
h

y
t REPORT DOCUMENTATiON PAGE Form Approved

OMB No. 0704-0188

jblic reporting burden tor this collection of Information Is estimated to average 1 hour per response. Including the tin» tor reviewing instructions, searching existing data sources,
aathering and maintaining the data needed, and completing and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of this

"coBection of information. Including suggestions for reducing this burden to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davb Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-01B8). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2.REFORTDATE •

December 1993
a REPORTTYPE AND DATES COVERS)

Final
4. TITUE AND SUBTITLE

Exploring Systematic Reuse for Command and Control Systems

6. AUTHOR(S) J. O'Connor, C. Mansour, J. Turner-Harris, G. Campbell, Jr.
Produced by Software Productivity Consortium under contract to
Virginia Center of Excellence.
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Virginia Center of Excellence
SPC Building
2214 Rock Hill Road
Herndon,VA 22070

5. FUNDING NUMBERS

G MDA972-92-J-1018

9. SPONSORING / MONrTORING AGENCY NAME(S) AND ADDRESSpS)

ARPA/SISTO
Suite 400
801 N. Randolph Street
Arlington, VA 22203

8. PERFORMING ORGANIZATION
REPORTNUMBER

SPC-92020-CMC,
Version 02.00.02

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Supersedes "Introducing Systematic Reuse to the Command and Control System Division of Rockwell
International" DTIC (ADA 252271)

12a. DISTRIBUTION / AVAILABILITY STATEMENT

No Restrictions

T 12b. DISTRIBUTION CODE

19961022 069
13. ABSTRACT (Maximum 200 words)

This paper describes an initial use and evaluation of the Software Productivity consortium's Synthesis
methodology by the command and Control Systems Division (CCSD) of Rockwell International.
Synthesis supports instituting a product line of similar software-intensive systems, forming a domain
of mechanically derivable systems. The potential for a product line exists whenever there is a
perceived market for a series of similar products or product versions. Synthesis defines an approach,
based on domain-specific reuse, by which an organization can standardize its perceptions of
customers' needs and effective solutions to those needs.; The approach helps an organization identify
specific business objectives that enable standardized products. Product standardization is the
foundation for a product line and an associated production process with which the organization can
achieve significant improvements in productivity, product quality, manageability, and responsiveness
to diverse and changing customer needs.

J^^AHTyfiff*** mmx^ *

14.SUBJECTTERMS

Reuse, process, domain, product line, family

17. SECURITY CLASSIFICATION
OFREPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified _L

19. SECURITY CLASSIFICATION
OFABSTRACT

Unclassified

15. NUMBER OF PAGES

15
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
NSN 754O-01-28O-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
?0A-in9

EXPLORING SYSTEMATIC REUSE FOR
COMMAND AND CONTROL SYSTEMS

SPC-92020-CMC

VERSION 02.00.02

APRIL 1994

EXPLORING SYSTEMATIC REUSE FOR
COMMAND AND CONTROL SYSTEMS

SPC-92020-CMC

VERSION 02.00.02

APRIL 1994

James O'Connor, Software Productivity Consortium
Catharine Mansour and Jerri lurner-Harris,

Rockwell International
Grady H. Campbell, Jr.,

Software Productivity Consortium

Produced by the
SOFTWARE PRODUCTIVITY CONSORTIUM SERVICES CORPORATION

under contract to the
VIRGINIA CENTER OF EXCELLENCE

FOR SOFTWARE REUSE AND TECHNOLOGY TRANSFER

SPC Building
2214 Rock Hill Road

Herndon, Virginia 22070

Copyright © 1993,1994 Software Productivity Consortium Services Corporation, Herndon, Virginia. Permission to use, copy,
modify, and distribute this material for any purpose and without fee is hereby granted consistent with 48 CFR 227 and 252, and
provided that the above copyright notice appears in all copies and that both this copyright notice and this permission notice appear
in supporting documentation This material is based in part upon work sponsored by the Advanced Research Projects Agencyunder
Grant #MDA972-92-J-1018. The content does not necessarify reflect the position or the policy of the U. S. Government or Rockwell
International, and no official endorsement should be inferred. The name Software Productivity Consortium shall not be used in
advertising or publicity pertaining to this material or otherwise without the prior written permission of Software Productivity
Consortium, Inc. SOFTWARE PRODUCTIVITY CONSORTIUM, INC AND SOFTWARE PRODUCTIVITY
CONSORTIUM SERVICES CORPORATION MAKE NO REPRESENTATIONS OR WARRANTIES ABOUT THE
SUTIABIIJl^OFTfflSMATERIALFORANYPURPOSEORABOUT ANY OTHER MATTER, AND THIS MATERIAL
IS PROVIDED WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.

Note:

This paper was formatted in accordance with standards for IEEE Software submissions.

ADARTS ® is a servicemark of the Software Productivity Consortium Limited Partnership.

Metatool is a trademark of AT&T.

Microsoft Word is a registered trademark of Microsoft Corporation.

WordPerfect is a registered trademark of WordPerfect Corporation.

Introduction

This paper describes an initial use and evaluation of the Software Productivity Consortium's
Synthesis methodology1 by the Command and Control Systems Division (CCSD) of Rockwell
International. Synthesis supports instituting a product line of similar software-intensive systems,
forming a domain of mechanically derivable systems. The potential for a product line exists whenever
there is a perceived market for a series of similar products or product versions. Synthesis defines an
approach, based on domain-specific reuse, by which an organization can standardize its perceptions
of customers' needs and effective solutions to those needs. The approach helps an organization identi-
fy specific business objectives that enable standardized products. Product standardization is the
foundation for a product line and an associated production process with which the organization can
achieve significant improvements in productivity, product quality, manageability, and responsiveness
to diverse and changing customer needs.

In December 1990, CCSD initiated a Consortium-assisted pilot project to evaluate the
applicability of the Synthesis methodology to Rockwell's needs. The pilot project had several objec-
tives. For CCSD, it was initially a vehicle for evaluating its needs and opportunities for reuse and the
applicability of the Synthesis methodology to those needs. Later, it became the vehicle for transferring
Synthesis practices into CCSD and transitioning them into production use. For the Consortium, pilot
projects are a primary means for validating the Synthesis approach, a mechanism for disseminating
it to adopters, and a source of experience for improving the approach. This pilot project was a formal
commitment between CCSD and the Consortium under which the Consortium provided training and
consulting to CCSD managers and engineers; CCSD, in turn, assigned experienced managers and en-
gineers who had knowledge and expertise in the targeted CCSD business area and the ability to create
quality products representative ofthat business.

The result of the pilot experience was a decision by CCSD management to attempt to transition
Synthesis practices into use in support of production projects. The pilot effort showed that Synthesis
was a sound framework for methods and greater discipline in CCSD software development and would
give Rockwell competitive advantages in targeted business areas. As a result of this and other pilot
projects in industry and government, the Consortium has been able to significantly extend and refine
its guidance to organizations attempting to adopt a Synthesis approach.

In this article, we present the CCSD experience in using the Synthesis methodology so far. As a
foundation, we first describe the characteristics of a Synthesis process. CCSD application of a Synthe-
sis process has resulted in the production of a partially automated environment that supports the spec-
ification of a system in the targeted CCSD domain and the generation of corresponding software re-
quirements, design, and code. A domain-specific notation created by the project lets an engineer
describe one of these systems in terms of high-level requirements and engineering decisions. A corre-
sponding product is generated by mechanically selecting, adapting, and composing reusable compo-
nents based on the decisions expressed in the specification. The utility of this environment has been
demonstrated through successful creation of parts of two products and limited use on a current CCSD
project.

The Synthesis Process

Synthesis is a methodology for constructing software systems as instances of a family of systems
having similar descriptions. The Synthesis approach is an elaboration of the concept of program
families2'3. Synthesis enables an organization to leverage the commonality among similar systems by
developing standardized requirements, design, and corresponding reusable components. Individual
projects then use these assets repeatedly in a standardized application development process to rapidly
construct a tailored product (i.e., systems and associated deliverable and supporting work products).

This section is an informal description of the Synthesis methodology. The Consortium's Reuse-Driven
Software Processes Guidebook4 contains a complete description of Synthesis and detailed guidance on
performing a Synthesis process.

A key aspect of Synthesis is that it defines a systematic approach to identifying the commonalities
and variabilities that characterize a product line, a potential set of similar products. The commonali-
ties reflect work that can be done once (in the form of reusable components) and reused to create any
product within the domain's scope. The variabilities indicate how a product line based on reusable
components must be designed so that a tailored product can be mechanically derived, via compile-
time parameterization, to satisfy the needs of a customer for a particular system. Based on variabili-
ties, you can define a specialized application development process in which work products (e.g.,
requirements, design, code, test support, user documentation) are produced simply by the mechanical
adaptation and composition of reusable components.

To separate the issues of product standardization, reusable component creation, and continual
improvement of the production process from the issues of delivering products to customers, a
Synthesis process organizes work into two interacting activities: domain engineering and application
engineering (see Figure 1). Domain engineering is an ongoing activity for defining, implementing, and
evolving a domain in the form of a product line and a standardized development process. Application
engineering is a recurring activity in which projects iteratively perform the standardized process using
the product line to produce application products that satisfy their customers' needs. An application
engineering project is initiated for each new system (or system version or variant) to be developed in
the business area (i.e., whenever a commitment is made to work with a customer, such as at receipt
of a request for proposal or upon award of a contract). There may be many of these projects active
at one time, all using the same domain engineering product. The application engineering process be-
gins when a customer need for a product is established and continues, through repeated deliveries of
the product, until the customer no longer needs that product as originally conceived. Domain engi-
neering continues as long as any such projects are considered viable. Experience gained in application
engineering is fed back to domain engineering, where it can be used to improve the supported product
line and associated application engineering process.

Business Objectives • Domain Knowledge

Feedback
(Customer and

Project
Needs)

Customer

Key:

Activity

C ~.!3 Product

Product flow
—•► Information flow

Figure 1. The Synthesis Process

Domain Engineering. Domain engineering is performed to create a product line and support for
an associated application engineering process. The activities of domain engineering are domain
management, domain analysis, domain implementation, and project support.

Domain management comprises the planning, monitoring, and control of the domain engineering
effort. Planning results in a master plan for the development and evolution of the domain and in incre-
ment plans for each of a series of domain engineering iterations. Domain management is also con-
cerned with all facets of process management for the domain, including configuration management
and quality assurance disciplines.

In domain analysis, you define a domain in a domain definition and formally describe it in a
domain specification. Specifically, you perform the following tasks:

• Define the scope and boundaries of the domain and determine whether the domain is viable. The
domain definition describes what type of systems you want to produce in the future and their general
characteristics. The viability analysis determines whether your investment in domain engineering is
justified. Factors affecting viability include the degree to which the domain is understood, the amount
of commonality (in requirements) between systems in the domain, the volatility of the requirements
in such systems, and the size of the market for such systems.

• Define the critical requirements variations that distinguish systems in the domain. These
variations, formalized in a decision model, provide the basis for a domain-specific language that engi-
neers use to specify systems in the domain. For example, if your domain were office telephone systems,
the variations might include the maximum number of extensions and the availability of features such
as call waiting, conference call support, and voice mail.

• Develop standardized requirements for products in the domain. This is a specification of the
requirements for all systems in the domain. It specifies both how requirements are common to all
systems in the domain and how they vary from system to system.

• Develop a standardized design for products in the domain. A design consists of a standardized
(adaptable) architecture, a set of adaptable components, and a mapping that prescribes how the archi-
tecture and components are used to generate a tailored product given a particular set of requirements
and engineering decisions allowed by the decision model.

• Describe a standardized application engineering process. The described process tells the
engineer how to specify systems in terms of the decision model and how to use the specification to
guide the construction of corresponding deliverables from adaptable components. Because this pro-
cess is driven by the decision model, it focuses the engineer on the critical requirements variations that
differentiate systems in the domain.

• Verify the work products of domain engineering. The work products of domain engineering (the
domain definition, domain specification, and domain implementation) must be verified as mutually
consistent. Each must be self-consistent, the domain specification must conform to the domain
definition, and the domain implementation must conform to the domain specification.

The first task above produces a domain definition. The results of the next four tasks together form
a domain specification, which elaborates the characteristics of the domain as set by the domain
definition.

In domain implementation, you implement support for the products in the domain and the
associated production process in conformance with the domain specification. Specifically, you:

• Implement adaptable components. Techniques for implementing adaptable components
include programming language generics, e.g., Ada generic packages and C+ + class templates; word
processing merge and macro facilities, e.g., those in WordPerfect or in Microsoft Word; and
metaprogramming tools, e.g., Metatool5 and the TRF2 metaprogramming tool6.

• Document the application engineering process. This creates standard policies and procedures
that application engineering projects will follow to attain best practices within a standardized applica-
tion engineering process as defined in the domain specification. These policies and procedures are
tailored to the needs of the organization and its business area.

• Develop automated support for application engineering (optional). This provides automation
supporting performance of the standardized application engineering process, including project man-
agement and specification, evaluation, and generation of products, consistent with policies and
procedures documented for that process.

Project support is domain engineering effort associated with assisting application engineering
projects in making effective use of the domain. An element of this support is to validate that the do-
main is responsive to the needs of the projects and their customers. Feedback from projects is a major
stimulus for subsequent improvement and evolution of the domain as a viable resource for current
and future projects.

Application Engineering. The domain implementation is delivered to application engineering
projects as process support. It gives application engineers the ability to specify a system and produce
a corresponding product. The engineer creates an application model, which is a specification of the
desired system, by resolving the variations (e.g., choosing among alternatives) accommodated by the
decision model. For example, in a business telephone systems domain, an engineer might specify a
particular telephone system by requesting the basic system (common to all such systems) enhanced
to allow a maximum of 50 extensions, call waiting, and voice mail (some of the variations that such
a system might support). A different system might support conference calling but not voice mail;
another might support both.

The application engineer then uses the application model to direct the selection, adaptation, and
composition of adaptable components to construct deliverable or supporting work products. The con-
struction process may be automated or manual; either way, work products are derived mechanically
from the specification. By mechanically, we mean that there are precise instructions that describe ev-
ery detail of how to use the information in an application model to construct work products from
adaptable components. Formulating a mechanical construction process is essential to effective au-
tomation. In cases in which variations (requirements) needed by a project were not anticipated in the
domain analysis or were intentionally not supported in the domain implementation, specialized com-
ponents maybe designed, implemented, and integrated into the final product using conventional tech-
niques. Note that the application engineer never "searches" a reuse library or manually modifies com-
ponents. The development process indicates exactly which adaptable components are needed and how
they are to be adapted to satisfy a particular specification.

An organization realizes productivity gains from a Synthesis approach because systems in the
domain can be rapidly specified and constructed using adaptable components. Effective reusability
is due to the flexibility of adaptable components and because the process is designed to take best ad-
vantage of these components (i.e., the components and the process for their use are concurrently engi-
neered). Product quality improves as a result of following a standardized process in which tailored
products are constituted from standardized reusable components.

Pilot Project Experience

The first task of the pilot project was to select a business area in which to practice Synthesis. We
chose the area of Communications Control and Management (CCM) systems because of CCSD's ex-
perience and interest in this area. Systems in that area were known to have much in common but also
to vary in interesting ways. CCM systems perform communication control and station management
functions for ground and transportable high frequency (HF) radio stations. These stations contain
communication devices (e.g., HF radios, antennas, encryption/decryption devices, modems); elec-

tronic switching equipment; and functions that support the configuration, monitoring, and control of
station resources. Stations provide communication capabilities to commercial or military subscribers.

Given the breadth of the CCM domain and the limited resources available, application of Synthesis to
the entire domain was not feasible. The preferred fall-back strategy is to focus on a subdomain (e.g.,
the domain corresponding to a CCM subsystem) that can be investigated in sufficient detail. However,
selecting the proper subdomain requires some agreement on the nature, scope, and structure of the
entire domain. Our goal was to select a subdomain that would both be useful in its own right and would
remain useful if expansion to the full domain was later judged to be feasible and desirable. Our
approach was to partition the pilot project into four phases:

1. A top-level domain analysis of the entire CCM domain

2. The selection of a subdomain based on the results of the top-level domain analysis

3. A detailed domain analysis of the selected subdomain

4. A partial implementation of the selected subdomain

This approach permitted us to perform a detailed application of Synthesis in a subdomain while,
at the same time, giving us confidence that the results could be compatible with future developments
of the domain as a whole. To validate the results of this effort, we then applied the domain product
to create corresponding parts of the documentation for two CCM systems. Subsequently, we used a
part of the domain product in the development of a new system.

The remainder of this section describes our experience in performing the pilot project. This
description idealizes our experience to some degree. Synthesis is a strongly iterative process; the de-
tails of actually having performed such a process can be confusing to describe accurately. Despite sig-
nificant additional iteration among and within activities, a more traditional results-oriented view is
sufficient to understand the essentials of what was accomplished.

Top-Level Domain Analysis. Our goal for the first phase of the pilot was to define the CCM
domain to a sufficient level of detail so that the results could guide the selection of a subdomain as
a focus for the second phase.

Domain Definition. The first step in this phase was to produce the domain definition. The major
inputs to the domain definition task were our knowledge of the systems Rockwell has produced in the
past and our best understanding of what kinds of systems Rockwell customers will want in the future.
Decisions to broaden or narrow the domain depended on business factors as much as technical factors.
We produced the following work products during this activity:

• A short (two-page) narrative description of the domain. This described the domain in terms of
the problems that systems in the domain solve, the context in which these systems operate, the basic
functions the systems perform, and the systems' users. This was the first product we developed and the
one we went to first when we needed to decide if a given system was in the domain or not It also served as
an introduction to the domain for engineers new to the project

• A domain glossary. This defined the terminology that we use to discuss requirements and
systems in the domain. This glossary borrowed heavily from a standard glossary of telecommunica-
tions terms. We found the domain glossary to be essential for effective communication between the
engineers working on the pilot. Having standard terminology removed confusion that occurred early
on when different engineers used the same term to refer to subtly different or sometimes very different
concepts or entities.

• A set of commonality and variability assumptions. These assumptions stated explicitly but
informally what is common to systems in the domain and what is variable. An example of a commonal-
ity assumption is "all systems in the domain perform equipment diagnostics." Examples of variability

assumptions are "the types of diagnostics performed by systems in the domain will vary" and "the initi-
ating event of a diagnostic will vary across systems in the domain (e.g., on power-up, periodic, operator
initiated)."

The completed domain definition represented an agreement between the pilot participants on the
class of systems included in the domain and the general characteristics of these systems. Drawing on
CCSD's experience in marketing and developing similar systems, we concluded that the domain as
described in the domain definition was both technically and economically viable.

Domain Specification. The next step in this phase was to develop the domain specification. The
primary inputs to this activity were the domain definition and our understanding about how systems
in the domain are developed (i.e., specified, designed, and implemented). To achieve our goal of sub-
domain selection, it was sufficient for us to create the decision model, standardized requirements, and
standardized design portions of the domain specification:

• Decision Model We represented our decision model as a formalized set of questions that the
engineer is to answer (e.g., "Should power-up diagnostics be performed? If yes, which of the following
power-up diagnostics should be performed? [list of choices]"). The decisions on this list were created
by elaborating from the variability assumptions in the domain definition.

• Standardized Requirements. Our standardized requirements consisted of requirements that
are common to all systems, derived from the commonality assumptions, and the requirements that
vary from system to system, derived from the variability assumptions. We integrated the common and
variable requirements into a single representation by creating a requirements document that was pa-
rameterized by the decision model. We parameterized the requirements by annotating them with no-
tations indicating how they should be tailored based on decision model choices. For example, we used
the notation to represent conditions such as if power-up diagnostics are selected, include this section,
and for each power-up diagnostic type selected, include the appropriate subsection.

• Standardized Design. We represented the standardized design as a parameterized module
structure7. Like the standardized requirements, the standardized design is parameterized by decisions
from the decision model. The parameterization allowed modules to be included or excluded from the
structure based on decision model choices. The modules in the module structure correspond to
adaptable code components (i.e., families of modules).

Subdomain Selection. We used the result of the top-level domain analysis to guide the selection
of a subdomain for further investigation. Having a standardized description of the high-level require-
ments and design for the CCM domain made this a straightforward task. The subdomain we selected
was the software that supports communication over the MIL-STD-1553B Systembus8. We considered
a number of other subdomains (e.g., system diagnostics, operator interface), but this subdomain was
selected for the following reasons:

• It represented an integral part of systems in the domain.
• It exhibited nontrivial variability.
• It was small enough that it could be investigated in detail.
• The engineers assigned to the pilot project were familiar with the operation of the software.
• The resulting work products would be useful to existing projects.
Subdomain Analysis. The goal for this phase of the pilot project was to define the subdomain in

sufficient detail to guide the implementation of reusable components and the creation of a
standardized development process for the production of deliverables using those components.

Domain Definition. The domain definition for the subdomain started with the work products of
the informal domain definition for the CCM domain (i.e., narrative description, glossary, and assump-
tions). These work products were developed by extracting the relevant parts from the CCM domain

definition and elaborating on them to reflect the more detailed analysis done for the subdomain. As
a result of this narrowed definition, we concluded that the subdomain was both technically and
economically viable.

Domain Specification. The next step in analyzing the subdomain was to develop the domain
specification. Our domain specification consisted of the following work products:

• Decision Model We created the subdomain decision model by extracting the relevant portions
from the CCM decision model and elaborating where necessary. Supported variations ranged from
high-level decisions regarding the architecture of the target system (e.g., the number and characteris-
tics of the buses, terminals, and subsystems) to very detailed decisions about particular components
(e.g., the command word format of a particular bus). The decision model also supported variations that
had nothing to do with the operational software, but they were necessary to generate deliverable docu-
mentation (e.g., contracting agency and contract number). Decisions in the decision model were struc-
tured into groups of related decisions referred to as decision classes. A top-level decision class from
the subdomain decision model is shown in Figure 2.

Decision Class: 1553B Subsystem
Decision Constraint: 0 to 10 per application system

Decisions Value Space Description

Subsystem Identifier[SSID] identifier Unique identifier for a
1553B subsystem

RAM[SSRAM] hex[(0.. ~)] Amount of random access
memory

ROM[SSROM] hex[(0.. ~)] Amount of read only
memoiy

Subsystem terminals
[STERM1 - STERM10]

list of TERMINALS Terminals for this subsystem

Processor[SSPROC] enum of (
Intel80186,
Intel80286,
InteI80386
)

Type of subsystem processor

Figure 2. A Decision Class From the Subdomain Decision Model

• Standardized Requirements. We represented our standardized requirements in the form of a
parameterized Real-Time Structured Analysis (RTSA) specification. This choice was made because
we wanted to use the Ada-based Design Approach for Real-Time Systems (ADARTS©)9 as a design
method, and, at that time, ADARTS required an RTSA specification as input. Variations in the RTSA
were represented by having RTSA data transformations (i.e., "bubbles") decompose into multiple
versions corresponding to decision model choices.

• Standardized Design. We represented the standardized design for the domain as a
parameterized ADARTS design. Variation was shown at the architectural level by having multiple dia-
grams and having portions of diagrams decompose into multiple versions depending on decision mod-
el choices. This technique, although limited, worked because the architecture was relatively invariant
with respect to decision model choices. It is worth noting that representing variation in graphical de-
sign methods is a very difficult problem. Variation was represented in the specification of adaptable
components using parameterized program definition language (PDL).

• Standardted Development Process. We defined an automated process for specifying
application systems and for generating deliverables from the specifications. We chose an automated
process rather than a manual one because our experience was that automated processes are more
readily accepted by the targeted users (i.e., in-house engineers) and would make them more receptive
to the concepts of Synthesis.

Subdomain Implementation. The goal for this phase of the pilot project was to partially
implement the subdomain so that selected deliverables could be constructed from reusable
components. Our subdomain implementation consisted of the following products:

• Adaptable Requirements Components. These components are used to produce software
requirements specifications for systems in the subdomain. The standardized requirements developed
during the subdomain analysis determined the content of these components. Customer requirements
determined the form of the work products. We used WordPerfect to create requirements components
that could be automatically adapted based on decision model choices. WordPerfect's merge and mac-
ro features allow many document variations to be produced from a single template. The following is
a fragment of an adaptable requirements component represented using WordPerfect:

~a. {VARIABLE}ssid~ configuration. The {VARIABLE}appl~ application soft-
ware and the interprocessor communications software in the {VARIABLE}ssid~
subsystem will be stored in ROM and executed on an {COMMENT}
~ {IF}{FIELD}ssproc~ =1 ~Intel80186 {ENDIF}{COMMENT}
~ {IF}{FIELD}ssproc~ =1 ~ Intel80286 {ENDIF}{COMMENT}
~ {IF}{FIELD}ssproc~ =1 ~Intel80386 {ENDIF}{COMMENT}
processor. The {VARIABLE}ssid~ subsystem contains {VARIABLE}ssrom~Kof
ROM and {VARIABLE}ssram ~ K of RAM. The {VARIABLE}appl ~ application
uses the MIL-STD-1553B bus to exchange messages with applications existing in other
subsystems in the network. The {VARIABLE}appl ~ application communicates over
the MIL-STD-1553B bus(es) via the terminal(s) described below.

• Adaptable Design Components. The design components are used to produce software design
specifications for systems in the subdomain. The content of these components was determined from
the standardized design developed during the subdomain analysis. As with the adaptable requirements
components, customer requirements determined the form of the work products and we implemented these
components using WordPerfect

• Adaptable Code Components. The code components were developed in Ada. We used Ada
generics and the Consortium's TRF2 metaprogramming notation as mechanisms to represent the
variation in these components. Due to resource limitations, we only implemented a subset of the com-
ponents that were called for in the standardized design. We implemented a sufficient subset to allow
us to produce pieces of two systems that varied significantly and were similar to others built previously.

• Automated Support for the Application Engineering Process. The automated support we
produced consists of an environment that implements part of the standardized development process
defined during the subdomain analysis. The environment consists of a graphical interface and a gen-
eration facility, both developed using the WordPerfect merge and macro functions. The graphical inter-
face, which consists of a sequence of menus and screens, allows the engineer to create, modify, and
browse through an application model. The specification language is based directly on the decision
model for the subdomain. The generation facility uses the application model to guide the automatic
generation of a software requirements document from adaptable requirements components. The
adapted documentation is generated by performing a WordPerfect merge of the adaptable require-
ments components and the engineer's decisions from the application model. Our intention is to inte-
grate access to the adaptable design and code components into this environment so that an application

engineer can use the environment to automatically produce requirements, design, and implementa-
tions for systems in the domain. One of the screens from the graphical interface, corresponding to the
decision class shown in Figure 2, is shown in Figure 3. The following shows a portion of a generated
software requirements specification that was produced by tailoring the previously shown adaptable
component using the decision choices shown in Figure 3:

1.2.1.1. Mission Control 1 configuration. The RICC application software and the
interprocessor communications software in the Mission Control 1 subsystem will be
stored in ROM and executed on an Intel 80386 processor. The Mission Control 1 sub-
system contains 4096K of ROM and 4096K of RAM. The RICC application uses the
MIL-STD-1553B bus to exchange messages with applications existing in other subsys-
tems in the network. The RICC application communicates over the MEL-STD-1553B
bus(es) via the terminal(s) described below.

The domain implementation supports an improved process for specifying and producing
application systems in the MIL-STD-1553B communication software domain. Engineers use the
graphical interface to specify systems in terms of high-level requirements and engineering decisions
that distinguish them from other systems in the domain. When the engineer is confident that the ap-
plication model is correct, the environment allows him to generate software requirements directly
from his application model. The environment generates the software requirements documentation
by tailoring reusable requirements components with the engineer's decisions as captured in the ap-
plication model. The engineer generates design documentation and the implementation by manually
selecting, adapting, and composing adaptable code components. This process is guided by the stan-
dardized design and the application model and is completely mechanical. The application engineering
process is iterative: if after reviewing the generated products, the engineer realizes that the described
system is not exactly what was desired, he can quickly go back and modify the specification to suit his
needs and then regenerate the product.

Validation. To validate our domain implementation, we used our application engineering
environment to specify and produce the requirements for the MIL-STD-1553B communication soft-
ware for two CCM systems similar to ones previously developed by Rockwell. These systems differed
significantly from each other, yet we had no problems specifying them and generating corresponding

Subsystem Information

1. Subsystem Identifier: Mission Control 1

2. Processor: Intel 80386

3. ROM: 4096K

4. RAM: 4096K

5. Terminal Assignment: >>>>

6 Save Subsystem

Figure 3. A Screen From the Application Engineering Environment

software requirements documentation. This convinced us of the feasibility of automated support for
the specification of systems in terms of requirements decisions and for the generation of software work
products from adaptable components.

The completed application engineering environment (requirements generation only) was widely
demonstrated to Rockwell engineers and management. It was also used as a part of a formal inspection
conducted by domain experts (engineers with substantial experience developing software for the
1553B bus) on the subdomain work products. This exposure resulted in many refinements to the
domain analysis work products.

Project Use. Our domain implementation has been used on a CCSD project for a communication
and signal processing application. A number of circumstances affected the way in which the domain
implementation was used. First, the decision to use the domain implementation was made after the
project was in the design phase; therefore, the opportunity to generate requirements documentation
had passed. Second, the project proceeded concurrently with our development of the adaptable design
documentation components so that these were not available for project use. As a result, the applica-
tion engineering process followed was more conventional in nature than what we expect in the future.

The application project described its target system using our specification notation and then used
this to instantiate our standardized design for the target system. On the whole, the standardized design
served the project well, and only minor modifications due to missing variations were required. These
variations are to be incorporated into the domain work products in support of future systems. Addi-
tionally, the project was able to reuse some of the adaptable code components in the domain imple-
mentation. A higher level of code reuse could have been obtained if the target system had included
more of the implemented portions of the standardized design. However, because the project imple-
mented missing code according to the standardized design, it can be folded into the domain to expand
the domain implementation for use on future projects. Even though this use of the domain
implementation was less than ideal, it still resulted in significant savings through schedule
compression.

The availability of the 1553B domain implementation also influenced the bid and proposal process
for one of CCSD's new programs. The primary influences were to the technical approach and to cost
projections. The technical approach was affected in that certain technical decisions were made be-
cause they corresponded to variations supported in the domain and, therefore, could be supplied at
lower cost. The dollar amount of the bid was reduced because the domain implementation gives
CCSD the capability to produce the software and deliverables for the target system at a lower cost.

Lessons Learned

The future of the software-intensive systems marketplace belongs to those organizations that can
profitably deliver high-quality products in response to diverse or rapidly changing customer needs.
The ability to do that comes fundamentally from having people with the expertise and knowledge to
understand those needs and create effective solutions. A Synthesis process is one part of a developing
system or software engineering discipline that can help an organization better leverage its employees'
efforts to achieve success. There are several lessons from our pilot experience with Synthesis:

• A Synthesis approach has immediate benefits. Although the original conception of Synthesis was
motivated by a vision of fundamental improvements in application development based on domain-
specific reuse, there are benefits that can accrue from the beginning of a transition to Synthesis practic-
es. A first potential benefit is better support for bid and proposal efforts based on a clearer, shared
understanding of the organization's existing capabilities to deliver a particular type of system and a
derivative ability to more accurately distinguish and estimate parts of a system that offer (lower cost)
reuse opportunities from parts that will require (higher cost) new development. A second potential
benefit is the existence of an explicit standard definition of requirements, arising from a coherent

10

agreement on business concepts and terminology, that can be used as a starting point in identifying
and resolving unclear or incomplete requirements statements from customers. A third potential bene-
fit is the institutionalization of shared knowledge and expertise about systems in a business area that
can more rapidly raise the working level of new or less experienced personnel. A fourth potential
benefit is that there may already be an opportunity to standardize and use many existing software, test,
or documentation components because there is often an existing but unrecognized basis for a
standardized design. Each of these is achievable without adoption of a complete Synthesis approach.

• A management commitment at all levels is essential A domain is only as good as the people
assigned to develop and maintain it. These people must be knowledgeable and experienced in all as-
pects of customer problems and their solutions. If their immediate and middle managers do not see
the value in the effort, these managers will take the first opportunity to move key people to other as-
signments. If upper managers do not see the value in the effort, there will not be sufficient funding
to do a proper job. Additionally, the involvement of respected technical and management leaders is
critical to gaining the confidence of project managers who must use a domain for any investment to
pay off.

• Making reuse pay requires a substantial commitment of effort. Some organizations would like to
take the view that reuse should entail, at most, a small up-front effort and instructions to coders on
'how to reuse'. The truth is that a domain can provide significant leverage for an organization's proj-
ects but only in proportion to the effort invested in developing and maintaining it. A reasonable start-
ing point is to realize that creating a domain, whatever its scope in terms of system size and complexity,
cannot possibly cost less (or necessarily much more) than it would to handcraft yet another system
within that scope; incremental commitment of course can spread costs and risks over time. The payoff
comes not from minimizing investment but from an acquired ability to rapidly deliver new or changed
systems.

• Adoption of a disciplined engineering process stimulates adoption of disciplined engineering
methods. When CCSD managers and engineers recognized the value of Synthesis as a disciplined engi-
neering process, they discovered that attaining its full potential required acceptance of disciplined en-
gineering methods as well. Synthesis does not dictate particular methods and, in fact, only requires
(as a minimum) standardization of the way products are represented. However, Synthesis provides
a framework within which organizations can adopt disciplined methods without necessarily having to
retrain every engineer.

Conclusions

Rockwell has used Synthesis successfully to create a domain for CCM MIL-STD-1553B system
bus communication software. We demonstrated that a knowledgeable engineer can describe systems
in this domain in terms of critical requirements and engineering decisions and that those specifications
can guide the generation of corresponding software work products from adaptable components. The
validation exercises and limited project use of the domain implementation convinced us that the prac-
tice of Synthesis in well-chosen business areas can result in significant improvements in how CCSD
builds software. We believe that a process for domain-specific specification of a system and the genera-
tion of a corresponding product will increase CCSD's productivity and product quality for systems in
supported domains.

The pilot project developed an environment that could satisfy needs of existing projects. The
domain implementation has been used successfully on a current project, resulting in improved produc-
tivity, and has also permitted CCSD to be more competitive on a bid for a new project. Further subdo-
main work is ongoing. We hope, in the future, to integrate access to the adaptable design and code
components into the application engineering environment. This will enable an application engineer
to use the environment to automatically produce requirements, design, and implementations for sys-

11

terns in the subdomain. We also expect that, as the environment is used on more projects, there will
be significant feedback that will enable further refinement of the domain implementation.

Based on the success of this pilot project, Rockwell CCSD has committed to investigate Synthesis
for production use by its Multimedia Message Handling Systems (M3HS) development group Devel-
oping a standardized product line and supporting process for this business area will facilitate large-
scale reuse and will allow this development group to be more competitive and profitable This group
has predicted sales of as many as 20 M3HS systems plus upgrades in the near future, and the group
believes that Synthesis is critical to being able to meet this demand.

Acknowledgments

The results presented in this report would not have been possible without the^contributions of the
other participants in this project. Special tharJcs go to John Men Cheryl Chm,PM Garcia, and Doug
Johnson of Rockwell International. Rich McCabe of the Software Productivity Consortium was
instrumental in helping Rockwell initiate the pilot project and, along with Wil Spencer, Roger
Williams, and Steve Wartik of the Consortium and Joe Keffer of Rockwell, provided comments that
significantly improved this report.

References

1. G. Campbell, S. Faulk, and D. Weiss, Introduction to Synthesis, INTRO_SYNIHESIS_PRO-
CESS-90019-N, Software Productivity Consortium, Herndon, Va., 1990.

2. E. Dijkstra, "Notes on Structured Programming," Structured Programming, Academic Press,
London, 1972, pp. 1-82.

3. D. Parnas, "On the Design and Development of Program Families," IEEE Trans. Software
Eng., March 1976, pp. 1-9.

4. Software Productivity Consortium, Reuse-Driven Software Processes Guidebook,
SPC-92019-CMC, Software Productivity Consortium, Herndon, Va., 1993.

5. C. Cleaveland, "Building Application Generators," IEEE Software, July 1988, pp. 25-33.

6. Software Productivity Consortium, TRF2Metaprogramming Toot User Guide, SPC-91132-MC.
Software Productivity Consortium, Herndon, Va., 1991.

7. D. Parnas, P. Clements, and D. Weiss, "The Modular Structure of Complex Systems," IEEE
Trans. Software Eng., March 1985, pp. 259-266.

8. U.S. Department of Defense, Digital Time Division Command/Response Multiplex Data Bus,
MIL-STD-1553B, U.S. Department of Defense, Washington, D.C., 1978.

9. Software Productivity Consortium, ADARTS Guidebook, SPC-91104-MC, Software
Productivity Consortium, Herndon, Va., 1991.

12

