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On the External Input Power into Coupled Structures 

G. Maidanik and J. Dickey 

DTMB, Bethesda, Maryland 20084-5000, USA 

Abstract 

In the application of the statistical energy analysis (SEA) it is commonly assumed that the 

external input power is independent of the coupling between an externally driven structure (a 

master structure) and an attached passive structure (an adjunct structure). It is argued that although 

this assumption may be reasonable for weak couplings and, with some reservation, for strongly 

coupled similar structures, it may be incorrect for strongly coupled dissimilar structures. The 

definitions of similar and dissimilar coupled structures, in this context, are explained. The 

implication to SEA of this dissimilarity in strongly coupled structures is discussed in the light of 

developing noise control criteria for complexes that are composed of these coupled structures. 



Introduction 

It has been customary, when using the statistical energy analysis (SEA) to derive the 

response (stored energy) of a complex composed of coupled structures, to assume that the 

couplings among the structures do not influence the external input powers. In this sense, the 

external input powers, injected into the structures in isolation, are assumed to be invariants when 

couplings are instituted. This assumption initially simplified the analysis and subsequently its 

validity was not challenged, presumably a matter of "letting sleeping dogs lie". Indeed, as long as 

the couplings could be considered "weak" the assumption felt comfortably valid. Questions 

regarding the validity of the assumption arise only when "moderate" and, especially, "strong" 

couplings are brought in as a possibility. Chandiramani and Smith, Jr. attempted to account for 

changes in SEA as some of the couplings transit from weak to strong [1,2]. A major finding, in 

both efforts, is the convergence of the modal stored energies among those structures that are 

strongly coupled; as the couplings become stronger in these structures, there is a convergence 

toward equipartion of modal stored energies. In other words, as the coupling between two 

structures is increased, the coupled structures tend to merge and the stronger the coupling the more 

complete is the merger. In both papers, however, the influence, that the changes in the couplings 

may induce on the external input powers, is neglected apriori [1,2]. This neglect is examined in 

this paper; not rigorously, but, rather, heuristically. It is argued that for couplings among "similar" 

structures the external input powers are not dependent on the strength of the couplings. However, 

for "dissimilar" structures the external input powers are dependent on the strength of the couplings 

and there may then be a significant difference between those external input powers pertaining to 

weak and those pertaining to strong couplings. 



II Rudimentary Statistical Energy Analysis (SEA) 

The steady state equation of SEA for a complex composed of multiple coupled structures is 

Qin(CD)E(a)) = ne(co)   ;   E(eo) = {Ea(co)}    ;   0e(co) = {IIea(co)}    ; 

ö = (°>5aß)    I    H(ö)) = ([5V(ö))]5aß-Tlaß(tö)(1-8aß))      ' (la) 

where (co) is a center frequency of a frequency band of width (Aco), r|aa(co) is the loss factor 

associated with the (a)th structure, T^CO) is the coupling loss factor associated with the 

attachment of the (cc)th structure to the (y)th, Ea(a>) and ne0(((ö) are the stored energy and the 

external input power; in and into, the (cc)th structure, respectively, and 8aß is the Kronecker delta. 

Significantly, Eq. (la) is proper in the sense that r\(ai) is a functional only of parameters that define 

the complex; it is independent of the elements of the stored energy vector E(co) and of the external 

input power vector De(o)). [Propriety is an essential ingredient to any successful analysis; for this 

reason many of the quantities and parameters involved are often tested for propriety.] The modal 

SEA quantities and parameters that are implicitly stated in Eq. (la) are 

Ea(Q>) = Aa>na(a>)ea(co)  ;  nea(o)) = Aconjco) 7cea(co)   ; 

[TI^CöVTI^Cö)] = A,ß((ö) = [na(Q))/nß(ü))] = [^(Q))]"1     , (2) 

where na(co) is the modal density, £a(co) is the averaged modal stored energy and 7teoc(co) is the 

averaged modal external input power, all in reference to the (a)th structure [3]. The averaging is 

either over the frequency within the bandwidth (Aco) or over an ensemble of complexes with 

differences that he within that same bandwidth [3]. Since the "loss factor matrix" T|(co) is, by 

definition, nonsingular, Eq. (la) may be inverted 



E(co) = £(©) (0)"1 ne(a»    ;     £(a» = (£aß(co)) = [g(a>)]"        . (lb) 

The inverted loss factor matrix £(co) may be dubbed the "gain factor matrix". Clearly, Eq. (lb), 

like Eq. (la), is significantly proper. From Eq. (la) one obtains 

IcoTiaa(Q))Ea(o)) = ne(co)    ;    ne(co) = 2 nM((B)   , (3a) 

which simply expresses the equation of conservation of energy; it states that the dissipated power 

in the complex; [cor|(X(X(0))Ea(Q))] in the (oc)th structure, is equal to the external input power into the 

complex; [nea(o))] into the (a)the structure. Similarly, from Eq. (lb) one obtains 

Ea(©) =ZEJ«D)    ;   E*(a» = Say(a» [iya»/©]     , (3b) 

which simply accounts for the contributions, to the stored energy Ea(G>) of the (a)th structure, by 

the external input powers into the various structures that compose the complex; e.g., E^((ö) is 

contributed to Ea(co) by the external input power [n^co)] into the (v)th structure. 

An "effective loss factor" T|e(G)) may be defined in the form 

Q)Tle(a))E((D) = i;coTiao(Q))Ea(Q»     ;      E(0)) = X Ea(co)     . (4a) a      •««.-   -    u-   - a 

In this form rie(co) is a measure of the ability of the complex as a whole to dissipate the stored 

energy E(co) in it [3-5]. Casting Eq. (4a) in the algebraically manipulated form 

Tle(co) = [X Tiaa(o» Ea(co) / 2Eß(Q))]     , (4b) 

interprets the effective loss factor T|e((ö) to be the "average loss factor"; averaged over the stored 

energies of the structures comprising the complex. Similarly, an "effective gain factor" ^a(co) is 



defined in the form 

In this form ^((ö) is a measure of the transfer of energy from the external input powers to the 

(00th structure. Casting Eq. (5a) in the form 

Sea««» = V®) [2 Say«») ^(^/^^(Q))] , (5b) 

interprets the effective gain factor ^((0) of the (a)th structure to be the "average gain factor" of 

that structure; averaged over the external input powers of the structures comprising the complex. 

From Eqs. (3a) and (4) one obtains 

cor|e(ct))E(a>) = ne(co)      ;      T]e(co) = [ne(to)/coE(a))]     , (6a) 

and from Eqs. (3b) and (5) one obtains 

Sea«0) [ne(0))/Q)]  = Ea(C0)      ;        ^(co) =   [co Ea((ö)/Tle(G»]      .     (6b) 

From Eqs. (6a) and (6b), the identity 

\(G» = Die«»)]"1       J        Se«ö)  = ^ea(0)) , (7) 

emerges. 

As usual, for good and bad reasons, a complex consisting of merely two structures is 

chosen to demonstrate the notions and concepts that he within SEA and to illustrate results obtained 

by rendering SEA to such a complex. A SEA model of a two-structures complex is depicted in 



Fig. 1; one structure is designated the (s)th structure (the master structure) and the other the (b)th 

structure (the fuzz in a structural fuzzy) [4-6]. A question is then posed: May an externally driven 

structure (the (s)th structure) be adjoined by another (the (b)th structure) in order to improve the 

noise control integrity of the union; e.g., by increasing the effective loss factor T|e(co) of the 

combined structures beyond that of the initial structure? For the two-structures complex Eq. (4b), 

after straightforward algebraic manipulations, yields 

Tles(CD) = [tle(Q))/Tlss(0))]   =   [1 +T|J«D) £(©)] [l +  ^(CO)]"1 I 

7ls(°))=[Tlbb(0))/llss(G»]    J   £(G>)=[Eb(CD)/Es(co)]      . (4c) 

Using Eq. (4c), Fig. 2 is presented. In this figure values of t|es(co) are depicted as a function of 

T|s (co) and £s (co). It is revealed that for a practical range of {T|s (co), £s (co)} there exist a region in 

which T|es(co) exceeds unity, notwithstanding that in another region, T|es(co) is less than unity. The 

region in Fig. 2 for which T|es(co) > VTÜ, establishes a set of criteria that needs to be satisfied by 

parameters that define the two-structures complex to affirmatively answer the question posed. 

However, as argued in Reference 4, that T|es(co) exceeds unity may be a necessary, but is not a 

sufficient condition for achieving an effective noise control. To achieve and effective noise control 

a more comprehensive analysis, than that involved in the determination of T|es(co), is required 



II Stored Energy Ratios in Noise Control Criteria 

To examine more comprehensively the noise control criteria it is convenient to model the 

complex in terms of unattached structures. Whereas Eq. (1) is the insitu description of the 

complex, the equation of SEA for a complex in which the structures are artificially, but 

appropriately, isolated from each other is 

@2°(0))E°(a)) = n°(CD)   ;   E°(co) = {E°a«D)}    ;   n°(co) = {n°ea(co)}    ; 

® = 05aß)    ; YC^Ow^aß)     . (8a) 

or invertedly 

E°(o)) = |(co)e-1 0°e(Q))   ;  §W (£„(»>««ß)    ;    £°(fl» = h0«»)] 

A typical equation of motion for a structure may be selected from Eq. (8). It reads 

(8b) 

miC(©)E0
a(©) = n0

ea(o>)   ;    E°aa(to) = £(<o) [if (a»/co]    . (9) 

This equation states that the stored energy E°a(<a) is attained by the isolated (oflth structure in 
o 

response to an external input power nea(co) that is directly injected into it; this power is dissipated, 

in this structure in isolation, by the loss factor i\°m(<a). From Eqs. (lb) and (8) one may define 

three useful forms of stored energy ratios: 5a(co), 5ja(a>) and Sy
a((ü). The first ratio is defined 

5a(co) = [Ea(o))/E0
a(ü))] = ^(a))P«((ö)   ;    £(CD)*[^(a»T»°M(a>)]   ; 

P? (co) = [nea(co)/n°ea(co)]    , (10a) 

and may be used, for example, to assess the influence, on the stored energy of the (cx)th structure, 



due to the incorporation of this structure to be an insitu member of the complex. Clearly 5a(co) is 

proportional to the ratio P"(co) of the insitu external input power into the (oc)th structure to that in 

isolation; i.e., before it is incorporated in the complex. The second stored energy ratio is defined 

Sy
0a(co) = [EY

a(co)/E°a(co)] = £%>) PL(CO)   ;    £%» = [^(co) ^(co)]   ; 

Pla«o) = [n^(co)/n°a(co)]    , (10b) 

and may be used, for example, to assess the influence, on the stored energy of the (a)th structure, 

due to the incorporation of this structure to be an insitu member of the complex when the external 

input power into that complex is applied to another structure; e.g., to the (y)th structure. Clearly 

B0a (co) is proportional to the ratio P0 a (co) of the external input power into the (y)th structure insit 

and the external input power into the (a)th structure in isolation. The third ratio is defined 

4(°» = [slam/sa(ad] = [El((o)/Eam] = £Y(o» PJ(ö>) ; 
CCY 

S0(a) = [^(©)/$00(e>)]   ;   PY(co) = [iy©)/!!^©)]      , (10c) 

and may be used, for example, to assess the influence, on the stored energy of the (a)th structure, 

of injecting the external input power into the (y)th structure versus injecting it into the (cc)th 

structure itself. The ratio between these two external input powers is designated PY(co) and the 

stored energy ratio 5a(co) is proportional to this external input power ratio under the conditions just 

specified. 

If noise control of the (cc)th structure is the criterion of import, then the desire is to 

minimize, in each case, the one relevant ratio of the three; either Sa((ü), £y
0a (a>) or 5„ (co). 

Minimization of this kind renders the selected ratio small compared with unity; the smaller the more 

commendable is the noise control achievement. The first factor in each of these three stored energy 
a. ay ay 

ratios; namely, £0 (co), £0 (co) and £a (co), respectively, are proper quantities. The propriety is in 



the sense that these quantities are functional only of the properties of the structures and the 

couplings among them; they are independent of the stored energies in, and the external input 

powers into the individual structures that comprise the complex. These properties, in SEA, are 

defined in terms of the elements of the loss factor matrix rj (©) and/or of the gain factor matrix 

£(©). For a prescribed model of the complex, these elements are assumed known and changes in 

these elements, to achieve a desired noise control condition, are also assumed known. A question 

arises with respect to the second factor in each of the three stored energy ratios: Are these second 

factors; namely, P"((ö), Poa(co) and P^(CD), respectively, which consist of various ratios of 

external input powers into specific structures, directly or indirectly dependent on the properties of 

the structures and especially of the couplings among them? If the external input powers are 

assumed to be independent of the couplings 

P?(Cö) => PÜa(a» = 1 , (11a) 

Pja((D) => PS£(a» = [X* (a» (N^/M,)]        , (lib) 

PY
a(CD)  =>  P°J(C0)  =   P^ffl) . (lie) 

On the other hand, if the external input powers are dependent on the couplings, changes in these 

couplings, which are designed to achieve desired noise control condition with respect to the first 

factors, may influence, adversely or beneficially, the corresponding second factors. The central 

theme of this paper is the investigation of the influence of the couplings on these second factors. 



HI External Input Power at SEA 

It is usual to specify the external drive, to which a structure may be subjected, by an 

external force-source or an external velocity-source; in the first the external force is specified, in the 

second the externally imposed velocity is specified. When the external force-source is employed 

the external input power into a structure is 

ne((ö) = (lFe((D)l2)(G(ü)))   ;   Se((ö)Aco = 27t(lFe(co)|2>    ; 

(G(o)))=[(7t/2)n(co)/M]     , (12a) 

and when the external velocity-source is employed the external input power into a structure is 

ne(co) = (lVe(co)|2) ([G(ü» - iB(o))]"1)     ; (12b) 

where G((o) is the conductance and B(co) is the susceptance, with both these quantities being real, 

Se(0)) is the quadratic spectral distribution of the force-source, n(co) is the modal density and M is 

the mass of the structure [3]. In order to avoid difficulties, without loss in insight, Eq. (12a) is 

used in this paper and the use of Eq. (12b) is deferred to another. Figure 3a depicts the single 

structure on which attention is now focused. The SEA equation of motion for this structure is 

given by 

CDTl(Q))E(Q))=ne(Q))      , (13) 

where T|((ö) is the loss factor and E(co) is the stored energy that is generated by the external input 

power IIe(CD). The external input power IIe(co) into this structure is stated, as agreed, in Eq. (12a). 

It may be instructive to subdivide this structure into two substructures; one designated (1) and the 

other (2), as prescribed in Fig. 3b. The SEA equation of motion for the two-structures complex is 

10 



given by 

coTi11(Q))E1(ö)) + coTi22(Q))E2(co) = nel(co)    , (14a) 

CD[TI22(Cö) + T|12(co)] E2(co) - cor|21(co) EjCco)    , (14b) 

Tlel((D) = [T\e((i>)/T\um] = [1 + T1?(0)) Ci(CO)]  [1 + Ci(Cö)]"1       ; 

^(CO) = [T122((ö)/TI11(CO)]    ;    CI(CO) = [E2(Q))/E1((ö)]     . (14c) 

[cf. Eqs. (la) and (4).] Invoking Eq. (2), Eq. (14c) may be cast in terms of averaged modal 

quantities and parameters 

%(«» = [TieCcoVrinCco)] = {1 + ri^(co) [^(ca)ci?(co)]} {l + [^(©^(co)]}"1     ; 

C1(CD) = [?i1(Q))o2((ö)]   ;   o^(co) = [e2((0)/e1((ö)] = [v2
12(a))+l]"1    ; 

2 
X1(CD) = [n2(cö)/n1(o))] = [Ti21(a))/Ti12(co)]   ;    Jn((ö) = fo22((ö)/ii12(G>)]      . (15) 

Thus, the "coupüng quotient" v12(co), the modal density ratio %x (©), the modal stored energy ratio 

Oj (©) and the effective loss factor ratio T|el (a) are all proper parameters of the two-structures 

complex. Clearly, if Vj2(co)» 1, the coupling between the (2)th and (l)th structures, in this 

complex, is weak and tf[(<ö)« 1; if 10 > v\2((o) < 1, the coupling is moderate and 

10"1 < o^(co) < (1/2); and if Vj2(o)) < 1, the coupling is strong and c^co) -» 1. The classification 

is in accord with previous treatises on this subject [1,2,7,8]. This is not, however, the whole 

story; the material discussed in Section II is called upon to contribute to the story too. In this vein 

the (l)th structure is appropriately isolated and its SEA equation of motion is then stated in the 

form 

11 



0     ,     „ ^0 (öTi11(Q))E1(co) = nel(Q))     , (16a) 

and if the external force-source remains unaltered by the isolation, the external input power injected 

into the (l)th structure in isolation is 

n°el(Q)) = <lFe(o))|2)(G0
1(co))   ;     (GiCQ))) =(7i/2)[n1(co)/M1]     . (16b) 

[cf. Eqs. (8) and (12a), and Fig. 3b.] From Eqs. (10a) and (14) through (16) one derives 

Bx (co) = [Ej (co)/Ei (co)] = £ (co) pj (co)   , (17) 

^(ö» = ßn(ö))Ti0
11(ö))]   ;   |11(co)={Tie(co)(l + [^(co)G2(co)])}"1    , (18a) 

p;(co) = [nel(co)/n°el(co)]    . (18b) 

To set the stage, it is contrived that the division of the structure into a two-structures complex is 

constructed at a "controlled boundary"; i.e., at a thought boundary that involves no change in the 

physical properties of the original structure. Under this construction SEA would demand that 

quantities and parameters in Eqs. (12) and (13) match those in Eqs. (17) and (18) in the form 

o5(©)-M     ;     Ti(co)->Tie(co)    ;    IIe(co) ->IIel(co)    . (19) 

The first of these matchings signifies that the couplings at the controlled boundary is strong, as a 

merged structure would; after all, the complex is, in fact, a single structure! From Eqs. (17) 

through (19) one finds 

12 



51(O)) = [TI
0

11(CO)/TI(CD)][M1/M]    ;   M = M1+M2       , (20) 

^o(®) = h°n(<ö)/'n(to)][n1(CD)/n(co)]   ;    n(co) = ^(0)+ n2(co)    , (21a) 

P;(ö) = [n(CD)/M] [M/n^co)] = [l+^(co)] [1 + (M^)]'1    . (21b) 

Two major points emerged: The first is the simplicity of Eq. (20) and the second is the particular 

form of P0 (co), as stated in Eq. (21b). This particular form of P0 (co) may be summarized 

I    > 1     ,      ^(co) > (M^M,) ,   (22a) 

PJ(G))  \   = 1      ,      A? (a» = (M2/M!) ,   (22b) 

\ < 1       ,       Ä.i(a>) < (M2/Mj) ,   (22c) 

2 
and one is reminded that Xl (co) = [n2(co)/nj (co)]. Equation (22b) defines the two structures; (l)th 

structure and (2)th structure, to be similar and Eqs. (22a) and (22c) define them to be dissimilar; 

Eq. (22a) defines a "light" and Eq. (22c) defines a "heavy" adjoined (2)th structure. In Eq. (22) 

the notion that the external input power into a structure is independent of the coupling when 

another is adjoined to it, is challenged, notwithstanding that if the structures are similar, as just 

defined, the challenge is muted. 

The contrived division of the structure, just discussed, brings out another topic of 

significance. The division clearly results in two structures, each of which has a resonance 

frequency distribution that occupies a higher region of the co-domain than the original. Indeed, in 

the lower frequency region, where "global-modes" lie, the division of the single structure cannot 

be strictly entertained. As suggested by the global-modes designation, in that lower frequency 

region in which these global-modes reside, the (l)th and (2)th structures must be assumed merged 

apriori. This merger, in turn, validates apriori the matching, stated in Eq. (19), for the global- 

modes. 

13 



Returning to the central topic of discussion, the boundary between the two structures is 

assumed physical rather than controlled, and, therefore, Eq. (19) could no longer be validated 

apriori. One expects that if the coupling of the (2)th structure to the (l)th structure, at this 

boundary, is weak, the external input power ratio P0 (co) converges onto unity. Heuristically, the 

bridge between weak and strong coupling, and vice versa, can be expressed, for the two-structures 

complex, in the form 

Pj(co) = {1 + x](co) [o5(co)]q} {1 + (M^Mj) [(^(coxO"1    ; 

a5(co) = [l+v^2(co)]"1 < 1     , (23a) 

where the index q is yet to be determined; a likely candidate, however, is q = 1. In Eq. (23a) a 

weak coupling is characterized by a small value, compared with unity, for a] (co) and, in accord 

with Eq. (19), a strong coupling is characterized by a value of G\ (co) that converges on unity. In 

any case, for the two-structures complex, as Eq. (15) attests, the quantity Oj (co) is a proper 

parameter. In this sense Eq. (23a) also defines a proper quantity; P0 (co) is proper. Using Eq. 

(23a), Fig. 4 is presented. In this figure values of P„ (co) are depicted as a function of QA2MX) and 

Xj (co) for two fixed values of o^(co); in Fig. 4a, G^(co) = 1, which is commensurate with strong 

coupling and in Fig. 4b, Oj (CO) = 0.2, which is commensurate with a fairly weak coupling. 

Analogously, the external input power ratio P„j (co), as stated in Eqs. (10b) and (12a), can be 

expressed, for the two-structures complex, in the form 

Po] (co) = P^(co){ 1 + a.2(co) [o2(co)]q} {1 + (M/N^) [c2(co)]q}~1 ; 

PS?(co) = [^(co)(M1/M2)]   ;  a2(co) = [l+v21(co)]"1<l    ; 

V21(CO) = [TI11(CO)/TI21(CO)]   , (23b) 

and again, pj, (co), in Eq. (23b), as Eq. (15) attests, is proper, [cf. Eq. (1 lb).] The criterion for 

14 



weak or strong coupling in Eq. (23b) is characterized by whether c?2(co) is small compared with 

unity or approaches unity, respectively. Finally, from Eqs. (23a) and (23b) and Eqs. (10c) and 

(12a) one obtains 

P?(©)= {[P5I(ö»] (eft®) < 1)/[P0(G>)] Co?«*» < 1)}     . (23c) 

2 
and, clearly, Pj (co) is proper. [The product or the ratio of two proper quantities is proper!] From 

Eq. (23) it emerges, again, that if the two structures are similar 

?iJ(co) = (M-J/MJ)      , (24) 

the external input power ratios, just stated, are all substantially equal to unity, independently of the 

coupling [1,2,4]. It also emerges, again, that if the two structures are dissimilar and the coupling 

is strong in the sense that the coupling quotient Vj2(co) is small compared with unity so that 

<S\ (co) -» 1, the external input power ratio PQ (CO) differs from unity. Notwithstanding that for 

weak coupling in the sense that the coupling quotient v12(co) is large compared with unity so that 

a2(co) « 1, P0 (co) approaches unity even if the structures are not similar; i.e., when Eq. (23) is 

violated. Analogeous assessment can be conducted with respect to P^ (co), stated in Eq. (23b), 

and P^ (co), stated in Eq. (23c). 

The generalization of Eq. (23) can be readily made. Following the definitions of P"(co), 

P£a(C0) and P£(co), stated in Eq. (10), utilizing Eq. (12a) and the procedure that led to Eq. (23), 

one may readily extrapolate and state 

P?(o» = {X ä£«D) [oJ(a»]7Z (Mo/Ma) [oP(co)]q}     ; 
ß ß 

ß 
o£(ö» = ßß0(G>)/X0(©) $««(©)] < 1      , (25a) 

15 



Pia«») = PSlCfl» {* *J«D) [o5(CD)]7Z (Mj/Mp [O?(0))]q}      ; 

P°*(G» = [^(a>) (M^My)]   ;   oje©) = ßßY(cö)/^(co) ^(co)] < 1      , (25b) 

Pj(CD) =   [Pla(ö»](o;(a))<l)/[Pjt(a»](oP((D)<l)      , (25c) 

where use is made of Eqs. (lb) and (2) and P0a(cü) is defined in Eq. (1 lb). Since the elements in 

the gain factor matrix £(©) are proper and so are the modal density ratios, the external input power 

ratios, stated in Eq. (25), are also proper. Thus, in this generalization to a multi (more than two)- 

structures complex the quantities P"(co), Poa(co) and P^(to) are proper, notwithstanding that once 

the first two are, the propriety of the third follows. Moreover, it remains invariant that if the 

structures are similar 

A£(G» = (Mß/Ma)      , (26) 

the external input power ratios, stated in Eq. (25), are all equal to unity. When the structures are 

dissimilar, deviations from unity of these ratios may occur; such deviations from unity need to be 

estimated when noise control criteria are being developed for multi-structures complexes [4,8]. Of 

particular import in these estimates is the influence of the couplings, among the various structures, 

on these ratios. The manner of estimating these deviations, as they relate to the couplings among 

the structures, is presented in this paper. Equation (25) in conjunction with Eq. (10) may be 

efficaciously employed to establish noise control criteria in situations in which dissimilar structures 

are coupled memebers in the same complex. 

16 



References 

1. K. L. Chandiramani, "Some simple models describing the transition from weak to strong 

coupling in statistical energy analysis," J. Acoust. Soc. Am. 63,1081-1083 (1978) 

2. P.W. Smith, Jr., "Statistical models of coupled dynamical systems and the transition from 

weak to strong coupling," J. Acoust. Soc. Am. 65, 695-698 (1979). 

3. R. H. Lyon, Statistical Energy Analysis of Dynamical Systems (MIT, Cambridge, 1975). 

4. G. Maidanik and J. Dickey, "Design criteria for the damping effectiveness of structural 

fuzzies," J. Acoust. Soc. Am. 100, 1-5 (1996). 

5. R. H. Lyon, "Statistical energy analysis and structural fuzzy," J. Acoust. Soc. Am. 97, 2878- 

2881 (1995). 

6. G. Maidanik and J. Dickey, "On the fuzz in a structural fuzzy," Proceeding of Internoise 96, 

1297-1302 (1996). 

7. R. H. Lyon and G. Maidanik, "Power flow between linearly coupled oscillators," J. Acoust. 

Soc. Am., 34, 623-639 (1962). 

8. G. Maidanik and J. Dickey, "Loss factors of pipe-like structures containing beads," J. Acoust. 

Soc. Am. 22, 1-9 (1996). 

17 



Master Structure 

th 

es(co), T|SS(CD) 

n.(cü), Es((ö) 

nes(a)    nes((ö) 

Adjunct Structure, 
the "fuzz" 

Tlbs((ö)     Tlg(Cü) 

-9>  

< 

W^    Tlb^ 

Figure 1, A SEA model of two coupled structures. 



1 - 

60 
O 

0 

-1 

-2 
-1 

VTo<Ties<ioo 

i<T1es<iTTö 

VöT<Ties<i 

-0.5 
-f- 

0 

LogioCCj 

Fig. 2 The effective loss factor ratio TI^Oü) as a function of the 

stored energy ratio (£(a>) and the loss factor ratio TACO). 



ne(co) 

a) An externally driven SEA model of a simple structure. 

nel(co) 

ri12(co) 

Tl21(co) 

b) A two-structure complex obtained by appropriate division of the structure 
depicted in Fig. 3a. 

Fig. 3 



0.5- 

60 
O 

a) CJ^CO) = 1. 

-0.5- 

100<Pj(co) 

7 

Logio(Vw)) 

0.5- 

5 
2f   0 

60 
O 

b) cfa) = 0.2. 

-0.5 

-1 

Log10(A.,(a>)) 

10<pJ(co) 

Fig. 4. The external input power ratio pj(co) as a function of (MJ/MJ) and ^(co) 

for a fixed value of the modal energy ratio, GJCOD). 



INITIAL DISTRIBUTION 

Copies 

3 NAVSEA03T2 
2       Taddeo 
1        Becker 

4 ONR/ONT 
1 334    Vogelsong 
1 334    Tucker 
1 334    Main 
1 Library 

4       NRL 
1 5130 Bucaro 
1 5130 Williams 
1 5130  Photiadis 
1 library 

4       NUWC/New London 
1       Sandman 
1        Harari 
1        3332  Lee 
1        Library 

1 NUWC/NPT 
Library 

2 DTTC 

2 Johns Hopkins University 

1        Applied Physics Lab 
Jonhs Hopkins University 
library 

1   ARL/Penn State University 
1        Biancardi 

I    Burroughs 

1        Cambridge Collaborative 
Manning 

1        Georgia Tech/M.E. Dept. 
Ginsberg 

1       MIT 
Dyer 

Copies 

1      Penn State University 
1        Koopman 

2 Virginia Tech 
1 Knight 
1       Fuller 

CENTER DISTRIBUTION 

Copies   Code Name 

1        Oil 

0112 
0112 

Douglas 
Halsall 

20 

204 

2040 Everstine 

2042 
2042 Hambric 

70 

7030 

7200 Hwang 

7250 
7250 
7250 

Maga 
Vasudevan 

726 Szilagyi 

3421   (TIC-Carderock) 


