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1    Summary 

Laser-induced breakdown spectroscopy (LIBS) is a rapid remote measurement method for de- 

tection of metals in the environment. A major factor in the quantitative use of this technique 

involves the minimum detection limits under both laboratory and field operations. Research on 

limits of detection of heavy metals in different types of soils under various conditions using LIBS 

has been carried out under Contract DACA39-95-K-0053. Pulses from a Nd:YAG laser operat- 

ing at 125 mJ at A = 1.06 ^m are focused on sample surfaces to produce laser sparks (plasmas). 

Atomic emissions from the plasmas are recorded using an optical multichannel analyzer after 

delays of a few microseconds when interference from broadband emissions is reduced. 

Research has been performed on the detection limits of As, Cd, Cr, Hg, Pb and Zn in soil 

matrices. Results are reported on the lower detection limits of these six elements in sand, silt, 

clay and kaolin matrices. Detection limits are significantly lower for heavy metals in sand ma- 

trices than silt and clay matrices due to differences between surface and volume contamination. 

An excimer laser operating at 125 mJ at A = 248 nm was used to provide a comparative 

LIBS analysis for lead (Pb) in a silt matrix. No significant difference in the lower detection 

limit was obtained by using an excimer laser as the excitation source in place of the Nd:YAG 

laser. 

The LIBS method must provide accurate data when used in a cone penetrometer. Conditions 

that would be encountered by a cone penetrometer-based LIBS system have been simulated 

by compressing soil samples and then allowing them to relax for specific intervals before LIBS 

analysis. Results are presented of the dependence of LIBS measurements on the relaxation time 

after soil sample compression. This data is important in order to have a firm understanding of 

lower detection limits for field-deployable LIBS systems. 



2    Introduction 

Recently interest in sensors to accurately assess and monitor the extent of environmental con- 

tamination around waste disposal sites and research facilities has grown markedly. There is an 

ever-increasing need to quickly and accurately perform concentration measurements of chemical 

species in situ. Previously these measurements could only be performed in the laboratory. How- 

ever, the volume of measurements to be performed today and in the future have a prohibitive 

cost of time and finances to acquire soil or water samples and return them to a laboratory 

for analysis. Thus, new methods are needed to perform remote measurements quickly and 

efficiently, while maintaining comparable analysis capabilities. 

LIBS is one method with the potential to satisfy these requirements. In this method the 

laser source serves to vaporize, atomize, and excite the sample material in the course of one 

laser pulse. This method, termed laser-induced breakdown spectroscopy (LIBS), has been used 

in analyses of gases,1 liquids,2'3 solids,4 solid aerosols,5"7 liquid aerosols,8-10 and soils.11"14 

Because of the relative simplicity of LIBS, it is well-suited for use in the field. One existing 

field-deploy able site characterization system to which LIBS could be adapted is the Site Charac- 

terization and Cone Penetrometer System (SCAPS) developed by the Army Corps of Engineers' 

Waterways Experiment Station (WES). SCAPS sensors, housed in a cone penetrometer, are 

driven into the soil by a hydraulic ram to depths of up to 200 feet. Measurements are performed 

in situ during the descent and/or ascent of the penetrometer. Thus, there is the potential to 

determine contaminant plume boundaries on-site. 

As part of an on-going effort to develop LIBS for use with SCAPS, the current work reports 

lower detection limits for arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead 

(Pb) and zinc (Zn) in sand, silt, clay and kaolin matrices. Also, several influences on LIBS 

concentration measurements of these heavy metals in the various matrices are discussed. 



3    Experimental Method 

3.1    Sample Preparation 

Four soil or soil-like matrices were considered in this investigation: sand, silt, clay and kaolin. 

The materials and corresponding suppliers are noted in Table 1.    Washed and dried sand 

Table 1: Summary of soil matrices used in detection limit analysis. 

Soil Type    Supplier 

sand Mallinckrodt Chemical, Inc., No. 7062 

silt USACE-WES 

clay USACE-WES 

kaolin Mallinckrodt Chemical, Inc., No. 5645 

(Mallinckrodt Chemical, Inc., No. 7062 KPTN) was used in place of "Yuma" sand (obtained 

from USACE-WES) because the sand was found to already contain up to 4 ppm chromium. 

Silt, obtained from USACE-WES, was used as supplied. Clay, also obtained from USACE- 

WES, was sifted through a 1 mm mesh to remove large granular materials prior to doping with 

heavy metals. Kaolin (Mallinckrodt Chemical, Inc., No. 5645) is the principal component of 

kaolinite clay. It is a hydrous silicate of aluminum. Kaolin was used in this work because it 

approximates a relatively "pure" clay. 

Contamination of the soil matrices was accomplished by doping the samples with solutions 

of the heavy metals at various concentrations to achieve the desired parts-per-million (by mass) 

of the metals to the soils. The compounds used to produce the solutions of the six heavy metals 

are noted in Table 2. The compounds were each dissolved in distilled water to produce a primary 

solution. For each soil sample, solutions were prepared such that addition of 10 milliliters of the 

solution to 50 grams of soil would result in a concentration of heavy metal in the soil between 

100 parts-per-billion (ppb) and 2,000 parts-per-million (ppm). Diluted solutions were derived 

from the primary solutions by dilution with distilled water. 



Table 2: Summary of solutions used for doping soil matrices used in detection limit analysis. 

Element    Source Chemical 

As 

Cd 

Cr 

Hg 

Pb 

Zn 

arsenic trioxide {As203) 

cadmium chloride (CdCl2 • 2\H20) 

ammonium dichromate ((NH4)2Cr207) 

mercuric chloride (HgCl2) 

lead nitrate (Pb(N03)2) 

zinc chloride (ZnCl2) 

Figure 1:  Comparison of dried sand samples:  (left) 50 parts-per-million (ppm) of chromium 
(Cr), as ammonium dichromate, and (right) doped with an equivalent volume of distilled water. 

An important consideration in the sample preparation process became evident during prepa- 

ration of the chromium samples. Due to the strong yellow-orange color of the ammonium 

dichromate solution, inhomogeneities of the sample were plainly visible at higher doping con- 

centrations (approximately 5 ppm and greater). Shown in Fig. 1 are petri dishes containing 

sand samples with 50 ppm Cr (left) and 0 ppm Cr (right). The sample with 50 ppm Cr has 

a noticeably more intense color on the surface of the sample.   A detailed view of the sample 



Figure 2: Photograph showing detail of the sand cross-section from Fig. 1, doped with 50 ppm 
Cr (as ammonium dichromate). 

through the wall of the petri dish is shown in Fig. 2. In this figure, it is observed that the 

chromium appears to be concentrated in the top 1 mm of the sample. 

Shown in Fig. 3 are the results of various mixing methods on two chromium doped sand 

samples (with a non-doped sand sample for comparison). The photograph in Fig. 3(a) is a detail 

of the surface of a sand sample, doped with 50 ppm Cr, mixed once during the drying interval 

and then mixed just prior to photographing. The photograph in Fig. 3(b) is a detail of the 

surface of a sand sample, also doped with 50 ppm Cr, but mixed every 10 minutes during the 

drying interval. Evident in Fig. 3(a) are the localized regions of high chromium concentration. 

In the context of LIBS calibration, detection limits decrease as the standard deviation of the 

emission intensity ratios decrease. Comparison of Fig. 3(a)(left) and Fig. 3(b)(left) suggests 

that mixing of the sample only after drying does not distribute the dopant material in the most 

uniform manner throughout the soil. 

Samples in the investigation of compression effects were prepared by placing contaminated 

soils into aluminum sample holders (wall thickness approx. 0.25 in.) and loading with 20 tons 

force in an hydraulic press for a period of 1 minute. 
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ammonium dichromate) (a) mixed once during the drying interval, and (b) mixed every 10 
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3.2    LIBS System 

A schematic of the experimental arrangement used in performing the experimental research 

is shown in Fig. 4.   A pulsed Nd:YAG laser (Big Sky Laser, Model 100R), operating at the 

x: 
COMPUTER 

r-J ICCD 

CONTROLLER 
,rT 

GATE 
PULSER 

ND:YAG 
SPECTRO- 

METER 

1 
ICCD 

SAMPLE 
<o 

^ 
F.O 

^ 

Figure 4: Schematic of a typical LIBS system utilizing a Nd:YAG laser and an optical multi- 
channel analyzer. 

principal wavelength (A = 1.06 /im) and 10 ns pulse width, serves as the excitation source. The 

laser radiation is focused by a plano-convex BK7 lens ( diameter (<f>) = 15 mm, focal length 

(/) = 100 mm) on the soil sample. An optical multi-channel analyzer (OMA), consisting of a 

spectrometer (Instruments SA, Model HR-320, / = 320 mm) equipped with an intensified CCD 

camera (ICCD)(Princeton Instruments, Model ICCD-1024MG-E),is used to analyze the spectra 

of the plasma emissions. Emission from the laser-produced plasma is focused by a fused silica 

lens into an optical fiber (3M, TECS FT-1.0-UMT) for transmission to the OMA. Transmitted 

light from the fiber is coupled into the OMA with a bi-convex fused silica lens (0 = 25 mm, / 

= 50 mm). An aperture between the lens and OMA slit matches the F/# of the lens to the 

spectrometer. The entrance slit of the spectrometer is typically opened 25 /im. The region of 

the plasma imaged by the spectrometer is approximately 1 mm in diameter. The spectrometer 

is equipped with a 1200 lines/mm holographically ruled diffraction grating. The OMA was able 

to acquire individual spectra from the LIB plasma at the rate of approximately two per second. 

To increase the signal-to-noise ratio for the atomic emission lines, and thus reduce the limits of 

detection, the ICCD is gated. A Q-switch sync signal from the Nd:YAG triggers a gate pulse 

generator (Princeton Instruments, Model PG-200). The gate pulse generator triggers the OMA 



and provides for delay of the gate pulse after the laser pulse and variation of the gate pulse 

width (integration time). 



4    Results 

4.1     Soil Compression Effects 

A cone penetrometer inherently requires large forces to be applied to the soil in the immediate 

vicinity of the tip. To understand the effect of soil compression on LIBS measurements, soil 

samples contaminated with chromium were compressed then allowed to relax for various periods 

before LIBS analysis. Sand samples (~ 75 g) were doped with 50 ppm Cr (w/w). Samples were 

then compressed in aluminum sample holders under a load of 20 tons for one minute. Different 

samples were allowed to relax from 2 to 20 minutes before being analyzed using LIBS. Data 

for less than two minutes was not possible due to sample preparation location and the time 

required to perform the first LIBS measurements. Results of two trials are shown in Fig. 5. 

The emission intensity ratio of Cr-I (425.44 nm) to Si-I (390.55 nm) increases during the first 6 

3.0 E 
c 
in 

O10- 2.5 

<~2.0 

l-~ 1.5 

LU8 1-0- 

^3 0.5 

o o.o 

KH 
KM 

O    Trial 1 
D    Trial 2 

15 0 5 10 15 20 25 

DELAY TIME (minutes) 

Figure 5: Effect of "relaxation time" after soil compression (20 tons for 1 minute) on LIBS 
measurements of 50 ppm chromium in sand. 

to 10 minutes before decreasing to a level approximately equal to the initial measurement. The 

notation, Cr-I (425.44 nm), refers to the singly ionized chromium emission line at 425.44 nm 

wavelength. This notation is used throughout this report for other elements and their ionization 

emission. 

We believe that two competing processes are responsible for the observed time-dependence 

of the measurements.   One effect is related to the soil moisture content which is known to 
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decrease the intensity ratio as the moisture content increases. As the soil moisture increases 

a greater portion of the laser pulse is required to excite water adsorbed on the sand granules. 

As the soil is compressed, moisture is expelled from the soil matrix. During the relaxation 

period humidity from the ambient air is readsorbed by the sand. A second contributing effect 

is due to energy being stored in the sand particles by the compression process. Since the energy 

introduced by the compression process is stored mainly in the silicon (silicon dioxide) there will 

be a trend for the silicon line intensity to increase over the chromium line intensity. In addition, 

any stored energy makes it easier to produce a slightly higher plasma temperature. The stored 

energy effect is not permanent and relaxes in time (~ 20 minutes). 
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4.2    Excitation Source 

The relative importance of excitation laser wavelength used in the LIBS analysis was inves- 

tigated by comparison of LIBS calibration data for lead (Pb) in a silt matrix. Samples with 

concentrations of Pb ranging from 100 to 2000 ppm in silt were analyzed by LIBS with excimer 

(A = 248 nm) and Nd:YAG (A = 1064 nm) lasers. The resulting calibration information is 

shown in Fig. 6. Lower detection limits were determined according to the relation CL = 2S/M, 

E 
c 
m 

OO1.0 

I- SI 
< - cc .J_ 

b ^ 
2?  I 

o 

• 

0-     0.1    r 

•     Nd:YAG(1064nm) 
A     KrF (248 nm) 

100.0 1000.0 

CONCENTRATION (ppm) 

Figure 6: Comparison of calibration curves for lead (Pb) in clay, based on the intensity ratio 
of Pb-I (405.78 nm) to Si-I (390.55 nm), obtained for Nd:YAG and excimer laser sources. 

where CL is the lower detection limit, S is the sample standard deviation and M is the slope of 

the calibration curve near the lower limit. Using this method, the values of CL for the excimer 

and Nd:YAG lasers were 180 and 210 ppm, respectively. The slope of the calibration curve 

is greater for the excimer laser, suggesting a lower detection limit, but is offset by a greater 

standard deviation. This increased sample standard deviation is attributed to the relative in- 

stability of the excimer laser as compared to the Nd:YAG. Thus, no significant increase i in 
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detection limit can be expected by using an excimer laser instead of a Nd:YAG laser, even 

though the excimer produced lines are generally better resolved. 



13 

4.3    Calibration Data 

Calibration curves were developed for each of the heavy metals in sand, silt, clay and kaolin 

with the following relevant instrument parameters. 

Table 3: Relevant instrument parameters for LIBS calibrations. 

Parameter Value 

Ambient temperature 22-24 °C 

Ambient relative humidity 50-60% 

Laser pulse energy 125 mJ 

Laser repetition rate 4 Hz 

OMA slit width 10-20 /im 
o 

OMA grating (As,Cr,Pb)      600 g/mm, Abiaze = 300 nm 

OMA grating (Cd,Hg,Zn)     600 g/mm, Abiaze = 450 nm 

ICCD gate delay 2-5 /AS 

ICCD gate width 200 us 

ICCD gain 8.0 

ICCD temperature -40 °C 
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Figure 10: Emission spectrum showing the relevant atomic emission lines of cadmium (Cd) and 
titanium (Ti) used in LIBS calibration. 
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Figure 11: Plot of the signal-noise-ratio of the Cd-I (479.99 nm) line to the background in the 
vicinity of 510 nm as a function of ICCD gate delay time. 
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Figure 12: Calibration curves for cadmium (Cd) in (a) sand, (b) silt, (c) clay, and (d) kaolin, 
based on the intensity ratio of Cd-I (479.99 nm) to Ti-I (498.17 nm). 
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Figure 13:  Emission spectrum showing the relevant atomic emission lines of chromium (Cr) 
and silicon (Si) used in LIBS calibration. 
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Figure 14: Plot of the signal-noise-ratio of the Cr-I (425.44 nm) line to the background in the 
vicinity of 417 nm as a function of ICCD gate delay time. 
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Figure 15: Calibration curves for chromium (Cr) in (a) sand, (b) silt, (c) clay, and (d) kaolin, 
based on the intensity ratio of Cr-I (425.44 nm) to Si-I (390.55 nm). 
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Figure 16: Emission spectrum showing the relevant atomic emission lines of mercury (Hg) and 
titanium (Ti) used in LIBS calibration. 
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Figure 17: Plot of the signal-noise-ratio of the Hg-I (435.83 nm) line to the background in the 
vicinity of 460 nm as a function of ICCD gate delay time. 
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Figure 18: Calibration curves for mercury (Hg) in (a) sand, (b) silt, (c) clay, and (d) kaolin, 
based on the intensity ratio of Hg-I (435.83 nm) to Ti-I (498.17 nm). 
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Figure 19:   Emission spectrum showing the relevant atomic emission lines of lead (Pb) and 
silicon (Si) used in LIBS calibration. 
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Figure 20: Plot of the signal-noise-ratio of the Pb-I (405.78 nm) line to the background in the 
vicinity of 409 nm as a function of ICCD gate delay time. 
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Figure 21: Calibration curves for lead (Pb) in (a) sand, (b) silt, (c) clay, and (d) kaolin, based 
on the intensity ratio of Pb-I (405.78 nm) to Si-I (390.55 nm). 
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Figure 22:   Emission spectrum showing the relevant atomic emission lines of zinc (Zn) and 
titanium (Ti) used in LIBS calibration. 
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Figure 23: Plot of the signal-noise-ratio of the Zn-I (481.05 nm) line to the background in the 
vicinity of 479 nm as a function of ICCD gate delay time. 
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Figure 24: Calibration curves for zinc (Zn) in (a) sand, (b) silt, (c) clay, and (d) kaolin, based 
on the intensity ratio of Zn-I (481.05 nm) to Ti-I (498.17 nm). 
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4.4    Detection Limits 

Lower detection limits were derived from the calibration data according to the relation 

25 
CL = M 

where 

CL    =    lower detection limit (concentration), 

S   =    sample standard deviation, and 

M    =    slope of the calibration curve near the lower limit. 

Results for each of the heavy metals, in each soil type, are shown in Table 4. Chromium was 

the most readily detectable element, followed by Pb, Zn, Cd, Hg and with As being the least 

detectable.   It is also evident that detection limits were 1 to 2 orders of magnitude lower in 

Table 4: Lower detection limits for As, Cd, Cr, Hg, Pb and Zn in sand, silt, clay and kaolin 
samples. 

Lower Detection Limit (ppm) 

Element     Sand Silt Clay      Kaolin 

As 530. t t t 
Cd 3.3 160. 360. 830. 

Cr 0.42 74. 73. 83. 

Hg 11. 1800. 1100. t 
Pb 1.4 150. 210. 340. 

Zn 1.6 190. 510. 300. 

f - could not be determined from data 

sand than in silt or clays.  It has been suggested by Wisbrun et al.n that this is due to the 
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difference between surface contamination (as in sand) and volume contamination (as in silt 

and clays). Further investigations are needed to clearly resolve whether surface versus volume 

contamination is the cause of these differences, or whether chemical reactions (resulting in 

different chemical bonds) may be affecting the LIBS measurements. 
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5    Conclusions 

Calibration curves have been developed and lower detection limits determined for arsenic, cad- 

mium, chromium, mercury, lead and zinc in sand, silt, clay and kaolin. All six elements were 

detectable in sand at concentrations approximately two orders of magnitude lower than in silt 

or clays. These results are in general agreement with work reported by USACE-WES and by 

Wisbrun et al.n 

Tests have been performed to demonstrate the variation of LIBS measurements as a function 

of soil compression and relaxation time. Results indicate that in the application of very accurate 

LIBS to cone penetrometer systems, one must take into account the time when the analysis is 

performed, since the LIBS results depend on the relaxation time between compression (cone 

penetrometer push) and LIBS analysis. 

The importance of consistent methods for sample preparation, insuring more homogeneous 

samples, in LIBS calibration work has been clearly demonstrated. It is unclear whether other 

LIBS results reported in the literature have followed such careful sample preparation. 

No significant variations were found between LIBS measurements performed with an excimer 

laser and those performed with a Nd:YAG laser for the case of lead in silt. 
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