
NASA Contractor Report 201599

ICASE Report No. 96-54

ICASE
BALANCING CONTENTION AND SYNCHRONIZATION
ON THE INTEL PARAGON

Shahid H. Bokhari

AHßtoT«d tot em hoc releoMt

miaiiilThi «.i i i — i i —

,o^^

David M. Nicol «r&tf^"
vft

NASA Contract No. NAS1-19480
August 1996

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

19961021 075

Balancing Contention and Synchronization

on the Intel Paragon

Shahid H. Bokhari David M. Nicol

Department of Electrical Engineering Department of Computer Science
University of Engineering & Technology Dartmouth College

Lahore, Pakistan Hanover, New Hampshire

Abstract

The Intel Paragon is a mesh-connected distributed memory parallel com-
puter. It uses an oblivious and deterministic message routing algorithm: this
permits us to develop highly optimized schedules for frequently needed com-
munication patterns.

The complete exchange is one such pattern. Several approaches are available
for carrying it out on the mesh. We study an algorithm developed by Scott.
This algorithm assumes that a communication link can carry one message at a
time and that a node can only transmit one message at a time. It requires global
synchronization to enforce a schedule of transmissions. Unfortunately global
synchronization has substantial overhead on the Paragon. At the same time the
powerful interconnection mechanism of this machine permits 2 or 3 messages to
share a communication link with minor overhead. It can also overlap multiple
message transmission from the same node to some extent.

We develop a generalization of Scott's algorithm that executes complete
exchange with a prescribed contention. Schedules that incur greater contention
require fewer synchronization steps. This permits us to tradeoff contention
against synchronization overhead.

We describe the performance of this algorithm and compare it with Scott's
original algorithm as well as with a naive algorithm that does not take inter-
connection structure into account.

The Bounded contention algorithm is always better than Scott's algorithm
and outperforms the naive algorithm for all but the smallest message sizes.
The naive algorithm fails to work on meshes larger than 12 x 12. These results
show that due consideration of processor interconnect and machine performance
parameters is necessary to obtain peak performance from the Paragon and its
successor mesh machines.

Research supported by NASA Contract NAS1-19480, while the authors were in residence at
the Institute for Computer Applications in Science & Engineering, NASA Langley Research Center,
Hampton, Virginia.

This research was performed using the Trex 512 node Paragon operated by Caltech on behalf of
the Concurrent Supercomputing Consortium. Access to this facility was provided by NASA.

Shahid H. Bokhari was additionally supported by a grant from the Directorate of Research
Extension and Advisory Services, University of Engineering & Technology, Lahore.

1 Introduction

Interprocessor communication overhead is a major factor that limits the performance
of distributed memory parallel computer systems. All machines, no matter how pow-
erful their interprocessor communication mechanism, suffer from this overhead. Com-
munication overhead is exacerbated by node and link contention. Node contention
arises when a node attempts to transmit or receive several messages simultaneously.
Link contention is caused by the sharing of a communication link by two or more
messages. Contention arises in all but the simplest communication requirements. In
some cases, contention can be minimized or eliminated by careful scheduling of mes-
sages. However this requires that all processors in the system synchronize themselves
at specific points in time—thereby incurring synchronization overhead.

The parallel algorithm designer is thus faced with the following dilemma:

• A completely contention-free schedule will incur substantial synchronization
overhead.

• A completely synchronization-free schedule will result in heavy contention over-

head.

Clearly there is a need to find a balance between the two types of overhead in order
to minimize the overall execution time of the parallel algorithm.

The complete exchange is an interprocessor communication pattern that arises
in a number of important applications. It requires each processor to send a distinct
message to every other processor in the system and is thus the heaviest communication
requirement that can be imposed on a parallel computer. Complete exchange has been
extensively studied and a number of algorithms are known for its efficient execution
on various interconnection networks.

We describe a study of the complete exchange on mesh connected parallel ma-
chines. We start with an algorithm to execute the complete exchange on meshes
that was developed by David Scott. We develop a generalization of this algorithm
that permits us to decrease synchronization overhead by increasing contention. We
describe our experiments with this approach on the 512-node Intel Paragon mesh at
Caltech. It is seen that the generalized algorithm can be used to balance contention
and synchronization overhead and thus obtain significant reduction in the time re-
quired to execute the complete exchange. The generalized algorithm is also shown to
give better performance than a naive algorithm that does not take the interconnect
of the Paragon into account.

Our results demonstrate that careful consideration of parallel machine intercon-
nect and performance characteristics is needed in order to obtain the best perfor-
mance. As an extreme example, the naive algorithm (which does not take the inter-
connect into account) fails to execute on Paragon meshes of size larger than 12 x 12,
because the operating system cannot allocate enough memory for the large amount
of communication traffic required. For such meshes we have no choice but to use an

Figure 1: The mesh interconnect of a 4 x 4 Paragon. The circles represent compute nodes
while the squares show special purpose hardware for communication. Message routing is
done via the "row-column" algorithm explained in the text. The figure shows two pairs of
processors communicating and contending for a single edge. Such link contention can lead
to substantial overhead.

algorithm that carefully schedules communications, such as Scott's algorithm or its
generalization (described in this paper).

2 The Paragon Mesh

The mesh has long been a popular choice for interconnecting parallel computers.
Currently, the most powerful example of the mesh is the Intel Paragon1. The spe-
cific machine on which the experiments described in this paper were carried out is
located at the Center for Advanced Computing Research at Caltech2. It is made
up of 512 compute nodes organized in a 16 x 32 array. Each node is composed of
two Intel i860 processors. One serves as a compute processor and the other as a
communication processor. In addition there is special hardware for interfacing with
the intercommunication network. The interprocessor communication network is a
mesh with "row-column" routing (Figure 1), A message traveling from source s to
destination t first travels along the row in which s lies, until it reaches the column
in which t lies; it then travels along the column to t. Two messages traveling si-
multaneously between two different source-destination pairs may need to traverse the
same communication link, as illustrated in Figure 1, and will incur link contention

1http://www.s sd.int el.com/paragon.html
2http://www.cacr.caltech.edu

Node cont=l, Link cont=4 Node cont=4, Link cont=8 Node cont=2, Link cont=6

Figure 2: Explanation of node and link contention on chains of processors. Node contention
equals the number of messages that a processor attempts to transmit simultaneously. Link
contention is given by the maximum number of messages passing through any communica-
tion link in the chain.

overhead.
The routing mechanism on the Paragon is oblivious (the paths between all source-

destination pairs are statically defined) and deterministic (a single route exists be-
tween every source-destination pair). As a result, it is possible to accurately predict
the time required for aycommunication step, provided no contention is taking place.

A message passing through a node en route to its destination does not impact
the computation occuring at that node as the routing is carried out by special hard-
ware. The i860s run at 50 MHz and are capable of 75 MFlops. This machine has 32
Megabytes of memory per node of which about 24 Megabytes are available for user
programs. Measured performance parameters of the Paragon are given in Table 1.
The communication expression in this table is obtained by using the specific com-
munication scheme employed in subsequent experiments with the complete exchange
and thus differs from the expressions reported elsewhere [2, 5].

Table 1: Performance Parameters for the Paragon

Synchronization n x n processors
Communication, message m > 8640 bytes

2741og2n — 134 //sec
231 + 0.022m //sec

Figure 2 clarifies the concepts of node and link contention, as applied to chains
of processors. The interpretation of these concepts for meshes is very similar though
difficult to explain in a simple diagram.

The successor machine to the Paragon is the Intel ASCI (Accelerated Strate-
gic Computing Initiative) Teraflop3[12], which is currently being installed at Sandia
Laboratories4. This machine also has a mesh interconnect and the techniques de-

3http://www.ssd.intel.com/tflop.html
4http://www.cs.sandia.gov/teraflop.html

A

B

C

D

E

0
G

H

0
0

K

0

M

N

O

P

A

E

0
M

B

F

0
N

c

G

K

0

D

H

0
P

P1 P2 P3 P4

(a) (b)

P1 P2 P3 P4

(C)

Figure 3: Complete Exchange on 4 Processors. To change storage from column order (a)
to row order (c), each processor must send a distinct message to every other processor (b).

scribed in this paper should be applicable to the new machine as well.

3 The Complete Exchange

On a distributed memory parallel computer, the complete exchange requires each of
TV processors to send a distinct m byte block to each of the remaining TV — 1 proces-
sors. This communication pattern, which is also known as all-to-all personalized, is
at the heart of many important multicomputer algorithms such as matrix transposi-
tion, matrix-vector multiply, Fast Fourier Transforms and the Alternating Directions
Implicit (ADI) method for solving partial differential equations. To understand the
data movement required by this pattern refer to Figure 3 which shows a 4 x 4 block
matrix stored on 4 processors. In part (a) of this Figure the matrix is stored in col-
umn order. In part (c) the layout has been changed to row order. It is clear that to
change from (a) to (c), each processor must transmit a block of data to every other
processor. This is shown in part (b) which is a complete directed graph of four nodes.

In general, complete exchange on TV processors can be represented by a complete
directed graph of TV nodes. It is thus the densest possible communication require-
ment and the time required by a distributed memory multicomputer to execute it
is an important performance parameter. At the same time, it is a challenge for the
algorithm designer to develop good algorithms for complete exchange on different
parallel architectures.

A number of algorithms have been developed for executing the complete exchange
on hypercubes [4, 6, 7, 8, 11] and meshes [1, 9]. These algorithms attempt to obtain
high performance by carefully scheduling communications so as to avoid node and
link contention. We can classify these algorithms into two categories. In Direct
algorithms each block is transmitted once to its ultimate destination; in Store-and-

forward algorithms a block is combined with others and transmitted in stages via
intermediate processors. Store-and-forward algorithms [7] strive to reduce the impact
of startup time by incurring data permutation and extra transmission overhead. It
has been shown that such algorithms perform well for small message sizes. Direct
algorithms [11, 9], on the other hand, have better performance for large message
sizes.

The time required to execute the complete exchange will depend on the intercon-
nection network and the schedule of data transfers. We shall address the problem
of developing good direct algorithms for mesh connected parallel architectures. The
sparsity of the mesh interconnect makes this a difficult endeavor. This is in contrast
with hypercubes, for which optimal direct algorithms (i.e., those that require N — 1
transmissions for an N processor system) have been known for some time.

4 Scott's Algorithm

The problem of implementing complete exchange on a mesh architecture has been
studied by Scott [9] under the following assumptions:

• A node can send and receive at most one message at a time.

• A communication link can carry at most one message in each direction at one
time.

• Messages are routed according to the "row-column" algorithm, that is, a mes-
sage from processor Xi,y\ to processor £2,2/2 first travels along a row to a^J/i
and then along a column to x^-, J/2-

Scott shows that, under these assumptions, a square mesh of N nodes cannot achieve
the complete exchange in fewer than A3/2/4 steps, unlike a hypercube, which requires
N — 1 steps. The intuitive reason for this is the far richer interconnection of the
hypercube which comes, of course, at the cost of a logarithmically increasing node
degree.

Scott goes on to describe a procedure that will generate a schedule of transmissions
that takes exactly A3/2/4 steps, for the case where A is a multiple of 4. This procedure
is based on composing or "cross-multiplying" pairs of 1-dimensional permutations and
can lead to many different sets of schedules, depending on the choices made when
composing the permutations. Figure 4 shows three permutations out of a set of 128
generated for an 8 x 8 mesh. The cells in this diagram are assumed to be numbered in
row-major order. A non-blank cell indicates the coordinates of the target to which the
corresponding processor has to transmit. A blank cell indicates that the corresponding
processor does not transmit anything during that permutation. As we increase the
size of the mesh, the proportion of these idle processors increases because the mesh
interconnect cannot support transmissions by all processors. It is these idle processors
that lead to the superlinear A3/2/4 expression for run time.

1,4 1,2 1,5 1,3
7,4 7,2 7,5 7,3

3,6 3,0 3,7 3,1

5,6 5,0 5,7 5,1

2,6 2,0 2,7 2,1

4,6 4,0 4,7 4,1

0,4 0,2 0,5 0,3

6,4 6,2 6,5 6,3

2,1 2,7 2,0 2,6

4,3 4,5 4,2 4,4

7,1 7,7 7,0 7,6

1,3 1,5 1,2 1,4
6,3 6,5 6,2 6,4

0,1 0,7 0,0 0,6

3,3 3,5 3,2 3,4

5,1 5,7 5,0 5,6

3,5 3,0 3,7 3,2

2,3 2,6 2,1 2,4

6,3 6,6 6,1 6,4

7,5 7,0 7,7 7,2

0,5 0,0 0,7 0,2

1,3 1,6 1,1 1,4
5,3 5,6 5,1 5,4

4,5 4,0 4,7 4,2

Figure 4: Three out of a set of 128 permutations for an 8 x 8 mesh. The cells in this
figure represent processors and are numbered in row-major order. An empty cell indicates
an inactive processor. A non-empty cell gives the coordinates of the cell to which that cell
transmits.

5 Bounded Contention Algorithm

The permutations generated by Scott's procedure assume that only one message can
travel over a link in one direction at a time. As a result all nodes cannot, in general,
transmit during any given step. This is evident in Figure 4, where we see that half
the nodes are always inactive. If we have a square mesh of n x n = N nodes, the
number of steps required is n3/4 = N3/2/A and during each step a fraction 4/n of the
nodes is inactive.

If we relax the constraint that a link only carry one message at a time, it becomes
interesting to explore if schedules can be generated in which contention is bounded by
some integer c. The permutations shown in Figure 4 cannot simply be superimposed
because the active nodes in any pair of permutations are not disjoint.

Scott's generation technique creates permutations that can be executed in any
order to achieve the complete exchange. The set of permutations generated is not
unique. We have developed an algorithm to generate a set of permutations in a special
collapsible order. This generates permutations in such a way that consecutive entries
in the sequence can be collapsed to form a denser permutation (i.e., one in which
more nodes are active), with greater contention. The collapsibility property is not
true of Scott's permutations in general.

Figure 5 shows two permutations for an 8 x 8 mesh that can be collapsed to form
a third. Since each of the constituent permutations has link contention bounded by
1, the contention in the collapsed permutation is bounded by 2. It is also clear that
each node is transmitting exactly once.

For the 8x8 mesh shown in Figure 5, the fraction of active nodes in the constituent
permutations is 4/n = 1/2. We can combine sets of two permutations each and thus
halve the number of steps required to achieve complete exchange.

We have developed a theory of collapsible schedules for the complete exchange
on meshes. We can show that for a square mesh of n x n = N nodes that permits
contention c on its links, the number of steps required is n3/4c, where c is an integer
< n/4 and c divides n/4 (i.e., n/4c is an integer).

We have implemented an algorithm based on this theory and used it to generate
and verify schedules for meshes of size 4 x 4, 8 x 8, ..., 32 x 325. Table 2 shows the
improvement possible as the permitted contention is allowed to increase. For each
mesh size, the minimum steps possible are n2 at c = n/4. This is within 1 of the
theoretical minimum n2 — 1. The blank entries below the principal diagonal in Table
2 are caused by the constraint that n/4c be an integer. This table assumes that no
node contention is permitted, i.e., a node cannot transmit more than one message at
a time.

The schedules generated by this algorithm have the interesting property that they
can be collapsed to whatever degree is permitted by the rules stated above. Thus the
schedule for 16x16 meshes could be collapsed for link contention 2 or 4 by combining

5Schedules for meshes of size 4 x 4, 8 x 8, 12 x 12 and 16 x 16 are available at the following site:
ftp://ftp.icase.edu/pub/cs/shahid

1,1 1,7 1,0 1,6

7,1 7,7 7,0 7,6

3,3 3,5 3,2 3,4

5,3 5,5 5,2 5,4

2,3 2,5 2,2 2,4

4,3 4,5 4,2 4,4

0,1 0,7 0,0 0,6

6,1 6,7 6,0 6,6

1,3 1,5 1,2 1,4
7,3 7,5 7,2 7,4

3,1 3,7 3,0 3,6

5,1 5,7 5,0 5,6

2,1 2,7 2,0 2,6

4,1 4,7 4,0 4,6
0,3 0,5 0,2 0,4
6,3 6,5 6,2 6,4

1,1 1,7 1,3 1,5 1,2 1,4 1,0 1,6

7,1 7,7 7,3 7,5 7,2 7,4 7,0 7,6

3,1 3,7 3,3 3,5 3,2 3,4 3,0 3,6

5,1 5,7 5,3 5,5 5,2 5,4 5,0 5,6

2,1 2,7 2,3 2,5 2,2 2,4 2,0 2,6

4,1 4,7 4,3 4,5 4,2 4,4 4,0 4,6

0,1 0,7 0,3 0,5 0,2 0,4 0,0 0,6

6,1 6,7 6,3 6,5 6,2 6,4 6,0 6,6

Figure 5: The first two permutations can be collapsed to form the third. This is possible
because the active cells in the first permutation correspond exactly to the inactive cells in
the second and vice versa. Since the link contention in the first two permutations is 1, the
combined permutation has link contention 2.

Table 2: Steps required as contention is allowed to increase.

Mesh size
(n x n)

Permitted Link Contention (c)
1 2 3 4 5 6 7 8

4x4 16
8x8 128 64

12 xl2 432 144
16 x 16 1024 512 256
20 x20 2000 1000 400
24 x24 3456 1728 1152 576
28 x28 5488 784
32 x 32 8192 4096 2048 1024

consecutive sub-sequences of 2 or 4 permutations as shown in Figure 6. If the first
synchronization in part (c) of this figure were removed we would have a schedule with
node as well as link contention. Two nodes would be attempting to transmit at a
time while the link contention would be doubled from 4 to 8. This can lead to further
improvements in run time, as described below.

6 Implementation Considerations

The nx message passing library was used for our experiments on the Paragon. This li-
brary has its origins in the Intel iPSC-860 hypercube which has two types of messages:
FORCED and UNFORCED. FORCED messages are transmitted from source to destination
under the assumption that a receive has already been posted (i.e., buffer space for
reception has been specified) at the destination. If an arriving message does not find
a receive posted, it is discarded. UNFORCED messages do not require a receive to be
posted beforehand. Before an UNFORCED message is transmitted there is an exchange
of control messages between source and destination to allocate operating system buffer
space for the message. This leads to additional overhead in communication (because
•of the control messages), extra memory requirements, and the penalty of copying
from operating system buffers to user areas [3]. Further details of the communica-
tion overhead on the Paragon appear in [2]. Shirley et al. [10] discuss how operating
system timer interrupts complicate performance measurement and prediction on this
machine.

On the Paragon, FORCED and UNFORCED messages are supposed to perform iden-
tically. It has been our experience that operating system space is allocated for all
possible arriving messages in addition to any user memory locations that may be
set aside by explicitly posted receives. The user can specify the amount of memory
buffers that the operating system is to set aside for this purpose. Despite this, when
large numbers of large-sized messages are expected, the operating system can run

10

(a)

■■ M

(b) (c)

Sj&c

■ ■■ ■■■
■■ ■■■■ ■■
■■■■ ■■>■
■■ ■■ ■■
■■ ■■ ■■

■■■■ ■■■■
■■ ■■■■ ■■
■■ ■■■■ ■■

■■■ ■■ ■■■

<<=Sy>&c

BB ■■
■■ ■■

■■• ■■ ■■■
■■ ■■■■ ■■

■■ ■■ ■■ ■■■■ ■■
■■ ■■ ■■■ ■■ ■■■

■ ■ ■ ■ ■■ ■■ ■■ ■■
■ ■ ■ ■ ■■ ■■ ■■ ■■
■■ ■■ ■■■ ■■ ■■■

■■ ■■ ■■ ■■■■ ■■
■■ ■■ ■■ ■■■■ ■■

■■ ■■ ■■■ ■■ ■■■
■ ■ ■ ■ ■■ ■■ ■■ ■■

■ *■ ■ ■■■■ ■■■■
■ ■■ ■ ■■■■ ■■■■

«=Sync.
■ ■ ■ ■ ■■■■ ■■■■
■ ■ ■ ■ ■■■■ ■■■■
■■ ■■ ■ ■■ ■■ ■■ ■

■■ ■■ ■■■■■■■■
■ ■■ ■ ■ ■ M ■■ ■ ■
■ ■■ ■ ■ ■ ■■ ■■ ■ ■

■■ ■■ ■■■■■■■■
■■ ■■ ■ ■■ ■■ ■■ ■
■■ ■■ ■ ■■ ■■ ■■ ■

■■ ■■ ■■■■■■■■
■ ■■ ■ ■ ■ ■■ ■■ ■ ■
■ ■■ ■ ■ ■ ■■ ■■ a B

■■ ■■ ■■■■■■■■
■■ ■■ ■ ■■ ■■ ■■ ■

■ ■ ■ ■ ■■■■ ■■■■
■ ■ ■ ■ ■■■■ ■■■■

<*=Sy*ic.
■■ ■■ ■■■■■■■■
■■ ■■ ■■■■■■■■

■a ■■ ■ ■ ■■ ■■ ■ ■
■ ■■ ■ ■■■■ ■■■■
■ ■ ■ ■ ■ ■■ ■■ ■■ ■
■ ■ ■ ■ ■ ■■ ■■ ■■ ■

■ ■■ ■ ■■■■ ■■■■
■■ ■■ ■ ■ ■■ ■■ ■ ■
■■ ■■ ■ ■ ■■ ■■ ■ ■

■ ■■ ■ ■■■■ ■■■■
■ ■ ■ ■ ■ ■■ » ■■ ■
■ ■ ■ ■ ■ ■■ ■■ ■■ ■

■ ■■ ■ ■■■■ ■■■■
■■ ■■ ■ ■ ■■ ■■ ■ ■

urn ■■ ■■■■■■■a
■■ ■■ aaaaaaaa

<^Sync.
■ ■ ■ ■
■ ■ ■ ■
■ ■ ■ ■

■ ■■ ■
■■ ■■
■■ ■■

■ ■■ ■
■ ■ ■ ■
■ ■ ■ ■

■ ■■ ■
■■ ■■
■■ ■■

■ ■■ ■
■ ■ ■ a

■ ■ ■ ■
■ ■ ■ ■

<^S#ic.
■ ■ ■ ■
■ ■ ■ ■

■ ■■ ■
■■ ■■

■ ■ ■ ■
■ ■ ■ ■

■■ ■■
* ■■ ■
■ ■■ ■
■■ ■■

■ ■ ■ ■
■ ■ ■ ■

■■ ■■
■ ■■ ■

■ ■ ■ ■
■ ■ ■ ■

<^Sync.
■ ■■ ■
■ ■■ ■
■■ ■■

■ ■ ■ ■
■ ■ ■ ■
■ ■ ■ ■

■ ■ ■ ■
■■ ■■
■■ ■■

■ ■ ■ ■
■ ■ ■ ■
■ ■ ■ ■

■ ■ ■ ■
■■ ■■

■ ■■ ■
■ ■■ ■

^syfac.
■■ ■■
■■ ■■

■ ■ ■ ■

«=Sync.

=Sj&c

^Sync.

■■■■■■■■■■■■■■■a
BaaaaaaaaaBBBaaa
■■■■■•■■■■■■■■■■
BBBBBBBBBBBBBBaa
BaaaaaaaaaBBBaaa
aaaaaaaBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBaBBBBBBBBBBB
BBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBB
■■■■■■■■■■■■■■■I
BflBBBBBBBBBBBBBB
BBBBaBBBBBBBBBBB
BBBBBBaBBBBBBBBB
■■■■■■■■■■■■■■■I
BBBBBBBBBBBBBBBB

=Sync.
■aaaaai

laaaflBi

■aaaaai

■BBBBBI
IBBBBBI

■BBBBBI
■BBBBBI

BBBBaaa BBBBBBBBB

<*=Sync.

<£=Sync.

Figure 6: (a) The first 8 (of 1024) members of a collapsible schedule for a 16 x 16 mesh.
Active nodes are indicated by square blocks. When alternate synchronizations are removed
(X), pairs of successive permutations collapse as shown in part (b) giving a schedule with
maximum link contention 2. Repeating this process results in a schedule with link contention
4 (c). Further removal of synchronization steps results in increasing node contention.

11

out of resources thereby causing the machine to hang. Needless to say, FORCED mes-
sages should only be used if communication requirements are well understood and
receives can be posted before any messages are launched. Deadlocks can develop if
this requirement is not satisfied.

The Bounded contention complete exchange algorithm that we have developed has
a completely determined communication requirement and we could thus use FORCED
messages. To compare the performance of the Bounded contention algorithm against
an algorithm that does not take the topology of the mesh into account, we imple-
mented a naive algorithm to carry out the complete exchange. This algorithm simply
transmits blocks of data from each processor to the remaining processors without
regard for link or node contention. We were unable to get the naive algorithm to
function reliably beyond 12 x 12 processors because the large numbers of outstanding
receives required could not be accommodated by the operating system.

Each node of the Paragon has an i860 processor dedicated to interprocessor com-
munication. This processor takes over a considerable portion of the overhead of
starting a data transfer. We have found that asynchronous receives and sends yield
much better performance because the compute processor can spawn a task on the
communication processor and carry on with its work without having to wait for the
operation to complete. This, in fact, is how the machine manages to perform well
under node contention.

Memory access and thus data communication on the Paragon is heavily affected
by the starting address of a transfer. In our experiments we have aligned all arrays
to 4k boundaries (the page size of the machine) to minimize this impact.

7 Experimental Results

When implementing Bounded contention complete exchange on the Paragon, several
aspects of the machine performance had to be taken into account.

1. The amount of contention in a schedule can only be controlled by global syn-
chronization. The overhead of this operation is substantial (Table 1).

2. While the machine can tolerate node and link contention, there is non-zero
overhead associated with such contention.

3. Overheads for node and link contention are heavily dependent on the type of
communication being carried out. It is very difficult to obtain simple expressions
for these overheads. For example, measurements taken of the 1-dimensional
communication patterns in Figure 2 do not apply to 2-dimensional communi-
cations.

The above aspects coupled with the use of virtual memory on the machine and
the complex effects of operating system interrupts [10] make it extremely difficult to
predict the communication performance of this machine under varying amounts of

12

Naive (+)

time (sec)

0.02

0.015

0.01

0.005

1,1

Bounded contention

2,2
4,4

node, link contention

30000
25000

20000
15000

10000 message length (bytes)

16,16

Figure 7: Naive algorithm ("+") compared with Bounded contention algorithm on a 4 x 4
Paragon. The naive algorithm run times, which do not vary with contention, have been
shown as a series of strips for clarity.

node and link contention. This in turn also makes decision of the level of contention
to be used difficult.

Our approach is to evaluate the algorithm for various levels of permitted con-
tention and empirically decide on the best level for a given mesh size. This is easily
done once a collapsible sequence has been generated for a mesh: simply insert bar-
rier synchronizations in the sequence, modulo the permitted contention. Thus, for a
32 x 32 mesh we would insert barriers after every 1, 2, 4 or 8 permutations. For ex-
ample, inserting barriers after every 4 permutations causes each group of 4 to collapse
into one permutation with contention 4.

Figures 7, 8, 9 and 10 compare the performance of the naive and Bounded con-
tention algorithms on meshes of size 4x4,8x8, 12x12 and 16 x 16 respectively,
for varying amounts of contention and message sizes. The z-axes of these plots are
labeled with the pairs (node contention, link contention), as clarified in Figure 2. The
performance of the naive algorithm, which does not vary with contention, is shown
as a series of strips so that the surface of the Bounded algorithm can be seen clearly.

The small size of the 4x4 mesh does not permit a collapsible schedule to be
generated (see Table 2). Despite this, there is an improvement in performance as
contention increases, because the number of synchronization steps required is reduced.
Furthermore, node contention also results in slight decreases in time as launching two
or more messages in quick succession permits the utilization of intranode parallelism
due to a separate communication processor.

Figures 8 and 9 show much more interesting results obtained from experiments
on 8 x 8 and 12 x 12 meshes. Here, the performance of the Bounded algorithm

13

Bounded contention

time (sec)

30000
25000

20000
15000

10000 message (ength (bytes)

node, link contention 64,128

Figure 8: Comparison of the two algorithms on an 8 x 8 Paragon.

Bounded contention

time (sec)

16,48

node, link contention

30000
25000

20000
15000

10000 message length (bytes)

48,144
144,432

Figure 9: Comparison of the two algorithms on a 12 x 12 Paragon.

14

time (sec)

30000
25000

20000
15000

10000 message length (bytes)

node, link contention
64,256

256,1024

Figure 10: Performance of Bounded contention algorithm on a 16 x 16 Paragon. The
naive algorithm fails to work on this mesh and the Bounded algorithm fails at contention
(256,1024) because of operating system limitations.

is initially much poorer than the naive algorithm but improves very rapidly with
increasing contention. The initial steep drop is due to the collapsing of the schedule,
(which increases link contention but not node contention) and to the large reduction
in synchronization steps. As contention increases, further improvements are obtained
because of reduction in synchronization and because of the concurrent operation of the
communication processor. However the improvement is arrested at node contention
= 16 when the decrease in synchronization steps can no longer offset the overhead
due to node and link contention. After this point the time starts increasing.

The performance of the Bounded algorithm for 16 x 16 meshes is shown in Figure
10. The Paragon failed to execute the naive algorithm for this mesh size. This is
because the operating system could not allocate enough resources to accommodate
the 256 receives required by the algorithm. The Bounded algorithm itself could not
be be tested for this mesh size for node contention = 256 for the same reason.

The relative performance of the two algorithms is clear in Figure 11 which shows
contours that indicate the percentage improvement of Bounded over naive. These
contours show that improvements of greater than 25% are possible on 8 x 8 and 12 x 12
meshes for most message sizes, provided the contention level is chosen carefully. The
contours help us pick the best contention level for a given message size.

To study our experimental results in greater detail we provide slices, at message
size 15232 bytes, through the surfaces of Figures 7, 8, 9 & 10.

The solid curves in these figures show the measured time to execute Bounded con-
tention complete exchange. This measured time is compared with the predicted time,
obtained by adding synchronization and communication time taken from Table 1.

15

5% 10%

"\ < 30000

N, ; 25000

\ \ .-
20000
message length (bytes)
15000

L •:'10%

;' P 15% " 10000

'•■.. >. '? 20% 5000

4x4 mesh
i ' ■-,---—-.-

1,1 2,2 4,4 8,8

node, link contention

16,16

15 20 25%

'•"■ :'-- '•
'■•.i'\ '■■. \
'■•' \

'. v v '"■■. i

\\\\ \
i \

\\\\ \ '^ \

•• \ \ \ ■-.
V

'• \ \ \
: "','S\X >•" """""."'" <

"'«"*. x. "\ :'-. *"«... ""■■•-

8x8mesh "-'■- ■:-^-^Z
i i i -i - - - t

--..25%:'.--
*•

.....--■

30000

25000

20000
message length (bytes)
15000

10000

5000

1,1 1,2 2,4 4,8 8,16 16,32 32,64 64,128

node, link contention

20% 25%

■ !*!'. ': <•-'" !

iii'iV

''»■• \

>. \ \ 30%
'.■■.;•. •-; <;■-- ;7_ -r----".'"~=

12 x 12 mesh
i i i i'-"'vi '"<—

30000

25000

20000

message length (bytes)
15000

10000

5000

1,1 1,3 2,6 4,12 8,24 16,48 48,144 144,432

node, link contention

Figure 11: Contour plots of percentage improvement provided by Bounded contention
algorithm over naive algorithm for 4 x 4, 8 x 8 and 12 x 12 Paragon meshes.

16

4x4 mesh, message size 15232 bytes
0.02

0.015

T 0.01

0.005

measured

1,1

communication

2,2 4,4
node, link contention

8,8 16,16

Figure 12: A slice through the surface for a 4 x 4 Paragon.

Figure 12 shows a slice through the surface for a 4 x 4 mesh (Figure 7). Three

aspects of this figure are noteworthy.

• The agreement between predicted and measured times is good.

• The communication time fraction of the total predicted time is constant. This
is because in a 4 x 4 mesh schedule there are no idle processors. Thus, even
when we increase permitted contention, the schedule cannot collapse because of

the lack of "holes" in the permutations.

t The increase in performance comes about because of reduction in synchroniza-

tion overhead.

The slice of the 8 x 8 surface (Figure 13) brings out several interesting issues.
To circumvent the difficulty of predicting performance we have inserted upper and
lower bounds for time to execute complete exchange in this and subsequent figures.
The lower bound gives the sum of communication and synchronization times as given
in Table 1. Note that the communication time is halved going from link contention
1 to 2. This is because, as shown in Table 2, the number of communication steps
drops from 128 to 64 for an 8 x 8 mesh. Since the lower bound does not include the
overheads of node and link contention, the measured time should not drop below this

curve.

17

0.18
8x8 mesh, message size 15232 bytes

4,8 8,16
node, link contention

32,64 64,128

Figure 13: A slice through the surface for an 8 x 8 Paragon.

The Bounded contention algorithm increases permitted contention by deleting
barriers. This removes control over the launching of messages: a processor can fire
off the next message in its schedule without waiting for synchronization. Some mes-
sages may be launched along paths already in use, thereby increasing contention.
The impact of this contention is very difficult to estimate because the communica-
tion patterns of the Bounded algorithm are complex and their contention cannot be
characterized simply.

The upper bound curve gives the sum of synchronization and communication
times, assuming that all 128 message steps are executed serially. We would expect
the measured times to lie between the two bounds. The closer the measured time is
to the lower bound, the greater is the success of the Bounded approach. On the other
hand, the measured curve would approach the upper bound when the contention
overheads exceed the reduction in communication and synchronization time.

In Figure 13 we see that the measured time is close to the lower bound for link
contention 1, 2 & 4. Beyond 4 the measured time starts deviating significantly,
reaching a minimum at link contention 16. Similar comments apply to the slices for
12 x 12 and 16 x 16 meshes (Figures 14 & 15). In the latter it is noteworthy that the
measured time almost touches (but does not cross) the upper bound at contention
(128,512). (Recall that this experiment could not be run for the last contention value
of (256,1024) because of operating system limitations.) This shows that our algorithm
is robust in the sense that the measured time remains bounded by the time to execute
the individual communication steps.

18

0.7

„ 0.4

0.1

1,1

12x12 mesh, message size 15232 bytes
1 -T 1 1

-^synchronization'"-

\i
communication

 tk L

upper bound

measured

lower bound

1,3 2,6 4,12 8,24 16,48
node, link contention

48,144 144,432

Figure 14: A slice through the surface for a 12 x 12 Paragon.

1.6

0.4

0.2

16x16 mesh, message size 15232 bytes

\synchronizati6h-..

communication

upper bound

measured

lower bound

1,1 1,2 1,4 2,8 4,16 8,32 16,64 32,128 64,256 128,512 256,1024
node, link contention

Figure 15: A slice through the surface for a 16 x 16 Paragon.

19

Figures 13, 14 and 15 show that a careful choice of contention levels is necessary to
obtain the best performance. It is not enough to blindly remove all synchronization
steps.

8 Conclusions

Complete exchange is an important communication requirement that is difficult to
execute efficiently on meshes. We have developed a new Bounded contention algo-
rithm that takes advantage of the high performance communication mechanism on
the Paragon to achieve good timings. The performance of this algorithm has been
measured to be better than that of a naive algorithm that does not take network
topology into account. Our experience appears to contradict the commonly held be-
lief that topology does not have to be considered when designing parallel algorithms
for modern parallel computer systems.

Our results are applicable to all meshes in which, like the Paragon, the rate at
which data can be transmitted across the interconnect is higher than the rate at which
data can be injected into the interconnect. The successor to the Intel Paragon is the
ASCI Teraflop machine with a dual mesh interconnect [12]. This machine can take
advantage of our results in an interesting fashion. Our algorithm essentially "slices"
the complete exchange communication pattern into a series of sub-patterns, each
with a bounded contention. These sub-patterns can be alternately assigned to the
two meshes permitting us to take full advantage of the ASCI's powerful interconnect.
These results are also applicable to 3-d meshes because Scott's basic algorithm can
be extended to higher dimensions.

An interesting area of further research would be to combine the Bounded algorithm
which is optimal for large message sizes, with the multiphase algorithm [4] which has
been shown to be applicable to the Paragon [5], and gives the best performance for
small message sizes.

Perhaps the most crucial conclusion to be drawn from our experiments is the
importance of synchronization time in determining the overall execution time of a
communication step. Our results indicate that investment in an improved synchro-
nization mechanism, perhaps relying on a network distinct from the network used for
data communication, would yield handsome dividends in terms of improved commu-
nication performance.

Acknowledgments

We are grateful to Manuel Salas, Director ICASE, for his encouragement of this research.
Discussions with Tom Crockett, Paul Fischer, David Keyes, Piyush Mehrotra, John Van
Rosendale, Steve Seidel, and Xian-He Sun have been very valuable.

20

Access to the supercomputers at Caltech was arranged by Paul Messina. We wish to
thank him and his able staff: Walker Aumann, Bevan Bennett, Sharon Burnett, Matthew
Carle, Clark Chang, Shay Chinn, Alex Leung, Jan Lindheim, Heidi Lorenz-Wirzba, Julie
Murphy, Mark L. Neidengard, Gary DelPOsso, Andrew Sun, and Elsa Villate, for their
alacrity in answering our queries and for their patient tolerance of the numerous crashes we
caused on their machines. Thanh Phung, Al Bessey and Ellen Deleganes of Intel helped us

with various problems on the Paragon.

References
[I] S. H. Bokhari and S. Berryman. Complete exchange on a circuit switched mesh. In

Proc. Scalable High Performance Computing Conf., pages 300-306, 1992.

[2] Shahid H. Bokhari. Communication overhead on the Intel Paragon, IBM SP2 and
Meiko CS-2. ICASE Interim Report 28, NASA Contractor report 198211, September
1995. http://www.icase.edu/docs/hilites/index.interim.html.

[3] Shahid H. Bokhari. Communication overheads on the Intel iPSC-860 hypercube.
ICASE Interim Report 10, May 1990.

[4] Shahid H. Bokhari. Multiphase complete exchange: A theoretical analysis. IEEE
Transactions on Computers, 45(2):220-229, February 1996.

[5] Shahid H. Bokhari. Multiphase complete exchange on Paragon, SP2 and CS-2. IEEE
Parallel and Distributed Technology, 3(4):45-59, Fall 1996.

[6] C-T. Ho and M. T. Raghunath. Efficient communication primitives on hypercubes. In
Proc. 6th. Conf. Distributed Memory Concurrent Computers, pages 390-397, 1991.

[7] S. Lennart Johnsson and Ching-Tien Ho. Optimum broadcasting and personalized
communication in hypercubes. IEEE Trans. Computers, C-38(9):1249-1268, Septem-

ber 1989.

[8] T. Schmiermund and S. R. Seidel. A communication model for the Intel iPSC/2.
Technical Report CS-TR 9002, Dept. of Computer Science, Michigan Tech. Univ.,

April 1990.

[9] D.S. Scott. Efficient all-to-all communication patterns in hypercube and mesh topolo-
gies. In Proc. 6th. Conf. Distributed Memory Concurrent Computers, pages 398-403,

1991.

[10] Hazel Shirley, Robert Reynolds, and Steve R. Seidel. Communication on the Intel
Paragon. Technical Report CS-TR-95-07, Dept. of Computer Science, Michigan Tech.

Univ., July 17, 1995.

[II] R. Take. A routing method for the all-to-all burst on hypercube network. In Proc.
35th. National Conf. Info. Proc. Soc. Japan, pages 151-152, 1987. In Japanese.

[12] Tom Thompson. The world's fastest computer (for now). Byte, 21(1):62, January,

1996.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporti nit burden for this collection of information is estimated to average 1 hour per response, includingthe time for reviewing instructions, searching existing data sources,
(ratherinirand maintaining the data needed, and completingand reviewingthe collection of information. Send comments regarding this burden estimate or any other «P««?' this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONVf(Leave blank) 2. REPORT DATE

August 1996
3. REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE
BALANCING CONTENTION AND SYNCHRONIZATION ON THE
INTEL PARAGON

6. AUTHOR(S)

Shahid H. Bokhari
David M. Nicol

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 96-54

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201599
ICASE Report No. 96-54

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
Submitted to IEEE Parallel fc Distributed Technology.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
The Intel Paragon is a mesh-connected distributed memory parallel computer. It uses an oblivious and deterministic
message routing algorithm: this permits us to develop highly optimized schedules for frequently needed communi-
cation patterns. The complete exchange is one such pattern. Several approaches are available for carrying it out on
the mesh. We study an algorithm developed by Scott. This algorithm assumes that a communication link can carry
one message at a time and that a node can only transmit one message at a time. It requires global synchroniza-
tion to enforce a schedule of transmissions. Unfortunately global synchronization has substantial overhead on the
Paragon. At the same time the powerful interconnection mechanism of this machine permits 2 or 3 messages to share
a communication link with minor overhead. It can also overlap multiple message transmission from the same node
to some extent. We develop a generalization of Scott's algorithm that executes complete exchange with a prescribed
contention. Schedules that incur greater contention require fewer synchronization steps. This permits us to tradeoff
contention against synchronization overhead. We describe the performance of this algorithm and compare it with
Scott's original algorithm as well as with a naive algorithm that does not take interconnection structure into account.
The Bounded contention algorithm is always better than Scott's algorithm and outperforms the naive algorithm for
all but the smallest message sizes. The naive algorithm fails to work on meshes larger than 12 x 12. These results
show that due consideration of processor interconnect and machine performance parameters is necessary to obtain
peak performance from the Paragon and its successor mesh machines.

14. SUBJECT TERMS
all-to-all personalized; complete exchange; Intel Paragon; communication;
link contention; parallel computing; synchronization; mesh

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

NSN 7540-01-280-5500

15. NUMBER OF PAGES

22

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

