


DISCLAIMS! NOTICE 

THIS DOCUMENT IS BEST 

QUALITY AVAILABLE. THE COPY 

FURNISHED TO DTIC CONTAINED 

A SIGNIFICANT NUMBER OF 

PAGES WHICH DO NOT 

REPRODUCE   LEGIBLY. 



NAICJD(RS)T-0154-96 

HUMAN TRANSLATION 
NAIC-ID(RS)T-0154-96       26 August 1996 

MICROFICHE NR: 

TURBULENCE EFFECTS IN A FOLDED PATH 

By: Song Zhengfang 

English pages: 16 

Source: Jiguang Jishu (Laser Technology), Vol. 12, Nr. 1, 
February 1988, pp. 1-8 

Country of origin: China 
Translated by: SCITRAN 

F33657-84-D-0165 
Requester: NAIC/TATD/Bruce Armstrong 
Approved for public release: distribution unlimited. 

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL 
FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITO- 
RIAL COMMENT STATEMENTS OR THEORIES ADVO- 
CATED OR IMPLIED ARE THOSE OF THE SOURCE AND 
DO NOT NECESSARILY REFLECT THE POSITION OR 
OPINION OF THE NATIONAL AIR INTELLIGENCE CENTER. 

PREPARED BY: 

TRANSLATION SERVICES 
NATIONAL AIR INTELLIGENCE CENTER 
WPAFB. OHIO 

NAIPlD(RS)T-M54-qfi Date 7fi   Augnct    1QQ£ 



GRAPHICS DISCLAIMER 

All figures, graphics, tables, equations, etc. merged into this 
translation were extracted from the best quality copy available. 



TURBULENCE EFFECTS IN A FOLDED PATH 

Song Zhengfang 

I.  INTRODUCTION 

In laser applications to such things as range finding, 
tracking, guidance, pollution monitoring, autoadaptive 
technologies, and so on, sending and receiving are positioned on 
the same end. On the other end is installed a certain type of 
reflector body. Beams go back and forth in a turbulent flow 
path.  This type of light path is generally called a folded path. 

Moreover, we call light paths of straight line propagation in 
single directions direct light paths.  Early in the 1970's, it 
had already been discovered that turbulent flow influences on 
folded light paths were very greatly different compared to direct 
light paths [1], thereby promoting theoretical and experimental 
research related to reflection field turbulent flow effect 
problems.  Early theoretical work had made use of the concept of 
"back query scattering amplification phenomena"[2,3] in order to 
describe characteristic phenomena associated with folded light 
paths.  Subsequent in depth research discovered that 
amplification effects were not the only phenomena.  Under certain 
types of conditions, there also exist what are called "self- 
compensating effects"[4]. Up to the present time, probes have 
already been done with regard to the characteristics associated 
with multiple types of turbulence effects in reflection fields in 
order to facilitate—on a foundation of adequate understanding— 
the adoption of appropriate measures so as to improve the 
sensitivity of optical systems as well as reduce the influences 
of turbulence.  This article introduces research results 
associated with such areas as intensity fluctuations, beam 
spread, spot quiver, as well as light path length fluctuations, 
and so on.  Limited by the scope of the article, stress is laid 
on elucidating basic results—simplifying lengthy derivations. 

II.  INTENSITY FLUCTUATIONS 

1.  Statistical Intensity Moments /2 

Making use of the principles of reciprocity, from wave field 
complex amplitudes associated with planar target reflections, it 
is possible to write [5] 

U.(x,,p)= Jd*td*ru0(t)K(r)G(x,x,;r,T;p,t)      (1) 



In the equation, uo(t) is complex amplitudes associated with 
sending aperture locations.  Source points and observation points 
are located, in all cases, within plane x' = xo.  k(r) is 
reflection coefficients associated with reflection devices within 
the plane x' = x.  G(x,xo; r,r; p,t) is called a local Green 
function.  It is a product of direct wave and reflected wave 
Green functions,  p and r are, respectively, lateral vector 
locations associated with the interiors of plane x' = xo and x' = 
x.  Local Green functions satisfy the equation below: 

<J_2ikA.+ (Ap,^+A,0 + k*Ce1(x
/;t/) + e1(x

/,p/)]} G=0    (2) 

Boundary conditions are 

G(x,X;r,T;p',t')=ö<r-p')ö(T-t') (3) 

In equation (2), el(x',z') is the dielectric constant fluctuation 
field.  Ap' is lateral Laplace operator. 

On the basis of equation (1), it is possible to write the 2n 
order reflection field coherence function 

' (4) •<Gti(x,x0;r1,,T11;p,1,t„)> 



In the equation, 

n 
G2.(x,x0sr2„T„.pj,,tt,) =   n G(x,xoJr j-lfT j-up j-^tji-,) 

•n 
.G,(x,x0;r1i,Tl,;pIJ,t1i)Ki.(r1.)=  " u (tji-^u'a.i) = n ii Vi »_''»«•/•* -A (5) 

In actuality, what is of comparatively great significance is 
the second order mutual coherence function T2r (xo,p2) normalized 
strength fluctuation variance al,2r(xo,R) and spacial correlation 
coefficient bI,r(xo,plp2).  The definitions of ol, 2s and bl,r) 

are 

T?.,t
1(x8,R)=BI,f(x,;.R,R)/rt,^(Xö)R>R) 

(6) 

b!,r(x0p1,p1)=BI,r(x0,p,,pt)/ nl B,,ri/2(x0,pi,pi) 
i=1.2 

(7) 

In equations, 

3i*r<Xo,p.r^i>=?«M(Xi>p,;,pi^^^ (8) 

is called a spacial correlation function.  These functions 
involve local Green function second order moments (G2) and fourth 
order moments (G4).  Aksenov and others [5] have made detailed 



discussions—under certain conditions—of planar wave and 
spherical wave second order mutual coherence functions, degrees 
of spacial coherence, as well as coherence lengths in cases 
associated with point reflectors, planar reflectors, and diffuse 
reflection objects.  The author is not prepared here to quote in 
detail. Only some simple discussion will be made of 
comparatively significant results. 

Intensity amplification coefficients are defined as 

ft.<!!:>;-,?Tifi<?»o)/Tw>«(RJp> (9) 

In equations, r2,ro(R,0) is the intensity of light waves in a 
vacuum.  Calculation results clearly show that—under conditions 
of weak turbulence and in regard to diffuse reflectors—when Qr - 
-> oo, planar wave amplification coefficient Gl(illegible) (R) —> 
1 .  When QI —> 1, planar wave GI (O) = 1 + 0.31Ds (IF) . 
Spherical wave GI (0) = 1 + 0.45Ds (IF).  In this, Qr = kar2/L. 
ar is effective radius of reflector bodies.  Ds(lF) is a 
normalized parameter (=1.092Cn2K2LlF5/3).  IF = (L/k)l/2.  As a 
result, it is possible to see that, when option is made for the 
use of reflection associated with diffuse reflection objects of 
limited dimensions, amplification coefficients are, in all cases, 
larger than 1. Under conditions of strong turbulence, there are 
also relationships similar to the ones discussed above. Besides 
this, spherical wave reflection amplification effects not only 
exist in point reflector situations.  They also exist in planar 
reflector situations where dimensions exceed first Fresnel band 
radii.  Amplification coefficients associated with these two 
types of situations are the same. /3 
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Fig.l Relationships Between Degrees of Spacial Coherence and 
Relative Apertures 

Key: 2.  Direct Light Path 



Fig.l gives relationships between degrees of spacial 
coherence yr (R,R) and relative apertures '(p/'VAlT) 
Coherence  characteristics  associated  with  point  reflector 
situations (Curve 1) will be much larger than values associated 
with  direct  light  paths  (Curve  2).    However,  coherence 
characteristics associated with planar reflector situations (Curve 
3) are, by contrast, smaller values than those associated with 
direct light paths.  Calculation results with regard to spherical 
waves clearly show, by contrast, that coherence characteristics 
associated with point reflector situations and direct light paths 
are the same. Coherence characteristics associated with 
remaining reflection light paths are, in all cases, smaller than 
direct light paths. 

During strong turbulence, values associated with coherence 
length for spherical waves on planar reflection light paths are 
the same as those transmitted forward distances 2L on direct light 
paths.  Coherence lengths associated with spherical waves in 
point reflector situations are equal to values during backward 
transmission distances L.  During planar reflection, planar wave 
coherence lengths are egual to those during direct 2L 
prorogations.  In point reflector cases, by contrast, they are 
equal to values associated with spherical surface waves durinq 
backward transmissions L. 

2.  Intensity Fluctuation Variances 

Table 1 compiles expressions for normalized intensity 
fluctuation variances in different situations [5].  From among 
them, it is possible to know that, when fluctuations are weak, 
intensity fluctuation amplification effects associated with 
reflection field spherical wave surfaces will be larger than 
those associated with planar waves.  If one takes intensity 
fluctuation amplification coefficients and defines them as the 
ratio of reflection field intensity variance with respect to 
direct light path (2L) intensity variances (infinite planar 
reflector case) or the ratio of the sum of reflector wave 
intensity variances versus direct waves (point reflector 
devices), it is then possible to discover that spherical wave 
amplification coefficients approach 2.  Planar wave amplification 
coefficients are approximately 1.5. As far as diffuse reflection 
paths are concerned, amplification effects also exist.  However 
there is a relationship to the dimensions of diffuse reflecting' 
bodies. When diffuse reflecting body dimensions enlarge, 
intensity fluctuations will be reduced.  In limit situations 
(Qr --•> »), al, r2 —> 1, that is, intensity fluctuations only 
depend on random phase changes produced by target surface 
roughness. 



During intensity fluctuations, due to the fact that, as far 
as scintillation saturation effects are concerned—no matter 
whether use is made of point reflectors or infinite planar 
reflector reflection—al,r2 associated with planar waves and 
spherical surface waves will tend toward saturation in the same 
way as on direct light paths. With regard to this type of 
situation, it also appears on diffuse reflection light paths. 

Under conditions where turbulent flow intensity, light path 
length, and wave lengths are the same, during weak turbulent 
flows, intensity fluctuation variances associated with planar 
waves on infinite planar reflectors are the largest. Values 
associated with spherical surface waves on point reflection light 
paths are smallest. During strong turbulent flows, this is just 
the reverse.  In situations where diffusion body dimensions are 
finite (Qr ~ 1), there are also situations similar to those 
discussed above. 

Time Frequency Spectra 

On the basis of spacial covariances associated with 
transmission on folded light paths with planar reflectors for 
planar waves and spherical waves, Smith and Pries [6] introduced 
Taylor freezing hypotheses in order to laterally intersect 
products of wind velocity v and time T to display spacial 
distance p.  In conjunction with this, adoption was made of 
Fourier transforms associated with spacial covariances, 
respectively solving for frequency spectra associated with planar 
waves and spherical waves: 

Wp1(f) = 64T'k»JLdz f •     dKK*.(K)[(Kv)*-Qi]sin*( 11L.) 
o  .   - - <a/V- :■ ■■■ \        k -,/ 

■ cos: f K'<L:*> I       "~ (10) 

L     2k .   J /4 

W„(t) =.64**k> f -dz f i-'VfiKK^kjrtkv) »lffli].lnVTK1»(2L~iy • | i 
• <o/V ' '*■        4k!*.;'.-f 



In equations, subscripts pi and sp stand respectively for planar 
waves and spherical waves, a  = 2nf.     K is the spacial wave 
number.  (Illegible)nK is the refractive index fluctuation 
spectral function,  pi is the distance of detectors from the 
centers of beams. 

-a» -a 4   o.ft4   as 
lot it/t. 

Fig.2 Planar Wave Logarithmic Amplitude Fluctuation Normalized 
Frequency Spectra. A. Direct Light Path (2L) B. Folded Light 
Path C.  Direct Light Path (L) 



In expressions (10) and (11), it is only necessary to take 
sin2 [K2 (t-z)/2k) to substitute for 4sin2 (K2L/2k)cos2 [K2 (L- 
z)/2k] and let pi =» 0 and it is then possible to obtain 
corresponding frequency spectra on direct light paths. After 
precisely determining refractive index spectral functions (for 
example, opting for the use of Kolmogorov spectra), it is then 
possible to solve for the actual forms of frequency spectra. 
Calculations clearly show that reflection field scintillation 
energies appear comparatively frequently at low frequency ends 
(refer to Fig.2). This is because effective turbulent flow 
scales leading to intensity fluctuations on reflection paths are 
larger than for direct light paths. 

Calculation results with regard to spherical surface wave 
frequency spectra point out that, the closer observation points 
are to the center of beams, the larger are high frequency 
fluctuations. Therefore, when making use of spherical surface 
wave scintillation remote sensing of lateral wind speeds, it is 
best to offset from the centers of light axes in order to reduce 
certain undesired variations in signals. 

III.  BEAM SPREAD 

On the basis of reflection field second order moments, after 
going through a certain processing—with regard to situations in 
which Gaussian beams are formed with (illegible)o (x) = uo 
(0)exp(-x2/2a2) (in them a-2 = a-2 + ik/F) in effective amplitude 
reflection coefficients associated with angular reflectors also 
possessing Gaussian distribution (r(p)=roexp(-p2/2ar2)) and 
planar reflector reflection coefficient r(p)=l—we derive the 
expression associated with reflection field mean square radii [7] 

/ t \ 18L« r/fr-«"« ?? .r-i.dk1 ■'--.; • r/friiiipi  • -' ck'      1 * 

Lp' + 4L».(d»+c»-p,-.«V J / V^+Hc.*-ps-«/-;,:. 

(planar reflector) 

(12) 



/öLi> -8tL/ To -i dkl 1 lj- L*-+ ^L— V 
i^&^M&^& ;&m±&ff>r4^k:.Ti A-i-T&W+c'-Pt-'T J 

.... LPV; T 4L»(d!+c»-p,-«)'J /VkU.'jrJa^+c'-p,-«/ 

(angular reflector) 

(13) 
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Fig.3 Beam Spread Amplifications in Different Cases  (1)  Planar 
Reflector  (2)  Angular Reflector 

In equations, c = "'-£:; <-=^'.-. 2F  2L 2a1 , po is 

spherical wave coherence length (=(0.546cn2K2L)-3/5).       /5 
Reflection field beam spread amplification coefficient Gp is 

G*>.r..(. < PV > ...)_."/»/< { P,I» -)j$t/* (14) 

In equations, (<p2L2>d)l/2 are effective radii on direct light 
paths: 

Tprt.iV'-alt6^2Ti;Mr+'4(V4?4a^r,5L:tA,a«j 
' ■ '  * • (15) 

Fig.3 gives calculation results associated with focal beams 
(F=2L) for cases with different turbulence intensities 
C(illegible)2.  From the Fig. in question, it is possible to know 



that planar reflector state beam spread amplification 
coefficients Gp>l.  In locations at close distances, 
amplification coefficients are comparatively small. When 
distances are relatively long, Gp tends toward saturation. 
However, speaking in general terms, differences between planar 
reflector reflections and linear propagation are not great (Gp * 
1). The strength or weakness of the effects in question is 
related to various types of parameters. However, the primary 
ones are transmission distance and turbulence intensity.  In 
optimum situations, Gp —> 0.5 . 

IV.  SPOT QUIVER 

Starting out from parabolic wave field equations, 
application is made of Maerkefu (phonetic) approximations;  The 
general expression associated with our solving for reflection 
field drift angle 6 fluctuation covariances o8,r2 [8] is 

*e."r1-o8',(ti)+äe ,(L»r±2ae.,i* (16) 

In the equation, Lf and Lb refer, respectively, to forward and 
back transmission distances.  o8,fb2 are drift angle fluctuation 
variances led to by interference superpositions between incident 
light and reflected light.  In planar reflector situations, 
o6,fb2 are adopted with positive signs.  In angular reflector 
situations, negative signs are selected.  Expressions associated 
with these three components are 

09 S(L,)=JJ*Pi,P,'> < I(Pi)I(P,,) >.dp»dp/-.(|l(p)dp )*IA <17> 

aVV(Lb) =?£Li' 'ÜrÖ*«!! f d^RiaVRVdiK^K)T^tl(1^4,'R)"~ 

09 ,nx = ~l ^(l-Ud4jd»RVd*l?;d*K«.(^K*ii(4,R) 

(18) 

(19) 

Obviously, vi.t'+oi.iUftK '      We now consider properties 
associated with reflection field beam drift angles in special 
cases. . . 

In weak fluctuation areas, it is possible to rationally 
believe thatp<£(fi)'^i?(fr'fRj&lf     Because of this, one obtains 

10 



(planar reflector) 
v. .--■(3/2b8:;*<2L)i>: 

°-^M:m^ (20) 

(angular reflector) 
/6 

We look next at amplification effects in planar reflector 
situations (G6=1.5) and self-compensating effects (G8=0.5) 
associated with angular reflector situations. o6,d2 calculation 
formulae have already been discussed in detail in references 
[9,10]. We will not give unnecessary details again here. 

Kopileoich and Sochilin [11]—using gentle microperturbation 
approximations—also obtained results in line with ours. 
However, in derivations, we certainly were not limited to the 
collimation light beams which they used.  Therefore, equation 
(20) should also be appropriate for use in cases of focused 
beams. 

In regions of strong fluctuation, due to the fact that 
(illegible) <1112>-<ll> <I2> T22 - <I1> <I2>—in accordance^with 
analyses of reflected light mutual coherence functions C*'irj£< Ii > Cft) 
by Krupnik and others [12]—when beam radii a » po (L), <Ir(L)> 
- <Id (2L)>.  Therefore, one has o6,r2(L) - o6,d2(2L).  This 
explains the disappearance (G6—>1) of special functions 
associated with reflection fields along with increases in 
transmission distances or increases in turbulent flow intensity. 

Similar handling methods are also appropriate for use in 
discussing problems associated with reflection field beams 
arriving at angle a  fluctuations.  In weak fluctuation areas, 
with respect to interference terms, we obtain 

.  , (2a«*(2L) 

lo 

(planar reflector) 

(21) 

(angular reflector) 

The results discussed above and the results obtained by Krupnik 
et al [12] using other methods are completely in agreement. 

In strong fluctuation areas, era,r2 (L) - era,d2 (2L), that 
is, reflection fields reaching angular fluctuations are 
consistent with periods when direct propagation is 2L. 

V.  LIGHT PATH LENGTH FLUCTUATIONS 

Consideration of range finding problems is connected with 
large scales. We make use of geometrical optical approximations 
in order to handle them [13].  In a similar way to spot quiver, 

11 



planar reflector reflection field light path fluctuation 
variances <AL2r>m can be expressed as 

< AL,1 >«-< AV ) -+ < AU* > «+ < AL,k > . 

As far as intermediate forms are concerned, 

<-At,A-Wr-j^ffl-:J-Vdxi < i".ci^p'SiT.<*,,i;>->* (23) 

(22) 

< A^?>^4/'^f>^».(I'-x.,P,)iiI(L-xlfp1);)- (24) 

<:At»(^=2jtijlxli|>dxt < n.Oc.ip^a.-fL-x^p,) > (25) 

It is assumed that index of refraction fluctuation nl (X,p) is a 
statistically uniform Gaussian field.  In conjunction with this, 
application is made of Van Karman turbulence spectra. After 
operations, one obtains 

< AV > ;=6.254C;»(Ö)I-;Li;VJ[i+o.9943(p/L,)5/6k.5/6(p/L,)] 
( Zo ) 

In equations, Cn2 (0) are observation position turbulence flow 
intensities.  Lo is turbulent flow outer dimensions.  K-5/6 
(p/Lo) is an imaginary argument Hanke (phonetic) function. 
L(illegible) is equivalent distance: 

M! JjL .C\(x) dx/C« (0> (27) 

If turbulent flow is uniform, then, L(illegible) is equal to 
light path length L. 

Compared to light path fluctuation variances associated with 
direct propagation of distances 2L, it is possible to know that 
amplification coefficients associated with reflection field light 
path fluctuations 

Gv ,ff = feHJ0.?9.43,(p/L,) 5/«K-5/6(p/L,) 
(28) 

Fig.4 describes changes in amplification coefficients as 
functions of relative distances p/Lo.  From Fig.'s, it is 
possible to see that when p/Lo « 1 GL=2. When p/Lo » 1, GL —> 
1.  In general situations, p £ 10cm and Lo - lm. Therefore, 
amplification effects associated with planar reflected light 
paths always exist. 

During the process of deriving formula (26), there was 

12 



certainly no limitation of beam forms. As a result, the 
conclusions described above are appropriate for use with beams of 
any configuration. #      /

7 

When making use of angular reflectors, with regard to single 
mode Gaussian beams applying expanded Huygens-Fresnel principles, 
we solve for 

<ALr*>.~?.127t *.127Cm*{0)h£i$tl+V:+h&*TMfaW*^&to/hfö 
(29) 

In equations, 

Tf= (<+r? > (i+0Q' ttfV.w+^-Wi a+°Pr) vt-vü (30) 

<p  is beam angle of divergence. The meanings of other symbols are 
as before.  In general situations, the condition is satisfied 
that p « Lo . Expression (29) can be simplified to be 

< AV ).=3.i27Cm*(0)LtL|5/s(1+T)t (31) 

As a result, light path fluctuation amplification coefficients in 
angular reflector situations 

Gt,.= -|-<1+T)« (32) 

Fig.4 Changes in Amplification Coefficients as a Function of 
Relative Intervals 

Fig.5 gives changes in amplification coefficients under different 
conditions as functions of distance.  Amplification coefficients 
as a whole are inserted between 0.5 ~ 2. When distances are 
short, GL,c —> 1/2.  This is nothing else than self-compensating 
effects under proximate field conditions. When distances are 
long, GL, c —> 2, it is then appropriate to make use of them in 
planar reflector situations. This is because, when distances are 
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long, diffraction effects play a dominant role. The special 
functions of angular reflectors disappear. At intermediate 
distances, amplification coefficients depend on wave length, 
transmission and reflection apertures as well as beam angles of 
divergence. Comparing the four curves in Fig.5, it is possible 
to know that, at the same distances, amplification (or self- 
compensation) effects are comparatively obvious in situations 

l.A*=0.63nm,a=a,=0.1m,'<j> "= . 

lO-«rad, Z. <j>=10-»rad,^^^® 

lj ;3_.A-10.6jim;*4LHl;4.a-:"- 

Fig.5 Relationships of Amplification Coefficients as Functions 
of Distances  (1) Others Same as 1 

where wave lengths are long, apertures are small, and angles of 
divergence are large.  The facts described above mean that— 
making use of short wave lengths, small divergences, as well as 
large reception and transmission apertures—it is possible to 
reduce turbulent flow effects. This conclusion can be explained 
like this. The smaller distances are, or the shorter wave 
lengths are, the smaller related turbulent flow dimensions then 
are. The smaller divergence angles are, it is equivalent to 
enlarging reception and transmission apertures. Moreover, the 
larger apertures are, the more numerous uncorrelated elements 
which are included then are. Adopting average results, there is 
then a correspondence with relatively small light path 
fluctuations. 

VI. DISCUSSION 
/8 

Above, we have considered the influences of reflection field 
turbulent flow influences on such things as beam intensities, 
spreads, drifts, as well as light path fluctuations, and so on. 
Generally speaking, amplification phenomena exist on light paths 
which make use of planar reflectors.  Self-compensation effects 
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exist on light paths making use of angular reflectors. This is 
because there exist mutually overlapping regions of incident light 
beams and reflected light beams.  Light waves produce 
interference.  In cases of planar reflector reflection, this then 
leads to a strengthening of turbulent flow influences. This is 
an amplification phenomenon.  In angular reflector situations, 
due to them possessing the characteristic of being able to make 
reflected light return along its original direction of incidence, 
geometrical divergence drops, and phase fluctuations are reduced, 
thereby playing a compensating role with regard to spot quiver as 
well as spread, and so on. 

Obviously, amplification and self-compensation phenomena 
associated with reflection fields are appropriate to use with any 
turbulent flow effect. What is discussed here is simply one very 
small part. A good number of problems still have not been 
explored.  Experimental work is also very limited at the present 
time.  In order to fully understand the characteristics of 
turbulent flow effects in reflection fields, it is still 
necessary to carry out large amounts of theoretical and 
experimental research work. 
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ABSTRACT 

This article discusses intensity fluctuations when laser 
light propagates in folded light paths as well as the properties 
of such turbulence effects as beam spread, spot quiver path 
length fluctuations, and so on. Theoretical results clearly show 
that, when use is made of different reflectors—compared to 
direct light paths—one has the existence of amplification 
phenomena or self-compensation phenomena.  This article also 
analyzes the mechanisms associated with the production of these 
phenomena. 
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