union 0.87 (9) 

Confederate 0.96 (15) 

In general, and on average, the winner had a larger force ratio, although the 
Confederate forces attacked with an average of 5% force inferiority. This is consistent 
with the thesis advanced about Confederate tactics. These data are summarized in 
Tables (XII.D.3) and (XII.D.4). Most critically, Weiss presents frequency data for the 
fraction of Union wins as a function of force ratio. These data are given in Table 
(XII.D.5) and shown in Figure (XII.D.1). Weiss claims that if we interpret this 
frequency distribution as a probability of winning, the curve is best fit by a function 
of the form 
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Table XII.D.5. Fraction of Union Wins as Function of Force Ratio 

Confederate: 
Union force 

ratio 

Cases Average 
Fraction of 
Union Wins 

+50% Con- 
fidence limit 

-50% Confi- 
dence limit 

0.40-0.49 3 1.00 1.00 0.63 

0.50-0.79 11 0.68 0.80 0.54 

0.80-1.25 11 0.50 0.64 0.36 

1.26-2.00 1 0.00 0.75 0.00 

2.01-2.50 2 0.00 0.50 0.00 

p = 
1 +Ji 3' 

(XII.D-1) 

where: JJ - Confederate:Union force ratio (i.e. the initial force ratio). 
We may examine this by comparing the data to different equations of the form 

1 
1  + n" 

(XII.D-2) 

where: n = 1,2,3,4. 
These curves are also shown in Figure (XII.D.1). In principle, these data can be curve 
fit, except that there are only two useful data points (the second and third!) This may 
be seen if we rewrite equation (XII.D-2) as its inverse, 

1 - 1 + Ü-, (XII.D-3) 

and rewrite it as 

- - 1 = \in. 
P 

(XII. D-4) 

If we now take the logarithm of this equation, we obtain 
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= n ln(n), 

which is a linear equation amenable to curve fit. Since the equation has no intercept, 
however, the linear regression is trivial - it is just 

E'n 
n = 

(1-0 (XII. D-6) 

E ln(n) 
The student may verify this fact by consulting a text on linear regression. Note that 
the first data point (P = 1) cannot be used because the argument of the logarithm is 
zero - yielding a value of minus infinity. Similarly, the last two data points cannot be 
used because they have P value of zero, thus logarithm arguments of infinity - yielding 
values of infinity. We further note that the third data point does not contribute to the 
numerator since it gives a logarithm argument of one - yielding a value of zero. 

If we take the values of // as the mid points of the bins, then the value of n that 
we obtain using equation (XII.D-6) with the data of Table (XII.D.5) is approximately 
1.84. This would lead us to believe that a value of n = 2 would be a better choice 
than n = 3. We must note however, that Weiss does not state in his article how he 
arrived at his choice of n = 3 except that it was a best fit. His consideration may also 
have included the confidence limits on the data, and he may have used a different 
fitting technique or different choices of bin value for jj.h This example serves to 
demonstrate the ambiguity inherent in the data that is available. We cannot, and shall 
not, state that Weiss' value of three is not valid; we may only offer that there are 
other results possible from simple analyses such as the example above. 

h This technique is very sensitive to the bin value selection. If we use the lower edge of the 
bin value for //, then we get a value of n = 0.82, while if we use the upper edge of the bin value 
for /j, we get a value of n = 60! 
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Table XII.D.6, Average Casualty Ratios, Confederate/Union "Meeting Engagements" 

Force Ratio > 1.0 < 1.0 

Casualty Ratio 1.17(10) 1.14 (15) 

Winner Confederate Union 

Casualty Ratio 1.15 (12) 1.13 (14) 

Table XII.D.7, Average Per Centum Casualties 

Union % Confederate % Average % 

Winner    .... 11.6 (14) 12.6 (12) 12 

Loser 14.2 (12) 15.9 (14) 15 

Weiss also examines casualties in meeting engagements. He concludes from 
the data, summarized in Table (XII.D.6) that for meeting engagements, "the casualty 
ratio is not obviously dependent on the force ratio and that casualties on both sides 
tend to be equal within a factor of about 2.0." Further, casualty ratios (i.e. Loss 
Exchange Ratios, LERs) tend to follow a log-normal frequency distribution and from this 
Weiss concludes that the arithmetic averages given in the tables "are consistent with 
a median value of casualty ratio close to unity." This suggests that the winner's per 
centum casualties should be less than the loser's.1 This is summarized in Table 
(XII.D.7) These results may be compared with the final:initial force strength curve fits 
performed in the preceding section. While those fits were performed on all data, 
regardless of whether meeting engagement, they are consistent with these results. 
The distinction between the statistics for a meeting engagement and other battles 
must therefore be small for this data set, and presumably for the Civil War as a whole. 

'      This is Fiske's Principle of Winning, "every contest weakens the loser more than it does the 
winner", see Section II.D. 
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XII.F. Weiss' Probability of Winning Model 

Weiss then develops a probabilistic model for winning. He starts by observing 
(in recapitulation,) that: 

1. The probability of winning seems to have a strong functional 
relationship with initial force ratio. 
2. Casualty ratios seem independent of attacker/defender, win- 
ner/loser, and initial force ratio. The range of casualty ratio is 0.46 to 
2.33. 
3. The average loser casualties were 15%; the average winner 
casualties were 12%. 

In comparison to our data set, the range of casualty ratio is somewhat larger. We 
cannot compare winner/loser since we have not made that distinction. 

Weiss postulates that the battle commences, and during its progress, 
continuously assesses its ability to continue. The sole criterion for the assessment is 
the cumulative fractional loss to that point. This is a simple model, but Weiss 
prudently adopts it in preference to considering perceptions of the enemy's abilities. 
Thus he leaves intelligence estimates of initial strengths and relative losses to further 
work. 

This is noteworthy as an example of problem definition. The data will support 
the model that Weiss has formulated. Without greater, and possibly fruitless and 
ambiguous, research, they will not support the more elaborate considerations of 
perceptions. 

We may also view this model from a Clausewitzian vein. The value of 
intelligence is questionable (for this era?) Clausewitz even goes so far as to lecture on 
what information the commander should ignore. Given this, consideration of the 
fractional loses is the only meaningful quantifiable criterion.1 

The fundamental assumption in this model may be stated to be that the 
casualty ratio at battle's end is an exchange ratio characteristic of the battle and 
sustained at a constant rate throughout the battle. Since the casualty ratio that Weiss 
uses is the FER, and since equation (XII.B-8) gives the Lanchester Attrition Theory FER 

as a constant, we may conclude that this assumption, and the development of the 
whole model, are not inconsistent with Lanchester Theory. 

'      I do not mean to imply here that Clausewitz would have condoned this model. He would 
probably have viewed it as a false application of rules that should be a\  'ded by the good com- 
mander. It may however, be consistent with Clausewitz's Law of Numt   s, Section XI.B, even 
including circumstances and quality of troops. 
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Having established that Weiss' model is consistent with Lanchester Theory 
within the framework of small fractional losses that we have found in this Civil War 
data set (and indeed, in all of our data sets,) we now proceed to develop the model 
along the same lines as Weiss except that we generally substitute our notation for his 
where they differ. He first defines the losses at time t < r, the time the battle ends 
as 

A U(t) = U0- U(t), (X||M) 

AC(0 ^ C0 - C(t), 

while the losses at battle's end are 

AUf=U0- U(x), (XII.F-2) 
ACf=C0-C(x). 

The fractional losses at battle's end are then just 

= 
AUf 

fu = -77-' 
uo (XII.F-3) 

AC, 
fc ~   r u0 

while the force ratios at time t are similarly, 

'/ 

Uo (XII. F-4) 

8C - 8c(t) - ^ 
C0 

Note that Weiss' fu, and fc are the same as our previously defined f, u# and f,c. 

Weiss then defines four probability functions: 
hu(gu) dgu, hc(gc) dgc = probability that Union, Confederate 
side gives up in dgUr dgc, respectively, after having sus- 
tained fractional losses gu, gc, respectively, and 
0u(9u)' 0c<9c) = probability that Union, Confederate side 
continue to fight at least until sustaining fractional losses 
9w 9c respectively. 

To develop these functions, he divides fractional losses into small increments (finite 
differences). The probability that the Union force does not give up in the jth fractional 
loss increment is then approximately 
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1  - hnULg„)*g„. (XILF-5) 

Assuming that the eventual decision to break off the battle is independent of all 
previous decisions, the probability that the Union force continues the battle through 
n increments is approximately, 

♦*<**) - fi ( 1 - *uU*8u) ±Su ). (X"-F"6) 

which we may transform to a sum by writing the argument of the product as the 
logarithm of each term exponentiated, 

y-1 m (XII.F-7) 

f ln( 1 - krfjlktv) Itv) 
= e"1 

Since the assumption has been implicitly made that the arguments of the logarithms 
are approximately one, we may approximate equation (XII.F-7) as 

-E hutgj,) ASU (XII.F-8) 

This equation may be generalized from a sum to an integral, yielding, 

fh^dg'a (XII.F-9) 
Msu) =e 

A similar equation may be written for 0c(9c)- 

Weiss next defines a constant R, 

8c (XII.F-10) 

k 
' fc 

as a direct consequence of assuming a constant exchange rate. Note that R is just the 
inverse of the FER, equation (XII.B-3). As we noted previously, the FER can be defined 
either way. 
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• 

Because of the assumption of independence, the joint probability that neither 
side has broken off by time t (or losses gu, gc,) is simply the product of the two 
probabilities, thus 

• =♦(,♦<.,                                          (XII.F-11) 

The battle having proceeded thus far, the differential probability that the Union force 
then breaks off is 

«*<?cr - • M*.M**.                                     (XII.F-12) 

and the total probability that the Union force breaks off is just the integral of this 
equation, 

1 

Qu = J *u *c huiSu) dgv, 
o                                                               (XII.F-13) 
1 

= / <l>c d$u ' 
0 

• 

and Weiss will subsequently show that this integral is trivially performable from the 
assumption of constant exchange ratio. That is, 

+c - *i.                                                  IXILF-141 

so that equation (XII.F-14) becomes 

1 

Qu = I $ud$w {                                                         (XII.F-15) 
1 

1  +a 

If we define the probability that the Union force wins (i.e. does not ever break off,) 
as the complement of Qu, then that probability is just 

/>=_£_. (XII.F-16) 
1  + a 

Weiss also computes the expected loss fraction in a battle, which is just the expected 
value of the instantaneous loss fraction, 
which completes the closure of the model in terms of the initially defined terms. Note 
that equivalent quantities may also be developed for the Confederate side, both from 
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/„--/*,**. {XI,-F-17) 

basic principles and from the symmetry imposed by the assumption. These are left as 
an exercise. 

XII.G.        Data Analysis 

Weiss next addresses his data set to estimate the parameters and functional 
forms in his Model of Winning. To do this, he postulates the following: 

• Let there be N0 battles in the data set, 
• If the Union side loses, there should be N0 0u(fu) 
entries in excess of fu. 
• There should, however, be Lc battles, for a given 
value of fu, which ended at lesser value of fu, that the 
Confederate side lost. 
• Of these battles, Lc 0U should have continued to fUr 

and 
• There are Ou battles in the data set that continue to fu. 

From this, Weiss estimates the probability function by equating these three types of 
battles, 

Ov = N0 4>v - Lc 4>ut (XII.G-1) 

from which the probability function is just 

<|>„ =      °u    . (XII.G-2) 
U     N0 - Lc 

An identical equation can be written for the Confederate side. 

Weiss then curve fits the resulting data (using a similar technique to what we 
have previously described,) and obtains 

*u     e     ' (XII.G-3) 
A -Vc 
<l>c = e      ■ 

where k = 150, and from which it is obvious that 
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4>c = $u> 
(XII.G-4) 

where: 

(f\* 
a = = R\ (XII.G-5) 

This allows the evaluation of equation (XII.F-20). If we first integrate by parts, 

«0-1 

gu=0 

(XII.G-6) 

and note that the first term on the left hand side is zero at both limits (actually this 
is an approximation, cp(gu=1) is very small, approximately 10"65, so we may safely 
approximate it as zero!) If we now use equations (XII.G-3) - (XII.G-5) to substitute into 
equations (XII,G-6), we get 

f„ - f *■**>«* d8u. (XII.G-7) 

and since, from our above introduced approximation, we may extend the integration 
upper limit to infinity, we obtain, 

fu,fe-^^dgu, (XII.G-8) 

which is exactly integrable (Appendix A, Integral (A-10)), yielding, 
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( A\ 

fv 

_1_ 1 
kz (1 + RY 

and similarly for fc, from the definition of R, 

/4\ 

ft 
3j 

c       1 1 
*3 (1 + R3)3 

(XII.G-9) 

(XII.G-10) 

Weiss then subdivided his battle data by ranges of R to compare with equations 
(XII.F-19) and (XII.G-10). We reproduce this here as Table (XII.G.1). 

Weiss next wrestles with a fundamental difficulty in his development. His 
equation (XII.F-19) is a function of the Fractional Loss Ratio R, while his correlation 
analysis of combat data resulted in equation (XII.D-1) which is a function of force ratio 
//. He reasons that, since casualty ratio is essentially independent of force ratio, that 
there is a log-normal distribution of casualty ratio r, (i.e. the Loss Exchange Ratio, LER,) 
strongly centered on r = 1, such that the probabilities P(R), equation (XII.F-19) and 
P(JJ), equation (XII.D-1) are related by 

*(!*) ~ j g(r) P(*r) dr, 

-f 8(r) dr, (XII.G-11) 

o (1 + »3n 

f 8(r-1) P(jxr) dr, 

where, by definition above, R = JJ r. He does admit of the possibility that the 
dispersion of the casualty data (associated with g(r)) may conceal more subtle effects 
than he has assumed. 
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Table Xn.G.l, Comparison of Data with Model Results "Meeting Engagements" 

Range of R 0.22-0.69 0.70-0.79 0.80-1.11 1.12-2.78 

Average R 0.56 0.73 0.94 1.91 

Number of 
Battles 

7 7 7 7 

Fraction of 
Union Wins 

0.79 0.57 0.50 0.29 

Probability of 
Win from 
Equation 
(XH.F-19) 

0.85 0.72 0.55 0.13 

Average 
Confederate 
Fractional 
Loss 

0.17 0.19 0.11 0.08 

Calculated 
Loss from 
Equation 
(Xn.G-10) 

0.16 0.15 0.13 0.08 

XII. H. Assaults on Fortified Lines 

Weiss next turns his attention to attacks on fortified lines. In the parlance of 
Livermore, this category includes more than just attacks on forts; it includes any battle 
or engagement where the defender has prepared positions for that purpose. In this 
case, the attacker: defender casualty ratios always exceed one and have a wide 
scatter. Weiss finds however, that his previous derivations still hold, although the 
value of the constant k is twice as large (k = 300.) He conjectures that the reticence 
for accepting a given casualty fraction may be explained by several reasons: 

7. 

2. 

The attacker will break off because he feels he has been 
weakened beyond the point of overcoming the defender 
even if he breaks through, and 
The attacker is deterred by the psychological effect of 
attacking a fortified position; i.e. fear of excessive losses 
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coupled with inadequate knowledge of the defender's 
strength. 

Further, based on a very small sample set (three battles,) the defender also seems 
willing to accept only lower fractional losses. We might speculate that since defenses 
are prepared to support, or are supported by, a relatively small force, the defender 
may perceive his force to be fragile with respect to losses. Alternately, applying what 
we consider to be a modern doctrine, the intent of the defender may be delay. If this 
is the case, then he will accept fewer losses fractionally to maintain his force's 
fighting ability in subsequent actions after breaking off. Sadly, research to investigate 
the subdivision of the fortified line battles to distinguish between absolute defensive 
intentions, and delaying intentions has not been done. 

Weiss further notes that Confederate losses were small except when Union 
assaults were successful. He suggests then that a model need primarily be concerned 
with the attacker's fractional loss and the initial force ratio. Further, if the attacker's 
losses are proportional to the defender's strength, then the attacker's loss ratio will 
be proportional to the initial force ratio. That is,if 

Atf-C0. (XII.H-1) 

then 

*   = M. - £SL (XII.H-2) u     u0     u0 

He presents scatter plots to support his arguments that, sadly, we cannot reproduce 
here because we have not divided our data set as he has. Weiss does present a linear 
regression result of the attacker dispersion from his data analysis, giving 

At/= 1500 +0.2 C0, (XII.H-3) 

without standard deviation. He concludes that the attacker's fractional losses show 
greater variation in small battles than in large battles (i.e. the intercept dominates 
when C0 is small.) While Weiss admits that this could reflect the uncertainties in all 
casualty data, we may offer another argument that stems from dealing with 
aggregated data. 

Simply put, when the defender has larger forces, he will defend a longer line to 
allow his forces to fight effectively. Alternately, the larger the line to defend, the more 
defenders assigned to the position by higher headquarters. Regardless, the loner the 
line to defend, the easier the job for the attacker since he needs only break the 
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defensive line in one or, at most, two places.k He need only concentrate forces for 
a breakthrough at one (or two) places and engage the defender sufficiently elsewhere 
to preclude the defender shifting troops responsively. Since he need not take as heavy 
losses everywhere except at the breakthrough points, the attacker would be expected 
to have greater control over his casualties and thereby less variability of them. 

Weiss then divides his data set on the basis of whether the total force strength 
(Union plus Confederate,) is more or less than 40,000. He finds that the attacker must 
have at least a force advantage of 1.25 over the defender. Further, for larger battles 
(> 40,000 total strength,) the attacker was almost twice as likely of success for an 
initial force ratio > 1.25 than he was for smaller battles. 

He then examines what he calls the "Stabilizing Effect of Large Numbers". A 
review of both types of battles, meeting engagements and attacks on fortified lines, 
shows greater variability when total losses were small than when large. Probabilistic 
formulations of Lanchester Theory (to be discussed in a later chapter,) exist, but they 
tend to give results which are certain when the number of troops involved is small (< 
100 or so.)1 On this foundation, he posits that the proper way to consider probabilistic 
combat should not be based on probabilities that an element of a force is removed 
from combat (i.e. killed or wounded,) but in the probabilistic variation of exchange 
ratio (presumably fractional?). The distribution would be a function of various factors, 
including terrain, weapons, movement, supply, and the commanders' abilities. He 
argues that such factors would average out in large battles, resulting in less variability, 
as we have seen evidenced in the data presented here. To quote Weiss, "In small 
battles, it is possible for a small force to defeat one much larger; in large battles, 
chance works to the gambler's ruin." 

XII.I. Weiss' Assault on Fortified Position Model 

Weiss now constructs a model for assaults on fortified lines. He divides the 
assault into two phases: 

Phase 1:       The defender's losses are light, the attacker's 
given by Axa,. If these are large enough, he 
may not overrun (breakthrough and hold,) the 
defended position. 

Phase 2:       The attacker breaks through the defender's 
position. Incremental loss rates for both sides 

k     Obviously, the attacker will only attack if he believes he has the forces necessary for 
victory; otherwise, he does not attack. 

1      This is the basis of an argument that Lanchester Theory is only applicable for small unit 
engagements, not for battles or campaigns. The problem arises from requiring the engagement to 
proceed to conclusion, assuming that to be the correct termination requirement. 
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are now assumed identical (i.e. the same as in 
meeting engagements.) 

In Phase 1, the probability that the attacker will abandon the assault isn 

P = e 
kl^\ (xii.i-i; 

where: k  = 300, from the previous section, and xa is the attacker initial force 
strength. 

In Phase 2, both sides take incremental losses which are assumed to be equal. 
Thus, 

AxÄ = Ax,,, + AxÄ, (XII.I-2) 

where: Ax*, Ax^ are the attacker's, defender's losses after breakthrough (at time t), 
respectively. The attacker's fractional loss at time t is then just 

8« " 8ai + VSdv (XII.1-3) 

where: 

(XII.1-4) 
8dt ~ 

A*<*. 

xd 

r\ = 
xd 

Xa 

and xd is the defender's initial force strength. The probability that the defender loses 
can now be calculated, along the same lines as equation (XII.F-16), as 

o d8dt 
Qd=-Ie-k'8«^dgdt. (XII.I-5) 

This integral can also be solved by introducing the approximation of extending the 
upper limit to infinity (since the k's are large!), and expanding the leading term (the 
attacker distribution) about 

m     Actually, I believe Weiss mislabeled this probability. It would seem to be the probability that 
the attacker will not abandon the assault. This seems consistent with the way Weiss uses the 
formula subsequemtly in equation (XII.I-5). 
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8d 
.3 (XII.1-6) 

Mät 

and integrating on a term by term basis. Assuming the two k's are equal, and have 
the value noted previously, then the first term in this integrated expansion has the 
form, 

n   - „-300^* 0.13t,)3 (XII.I-7) 

From this equation, Weiss concludes that the quantity, 

D-g- + 0.13n. (XII.I-8) 
= fa  ~  T\fd +  0-13T1. 

where: fa, fd are the attacker, defender fractional loss ratios, respectively; should be 
a discriminant of success or failure in assaults on fortified lines. He has 18 data points 
in his data set and examines them, finding 3 successes and one partial success out 
of five assaults for D < 0.14, and no successes for 13 assaults for D > 0.14. From 
this he concludes a probability of success of the form, 

P = e -JtD3 

As a conclusion, Weiss notes that while fortifications vary in strength (a point we 
raised earlier,) the data do not support further division. Nonetheless, this equation 
does provide a means for estimating probability of success in a assault given the 
fractional loss ratios, or the attacker's fractional loss in overrunning the position (i.e. 
D.) 

XII.J. Weiss' Wrap Up 

Weiss finishes off his paper with two final sections on conclusions and 
suggestions for further research. In keeping with our outline, we shall summarize them 
here before embarking on some alternative views and comments based on our data 
set in the next chapter. He draws seven general conclusions:" 

n     I have taken the liberty of rephrasing these slightly within the context of our textbook 
presentation thus far, although I show these as quotes. The meaning, I hope and believe, is 
preserved without doing Weiss a disservice. 

XII-27 



" 1. Total losses on both sides cumulated at a fairly uniform rate 
after the first half year of active hostilities.0 

"2. On the average, Confederate forces secured considerably 
more favorable local force ratios in battles than would be 
expected. This advantage deteriorated as the war progres- 
sed. 

"3. Casualties on both sides were remarkably equal, both on 
the whole and in battles other than assaults on fortified 
lines. 

"4. In battles other than assaults on fortified lines, casualty 
ratios appeared to be independent of initial force ratios. The 
probability of winning was a direct function of initial force 
ratio, a 2:1 advantage giving about an 0.87 chance of 
winning. Casualties were equal on both sides to within a 
factor of 2. As a result, the winner tended to have smaller 
fractional losses than the loser. 

"5. The larger the battle (in terms of total casualties,) the 
smaller the statistical variation in observed casualty ratio. 

"6. In assaults on fortified lines, attacker losses were propor- 
tional to defender's strength; in meeting engagements, the 
casualty ratio had no dependence on initial force ratio. 

"7. In attacks on fortified lines, the casualty ratio showed great 
variability. The probability of successful attack increased 
with increasing attacker:defender initial force ratio. Given 
a favorable force ratio, the probability of success, increased 
with increasing total force strength. The principal determ- 
inator of success was the attacker's fractional loss ratio." 

Weiss also lists four suggestions for future research: 
1. Exchange ratio versus force composition: Bodart lists a few 

meeting engagements which include the number of artillery 
pieces on each side. These engagements demonstrate a 
correlation between casualty and artillery piece ratios. 
Investigation could be an avenue to model improvement. 
(Of course, access to Bodart is a prerequisite.) 

2. High fractional loss ratios on both sides of unity initial force 
ratio: When initial force ratios are approximately one, the 
comb t continued to higher fractional loss ratios than 
wouio have been indicated by the developed methodology. 
This indicates a potential second order effect of consider- 

We have previously commented on the variations of the data Weiss presents. 
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ation of relative losses as well as the primary effect of 
consideration of own losses. 

3. Different k factors for assaults and meeting engagements: 
A more general (possibly conjugate) theory to explain the 
values of k other than 150 for meeting engagements and 
300 for assaults on fortified lines is desirable. Weiss 
suggests that the relationship between k and initial force 
ratio may be insightful. 

4. Large versus small battles: Dividing meeting engagements 
into small and large battles indicates a possibly significant 
relationship between casualty and initial force ratio. "For 
small battles, high force ratios appeared to be associated 
with low casualty ratios (Lanchester's Square Law)." For 
the large battles, the reverse happens, high initial force 
ratios result in high casualty ratios - a side loses strength in 
proportion to strength committed, regardless of enemy 
force strength. Lumping all together produces a uniform 
distribution. (Weiss refers to his figure, ours shows a 
different shape than his.) 

The latter phenomenon noted by Weiss has been recognized by others, who he 
references. He notes that while vulnerability increases with force strength, effective- 
ness increases less rapidly (possibly even as the square root?), and suggests that a 
attrition differential equations of the form 

^ = -ccA/ln(A0, (XII.J-1) 
dt ' 

called the logarithmic law, may be applicable. 
5. Command structure and size of battle: Since large forces 

have more elaborate (and redundant?) command structures, 
thus, large battles could be expected to have less disper- 
sion in the casualty rate the force can fight to than a 
smaller force.This can be interpreted in the cumulative 
probability distribution analysis. 

Weiss then concludes his article by calling for more analysis of historical data 
to support the derivation of fundamental understanding of combat on a quantitative 
basis. In this we can only agree wholeheartedly. 

1. Griffith, Paddy, Battle Tactics of the Civil War, Yale University Press, New Haven, 1989. 

2. McWhiney, Grady, and Perry D. Jamieson, Attack and Die: Civil War Military Tactics and 
the Southern Heritage, The University of Alabama Press, University, AL 1982. The higher attrition 
has also been associated with the Southron cultural and social mystique. 
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3. Weiss, Herbert K., "Combat Models and Historical Data: The U.S. Civil War", Operations 
Research, 14(5), September-October 1966, pp. 759-790. 

4. e.g., Griffith, op. cit. 

5. Phister, F., Statistical Record of the Armies of the United States, J. Brüssel, pub., The Blue 
and The Gray Press, New York, as cited in Weiss. 

6. Livermore, T.L., Numbers and Losses in the Civil War in America, 1861-65, Civil War 
Centennial Series, Indiana University Press, Bloomington, 1957, as cited in Weiss. 

7. Bodart, G., Militur-historisches Kreigs-Lexikon (1618-1905), C. W. Stern, pub., Wein and 
Leipzig, 1909, as cited in Weiss. 

8. Fuller, Major General J. F. C, Grant & Lee: A Study in Personality and Generalship, Indiana 
University Press, Bloomington, 1957. 
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XIII. "On the Red Field of Battle"a 

XHI.A       Introduction 

There can be little question that North and South saw the Civil War in 
different terms. While some on both sides saw the reason for the war to be slavery, 
the outcome settled that political-economic issue for the United States. (It did not 
however, settle the issues of economic and way-of-life slavery.) Others saw the war 
as a fundamental; conflict between culture (or agriculture,b its root,) and civilization 
(industrialization.) Still others saw the war as a conflict between centralization and 
dispersion of governance, and by that, the degree of governmental infringement on 
the rights of the individual. While it is fundamentally crippling to argue for the 
merits of any society that treasures individual rights while denying those rights to 
others,c the fact remains that part of the conflict dealt with the question of strong 
versus weak central government. Both issues were, if not settled, at least adjusted 
by both the course and the outcome of the war.d 

As the war progressed, the views also evolved. Southrons were defending their 
homes and ways of life - thus, the Sacred Cause. Northerners were defending the 
solidarity of the nation - thus, the Glorious Union. 

*     John Stewart and Gil Rubin, "Hallowed Ground", Longitude Music Co., (BMI) in The 
Cumberland Three, Songs of the Civil War. The title is taken from the lyrics of the song which is 
Confederate in theme and origin. 

1     At the Battle of Waterloo, Arthur Wellsley, the first Duke of Wellington, Commanding 
Allied Forces West against the French, Napoleon Bonaparte, Emperor (?) of France, Commanding, 
is reported to have replied to a remark "Good beans, Wellington." by the commander of the Scots 
Guards, with "Sir, if there is anything about which I know absolutely nothing, it is agriculture!" 
This moment bears great emotional weight in the movie, "Waterloo". I regret that I have been 
unable to find a more legitimate citation to confirm the actual words or timing. Nonetheless, the 
interchange is an interesting commentary on the soldier as a product of Civilization. 

c     The South has a long history of contention and contradiction on this issue; e.g. "Those who 
deny Liberty to others deserve it not themselves.", Thomas Jefferson, second President of the 
United States, who was himself an owner of slaves. 

i     Both sides had internal problems during the course of the war. The North could relatively 
easily introduce conscription at the price of public disapproval; the South, bound by "States' Rights" 
had a more difficult time even introducing conscription. While speculation is difficult and probably 
pointless, it is still interesting to consider whether, had the South triumphed in or at least stale- 
mated the conflict, the Confederacy would have had to become more centralized to balance its 
northern foe, and the Union less centralized in the wake of public sentiment over defeat and 
conscription. 

Xffl-1 



The military forces also pursued their objectives in both similar and dissimilar 
ways. As we have seen in the data presented in the preceding chapter, both North 
and South fought in alike and different ways. The most striking of these must be the 
similarity in acceptance of actual casualties in a battle (albeit the South accepted a 
greater percentage.) This is especially striking given the disparity between the 
technological quality and quantity of armaments and the size offerees available. The 
lesson we may learn from this is that however good our technology, however strong 
we are in numbers, we cannot ignore the qualities of our soldiers and their com- 
manders. These need development as well if the force is to be effective. 

In this chapter, we follow the material presented in the previous one. We 
continue our examination of the concepts advanced by Weiss1 in the context of our 
data sets and in the form of alternatives. In general however, we continue our 
investigation for some common view of warfare. 

XIII.B       FER and L^ 

In the previous chapter, Weiss advanced a most striking thought: that the 
fractional exchange ratio is a quantity that varies only slightly during the course of 
a battle. While we examined these quantities superficially in the preceding chapter, 
we need to reexamine them now in terms of their behavior during the course of the 
battle. Obviously, given the theme of this text, the vehicle for this reexamination is 
Lanchester Theory. 

To begin this analysis, we first write the general nth (attrition) order state 
solution in its integral form, 

a J B'n~l dB' = ß J A"1'1 dA'. (XIII.B-1) 

Under normal circumstances, we would just perform these integrations directly, since 
they are elementary, but since we want to examine the Fm directly, this would entail 
expanding the results of the integration (as we have done in the previous chapter.) 
Instead, we will perform these integrations approximately using the Trapezoid Rule, 
yielding, 

SL ( B0
nA + B(ty* ) AB - I ( Ao""1 + Ait)»-1 ) AA, (XIII.B-2) 

from which we write the LER as 
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JER 
AA _ a (iC1 * BUY-1 ) 
AB    ßliCUiKO-1) 

(Xin.B-3) 

From this we see that only for an attrition order n = 1, the linear law case, is the LER 
(and thereby the Fm,) obviously a constant throughout the course of a combat. Since 
we know that the battles in our data base have attrition orders of approximately two, 
and since the force strengths during the combat, A(t) and B(t), appear in equation 
(Xm.B-3), the "constancy" of the 1^ or FER is a question requiring additional 
investigation. 

We already know, both from the above equation, and from our developments 
in the preceding chapter, that both the L^ and the F^j will be constants of the 
combat for n = 1. While it is not easily practicable to investigate this explicitly for 
general attrition order, it is quite easy to investigate the n = 2 case that we know 
from our AIDE calculations is a close approximation, at least for the Civil War data 
set. (Since we also know that attrition order tends to represent ferocity of combat, the 
n = 2 case also tends to represent a case somewhere between representative and 
worst for all of our data sets.) We may write the losses to the Red (Amber) force 
using the explicit Quadratic Law solution, equation (III. C-10), as 

AA = A0 ( 1 - cosh(y t) ) + 5 JB0sinh(y t). (XIII.B-4) 

We immediately note that the hyperbolic terms are products of half arguments, 

(XIII.B-5) 
1 -cosh(x) = -2sinh2[* 

sinh(x) =2 cosh — 

so that we may write equation (XIII.B-4) as 

A A = 2 sinh (yt) 

I 2 J 
5B0 cosh ll 

2 

sinh x 

-A0sinh^ (XIII.B-6) 

We may write a similar equation for the Blue losses as 

AB = 2 sinh J_i ^ cosh 
8 

(ll) 
I 2 J -B0anh^l" 

(XIII.B-7) 

and from these, we may write the LER as (after some minor cancellations,) 
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8B0 cosh 

■'ER 
(vj-^-^v) 

^ cosh ll 
I 2 J 

- £0 sinhf 1^ 
12 J 

(Xni.B-8) 

We note immediately, that the rate of the L^ is half what it is for attrition. That is, 
while A(t) and B(t) vary as y, L^t) varies as y/2! This is an indication that we would 
expect the LgR to change slower than the force strengths; initially, for small t, by a 
factor of 2. In fact, if we expand equation (XIII.B-8) for small t, the result is 

JER 

8£0 

_A0yt 

2 

4> B0yt 
(XJII.B-9) 

This equation indicates the reduced rate of change of the 1^. (The student may want 
to compare this equation with an AIDE type of analysis - then the reduced rate is 
particularly obvious! I leave this as an exercise.) 

We can, of course, examine the behavior of equation (XII.B-8) numerically, but 
prior to that action, it is worthwhile to continue its examination analytically. Let us 
rewrite equation (XIII.B-8) in the form, 

8B0 cosh 
JER 

(¥)■ A> sinh^ 

i? coshfl? 
8 (2 ) 

1 -5 Ü? tanh 
A, 

11 
2 

(XIII.B-10) 

and assuming the quantity in the square braces in the denominator is small (i.e. 
essentially that yt is small,) expand that term to first order, giving 

8B0 cosh 

■'ER 

ill 
I 2 J 

- AQ sinh m 
i?cosh(X-0 
5 I 2 J 

1 +8 £2tanhfl^ 
A0 12 J 

;xni.B-ii) 

If we now do some minor algebra, and keep only terms of tanh to the first power 
(consistent with the expansion of the denominator,) we get 
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JER 52-?°-+8 -1 tanh ill 
2 

(XIII.B-12) 

(If we were to expand tanh in this equation, and compare that result to a similar 
denominator, leading term expansion of equation (XII.B-9), the two equations would 
prove to be the same.) 

We recall however, that the thesis was that the Fm is the term which does not 
vary greatly according to Weiss' hypothesis. While we leave the derivation of the 
exact form of the F^ from equation (XIII.B-8) as an exercise for the student, we do 
present the approximate form based on equation (XIII.B-12), 

ER S2^ +5 h 
Aj 4, 

B- 

4? 
-1 tanhl 11 (XIILB-13) 

The leading right-hand-side term is (equivalently) the same as the result we found 
approximately in the previous chapter as equation (XII.B-8) for an attrition order of 
two. The right-hand-side term in square braces is essentially the state solution and 
thereby represents the deviation from a draw. Therefore, we may observe that the 
FJR, to first order in the tanh, varies at half the geometric mean attrition rate6, times 
a term that is proportional to the state solution. That is, 

ER 
Ao2 

+ *h aSo-ß A0
2 

ß4? 
tanhf H ^ 

I   2   J 
(XIILB-14) 

The right-hand-side term in square braces is easily recognized as the state solution. 

At time t = 0, therefore, Lanchester Attrition Theory for an attrition order of 
two predicts that the F^ will thus have the value we previously derived in Chapter 
XII. The value of the FER then increases or decreases during the course of the combat 
(with time) according to the sign of the state solution. Of course, for an attrition order 

e     We introduce here the term geometric mean attrition rate to indicate y since it is the 
square root of the product of the two sides' attrition rates a and ß. This terminology avoids 
confusion with the root mean attrition rate (£) which is the square root of the sum of the 
squares of the attrition rates. That is, 

y s \/aß 

+ ßJ 
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of one, Lanchester Attrition Theory predicts that the Fm is a constant. For attrition 
orders between one and two, we would expect the FER to vary, but slower than for n 
= 2. 

How much does the F^ vary? To examine this question, we perform calcula- 
tions using the exact form of the F^ for various initial force ratios and attrition rates. 
The values of the attrition rates were chosen from the Union attrition rate 
distribution, Figure XII.C.12. Attrition rates varied from 0.035 to 0.352. (We use the 
Union attrition rate distribution because it is more regular than the Confederate.) 
These attrition rates already include time (in days - the battle durations,) so we 
characterize time as fractions of a day. 

In Figure XIII.B. 1, we plot normalized F^'s (i.e. divided by the zero time value 
see equation (XIII.B-1 4),) versus time for different initial force ratios, and a 8 value 
of 2. Over a one day combat (most of the Civil War battles in our data set lasted a 
day,) all of the F^ curves but one vary by less than a factor of two. The curve that 
does vary by more than two is for an initial force ratio of 0.3. Examination of the 
initial force ratio statistics given in Chapter XII shows this force ratio to be an 
outlier. 

In Figure XIII.B.2, we plot normalized Fm's versus time for initial force ratios 
of 0.5 and 8 values of 0.44 to 0.50. Only the 8 = 4.57 curve varies by more than a 
factor of two. This curve has the greatest value of geometric mean attrition rate and 
similarly to the case noted above, is an outlier. 

From these calculations, we may therefore conclude that Weiss' observation 
that the F^ does not vary by more than a factor of two during a combat is consistent 
with the mathematical formalism of Lanchester Attrition Theory. While it is 
tempting to extend this conclusion generally, we must take care in doing so. The 
calculations presented here, we must recall, are based on the data available on the 
Civil War, interpreted statistically. If we qualify the statement, then we may say 
that for short battles (approximately one day in duration,) with moderate geometric 
mean attrition rates, and initial force ratios between approximately 0.5 and 3.0, then 
the Fm as predicted by Lanchester Attrition Theory does not vary by more than a 
factor of two during a combat. 

XIII. C       A Meeting Engagement Model 

In his paper analyzing the Civil War, Weiss divides battles into two categories: 
meeting engagements; and attacks on fortified lines. Since his purpose is the 
analysis of historical data, he does not introduce an theoretical discussion of the 
differences between these two types of battles in terms of Lanchester Attrition 
Theory.   Our purpose however, is the consideration of that body of theory, and we 
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shall therefore pause in our consideration of historical data to examine some of the 
mathematical applications of that theory. 

In this section, we now examine a simple model of meeting engagements 
derived from the body of theory that we have established thus far. We turn for the 
basis of this theory to Section VI.H, Quadratic Lanchester Law with Reinforcements. 
As with all of our discussions thus far, we have limited ourselves to homogeneously 
aggregated combat. We shall return, in a later chapter, once we have taken up the 
subject of heterogeneously aggregated combat, to discuss a more elaborate model of 
meeting engagements. 

The Quadratic Lanchester Attrition Differential Equations, as previously given 
in Section VI.H, are 

d± = -aB +o(0, (Xin.C-1) 
dt 

and 

dB 
dt 

= -ßA+ö(0, (Xin.C-2) 

where a(t) and b(t) are the reinforcement rates of the Red and Blue forces respective- 
ly. The general solutions of these two equations are 

A(t) =A0 cosh(yO - B0 8 sinh(yi) 

+ Jo' dt' a(t') cosh(yZ -yt') (XIII.C-3) 

-8  f dt1 b{t') sinh(yZ -yt'), 
Jo 

and 

5(0 =B0 cosh(yO -— sinh(yO 
8 

+ f' dt' b(t') cosh(y* -yt') (XIII.C-4) 
Jo 

--1   f ' dt' a(t') sinh(yZ -yt'), 
5 Jo 

These equations are identical to equations (VI.H-1), (VI.H-2),(VI.H-13), and (VI.H-14), 
respectively. 
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We build our model of a meeting engagement from these equations. In a 
meeting engagement, leading portions of each force meet and engage in combat. 
More portions of each force arrive and enter into the combat. While one force may 
effectively seize a defensive posture, often due to terrain advantages, it is also 
common for the battle to seesaw between attack and defense for each force/ This 
means that the attrition rates for each force will also seesaw over the progress of the 
battle, an elaboration that our simple model does not incorporate. Instead, we simply 
assume an average attrition rate for each force for the entire battle. As we shall see, 
some insight may be drawn from even this simplified model. 

In keeping with the battle outlined above, we define the initial forces that come 
into contact as As and Bs respectively, and further define the times for each force to 
fully deploy into the battle as xA and xB. The total force strengths available for the 
battle are designated by AT and BT, which are all related by 

AT-A8+£dt'a(t'), (Xni.C-5) 

and 

BT=BS +£dt'b(t'). (XIII.C-6) 

The student should note that the quantities defined here, particularly equations 
(XIII.C-5) and (XIII.C-6), have nothing to do with the combat itself. They merely 
establish the total force strengths of the two sides. Because our model of a meeting 
engagement starts with only part of each side in combat, we must have some 
accounting of the total force and the introduction of force strength into the combat. 
(Of course, the battle could start with all of one side deployed. The equations to be 
developed also include that situation although it violates our model in principle.) The 
reinforcement rates a(t) and b(t) are defined to be zero for t greater than TA, xB, 
respectively. 

Before proceeding with the model's mathematical solution, it is useful to define 
some shortcut notation for the reinforcement terms that will occur in the solution. 
Accordingly we define what amount to hyperbolic function transforms of the 
reinforcement rates.  The time dependent terms are: 
and since these terms will take on constant values once a!1 forces of each side have 
been deployed into the battle, the time independent terms are: 

fIn a heterogeneously aggregated model, we would allow the battle to be fought as a series of 
engagements between subcomponents or units of the two forces. These engagements could be 
fought alternately as offensive and defensive for each side. We shall deal with this more complex 
model in a later chapter. 
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[a(t))$ = J ' dt' a(t') sinh(y*7), 0 < t < xA, 

[a(t))c s f ' dt' a(t') cosh(yZ'), 0 < * < xA, 
Jo 

(6(0>a = f ' dt1 bit') sinh(y*'), 0 < t < xA> Jo 

{b(jt))e = V dt' a(t') cosh(yt'), 0 < t < xA, 
Jo 

<o)s= VA dt' a(t') sinh(y*7), 
Jo 

<a>c= P'dJ'aC/') cosh(yZ7), 
Jo 

(b)$= Vs dt1 b{t') sinh(y/7), 
Jo 

<&>c = V* dt' a(t') cosh(yt'), 
Jo 

(XIII.C-7) 

(XIII.C-8) 

We may now proceed to develop our meeting engagement model solution using these 
equations. 

For times prior to the full engagement of each sides' total force strengths (t < 
xA, Tß), the force strength time solutions are 

A(t) = ( As + (a(t))c) cosh(y t) + (a(t))c sinh(y t) Q^JJ Q,^ 

-8(BS +(b(t))c) sinh(yO -8(b(t))c cosh(yO, 

and 

5(0 =(BS + {b(t))c)cosh(yt) + {b(t))c sinh(y t) 
(As+(a(t))c)   .                (a(t))s (XIII.C-10) 

_ _v_o c/ ginj^y t^ _    cosh(y 0. 
8 8 

For times greater than (or equal to) the deployment times (t > tA, Xß), the force 
strength time solutions have the forms, 
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A(t) = (As + (a)e) cosh(y t) + ia)c sinh(y t) (XTTT C-ll) 
- 5 (Bs + (b)c) sinh(y 0 - 5 (b)c cosh(y 0, 

and 

B(t) = (BS +(6>c) cosh(y0 +<6)c sinh(y0 

(^+<«>e)   • w   ^     <«>*      w   ^ (XIII.C-12) --L_f L' smh(y0 -—? cosh(y0> 
8 8 

These equations are identical except that the reinforcement terms in equations 
(Xm.C-11) and (XIII. C-12) have reached their constant (fully deployed or committed) 
values. If we interpret these variables as such, that is, as variables that reach a 
fixed value, then the two sets of solution equations are identical. 

With a simple prescription, these four equations constitute the mathematical 
solution of our meeting engagement model. This prescription is simply: 

• if 0 < t < xA, TB, the force strength solutions are given by equations 
(XIII.C-9) and (XIII.C-10); 
• if tA < t < xB, the force strength solutions are given by equations 
(XIII.C-9) and (XIII.C-10), with <a(t)>c; 
• if xB < t < xA, the force strength solutions are given by equations 
(Xin.C-9) and (XIII.C-10), with <b(t)>c = <b>c; and 
• if xA, TB < t, 4;he force strength solutions are given by equations 
(Xin.C-11) and (XIII.C-12). 

We note that regardless of the total force strengths involved, the battle cannot end 
conclusively prior to either xA or xB, depending on which side is concluded. Also, in the 
two intermediary regions, where time has progressed where one force has fully 
deployed, but not the other, the solution equations are intermediary in form between 
those above. 

Before proceeding, a couple of points of discussion need to be addressed. First, 
all of the terms in equations (XIII.C-ll) and (XIII.C-12), except the hyperbolic 
functions, are constants. As a result, we may form a state solution from them. That 
is, a function of the form, 

Aj =aB(t)2 -ßA(02 = constant^ > xA,zB, (XIII.C-13) 

can be formed by substituting equations (XIII.C-11) and (XIII.C-12) into the above 
equation, carrying out all of the requisite algebra, and the result will be time 
independent. In a Lanchester Attrition Theory sense, this means that once all of the 
forces have been committed to the combat, the progress of that combat proceeds as 
described by simple Quadratic Lanchester attrition equations. This is not an 
unexpected result, but its occurrence is heartening none the less. 
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Of course, we could also form this state solution using equations (XIII.C-9) and 
(XIII.C-10) (or any A, B combination of the four equations,) but the result would be 
time dependent until the greater of xA and xB is reached. Such a formula would relate 
the inter-relationships of the force strengths, but only for times less than the 
minimum of xA and tB (or the relevant interval.) Only once all forces have been 
committed to the combat does this "state solution" become a constant and take on the 
proper behavior we expect of a state solution. 

Second, as we have noted before, these equations are quite general. We are 
perfectly free to use them when As and/or Bs, or a(t) and/or b(t), or any reasonable 
combination, are zero. This allows us to study the progress of different types of 
combat of the general meeting engagement type. Also as we have noted, this model 
of meeting engagements is for homogeneous aggregation and assumes average 
attrition rates for the entire combat. Within these restrictions, the model permits free 
investigation. 

Third, the restriction of average attrition rates permits us to solve the 
differential equations analytically and generally in the four time regions. We could 
introduce a scenario where the attrition rates change, and as long as they change 
discretely and are constant between changes, we could define time regions for all 
these values of attrition rates, and write solutions for each time region. Of course, 
this would result in a large number of solution equations, and their very number 
would probably confuse the issue of gaining insight. 

At this point, it is useful to examine the behavior of these solutions in 
graphical form by actual calculation. To do this, we must assume some form for the 
reinforcement rates. The simplest form that we may assume is a constant rate of 
reinforcement, although the theory is sufficiently general that we could equally well 
use any mathematical form we wish.g The reinforcement rates then have the form 

a{t) = ^—^lit * xA, (XIII.C-14) 
XA 

and 

*(,) = BT
 " B\t s t-, (XIII.C-15) 
XB 

The reinforcement rate integrals take on particular forms, 

g     A case of particular interest that we do not address here is punctuated reinforcement 
where there are intervals where reinforcements arrive, and intervals where there are no reinforce- 
ments. We shall investigate this problem in a later chapter on chaos in Lanchester Theory. 
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Table XEDLCl. Meeting Engagement Model Calculation Parameters 

Fig. 
# 

jf\rp Bj As Bs a ß *A *B 

1 100 100 12.5 25 0.01 0.01 5 5 

2 100 100 12.5 25 0.02 0.01 5 5 

3 100 100 12.5 25 0.04 0.01 5 5 

4 100 100 10 5 0.02 0.01 10 15 

5 100 100 10 5 0.02 0.01 5 15 

6 100 100 10 5 0.02 0.01 15 5 

7 100 71 10 5 0.02 0.01 5 5 

8 100 71 10 5 0.02 0.01 15 5 

9 100 71 10 5 0.02 0.01 25 5 

10 100 71 10 5 0.04 0.02 25 5 

(a(t))s = Ar~As [cosh(yO -l], 

(a(0)c =Ar~Assinh(Y0, 

(b(t))s =?lZl± [coBh(yO -l], 
yes 

(b(t))e =
BT

~
BS

 sinh(yO. 
y?B 

(XIII. C-16) 

The constant value forms of the reinforcement rate inter als can be formed by 
substituting TA, TB, appropriately in equations (XIII.C-16). These equations may now 
be used to perform calculations.11 

h     As an aside, if we take these reinforcement rate integrals, assume tA, xB, are sufficiently 
small to allow expansion of the hyperbolic functions to order xA, TB, in McLauren series (then <t»s) 
<a>s = O,) and substitute into equations (XIII.C-ll) and (XIII.C-12), the results are standard 
quadratic Lanchester force strengths without reinforcement. This confirms our earlier assertion 
about the "state solution". We leave this as an exercise for the student. 
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We present some sample calculations in figures XIII.C.1-XIII.C.10.  The 
parameters of these calculations are summarized in Table XIII. C. 1. Figures XIII. C. 1 - 
XHI.C.3 present variations of attrition rates for forces that are totally balanced, and 

whose deployment times are the same, but with initial forces that vary by a factor 
of two.  Obviously, attrition rate is the dominant factor in these calculations. 

In figures XIII.C.4-XIII.C.6, again present balanced forces with 2:1 initial force 
ratio, but with different deployment times. While attrition rate is still dominant, it 
may be seen that the shorter the deployment time, the better for reducing losses. To 
examine this, figures XIILC.7-XIII.C.9 present a Blue force with short deployment 
time, against a Red force with parametrically increasing deployment time. These 
amply demonstrate the advantage of short deployment time. These figures (and 
XIII.C. 10) have forces whose normal state solution (i.e. if all forces had been deployed 
initially,) would indicate a draw. 

Finally, figure XIII.C.10 presents the same calculations for figure XIII.C.9 
except that the attrition rates on both sides are doubled. This case reverses the force 
strength situation. Except initially, Red never has more forces in action than does 
Blue. The combination of high attrition rate (even on both sides,) and long Red 
deployment time act to provide Blue with complete superiority. This is shown 
explicitly by the third curve in this figure which is the Red:Blue force ratio. Note that 
even after one time unit, this ratio is less than one! 

We wish to emphasize that the meeting engagement model presented here will 
permit consideration of any form of reinforcement rate. A particular case of interest 
are where the average reinforcement rate (for one or both forces) is less than the 
attrition rate, but instantaneous reinforcement rates can be greater than the attrition 
rate. This type of situation is shown in figures XIII.C. 11 - XIII.C.13. In this case, the 
reinforcement rates have the form, 

A   -A 
a(t) =2 —I 5 sin2(coAt),t < xA, 

X
A (XIII.C-17) 

b(t) =2     T ~   s sm2((i>Bt),t ^ V 

The leading factor of 2 on the right-hand-sides of these equations are necessary for 
normalization (approximately! The derivation is left to the student as an exercise.) 
These reinforcement rates are initially zero, and are periodic with frequencies ©A, ©B, 
respectively. If we were to plot these reinforcement functions, we would find that they 
have bumps - they are zero at frequency-time products (i.e. ©t) equal to 2nrc, n = 
0,1,2,..., and have maxima at frequency-time products equal to (2n+l)7t/2. Operation- 
ally, we may view this as the situation when units are arriving at a battle directly 
from march along an avenue, are briefly formed, and then committed. 
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Thus, the battle starts between the two starting force strengths As, and Bs, 
then a unit arrives and enters the battle, sequentially on each side. By t = MAX(xA, 
XB), all forces have been committed. Obviously, there are two extremes which can 
occur with reinforcement rates of this form. If units arrive faster than attrition 
occurs, then the result is about what we saw with the constant reinforcement rates 
discussed above. Alternately, if units arrive slower than attrition, the effect is a series 
of engagements, waxing and waning as first one side and then the other gains 
dominance. This case is essentially the archetype of attrition which is frequently 
viewed as a slow grinding down of forces. 

In figure XIII.C.ll, we present calculations for the same parameters as shown 
in figure XIII.C.10, except that we use © values of 0.3, and deployment times of xA = 
25, and xB = 20. Note that for times less than 10 units, both sides suffer attrition 
faster than reinforcement occurs. This continues for the Red force, which never 
recovers, but the Blue force has seized the advantage by t = 13. The Red force is 
basically only throwing units into the engagement to be attrited without ever gaining 
an advantage. Also note the relatively small forces actually in the battle: the 
maximum force strengths are never above about 12% for Red, and 35% for Blue! The 
force ratio curve is relatively smooth here. 

In figure XIII.C.12, we increase the frequencies of arrival, we oA = 7i/5 (- 0.63), 
and ©B = 7t/6 (~ 0.52). Now we see periods between unit arrival when attrition occurs 
faster than reinforcement, but also other periods when reinforcement is faster than 
attrition. This leads to the stair-step arrangement in this figure where force strength 
may actually decrease over short periods even prior to full deployment. Of particular 
note is the shape of the force ratio curve. While still smooth, it oscillates as 
reinforcements arrive, temporarily giving one side an advantage, until t = xB (the 
longer deployment time,) when it becomes a steady decay driven by Blue's greater 
attrition rate. Note also that because reinforcement is beginning to dominate attrition 
here, more force strength in the battle. 

Finally, in figure XHI.C.13, we keep the same parameters of figure XIII.C.12 
except that we reduce the Blue deployment time from 20 to 15. From our calcula- 
tions with constant attrition rates, we would expect this to have the effect of favoring 
Blue, and examination of the figure shows this to be the situation. This case is 
intermediary between the previous two. The stair-step behavior is still present, but 
the reduced Blue deployment time (in this selected case,) means that Red never 
achieves a numeric advantage, only reaching parity in Force Strength at t = xB. Also, 
the force ratio curve still oscillates with much the same form as in the previous 
figure, but because Blue seizes the numeric advantage because of its reduced 
deployment time, the oscillations after about t = 8, all have maxima less than 1 until 
t = xB when Red briefly has parity. 
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This set of examples shows that the meeting engagement model here can be 
used to relatively generally simulate combats for a variety of conditions. The form of 
the model, while derived from Lanchester Attrition Theory, is far different in form 
than what we are used to seeing in the simple cases previously considered where all 
of the force strength was in the battle from its beginning. As we have seen, different 
insights and results may be drawn from this model than from those simple situations. 
In particular, one case that has been of particular interest in recent years in 
Lanchester Attrition Theory is that where the reinforcement rate is a function of the 
force ratio. We shall consider this case in the chapter dealing with chaos and 
Lanchester Theory. 

XIII.D.      Model of Attacks on Fortified Lines 

In this section, we again develop a Lanchester Attrition Theory based model 
of a type of combat considered by Weiss. In this case, the combat type is attacks on 
fortified lines. To develop this model, we must suspend two of our restrictions that 
we have imposed thus far. We rationalize this exception to provide the student with 
an insightful presentation to complement the model of meeting engagements 
presented in the preceding section. 

The first suspension is on our (already violated!) practice thus far of only 
considering homogeneously aggregated combat. In this case, it will be necessary to 
divide both the attacking and the defending forces into two separate forces, albeit 
that each will be homogeneously aggregated. The necessity of this will become 
obvious as we proceed. 

The second suspension is fundamentally more important. To develop this 
model, it is necessary that we relax one of the assumptions central to the interpreta- 
tion of Quadratic Lanchester Attrition. In particular, if we refer to Section IV.C.l, 
Square Law Assumptions, we need to relax assumption 2: 

The units of the two forces are within weapons range of all units 
of the other side. 

As we noted in that chapter, this assumption is really stronger than it needs to be 
for most considerations. It is adequate and (usually,) equivalent to only assume that 
the units of each force have units of the other force within weapons range that they 
may engage with effect. This change in the assumption is necessary to permit us to 
make adequate use of the Principle of Concentration to develop this model. 

An attack on a fortified line is divided into two parts: the assault on and 
(possibly) the breakthrough of the line, and the engagement within the line. We shall 
treat each part in sequence. For convenience, we will assume that the Red force is 
the attacker, and the Blue force is the defender. The Blue force is defending a 
fortified line of length FL that, if not closed, is bounded by terrain so that the Red 
force cannot flank it. Both Red and Blue units have a range of effective fire p with 
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attrition rates assumed constant inside that range, zero beyond. Both Red and Blue 
forces are deployed along the line of fortification. Part of the Red force will assault 
the line. The width of the assault force is w, and it has a speed of advance of s. We 
will designate the assaulting force's strength as R1} and the remainder of the Red 
force strength, assumed to be deployed along the rest of the line as R2. 

Prior to the assault, Blue will have positioned his forces along the fortification, 
presumably with approximately uniform density. If he has time and opportunity to 
recognize the coming Red assault, he may have readjusted his deployment. 
Additionally, he may have reserved a force to reinforce the line in the area of 
assaults. Accordingly, we shall designate the Blue force as Bv B2, and B3 to indicate 
the Blue force along the assaulted portion of the line, the remainder of force on the 
line, and the reinforcements. Except for the reinforcements, this is shown diagram- 
matically in Figure XIII.D.l. 

Obviously, Blue would like to redistribute his forces during the assault. 
Equally obviously, Red does not want Blue to do this. Accordingly, Red may launch 
an harassing attack along all or most of the fortified line prior to the actual assault, 
primarily to pin down Blue's forces. Additionally, he will try to execute the assault 
faster than Blue can reposition his forces, or he may launch a false assault to draw 
forces away from the area of the actual assault. All of these embellishments are 
simple, given the body of theory we have already established (e.g. the harassing 
assault would just be modeled as a standard Lanchester engagement between all the 
non-reinforcing units for some period of time,) or from the parameters to be 
established in this model. We leave these embellishments as an exercise for the 
student to avoid overly complicating this presentation. 

For the assault part of the engagement, we specify that the Red force has two 
attrition rates ßx and ß2 on the Blue forces within the line, depending on whether the 
force is assaulting or pinning; that the Blue force has two attrition rates, av and a2, 
depending on whether the Red force engaged is fully exposed or is making use of any 
terrain cover or lying prone. We may assume in general that 04 > <% ^ ß2 ^ ßi because 
of the greater protection afforded in the respective engagement cases for Blue, and 
the greater relative effectiveness of the non-moving force for Red. (This is also why 
it is considered that fortified defenses take relatively smaller force strengths to be 
effectively defended.) 

We may now proceed to write attrition differential equations for the assault. 
These are: 
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where the position of the assaulting force is given by 

r(t) =r0 -st, 

(XIII.D-1) 

(XIH.D-2) 

relative to the fortified line, f is the fraction of B2 units that fire on R1( as they come 
within range, and b(t) are the Blue reinforcements. The factor of 2 occurs because 
there are B2 units on both sides of R1; unless the assault is on the end of the line (in 
which case, the 2 should be removed). 

In summary, these equations may be interpreted as follows: 
er       the Red assault force is engaged by the Blue force in the part of 
the line being assaulted plus some of the adjacent Blue force, as they 
can fire on the assault force; 
«•       the Red "pinning" force is engaged by the remainder of the 
Blue force; 
«r       the Blue force in the part of the line being assaulted is engaged 
only by the Red assault force, and received timed reinforcements; and 
«*       the remainder of the Blue force is engaged by the Red "pin- 
ning" force. 

Let me emphasize that this is not the only model of an assault on fortified 
lines that can be constructed. If the terrain permits,  the Red "pinning" 
force,  whose purpose in the assault is to prevent Blue from reinforcing the 
assaulted line section, could also engage that portion of the line. Further, the Red 
assault force only engages the portion of the Blue force in the assaulted line 
section, although adjacent Blue force is allowed to engage the Red assault force. 
We could allow the Red assault force to engage all of the Blue force that engages 
it, or even all of the Blue force within its range of engagement. Both of these 
changes complicate the form of the differential equations, and thereby the process 
of gaining insight from them, but these alternatives can be incorporated. 
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Additionally, we have not incorporated any area effect weaponry such as 
artillery explicitly in this model, nor have we incorporated any time at the 
fortified line for the Red force to breach or cross the line. This latter is a tradi- 
tional problem with heavy fortifications prior to the age of gunpowder. These 
modifications can be done, but again, we want a simple model initially to get as 
much insight as we can as easily as we can, and then build up to more complicat- 
ed models as we come to understand the simple ones. 

Finally, we have not incorporated some very important combat process 
effects in this model, largely because we have not yet considered them in a 
detailed theoretical manner. For assaults on fortified lines, suppression and even 
morale are very important effects that we do not yet have a theoretical basis for 
consideration. We would expect that suppression is important to both sides: the 
Red side wishes to suppress the Blue to minimize the losses to the assault force; 
while Blue wishes to suppress both Red forces to maximize its lethal effect on the 
assault force. Similarly morale should also be important: both the Red assault 
force and the Blue "assaulted" force are under considerable stress; the Red force 
may "break" before it reaches the line, regardless of its force strength; and the 
Blue "assaulted" force may break once the line is breached. 

Having considered all of these alternatives, at least in sketch, we may now 
turn to consideration of the calculational details of the model. While it is possible 
to solve this model analytically, despite the apparent lack of a state solution,1 we 
shall solve the differential equations numerically, using a spreadsheet program .J 

The derivatives are approximated using finite differences as 

dF(t) m F(t + At) -F(t) (Xin.D-3) 
dt At 

For convenience, we will take the initial position of the Red assault force to be 
equal to or less than the effective range of the weapons, 
since they cannot be engaged at more than this range. 

'     We shall treat the problem of "state solutions" for non-homogeneous or heterogeneous 
forces in a later chapter. 

j     The solution strategy may be less than obvious on first glance. First, use the second and 
fourth of the differential equations of Equation (XIII.D-1) to form a second order differential 
equation for B2.  Solve this equation, which is an inhomogeneous, but linear equation in B2 with 
time dependent coefficients using the Method of Frobenius. Next, use the first and third equations 
of Equation (XIII.D-2) to form a second order differential equation for Bv Although it appears more 
complicated than the previous equation for B2, it may be solved in the same manner (among other 
techniques.) The solutions for Av and Aj may then be formed by direct integration using the third 
and fourth equations of Equation (XIII.D-1), and the solutions already found for Bv and B2. 
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r0 < p, (XIII.D-4) 

As we commented earlier, these differential equations do not obviously have 
a state solution. (Indeed, we do not expect them to have one since they have time 
dependent coefficients!) Unlike the model of the previous section, where there was 
a state solution, the timing effects were how the units arrived in the battle, and 
once all units were in the battle, it proceeded in a normal Lanchester manner, 
that is not the case here. For this model of assaults on fortified lines, timing is 
everything! As a result, we may expect our calculations to be dominated by those 
parameters that determine the timing of the engagement. (Here is one crucial 
point where our lack of consideration of suppression may be crucial. If suppression 
is fleeting unless maintained, and the forces on the assaulted line section cannot 
be continually suppressed during the assault, then if the assault takes too long, 
for whatever reason, the suppressed Blue force may recover its effectiveness.) 

The first parameter we may consider is the speed of advance. For march- 
ing/striding men, a pace is approximately 30 inches, and a fast rate of pace (but 
not too fast to loose unit cohesion) is about 240 paces per minute (often called 
"double time".) Faster rates are possible,k3 but tend to effect unit cohesion and 
alignment, and if maintained over extended distances, result in lagging and 
fatigue. This rate of pace gives us about 120 inches per second or approximately 3 
meters per second of advance. (We will try to keep to MKS units as much as 
possible, especially time in seconds.) Because of the relatively short range that we 
will associate with effective fire, we will use 4 mps for s in our calculations. Note 
that our results will depend on this value very strongly since it, with effective 
range, determine the duration of the first phase of the engagement. That is 

t     .  = Ü2. (XIII.D-5) 
assault 

The second parameter that we shall consider is range of engagement. For 
infantry rifles of the Civil War era, ranges of 500m and beyond have been claimed, 
but authorities find most engagements to be fought at shorter ranges.4 For our 
calculation, we shall assume an effective range of 300m, fully recognizing that this 
parameter, along with initial/effective range, determines tassault (= 75 sec.) Reducing 
this value will linearly reduce the value of tassault, and thereby change the values of 
force strengths at the end of the assault phase of the engagement. 

k     Actually, this is a very fast rate of advance! The tactical systems of the Civil War era seem 
to proscribe "book" values of 90-180 steps per minute. Hardee's category for our fast advance would 
probably be a "run". We shall use this fast advance rate to compromise between Civil War and 
later, mechanized eras. 
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The last parameters that highly influence our timing are the attrition rates. 
We will consider the attrition rate of the assaulted force on the assault force first. 
In this case, the Blue force has protection and is firing on an exposed, but slowly 
moving (and closing) Red force. We may estimate the attrition rate by considering 
the probability of kill per shot and the rate of fire (as we have done previously.) 
Based on a basis of issue of 40-80 rounds per man, with an expected kill capacity 
of 4-8 men per issue (i.e. pk < 0.1,) and a rate of fire of 4-8 rounds per minute, we 
may estimate a range of attrition rates. For our example, we will assume a kill 
every 120 sec. of engagement, which may be high, but assures that our calcula- 
tions are reasonable in shape. 

For the other attrition rates, we shall scale from this attrition rate based on 
the presented area of the target. We shall assume that the Red "pinning" force can 
assume positions or postures where they present approximately half the area of an 
upright man, so that a2 « ax/2. Further, we shall assume that the fortified line 
reduces the Blue man's presented area to 3/4 this, and that a moving Red firer is 
half as effective as a stationary Red firer. This defines the values we shall use for 
attrition rates in our examples. 

Finally, we will assume that the fortified line is 1 km. in length, and that 
there are 1000 units on the Red side and 500 on the Blue. We shall vary the 
length of the section of assaulted line and the number of Red units in the assault, 
but evenly distribute Blue units over the entire line. The fraction of unit carryover 
to engage the assault force is assumed to be 0.5, and there is no Blue reserve. 

Table XIII.D.l. Variable Assault Force Strength Results 

Figure # Initial Red:Blue 
Force Ratio 

Completion Red: 
Blue Force Ratio 

XIII.D-2 2 0.42 

XIII.D-3 3 1.87 

XIH.D-4 4 3.86 

We now proceed to examine sample calculations performed using these 
parameters and equations. For an assault width of 100 m., we vary the Red 
assault force to be 100, 150, and 200 units. The Blue assaulted force is 50 units in 
all cases (because the assault width is fixed.) These sample calculations are shown 
in Figures (XIII.D-2) - (XHI.D-4). The initial and final Red assault to Blue assault- 
ed force strengths are summarized in Table XIII.D.l. 
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Table XIII.D.2. Variable Assault Width Results 

Figure # Initial Red:Blue 
Force Ratio 

Completed Red:Blue 
Force Ratio 

xni.D.5 8 26.86 

xm.D.4 4 3.86 

xm.D.6 2.67 1.85 

The next set of calculations repeated the parameters for the calculation 
shown in Figure (XIII.D-4), Red assault force = 200 units, except to vary assault 
width at 50 and 150 meters. These calculations are shown in Figures (XIII.D-5) 
and (XIII.D-6), and the force ratios are summarized in Table XII.D.2. 

We cannot directly compare the results presented in the two tables because 
of the effect of the peripheral Blue units engaging the Red assault unit. It is 
possible however to draw several conclusions from these data albeit that much of 
it is merely confirmatory of historical and doctrinal knowledge. First, the assault 
force needs to be larger than the assaulted force. Second, the assault force should 
be as concentrated as feasible. These are the merely confirmatory results. What is 
not merely confirmatory is the decidedly non-linear relationship between initial 
and completed force ratio. Note that in both calculations an initial force ratio of 4 
gives a completed force ratio of 3.86, but that an initial force ratio of 8 gives a 
completed force ratio of almost 27! This non-linearity gives some indication of the 
degree of discussion in the tactical literature, even today, of the size of assault 
force necessary to force a successful breakthrough. If this function is highly non- 
linear, as these data indicate, and we have only limited actual, historical data, 
overlaid with many different values of parameters, which will change these values, 
then we may expect lively debate on this question. 

We must strongly emphasize that these data in these two tables are highly 
dependent on the timing parameters that we have selected for these examples, 
and to a lesser extent on other parameters including the involvement of peripheral 
Blue units, and even on the structure of the model itself. Nonetheless, they do 
indicate that there is a decidedly non-linear behavior between initial and complet- 
ed force ratios. General understanding of the dynamics predicted by models such 
as these require many more calculations. We must recall that our purpose here is 
to demonstrate the use of Lanchester Attrition Theory to build the model, not to 
exhaustively exercise the model to complete understanding. That exercise may be 
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pursued by the student at leisure with the understanding that other variations on 
the model structure should be considered. 

How much is enough completed force ratio? This question can only be 
answered in the context of the second phase of the battle, and we must now turn 
to a descriptive model of this phase. 

Having completed the assault phase, that is, Red units have closed the 
distance to the fortified line and are now within the line. At this point, the battle 
shifts to a mixture of what "we have already modeled in the assault phase, and the 
meeting engagement that we modeled in the previous section. Because of the 
actual dynamics of the battle, this model can become very complicated very 
rapidly if we try to make it too accurate. To see this, let us take a snapshot of the 
battle at the instant that the Red assault force is inside the fortified line. 

At this instant, the Red assault force, Rx, and the Blue assaulted force, Bv 

are in close contact, if not intermixed, and are executing what we may think of as 
a normal quadratic Lanchester engagement with essentially identical attrition 
rates (unless Blue has prepared a secondary defensive line - an elaboration that 
we shall ignore but note as modelable.) The other two forces, R? and B2, continue 
to fight as before, although probably both commanders now begin to move units of 
these forces to reinforce the breakthrough meeting engagement. The Red com- 
mander sends some or all of Rg to reinforce R1( and may leave some of R2's units to 
continue to engage the remainder of the Blue units on line, or to try another 
assault. The Blue commander may send some of his B2 to reinforce Bx while 
leaving some units to man the line. In both cases, the reinforcing units, and in 
Red's case, the possible second assault, take time to arrive as reinforcements, and 
because they are spread along the length of the fortified line,  their arrival will be 
spread out unless they take time to group and they can be attrited while they 
move. 

It is easy to see that where our assault phase model had two force compo- 
nents for each side, the post-assault or breakthrough phase model must have at 
least three force components for each side, and that for good accuracy, we may 
have to change our representation of the forces entirely to more continuously 
reflect their distribution in space (and thereby time.) We can however, construct a 
simple three component model of this phase of the battle. This three component 
post-assault model consists of four differential equations per side since we must 
account for the fact that the breakthrough does not necessarily occur at the center 
of the line. The attrition differential equations for the Red force are given by 
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where: 

ax(t) = alK(t) + ax>(t), 
bx(t) = blK(t) + b^(t). 

(XIILD-8) 

These equations are similar in structure to those for the meeting engagement 
model, equations (XIII.C-1) and (XIII.C-2), in that there are reinforcement terms. 
Let us note the similarities and differences in equations (XIII.D-6) and (XIII.D-7). 
First, the Ax and Bt attrition differential equations, which are identical in form to 
equations (XIII.C-1) and (XIII.C-2), describe the engagement between the two 
components at the breakthrough. The Ag and B2 force components are the forces left 
to engage along the line. These forces, respectively, engage both the B2 and B3, and 
Aa and A3 components. Note that their fire is equally distributed over both compo- 
nents (the fractions in the last three equations in equations (XIII.D-6) and (XIII.D- 
7).) 
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A major difference in these equations is the presence in the A3 equations of 
reinforcement terms a2 that are not present in the B3 equations. This is a direct 
result of the geometry of the problem and will be clearly expressed mathematically 
below. As we stated earlier, we assume that each commander takes a fraction of his 
second component force to reinforce the forces in the breakthrough area. For the 
Blue force, these reinforcements merely have to travel to that area while for the Red 
force, these reinforcements must first travel behind their line to the break in their 
line and then down to the breakthrough area. Thus, relatively speaking, the Red 
reinforcements must travel a distance r0 further than the equivalent Blue units. 
Since they are assumed to be traveling behind their line, they are not engagable. 
The arrival of these units to travel from their line to the fortified line gives rise to 
the a2 reinforcement terms. 

Before we define the reinforcement terms and the boundary conditions, it is 
necessary to define some parameters and to introduce a bit of notational mathe- 
matics. First, per our assumptions, each commander assigns part of his second 
(assault) component force (Ag or B2) to be reinforcements. Designate these parts as 
fractions rA and rB, respectively, and stipulate that they move at speeds sA and sB, 
respectively. Designate the center of the breakthrough with the coordinate x with 
the provisos that x £ w/2, and x <. L - w/2. (This merely assures that the break- 
through width lies within the line.) Next, we must define the step function fj(z) such 
that 

Mz):lT<0o. <XIILD-9> 

We may now define boundary conditions and reinforcement rates. 

Recall that we shift models from assault phase to post-assault phase at tassault. 
For our model, we do not add in a delay time for breaching the fortified line, 
although this is possible. Since our primary interest at the moment is in terms of 
Civil War filed fortifications, we assume that they impose no exceptional impedi- 
ment to movement that would substantially delay the assaulting force. For consid- 
eration of more elaborate (and impedimential) fortifications, a delay time may be 
added to tassault. Further, recall that we have assumed that (outside the break- 
through area,) the forces are uniformly distributed over the lines. 

With these factors in mind, we may now establish the boundary conditions on 
equations (XIII.D-6) and (XIII.D-7). Since these equations become valid for times 
greater than tassauit, we introduce a new time variable t1 defined by t' = t - tassault to 
simplify notation and calculation. Note that t' is not defined for value less than 0 
and that dt1 = dt, so that our differential equations keep the same form in the new 
coordinate system. With all this in hand, we may write boundary conditions as 
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POST-ASSAULT PHASE ASSAULT PHASE 
A.iO) = A.iO), 
5,(0) = ^(0), 
A2(0) = (1 - rA) A2(0), 
B2(0) = (1 - rB) B2(0), 

A3<(0) = 0, 

JB3<(0) = rB B2(0) 

As>(0) = 0, 

£3>(0) = rB B2(0) 

x _ w (XIII.D-10) 
2 

L - w 

LKJU - x - — 

L - w 

w 

Note that the quantities on the left-hand-side are assault phase variable values at t' 
= 0, that is t = tassault, while the quantities on the right hand side are post-assault 
phase variable values at the same time - boundary conditions. In particular, the 
forces at the breakthrough area are the same, while the forces on line, for both 
sides, are reduced by fractions rA and rB. The Blue reinforcing forces are created 
from those forces removed from the Blue line, and are apportioned into two sub- 
components indicated by the symbols < and > to indicate whether they are below or 
above the breakthrough area (i.e. to Blue's left or right in terms of military usage.) 
Note also that the Red reinforcing sub-components are initially zero since the Red 
forces drawn from the line must reach the assault corridor to be counted - these 
forces will explicitly appear in the a2 reinforcement rates - they have not magically 
been lost! 

We mentioned earlier that this use of homogeneous aggregation of forces was 
an approximation, and that we should really use a continuous spatial representa- 
tion of the forces to account for the movement and attrition of our forces modeled 
here, particularly the reinforcing ones. Now that we are finally able to write out the 
form of the reinforcement rates, we can make note of the substantial nature ofthat 
approximation. While we can account for the differential travel times of the rein- 
forcing forces, we must lump those forces together for attrition purposes. This may 
not be very realistic as we can conceive that these forces would take progressively 
greater losses as they get nearer the fortified line (for the Red forces,) or nearer the 
breakthrough area (for both forces.) Notice also that the reinforcing forces do not 
fight - they only move - until they become part of the reinforcement rates. 

The reinforcement rates for the breakthrough area forces may be given 
simply as 

XIII-25 



Ol<«0 = A3<(t') 

M*0 = s3>«') 

p   + x  -   ™   - s   t' 

0l>(t') =A3>(i') 

M'0 = ^K('0 

«'--fi-i u 

( w 
p  + X  

/ _ p 

P+L-X- — - sAt' 
w 

2 
"A) 

2       A 

'      w      ^ a; - — 

 2--t> 
\       SB 

T W L - x - — 

L - x s.t' 

w p +L -x-Z. 
±-t< 

(XIII.D-11) 

-1 - t' 

If we examine the left-hand-sides of these equations, we may see the logical 
structure of the reinforcement rates. The first terms are the current force strengths 
of the reinforcing forces. The next terms are the arrival rates of the portions of these 
forces. If we take each of these fractions and multiply each by a time increment At, 
then this result is the fraction of the reinforcing force that arrives at the break- 
through area in that time increment. The denominators represent the linear form of 
the reinforcing forces - the left (relative to Blue,) or < forces are initially a line x - 
w/2 long, while the right or > forces are initially a line L - x - w/2 long. Because 
these lines are moving, and once they reach the breakthrough area are getting 
shorter, we must reduce the length ofthat line. The addition of p in the denomina- 
tor for the Red reinforcement rates accommodates the additional time required for 
them to arrive at the breakthrough area - we could equally well have inserted a 
delay time subtracted from t' equal to tassault that would have the same effect. 

The first r\ functions in the Red reinforcement rates reflect the time required 
for the first units in the reinforcing forces to traverse the assault corridor between 
the lines. The n functions in the Blue reinforcement rates and the second n func- 
tions in the Red reinforcement rates reflect the time for the last units in the 
reinforcing forces to reach the breakthrough area. Note that the definition of the T| 
function means that these functions initially have a value of one but become zero 
when time progresses enough to make the arguments negative. Thus the Red 
reinforcement rates are zero until time progresses to make the argument of the first 
x] function positive, and continue until time progresses to make the argument of the 
second n function negative - the product of the two t] functions is effectively a unit 
height function that has zero value before and after reinforcements arrive, and one 
during. The Blue reinforcement rates occur initially, because of the shorter travel 
distance, but cease later, so only one r\ function is required. 
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This completes the post-assault phase model. Like the assault phase model, 
this model does not obviously possess a state solution, and indeed, because it has so 
many time dependent terms, we do not expect it to. Unlike that model, I do not 
believe that this model has a simple analytic solution largely because of the way we 
have implemented the attrition of the line and reinforcing forces. I cannot categori- 
cally say that such a solution does not exist, merely that I cannot see an obvious 
approach and have not tried to solve the equations. Regardless of this, we can 
calculate numeric solutions using the same techniques that we have practiced 
before, and we shall now proceed to examine several examples. 

For our examples, we extend the calculations previously presented in Figures 
(XIII.D.4) - (XIII.D.6) for the assault phase to the post-assault phase. These 
calculations are shown in Figures (XIII.D.7) - (XIII.D.9), respectively. We have used 
movement speeds that are the same as used in the assault phase, now for both 
forces, recognizing that these speeds may be somewhat high for the Civil War era. 
For reinforcement fractions, we have used 50% for both sides, and have assigned 
the breakthrough area to be the mid-point of the line (i.e. x = L/2.) 

If we examine Figure (XIII.D.7), we see that despite the delay in Red receiv- 
ing reinforcements, the battle seems to clearly be in Red's favor. Indeed, the Blue 
line is completely attrited - our Red on Blue line attrition rate may be too high for 
historical accuracy - we have seen this trend in the calculations for the assault 
phase. Once the Blue line is attritted, the Red line has nothing to do, since the Blue 
reinforcing force has gone away - fully deployed in the breakthrough area, and the 
Red commander could deploy some ofthat force (about 300 units of the original 
1000) as reinforcements. This is probably not necessary as by t' = 200 sec, the Red 
breakthrough force has a strength of about 400 while the Blue force has been 
reduced to about 50 - a force ratio of about 8! This can be compared to the force ratio 
at the end of the assault phase of 3.86. Note also that at t' = 75 sec, when Red 
reinforcements begin to arrive, that the force ratio in the breakthrough area is 
about 1. 

Figure (XIII.D.8) displays similar behavior except that because the assault 
width has been reduced to 50 m., there are fewer Blue units in the area, and Blue 
reinforcements have further to travel. The differences between this case and the 
previous one are only marginal. 

Figure (XIII.D.9) shows a more complex case, but substantially the same 
result. Admittedly, Blue has a favorable force ratio for a longer period of time, from 
about t1 = 60 sec, to t' = 80 sec, but by t' = 200 sec, Red has still achieved a force 
ratio of better than 5, and the Blue line has been completely attrited. 
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Before concluding this section, some reflection on these models is in order. 
Clearly, we could have constructed them in other ways to reflect other tactical 
decisions or doctrinal rules. That we have not done so does not imply that this 
model is inherently the correct one for all situations. Our intent was to demonstrate 
that models for complex tactical situations can be readily constructed using 
Lanchester Attrition Theory and equally readily examined. The student should now 
be able to construct different models reflecting other tactical and doctrinal 
considerations and exercise them for insight. 

For this pair of models in particular, several key points can be made. They 
clearly demonstrate the unrealness of the conclusion condition of Lanchester theory 
as a criterion for victory. The need for a battle termination model such as Weiss' in 
the previous chapter is obvious. From an historical standpoint, our estimation of 
attrition rates here, based on our limited coverage of this area of theory, is equally 
clearly in error. In particular, the attrition rates against the units in the fortified 
line are too high. Were we to adjust these rates downward, we would expect some 
change in the post-assault phase results. 

It may be argued that the movement rates (speeds) used here are also too 
large. To address this question, we repeated the calculations presented in Figures 
(XIII.D.6) and (XIII.D.9) using halved movement rates - 2 m/sec. These calculations 
are shown in Figures (XIII.D.10) and (XIII.D.ll), where we have adjusted the 
durations of the two phases proportionally. Aside from the increased attrition to all 
forces due to the longer times, there is no substantive change in the shapes of the 
curves. 

On the positive side, the two models do confirm the observations of Weiss. If 
a substantial assaulting force can reach the fortified line and create a break- 
through, it is difficult for the defending force to eject them. Admittedly, in our 
calculations, we never investigated the case where the assaulting force did not 
satisfy this condition, primarily because of the tactical question of what to do about 
the Red (assaulting) reinforcing force. 

In conclusion, let me reiterate that the purpose of this modeling section was 
primarily to demonstrate how Lanchester Attrition Theory can be used to rapidly 
and simply develop fairly complex tactical situation models that can then be easily 
exercised (using spreadsheets) to gather insight. The professional soldier may be 
quick to decry the fallacies and limitations of this particular model, either because 
it does not accurately reflect some tactical or doctrinal wisdom (e.g., either don't 
allow the assault force to fire, or reduce their movement rate to reflect firing,) or 
because it does not reflect the situation accurately enough. Both of these objections 
can be accommodated by changing parameter values or introducing new complexity 
into the model. The student should now be capable of taking exactly these actions, 
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but I counsel caution - inject new complexity only after you understand the model at 
each level. 

XIII.E.      Survival of Battle 

With this section, we now return to consideration of the historical data. In 
particular, we now consider the historical evidence, provided by our data bases, of 
the statistics associated with what average per-centum losses have been. This 
completes the effort begun in the previous chapter where we presented these types 
of calculations for our Civil War data base. Now, we perform these same types of 
calculations with our other four data bases. 

As a reminder, the calculation that we perform is to take the initial, final 
force strength data in our data bases, and perform a linear regression on this data 
to an equation of the form, 

Sfinal  = aSinitial> (XIII.E-1) 

where: S^^, Sg^ are the force strengths, and o is the slope of this line. As we noted 
earlier, the form of this straight line; that is, zero intercept, is predicated on the 
idea that an initial force of zero strength must result in a final force of zero 
strength; this is just fancy mathematical talk for what is really common sense. The 
selection of a straight line is based on our visual inspection of the cross plots of the 
force strengths presented in a previous chapter. As we noted then, there may be 
additional structure, indicating either higher order effects, or a break in the data 
trends, but for our purposes here, to examine the values of o, which represents the 
average survival fraction, the straight line is our choice. 

Now. we may examine these regressions. For the individual data bases, 
(except the Civil War data base, presented in the preceding chapter,) these results 
are presents d in Table XIII.E. 1. The amazing result here is the consistency among 
the first three data sets, all having a value of approximately 0.84! All three of these 
data sets also have comparable levels of error in the fit, of the order of 1%, and all 
four data sets have very high correlations, greater than 0.96. The exception is the 
data for World War I, which has a considerably smaller o value, and a larger error 
(but the smallest number of battles by a factor of three.) 

This set of regressions indicates that over a very great period of time, since 
the Normal (or Brassey's) and Short Battle data sets span a very long period of 
time, the average losses in battle tend to be about 16% per battle. This indicates 
that battles with very large or very small losses tend to be rare. The World War I 
results tell us what we already know, that these battles were much more bloody 
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than the norm by about 50% (in per-centum losses.) The small values of the errors 
and the high values of correlation give us a high degree of confidence in this. 

Table XII.E.l. Force Strength Linear Regressions of Remaining Data Sets 

Data Set # of Battles o Stan- 
dard 
Error 

R2 

Normal 215 0.838 0.009 0.962 

Osipov's 76 0.845 0.01 0.966 

Short 144 0.845 0.007 0.985 

Table XIII.E.2. Winner-Loser Force Strength Regression Results 

Data Set # of Battles a Standard 
Error 

R2 

Osipov's Winners 37 0.872 0.013 0.969 

WWI Winners 12 0.794 0.022 0.978 

Osipov's Losers 37 0.808 0.013 0.969 

WW I Losers 12 0.765 0.023 0.971 

Three of these data sets provide us with additional break-down on the data. 
In particular, the Osipov and World War I data sets identify Winners and Losers, 
and the Short and World War I data sets identify Attackers and Defenders. We may 
also subject these data set divisions to the same type of regression. The results of 
Winners and Losers is presented in Table XIII.F.2, and for Attackers and Defenders 
in Table XIII.E.3. 
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We continue to see very good correlations with these regressions, although 
the errors are considerable larger than before, an expected result given the division 
of the data sets in half in terms of the number of data points. That is, for small 
errors (less than 10% say,) we would expect the error to double if we decrease the 
size of the data set by a factor of two. Nonetheless, the data are still good enough 
that we may draw some fairly obvious conclusions. Recalling that Osipov's Battles 
are essentially Nineteenth Century battles (actually Napoleonic to just before 

Table XIII.E.3. Attacker-Defender Force Strength Regression Results 

Data Set # of Battles 0 Standard Error R2 

Short Attackers 72 0.845 0.007 0.988 

WWI Attackers 12 0.778 0.024 0.973 

Short Defenders 72 0.823 0.010 0.978 

WW I Defenders 12 0.765 0.024 0.964 

World War I,) and that the World War I Battles, which follow directly, 
chronologically, after Osipov's, are particularly bloody, we may observe that in 
general, winners take fewer losses than losers, 13% versus 19% for Osipov's, and 
21% versus 23% for World War I, and that attackers take fewer loses than 
defenders,  16% versus 18% for Osipov's, and 21% versus 23% for World War I. 

Clearly, this trend for defenders is contrary to what is commonly considered 
to be conventional military wisdom, but it tends to confirm the claims made that 
the advance of technology reduces the advantage of the defender. Certainly, we can 

Table XIII.E.4. Exponential Cumulative Fractional Exchange Ratio Distributions 
Fits 

Data Set Function Fitted Parame- 
ter 

D Value 

Osipov Exponential 1.0243 0.3693 

Gaussian 1.093 0.1986 

World War I Exponential 0.6130 0.3217 

Gaussian 0.3722 0.1424 
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visualize that as weapons become longer range and more lethal, and attackers can 
carry armored protection with them, the value of prepared defenses to shield the 
defender and limit the concentration of the attacker becomes reduced. 

Table XIII.E.5. Inverse Polynomial Cumulative Fractional Exchange Ratio Distri- 
bution Fits 

Data Set Polynomial Order D Value 

Osipov 1 0.3384 

2 0.2519 

3 0.2255 

World War I 1 0.3878 

2 0.2863 

3 0.2026 

Finally, we may examine the statistics of the distributions of these data 
using the cumulative Kolomogorov-Schmirnov technique described in the append! 
ces. In particular, we may examine the probability of willing, ala Weiss, in terms of 
the Fractional Exchange Ratio distribution for the Osipov and World War I data 

Table XIII.E.6. Fractional Exchange Ratio Distribution Fits for Brassey's Battles 

Data Period Exponential 
Fit 

D Value Gaussian Fit D Value 

Pre-Gunpowder 3.342 0.2433 8.0280 0.2976 

Early Gunpow- 
der 

4.2212 0.1223 14.9994 0.1339 

18th Century 5.8783 0.1197 21.4883 0.2661 

1800-1825 6.2151 0.1189 22.6746 0.2212 

1826-1860 4.0326 0.1981 7.6335 0.4964 

1861-1876 8.2125 0.2075 28.3421 0.3588 

1876-1899 5.0204 0.0892 15.5878 0.3294 

20th Century 4.1855 0.2420 16.8580 0.1261 
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sets. In both sets, we find that the distribution is better fit by a gaussian rather 
than the hypergaussian or the inverse polynomial, although the difference is small. 
Of particular note here is the FER functional relationship does not seem to support 
the unequivocal use of the third power. We present these data in Tables XIII.E.4 
and XIII.E.5. 

Table XIII.E.7. Fractional Loss Distribution Fits for World War I Battles 

Segment Exponen- 
tial Fit 

D Value Gaussian 
Fit 

D Value 

All 3.3736 0.2548 10.4845 0.1156 

Attacker 3.7852 0.2769 15.1318 0.1066 

Defender 2.6063 0.3356 7.0235 0.1794 

Winner 3.3132 0.2087 9.8394 0.1574 

1 Loser 2.8898 0.3807 9.3604 0.2700 

For the Brassey's Battles data set, we may examine the FER, not as a measure 
of probability of winning, but as a simple indicator of distribution. The fitting and 
error data for these are presented in Table XIII.E.6. Two things may be noted from 
this table. First, the value of the fitted parameters vary considerably by period, 
which we must hasten to note are somewhat arbitrary. In particular, the periods of 
the Napoleonic and American Civil Wars are particularly described by small FERs 
(large fit parameters.) Second, except for the Twentieth Century, the fits are better 
for the exponential function than for the Gaussian. 

If we now turn to examine fractional losses (rather than FERs,) in the same 
manner, then we find somewhat different results. For the World War I data set, 
these are summarized in Table XIII.E.7. The same data for Osipov's data set are 
summarized in Table XIII.E.8. While the World War I battles seem to more clearly 
be fit by gaussian distributions, the Osipov data are not as clear cut. 

This concludes our discussion of historical data for now. If there is a lesson to 
be learned here, it seems to be that the lack of detail available precludes any simple 
and concise approach to either supporting or denying Lanchester theory. There are 
clearly trends and analyses that may support both sides of this argument, but 
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either side is sufficiently strong to be conclusive. We must therefore proceed in the 
sure uncertainty that Lanchester theory may be used as an indicative but not as a 
definitive or even predictive tool of war. 

Table XIII.E.8. Fractional Loss Distribution Fits for Osipov's Battles 

Segment Exponential 
Fit 

D Value Gaussian Fit D Value 

All 5.3561 0.2407 21.3221 0.1340 

Stronger 6.3580 0.1758 27.7845 0.1892 

Weaker 4.3706 0.3057 16.3954 0.1043 

Winner 6.5535 0.1594 28.9819 0.2009 

Loser 4.2827 0.3523 16.0052 0.1530 
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XIV. CONCLUSIVE BATTLES8 

XIV.A.       INTRODUCTION 

In this chapter, we finally come to treat with that special class of battles first 
introduced by Lanchester - conclusive battles.1 Of course, these battles are the special 
case where the combat is carried to the point where one side is completely attrited - 
it has no units left, thus the term conclusion. In terms of the state solution of the 

attrition differential equations for general attrition order n, 

An = aB0
n -ßA0", (XIV. A-1) 

this situation is predictable in magnitude and side by the magnitude and sign of the 
An. If A„ > 0, then the Blue force survives, and has a conclusion force strength of 

B. = 
aB0

n -ßA0
n 

a 
(XIV.A-2) 

while if An < 0, the Red (Amber) force survives, and has a conclusion force strength 
of 

A, = 
-aB0

n +ßA0" (XIV.A-3) 

Of course, if An = 0, then the special case of a conclusive draw occurs where both force 
strengths are attritted to zero units. 

XIV.B.       Historical Data 

A question which naturally arises is "How often do conclusive battles occur in 
history?" As a first step in this analysis, we reviewed three readily available 
dictionaries of battles: Dupuy and Dupuy's The Encyclopedia of Military His- 
tory, 2Eggenberger's An Encyclopedia of Battles,3 and Laffin's Brassey's Battles.4 

While Dupuy and Dupuy do not state how many battles they include, Eggenberger 
claims to cover 1,560 battles and Laffin more than 7,000. Even with overlap, a 

3     This chapter is based on a paper of the same title written in 1992 by CPT Lawrence 
Phillips and myself, and submitted for publication to the journal, Military Review. It was returned 
by the journal without comment as unacceptable. This is a concrete example of the difficulty of 
publishing Lanchester Theory or military analytical papers; they are frequently too old hat for the 
OR journals, and either too analytical or politically unacceptable for the military journals. 
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conservative estimate is that the three volumes chronicle at least 10,000 battles. 
These are three of the major sources of data that we have already used in the 
development of this book. 

We cannot claim that these three sources constitute an exhaustive survey of 
battles, or even less that our search of them has been exhaustive. We do believe, 
however, that the list of battles we present below is representative of conclusive 
battles. In our search for conclusive battles, we have limited our acceptance to those 
battles for which some numeric force strengths were provided." The data provided 
by the authors of these three works has been taken as authoritative. An extensive 
examination of more detailed sources was beyond the scope of this effort. The 10 
battles that we were able to identify as conclusive are summarized in Table XIV.B.l 
and described below. 

The battles are arranged in chronological order. While they span a period from 
480 B.C. (Thermopylae 1) through 1879 (Isandhlwanda) half (5 of 10) are nineteenth 
century. The initial inclination is to attribute this to better record keeping, although 
upon analysis, a second contributing factor emerges. Many of these battles are 
famous, far beyond what might be expected from the force strengths involved. Of the 
10, 6 are battles which have become mythic within different cultural groups. We 
review each battle briefly. 

Thermopylae 1: In this battle, the Greeks were defending the Thermopylae 
Pass against the invading Persian forces under Darius I (son of Xerxes) to prevent 
entry into Attica proper. After a three day defensive battle, the Persians found an 
alternate pass through the mountains and successfully flanked the Greeks. The part 
of the battle reported here is the successful rear guard holding action of the Spartan 
contingent under "King" Leonidas 1. The Persian campaign was subsequently 
terminated by the Greek victory at the naval battle of Salamis. This battle is 
considered mythic because of the courage  and dedication of the Spartan force. 

Teutoburger Wald: In this battle, a larger force under the Chief of the 
Cherusci, Arminius, surprised a Roman force under Püblius Quintillus Varus in the 
Teutoburger Wald (Forest) as they marched to crush a German rebellion. Over a 
three day battle, the Roman forces were destroyed. This battle demonstrates the 
superiority of irregular, light forces over heavy infantry and cavalry in irregular, close 
terrain. Although not mythic, this battle is historically significant because it fixed the 
northern boundary of the Roman Empire at the Rhine River. 

XIV-2 



Table XTV.B.l Statistics on Conclusive Battles 

Battle Date Winner Initial 
Strength 

Final 
Strength 

Loser Initial 
Strength 

Final 
Strength 

Thermopylae I -400 Persians 100,000 - Spartans 300 0 

Teutoburger Wald 9 Cherusci . - Romans 20,000 0 

Antioch Et 1119 Turks . . Crusaders . . 

Mohi 1241 Mongols . . Poles 100,000 70,000 

Bannockburn 1314 Scots 8,000 4,000 English 15,000 few 

Alamo 1836 Mexicans 3,000 1,400 Texans 188 0 

Camerone 1863 Mexicans 2,000 . French 65 3 

Massacre Hill 1866 Sioux 2,000 1,940 U.S. 81 0 

little Bighorn Eiver 1876 Sioux 3,000 - U.S. 211 0 

Isandhlwanda 1879 Zulus 20,000 - British 1,800 5 

Antioch II: In this battle, a Turkish force under Ilghazi, the ruler of Aleppo, 
surrounded a Norman force under Roger of Salerno, the Regent of Antioch, during the 
night before the battle: Unable to break the Turkish line, the Normans were 
destroyed. The battle had little strategic significance as Ilghazi failed to press his 
initiative following the battle. 

Mohi: In this battle, Mongol forces under Subodai made rear, flank, and 
frontal attacks against the Polish forces (in battle line) under King Bela IV. Al- 
though not technically a conclusive battle since approximately 30 percent of the 
Polish force survived, the Polish Army was routed and destroyed as a fighting force. 
The Mongols were subsequently unable to maintain the initiative gained in this 
battle because they were re-called to participate in the selection of a new Kahn 
following the death of Ogadai. 

Bannockburn: In this battle, Scottish forces under King Robert I (the Bruce) 
initially defended uphill against an assault by an approximately twice larger and 
heavier English force under King Edward II. After initially repulsing the English 
forces, the Scots seized the initiative by counterattacking across boggy ground where 
the lighter Scottish forces destroyed the heavier English forces. This battle is mythic 
among Scots since it secured Scottish independence. (Edward was unable to mount 
any further invasions because of civic and Irish unrest.) 

Alamo: A small force of Texan revolutionaries occupied and fortified a 
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Franciscan mission, the Alamo, which lay astride the supply and communication lines 
of the Mexican forces commanded by Antonio de Santa Anna. The Texan intent was 
to delay Santa Anna's progress north to buy time for the main Texan forces to train 
and equip. With this threat to his lines of supply and communication, Santa Anna 
was forced to lay siege to the Alamo, delaying him for 12 days. The Texan defenders 
were destroyed at great price to the Mexicans. Following this, Santa Anna fought 
seven more battles with the Texan revolutionaries before being decisively defeated 
at San Jacinto River. Both battles are mythic among Texans. 

Camerone: In this battle, a small French Foreign Legion force held off a much 
larger Mexican revolutionary force for 10 hours. The battle is mythic within the 
French Foreign Legion as an example of Legionnaire devotion and courage. 

Massacre Hill: In this battle, a small force of U.S. Cavalry counterattacked 
a much larger force of Sioux warriors under Crazy Horse and Red Cloud to relieve 
a wagon train. Apparently, the U.S. force was unaware of the size of the Sioux force 
when they counterattacked. Although the counterattacking force was destroyed, the 
Sioux were unable to follow up on their initiative. 

Little Bighorn River: In this battle, 12 troops of the U.S. Seventh Cavalry 
under George Armstrong Custer attacked an encamped Sioux and Cheyenne force led 
by Sitting Bull, Crazy Horse, and Gall. Custer divided his force, personally 
commanding a force of five troops (this is the part of the battle considered here). 
Custer was surrounded and over-whelmed by superior numbers. This battle is mythic 
among Americans (especially in the U.S. Army). 

Isandhlwanda: In this battle, a large force of King Cetewayo's Zulus over- 
whelmed a British regiment in broken terrain at the Great Rock of Isandhlwanda. 
This battle is mythic to the British because it represents the first defeat of British 
troops by "natives" in battle. The Zulu initiative was blunted almost immediately at 
the battle of Rorke's Drift (another mythic battle), and the Zulus were destroyed as 
a fighting force six months later at the Battle of Ulundi. 

Wounded Knee Creek: An eleventh battle is also technically conclusive. 
Following the death of Sitting Bull, a Sioux group fled the reservation into the 
badlands of South Dakota. This group attacked elements of the Seventh Cavalry who 
were attempting to disarm the Sioux and return them to the reservation. In the 
subsequent action and return to the reservation, the Indians were destroyed. This 
battle enjoys mythic proportions among American Indians as a massacre. We do not 
include this battle in our analysis for this reason. 

XIV. C.       Analysis 

Ten battles are not a very large sample out of 10,000, being about 0.1 percent 
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of that number. If this number is indicative, however, the answer to our question 
"How often do conclusive battles occur in history?" is "Not very often." 

If we examine these 10 battles, some interesting trends emerge. Most of the 
battles clearly and immediately fall into two categories: First, actions where a small 
force defends against a larger force (hold and die;) and, second, engagements between 
two forces which are technologically and culturally quite disparate. The first category 
(hold and die battles), includes Thermopylae I, Alamo, and Camerone. The second 
category (cultural.disparity battles) includes Massacre Hill, Little Bighorn River, and 
Isandhlwanda. All of the disparity battles took place during the latter half of the 
nineteenth century when the British (and most European nations) primarily fought 
colonial wars and Americans were  consolidating their continental nation. 

The fact that 3 of the 10 conclusive battles are hold and die battles does not 
seem surprising. Battles of this type must end in conclusion unless the defending 
force is relieved. The.fact that all three of these battles are mythic would seem to 
indicate the rarity of this type of battle. 

Of the three cultural disparity battles, all were losses for the more technolo 
gically and culturally developed force." Both of the American losses (Massacre Hill 
and Little Bighorn River) were the result of tactical mistakes on the part of the loser 
(inadequate intelligence in both cases, splitting the force in the second). The British 
loss (Isandhlwanda) is not so clear, although similar reasons have been offered for 
this loss as well (inadequate intelligence, possibly inadequate tactical resupply). It 
seems reasonable, therefore, to posit that a significant cause of these losses was 
tactical overconfidence. If so, this is a dire lesson to be learned by contemporary 
military forces in the United States and Europe as the likelihood of Third World 
involvement increases. 

Of further note in these three battles of the second category, all were fought 
by forces on one side seeking conquest and on the other side by forces resisting 
conquest. This conquest seeking/resisting theme is common to both the first and 
second categories. Further, it must be considered that both of the American battles 
in this category were with a foe with an essentially common command structure 
(Crazy Horse and Sitting Bull). The fate of Custer and his five troops of the Seventh 
Cavalry also cannot be discounted - soldiers have long memories. 

The four remaining battles, Teutoburger Wald, Antioch II, Mohi, and Bannock- 
burn, have parallels with the battles of the second category. In all four battles, there 
is cultural, if not technical, disparity: Romans and Germanic Tribesmen; Normans 
and Turks; Poles and Mongols; and English and Scots. 

We might argue that all of these battles represent conflicts between main 
stream Western (European) cultural forces (Romans, Normans, Poles, and English) 
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and non-main stream Western, or non-Western cultural forces (Germanic tribes, 
Turks, Mongols, and Scots.) All were conquest-type battles. Three (Teutoburger 
Wald, Antioch II, and Mohi) are characterized by inadequate intelligence on the part 
of the loser. Two are characterized by the use of inappropriate types of units for the 
terrain (Teutoburger Wald and Bannockburn.) One was definitely the result of 
tactical overconfidence (Antioch II); and the other three could be characterized in 
those terms. 

XIV. D.       Conclusions 

As we have stated, these 10 conclusive battles are not a large number when 
compared to the total number of recorded battles. Even if we have found only a few 
conclusive battles, it appears moderately safe to postulate that conclusive battles are 
rare. These battles take on mythic and cultural significance far beyond that expected 
by their frequency of occurrence. 

Furthermore, these conclusive battles seem to primarily occur between 
conquest goal (or rebellion suppressing) forces and conquest avoiding (or rebelling) 
forces. The battles fall into two broad categories: hold and die battles and cultural 
disparity battles. In the first category, the losing force is usually a small one fighting 
a delaying action with the intent of selling themselves dearly. In the second category, 
the losing force appears to frequently suffer from tactical overconfidence (and 
inadequate intelligence is frequent evidence of this).The intent of the loser in the first 
category, the cultural differences (with misunderstanding and prejudice therefrom) 
between the forces in the second category and the central theme of con 
quest/anticonquest seem to clearly characterize conclusive battles. This evidence 
indicates that, historically, the use of conclusion as a victory standard in Lanchester 
calculations is not well founded. 

In terms of lessons in the military art and contemporary politics, however, 
there is much to learn from conclusive battles. For the recent Desert Storm campaign, 
the battle for Kuwait was not conclusive but it was decisive. Clearly, the Coalition 
forces were technically, but not culturally disparate, from the Iraqi forces. It is easy 
to hypothesize that the joint nature of the Coalition dispelled misunderstanding and 
prejudice from cultural differences which could have led to overconfidence from the 
technological disparity of the forces. 

Such a view, ignoring other significant factors, would be simplistic and 
erroneous. Nonetheless, as American interest, and possible military action, focuses 
more outside of Europe, cultural disparity between forces will be common. The 
possibility for overconfidence arising from this disparity increases. This must be 
avoided lest American forces experience a twentieth (or twenty-first) century 
conclusive battle we neither want nor can afford. 
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XV. Of Captains and Colonels, 
Of Simulations and Sealing Wax 

XV. A.       Introduction 

With this chapter, we reach a crucial juncture in this book. Up to this point, we have 
been largely concerned with the simplest class of Lanchester problem, the homogeneous 
aggregation problem. Admittedly, we have taken excursions from time to time, briefly 
treating with heterogeneous aggregation while considering attacks on fortified lines, and an 
interlude with stochastic duels, but by and large, our central concern throughout the chapters 
leading up to this point has been the simplest class of problems for Lanchester attrition 
theory, two forces contending in combat with no initial differentiation about the spatial, 
temporal, organizational, physical, and psychological composition of those forces. 

If I may take an analogy from Classical Mechanics in Physics, the problem that we 
have concerned ourselves with thus far is the analog of the interaction of two point masses. 
While, in physics, we may consider one point mass, as soon as we exert force3 on that mass, 
we must introduce another mass (or its field representation). This is the simplest problem 
one may consider in Classical Physics, just as the two force, homogeneous aggregation 
problem is the simplest that we may consider in Lanchester Attrition Theory. 

In the study of Classical Mechanics, there are several very good reasons for studying 
this (simple) class of problem. The most basic one is to gain understanding of the basic 
principles of the mechanics and how these translate in the behaviors (or trajectories) of the 
masses. The second reason for considering this simple class of problems is that even in more 
complicated problems involving more masses, the behavior of the masses, much of the time, 
tends to bear resemblance to the pair-wise behavior. As an example, consider the motion 
of an extended body (say a projectile in flight.) If that body is rigid (which the projectile will 
be most of the time, its the exceptions that tend to prove interesting,) then its behavior is 
described by six quantities - three describing the behavior of the center of mass of the body, 
and three describing the behavior of the body about the center of mass. When the behavior 
of the body about the center of mass is well behaved, that is, is stable, then that behavior 
becomes uninteresting and as a reasonable approximation, we may only consider the behavior 
of the center of mass of the body. Thus, the problem, under these circumstances, reduces 
to a point mass problem, the simplest case. 

A third reason why we study this simplest class of problem so much is that many of 
the problems involving multiple masses cannot be solved analytically. These problems that 
can be solved analytically tend to have special forms or constraints.  We must commonly 

3     Note that I have used force with two meanings in this paragraph. The first is the physics term while 
the second is the Lanchestrian term. 
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resort to either approximate solutions or simulation. Many of the approximate solution 
techniques derive from the simple two mass problems, and the simulation results must often 
be viewed in the two mass framework for understanding. Thus, the simple two mass problem 
class is the basis for, if not solving, definitely understanding the multi-mass problem. 

The same tends to be true in Lanchester Attrition Theory. The simple two force, 
homogeneous attrition problem is the basis for understanding more complex, multi-force 
problems. This is not just an excuse for spending so much time and effort in studying these 
elegant two force solution methods and the behaviors of the solutions. The insights and 
knowledge gained from this study is the basis for understanding and gaining insight into the 
multi-force problems. 

If you, the student, do not feel confident in your understanding of the theory and 
methodologies described to this point, do not despair. By its human nature, understanding 
must grow and frequently does not truly form until we wrestle with problems that challenge 
us to work with our knowledge and expand it. You should not panic and retire for 
exhaustive study and contemplation of the material presented thus far, but you should be 
prepared to return to it selectively on demand, for those purposes. Above all, do not harbor 
the illusion that we will be leaving this material behind. It is the foundation that we will build 
on as we proceed and you may likely find occasion to enforce your appreciation of that 
foundation. 

XV.B.       The Dog Chases His Tail 

To proceed with this transitional chapter, it is necessary that we concern ourselves 
somewhat deeply with a theoretical consideration of how combat is described. This 
consideration will seem to bear little resemblance to how the soldier is used to describing, or 
reading of, combat. I apologize for this, but offer up that once the theory has been 
described, the soldier will find that it provides a framework that encompasses and 
accommodates what he is used to, and provides greater scope for the understanding and 
practice of his skills. 

A fundamental concept that we introduce at this time is that of the process. A 
process is a (possibly complicated) form of activity that results in an accomplishment or 
product. Obviously, a process must be initiated (begun), and it may conclude (end). If a 
process is continuous, that is, it continues or repeats indefinitely, then it may not have a 
conclusion, and it may not be necessary to consider its initiation for the problem under 
study. 

If the activity of the process is the same throughout, then the process is a simple 
process and cannot be divided further. If the activity of the process is not the same 
throughout, or different activities are performed during the process, then the process may 
be subdivided into sub-processes, which may in turn be further subdivided until the condition 
of sameness is reached. This is, subdivision occurs until the process is fully described in terms 
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of simple activities. 

The composition of a process and its description for any problem is to a certain extent 
dependent on the problem. For some problems a process may be approximately treated as 
simple even when it is not. As an approximation then, we will assume that a process may 
be aggregated, that is, the composition of its subprocesses may be combined in some manner 
and thereafter ignored, with some (hopefully small) penalty for inaccuracy and some 
(hopefully large) benefit for simplicity. 

This discussion is wonderfully heady and abstruse, but for many of us, the air may now 
be full of dandruff flakes, if not actual tufts of hair. Let us consider an example, that of the 
process of breathing. We know that this process is initiated (by birth) and concluded (by 
death), but most of the time we may safely ignore both of these and consider the process as 
continuous. 

Oxygem Carbon 
Dioxide/ 

Birth *    Inhalation *   Exhalation Death 

Figure XV.B.1. A Simple Diagram of the Breathing Process 

Clearly, the process of breathing is (in the main) repetitive and not simple. It is 
comprised (under normal conditions) of the repetitive subprocess of inhalation-exhalation 
which is itself, in turn comprised of two subprocesses, inhalation and exhalation. If we are 
not concerned with the detailed physiological events which occur during inhalation and 
exhalation, then we may under certain circumstances, as an approximation, consider 
inhalation and exhalation as simple processes. In this case, we may effectively describe 
breathing (under normal circumstances,) as a continuous process comprised of two 
sequential, simple subprocesses, inhalation and exhalation. The product of the inhalation 
subprocess is to bring oxygen into the lungs; the product of the exhalation subprocess is to 
bring carbon dioxide out of the lungs.This process is simply depicted in Figure XV.B.1. 

Of course, this is an enormous simplification of the breathing process. It does not 
address what happens to the oxygen or where the carbon dioxide goes to. It also does not 
address other variations such as sneezing or coughing, although all of these can be 
incorporated into the process. For our simple model of the process, we should stick to the 
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process as we have drawn it for now. 

Before proceeding, we need to address some additional variations. First, processes 
(and subprocesses) may be connected in a variety of ways. Our simple model of breathing 
has two subprocesses connected in serial. Processes may also be connected in parallel. In 
addition, products may be positive or negative in the sense that they may be outputs or 
inputs, which terms may be used synonymously. 

_k 

In general, processes and their products may be probabilistic (stochastic) or deter- 
ministic. It is most convenient to consider all processes and their products as stochastic, and 
treat the deterministic ones as 
special cases. By this, we mean 
that the duration, form or other 
observables of processes and 
products have probability distri- 
butions associated with them. 
Further, the connections between 
processes may also be considered 
to have probability distributions 
associated with them. For deter- 
ministic processes and products, 
we can consider these distribu- 
tions to be delta functions - they 
have an expectation value, but 
zero standard deviation. 

i ' 

Inhale Exhale 

, k 

t 'el 
Figure XV.B.2. Continuous Breathing Process with Durations 

Quite often in considering combat processes, the most important distributions are 
those of duration. If we redraw our breathing process diagram as a continuous process 
(neglecting birth and death,) as shown in Figure 
XV.B.2 , we see there are four durations in 
volved: the durations of the inhalation (t,) and the 
exhalation (te) subprocesses, and the durations be 
tween the two subprocesses (tie and te!). We as- 
sociate a probability distribution with each of 
these durations. We may thus associate an expec- 
tation value and a standard deviation (and the 
higher moments) with each of these durations. 
If we wanted to calculate the expectation value of 
the duration of one breathing cycle, we would 
need to consider whether the distributions are 
independent or not. If they are, then we would 
only need to sum the expectation values of the 
four distributions to obtain the cycle's expected 
duration. 

Figure XV.B.3. Contingent Parallel Processes 
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It also follows for parallel processes that transition or initiation of a subsequent process 
may be contingent on completion of all or some of the parallel precedent processes. This 
is shown in Figure XV.B.3. 

If both processes A and B must conclude before process C can initiated and the 
expected durations of these two processes are cta> and ctb>, then the expected time before 
process C can initiate is MAX (cta>, ctb>). 

We must also consider processes that may repeat but which are not continuous. These 
processes may repeat but they may not be self-repeating. In its simplest form, this may be 
the result of a decision process. A decision process may have several products, some of 
which may be the repetition of other processes. We use the convention that the products of 
a decision process can only be informational in nature. A simple example of this is shown in 
Figure XV.B.4. 

Figure XV.B.4.  Repetition through a Decision Process 

In this case, process B may repeat as a product of decision process C, or process D 
may be initiated. 

Of particular concern in the description of processes is the nature of the statistics 
associated with the process. If the process always behaves the same way when it is initiated, 
then we say that it is a stationary process (even though something happens) because its 
statistics are stationary. If the process behaves differently, either after the first time it is 
initiated, or every time it is initiated, we say that it non-stationary because its statistics are 
non-stationary. Under some circumstances, we may choose to approximate non-stationary 
processes as stationary ones to simplify the model. 

To summarize what we have said about processes: 

XV.C.       And then lies down 

Having spent considerable time talking about the physiology of processes, and 
considering the breathing process in more detail than any reasonable person would want, you, 
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the student, are probably asking, "But what does all this have to do with Lanchester Theory?" 
Ignoring the fact that we chose a process example that every student could identify with 
(except for those of you who have either just concluded your breathing or reading-this-book 
processes, and you aren't reading this anyway,) the answer is very simple - combat, battle, 
war, engagements are processes, and it is within the framework of processes that we may 
understand, model, and analyze the physics of the battlefield. Indeed, this relationship 
between the conceptual and descriptive framework of processes and warfare is so tight, so 
effective, that after a bit of use it becomes difficult to see combat as other than a process of 
processes. While this is generally true, we must still exercise a certain amount of caution with 
adopting this as an unqualified world view. 

A process will normally be initiated and concluded although we may 
choose to ignore one or both of these if it is continuous or repetitive. 

Processes have inputs and outputs. 

Processes are observable; they normally have durations. 

Decision processes produce only information, although they may pass 
through products of other processes. 

Processes may occur in series or in parallel. 

Processes have probability distribution functions associated with their 
observables. 

Stationary processes have stationary statistics. 

Deterministic processes have delta function distributions. 

First of all, we must not loose sigh of the fact that any model, and with that, any 
modeling technique has its limitations. This is true for the process modeling technique. 
Further, just because we may observe a process and describe its observables, this does not 
mean that we may quantify the process, either in an absolute sense, or in a relative, 
approximate sense. Even if we can quantify the process to a degree of accuracy, this does 
not mean that the model of the process can be made acceptable, either on a technical or a 
political basis. 
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As an example of this, consider morale. The morale of a unit may be considered as 
a process, although admittedly this model is usually of a continuous or frequently re-entrant, 
non-stationary decision process. There are two fundamental problems with such models 
however, one of which is technical and the other political. The technical problem with 
morale models is that they tend to be very difficult to validate (to say nothing of construct- 
ing) largely because the observables, both inputs and internal to the process are inherently 
difficult to quantify and to correlate with outputs. In contemporary terms, the models tend 
to exhibit chaotic behavior. (And we should expect this, primarily because human beings are 
involved.) As a result, combat models that incorporate morale models often have surprising 
or even chaotic results. 

The second problem with morale models is political. Within the framework of any 
organization, it is difficult for the management of that organization to accept any analysis 
predicting that the organization will perform in a chaotic manner. This is particularly true 
of military organizations with their inherent focus on mission accomplishment, and their 
political supervisors who are always asking why they should bear the cost of the military. 
Accordingly, and as a rule, most military analysis is done without implicit consideration of 
morale - units are assumed to always perform as ordered. 

This does not mean that morale is a process which cannot be considered or even that 
it cannot be analyzed. But because the quantified morale process model frequently exhibits 
chaotic results whose consequences in the context of combat analysis are manifestly 
unacceptable, these analyses are performed without quantified consideration of morale. 

At first glance, this deliberate exclusion of the morale process appears to be both 
technically and ethically unconscionable, but this is not completely the case. From a 
technical standpoint, the inclusion of the morale process chaotically drives the results. Since 
we will always be trying to cast analytical results into a framework of stationary statistics for 
the purpose of understanding, the most common effect of morale models is to increase the 
variance (i.e., standard deviations) of the calculations. 

From a military-political sense, the soldier knows that combat is chaotic, but that 
soldiers tend to rise above that chaos. Good leadership tends to avert the chaotic results 
often predicted by the models. Certainly, history, while it records battles where morale 
broke catastrophically, records them as a small percentage. The rule of history seems to be 
that widespread and catastrophic unit breakage occurs after the decision, not to cause it. 
Thus, with morale results as outliers both technically and militarily, analyses without morale 
consideration can be accepted within the consideration of experimental design, given that 
morale is considered separately within another methodological framework. 

We must emphasize that while there are combat processes that do not lend themselves 
to an analytical representation in a quantifiable sense, these processes do not occur with such 
frequency or diverseness to preclude the use of the process modeling technique as a general 
tool for analyzing combat. As I indicated earlier, the association of process methodology and 
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combat conceptualization is so natural that after a while "combat process" seems to become 
one word. 

To illustrate this, let us consider the dynamics (and in some cases, statics) of battle. 
If we consider what a unit goes through in a meeting engagement, then we may describe its 
dynamics by a set of processes. First, the unit will be moving and this is a process. The 
movement process, depending on how we model it (and this probably depends on doctrine, 
type of unit, and time scale of our analysis), may be either continuous or repetitive. We can 
easily visualize that the movement process may be proceeded by a process of "forming up" 
and that these two processes are connected by a decision process. The movement process, 
in turn, may be concluded or altered by a variety of events such as the break down of a 
vehicle, a rest stop, or even contact with the enemy. In general, we may find it useful to 
distinguish between movement processes before and after contact with or detection of the 
enemy. 

During the movement, other processes will be occurring in parallel, in particular a 
scouting or searching process. This process may be carried out by all of the unit or just some 
of it. Additionally, communications processes, both within the unit, and without, may/will 
be occurring. Other processes may also be taking place. 

Since this is a meeting engagement model, there are three things that may occur when 
two opposing units come close together in space and time. These are: 

-:       neither unit detects the other and the movement process con- 
tinues, 

-:       both units detect the other, 
-:       only one unit detects the other. 

As we have indicated, if neither unit detects the other, then they will most likely continue 
in their respective movement processes. 

If both units detect each other before combat can occur, then both will probably go 
through a decision process to decide on the appropriate action. This may include combat, 
continued movement in a different direction (deferral of combat) or some other action. If 
both sides decide on combat, or if one unit decides on combat and can close with the other 
unit, then combat occurs. 

If only one unit detects the other, then the possibility for surprise exists. The 
detecting unit may decide to initiate combat, and do so successfully before it is detected by 
the other unit. Alternately, the detecting unit may decide to avoid combat, and try to 
withdraw or otherwise remain undetected. In any case, once detection has occurred, an 
extra unit communication process may be initiated. 

Assuming that the unit decides to engage in combat, then there will probably be a 
reforming process as the unit changes its formation (say from column to line or from road 
march to a combat formation). Then, unless it will defend its current position, the unit will 
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Figure XV.C1. Meeting Engagement Process Diagram 

move towards the enemy unit. This combat movement will probably be a different process 
than the previous one, and the unit may move as a unit, as sub-units, or even as individuals.13 

Notably, other processes such as acquisition of targets and firing at targets may be occurring 
serially or in parallel with each other and with movement. Communication may be 
occurring. This overall process is sketched in Figure XV.C.1. 

In general, the dynamics of combat may be described in terms of processes. The 
description of combat by the description of these processes and their interrelationships is the 
basis for the analysis of combat in general. It provides the underlying structure for most, if 
not all, combat models and simulations, and as we shall see, is fundamental to the continued 
development of Lanchester Attrition Theory. 

XV.D.       The Master's Voice 

Now we come closer to the meat of the discussion, to the subject of aggregation. To 
address this however, we must first consider some realities of both military and simulation 
organization. We will consider the latter first. 

b     This previous consideration is a fundamental one of de-aggregation. 
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Our previous discussions have already dealt with the difference between a model and 
a simulation. Basically, a model is an informational representation of something which is 
normally, at least in principle, observable while a simulation is a tool, built from one or more 
models, for the purpose of gaining information about those models and possibly thereby, of 
reality. A mathematical equation, along with the definition of its terms may be a model, but 
the instant we take pencil, paper, and calculator and begin to calculate numbers or draw 
curves based on or using that equation, we are using simulation. 

Obviously, the distinction between model and simulation may be a fine one but it is 
one that we must retain. 

One distinction between model and simulation is that a simulation always incorporates 
at least one model. Actually, the simulation really incorporates at least two models, one 
being the model environment that the simulation is constructed in. In our example above, 
this environment was the material pencil, paper, and calculator, the parameters of language, 
mathematics, etc. In this context, we see that merely writing down a model or speaking it 
is a simulation. 

Why have the class of models at all? Why not just consider everything as a 
simulation? These are good questions. We want to have the class and concept of model 
because in one sense a model represents an idealization of information. In another sense, we 
need it because a model is a product while simulation is a process, albeit we tend to use it 
as a noun. 

Now that we have beaten the metaphysical drum (no pun intended) about simulation 
and models, we may now move on to discuss some of the anatomy and physiology of 
simulations. This is the basic reason why we had to through all the discussion about 
simulations incorporating a model of the environment of the simulation. 

Simulations must be expressible in some framework for manipulation. At its simplest, 
this framework may be thought itself if all we do is think about the model(s). Since the 
brain/mind is not very good at keeping a large quantity of items in forethought at once, we 
may be quickly forced to a symbolic representation, say on paper, or to a numeric 
representation, in a computer. When we do this, we force an environment on the form of 
the simulation. 

In general, we may generally admit of four different kinds of simulation, based on two 
different descriptions of how the model/simulation behaves. First, the simulation may be 
stochastic or deterministic, and deterministic here includes the special case of simulations of 
stochastic models that only considers the expected values and not the variances - in some 
sense. This is really a broader class than we might expect because of the different ways that 
the expected values may be considered. Accordingly, these simulations may sometimes be 
called expected value simulations. Under the appropriate conditions, the Lanchester attrition 
equations may be viewed as expected value. 
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The other description of how the simulation works is what is called time and event 
sequencing. In time sequencing simulations, time (and space) are the basis of control of the 
simulation and events occur continuously while time, at least on a computer, is incremental. 
In event sequenced simulations, the occurrence of events is the basis of control of the 
simulations; events are discrete and/or sequenced and time and space are continuous. Thus, 
in a time sequenced simulation, we increment time, pausing at each increment to collect 
events that have occurred (or concluded,) during the latest increment; in an event sequenced 
simulation, we order events as they occur, collecting the advance of time as the events occur. 

It is possible to describe a simulation as both time and event sequenced if, for 
example, the incremented passage of some amount of time, without any overt event, is 
treated as an event. Rigorously, any digital computer based simulation must be both because 
of the quantified nature of the simulation environment. 

If we now make a very large leap and stipulate that, in the main, the model (s) that 
are being simulated are models of processes (that is, we have a process simulation), then the 
distinction between time and event sequencing lies in whether we describe the process(es) 
in terms of their own internal, or of some other external framework. 

The choice of framework may be forced on us as a direct consequence of our 
particular simulation environment (e.g., programming language), or analytical goals, but in 
general, whether we have a stochastic or determination, time, event or combined sequenced 
simulation, is then not the result of the models that comprise the simulation themselves, but 
more likely the result of conditions external to the models, including the preferences and 
prejudices of the simulation developer. 

In other words, two simulations of the same processes, one stochastic and event 
stepped, and the other deterministic and time stepped (e.g., Lanchestrian,) may produce 
different results (but should not in principle), because the representations of the models in 
the framework and simulation environment of the simulations are different. 

What makes this important for combat modeling is that these two simulations, which 
simulate the same processes, start from the same process models. This addresses one of the 
fundamental arguments about Lanchester Attrition Theory, which is that its simplicity and 
form prevent it from being useful and correlating with other models of combat. If we build 
our Lanchester based model incorporating these processes (or rather their model representa- 
tions,) then we may expect some correlation with a higher resolution stochastic (or expected 
value?,) simulation embodying the same processes. In later chapters, we shall take up the 
question of correlation by developing the conjugate theory in terms of the processes of 
combat. For now, we merely illustrate this in Figure XV.D.1, presenting a process 
comparison between a high resolution stochastic simulation (left,) and a low resolution 
(aggregated) expected value simulation (right).. 
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Process Models 

Simulate 

Aggregate 

XV.E.        "You can't tell them apart without a Score Card". 

The terms military and organization are almost inseparable largely due to the high 
degree of organization that military units 
have (obviously the use of the term unit 
will be somewhat confusing here as we 
must mix an organizational meaning with 
a Lanchestrian meaning). There is a 
tendency to see military organizations as 
blobs (after all, all those soldiers look 
alike), although there are considerable 
differences between and within units. 
For example, an armored or a mechan 
ized infantry unit may be comprised 
primarily of tanks or infantry fighting 
vehicles (and the troops who man them), 
but may also include other types of 
weapons systems and troops, and the 
combat processes, their interrelationships, 
and specific process forms may thereby 
be different. Indeed, we may argue that 
these will be different for two individual 
troops even when they are in the same 
combat environments, just because they 
are individuals. 

Results 

Statistics 
(Aggregate) 

Simulate 

Expected 
Values 

Std Deviations 
Compare Results 

Figure XV.D.1. Comparison of Simulation Methodology 

Having noted that military (organizational) units have different structures in terms of 
their men, equipment, missions, and combat processes, we now proceed to note that these 
units occupy space and time. Because of the variations due to terrain, the diurnal cycle and 
weather, these space-time coordinates are not necessarily equal. That is, on rough terrain, at 
night, or in foul weather, finding enemy units is more difficult than on smooth terrain on a 
clear day. This also applies to a unit that may be partly on one type of terrain, or in one type 
of weather, and another unit that is on different terrain or in different weather. Thus, we 
may consider distinguishing the pieces of this unit on the basis of their trajectories. 

Now we may turn to the basic question of aggregation. Fundamentally, aggregation 
is an ordered process by which certain observables are removed from a model as distinguish- 
ing characteristics. For example, in a company of ten tanks, we may consider the company 
to be comprised of ten units, each a tank, and track the individual behavior of each tank 
(unit); alternately, we may aggregate the company as a single unit with a strength of ten 
(tanks,) and track the statistical behavior of a single tank. This tends to simplify the use of 
the model (i.e., simulation) at the price of some amount of accuracy. Clearly, this is a 
somewhat arbitrary process whose accuracy (and thereby validity) is assessable only by 
detailed comparison of simulations incorporating both aggregated and non-aggregated models; 
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a comparison that is often not made. Contrarily, we may state both idealistically and 
practically that no simulation has ever been made that does not incorporate at last a model 
with some degree of aggregation. 

For example, we might choose to build a simulation at what we might think of as the 
lowest logical level - the individual soldier. In this simulation we would simulate the processes 
and interrelationships all the way down to individual soldiers, but no further. While no major 
combat simulation has been written with this level of resolution, numerous simulations have 
been written at the individual weapon system/platform level, usually with dismounted infantry 
unit aggregated at fire teams or squad level with either discrete or aggregated weapons. An 
example of this type of simulation is JANUS. 

From an historical standpoint, the original rationale for aggregation was the available 
framework of simulation. Prior to digital computers, stochastic simulation was feasible only 
for a few degrees of freedom (observables,) and highly tedious (and error prone,) then. 
Thus, aggregation, usually along organizational lines, was necessary to simulate engagements, 
battles, and campaigns. This is the genesis of war games. 

With the advent of digital computers after World War II, automated repetition became 
possible; more ambitious stochastic simulations became practicable. With advances in the 
speed of calculations, the size of memory, and the richness of programming languages, it has 
become increasingly possible to simulate larger organizations with greater resolution. The 
trend has been to build division and corps simulations at the individual platform level of 
resolution. As we have indicated, this approach is embodied in simulations like JANUS, 
which, during DESERT STORM, was exercised at corps level. 

This approach gives us greater confidence in the results of the simulation implicitly, 
but obviously, there are two difficulties with this, both practical. First of all, the more internal 
degrees of freedom such a simulation has, that is, the greater the resolution of units and the 
higher the organizational level - the greater the number of units, the more times the 
simulation must be exercised for statistical convergence (if not statistical significance!) This 
has dire consequences when we have several (or many) variations to consider. Second, the 
mere stressing of the computer resources makes these simulations more dear to exercise 
because of the cost of the state-of-the-art computer and its capabilities. Thus, even today, 
there is a continued place for aggregated simulations either as quick analysis tools or as 
precursors to the larger, less aggregated simulations. 

One type of aggregation is on the basis of a military (organizational) unit. This is 
organizational aggregation and it may occur in one of two ways, depending on how its 
resources are modeled. Since we are primarily concerned with attrition, we will use weapon 
examples here although we could make comparable examples in terms of communications 
or logistics. 

Since the unit will have, in general, different weapons systems with different target 
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Figure XV.E.1. Aggregation across Weapons Types 

engagement characteristics, then if we aggregate all the internal processes at a given unit level, 
we may either reduce all weapons systems to a common equivalent and adjust either the 
equivalent force strength (number of Lanchestrian units in the organizational unit), or the 
relative attrition effectiveness per unit. In general, this type of aggregation has the disad- 
vantage that it fixes the proportions of types of weapons in the unit regardless of losses. This 
is shown in Figure XV.E.1 where we have taken an idealized infantry-armor task force of 
three units and aggregated it into three units of uniform weapons. 

An alternative type of aggregation is to aggregate all of the weapon systems of a given 
type. This type of aggregations has the disadvantage that it loses distinctions of losses with 
respect to organization. This is depicted in 
Figure XV.E.2 where we have taken our 
same idealized task force and aggregated into 
three units, each with uniform weapons. We 
shall note, at this point without further con- 
sideration, that the attrition rates of and 
against these two types of aggregation are 
fundamentally similar but completely differ- 
ent in final form and value.. 

A third form of aggregation is to 
aggregate all of the elements that are in a Figure XV.E.2. Aggregation by Weapons Type 
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particular combat process. This type of aggregation may also lose unit identification. The 
complexity of this form of aggregation precludes drawing a simple picture at this point. 

We may also aggregate on the basis of space and time, especially in a digital computer 
simulation, since these will have to be discretized in a time or combined sequential simulation. 
(Obviously we may also event aggregate, which is just a form of process aggregation). 

In general, if we aggregate with respect to everything, then we reduce the problem 

A 
Ä. 

LIT 

Aggregation 
across 

Weapons Type 

ilium 

.Ä      u 

Retains full 
information 

Retains Spatial 
and 

Organizational 
Information 

Retains only 
Aggregated 

Force Strength 
Information 

Figure XV.E.3. Aggregation at Total Unit level to Full Homogeneous Aggregation 

to one of our familiar homogeneous aggregation where we may have lost all (or at least most) 
of the distinction among organizations, weapons, etc. This is the case that is sometimes solv- 
able and is supported by the general extent of most historical data. Any other type of 
aggregation is considered to be heterogenous, although as we have indicated this is now a 
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very general term. This situation is depicted in Figures XV.E.3, and XV.E.4, which 
demonstrate two different approaches to further aggregation. In Figure XV.E.3, we depict 
aggregation of our idealized task force into (first,) a single uniform unit, and then spatially 
into a single point unit. In Figure XV.E.4, we aggregate our idealized task force, as before, 
into three weapons uniform spatially dispersed units, and then into a non-uniform point unit. 
Note that this unit is not homogeneously aggregated. 

Aggregation 
by 

Weapons Type 

Retains full 
information 

X 
Retains Spatia.l 
Organizational, 
and Weapons 

information 

Retains only 
Aggregated 

Weapons Type 
Force Strength 

Information 

Figure XV.E.4. Aggregation retaining weapons type to spatial homogeneity 

The hierarchy of aggregation is a direct relationship between high and low resolutions 
from counting individual weapons systems through an entire force. As long as we keep ac- 
count of the combat processes involved, then, we may expect to be able to show some 
degree of correlation between high and low resolution representations and thereby establish 
a hierarchy for gaining understanding from the use of these simulations. 

XV.F.        Aggregation and De-Aggregation 

Because of different interests for analysis, it m3y be desirable to have variable 
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aggregation or variable resolution models. These models, and simulations from them, are 
possible, but they are often quite specialized. 

For example, let us consider a conceptually simply variable aggregation model/ 
simulation. We are primarily interested in the simulation of the combat processes so we wish 
to develop a simulation that aggregates combat elements at the individual weapons platform 
level in combat, but aggregates elements at an organizational level (say battalion), otherwise. 
If we consider the primary combat processes for a battalion to be movement, reconstitution 
and supply, and engagement, then we would treat the first two of these processes at the 
battalion level, but the engagement process with sub-processes down through the individual 
platform level. From an aggregation standpoint, this variable aggregation simulation cannot 
be as highly aggregated as would normally be the case. In particular, the aggregation with 
respect to systems can only be carried to the point of counting all of the systems of each 
(distinguishable) type in the battalion so that when engagement starts and the battalion is de- 
aggregated for combat, the individual system-level aggregation can be reconstructed. In doing 
this, we may lose detailed sub-battalion force strength information within the reconstitution 
model approximation, sacrificing consideration of unit integrity and personnel bonds in 
combat. 

Variable resolution aggregation is effected in a similar manner. Say we are primarily 
interested in one particular class of unit or weapon system. An excellent example of this 
would be air defense weapons in a division. We might aggregate all of the other weapons or 
units in the division (or both) at some level, (tank battalions but not the air defense 
battalions,) but the air defense units/weapons and their targets at some other level. In this 
case, we would have to pay special attention to the process interrelationships between the air 
defense units/weapons and other units/weapons. Note also that we probably also have to 
keep the same level of aggregation for the targets as the firers. 
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XVI.  THE MANYFOLD PATHS 

A.       INTRODUCTION 

With this chapter, we enter a new stage of the book.  The general theme of 
this chapter and the ones immediately following are brief reviews of some of the 
work that has been performed on extending or embellishing the basic Lanchester 
attrition formalism. Following this, we will examine several expositions in the 
context of military operations. Then we shall finally deal with the connection 
Bonder-Farrell Theory that connects individual level dynamics with attrition 
mechanics. 

At this point, then, we turn a corner.  Heretofore, we have dealt with the 
basics of Lanchester Attrition Theory.  Now we push on into the more advanced 
elements of the theory and its adjuncts. In keeping with our goal to keep the 
mathematics to approximately the level of calculus, we shall neglect certain topics 
in detail.  Some or all of these topics may be of considerable interest to the 
individual arid we shall, where possible, try to maintain connectivity via citation 
to permit further study.  Admittedly, some of this selection will be somewhat arbi- 
trary, but that is a right we reserve as author.  The student should not assume 
because we slight a topic that it does not have relevance.  The field is extensive, 
and in general, we shall minimize topics only if they require knowledge of some 
other disciplines beyond the keen of this book. 

Having said all of that, we now embark on a review of some other forms of 
attrition equations.  We have, of course, already covered the detail the basic 
Quadratic and Linear Lanchester Attribution equations, and their general form, 
the Osipov equations.  The Mixed Lanchester Equations, used to describe Guerril- 
la Warfare have also been covered.  All of these equations have a common form, 
namely 

M =-aA2-"B, (XVI.A-1) 
dt 

and 

^  =-R B2"m A, (XVI.A-2) 
dt 

where n and m are attrition orders.  In this chapter, we will now broaden our 
scope to encompass attrition differential equations of more general form. 
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B.       CONSTANT RATE ATTRITION 

The simplest (mathematically) of these "additional" attrition equations is 
the case of constant attrition.  The attrition differential equations have the form: 

dt (XVI.B-1) 

with obvious solutions obtained by direct integration of 

A(t)=Ao-at, (XVIB-2) 
B(t)-B0-ßt. 

These equations possess a state solution 

a(B(t) ~B0)=ß (A(t) -Ao), (XVI.B-3) 

that is identical to the Lanchester Linear Law. 

These equations describe combat that is characterized by a constant rate of 
loss to both sides such as would be the case on a terrain constrained battlefield 
(e.g. a bridge or mountain-pass) where only a few units on each side may fight. 
This attrition type has a special parallel to Lanchester attrition with reinforce- 
ments when the reinforcements are constrained to mountain a constant number of 
units in combat. 

Since the relevant Quadratic attrition differential equations are 

i^ =-aB +a(t), (XVI.B-4) 
dt 

and 

il =-ß A + b(t), (XVI.B-5) 
dt 

We constrain A(t) and B(t) to be constant (represented by Ac and B<) until the 
reinforcements (reserves) are exhausted. This means that the reinforcement rates 
are simply 

a(t)=otBc, (XVI.B-6) 
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and 

b(t)=ßAc) (XVI.B-7) 

subject to the constraints that 

r-aCtOdt' =\, (XVI.B-8) 
Jo 

and 

pb(t')dt' = Br, (XVI.B-9) 
Jo 

where A,, and Br are the total reinforcements (reserves,) and the total force 
strengths are just 

AT=AC+AI) (XVI.B-10) 

and 

BT=BC+Br. (XVI.B-11) 

Since the reinforcement rates are constant, we may easily compute the reinforce- 
ment exhaustion times for both sides by integrating equations (XVI.B-8) and 
(XVI.B-9), and rearranging to yield 

ta=_A_, (XVI.B-12) 
ocB„ 

tb =   Br    . (XVI.B-13) 
ß Ac 

If we make use of the step function, previously defined in the discussion of the 
model of attack on fortified lines, 
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■n(x) = l, x > o 
= o , x < o , 

(XVI.B-14) 

then we may rewrite equations (XVI.B-4) and (XVT.B-5) in explicit form as 

dA 
dt 

= -aB +aBcr| A, 
a B„ 

-t (XVI.B-15) 

and 

dB 
dt 

= - ß A + ß Ac n 
B. 

lßAc 

-t (XVI.B-16) 

with the requirement that t > 0, and initial conditions A(0) = A,, and B(0) = Bc. 

It is probably not obvious that equations (XVI.B-15) and (XVI.B-16) are 
equivalent to the constant rate equations (at least for t < min(ta, tb)).  If we define 
the total force on the battlefield as AB and BB, then for t < min(ta, tb), these are 
defined by 

AB(t) =A(t) +Jt
t'a(t/) dt', (XVLB-17) 

and 

BB(t) =B(t) + p b(t') dt' (XVI.B-18) 

If we differentiate these with respect to time, we get 

dAB      dA 
dt        dt 

-a(t), (XVI.B-19) 

and 

dBB = dB 
dt        dt 

-b(t), (XVI.B-20) 

which reduce to 
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dA, 

dt 
= " a Bc , (XVI.B-21) 

and 

dBj 

d~r - - ß Ac , (XVI.B-22) 

by virtue of our requirement that 

A(t) = AC, t<ta, (XVI.B-23) 

and 

B(t) =Bc,t<tb. (XVI.B-24) 

These two differential equations are constant rate since A,, and Bc are constrained. 
Obviously, once t > max(ta, tb), Quadratic attrition again occurs, and while min(ta, 
tt) < t < max(ta, t,,), a mixed attrition occurs. 

C.  Exponential Attrition 

The next type of attrition that we consider is exponential.  The attrition 
differential equations have the form 

dA 
dt 

= -* A, (XVI.C-1) 

and 

dB 
dt 

= - \|/ B (XVI. C-2) 

These equations have a state solution. 

\]f In 
A 

= <|> In 
B 

I A, J { ^o J 
(XVI.C-3) 

or equivalently 

XVI-5 



(XVI.C-4) 

and solutions 

A(t) =Ao e -<t>t (XVI.C-5) 

and 

B(t) =B0 e-vt (XVI.C-6) 

On first inspection, one may wonder what kind of combat occurs where the 
rate of friendly losses is proportional to friendly strength. The most common 
answer is disease!  These equations are often used to describe non-combat losses, 
although as we have seen in the preceding chapter, a set of mixed attrition 
equations may arise where one side's loses are proportional to the other side's 
strength while the other side's loses are proportional to its own strength.  These 
cases arise when the first force is much larger than the second so that only a part 
of the larger force (a part proportional to the smaller force,) can be brought to 
bear. 

Because of the form of the state solution, exponential attrition is often 
called the logarithmic law. 

D. Helmbold's Modification 

Robert Helmbold1 has pursued this idea further, suggesting that the attri- 
tion route be modified to reflect these inequities in force strength ratio.  To 
achieve this, he proposed a pair of attrition differential equations of the form 

dA 
dt 

= -a B h ' A ) 
B 

(XVI.D-1) 

and 

£-->*■(! (XVI.D-2) 

where g and h are functions representing these inequities.  Helmbold advanced 
that these correction functions should have unit value for unit argument (i.e. 
equal sized forces,) 
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MD -*(D =1 (XVI.D-3) 

Notice that the two functions have inverse arguments.  There are two functions 
since the corrections to each force may be different because of the training and 
composition of the force. 

Helmbold develops an example where h and g are a simple powers of the 
argument.   (This is mathematically the simplest function that will satisfy the 
requirements on h and g.) Simply put 

h(x) = g(x) =xc. (XVI.D-4) 

Thus, we get attrition differential equations 

dA 
dt 

= -a B 
{ B , 

(XVI.D-5) 

and 

il -PA 
dt 

' l X 
, A J 

(XVI.D-6) 

We may rewrite these as 

A"c M = -a B1-0 

dt 
(XVLD-7) 

and 

B- Ü = -ß Alc 

dt 
(XVI.D-8) 

Since 

edA        1     dA1"0 

dt        1-c dt 
(XVI.D-9) 

we may define new variables 

A^A1-, 
B.eB1-, 

(XVI.D-10) 

that have attrition differential equations 
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dAc 

dt 
= -a (1-c) Bc) (XVI.D-11) 

and 

dB c 

d~r 
= -ß (l-c) Ac 

These are simply Quadratic attrition differential equations with solutions 

Ac(t) = Ac(0) cosh(y (l-c) t) -8 Bc(0) sinh(y (l-c) t) , (xvi.D-13) 

Bc(t) =BC(0) cosh(y (l-c) t) - ^-1 sinh(y (l-c) t) . 

These in turn give us the solutions for the force strengths 

A(t) = 

B(t) = 

A(0)lc cosh(y (l-c) t)   - Ö B(0)lc sinh(Y (l-c) I)]1'', D 

B(0)lc cosh(Y (l-c) t) - A(0)     sinh(Y (l-c) t)   1_c 

Note that when c = 1, the equations (XVI.D-5) and (XVI.D-6) degenerate into 
exponential attrition. 

It is possible to investigate these Helmbold functions further by considering 
the case where one force is much larger than the other. If we assume A » B, then 
we would expect attrition differential equations of the form 

dA 
dt 

= -a B , (XVLD-15) 

and 

£=->A' (XVI.D-16) 

based on the argument presented in the proceeding section.  If we now compare 
equations (XVI.D-15) and (XVI.D-16) with equations (XVI.D-1) and (XVI.D-2), we 
see that 
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Limit A      h 
—_ —>oo 
B > B J 

^1 , (XVID-17) 

and 

Limit B_^0 h   — 
A \ A 

B )     B 
A 

(XVI.D-18) 

Since Helmbold postulated that 

h(l)=l, (XVI.D-19) 

we see that 

h(x) = 1 , x > 1 , (XVI.D-20) 

and 

h(x) -*x , x -+0 . (XVI.D-21) 

This is not sufficient information to define h(x) explicitly, but some function of the 
form 

h(x) - 1 -e-, (XVI.D-22) 

has the right behavior for K sufficiently large.  Note that this is the form we found 
in the Lanchester-Poisson equations. 

E.       Swiss Army Knife Attrition 

In this section, which is almost a preamble to heterogeneous attrition, we 
take up the mix and match or swiss army knife to attrition.  The basic idea here is 
that we have identified and examined a number of attrition mechanisms and that 
more than one of these mechanisms may apply. 

Let us briefly review the forms of attrition rate that we have examined thus 
far. For this purpose, we will assume that a friendly force, represented by force 
strength x(t) is opposed by an enemy force represented by force strength y(t).  The 
attrition rate forms are summarized in table (XVI.D.l). 
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Table XVI.D.l. Summary of Attrition Rate Forms. 

Attrition Rate Form Attrition Type 

Z(t) Independent, normally used to represent reinforce- 
ments or reserves. 

aX(t) Exponential, normally represents looses due to dis- 
ease or desertion. 

aY(t) Quadratic, normally represents direct fire losses in 
the slow kill light, or indirect fire when occupied 
area varies. 

a X(t)Y(t) Linear, normally represents indirect fire when occu- 
pied area remains constant, or direct fire in the slow 
acquisition limit. 

It is a simple matter to combine these attrition rate forms.  For example, a 
combination of all of these could give attrition differential equations of the form. 

and 

dA 
dt 

dB 
dt 

= -ct(|>B -a'(l-|)AB - n A + a(t) , 

= -ßi)/A-ß/(l-v(/)BA-SB+ b(t) , 

(XVI.E-1) 

(XVI.E-2) 

where: A, B are the force strengths, 
a, ß are the direct fire attrition rate coefficients for the 
two sides, 
a', ß' are the indirect fire attrition rate coefficients, 
y\, £, are the disease attrition rate coefficients, 
a(t), b(t) are the reinforcement rates, and 
(|), \|/ are the fractions of the B, A force that engage in 
direct fire. 

In effect, (e.g.) VJ/A of the red force is engaged in direct fire, while (1 - \\i) A is 
engaged in indirect fire.  As we shall see in the next two chapters, it is eminently 
possible for v|/ and § to be time and/or range dependent functions. 

In general, equations (XVI.E-1) and (XVI.E-2) do not possess either a state 
solution or explicit time solutions. Special cases do exist, but we shall not treat 
them in detail here. 
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If a(t) and b(t) are smooth functions, then equations (XVI.E-1) and (XVI.E- 
2), like most attrition differential equations, are relatively well conditioned, and 
we may use numerical approximation to solve them.   (See How to Build a Spread- 
sheet Simulation in the Appendices.)  In particular, we may use the approximation 

ft+At dA(t7> dt' - dAW At (XVI.E-3) 
dt dt 

so that equation (XVI.E-1) has the approximate numerical solution form 

A(t+At)-A(t) (XVIE-4) 
- [ a <|> B(t) + a' (1-4.) A(t) B(t) + T] A(t) - a(t) ] At, 

and similarly for equation (XVI.E-2). These equations are readily amenable to 
spreadsheet simulation. 

If a(t) and/or b(t) are not sufficiently smooth, then we are generally forced to 
take smaller time steps At to obtain a reasonable approximation in terms of 
accuracy.  This usually requires us to write a code simulation (using an appropri- 
ate language such as BASIC, FORTRAN, PASCAL, or C,) with very small time 
steps At.  It may be advantageous to use a more accurate, multi-step integration 
approximation in a bootstrap fashion.  That is, we compute A(At) (and B(At)) with 
a one point approximation using A(0) and B(0).  We then compute A(2At) (and 
B(2At)) using A(At) and B(At), and A(0) and B(0) with a two point approximation. 
We repeat this process of using increasing numbers of points of integration until 
we reached the number of steps of the objective approximation.  If we want to use 
an n step integration approximation, then we must compute A((n-l)At) and 
B((n-l)At) in this bootstrap manner.  Thereafter, we use the n step integration 
approximation exclusively.  Thus, we would compute A(nAt) using the n points 
A(0),..A((n-1)At), B(0),. .B((n-1)At). 

Because At is small, we probably do not want to use all of the computed 
points A(iAt), B(iAt) in examining and analyzing the results.  Therefore, we would 
only retain selected points, say every mAt for our analysis.  This is conveniently 
done by writing code to store these points in a data file of a format (e.g., comma or 
comma-quote delimited ASCII,) that facilitates import into a spreadsheet or other 
geographical program. 

If a(t) and b(t) are exactly integrable, even if not smooth, then we may 
modify the one step integration technologies to avoid this.  Let 
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E(t) -JaftOdt', (XVI.E-5) 

and 

ß(t) -Jb(t')dt'. (XVI.E-6) 

Then we may write an approximate solution of equation (XVI.E-1) as 

A(t+At) - A(t) (XVI.E-7) 
- [ a <|> B(t) + a' (1 -(J)) A(t) B(t) + n A(t) ] At 
+ S(t+At) -S(t) , 

and similarly for equation (XVI.E-2). 

There is an alternative if we eliminate the linear terms from equations 
(XVI.E-1) and (XVI.E-2).  They reduce to 

i^ = - a B - n A + a(t) , (XVI.E-8) 
dt 

and 

Ü = - ß A - £ B + b(t) , (XVI.E-9) 
dt 

which include quadratic and exponential attrition terms, and replacement terms. 
These attrition differential equations may be thought of describing combat 
between two forces that are sufficiently numerous (dense) that direct fire combat 
is killing (rather than acquisition) constrained, are subject to disease losses, and 
receive reinforcements.  These attrition differential equations do not possess a 
state solution, except in the special case where we set a(t) and b(t) to be zero, and 
n = hß and a = h|, where h is an arbitrary integrable function.  In this case, these 
equations have a linear state solution.  This special case does not seem very 
realistic, however, because it only occurs if one force has a high disease rate 
coefficient (compare to attrition,) while the other has a low disease rate coefficient. 
A more useful approach is to rewrite these attrition differential equations as 

and 

4-1, A=-aB, (XVLE-10) 
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(d 
dt 

+ Z, B =-ß A, (XVI.E-11) 

recalling that we have set a(t) and b(t) to be zero.  We may "differentiate" each of 
these equations and use the other to form a second order attrition differential 
equation 

,dt 
A =y2A, (XVI.E-12) 

where we have replaced aß with y2. If we now assume a general solution of the 
form 

A ~ ert , (XVI.E-13) 

and substitute this equation into equation (XVI.E-12). Then we may obtain a qua- 
dratic equation of the form 

(r +S) (r +-n) -y2 =0, (XVT.E-14) 

which has roots 

r = _ -(£ +n)±i/a -*? +4v2 (XVI.E-15) 

From these, it is a simple matter of a single differentiation (application of 
the boundary conditions,) and some algebra to yield solutions of the form 

A(t) = A. cosh(pt) e-«"* - gB° * gA° sinli(pt) e"«*")* , (XVI.E-16) 
P 

and 

B(t) = B0 cosh(pt) e-«^*»1 -  PA° * T,B° sinh(pt) e"«-»* , (XVI.E-17) 
P 

where: 

p . ^ -Tl)2 +4Y
2 (XVI.E-18) 
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Thus equations (XVI.E-10) and (XVI.E-11) have explicit analytical solutions even if 
they do not have a state solution because of the exponential decay terms solution. 
(Remember, we told you this would happen.) These solutions may be used to form 
solutions of equations (XVI.E-8) and (XVI.E-9) in the same manner that we used 
the solutions to the basic Quadratic Lanchester attrition differential equations 
(without reinforcement,) to form the solutions with reinforcements.  Because the 
method is the same, and we have previously discussed it in detail, we shall leave 
this application of it as an exercise for the student. 

F.       Peterson's Logarithmic Equations 

Weiss2  reports that Richard H. Peterson3 has observed that attrition differ- 
ential equations of the form 

i£ = -ocln(B)A, (XVI.F-1) 
dt 

and 

il = - ß In (A) B , (XVI.F-2) 
dt 

show agreement with actual data on tank battles.  These equations show losses 
that increase with force committed.  Several authors have suggested that a force's 
vulnerability to loss is proportional to the force's size, but its ability to attrit 
increases functionally slower.  This is exactly the situation we have addressed 
earlier in discussions following our consideration of Osipov.  To briefly review this, 
consider a Napoleonic unit.  Assuming area per element is constant, then the area 
covered by the unit increases linearly with number of elements.  However, only 
the elements on the periphery can easily use their weapons.  This number of ele- 
ments that may fire is thus proportional to the square root of the total number of 
elements in the unit.  Thus Peterson's equations are another attempt to address 
this same problem. 

We may rewrite equations (XVI.F-1) and (XVI.F-2) as 

dln(A) =-aln(B), (XVI.F-3) 
dt 

and 
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dln(B)  = - ß ln(A) , (XVI.F-4) 
dt 

which we immediately recognize as having a "Quadratic" law type of form.  From 
this, we may immediately write down solutions, 

ln(A(t)) = ln(Ao) cosh(y t) - 8 ln(B0) sinh(y t) , (XVI.F-5) 

and 

ln(B(t)) = ln(B0) cosh(y t) - i^l sinh(y t) . (XVI.F-6) 
8 

These may be rewritten by taking the antilogarithm as 

A cosh(yt) 

A(t) = -^-. , (XVI.F-7) 
B8 sinh(y t) 

0 

and 

B(t) =    ° 
■pcosh(yt) 

sinh(y t) 

A«   8 

The Peterson equations suffer from one difficulty - they do not possess an 
Ironman solution since the logarithm of one is zero.  Thus, we do not have any 
means for estimating, or even calculating, on an analytical basis, the attrition rate 
coefficients.  Until some means is developed for calculating attrition rate coeffi- 
cients for the Peterson attrition equations, this deficit will probably fatally 
compromise the application of these equations. 
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XVII.  Time Dependent Attrition 

A. Introduction 

The student will probably be looking at the title of this chapter somewhat 
wonderingly.  After all, the whole book (thus far,) has been about attrition; we 
have been solving differential equations with time as the independent variable; 
and that continually makes them time dependent, doesn't it? 

The answer, of course, is that all of the attrition rates that we have consid- 
ered thus far have been time dependent only in the force strengths.  The attrition 
rate coefficients have been constants; not functions of anything.  Previously, we 
made some to-do about attrition rate coefficients really being functions and that 
constant values were special cases.  Well, in this chapter (and the next) we begin 
to wrestle with the mathematics associated with attrition rate functions. 

Many workers have contributed to this area, but the capstone worker has 
been Taylor,1'2,3,4'5'6 that most prolific of workers on Lanchestrian Theory.  His 
works on the subject of attrition rate functions of time amply review much of the 
applicable literature as well as contributing the acme in the area.  Sadly, we shall 
be unable to deal with much of the detail of this work because its mathematical 
complexity is beyond the scope of this text.  The student who is more mathemati- 
cally inclined should be able to digest his articles readily and may wish to do so as 
an advanced exercise. 

B. Quadratic Attrition 

Most of what we shall deal with in this chapter will be akin to Quadratic 
Lanchestrian attrition although it is a strictly misnomer to call it Quadratic (or 
Linear) since in most cases, there is no state solution.  That is, because the 
attrition rate functions are functions of time, they cannot in general be removed to 
form a state solution. We shall tend however to follow a somewhat sloppy 
convention to describe the attrition differential equations in the same manner that 
we have thus far when the attrition rate functions are constants. 

B.l.    The Basic Equations 

The basic Quadratic-like attrition differential equations have the same 
general appearance that they had before, 

SL. A(t) = - a(t) B(t) , (XVII.B-1) 
dt 

and 
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iB(t)=-ß (t) A(t) , (XVn.B-2) 
dt 

except that now, the attrition rate functions are now just that. 

We shall place some mathematical restrictions on the attrition rate func- 
tions.  In particular, we shall require them to be non-negative, 

a(t) , ß (t) > 0 , Vt > 0 , (XVII.B-3) 

otherwise they would generate rather than destroy force strength.  Further, we 
require these attrition rate functions to be both differentiable and integrable, and 
their integral be strictly increasing, 

ft+£ a(f) dt' > P a(t') dt7 , Vt > 0 . (XVII.B-4) 
Jo Jo 

It is further desirable that the attrition rate temporal progress, somewhat similar 
to dimensionless proper time in relativity, defined by 

x(t)S  fVa(t') ß(t') dt', 
Jo 

(XVH.B-5) 

exist and be strictly increasing. 

B.2     A Special Case 

If the attrition rate functions have the same functional dependence to 
within a constant, that is, 

<x(t) =a h(t) , (XVH.B-6) 

and 

ß(t) =ßh(t), (XVII.B-7) 

there the attrition differential equations possess a state solution 
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dA dt_ 
dt    dB 

dA _ <x(t) B(t) 
dB     ß(t)A(t) 

_ a  B 
= ß"Ä' 

(XVII.B-8) 

just as if they did when the attrition rate functions were constants.  In this case, 
the attrition rate progress is just 

x(t) =Y  f'httOdt' 
Jo 

(XVE.B-9) 

and the attrition differential equations posses solutions 

A(t) =Ao cosh(x(t)) -5 B0 sinh(x(t)) , (XVILB-10) 

and 

B(t) =B0 cosh(x(t)) -^sinhCxa» , 
o 

(XVII.B-11) 

that look like the solutions we got when the attrition rate functions were con- 
stants.  Since 

dx 
dt 

-Y Mt), (XVII.B-12) 

we immediately see by differentiation 

dA = dx   dA 
dt       dt dx 

= y h(t) [ Ag sinh(x) -5B0 cosh(x) ] 
= - a h(t) B0 cosh(x) +y h(t) \ sinh(x) (XVILB-13) 

= -a(t) 
A 

B0 cosh(x) - — sinh(x) 

= -a(t)B(t), 

which proves our point. 

B.3     A More General Case 

In general, ot(t) and ß(t) do not have the same functional dependence, 
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A(t)-£A,£, (XVH.B-20) 

and 

13        ü 

I! (XVII.B-21) 
i=0 

Of course, 

B(t) =EBiT' 

A   = di A(t)   I (XVn.B-22) 

and similarly for the Bi; but we do not make use of this. In complement, we write 
the attrition rate functions as series 

a(t) -^ __— it=0 — 
ii dt1 i! (XVn.B-23) 
A      t1 

i=0 H 

and similarly for ß(t). 

Next, we differentiate equations (XVILB-20) and (XVII.B-21), 

dA „A   Ajt*-1 

dt      &   (i-1)! (XVII.B-24) 

i=0 li 

(and similarly for B(t).  Then we substitute these equations into equations 
(XVII.B-1) and (XVII.B-2 )to yield (for XVII.B-1) 

-    A^      -    o^ B^ (XVII.B-25) 
&      i!        jfe     j!       k!    ' 

and shift the indices on the right-hand side of the equation 
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B(t + At) « B(t) - p (t) A(t) At . (XVn.B-32) 

These equations are easily put into a spreadsheet.  We can make use of more 
elaborate schemes, as we have previously indicated, but care must be taken to 
ensure adequate stability. 

C.       Time Average Approximation 

Another approximation that we may use is to replace the time dependent 
attrition rate functions with their average over an internal.  If we define the 
average of the attrition rate function over the interval (t, t + At) as 

<oit)>M - — ft+M oc(t') dt' , (XVILC-1) 
At J* 

then there is some error s, 

s -|ct(t) -<o£t)>At I, (XVII.C-2) 

which takes some maximum value on the interval.  If a(t) is strictly monotonically 
increasing, then the maximum error occurs at one of the two endpoints. 

If we make this error sufficiently small for our purposes, then we may 
approximate the attrition differential equations on the interval as 

— - - <a£±)>At B , t < t' < t + At , (XVILC-3) 
dt' 

and 

ÜL « - <&it)>At A , t < t' < t + At , (XVII.C-4) 
dt' 

which, as we know have solutions 

A(t + t") = A(t) coeh«sJÜa>Att") - <A0)>4t B(t) siiih«*{l}>Att") ,      (XVII.C-5) 

and 

B(t + t") = B(t) cosh«x£i)>Att") - T^ÖL shih((^a)Att"), (XVII.C-6) 

where 
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0 < t" < At 

<Xit))At =\/(aIt))At(ßItn 

<5jjt)>At - 
N 

(xvn.c-7) 
<oit)> At 

<ß(t)). 'At 

These equations allow us to estimated the force strength, anywhere on the 
interval. 

If we now introduce a notation that 

A(iAt) = Ai 
B(iAt) = Bi 

1    r(i+i)At 

At *At 

—l At   JiAt 

a, = — a(t') dt 
JiAt 

then we may write approximate solutions 

Ai+1 = Ai cosh(y^~17 At) " 
's 

oc. 

(xvn.c-8) 

Bi sinh(^T17 At)     (XVn.C-9) 

and 

Bi+1 =Bi cosh (^/a~ß~ At) _Ai 
\ 

±i sinh(j57ß~ At)   (XVn.C-10) 

that allow us to proceed in a bootstrap manner. 

Since we are really making use of derived quantities y and 5,  it is more 
accurate to use the time averaged of these quantities 

\      f(i+l)At 

At JiÄt r
i)ÄVa(t')ß(tOdt', 

JiAt 
(XVTI. C-11) 

and 
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—l At   Ji 

(i+l)At 

At JiAt        \J ß(t') 
a(tO    A., (XVII.C-12) dt', 

Although these calculations may be more difficult and therefore prohibitive.  If 
these can be calculated (or computed,) then the solutions are 

Ai+1 =Aicosh(yi   At) - 6^ sinh^ At) (XVII.C-13) 

and 

Bi+1 = Bj cosher At) - ^LsinhC^ At) . (XVTI.C-14) 
8 : 

D.       Linear Attrition 

Linear Lanchestrian-like attrition with time dependent attrition rate 
functions have attrition rate differential equations that may be defined in an 
analogous manner to equations (XVII.B-1) and (XVII.B-2), 

1- A(t) = -<x(t) A(t) B(t) , (XVII.D-1) 
dt 

and 

SL B(t) = - ß(t) B(t) A(t) . (XVH.D-2) 
dt 

Of course, analytical solutions of these equations are more difficult than for 
Quadratic attrition, in part because we cannot form the equations comparable to 
equations (XVII.B-18) and (XVII.B-19).  If the ratio of attrition rate functions is a 
constant, then we may form a solution in an analogous manner to equation 
(XVII.B-8) since a state solution will exist.   Otherwise, the student is again 
referred to the work of Taylor for analytical solutions. 

The method of Frobenius also does not provide much joy, because of the 
presence of three series on the right hard sides of the equations.  We are thus left 
with two viable alternatives:  approximate numerical integration and time 
averaging of the attrition rate functions.  Both of these techniques are applicable 
and workable, again assuming that a(t) and ß(t) are well behaved mathematically, 
and At is appropriately chosen.  In fact, we would expect time averaging to work 
better with linear attrition since we do not have to introduce derived quantities 
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such as y and 8. 

E.       A Practical Example 

In later chapters, we shall take up the detailed engineering theory of 
attrition rate functions and see therein how time (and range) dependent attrition 
rate functions arise. As an example, we shall now consider a simple combat 
calculation that leads use to time dependent attrition rate functions in a deriva- 
tive manner. 

Consider two forces, red and blue, each of which is comprised of two types of 
units which conduct direct and indirect fire engagements, respectively. Designate 
the time dependent force strength components as Ad, Aj, Bd, Bj with subscripts d 
and i for direct and indirect, respectively.  (We have suppressed the time depen- 
dence for notational compactness.) Assume the two direct fire components to only 
engage each other, but the indirect fire components to engage in both support and 
counter-battery fire.  For simplicity, assume that the constants, and homogenous 
aggregation with engagement type.  Then the attrition differential equations are: 

^h. = - a Bd - a' (1 - <j>) Ad B4 , (XVII.E-1) 
dt 

dBi - - ß Ad - ß' (1 - v) Bd Aj , (XVII.E-2) 
dt 

and 

dA, 

dt 

dBi 

dt 

= - n 4> Ai Bj , (XVH.E-3) 

= - C V Bi Ai . (XVH.E-4) 

The first two equations describe the attrition of the direct fire units while the last 
two equations describe the attrition of the indirect fire units (the counter-battery 
engagement).  The first right hand side terms in the first two equations are the 
direct fire attrition rates while the second terms are the indirect fire attrition 
rates.  The quantities a, a', ß, ß', r\ and C, are the attrition rate coefficients, and 
the parameters <{> and vj/ allocate fire between the support and counter-battery 
missions.   Obviously, 0 < <|),\|/ < 1.   Note that a state solution obviously exists for Aj 
and Bj (since they are not subject to direct fire,) and that analytical solutions for 
these two force strength components exist. 
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If we define 

A^CvAi-Ti^Bi, (XVn.E-5) 

to represent the state solution for the indirect fire forces, then we may write the 
analytic solutions for these two force strength components as 

A(t) = Ai(0) ^ , (XVH.E-6) 
C v Ai(0) - T| 4) B4(0) e -^ 

and 

Bi(t) - ^^ , (XVILE-7) 

from our previous investigations. Retaining the time dependence notation of these 
two force components as a shorthand for these two equations, we may now rewrite 
equations (XVII.E-1) and (XVII.E-2) as 

dAl = - a Bd - [a' (1 - d>) B^t)] Ad , (XVII.E-8) 
dt 

and 

£?i - - ß A, - [ß' (1 - v) A^t)] Bd . (XVILE-9) 
dt 

From the standpoint of solving equations (XVII.E-8) and (XVILE-9), the quantities 
in brackets (i.e., □) represent time dependent attrition rate functions that derive 
from the formulation of the problem.  Note that these two equations are of mixed 
Quadratic-Exponential form where the attrition due to indirect fire support takes 
on exponential form with time dependent attrition rate function. 

There are several approaches to solving equations (XVII.E-8) and (XVII.E- 
9).  Because we expect Aj and Bj to be smooth, well-behaved functions of time, both 
approximate numerical integration and time averaging are attractive.  We may 
also examine solving these equations by a variation of the methods used in the 
preceding chapter. 

If we write trial solutions of the form 
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Ad = ad e 
- f'a'd -^B^tOdt' 

Jo (XVII.E-10) 

and 

-f'ß'd -vJAjCtOdt' 
Bd = bd e  Jo (XVII.E-11) 

then we may eliminate the exponential attrition terms from equation(XVTI.E-8) 
and (XVII.E-9). Before doing this, however, we want to examine the exponential 
terms in equations (XVII.E-10) and (XVII.E-11). 

From equations (XVII.E-3) and (XVII.E-4), we may note that 

.   1    dln(Bj) (XVH.E-12) Ai(t) 

and 

Bi(t) = - 

Cv dt 

1    dlnCAj) 
r| <j) dt 

(XVH.E-13) 

If we now substitute equation (XVII.E-12) into the exponential factor of equation 
(XVII.E-11), 

,, f a'(l -*)   dlnfB^t'))   ,., (XVH.E-14) 

and note that the integral is exact, then 

- f'a'd -*)A(t')dt' «'C1-*) [ln(Bi(t)-ln(Bi(0)] 
a     Jo — a QV = e 

Bt(t) 

8,(0) 

a'd -*) 
?V 

(XVII.E-15) 

We may now rewrite equations (XVII.E-1) and (XVII.E-2) using equations (XVII.E- 
10), (XVII.E-11), and (XVII.E-15) (and its equivalent from equation (XVII.E-11)) as 
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Bi(t) 

Bi(0) 

a'0_-£) 
cv      dad 

dt~ 
= - a 

Aj(t) 

Ai(0) 

P'(i -v) 

bd, 
(XVII.E-16) 

and 

Aj(t) 

Ai(0) 

P'd -v) 
i*      dbd 

dT --ß 
BjCt) 

Bi(0) 

<x'(l - 4>) 

a. (XVII.E-17) 

For convenience, we introduce the definitions 

a//s  a'(l -<))) 

Cv 
(XVII.E-18) 

and 

ß". ß7(l -V) 
Tl<t> 

(XVII.E-19) 

and rewrite equations (XVII.E-16) and (XVII.E-17) as 

Ai(t) 

Ai(0) 

-P" 
Bt(t) ? 
Bt(0) 

dad 

dt 
= - a bj , 

(XVII.E-20) 

and 

B,(t) 

Bi(0) 

A,(t) 

Ai(0) 

db, 

dt 
= - ß ad , (XVILE-21) 

and differentiate these.   (We will carry forward with only one of these for simplici- 
ty.)  This gives 

(XVII.E-22) 

ad> 

d [ Ai(t) 1 -ß" [ B,(t) 1 "" dad _ dba 

dt Aj(0) Bj(0) dt dt    ' 

= « P 
[ Ai(t) -P" Bi(t) 

B^O) 

«" 

which we note simplifies by equations (XVII.E-12) and (XVII.E-13) to 
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d\     r_ _ ...       , \ dad + [ß' (1 - ♦) B.(t) - a'(1 - *) ♦ Aj(t)] -*. = Y2 ad .       (XVII.E-23) 
dt2 L-    x -      .w * «wJdt 

We may write this out explicitly using the solutions of Aj and B; as 

dt2 

ß' (1 - 10 Bi(0) c'&it - a' (1 - *) Aj(0) 

C * Ai(0) - i) « B,(0) e_Ait 
^=v2o       (XVII.E-24) 
dt       '    d 

While this equation (and the equivalent for bj) are likely to be difficult to solve 
(except for the special case of ß' (1 - \j/) = n <i> and a* (1 - <|)) = C V») itis amenable to 
various approximate approaches including time averaging.  Of course, we did not 
have to engage in all of this complicated mathematical effort, except to illustrate 
that sometimes such effort is worthwhile in terms of understanding and suggest- 
ing better solution methods. 
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XVIII. RANGE DEPENDENT ATTRITION 

A. INTRODUCTION 

In the proceeding chapter, we introduced the concept of time dependent 
attrition rate functions. In this chapter, we introduce the more general concept of 
range dependent attrition. Unlike the preceding chapter which merely added the 
effect of time dependent attrition rate functions to already time dependent force 
strengths, we must take up two concepts at once: range dependent force strengths, 
and range dependent attrition rate functions. 

Even though we have not yet dealt with the theory of attrition rate functions, 
in particular, Bonder Farrell Theory,1 we have an intuitive or experiential idea that 
attrition rate functions should be range dependent. We know, for example, that the 
further away something is, the "harder" it is to see, and that the single shot 
probability of hit decreases (generally) with distance. Thus, we may find the concept 
of range dependent attrition rate functions easier to accept than time dependent (or 
perhaps even constant) attrition rate functions. (Indeed, we have already alluded to 
that basic idea in previous chapters.) 

Given range dependent attrition rate functions, it therefore follows that 
unless the range between the two forces is changing, the resulting attrition would 
be the same as we have already developed for constant attrition rate coefficients in 
preceding chapters. It is therefore necessary that we examine range dependency in 
some detail. 

B. RANGE AND AGGREGATION 

In this section, we begin our consideration of the dynamics of force strength 
densities. We have earlier alluded to the general idea of force strength densities in 
our consideration of the effect of area of occupation on indirect fire attrition (i.e., 
linear or Quadratic attrition depending on whether occupation area is constant or 
not.) 

Let us assume that we can divide the areas of occupation, designated by QA, 
and QB, respectively for the Red and Blue forces, into small, identical area ele- 
ments. The force strength in each area element, divided by the area of the element, 
is a force strength density. In the mathematical limit that we let these area 
elements go to zero, these force strength densities become actual density functions. 
We shall retain both of these formulations as being useful. 

For the density function, we shall use the designations pA, and pB, for the Red 
and Blue forces respectively, and assume that these are functions of position r (a 
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vector,) time and possibly velocity v (a vector). These density functions are related 
to the force strengths by 

A(t) = £  pA(n,t) dr., .(XVm.B-1) 

and 

B(t) = L pB(Lt) dL • (XVIE.B-2) 

We may define the centers offeree strength (mass?) RA and RB of these aggre- 
gated forced strengths by 

R A(t) = |Q L pA(tt) du , (XVm.B-3) 

for the Red force, and similarly RB for the Blue force. Note that these centers of 
force strengths are time dependent. We may define the velocity of the center of force 
strength in the usual fashion 

KA(t+At) -KA(t) 
-AvW = umiiM, 0  —  

At (XVIH.B-4) 
V (t) = LimitAt_ 0 

d_ 
dt 

- ^ aA(t) 

Of course, this velocity may be different from the velocity dependence of the force 
strength densities. 

The finite area force strength densities may be defined from the density 
functions. If each area element is located at ry, and has area Ax Ay, then the density 
in area element i,j is just 

Ax Ax 

f A
2  dx f I   dy pA(r,t) 

J.AX_      J.AX       ^AV-> (XVni.B-5) 
pAii(t) = -J r4 ' Ax Ay 

assuming r is two dimensional. (Extension to three dimensions at this point is left 
an an exercise for the student.) 

The center of force strength and the total force strength in terms of these 
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finite area force strength densities are then just double sums over all area elements 
i j with rn in Q, 

and 

A(t) =    E     PAij(t), 
i,j in QA 

E      =y PAij(t) 
R (t) = ^ 

(XVIII.B-6) 

A(t) 
E    ^PAij(t) (XVHI.B-7) 

ij in QA 

E       PAij(t) 
i]inüA 

The vector connecting the centers of force strength, defined by 

"w m &B " K > (xvm.B-8) 

has magnitude 

FAB = | E^ | = IEB - EA|, (XVIII.B-9) 

which is just the distance between the two centers of force strength. As we shall 
see, this quantity has a contral role in basic spatial aggregation. Two other vectors 
(and their magnitudes,) may also be useful: the position R*, of the maximum force 
strength density location, defined by the vector differential relationship for Red, 

EpA(RA,t) =0, (XVIII.B-10) 

where V is the vector differential operator (called a gradient when operating in this 
manner,) defined by 

2Ex^+yL + zL, (XVIII.B-11) 
dx dy dz 

x, y, z are unit vectors in the x, y, z directions; and the minimum separation 
between the two forces, designated by 

rAB - MIN (|rA - i^l), all pA(i:A,t) , pB(rB,t) > 0 , (XVIII.B-12) 

subject to the condition that the density functions of the components are non-zero. 
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Note that this minimum separation ceases to be meaningful when the two forces 
overlap (have interpenetrated,) and the position of the maximum force strength is 
meaningful only if the distribution function has one maximum. 

It may also be useful to calculate the various moments of the distribution 
function. For example, the first vector moment 

AR (t) H —L- [   (r - E ) PA (r,t) dr , (XVIII.B-13) 
A(t) J0. v        */ 

is zero, while the second moment 

AR (t) = -1- f   (r - E )! PA (r,t) dr , (XVIII.B-14) 
A(t) JoA 

is not, but is more readily understood if we write the three basic moments as 

1 
A(t) 

a"     = —77 f   y2 PA (E   + r,t) dx dy , (XVIII.B-15) 
Lit)    Jo. 

a~     = —— f   x2 pA (R   + r,t) dx dy , 

A y y A(t) 

°-- = 77^: f   xy p*(E. + r't} dx dy • A(t) Jo, 

In this case, the standard deviations o^, aAyy, and o^ (and the equivalent Blue 
force quantities,) reflect the physical size or extent of the forces. Moments oblong 
and perpendicular to the velocity of the force distribution may also be useful since 
units tend to orient along the direction of march. 

Having defined these quantities, which as we have said, serve as an introduc- 
tion to our further consideration of spatially distributed forces in a later chapter, we 
may now turn to consideration of range dependent aggregation. To accomplish this, 
we will consider two spatially distributed forces as shown in Figure (XVTII.B.l). 
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Figure XVHLB.1 Illustrative Geometry of Two Units 
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so that fire is evenly distributed over all targets, then 

|- A(t) = ^(rÄ,t) / < ^^ / ^ *«* * 4*> 

- saw) / < 4 pA(E
A(

+
t)
4t) / K PB(£S ♦ 4*) (xvm.B-22) 

We see immediately that the second and third terms on the right-hand side of this 
equation are zero by virtue of equation (XVIILB-13), and the first term may be 
evaluated to yield a homogeneously aggregated attrition differential equation 

y- A(KA,t) » - C(rAB,t) EKR^t) , (XVm.B-23) 
Qt 

where: 

B(KB,t),/dr;pB(EB+r;,t) (XVIILB-24) 
= B(t), 

so that equation (XVIII.B-23) is truly the homogeneous Lanchester Quadratic 
attrition differential equation. Thus, we see that if we keep our honored Lanchester 
Assumption that fire is distributed strictly according to force strength (density), 
then the homogeneously aggregated Quadratic attrition differential equation 
results. Of course, this equation is only first order in the expansion of the attrition 
rate coefficient function. There are many other variations and considerations that 
we might retain or explore. For our purposes here, this equation will be the basis of 
our considerations. 

If we had assumed that fire was distributed based on the actual density of 
targets, 

fB(?) = PA(B.A 
+ r.A,t) , (XVm.B-25) 

and proceed as before, then the resulting first order expansion aggrgated equation 
is 

j- A(RA,t) = - C(rAB,t) A(RA,t) BfE^t) , (XVm.B-26) 

XVIII-7 



which is just a homogeneously aggregated Linear Lanchester attrition differential 
equation. 

C.       Speed and Attrition 

In the homogeneously aggregated, range dependent attrition differential 
equation, equation (XVIII.B-22), we saw that the range dependent attrition rate 
function was a function of the distance between the two forces. Further, by the act 
of homogeneous aggregation, we reduced the spatial representation of the two forces 
to points. Accordingly, we may now approximately characterize the problem in 
terms of the scalar position equation 

rAB(t)   = rAB(°)   " St > (XVIII.C-1) 

where s is the speed of closure, (opening) of the two forces. This speed represents 
the relative speed at which the two forces are drawing together (or moving apart). 
This approximation is linear closure/opening at a constant rate of speed. Obviously, 
more general situations are possible. 

Note that this equation means that the attrition rate coefficient function is 
(may be) an implicit function of time. We may, however, note that since the force 
strengths are represented by points, and therefore do not disperse, we may elimi- 
nate either time or range from equation (XVIII.B-22), writing it as either 

1-A(t) = - C(rAB(0) - st) B(t) , (XViii.c-2) 
dt 

or 

S  4  A(rAB>   =   " C^AB) B(rAB) , (XVIII.C-3) 
drAB 

although the limits of integration are different, (i.e. We integrate equation (XVIII.C- 
2) from 0 to t which we integrate equation (XVIII.C-3) from r^O) to r^t).) 

It should also be obvious that we may apply the time dependent methods 
described in the proceeding chapter. For example, if we select a time increment 

WO) 
At =     AB , (XVIII.C-4) 

n s 

assuming the range is closing, or a space increment 
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Ar = fAB(      = s Ät , (XVili.c-5) 
n 

then with a one point (open) integral approximation, we get approximate solutions 

A(iAt)-A(a-l)At) ^ Afv At CXVIII.C-6) 
" ^(W0) - (I-I) sAt) B((i-1) At) At, v 

and 
A/riB(0) - i&r) - A(riB(0) - (i-l)Ar) 

_pA(rAB(0)-(i-l)SAt) _e_ Ap ( (XVIII.C-7) 

s * 

for equations (XVIII.C-2) and (XVTII.C-3). If we make use of equation (XVIII.C-1) to 
write a parametric independent variable, either as 

ti = i At . (XVlll.c-8) 

or as 

rABi = rAB(0) - i Ar , (XVill.c-9) 

the equations (XVTII.C-6) and (XVIII.C-7) reduce to 

Ai - Ai-i - C(rAB(0) - sVi) Bi_j At , (XViil.c-10) 

and 

C(I"AW-I) B, , Ar 
Aj » AJ.J -  — ,  . (xvill.c-ii) 

which are identical by virtue of equation (XVTII.C-5). These equations are readily 
spreadsheetable. We illustrate this in Figure XVIII.C.l where we compare the force 
strength trajectories for a constant, linear, and exponential attrition rates coeffi- 
cient functions that have the same average value. Note the relatively slower 
attrition at longer range for the range dependent attrition rate coefficient function 
due to their smaller values at these ranges. 

The other methods that we have discussed in the preceding chapter may be 
employed in a similar form. 

At this point, it is worthwhile to consider a tactical example, originally due 
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Bonder and Farrell. Let the Blue force be defending and the Red force attacking. 
Assume that the weapons on both sides have the same functional form and depend- 
ence, and that the weapons of both sides are ineffectual at ranges greater than 
rAB(0)- Since the attrition rate coefficient functions have the same functional form, a 
state solution, and analytical solutions, exist. These are our familiar Quadratic 
attrition solution. 

H*AB) = A(rAB(0)) cosh(T) 
" ö B(rAB(°)) sinh(x) , rAB & rAB(0) , 

Ö 

where: 

6 = 
> 

and 

(XVIII.C-12) 

and 

B(rAB) = B(rAB(0)) co8h(i0 

- ^fA smh(x) , rAB , rAB(0) , *™ 

A   AB   = constant , (XVlll.c-14) 
CB(rAB) 

(XVIII.C-15) 

x = I rr-(0) ^(r^) CB(P^) drAB 
S       rAB 

= /o
k ^A(rAB(0) -st')CB(rAB(0) -sf) dt' , 

with 

t  H   
rAB(°)   - rAB 

Note that as s increases, t decreases for any given value of r^. For the special case 
when the attrition rate coefficient functions are constant then 

17-r- rAB(°)   - rAB z  = &A. CB — — • (XVIII.C-17) 
s 

Let us now further specify the tactical situation. Blue, the defender, has a doctrine 
that he will withdraw when Red has closed to some range r^* < r^O). Thus, in 
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fighting from 1^(0) to r^*, Red takes losses. 

A A = AQ (1 - cosh(x')) - ÖB0 sinh(xy) , 

where AQ and B0 are Aft^O)) and BO^O)), and T' is the (dimensionless) attrition 
time to move from r^O) to r^*. If Red wants his losses to be as small as possible, 
then he must make T' as small as possible. This means that he wants to make s as 
large as possible! We thus see, consistent with our Lanchestrian assumptions, that 
Red (and Blue,) minimizes (relatively) losses by closing (attacking) at the greatest 
practicable speed. 

This is a completely logical conclusion that is consistent with analyses of 
contemporary warfare. If it takes a certain amount of time (on the average,) to find 
and kill a target, then the shorter the total time that targets are available, the 
fewer of them that can be killed. What is amazing here is that we may produce this 
result from what in essence is a purely Lanchestrian standpoint. 

D.       Conclusion and Comment 

This has been a brief introduction to range dependent attrition. We could 
have re-elaborated the various solution techniques of the previous chapter in this 
range dependent attrition rate coefficient function context. However, as long as we 
are strictly dealing with homogeneous aggregation, range and time are equivalent, 
so we do not need to reexämine those techniques, but leave their translation as 
exercises for the student. 

We must also emphasize that while we were able to derive the requisite 
Quadratic attrition equations by using the appropriate Lanchestrian assumption, 
we also made use of a very limited expansion of the attrition rate coefficient 
function. This represents considerable approximation in the derivation. We shall 
defer consideration of less (and different) approximation for a later chapter on 
spatially distributed forces. 
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XIX. STOCHASTIC DUELS 

A. Introduction 

The subject of duels is not one that holds a familiar place in our minds. Most 
of our knowledge of duels derives from Hollywood, who found it a frequent dramatic 
vehicle in years past. Despite this, many of us have participated in one, although we 
may not of thought of them as such. Duels seem to be largely a male preoccupation, 
although there may be female versions that are not obvious to my male mind. 

From an historical sense, the most famous duel that we know of as Ameri- 
cans is the Burr-Hamilton duel,1 although most of us are familiar with classical 
duels from movies. These duels are seen as social rituals for adjudicating unac- 
ceptable behavior although the potential finality of a classical duel (to a conclusion,) 
may be used as a coercive or intimidating threat. In modern times, duels still exist, 
in the form of the automotive game of "chicken," or one-on-one basketball. Indeed, if 
we reduce the latter to a purely free throw competition, then the mathematics of the 
stochastic duel is applicable. 

B. The Classical Duel 

The classical duel between two participants is a strongly scripted process 
that (ideally) serves to settle some social disagreement between the two partici- 
pants (called duelists). In contemporary fiction, the duel is portrayed as an affair of 
honor with the challenged party having the choice of site, time, and weapons, 
although social conventions may have strongly influenced all three of these. 
Although swords and guns were the most common weapons, one duel (in France) 
was (lethally) fought using billiard balls. 

As we have mentioned, classical gun duels are strongly scripted. They differ 
from stochastic duels primarily in this manner. Thus interfiling time for classical 
duels is a fixture rather than a variable other than psychologically (which we shall 
conveniently ignore.) We limit ourselves to gun duels here, since the classical duel 
with edged weapons is harder to characterize mathematically, although it does bear 
a closer relation to stochastic duels. If we designate the individual firing probabili- 
ties of kill (or incapacitation to the point of cessation) as pa(n) and pb(n) (where the 
two participants or duelists are labeled a and b in our usual manner,) for the nth, 
then after one exchange of shots (one firing,) the states are: 

a dead, 
b dead, 
a and b dead, and 
a and b alive. If we designate these states as (0,1), (1,0), (0,0), and 

(1,1), respectively, then the probabilities of the states are 
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p(o,i;i) =pa(D(i -Pb(i)J, 
p(l,0;l)=(l - Pa(l)) pb(l) , 
p(0,0;l)=pa(l)pb(l), ^^ 

p(l,l;l) =(1 -Pa(l))(l -Pb(l)), 

where the last index in p is the number of firings. 

There are two mechanisms for terminating a classical duel: the death (or 
incapacitation) of one (or both) of the duelists, or satisfaction of the social grievance 
conditions that generated the duel. Neglecting the latter for our consideration, then 
the duel will only conclude with death. In this case, we may write the general state 
probabilities after n firing as 

p(0,l;n) = pa(n) (1 - pb(n)) p(0,l;n-l) , 
p(l,0;n) = (1 - p») pb(n) p(l,0;n-l) , 
p(0,0;n) = pa(n) pb(n) p(0,0;n-l ), IXIX.B-4 

 P(l,l;n) = (1 - pa(n)) (1 - pb(n)) p(l,l;n-l) . 

Note that we distinguished the individual firing probabilities of kill to accommodate 
learning, exhaustion, and other factors. Further, only the (1,1) state is non-termi- 
nating. Since this state has the general form, 

p(l,l;n) = fl f1 " Pa(i)) (1 " Pb(0) > (XK.B-3) 
i=l 

we may easily perform simple calculations with these equation. In particular, we 
may calculate the expected number of firings before the duel is terminated as 

DO 

<n> = £ np(l,l;n) . (XIX.B-4) 
i=l 

Obviously, if we assume the firings to have constant probabilities, then this 
calculation is simplified. In this case, 

p(l,l;n)-((l-p,)(l-pb))», (XKB5) 

XDC-2 



and 

<n>= £ nq", 
n = l 

(XDLB-6) 

(XDCB-7) 

(1 " q)2 

= (1 - pa) (1 - Pb) 

(Pa  + Pb   " PaPbf 

Similarly, we may calculate the probability of winning as 

P(a) = £  Pa(l -pb)p(l,l;n-l), 
n=l 

00 

= pa (i - Pb) £ p(i.i;n), 
n = 0 

= pa(i -pb)E qn> 
n = 0 

=       Pa (1   ~ Pb) 

Pa  + Pb   " PaPb   ' 

and similarly for b. 

Before we proceed, let us take advantage of the approximation that 

(1 - pa)n * e"nPl, (XIX.B-8) 

and if we attribute an (average) rate of fire r to the process, then the state probabil- 
ities over time are just 

p(0,l;t)=<pae
p*e-(p*+Pt)rt, 

p(0,0;t)-papbe^8-ö,^)t, 

p(l,l;t)- e-
(p^)rt. 

C. The Extended Classical Duel 

Before proceeding to the stochastic duel, it is worthwhile to consider a 
classical duel extended to have multiple participants. Initially, assume the Red side 
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to have na duelists, and the Blue side m^ duelists. For simplicity, treat the firings as 
scripted, and the individual firing probabilities as constant. 

During each firing, there are two factors that must be considered: the 
distribution of firings over targets - that is, some targets will be fired at more than 
once, while others may not be fired at; and the firings themselves - some will kill 
while others do not. This problem is of considerable more complexity than the 
previous one. As soon as na and nit, become very large, just enumerating the possible 
distribution of fire become very complicated, and as we have seen in the case of the 
Lanchester equations, simplify only when we have large numbers. If we assume 
that the extended classical duel can only end in a state (0,m), (n,0) or (0,0), then 
these simplifications do not exist. 

It is not the intent here to fully develop this problem. Our intent was only to 
sketch the idea that these two degrees of freedom: target selection and kill probabil- 
ity; make the extended classical duel problem much more complicated than the one- 
on-one duel. 

D. The Stochastic Duel 

The stochastic duel (sometimes called the general renewal problem2) is 
similar to the classical duel except that it is not scripted. That is, firings may occur 
at any time. Instead of a fixed step, time dependent probability density functions 
pa(t), pb(t), are associated with the firing process. These functions represent the 
probability per unit time that a red, blue element will fire a shot. Frequently, these 
functions are assumed to be constant for all shots fired by each side. This is directly 
analogous to the assumption of pa(n) constant in the classical duel. 

This probability distribution function signifies that the probability that a 
shot has been fired by time t is 

Pad;*) -/'p.CtOdt'",' (XK.D-1) 

and the probability that two shots have been fired by time t is just 

Pa(2;t) = fP(t)PIl(l;t-t')dPa(l;t'), 
Jp(0) 
,t ,   dP„(l;t')      , 

= f   Pa(l;t - t')—iLJ—Ldt', (XTX.D-2) 
Jo dt' 

- f^todt'r-^t'Odt'', 
Jo Jo 
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and so on for more shots. (The student may wish to be aware that what we are 
describing here is renewal theory,3 and that it is sufficiently general to allow for 
different probability distribution functions for each successive shot). 

If, as before in the classical duels, each firing has some probability of kill 
associated with it, then we may write probabilities of states (numbers n and m of 
each force,) at any time t. For the stochastic equivalent of the classical duel we have 
already developed, we have state probabilities of the form, 

oo 

p(0,l;t) = £ pka(l - p^)"-1 Pa(n;t) 
n=1/ \        (XK.D-3) 

1 " E  Pkb (1 " Pkb)"1"1 Pb(m;t)    , 
m=l / 

which is identical in form to the equivalent equation for the classical duel. The 
individual terms of the first summation are the probability that after n firings, n-1 
non-kills and one kill have occurred, and the probability that n firings have occurred 
by time t. Their product is just the probability that one kill out of n firings has 
occurred by time t. The first summation is thus the probability that a duelist has 
achieved one kill by time t. 

The second summation is the same quantity for the b duelist. Thus, equation 
(XTX.D-3) is just the joint probability that the a duelist has achieved one kill, and 
the b duelist has achieved no kill, by time t. We see that this equation is fundamen- 
tally different from the equivalent classical duel equation only in the sense of being 
time dependent. 

This equation (and the ones for the other three states,) are only a one-on-one 
duel. The complexities of going to the n-on-m duel are enormously greater. These 
complexities are beyond the scope of this text, since we are primarily and funda- 
mentally concerned with Lanchester attrition theory. There is a considerable 
literature on stochastic duel theory, including both a text on one-on-one duels,4 and 
numerous reports,5 and journal articles6. The student who is interested in the 
theory and practice of stochastic duels may avail himself of these excellent sources. 

E. Stochastic Duels and Lanchester Theory 

To understand the relationship between stochastic duels and Lanchester 
attrition theory, we must delve into the rationale of stochastic duel theory a bit 
more in terms of how it models combat rather than its mathematical formulas. To 
do this, we may short circuit things by considering a theory of combat developed by 
C. J. Ancker, Jr. and A.V. Gafarian. 
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Ancker and Gafarian have been the central figures and force in the develop- 
ment of stochastic duel theory. Their combat theory, built in a perspective of 
physical phenomena and structure of theory, consists of two laws (although they 
might also be considered as postulates or hypothesis.7) The first of these is: 

• All combat is a network of firefights; 
and the second is 

• A firefight is a terminating stochastic process on a discrete state 
space with a continuous time parameter. 

Clearly the first law is the philosophical basis of the theory while the second is the 
mathematical basis. 

There is a great deal of allure to and evidence for the first law of this theory. 
It is especially enticing to us with our highly individual view of the nature of 
combat. Historically, there is considerable evidence to support this view, especially 
with the advance of technological lethality, its resulting increase in dispersion, and 
the accompanying reduced size and scope of combat engagements.8 There is also 
evidence against this, especially with Frederickian and Napoleonic war character- 
ized by volley fire, but this evidence is not as compelling as the evidence for the 
veracity, if not the validity, of the law. Indeed, anticipating the mathematical 
second law for a moment, it may be constructively argued that the mathematical 
firefight model is sufficiently general to absorb the counter arguments as different 
special cases. 

While we are in this historical discussion of the First Ancker-Gafarian Law, a 
comparison can be made with Lanchester Theory. History, and tbe detailed spatio- 
temporal analysis of battles, indicates that these battles occur as a complex of 
engagements between and among the subsidiary units that comprise the overall 
forces that are in battle. Quite frequently, the percentile losses sustained by these 
units may be (and are) an order of magnitude greater than those sustained by the 
force as a whole over the duration of the battle. An excellent example of this is the 
Iron Brigade at Gettysburg. 

This seems to refute one of our basic assumptions of the Lanchester Attrition 
Theory, that fire is evenly distributed over the remaining force elements. As we 
have seen in sketch in other chapters, and shall deal with in detail later, this 
assumption is necessary to maintain the use of a rate theory when spatial aggrega- 
tion is carried to homogeneity. We must recognize it therefore as fundamental to 
that spatial aggregation process rather than as a fundamental of the adoption of 

a      This leads us to an interesting question: what is the difference between an engagement and a 
firefight? 
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rate theory which is itself inherently an approximation.13 

At a hand waving level, we know from history that units that become 
exhausted during a battle tend to be removed from combat and replaced with fresh 
units. Thus, over the course of the battle, relatively attrited units tend to be 
replaced with relatively unattrited units and the uniform distribution of fire tends 
to be a reasonable approximation under certain circumstances. 

The Second Ancker-Gafarian Law, of course, complements the first law. 
There is little to quibble with it if we accept the first law as a definition of combat. 
We know that firefights are terminating and stochastic; that there are an integer 
number of elements involved in the firefight; and that the process occurs (non- 
relativistically) over time. The quibbles occur in the unique association of this law 
with stochastic duel theory. (And we do not believe that such a unique association is 
advocated by Ancker and Gafarian.) 

While firefights/engagements occur in a probabilistic environment, the forces 
that comprise them are individuals with their own characteristics, both physical 
and psychological; and the forces themselves will have characteristics that embody 
and reflect their structure, human dynamics, military doctrine, and experience. 
Theory is seldom able to capture these characteristics exhaustively or completely 
both due to formalism limitations and political influences. These variations are 
almost universally reduced to a set of identical behavior probability density func- 
tions. Combat may be dominated by factors other than sheer firepower, notably 
terrain, maneuver, and leadership. Its termination is not well understood and is 
frequently represented by mathematical criteria whose rationale is based in 
problem simplification. 

A frequent quote invoked by the proponents and develops of stochastic duels 
is from Clausewitz, "was is nothing but a duel on a larger scale.8 They cite this 
quote as historical theoretical support for duel theory. This citation however, must 
be taken with a grain of salt; we may in no sense view this as some voice from the 
grave of Western Civilization's principal war theorist pronouncing the truth of duel 
theory. Taken in the context of On War as a whole given Clausewitz's antipathy for 
mathematical formalism, his stated (but not practiced,) dislike for Principles that 
would be reduced by practicioners to dogma, and his consistent theme of will, it 
seems more reasonable that it is in the latter context that the quote must be 
viewed. 

If we return to our discussion of the classical duel, (which is the type of duel 

b       Regardless of mathematical approach, any theory of combat processes must admit of approxima- 
tions. In a later chapter on Aggregation theory, we shall examine the common basis of modeling, the 
Principle of Identicality. 
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that Clausewitz would be familiar with,) it is the aspect of will in the termination 
process that Clausewitz is more probably talking about. In a classical duel, with its 
rigorious scripting, the participants stare death in the face up to and during each 
firing; only immediately after each firing do they have the option of ending the duel 
by some means other than death. This is a possible incentive for termination; which 
decision, if made on emotional basis, would, in Clausewitz's terms, be a failure of 
will. This is probably the exact effect that Clausewitz is talking about, that a 
principle factor in the termination of combat is weakening or failure of the will. 

This lengthy discourse on a quotation does have a purpose. Its purpose is to 
illustrate that while we may logically agree that a firefight must terminate, that 
termination is not necessarily (nor even likely,) to be at mathematical conclusion. 
As we have noted previously, conclusive battles (and even engagements,) are rare; 
the concept of conclusion is essentially mathematical in nature and is mathemati- 
cally useful. It does not generally correspond to historical evidence. We must 
therefore recognize that stochastic duel theoy is no different from any other mathe- 
matical attrition theory in this regard; it does not incorporate a meaningful termi- 
nation mechanism (which includes breakpoints,) and we must continue to look else- 
where for such. 

Nor can we disagree that combat is stochastic - even Clausewitz would agree 
with this. What we may quibble with is what the form of the model is. At a funda- 
mental level, the question really has to deal with the distance that the stochastic 
forces operate over. The First Ancker-Gafarian Law takes an inherent view that the 
short range forces are more important than, even dominant over, the long range 
forces. While this is not an unreasonable view, being essentially the same taken in 
Lanchester Theory, except in weaker form, it is not the only view, notably that of 
Horrigan.9 

Next, while we admit that the units engaged in the firefight have integer 
number of soldiers, these soldiers are not identical. Under ideal conditions, this 
individuality is included in the firing time probability distribution function. In 
combat, however, troops take injury at many levels with varying degrees of loss of 
effectiveness. The binary state of fully effective-killed is thus an approximation. 
While this approximation is common to most attrition models, including almost all 
formalisms of Lanchester theory, we must recognize it as an approximation. 

Finally, we must recognize that as it currently stands, stochastic duel theory 
is spatially aggregated, just as homogeneous Lanchester theory is. This also must 
be viewed as an approximation. 

Thus far, we have quibbled a bit with stochastic duel theory. The purpose of 
this is not to detract from the value of the theory; it is to demonstrate that the 
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theory has limitations. 

One of the problems of comparing different theories is that it is difficult to 
sort out the differences in the meanings of the assumptions from the mathematical 
formalism. This is amply shown by Ancker and Gafarian in a study where they 
compared (homogeneous aggregated) deterministic and stochastic Lanchester 
theory, and stochastic duel (general renewal) theory.10 Their conclusions are 
summarized as: 

1. Deterministic and stochastic Lanchester mathematical formal- 
ism are not equivalent or equal. 

2. For Quadratic (Deterministic) Lanchester, the force strength 
solutions are neither an upper nor a lower bound on the enve- 
lope of stochastic Lanchester mean force strength solutions.] 

3. Even for short time, deterministic and stochastic force strength 
solutions may differ considerably. 

4. The differences between deterministic and stochastic force 
strength solutions do not necessarily go to zero as t-0. 

5. Stochastic (i.e. statistical) theory cannot support, in the large 
number limit, that individual general form firing time probabil- 
ity distribution fufnctions combine in an "aggregate" negative 
exponential firing time probability distribution function. 

6. Nonhomogeneous Poisson processes, do not generally approxi- 
mate general renewal processes. 

7. Stochastic Lanchester and general renewal (stochastic duel) 
variations may have considerable magnitude, even at short 
times, and may (generally do) differ significantly from each 
other. 

8. Other calculated quantities: number of survivors, battle dura- 
tion, and probability of winning; differ even more among the 
theories than the force strength solutions. 

Some of these conclusions are "old hat" to us from our previous discussions, 
while others are news. Thus, some comments are dictated. Before doing so, there is 
a viewpoint, somewhat different from the norm, that the student may find useful. 
Simply stated, that viewpoint is this: stochastic Lanchester theory is a special case 
of stochastic duel theory with delta function firing times probability distribution 
functions, and only one fire allocation channel. To explain these last two points a 
bit, delta function probability distribution functions yield fixed intervals between 
firings, which effectively discretize time. The concept of fire allocation channels is 
exactly that introduced in our earlier discussion of Lanchester-Poesson theory: that 
out of m firers on n targets, some of the targets will be engaged by a single firer, 
some by two, etc. The firing channel concept turns this around to talk about the 
distribution of how many of the m firers fire at one target, how many at two, etc. 
The single channel that is operant in stochastic Lanchester is the one where all m 
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firers fire at one target. (This is a natural result of the O(At) reduction of state 
transitions.) 

Stated in other words, consider the probability density matrix of stochastic 
Lanchester theory as our model. In stochastic Lanchester theory, any state (matrix 
element,) (m,n), m <, n^, n < n0 is accessible from at most two status (m+l,n) and 
(m,n+l). In stochastic duel theory, any state (m,n) is accessible from any other state 
(m',n'), mo z m' z m, n0 * n' 2 n. 

Now returning to Ancker and Gafarion's findings. The first four are not 
surprises given our earlier discussions. They are primarily validations of the 
differences in the assumptions between deterministic and stochastic Lanchester. 
The fifth finding is important based on the argument that the firing time probabil- 
ity distribution function in Bonder-Farrell theory must aggregate to being negative 
exponential. Simply put, this finding means that one cannot derive Lanchester 
theory from stochastic duel theory. To proponents of stochastic duel theory, this is a 
death knell for Lanchester theory0. 

If we take a leaf of comparison from physics, we may see that this is not the 
case. If we start with General Relativity, we may derive Classical Mechanics, but 
not Quantum Mechanics. If we start with Quantum Mechanics, we may derive 
Classical Mechanics, but not General Relativity. While the reasons are different, 
the result is the same. We may infer stochastic Lanchester from deterministic 
Lanchester but not go backwards. Similarly, we may get stochastic Lanchester from 
stochastic duels. The fundamental reason that we cannot make either of these 
transformations is the dominating effect of the fundamental assumptions - the 
incompatibility of the mathematics merely confirms this. 

This does not mean that either of the theories is inherently right or wrong 
universally. Each is valid under different conditions. The primary problem arises 
when the situation at hand requires aspects of both theories for solution and the 
need for a more general theory arises. A secondary problem arises when the 
situation at hand is such that both theories should apply.For these situations, the 
question is which theory is better? This implies not only accuracy but utility as well. 

It is in this second situation that our inability to conduct experiments is most 
restrictive. This is a lack of empirical evidence to allow comparison. Thus, we may 
only compare the models based on their mathematical weaknesses within the 
framework of our model of combat, not on our observations of the actual event. 

c       From our standpoint, this is not the case. Lanchester attrition theory may be viewed as an 
application of rate theory with the stochastic attrition rate coefficient theory of Bonder-Farrell as a 
conjugate. This is a markedly different outlook than viewing deterministic Lanchester theory as a 
subset of stochastic Lanchester theory. This difference in views merely reduces Ancker and Gafarian's 
results to a description of difference. 
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(Actually the problem is further complicated by the complexity of the sto- 
chastic duel formalism. We do not expect the rate approximation to hold once m2 or 
n2 become relatively small. Since the complexity of a stochastic duel calculation is ~ 
m! n!, then meaningful comparisons are actually computationally limited.) 

The sixth Ancker-Gafarion finding basically says that stochastic duels in the 
special cases that renewal theory becomes nonhomogeneous Poisson, where they 
are less complex, are not generally applicable. Similarly, the seventh finding is not 
surprising, given our previous discussions of stochostic Lanchester, and our special 
view of stochastic Lanchester as a special stochastic duel. Finally, we are not 
particularly surprised by the eighth finding: we know Lanchester losses do not 
relate well with history; battle duration is, in our opinion, a discredited extension of 
the conclusion which is only of mathematical utility; and since probability of 
winning is purely a stochastic concept, we would expect major differences between 
stochastic Lanchester and duel theories, given the channel differences. 

In conclusion, we have seen that stochastic duel theory is a complicated 
attrition theory that mathematically implements a technically pleasing, but spatial- 
ly aggregated, combat model. It subsumes stochastic Lanchester theory as a special 
case, but not basic or deterministic Lanchester theory, primarily due to the differ- 
ent enabling assumptions of the two theories. This lack of transference, plus 
technical difficulties with Bonder-Farrell theory are the chief basic of disagreement 
between the two theories since they cannot be compared directly due to the compu- 
tational complexity of stochastic duel theory. 
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XX. Stochastic Lanchester 

A.       Introduction 

Thus far, we have largely treated the attrition problem as if it were fully 
deterministic. This treatment implies a fatalism about the unremitting on-slaught 
of attrition that is the fundamental source of repugnance for many of those who 
cannot accept that war (or its replacements and surrogates,) is probably a funda- 
mental component of human nature and society. The historical data are unequivo- 
cal, back to the earliest recorded evidence,1 while the contemporary evidence does 
not facilitate the confident forecast of a future that is either Utopian or peaceful, 
despite dire predictions of the demise of warfare.2 

In the sense of a modern world view, largely courtesy of the quantum physics 
developed from the start of this century,3 and now ingrained as part of both our con- 
scious and unconscious minds. We freely accept as temporary determinism the 
expectation values of sharply peaked probability distributions, or the non-occur- 
rence of catastrophes (from the human perspective,) whose expected times to occur 
are at least, longer than our attention spans, and more often, longer than our 
lifetimes. 

Just as we accept that a falling body reaches and keeps a constant velocity (if 
it falls far enough,) as a result of momentum loss to randomly oriented and occur- 
ring collisions with air molecules, and we describe this process "deterministically" 
with Newtonian mechanics, so too do we accept Lanchestrian attrition as a "smooth" 
mechanistic process representing the random transfer of attrition between the 
attrition generating elements of one force to the attrition receiving elements of the 
other force.b In this sense, then, we treat Lanchestrian attrition as a deterministic 
process much as we treat the effect of drag on the motion of a falling body as a 
deterministic process. We know that the use of deterministic drag has accuracy 
limits inherent to it that depend on the physical conditions. If we want greater 
accuracy under any set of conditions, we may have to resort to some other form of 
process model. 

a      The modern world view has also been shaped by that other great Twentieth Century physics. 
Relativity, but to a lesser extent. Both of these build on the advances of the previous century, Relativity 
on the theory of electromagnetics, and Quantum Mechanics on electromagnetics, classical mechanics, 
and of course, probability theory. All of these have their impact on the Physics of War as we continue to 
explore here. 

b       It is interesting to note that there is an analog to both Linear and Quadratic Lanchester 
attrition in the drag experienced by a moving body. See Marion, Classical Dynamics of Particles and 
Systems, Academic Press, New York, 1965, pp. 64-66 , whose example of this is drawn from the exterior 
ballistics of gun projectiles. 
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This imposition of accuracy limits under a given set of conditions does not 
compromise the use of the model implicitly nor inherently. Rather, they serve to 
definitely limit the degree of accuracy that we may attain by use of the model. If we 
cannot use the model to perform simulation to the desired degree of accuracy, then 
we are faced with the difficult choice of either accepting less than desired accuracy, 
or using a more accurate model. This does not preclude either understanding or 
engineering. It is instructive that the preponderance of engineering calculations 
performed in the design of both airplanes and missiles are performed using the 
classical drag model in one form or another. If we had to perform run-of-the-mill 
engineering aerodynamic simulation using quantum theory, air travel would likely 
still be limited to unpowered lighter-than-air balloons. 

In a like manner, we can easily identify that the attrition rate coefficients 
(functions) in Lanchester theory are expectation values of probability distributions 
just as drag coefficients are. Just as there are conjugate theories that allow us to 
calculate (estimate) drag coefficients from (inherently probabilistic) quantum 
mechanics for use in (deterministic) classical mechanics, there are conjugate 
theories that provide a connection between probabilistic models of combat and 
(deterministic) Lanchester theory. As we have already indicated, the most compel- 
ling and useful of these conjugate theories is the Bonder-Farrell attrition rate 
theory that we shall take up in later chapters.0 

Just as there are alternate expressions of drag models that take the sto 
chastic interactions into account in different ways, there are alternate expressions 
of Lanchester Theory (and other combat theories) that consider the stochastic 
processes of combat in different ways. In this chapter, we examine other formalisms 
that are commonly associated with considering greater probabilistic (or stochastic) 
realism in the context of Lanchester theory. In one sense, these formalisms may be 
considered as add-ons since they come after Lanchester theory both chronologically 
and intellectually . In another sense, they may be thought of as more general 
theories since they tend to reduce to our conventional view of Lanchester theory 
under the appropriate conditions. In both these senses, these formalisms are 
(potentially) more accurate models than Lanchester theory. They are definitely 
sources of insight into both the mechanics and the modeling of war. 

Before proceeding to take up these formalisms (or models,) it is worthwhile to 
present some initial insight into what we are about with this discussion of stochas- 

c       Of course, there are other theories. We have already sketched a simple such theory in the early 
chapters of this book where we approximated the attrition rate based on a single shot probability of kill 
and a firing rate. For some large scale simulations, the attrition rates may be estimated from historical 
experience or even from the professional opinions of experts (as in the currently popular Corps Battle 
Simulator or CBS simulation,) largely ignoring the impact of technology and doctrine evolution. 
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tic Lanchester models. Let us consider the case of a friendly force of size m units 
firing exactly m shots (i.e. exactly one each,) at an enemy force of size n units that 
we will assume for simplicity is greater in size (n * m) than the friendly force. We 
specify that the enemy (target) force is larger than the friendly (firing) force and 
that the shots are completely independent to simplify the calculation. That is, no 
enemy unit is shot at more than once. While we recognize that this is highly 
unlikely under the uncontrolled conditions we think of as combat, we adopt these 
specifications to make the calculations simple while retaining a flavor of the 
stochastic nature of combat. 

If the probability of kill per shot (p) is the same for all shots (also unlikely!,) 
then we see immediately that the distribution of kills for all shots is binomial. 
(That's why we had to pose such an unlikely situation.) That is, the probability of 
exactly j kills out of m shots is 

PG) = (T) (i -P)m-V. (XX. A-1) 

We may now proceed to ask some questions: First, how many kills do we expect to 
occur in this bout of firing? From our previous work, we know that this is just the 
expectation value of j, 

{j kills) = £ j P(j), (XX.A-2) 
j-o 

where () indicates an expectation value. We know what this result is from our 
earlier presentations, but we will review this calculation here in a different form, 
We may write equation (XX.A-2) as 

<j>=£ i 
j-o 

m 

-EJ 
j=0 

m 

V J i 

V 
(i -pr>V 

qm"]P], 

(XX.A-3) 

which serves to define q. 

Equation (XX.A-3) may be rewritten as 
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<j>-p 
dp j=o 

m    /      \ 

J ) 
qm-)P3, (XX.A-4) 

but by the Binomial Theorem, equation (XX.A-4) is just 

<j> = P — (q + p)m 

3p 
= p m (q + p)™"1 

= p m, 

(XX.A-5) 

since q + p = 1 by definition. 

It is also useful to calculate the variance of the number of kills. The variance 
is defined by 

ol = <G - <J»2> 
= <j2 -2j<j>. + ^>. 

(XX.A-6) 

Since the expectation value is both linear and idempotent (i.e. repeated operations 
do not change the result,) we may further expand equation (XX.A-6) as, 

= <j2> -(j)2, 

and calculate the expectation value (j2) as 

(j2) = (P|")2(q+P)m 

(XX.A-7) 

m | p --—   P (q + p) 
dp) 

= m p + m(m - l)p2. 

m-l (XX.A-8) 

The variance is then just, from equation (XX.A-7), 

2^2 a-- = mp + (m2 - m) p^ - ixrp 
= mpq. 

(XX.A-9) 

From these, we may now compute evolution equations for the enemy force. 
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The expected change in the enemy force strength n is just 

A(n) = -W (XX.A-10) 
= -mp, 

where we have shown an expectation of n. We do this because n may be reduced by 
any number between 0 and m (which we have fixed,) based on the way we have 
structured the firing. This is the heart of the stochastic approach - in this one-sided 
example, we now associate a probability distribution with the attrition process, 
albeit only on one side. Notably, we have assumed that the probability of kill is a 
singular, fixed value and is not itself stochastic. This is a common problem or 
limitation with most stochastic formalisms. 

Obviously, since we have associated a probability distribution and a mean 
with n, we may describe its probability distribution in terms of higher moments. In 
particular, we may consider its variance, 

Ao?. = A(j2) - A<j>2. (XX.A-11) 

To evaluate this, we note that expectation value and finite difference operations 
commute (they are independent and may be performed in reversed order.) We 
replace squared terms with the factorial finite difference representation, yielding 

Aa*n = (An» - An") - A(n)^ + A(n)W 
= 2(nAn) - A(n> - 2<n>A<n> + A(n) (XX.A-12) 
= 2(nAn) - 2(n)A(n). 

If we now make use of equation (XX.A-10) (and its pre-expectation value equiva- 
lent,) equation (XX. A-12) becomes just 

AoJL = 2(jn) - 2<j)(n) 
2 (XX. A-13) 

= 2o„ 

whose left hand side is just the covariance of n and j! 

Thus far, all we have been doing is just dry statistics, but we are now poised 
to leap once more into attrition. Consider that some period of time At may be 
associated with the firing of these shots, or if they are repeated, with the "period" of 
the firing cycle. In this case, we may proceed exactly as we did in the drag example, 
approximating the punctuated momentum transfers of the molecular collisions as a 
continuous rate process. We thus replace the probability of kill with an attrition 
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rate times the time interval, 

a At = p, (XX.A-14) 

which defines a. 

If we now substitute equation (XX. A-14) into equation (XX. A-10) and take the 
limit as At - 0, we get 

T-2- = "a m> (XX.A-15) 
dt 

and if we assume (in a rather cavalier manner,) that 

< = P °L> (XX.A-16) 

then equation (XX.A-13) may be rewritten as 

^ = 2« oJm. (XX.A-17) 
dt 

Obviously, since m is fixed in our treatment (i,e, not stochastic,) the meaning of this 
last equation is problematic. On the other hand, equation (XX.A-15) is just the 
equivalent of our familiar Quadratic Lanchester attrition differential equation. To 
address this problem, we need to treat the situation in a more general manner 
where (at least) both force strengths are stochastic in nature. 

B.       Stochastic Differential Equations 

Before we proceed further with our discussion of stochastic Lanchester 
theory, we need to spend some space considering part of a special class of differen- 
tial equations, known as stochastic differential equations.3 First, we consider a set 
of m differential equations. For homogeneously aggregated Lanchester theory, mis 
just two, but for the more complicated heterogeneous aggregation we shall consider 
later, m may (will) be greater in size. These differential equations have the form, 

H = bi(t,{y) + oik(t,{i;» T|k(t), (HCB-i) 

i = l..m, k = l..n, 

where: 
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f4 are the random variables, 
bj are their rates of change, possibly dependent on the variables and time, 
oik are a set of functions that are related to the variances and are 
multiplied by the 
T]k that are white noise terms which are functions only of the para- 
metric independent variable (nominally time,) and 
{fj} indicates the set of random variables. 

The description of the T|k(t) as white noise means that they are random functions 
with special properties. Specifically the white noise terms have zero expected value, 

(T)k(t)> = 0, (XX.B-2) 

and are, at once, both perfectly decorrelated and have no memory, 

<Tlk(t) ifcCt + x)> = 6a 6(T). (XX.B-3) 

because the Kronnecker delta function ÖH is nonzero only for k = 1, and the Dirac 
delta function ö(x) is nonzero only for x = 0. 

Since we do not normally consider probability distribution functions to 
necessarily have zero mean (expectation value,) we may want to think of the 
stochastic process depicted by equation (XX.B-1) to be decomposed into two parts: 
an expected value part, represented by the fy, and a shifted (to zero mean) part that 
contains the higher moments, represented by the oik.d The correlations between fj 
and fk are contained in the oik. One particular aspect of this formalism of stochastic 
differential equations is that the random variables, the f;, are Gaussian or normal 
in distribution, and stochastic processes which have this behavior are called 
Gaussian processes. This will be important as we proceed. 

A property of these stochastic differential equations is that the probability 
distribution function of their random variables and time, P({fJ,t) obeys a differential 
equation known as the Fokker-Planck equation4 

ff - -E |T (». P) ♦ ± E "-TTJT e* n (XXB-4) at i=l    afi 2 y=i   dfidfj 

where: 

d      We must be careful with using this view too heavily. The ht, as we shall see, contribute to the 
higher moments. 
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«ü "E °ik<V (XX.B-5) 
k=l 

Under normal circumstances, the boundary conditions are specified as initial 
conditions for both the random variables, 

fi(t0) = fio> (XX.B-6) 

and the probability distribution function, 
m 

P({fi),t0) = II ö(fi - ^>- ... (XX.B-7) 
i=l 

Since this is a probability distribution function, the expected value of any function of 
the random variables, at any time t, is given by 

<h({fy,t)> = f h({fi},t) P({fi},t) dft}, (XX.B-8) 

where: 

d{fi> = n dfi> (XX.B-9) 
i=l 

is used as a shorthand and obviously indicates m integrals over all the random 
variables. 

To illustrate the properties of this formalism, we consider an example. For 
the single differential equation (m = 1), 

dx 
-— = f(x) + g(x) Ti(t), (XX.B-10) 

from which we may build the appropriate Fokker-Planck equation by inspection as 

!r = -!-(fP)t}rT(g2p)' (xx-B.ii) 3t 3x 2  3x2 
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^ = <*<*)>■ (XX.B-17) 

We may also calculate the motion of the second moment of x, its variance, as 
(we repress the subscripts since this is a one-dimensional problem,) 

do2      d(x2)      d(x)2 ^T,,™ 
-— =  " • (XX.B-18) 
dt        dt dt v ' 

Since we are dealing with the random variable (or its moments) as a continuous 
quantity, we may apply the chain rule to the second right hand side term above, 

d(x)2 _ 2 (x) d(x) 
dt dt (XX.B-19) 

= 2 <x> <f>, 

and the first right hand side term may be calculated in the same manner as before 

d<x>      I  ,      2 dP  =  /  dx xz  
dt J dt 

(XX.B-20) 

= - f dx x2 L. (fp) +1 r dx x2 d— (g
2P). 

3 dx 2 J dx2 
-00 -0* 

We may integrate the first right hand side of equation (XX.B-20) by parts as before 

f dx x2 L_ (fP) = x2fP  I    -2j*dxxfP. (XX.B-21) 

If we assume tb   first right hand side term of the above equation away on the 
grounds of boun .xedness, then we have 

f dx x2 |- (fP) = -2 (xf). (XX.B-22) 

Now, we integrate the second right hand side integral of equation (XX.B-20) 
once by parts, we get 
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fdxx2^-(g2P) =x2i-(g2P)  | 
J 3x2 3x 

(XX.B-23) 

- 2  f dxx — (g2P). 
J ax 

Again invoking our faithful assumption of boundedness, we may eliminate the first 
right hand side term of equation (XX.B-23), and integrating once more by parts, we 
get, 

f dx x2 L_ (g2P) = 2 x (g2P)  |   + 2 f dx (g2P). (XX.B-24) 
J Qx2 -•» J 

Invoking boundedness one more time, this reduces to 

fdxx2^- (g2P) = <g2(x)>. (XX.B-25) 
J dx2 

The equation of motion of the variance then becomes 

Ü = 2 <g2(x)> - 2 <x f(x)> + 2 <x> {f(x)>, (XX.B-26) 
dt 

so that if we solve equation (XX.B-17) for (x)(t), then we may (in principle) solve for 
o2(t) as well, thus specifying the time evolution of the first two moments of the 
random variable x. 

The astute student at this point raises a good question: if we know the 
probability distribution function P(x,t) of the random variable x at ant time t, then 
why can't we just specify t explicitly and solve for the two moments? The answer is 
that we can, if we can get an explicit solution of P(x,t). 

We conclude this section by noting that in assuming these results, equations 
(XX.B-17) and (XX.B-26), we have assumed away the edge effects of the distribution 
function. This may not always be the case. Also, this introduction to stochastic 
differential equations is exceedingly cursory. The diligent student may wish to 
pursue the subject further, using the references cited in this section or other texts. 
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Finally, while there are many different Fokker-Planck equations, only a few have 
been solved explicitly - our interest here has been to present an introduction to a 
formalism for analyzing attrition differential equations in a straightforward 
manner. 

C.      A Probability Matrix 

In this section, we present a development method for a probability distribu- 
tion function based on a finite difference basis. For this method, we consider 
attrition between two forces who have initial forcce strengths of m^ and n0, respec- 
tively, and transition probabilities per time (attrition rates) of a and ß. Time is 
(initially) discrete winth increments At. The force strengths are constrained to have 
integer values, so that Am = An = 1. We designate the probability density function 
of the force strengths m and n at any time kAt as p(m,n,k), recognizing that this is 
actually a three dimensional matrix of functions. The initial conditions on p are 

p(m,n,0) = ömnv önv (XX.C-1) 

where we have replaced the Dirac (continuous) delta function of the preceeding 
section with the Kronecker (discrete) delta function as a consequence of the restric- 
tion on force strength values. We impose the additional conditions on p that 

p(m,n,k) = 0 , m > m0 , n > n0, (XX.C-2) 

and 

p(m,n,k) =0,m<0,n<0. (XX.C-3) 

If we treat all units as firing during a time increment At, then we may form 
an evolution prescription of the form, 

p(m,n,k + l) = p(m,n,k) + Influx - Outflux. (XX.C-4) 

That is, the probability that the force strengths are a pair (m,n) after k+1 time 
increments is equal to the probability of the pair after k time increments plus an 
Influx of probability minus an Outflux of probability. Equation (XX.C-4) may 
alternately be written as 

Akp(m,n,k) = Influx - Outflux. (XX.C-5) 

in finite difference notation. We may calculate the Influx and Outflux by using the 
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binomial expansion technique employed in Section A of this chapter. For this 
derivation, we shall assume what is in essence quadratic attrition. Note that the 
attrition rates are taken to be fixed values, not random variables. The force 
strengths are the only random variables here, and they are restricted to only take 
on integer values. 

For the Influx, we shall start by considering any force strength pair (m',n') 
such that m' > m, and n' > n. If, in time At, this pair fires exactly m' + n' times, with 
transition probabilities aAt and pAt, respectively, that result in exactly m' - m and 
n' - n kills, then the result is a force strength pair (m,n). We know from the binomial 
expansion that for m' firings, the probability that exactly i kills occur is 

(i kills) = [m'    (1 - aAt)"1'"1 («At)1. (XX.C-6) 

Since we want exactly m' - m kills to occur, we may write 

(1 - aAt)m (aAt)m/-m. (XX.C-7) (m'-m kills) =(    m' 
\ m'-my 

We may generalize this to write the Influx contribution from (m',n') to (m,n) as the 
product of probabilities of m' - m and n' - n kills and the probability that the system 
was in state (m',n'). Thus, 

(m'.nO - (m,n) = f    m'   | I   n'   I (1 - «At)m (aAtr''m 

-   - > m'-m/ {n'-n; (XX.C-8) 
(1 - ßAt)n (ßAt)n'-n pCm'^k). 

Since we know that m' can only take on values of m + 1 .. n^ (and similarly for n'), 
we may write the Influx as a simple double sum 

M-=S 5 7 7 (XX.C-9) 
(1 - aAt)m+i"i (aAt)i (1 - ßAt)"^"1 (ßAt)1 

pCm'+i.n'+jjk). 

Notice the shift of summation indices so that m + i fires by the first side kill exactly 
j on the second side, and the the n + j fires by the second side kill exactly i on the 
first side. 

Calculation of the Outflux is somewhat simpler since all of the kills rise from 
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Calculation of the Outflux is somewhat simpler since all of the kills rise from 
(m,n) and we do not care in which state they end up (for the Outflux!) Thus, the 
Outflux term reflects the probability (m,n) effect any kills at all. This is simply the 
probability of any effect (= 1 by definition) minus the probability of no kills at all. 
For the first side (m firers,) this is just 

1 - (1 - aAt)m. (XX.C-10) 

We must calculate the joint probabilities that no kills occur for both sides, however. 
It thus follows that the Outflux is simply 

Outflux = ( 1 - (1 - «At)m (1 - pAt)n ) p(m,n,k). (XX.C-11) 

The next step that we want to take is to take the limit as At - 0. Preparatory 
to this, we want to keep only those terms in the Influx and the Outflux that are of 
order At. 

For the Influx, we see immediately, by examination of equation (XX.C-9), that 
since i or j must be at least 1, we need only keep the leading term in expanding the 
miss factors (1 - ccAt) (and its complement). Thus, the Influx reduces to two terms, 

Influx = Of;') a At p(m,n + l,k) 

(n\ (XX.C-12) n    p At p(m+l,n,k) 

+ O(At'), 

which further reduces, by the specific values of the Binomials, to 

nflux = a m At p(m,n + l,k) + p n At p(m+l,n,k) (XX.C-13) 

For the Outflux, we must expand the miss factors, 

Outfux = ( 1 - (1 - aAt)m (1 - ßAt)n ) p(m,n,k) 
« ( 1 - (1 - amAt) (1 - pnAt) ) p(m,n,k) (XXC-ld) 
« ( 1 - (1 - amAt - pnAt) } p(m,n,k) K } 

=* ( amAt + pnAt ) p(m,n,k). 
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f(x + a) = f;   JL (a i-L (XX.C-19) 
n=o   n! ^     dx^ 

to second order (since that will be the order that we will normally calculate mo- 
ments to,) to approximate the finite difference as 

Ä,"7 + ~- (XX.C-20) 
dx      2  dx2 

This allows us to rewrite equation (XX.C-15) as a partial differential equation 

— p(m,n,t) =     am-- + ßnT-    p(m,n,t) 

t2(am^+Pn^jP(m'I1't)- 

This equation replaces the matrix of probability distribution functions (of time) with 
a continuous probability distribution function of the random varaibles m and n (and 
time.) 

D.       A Simple Example 

Having derived the evolution equations for the probability distribution 
function matrix, it is useful to spend some effort calculating a simple example. Let 
us consider the case for mo = n0 = 2. From equation (XX.C-17), we may trivially 
write a solution for the initial state as 

p(2,2,t) - e"««*»', (XX.D-1) 

which we shall see satisfies the initial conditions since p(2,2,t) = 1 at t = 0, and the 
other elements of the matrix will be zero at t = 0. We also note that if we introduce 
the decomposition, 

p(m,n,t) = e-(am + Pn)tq(m,n,t), (XX.D-2) 

equation (XX.C-16) may be reduced to 

ä_,(m,n.t).«m,(m.n*l.t).-l" ^^ 

+ ß n q(m + l,n,t) e"at. 
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E.       Evolution Equations I 

While we can solve equation (XX.C-15) for the probability matrix elements of 
the probability distribution function, we may form evolution equations of the 
moments of the random variables m and n without actually performing this arduous 
task. Before we embark on this derivation, it is useful to review some of the 
mechanics of finite differences. 

(XX.E-1) 

First, the finite difference of the product of two variables x, and ym is 

Axj ym = x1+1 Aym + ym AXl 

= ym+1 Axx + Xl Aym. 

Further, the definite sum of a difference is 

£ Axx = xL+1 - Xl. (XX.E-2) 
■"      1=1 

With these, we may now proceed to examine the object of our intent. 

The evolution of the expectation value of m is 

ÜE> = £  m 1- p(m,n,t). (XX.E-3) 
dt m,n dt 

We may rewrite this as 

At   \      m°'n° 
SiSi«   £    m(amAn + ß n Am ) p(m,n,t), (XX.E-4) 
dt m,n=0 

using equation (XX.C-16), and examine each term separately. Of course, this 
doesn't take into account the special forms of the differential-difference equations 
for the edges, but we will collect these terms after we have evaluated these terms. 

First, we expand the right hand side of equation (XX.E-4) and consider each 
of the terms. Thus, the first term is 
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since the first and third series are identical except for the m = 0 terms which do not 
contribute. This equation may be rewritten as 

mo.no no 

£    ß m n Am p(m,n,t) = -ß <n> + £  ß n p(0,n,t), (XX.E-10) 
m,n-0 n-0 

We may now rewrite equation (XX.E-4) as 

Ü2U -£   «m2p(m,0,t) - ß <n> 
dt m=\ (XX.E-11) 

+ p £  n p(0,n,t) - edge terms. 
n=0 

The edge terms arise from the special edge differential-difference equations which 
we review here. For the initial state: 

i-pCn^n^t) = -(am,, + ßn0) pCm^n^t). (XX.E-12) 
dt 

For the outer edges, 

— pCm^t) = -am pCm.n^t) + ß i^ Amp(m,n0,t), (XX.E-13) 

and 

_ pCm^n.t) = a m^ A^Cn^.n.t) - ß n pfm^n.t). (XX.E-14) 

And for the conclusion edges, 

— p(m,0,t) = a m p(m,l,t), (XX.E-15) 
dt 

and 

—- p(0,n,t) = ß n p(l,n,t). (XV.E-16) 
dt 

The corrections that we need to use on equation (XX.E-11) only result from equa- 
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tions (XX.E-15) and (XX.E-16). The exclusions from equations (XX.E-12) - (XX.E-14) 
were for values m > n^ and n > n0 that we have already included by truncating the 
upper limits on all summations. Thus, we only need the corrections for the m = 0 
and n = 0 edge terms. To derive these corrections, we rewrite equation (XX.C-16) for 
these edges, 

--p(m,0,t) = a m Anp(m,0,t), (XX.E-17) 
dt 

and 

— p(0,n,t) = p n &mp(0,n,t), (XX.E-18) 
dt 

and subtract these equations from equations (XX.E-15) and (XX.E-16), respectively, 

§__ p(m,0,t) = a m p(m,0,t), (XX.E-19) 
dt 

and 

Ö— p(0,n,t) = ß n p(0,n,t). (XX.E-20) 
dt 

We may now add these equations, multiplied by m, and summed respectively over 
m and n, to equations (XX.E-11). Before doing this, we note that the sum resulting 
from equation (XX.E-20) will be zero since m = 0. Thus the corrected form of 
equation (XX.E-11) is just 

11^1 = -£   am2p(m,0,t) - ß <n> 
dt m=0 

+ p £  np(0,n,t) taj   m2p(m,0,t) (XX.E-21) 
n=0 m=0 

= -p<n> + p £  np(0,n,t). 
n = 0 

This is the stochastic version of the classical Quadratic Lanchester attrition 
differential equation, and it incorporates the conclusion correction which can only be 
incorporated if we have a full solution of the proabability distribution function 
matrix. The other relevant moment equations, calculated in much the same manner 
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as we have derived equation (XX.E-21), are the evolution equation for the expecta- 
tion value of n, 

£QL = -a <m> + a £   m p(m,0,t), (XV.E-22) 
dt m=0 

the variance evolution equations, 

^^ = "Sßo2^ + ß(n> - ß<m> £  n p(0,n,t) , 
dt n=0 

do2 ™° 
 — = -2ao2

mn + a<m) - a<n> £   m p(m,0,t) , 
dt m=o 

and the covariance evolution equation. 

do2 "^ 
—JS2. = -a a2^ - ß #m + a £  (m2 - m<m» p(m,0,t) 
at m=o 

+ P E  (Q2
 -n(n»p(0,n,t). 

n=0 

(XX.E-23) 

(XX.E-24) 

Notice that all of these equations have conclusion corrections. From a computational 
standpoint these corrections represent a highly undesirable complication in that 
they require us to know explicitly the probability density function before we may 
calculate the explicit solutions of the first and second moments of the distribution. 
They lead us to a very natural question, "How important are the corrections?" 

References 

1. Farrell, Arther, The Origins of War, Thames and Hudson, LTD., London, 1985. 

2. Crevelt, Martin van, The Transformation of War. 

3. Hoel, Paul G., Sidney C. Port, and Charles G. Stone, Introduction to Stochastic Processes, 
Houghton-Mifflin Co., Boston, 1972. 

4. Arnold, Ludwig, Stochastic Differential Equations: Theory and Applications, John Wiley 
and Sons, New York, 1974. 

XX-22 



XX. Stochastic Lanchester 

F.       The Conclusion Correction Connection 

To answer this question, we have to know the explicit time dependent 
solution of the probability density function. We shall address this problem later in 
this section, both explicitly and approximately (i.e., numerically,) but first we 
examine the way that probability propagates through the probability density 
function with time. Initially, of course, only p(mo, n0, 0) is nonzero. As time 
progresses, probability density spreads throughout the matrix. If we revert to the 
finite difference form of the probability density function evolution equation, 
equation (XX.C-15), then in time At, a kill occurs with probability a (or ß) per time. 
Thus at each step, the total probability per time to kill one unit on the m side is ~ ß 
n < ß n0. The approximate time to generate probability for killing one unit of the m 
side may then be approximated as 

and therefore the total time T for appreciable probability to reach the conclusion 
edge of the matrix (and thus contribute to the conclusion correction,) is approxi- 
mately 

UQQ 

* " -r— • (XX.F-2) 

If, as is normally the case, n^ ~ n0, then for times less than approximately ß'1, (or 
alternately for ßt <~ 1,) we may ignore the correction. This is approximately the 
attrition time. 

To see this, let us make a few simple calculations. Since probability density 
spread out from p(mo, n0, 0), the conclusion edge will first be reached at state (m^O) 
or (0, ng), whichever has the shorter time. Probability density reaches these states 
by traveling along the outer edges of the matrix. This travel has substantially 
simpler differential-difference equations of the form, 

--p(mo,n,t) = a mg Ap(mo,n,t), (XX.F-3) 
at 

and 

--p(m,n0,t) = p n0 Ap(m,n0,t), (XX.F-4) 
at 
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where we have dropped the subscripts on the A's since there is only one force 
strength variable. These equations of the Poisson type that we have already solved 
earlier, but this solution is somewhat complcated by the solution of the initial state 
(niQ, n0) evolution equation, 

—pCmo.iio.t) = -(am,, + ßn0) pCm^n^t), (XX.F-5) 
ot 

which is 

PK,^)^-^'. (XX.F-6) 

As an example, we will examine the solution of equation (XX.F-3) since we 
may form the solution of equation (XX.F-4) by symmetry. If we write out equation 
(XX.F-3), 

—p(mo,n,t) = cm^pGn^n+l.t) - amopCm^t), (XX.F-7) 

then we may guess a solution (from our previous experience,) for p(mo,n,t) as 

fne-am°\ (XX.F-8) 

Substituting this into equation (XX.F-7) gives 

e"-' §-4 - am.pK.n.t) ^^ 

= am0p(m0,n+l,t) - arn^m^t), 

which reduces to 
3 

—-fn = aniof^. (XX.F-10) 

This is the same result that we would get for the Poisson process solution except 
that in this case, 

fno = e~Kt> (XX.F-11) 

where the initial solution for a pure Poisson process would be one. 
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(anU)"0   1  _ e-PV-no*1 

p(mo,0,t) - \     A--S _ . (XX.F-18) 
(n0 - 1)!    pn0t + n0 - 1 

Since n0» 1, the exponential term and the 1 in the second denomiantor of 
equation (XX.F-18) may safely be neglected, reducing it to 

(aimt)"0       i 
p(mo,0,t) -  2.— __i— . (XX.F-19) 

n0!       ßt + 1 

If we now designate the minimum probability density of interest to be p* < 1, then 
we may rewrite equation (XX.F-19) as 

(«mot)"0 - n0! (pt + 1) p* , (XX.F-20) 

and use Stirling's Approximation for the factorial, 

(«mot)"0 ~ no"0 e"n° (ßt + 1) p* . (XX.F-21) 

We may now take the root of both sides, 

«mot - n0 e"1 (pt + 1)"° p*"° , (XX.F-22) 

and since the minimum probability density raised to a very small power is 
essentially one, further approximate equation (XX.F-22) as 

* ~    n°   e "°     . (XX.F-23) 
aniQ 

While this equation is transcendental, it effectively proves the point. 

As instructive as this demonstration has been on the mathematical impact oi 
the conclusion edge on Stochastic Lanchester calculations, it still does not answer 
the fundamental question of how large are the effects. We shall address that 
question approximately in the next section. 
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G.      Some Sample Calculations 

If we return to the moment evolution equations of Quadratic Stochastic 
Lanchester, equations (XX.E-21)-(XX.E-24), we may note that the conclusion 
corrrections all serve to deter the rate of change of the moments. If some time is 
required then for probability density to accumulate in the m, n = 0 states, then a 
reasonable first order approximation would be to neglect the conclusion corrections 
when it is early in the engagement and we are far from conclusion. In this case, the 
evolution equations may be approximated as 

dA 
dt 

= - a B , 

dB 
dt 

= - PA, 

d0AA 

dt 
= - 2 a oAB + a B 

d0AB 

dt 
= -   P °AA   " a aBB 

doBB = - 2p aAB + PA, 

(XX.G-1) 

dt 

where we have returned to our usual notation for force strengths. Implicit in this 
approximation is the idea that force strengths (and variances and covariances,) may 
now take on non-integer values. 

It is worth some little comment that equations (XX.G-1) possess exact 
solutions that may be useful. Of course, the first two equations are the familiar 
homogeneous Quadratic Lanchester attrition differential equations, with solutions, 

A(t) = AQ cosh(yt) - ö B0 sinh(yt) , 

B(t) = B0 cosh(yt) - -i sinnet) , (XX.G-2) 
6 

where: y and Ö are defined in the usual manner. The solutions for the other three 
differential equations are somewhat more complicated. The red-red variance is 
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02 

9AAO0 = -^ (! + cosh(2yt)) - oj^ 0 6 sinh(2Yt) 

-2E5— (l - cosh(2yt)) 

+ A  [ 1 ^ 6 sinh(2Yt) _ cosh(2yt) 
^(l 3 " 6 

) 

_ cosh(Yt) _ 2 6 sinh(Yt) 
3 3 

B ( fL - 6 s™h(2Yt) ^ 62 cosh(2Yt) 
°l   2 3 6 

_ 6 siah(Yt) _ 2 62 cosh(yt) \ 
3 3 

The blue-blue variance is similar, 

oE o2 

c4(t) = -221 (1 + cosh(2Yt)) - Zi*l smh(2Yt) 
A 0 

2 

- J±l (l - cosh(2Yt)) 
2 Ö2 ' 

_ AQ / _i _ 6 smh(2Yt) ^ cosh(2Yt) 
ö2 \ 2 3 6 

_ 2 cosh(Yt) _ 6 sinh(Yt) \ 
3 ~ 3 J 

+ B  ( i. + s"j:i(2Yt) _ cosh(2Yt) 
0 V   2 3 5 6 
2 sjnh(yt) _ cosh(yt) | 

3 6 3 

The red-blue covariance is 

2 ,-       2 n_,,> ,.s      °AAO sinh(2Yt) 
«W*) - °AB o cosh(2yt) - -AA0 

26 
4B o 6 sinh(2Yt) 

. (sinh(2yt) - 2 6 cosh(2Yt) 
6 o 

H 2 S cosh(Yt) - 2 sinh(yt)) 
Bn — (2 cosh(2Yt) - ö sinh(2yt) 
6 

• 2 cosh(Yt) +26 sinh(Yt)) . 
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In common usage, the initial conditions on the variances/covariance are zero so that 
the three preceeding equations only have terms in the initial force strengths. 

It is possible to perform calculations using these equations, or they may be 
approximated further as finite difference solutions (as we have done before.) To 
demonstrate how these functions vary, we present two sample calculations in 
Figures (XX.G.1), force strengths, and (XX.G.2), variances and covariances, for two 
cases. Both have the same initial conditions, but different attrition rate coefficients. 
The two cases differ in their a's only. The first is a non-draw where the a is half 
what it would be for a draw. The second is a draw. 

There should be no surprises in the force strengths since we have seen their 
like many times before. The plot of the variances/covariances is new information. By 
examinig thesecond figure, we may make several observations. First, we note that 
since the variances are driven by the enemy's inflicted attrition (i.e., friendly 
losses,) then the red force has the larger variances. Second, the blue variances do 
not differ appreciably, a result that we would expect from the common ß in the two 
cases. Last, we note that the draw case red variance and the covariance grow faster 
than the non-draw case - again, what we would expect from the differences in a. 

Despite this, the variances grow relatively slowly when compared to sizes of 
the force strength. This leads us to another approximation. Since we have a handy 
way of approximately computing the first and second moments of the Stochastic 
Lanchester probability density function, it is a simple step to approximate that 
function with a normal distribution. Using the notation of the above equations, and 
m, n for the random force strength variables, this approximate probability density 
function has the form, 

_G 

pK(m,n,t) =  e  2 , (XX.G-6) 
.2 2 * °AA °BB Vl P 

where: 

G.       1      ( (m - A)2  t   (n - B)2 

1 -.2  I 2 2 

_ 2 p (m-A) (n -B)^ 

°AA °BB 
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and the correlation coefficient is defined by 

GAB 
p =        AB      • (XX.G-8) 

_2 f 'AA °BB 

Using the non-draw case of the earlier example, Figures (XX.G.3)-(XX.G.7) present 
a representation of this approximation. 

The first plot at t = 0.1, is presented rather than a t = 0 plot because the 
latter is simply a delta function and would not graph well. If we examine the plots 
in time sequence, it is immediately obvious that the peak of distribution moves with 
time (since A and B change with time and the distribution is peaked around them.) 
Further, if we examine the scales of the plots, we see that not only are the 
distributions widening (due to the growth of the variances and covariance,) but that 
the magnitude of the peak is decreasing. This is not a surprising event if we 
consider that we have required probability (in toto) to be conserved. 

This is exactly the phenomena we were concerned about in the preceding 
section. As the probability distribution function evolves, probability density spreads 
out to lower force strength value states. (Technically, to make a more valid 
comparison, we should swithch back to an integer representation by integrating 
equation (XX.G-6) over each bi-unit intervals. This is, however, a reasonable 
approximation for visualization pruposes since the area of integration would be 
unity and the probability density functions varys only slowly over that area. Thus 
the approximate integral is just the value of the probability density function times 
the area of integration (= 1!).) 

Before proceeding with our discussion, we need to recall that the moments 
calculated with equations (XX.G-1) yield values that are larger than the values that 
would be calculated with conclusion correction. Despite this, we see that by t = 2, by 
which time the red force has taked about 20% casualties and the blue force 40%, 
which we know from our historical examination to be extreme losses indeed, there is 
still no appreciable probability density in the region of the conclusion edge despite 
the faster transport of probability density outward. Of course, the normal 
approximation does not accumulate probability in the conclusion edge, but spreads 
it beyond into negative force strength states. To accomodate this difference, we may 
approximate the conclusion edge terms by 

p(m,0,t) -  r° dnpg(m,n,t) , (XX.G-9) 
J -oo 
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XX. Stochastic Lanchester 

which, if we ignore the cross-correlation term as small, and apply the 
approximations in Appendix F, allow us to approximate the conclusion edge 
contribution as 

p(m,0,t) 

2B2 

. (m -A)2 

2 °L l -> l - e *°BB (XX.G-10) 
^2 71 ai AA 

A similar equation may be written for p(0,n,t). From these approximations, it is 
then straightforward to return to the moment equations of section E and render 
approximations for them. For example, equations (XX.E-22) for the expected value 
of nis 

d(n) 
dt 

™0 

a <m> + a ]T   m p(m,0,t) 
m=0 

(XX.G-11) 

Since the clear intent of the conclusion correction term is to represent the number 
of m that survive to conclusion, we may substitute equation (XX.G-10) and replace 
the sum with an integral, 

d<n> 
dt 

= - a \mt 

1 rd « -> 

_2<n>2 

1-e 7^ 
&n - <m>)2 

J9. IT. n 2 

(XX.G-12) 

The integral of equation (XX.G-12) can be integrated, partly exactly and partly 
approximately using the same techniques, to give 

d(n) ,   v — = - a \m/ 
dt   

2(n>2   < 

\-\ 1-e 

, ■Jzrü 

(mp-fa))2 

2o2 

- e 
2 a2 

(XX.G-13) 

<m> 
2(m0-<m>)2 

1-e 1-e 

, <xaf 
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XX. Stochastic Lanchester 

This is a very(!) Non-linear equation that will probably have to be solved 
numerically. Further, so long as <n> is large compared to onn, the effect of the 
correction will be small. 

H.      The Stochastic Engagement 

As we have already noted, the common usage is to use zero initial values for 
the variances/covariance. This does not necessarily need to be the case, but reflect 
the choice of a delta function for the boundary condition for the probability 
distribution function. Given the continuity of the equations, it is straightforward to 
have non-zero initial conditions. What do these mean? They could represent 
uncertainty in the strengths of the two forces at the start of the engagement. 

What do we do with them? While studies have shown no correlation with 
strength and victory that is consistent, most strategists believe that a key factor in 
victory is the will of the commander and his belief in the possibility of victory. In 
this case, it is easy to postulate a model based on the perception of chance of victory. 
If the conclusion criterion of deterministic Lanchester is used as a model, then red 
may perceive that victory is possible if 

A > Ö B . (XX.H-1) 

The probability of this criterion being satisfied is then just 

PA(t) = E    E   P(m,n,t) 
n^O   m=5n (XX.H-2) 

r dn C dm pg(m,n,t) , 
J -oo »Jon 

where we have (I hope obviously,) mixed the integer and non-integer uses of m and 
n. We cannot expect this quantity to be very useful since it will not cross over value 
from > (<) 0.5 to < (>) 0.5 over time (lacking reinforcements, which we have not 
examined.) 

A more likely approach seems to be to carry two sets of variance/covariance 
equations, one for each commander. Then each will have a separate probability of 
victory based on his perceptions of his forces, the enemy's, and the engagement. 

References 

5. Hildebrand, Francis B., Methods of Applied Mathematics, Prentice-Hall, INC., Englewood 
Cliffs, New Jersey, 1965, pp. 224-225. 
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XXI. Theory of Rates 

A.       Introduction 

Take quantities of water and table salt. Prepare a saturated solution. That 
is, dump salt into the water gradually, stirring vigorously to dissolve the salt. Once 
salt will no longer dissolve, wait a few moments for true equilibrium. 

Now transfer most of the solution into another container, taking care to leave 
behind the residue. Into this vessel, carefully introduce a small salt crystal, leaving 
the vessel open to the air, wait. Over time, the seed crystal will grow. 

If we view this system at the molecular level, there are three distinct regions: 
the crystal, the salt water solution, and the air above the solution. Each has 
different properties. 

The crystal is an ordered structure of sodium and chloride ions, microscopi- 
cally arranged in a lattice, but macroscopically possibly irregular in shape, although 
usually we grow salt crystals to display macroscopic symmetry that demonstrates 
the microscopic order. 

The salt water solution is much less ordered. It consists of water molecules 
and sodium and chloride ions. All of these are in motion. (The ions in the crystal 
are in motion too, but this motion is so small we may ignore it for the purpose of our 
example.) Some of the water molecules are weakly attached to the ions, forming a 
cloud around them, while others are not attached. The speed of the unattached 
water molecules, and the water-ion clouds are distributed in a functional form that 
is determined by their mass and the temperature of the solution. Because they are 
moving, they bump into each other. Order is very short range, basically limited to 
the clouds which are themselves changing as a result of collisions. 

The air above the solution is essentially not ordered at all. It consists of air 
molecules (oxygen, nitrogen, carbon dioxide, etc.) and water molecules. These are 
also in motion and are continually colliding as well. Because the density of these 
molecules is much less than in the liquid, these collisions are less frequent just 
because these are fewer of them to collide and their average distance apart is much 
greater.) 

Most of the interesting stuff occurs on or near the interfaces of the regions. 
Water molecules and ion-water clouds collide with the surface of the crystal. If the 
water molecules hit the crystal just right, then they may pull an ion off the crystal, 
forming a new ion-water cloud. If an ion-water cloud hits the crystal just right, it 
leaves the ion on the crystal and frees up the water molecules. 
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Similarly, water molecules (and water-ion clouds,) may break through the 
surface barrier and come into the air. Likewise water and air molecules can also 
break through this surface barrier and enter the solution. Thus there are mecha- 
nisms for transport among the three regions. 

If the entire system were in equilibrium then all of this transport would not 
be evident. If the solution remains saturated, then each ion that is deposited on the 
crystal is balanced by another that is removed. (This is simply the definition of a 
saturated solution.) If the air above the solution was saturated with water, then 
there would similarly be no net movement across the interface. 

Usually, this is not the case. The air above the solution is not saturated with 
water. Since it is not, more water molecules enter the air than leave it. Thus the 
amount of water in the solution decreases and the salt concentration increases. 
Because the salt concentration increases more water molecules are taken up in ion- 
water clouds. Because there are more ion-water clouds, more ions are deposited on 
the crystal, and it grows. All of this occurs at the microscopic level. All of this 
transport occurs randomly, stochastically. 

Nonetheless, we may also view this overall process at the macroscopic level. 
The number of collisions of water molecules and ion-water clouds with the surface of 
the crystal is a function of the salt concentration in the solution and the surface 
area of the crystal. The surface area of the crystal (if it is regular), is a function of 
the mass of the crystal. Thus, the rate of change of the mass of the crystal is a 
function of the mass of the crystal and the salt concentration in the solution. Above 
some concentration, the mass increases, below, it decreases. 

Similarly, the rate that water mass leaves the solution (at constant temper- 
ature,) depends on the amount of water in the air. Thus the rate of change of water 
mass from the solution depends on an evaporation rate. Obviously, salt mass is 
removed from or added to the solution as it is added to or removed from the crystal. 
The rate of change of concentration of the salt solution is thus a function of evapora- 
tion (rate) and salt mass (change). 

In principle then, we may write a set of rate equations (differential equations 
with respect to time,) for the crystal mass (which is a function of concentration,) and 
the concentration that in effect describe the time dependent mass of the crystal. 
Over regions where the basic assumption hold, these macroscopic rate equation 
provide quite accurate representations of the macroscopic effects of these micro- 
scopic phenomena. 
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B.       Rate Process 

To understand the nature of rate processes, we first return to the basic facts 
implicit in measurement. Although we cannot ever perform such an experiment 
(except in the context of a simulation or, possibly, a training exercise) we shall begin 
with a combat experiment. 

Let us begin with two forces (Red and Blue,) that have initial force strengths 
AQ and B0, respectively. At time t0, combat begins. At subsequent times tv t2, ..., 
Red loses, respectively, one element, while at times, tx', t2',..., Blue loses, respec- 
tively, one element. Mathematically, the Red force strength has the form 

A(t) = AQ - j , tH <s t < tj . (XXI.B-1) 

The representative shape of this trajectory is shown in Figure XXI.B. 1. Interesting- 
ly, it follows from this that this trajectory does not possesses a derivative with 
respect to time. That is, the derivative of A(t) is zero except at t = tj where the 
derivative is infinite. On this basis, it is difficult to see how we may describe these 
data in terms of a rate. 

Having imagined that we have this set of data, let us now further imagine 
that we have N sets of such data. We further assume that N is sufficiently large 
and the sets were measured in such a way that these set are uniquely representa- 
tive of the combat processes being studied. If we use the frequentist view of 
probability, then this set of trajectories may be thought of as defining a probability 
density function (in the summation rather than the integral sense.) 

If we label the individual trajectories as A^t) (and B;(t),) and their individual 
transition times as t;(j and ty', then the probability at time t that a force of initial 
strength AQ, opposing an enemy force of initial strength B0, under the combat 
conditions of these data, has strength A is just 

P(A,t) = -L £ ö(A - Ai(t)) . (XXI.B-2) 
N i=i 

Note that since the A^t) only have integer value, the value of A must also be 
integer. 

It is a simple matter to use equation (XXI.B-2) to calculate the expected 
value of A at time t as 
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<A(t)> = £  Ap(A,t) . (XXI.B-3) 
a=0 

We note that while the A are integer valued, (A(t)> is not, in general, integer valued. 

This approach is essentially that taken in the stochastic (general renewal) 
duel - calculate the time dependent probability that the force is in a particular state 
(A), and from that probability calculate the trajectories of the moments. 

The rate theory approach is considerably different from this. Each trajectory 
of the data set goes from value AQ - j to A^ - (j + 1). The average transition time is 
then just 

Tj  - -L £  ty . (XXLB-4) 
JN i=i 

Thus, instead of an average trajectory of the form 

(A(t)> = i £ Ai(t) , (XXI.B-5) 
N i=i 

we may consider an average trajectory that takes on integer values A0 - j at t - xy 

Further, we may extend the definition of the trajectory to time values between the 
t-as 

t - I: 
A(t) = AQ - j ]- , Tj s t s xH • (XXI.B-6) 

Note that this mathematical representation is del-ned on a closed interval, unlike 
equation (XXI.B-1), which is denned on a partly open interval, since 

A(tj+1) = Ao - (j + 1) . (XXI.B-7) 

Further, equation (XXI.B-6) has a time derivation, 

1_ A(t) = -  1 , (XXLB-8) 
dt Tj+1   -  Xk 

which defines the rate on the interval [ij; xj+1]. (We ignore here the fact that we 
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believe the rate of force strength change to be equal to some function of the force 
strengths times a "constant." Remember that our purpose was to establish the 
basis for rate theory. That we have done. Establishing the functional form of the 
rate is more a matter of data analysis.) 

This then is the basis of rate theory. It defines an average trajectory based 
on a rate of change that is the inverse of the average of the time for a transition to 
occur. We may contrast this with the stochastic duel approach that defines an 
average trajectory as the instantaneous expectation of all possible states. 

We may explore this difference in some more detail. To do this, we first 
examine the nature of our data in probabilistic terms. As the student will recall, the 
basic premise of stochastic duel theory is to take the continuous time probability 
distribution function of the interfiring time (i.e., time between shots,) and the 
probability of kill given a shot to calculate the joint probability distribution of the 
force strength states. The moment trajectories may then be computed from this 
joint probability distribution function. 

At the detail level, there are two random events in the firing cycle of an 
individual fires. At the beginning of the cycle, there is a random time to complete 
the firing. The value and frequency of this time is determined by the interfiring 
time probability density function. At the end of the firing cycle, there is a chance of 
success given by the probability of kill given a shot. In stochastic duel theory, the 
mathematical prescription is to combine these probabilities interactively, allowing 
for losses of fires, to form the joint probability distribution function. 

Let us now use this process to develop an algorithm that we can use to 
develop a simulation with. Assume that we have the interfiring time probability 
distribution functions for the two sides, Red and Blue, and the associated probabil- 
ities of kill given a shot. We designate these as pA(t) and pB(t), and pk|s|A and pk|s|B, 
respectively. Further, we will assume that the interfiring time probability distribu- 
tion functions are integrable 

PAOO 
= f   PA(t')dt', 

° (XXI.B-9) 
PB(t) = f   PB(t')dt', 

Jo 

and that the resulting functions are invertible, 

, (XXLB-10) 
tB=PA(rB). 

XXI-5 



where rA and rB are random numbers defined on the unit interval. Equations 
(XXI.B-10) will allow us to calculate interfiring times explicitly.3 

Next,we assume the two forces to be initially comprised of AQ and B0 ele- 
ments, respectively, that are identical but distinguishable. Distinguishability is an 
artifice of the algorithm to allow us to track the elements of the two forces. If we 
assume that t0 = t0', that is, that both forces begin combat at the same time, then 
we start the algorithm by randomly selecting a target from the opposing force for 
each element of both forces. Next, we randomly select a firing time for each 
element of both forces. We sort these triads of firing element, target element, and 
event time from least to greatest firing time. The initial event times are the first 
firing times. 

The rest of the algorithm is to proceed through the list of triads until a firing 
time exceeds some preselected time value, then we stop. Each time we treat a triad 
in the list, we perform the following actions: 

we randomly determine whether a kill occurs using the values of 
probability of kill given a shot; 
• if a kill does not occur, we randomly select a new firing time 
using equation (XXI.B-10) and add this to the previous event time to be 
the new firing time; 

if a kill does occur, then we remove the triad for the target 
element from the list, randomly select new targets for all elements 
that were firing at that target, generate new event times for these ele- 
ments by randomly selecting firing times and adding these to the 
current event timeb and note the two total force strengths and the 
event time; 

we sort the list again; 
and repeat the process. 

This algorithm is depicted in Figure XXI.B.2. 

What this algorithm, which we can readily translate into a computer simula- 
tion, tells us is the times that one of the two forces loses an element. In other 
words, this algorithm produces exactly the kind of information that we have been 
considering in this section. 

Let us consider two cases of what we may expect this data to look like, one 
special and the other general. These are sketched in Figures XXI.B.3. and XXI.B.4. 

a Actually we do not have to be able to do this analytically, but this is easier and neater than doing it 
numerically. 

b Alternately, we could wait till those event times occur and then select new targets, etc. This 
effectively delays the rate of the combat. Which approach is selected depends on whether we model the 
firer as being continuously aware of the target's state or not. 
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For the special case, let us assume that the interfiling time probability distribution 
functions are such that the mean or expected interfiling time is large compared to 
the standard deviation. That is 

<ta> » oA , (XXLB-11) 

and similarly for Blue, where: 

<tA> = ft/pA(t/)dt/, (XXI.B-12) 
Jo 

and 

°A = r <*' - M* PA<ty) dt' ■ (XXLB-13) Jo 

We further assume that the probabilities of kill given a shot are close to one in 
value. 

In this case, event times will tend to be clumped. That is, there will be 
periods of time when there are no or few kills, interspersed with times when there 
are kills. This is the situation shown descriptively in Figure XXI.B.3. The solid 
line depicts the density of event times, and the dashed line depicts the force 
strength trajectory. The detail of the latter does not accurately depict the step 
behavior we showed in Figure XXI.B.l, so we must imagine that it is present. 

As we examine this figure, we may note several things. First, the detailed or 
microscopic step behavior that we noted in Figure XXI.B.l. is replicated at the gross 
or macroscopic level. Second, because of this macroscopic step behavior, we would 
expect that a rate theory approximation of this data would not be very good, but 
that a stochastic duel representation would. Of course, we could approximate the 
macroscopic steps with a rate theory approach on a piece-wise basis and have a 
reasonable approximation, but we would have to know when this condition would 
occur for us to do so. Luckily, this can be easily estimated mathematically by 
considering equation (XXI.B-10) and the value of the probability of kill given a shot. 

Is this special case realistic? When may we expect it to occur? I will advance 
two cases where this seems possible, if not likely. If the forces are ground forces, 
and are firing in volley, then doctrine forces he interfiling probability distribution 
function to artificially be a delta function. In this case, the standard deviation is 
effectively zero. The mathematics that describes volley fire takes on a special form 
that we shall consider in more detail later. 

The other case is essentially the same, but would be naval forces firing by 
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broadside. In this case, the effect is the same, but the military situations and 
terminology are different. 

Let us now consider what is probably the more common situation. In this 
case, 

<ta> ~ oA , (XXLB-14) 

and the probability of kill given a shot is not essentially one. Now subsequent 
firings wthl shorter firing times, begin to overlay with firings of longer firing times, 
and the individual distributions overlay. Now the force strength trajectory, as 
shown in Figure XXI.B.4. is "smoother," and we would at once expect a rate theory 
approximation to be better, and a stochastic duel treatment, while still good, to be 
more complicated. 

Before proceeding to address some simulated examples, there is one more 
rate approximation approach that we may consider. Instead of forming a rate based 
on the average valued of the inter-event times, we may take a different approach. 
To do this, we must change our viewpoint a bit. 

To start with, we take the force strength trajectory, which at the data level 
are just pairs of force strength values, AQ - j, and event times, t;j. If we treat these 
literally as data pairs, then we may form a rate approximation as 

t   -   t:: 
Ai(t) « AQ - j -  -^- , ty sts tiH . (XXLB-15) 

If all the inter-event time intervals, tij+1 -1^ are approximately equal, then we may 
form a total interval form of this equation as 

Ai(t) « AQ - J 1,u , (XXI.B-16) 
At: 

where 

or 

Ati   =   ty   "  ty,  , (XXI.B-17) 

Ai(t) - AQ - — , (XXI.B-18) 
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where 

At/ = ± E   (W " W . (XXI.B-19) 
o   k=0 

(We note that At = J At'.) 

Next, we may pointwise average the rate approximations in the usual 
manner, as 

<A(t)> - -J- £ Al(t) • (XXLB-20) 
N i=i 

By equation (XXI.B-15), this is just 
N 

(A(t)>- Ao -.-L£ 
M   i=l 

t  - t- 
3 + t • , - t • 

ij+i       ij 

(XXI.B-21) 

where we must select the proper values of tu, tu+1 and j for each value of t. As we 
have already noted, if the inter-event times are approximately equal for any 
particular set of data and assuming ti0 = 0, then by using equation (XXI.B-18), we 
have the approximation 

t   N      1 
(A(t)> - A0 - — £  —- . (XXLB-22) 

N i-l    At/ 

This is a very interesting equation when we compare it with equation (XXI.B-8). In 
the first case, the rate of change of the (approximate) force strength trajectory is the 
inverse of the average inter-event time. In the second case, the rate of change is 
the average of the inverse of the inter-event time. 

Despite the fact that we use the same words in describing these two rates, 
they are fundamentally different. Which is the better representation, the better 
approximation? To address this question, we shall take up the actual analysis of 
simulated data (since we do not have any access to real data,) in the next section. 

C.       Simulated Analysis 

In the preceding section, we discussed an algorithm for generating simulated 
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force trajectory data in terms of how we might develop an approximation of this data 
in terms of rate theory. We deliberately ignored two factors in that discussion. 
First, if we actually expect this data to be approximated by Lanchester attrition 
differential equations, then the rate of change of the data will not be represented by 
a simple rate constant. Instead, the rate will be represented by (we expect,) a 
constant times the opposing force strength. 

Second, we have not addressed the question of how we would actually perform 
this analysis. This is the method in our madness. We want to keep separate the 
basis for rate theory approximation of the data from the mechanics of actually 
performing the analysis of the data. Too often, we become involved in the latter and 
its instrumentality to the point that we believe that the theory of the instrumental- 
ity is the basic theory itself. Thus, the separation between the basic theory (in the 
previous section,) and the analysis in this section). 

As we noted in the previous section, it is relatively easy to turn the algorithm 
described there into a simple computer simulation. It is then equally simple to use 
this simulation to generate a set of simulated data. 

In fact, that is exactly what we did for three different probability density 
functions: a uniform probability density function, a negative exponential probability 
density function (NED), and a "gamma" probability density function with the 
specific form, 

p(t) =a2te-at; (XXI.C-1) 

for the interfiring time. In each case, the probability density function was con- 
strained to produce an expected firing time of 2 (time units). The uniform distribu- 
tion has lower and upper limits of 1 and 3, respectively. These distributions are 
compared in Figure XXIC. 1. 

Using each of these probability density functions in turn, 25 sets of force 
strength trajectory data were generated for initial Red, Blue force strengths of 50 
and 35, respectively, and probabilities of kill given a shot of 0.1 and 0.07, respective- 
ly. Selection of these values is arbitrary except that (a.) we want enough data sets 
for a reasonable sample, (b.) we want the force strengths to be large enough for a 
reasonable number of events per trajectory, and (c.) we don't want a draw situation. 

These data provide a basis for analysis in terms of the ideas presented in the 
preceding section. (Because of the extensiveness of these data sets,we do not 
present these data in the sense of Figure XXI.B.l.) 

We may, however, present averaged force strength trajectories for each of 
these forces and probability density functions in the manner of equation (XXI. B-3). 
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These are shown in Figure XXI.C.2. 

There are three features about this figure (i.e. about the data,) that we need 
to make. First, we note that for the uniform probability density function data, no 
losses occur until after t = 1. This is an artifact of the probability density function, 
since a firing time of less than 1 is not possible because of the lower limit on the 
probability density function. 

Next, we note that the durations of the trajectories are different. This is an 
artifact of the way the algorithm was implemented into the simulation. Data sets 
were generated until limits on losses or time were reached. The calculations shown 
in this figure were then performed out to the least of the last event times of the 
data sets for that probability density function. 

Lastly, the longest time points on the figure show greater variance than most 
of the points. This is also a result of the way the data set calculations are imple- 
mented (and ended) in the program. 

Having said all of this, we may now come down to looking at the figure itself. 
Since all of these trajectories are based on probability density functions that have 
the same expectation value, we would expect all of them to have about the same 
rate (of decrease). Allowing for the shift implicit to the uniform probability density 
function, we must observe that this appears to be the case, although there is some 
spread in the data - the curves are clearly related but are also clearly different. 
Part of this difference must arise from experimental error- the limited sizes and 
number of the data sets, but part must arise from the higher order moment differ- 
ences among the probability density functions. Taking these into account, we may 
still investigate these data sets. 

Using the techniques embodied in equations (XXI.B-4)-(XXI.B-8) and equa- 
tions (XXI.B-16)-(XXI.B-22), we may calculate attrition rates. Actually, we deviate 
from these to assume that Quadratic Lanchester attrition holds, so we calculate 
attrition rates using attrition differential equations, 

dt 

and 

dA 
— = - a B , (XXI.C-2) 

dB 
dt 

" ß A , (XXI.C-3) 

with two types of attrition rate coefficients, 
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«1 = 
(At) 

(XXI.C-4) 

and 

a. 
At 

(XXI.C-5) 

where At are the inter-event times, and <> indicates that the At are averaged over 
all data sets for all events that occur in all data sets. The latter restriction is 
intended to prevent biasing the attrition rate coefficients due to reduced event 
occurrence. 

Unfortunately, the variance in the calculations of a2 (and ßa) are so great as to 
be useless, so we will not include these here. We merely note that this does not 
bode well for this type of attrition rate coefficient. 

In addition, we calculated theoretical values for these attrition rate coeffi- 
cients using the probability density functions and the pk|s. We defer the theory 
behind these calculations till the next chapter, with apology to the student. This is 
unavoidable since the purpose of this chapter is to provide a theoretical and 
practical basis for rate theories of attrition. 

These attrition rates are summarized in Table XXI.C.l where the T sub- 
scripts indicate theoretical values.. 

Table XXI.C.l Attrition Rate Coefficients 

Prob. Dist. 
Fnc. 

<*i a1T <*2T ßi ßlT p2T      1 

1 Uniform 0.058 0.050 0.055 0.036 0.035 0.038   I 

1 NED 0.053 0.050 0.075 0.040 0.035 0.053   I 

1 Gamma 0.060 0.050 0.100 0.036 0.035 0.070   I 

The type 2 rate coefficients <% and ß^ were calculated approximately using a 
second order expectation value expansion.1 Clearly, the NED rate 
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<I> = a r ite-*', (XXI.C-6) 
t Jo    t 

is not trivial. We approximate the attrition rate coefficients by 

i « _L + fc " (t) + I (t " (t))2 + HOT , (XXIC-7) 
t      <t> (t)2 2       (t>3 

which gives 
.2 

<I> - J_   + I A. . (XXI.C-8) 
t       <t>       2  (t)8 

Since the value of the expectation will only increase with more terms, this value of 
cczr is a minimum estimation. Even in this case, the values of these attrition rate 
coefficients are considerably larger than those calculated from the data. 

Further, we see considerable consistency among the calculated attrition rates 
and what looks like reasonable agreement with the theoretical calculations. To 
examine this, we compare force strengths trajectory calculations using these 
attrition rate coefficients to the average force strength trajectories shown in the 
figure. We show these comparisons in Figures XXI.C.3. - XXI.C.5.   In all cases, we 
find the calculations using a^ and ß^ to have poor agreement, and the calculations 
using a1T and ß1T to agree better with the data than those based on the data 
averaged coefficients. This indicates that the errors in the data may not be present 
in the theory. 

We may make another comparison. Using the event times, we may compute 
average force strength trajectories using the averaged event times. Then , we may 
compare these to the calculations using the coefficients. These are shown in 
Figures XXI.C.6. - XXI.C. 11. 

If we examine the data for the uniform distribution, we find relatively poor 
agreement, primarily due to the shift from the distribution. For the NED, we find 
good agreement for the type 1 coefficient calculations, but poor agreement for the 
type 2 coefficient calculations. This situation is repeated for the gamma distribu- 
tion case. 

From this, we may conclude that the data support the type 1 rate theory, but 
not the type 2 rate theory. There is, however, one more comparison that we may 
make. Using all of the data sets, we may calculate average force strength trajecto- 
ries of the form of equation (XXI.B-5) and compare these with calculations. While 
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the basic calculations are straight forward enough in our simulation, the actual 
manipulation of the data in a spreadsheet is manually interim. (At least for me, 
there is probably a smart way to do this, but I ended up doing it manually.) 
Further, even if we truncate the results at a short time (as we did in the Stochastic 
Average Comparison,) there is a lot of data. Besides being cumbersome to deal 
with, it is very slow to plot. Accordingly, we present only one set of these data, for 
the exponential distribution. We select this distribution because the exponential 
distribution is the one most often used (and criticized). We loose little from this 
selection, since our purpose is illustration. The data, and a pair of approximate 
calculations are shown in Figure XXI.C.12. The attrition rate coefficients used for 
the calculations are a = 0.056 and ß = 0.045. While the value of a is consistent with 
what we have already seen, the value of ß is quite large. 

D. Conclusion 

In this chapter, we have laid the basis for considering the theory of rate 
processes, using the (ersatz) experimental data approved to compare a rate process 
with the stochastic general renewal theory approach. Even though our data are 
simulated, they are based on a model that is common to both theories. It is my 
intent (and my hope,) that this exposition will serve two purposes for the student. 

First, it should provide some insight into the fundamental differences 
between the two theoretical approaches to modeling of combat and thereby an 
appreciation of the fact that these are subtle mathematical differences between the 
mathematical results of the two theories. In addition, the comparisons shown here 
provides a graphical demonstration of the differences between specific data and 
theoretical calculations. It indicates that even without the insertion of other 
stochastic combat complexities, there is considerable difference between what we 
might expect to observe in combat and what we would calculate. This gives us a 
graphical picture of what our expectations should be from Lanchester theory. 

At this point, we may now turn our attention to a very different part of 
Lanchester theory. To this point, we have been primarily concerned with the basics 
of Lanchester attrition differential equations with some side trips thrown in to 
compare alternatives to and embellishments of the basics. We shall return to these 
considerations later, but first we will explore a crucial enabling conjugate to basic 
Lanchester attrition theory. This body of conjugate theory, most commonly typified 
by what is called Bonder-Farrell Theory, after its developers. This theory provides 
the basis for the calculation of attrition rates (and their coefficients/functions). This 
theory is the connection between the mechanics of combat, described by the attri- 
tion differential equations, and the physical and psychological mechanics of the 
combatants and their combat systems. 

This connection is the empowerment of the Lanchester rate theory of combat 
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attrition. This is the promise of the theory; its ability to incorporate very complex 
processes, both physical and psychological, in an orderly mathematical manner; that 
is its inherent value as a descriptive tool. The very mathematical complexity of the 
stochastic general renewal theory, especially for large force sizes, precludes its use 
with these complex processes. Similarly, while computer technology has finally 
reached a point where simulations incorporating these complexities can be executed 
in reasonable time, replication is still required. Thus, the combination of Lan- 
chester attrition differential equations (rate equation,) and conjugate attrition rate 
theory provide a general tool for the rapid consideration of a wide variety of combat 
situations and processes. 

There are prices to be paid for this tool. Obviously, we will incur a loss of 
accuracy (or faithfulness) as we have indicated in this chapter. We must pay the 
price of understanding the models that contribute to the calculation of the attrition 
rates. 

Finally, we shall find that the attrition rates we calculate with conjugate 
theory are not generally as simple as the ones we have considered in basic Lan- 
chester theory. The resulting attrition differential equations are more complicated 
than before, and often (even generally,) do not have obvious analytical solutions. 
Accordingly, we must resort to numerical or simulation techniques to compute 
solutions and thereby insight is more difficult to draw from these solutions. 
Happily, however, these differential equations are usually very well behaved so that 
simple numerical techniques in spreadsheet simulations are still eminently feasible 
and practicable. The methods we have developed thus far will often serve us in 
good stead. 
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APPENDIX A. Useful Integrals 

Several integrals are useful in solving some of the problems described here. As 
a convenience, we reproduce these integrals in this appendix as an aid to the reader. 
The source of the integrals is indicated. 

Several indefinite integrals are of use in integrating the attrition differential 
equations. 

/ 
±L_ = -icoth-'UH - 1 

x(ax-b)        b 

" b 
= Iln 

(—) ^ ax+b/ 

(A-1) 

[Petit Bois, p. 2] 

dx 
/ ^ax2 + b 

-i-sinh_1| x 
\ 

a_ 
b 

(A-2) 

[Petit Bois, p. 45] 

/ 

dx 

b - ax' VäT 
tanh"1 x a (A-3) 

[Petit Bois, p. 2] 

/ 

dx 

xy/ax+b " 
Icoth" 

IN 
2L + I 

1   ,  ( ^ax+b - yb In 
^b     \ ^ax+b + \jb, 

(A-4) 

[Petit Bois, p. 2] 

dx 
/ 

= -ln 
ax2 - bx 

ax-b 
x    , 

(A-5) 
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APPENDIX A. Useful Integrals 

fdcoth-^x) - f-^L. , x2 < 1 (A-6) 
J J   l_x2 

fdtanh"1« = f^L-,x2>l (A-7) 
j J i_x^ 

fdsech-1(x) = T f (A.8) J JxvT^ 

Jdcsch-^x) = TJ (A.9) 

:VT xvi+x2 

00 

f e^'dx = -T(ii). 

[Gradshteyn and Ryzhik, 3.326] 
,x3     f *2 f fV.. p fX2f(x1)dx1dx2...dxn.1dxn = 

Jo   Jo Jo   Jo 
-J—. f (x - C)'f(C) dC 
(n - 1)! Jo 

[Hildebrand, pp. 224-225] 

(A-10) 

(A-11) 

A-2 



APPENDIX B. Useful Formulae 

2 3 

ln(l +x) = x - 2L + — . . . , x < 1 (B-1) 
2        3 

tanh(x+y) -   tanh(x) + tanh(y) 
1 + tanh(x)tanh(x) 

., ,      x      1 + coth(x)coth(y) ,_ „ 
coth(x+y) =       _ . .  w „. .7 (B-3) 

coth(x) + coth(y) 

tanh-^x) = I In —   , x2 < 1 (B-4) 

coth-^x) = I In llf | , x2 > 1 (B-5) 
JLt \    X 

Stirling's Approximation 

ln(N!) - N ln(N) - N (B-6) 
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and 

APPENDIX C. Alternate Forms of the Attrition Solution 

The Quadratic Lanchester Attrition Solutions have the form: 

/*(/) = y^coshfrAi) - öß0sinh(YAi) (C-1) 

ß(0 = B0 cosh(YAi) - 4^ sinh(yAi) (c"2) 
o 

where: 

and 

- &i . (C"3) 

« (C-4) 
N ß 

It is convenient to rewrite these in exponential form as: 

^m = (V^PA) - V^gp) gyAf + (VPA» + ^Bo) e"YM f (C-5) 

and 

rm*      (V^gp - V^A)) *YM + (v^o + /PA)) e'YA' (C-6) 
v«öt9 2 ' 

These two equations amply demonstrate the dependence of the solutions on the draw 
situations (combat to a conclusion.) 
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C. Alternate Forms of the Attrition Solution 

APPENDIX D. Historical Databases 

Data Set Table No. Number of Battles 

Nominal Length Battles D.1 108 

Civil War Battles D.2 49 

Osipov's Battles D.3 45 

Short Battles D.4 72 

World War 1 Battles D.5 12 

In this appendix we explicitly present the databases introduced in Chapter 9. These 
databases are: 
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APPENDIXE 

\N ESSAY ON FEAR OF MATHEMATICS 



FEAR OF MATHEMATICS 

As we grow older and build our professional and occupational niche in life, we often 
find ourselves respected and trusted for some special trait or temperament. In my 
case, one of these is an intense interest, ability, and proclivity to use mathematics as 
a tool for analyzing everyday problems. There is a two part "why?" question that goes 
with this:   Why do I dp this?, and Why is it so unique? 

One of the activities that I practice and enjoy is trying to teach others what I know 
and how to use it. Almost universally, I find that the use of math is a profound "turn- 
off" to the vast majority. Why is this? Why are so many people so averse to using 
math to analyze their daily problems and situations? 

At first, I thought that people were adverse because they either lacked creativity, or 
had some lack of courage and will. Closer observation revealed that most people lack 
neither creativity nor will and courage, they ably displayed both in their professional 
and personal activities. In many cases, they showed larger measures of both in 
avoiding using math than they would have in its use. Grudgingly, I was forced to the 
conclusion that the respect that I had earned for my use of math derived not just from 
my facility with it, but also from their fearful respect for math and the rarity of my 
ability to use it. 

I then resolved to examine why these people went to such lengths to avoid the use 
of math.  At least part of the answer may be in answering why I do use this tool. 

If I examine my childhood, and compare it to others, I find that I learned basic 
advanced math, algebra, and trigonometry, as a child, before I entered junior high 
school. I learned it on my own outside of the school environment. Actually I used 
some old Navy correspondence courses of my father's. By necessity, these courses 
were long on problems (applications) and short on theory. One result of this was that 
I saw no new math in school until I was a senior in high school. Another was that I 
learned as a child, while still adaptable, to be applications oriented and rather cavalier 
about whether the problem really leant itself to such analysis. 

It is clear that there are two major differences between this approach and the classical 
method for teaching math. First, the proof of theorems is the primary component of 
the teaching of higher math; problem solving is minor and mechanical, not application 
oriented. This training may ably prepare junior mathematicians to prove new theorems, 
but does little to instill others with tool using capabilities, or help them view real 
quantities and properties in an abstract manner. Faced with this value structure, it is 
not amazing that the student often "turns-off". 

The mathematician will decry this view, citing the necessity of technical correctness 
in the practice of mathematics. Perhaps surprisingly, I will agree with this, but also 
respond that we are talking about two different things. The mathematician is ta4king 
about the profession of mathematics where math is the environment of the profession. 



I am talking about other professions where math can be a tool for manipulating that 
professional environment. 

Consider, for a moment, the study of the calculus. For many of us, this is the first 
college course in mathematics. Certainly, it is often the first math course where we 
encounter a diet predominant in the proof of theorems. Our math training in primary 
and secondary schools does little to prepare us for this glut of theorems and proofs, 
despite some introduction to them in courses such as Analytical Geometry. Among 
these theorems, the most important is the Fundamental Theorem of the Calculus. Its 
proof has been honed by generations of mathematicians to profound elegance. Today, 
twenty-five years after the fact, I remember little about this theorem other than its 
name, but I practice its applicability as a tool every day. 

Calculus is doubly difficult for most students. They must cope not only with the proofs 
of the theorems, but also with the mechanics for honing the mental and algebraic skills 
of evaluating derivatives and integrals. The former, I will contend, is not horribly 
difficult and is intellectually satisfying but the effort to learn it is diluted by the 
confusion of theorems and their proofs. 

The problem is further complicated by the inattention that is devoted to helping the 
student learn how to make the mental association of real quantities to abstract 
mathematical variables and functions. This is the true skill that must be cultivated to 
make practical mathematicians. To make an analogy, we cannot only teach a student 
how to use a hammer to drive nails - we must also teach that student that nails (and 
pegs) can be used to build furniture if we want to teach that student how to build 
furniture. The same is true with mathematics. How well can we develop a furniture 
maker if we teach him that (i) hammers and nails exist, and (ii) furniture is made of 
wood. How well can we develop a practical mathematician if we only teach him that 
math exists but don't teach him how to apply the tools and concepts in a work-a-day 
context? 

The classical answer is that this application framework should be taught in the 
professional course work. The business, scientific, and engineering disciplines make 
use of math in teaching their students their specific concepts and practices. Many 
students are lost here who, having never learned the mechanics of using math in their 
math classes, now must try to simultaneously learn these mechanics along with the 
theories and concepts of these disciplines. This divides the students' attention and 
e ort again, so many fall by the wayside. Teachers of these courses, recognizing the 
lack of mathematical preparedness of their students and believing in the importance 
of their discipline, naturally dilute and reduce the mathematical demands of their 
courses to allow students to concentrate on their specific concepts and theories. In 
so doing, they also reduce the opportunities for the students to use math as a tool for 
analysis. This dilution and reduction is even more pronounced outside these 
disciplines. It is not amazing then that college graduates, even in the engineering and 
scientific disciplines, have too little appreciation of math as a tool that they can use. 



I would not propose that we overnight change curricula: theorems are important 
because they define the structure of what can be done with math. I would propose 
however that we take a more pragmatic view of mathematics. I have met few people 
who are afraid to pick up a hammer and use it. If they were, our walls would be 
devoid of pictures. The use of a hammer has little to do with its manufacture for most 
users, who find with practice that they can use it in a meaningful manner. 

The use of math is much the same. Do not fear to pick up pieces of math and use 
them as tools. With practice, their use will become meaningful and less clumsy. The 
concept of using a hammer to drive a nail in a wall to hang a picture is exactly the one 
that we want to apply to using math. The goal is to have a picture hanging on the 
wall to display information or simply to brighten our lives. The same is true with 
mathematics. As the use of the hammer and nail are the means to an end, so too 
should be our practical use of mathematics. Two abilities are needed to do this: the 
knowledge of practical mathematics and the ability to view real world quantities and 
problems as abstract mathematical terms. The first does not necessarily require 
formal mathematical training - reading applied mathematics books and articles, albeit 
probably without bogging down in the proofs of the theorems, and doing practical 
exercises from the texts will probably suffice - they usually do for me. The second 
must be cultivated by a process of familiarization with mathematical operations and 
results - doing exercises again!, and by reflective thought. This last is clearly difficult 
but is no more so than learning some craft such as counted cross stitch or 
woodworking. 

Practical math will not solve all of our problems; it will not make the world a Utopia. 
It will allow us to gain new insight into our problems and make our life easier. To 
become practical mathematicians, we need do only three things: familiarize ourselves 
with the application of math, learn to see real quantities in abstract mathematical 
from, and control our fear of math. Of these, the last is the only truly hard one for it 
requires us to grow. 



APPENDIX F. Gaussian Integral Approximations 

In this appendix, we will consider approximations to gaussian integrals, that is, 
integrals over exponential functions whose arguments are quadratic. The most 
common source of these integrals are in the evaluation of probabilities from probability 
density functions. 

Consider the Gaussian or Normal probability density function of zero mean, 

"71 {F-1) 

p(x) = Ae 2°2, 

which has the (usual) normalization condition that 

x2 

(F-2) f A e 2a2 dx ^ 1 

We note that since the integrand is positive everywhere, we may multiple this integral 
by itself, 

f dx f dyA2 e = 1 (F-3) 

and introduce a change of variables from rectangular (x,y) to circular (r, 0) coordinates 
as 

* = rC0s(6), 
y = rsin(6), (F'4) 

dx dy = r dr dQ. 

The normalization integral becomes, upon substitution, 

2T; - r2 cos2(6)    r2 sin2(6) 

Azfddjrdre'    z°* 2°*     =1, 
o        o 

(F-5) 

which since 

cos2(6) + sin2(e) = 1, (F_6) 

simply becomes 

F-l 
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A2 f ddfrdre 2°* =1. ^7) 

o       o 

We note immediately that the 0 integration can be trivially performed, giving us 

r2 

2U2/rdre2^1. {F'8) 

If we now replace the argument of the exponential with a new variable z, then this 
integral becomes 

2 it a2 A2 f dze~z = 1, (F-9) 

which is also trivially integrable, and gives us 

A= ——, (F-10) 
v/2~Jt a 

so that the normalized Gaussian or Normal probability density function has the form, 

p(x) = —!— e^. (F-11) 

v/2lt a 

In practice, we will be commonly wanting to evaluate probability integrals of 
the form, 

z 

P(z) = / dxp(x). (F"12> 
-co 

If we break this integral into two parts, then we may rewrite it as 

0 |z| 

P(z) = / dxp(x) + sign(z) f dx p(x), <F"13> 
-oo 0 

and recognizing that, since the integrand is symmetric with respect to the origin, the 

F-2 



first right-hand-side integral has a simple value, reduce this to 

\z\ 

P(z) = I + sign(z) f dxp(x). (M4) 

We might now attack the second right-hand-side integral using the change of variable 
technique, from rectangular to circular coordinates as before, except that we note 
that since the upper limit on the integration is no longer infinity, we do not map the 
complete plane of integration. Resultingly, the angular integral is no longer trivial. 

At this point, we introduce the approximation. Since the integrand is 
everywhere positive, we may approximately replace the integral over the square of 
side Izl and area z2 with an integral over a quarter circle of equal area, thus, 

F-3 
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4 

Equivalent Area Quarter Circle 
z2 = % r2 /4 

Square Area of 
Integration 

Figure F-l. Equivalent Area Quarter Circle 

as shown in Figure (F-1),so that our second integral now becomes, approximately, 

(F-16) 
/ dzp(z) 1 

y/2%  O   \ o 

fr 
f dQ   f   rdre 2oz 

As before, the 0 integral, because of our assumption of the equivalent area quarter 
circle, is now trivial, and the r integral is exact, giving us successively, 
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/ 
1 

dZPW 9   „    A 

n —z 

/   rdre 2a*, 
(F-17) 

and 

f dzp(z) « -\ 
2zz 

1 - e 
(F-18) 

This then gives us the complete approximate integration of the Gaussian or Normal 
probability distribution function as 

Hz) - -k y 1 + sign(z) N 1 - e 

2zz 
(F-19) 

This approximation has a maximum per-centum error of less than 10"2, The same 
approximation may also be applied to the complementary probability which has the 
form, 

PM 
1 

v/^71 a 
fdx 

x 
2o2 (F-20) 

and gives a similar form which is just one less P(z), equation (F-19). 

Of considerable more interest are the complementary integrals over the half line 
Gaussian probability density function, which has the similar definition, 

Pix) = 
\ 

K e*°\ (F-2i; 

7i a 

and the complementary integrals have the form, 
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PC(Z) = 
\ 

2 fdx e 2o2 (F-22) 

so that with the equivalent are quarter circle approximation, this complementary 
probability has the approximate form, 

, x       -—z (F-23) 
Pefc) - e " , 

which is extremely useful in analyzing data as we shall see in the next appendix. 

The same formula, divided by 2, is also valid for Equation (F-20) as long as z 
>0. 

If we now turn to the Gaussian or Normal probability density function with non- 
zero mean, JJ, 

(x - »)2 

p{x) = _1_ e     2o*   , (F-24) 
v/2~jx a 

then the probability integral is 

P(z) = ——  [ dxe 
yj2% a L 

We may introduce a change of variable, 

y = x - [i, 

z (x - »? 
2c2 (F-25) 

(F-26) 

so that equation (F-25) becomes 

L_   r  ^, *  2o* (F-27) P(z) = —^-  / dy e 

which is identical in from to equation (F-13), and thus has the approximate solution, 
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P(z) 
1 + signjz - n) N 1 - e 

2fe - ">2 

(F-28) 

The complementary probability is one minus this result. 

Another type of probability distribution function is the log-normal probability 
distribution function, which has the form, 

P(*)° 
1 

('"(*) -1*)2 

2o2 

2no X 

(F-29) 

This pdf is defined on 0 < x < oo. The probability is 

P(,) = _J_j^ (ln(*) - n)2 

2a2 

yj2%a o   x 

(F-30) 

which, if we introduce the integration variable transform, 

y = \n(x) - \i, (F-31; 

has the form, 

ln(z) - ix 

P(z) 
/2*0 

/  *y 
2<72 (F-32) 

This is identical in form to equation (F-27), which gives us the approximate solution, 

P(z) 
1 + sign(\n(z) - n) N 1 - e 

-„2 (F-33) 

For some distributions, such as the Negative Exponential pdf, 
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defined on 0 < x < oo, we do not need an approximation. The probability 

1  z -- 
P(z) = - f dxe a, <F"35> 

0 o 

is exactly integrable with form, 

P(z) = 1 ~ e  \ 

and has complementary probability, 

(F-36) 

(F-37) 
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