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Abstract 

The Intel Paragon is a mesh-connected distributed memory parallel com- 
puter. It uses an oblivious and deterministic message routing algorithm: this 
permits us to develop highly optimized schedules for frequently needed com- 
munication patterns. 

The complete exchange is one such pattern. Several approaches are available 
for carrying it out on the mesh. We study an algorithm developed by Scott. 
This algorithm assumes that a communication link can carry one message at a 
time and that a node can only transmit one message at a time. It requires global 
synchronization to enforce a schedule of transmissions. Unfortunately global 
synchronization has substantial overhead on the Paragon. At the same time the 
powerful interconnection mechanism of this machine permits 2 or 3 messages to 
share a communication link with minor overhead. It can also overlap multiple 
message transmission from the same node to some extent. 

We develop a generalization of Scott's algorithm that executes complete 
exchange with a prescribed contention. Schedules that incur greater contention 
require fewer synchronization steps. This permits us to tradeoff contention 
against synchronization overhead. 

We describe the performance of this algorithm and compare it with Scott's 
original algorithm as well as with a naive algorithm that does not take inter- 
connection structure into account. 

The Bounded contention algorithm is always better than Scott's algorithm 
and outperforms the naive algorithm for all but the smallest message sizes. 
The naive algorithm fails to work on meshes larger than 12 x 12. These results 
show that due consideration of processor interconnect and machine performance 
parameters is necessary to obtain peak performance from the Paragon and its 
successor mesh machines. 
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1    Introduction 

Interprocessor communication overhead is a major factor that limits the performance 
of distributed memory parallel computer systems. All machines, no matter how pow- 
erful their interprocessor communication mechanism, suffer from this overhead. Com- 
munication overhead is exacerbated by node and link contention. Node contention 
arises when a node attempts to transmit or receive several messages simultaneously. 
Link contention is caused by the sharing of a communication link by two or more 
messages. Contention arises in all but the simplest communication requirements. In 
some cases, contention can be minimized or eliminated by careful scheduling of mes- 
sages. However this requires that all processors in the system synchronize themselves 
at specific points in time—thereby incurring synchronization overhead. 

The parallel algorithm designer is thus faced with the following dilemma: 

• A completely contention-free schedule will incur substantial synchronization 
overhead. 

• A completely synchronization-free schedule will result in heavy contention over- 

head. 

Clearly there is a need to find a balance between the two types of overhead in order 
to minimize the overall execution time of the parallel algorithm. 

The complete exchange is an interprocessor communication pattern that arises 
in a number of important applications. It requires each processor to send a distinct 
message to every other processor in the system and is thus the heaviest communication 
requirement that can be imposed on a parallel computer. Complete exchange has been 
extensively studied and a number of algorithms are known for its efficient execution 
on various interconnection networks. 

We describe a study of the complete exchange on mesh connected parallel ma- 
chines. We start with an algorithm to execute the complete exchange on meshes 
that was developed by David Scott. We develop a generalization of this algorithm 
that permits us to decrease synchronization overhead by increasing contention. We 
describe our experiments with this approach on the 512-node Intel Paragon mesh at 
Caltech. It is seen that the generalized algorithm can be used to balance contention 
and synchronization overhead and thus obtain significant reduction in the time re- 
quired to execute the complete exchange. The generalized algorithm is also shown to 
give better performance than a naive algorithm that does not take the interconnect 
of the Paragon into account. 

Our results demonstrate that careful consideration of parallel machine intercon- 
nect and performance characteristics is needed in order to obtain the best perfor- 
mance. As an extreme example, the naive algorithm (which does not take the inter- 
connect into account) fails to execute on Paragon meshes of size larger than 12 x 12, 
because the operating system cannot allocate enough memory for the large amount 
of communication traffic required. For such meshes we have no choice but to use an 



Figure 1: The mesh interconnect of a 4 x 4 Paragon. The circles represent compute nodes 
while the squares show special purpose hardware for communication. Message routing is 
done via the "row-column" algorithm explained in the text. The figure shows two pairs of 
processors communicating and contending for a single edge. Such link contention can lead 
to substantial overhead. 

algorithm that carefully schedules communications, such as Scott's algorithm or its 
generalization (described in this paper). 

2    The Paragon Mesh 

The mesh has long been a popular choice for interconnecting parallel computers. 
Currently, the most powerful example of the mesh is the Intel Paragon1. The spe- 
cific machine on which the experiments described in this paper were carried out is 
located at the Center for Advanced Computing Research at Caltech2. It is made 
up of 512 compute nodes organized in a 16 x 32 array. Each node is composed of 
two Intel i860 processors. One serves as a compute processor and the other as a 
communication processor. In addition there is special hardware for interfacing with 
the intercommunication network. The interprocessor communication network is a 
mesh with "row-column" routing (Figure 1), A message traveling from source s to 
destination t first travels along the row in which s lies, until it reaches the column 
in which t lies; it then travels along the column to t. Two messages traveling si- 
multaneously between two different source-destination pairs may need to traverse the 
same communication link, as illustrated in Figure 1, and will incur link contention 

1http://www.s sd.int el.com/paragon.html 
2http://www.cacr.caltech.edu 



Node cont=l, Link cont=4 Node cont=4, Link cont=8      Node cont=2, Link cont=6 

Figure 2: Explanation of node and link contention on chains of processors. Node contention 
equals the number of messages that a processor attempts to transmit simultaneously. Link 
contention is given by the maximum number of messages passing through any communica- 
tion link in the chain. 

overhead. 
The routing mechanism on the Paragon is oblivious (the paths between all source- 

destination pairs are statically defined) and deterministic (a single route exists be- 
tween every source-destination pair). As a result, it is possible to accurately predict 
the time required for aycommunication step, provided no contention is taking place. 

A message passing through a node en route to its destination does not impact 
the computation occuring at that node as the routing is carried out by special hard- 
ware. The i860s run at 50 MHz and are capable of 75 MFlops. This machine has 32 
Megabytes of memory per node of which about 24 Megabytes are available for user 
programs. Measured performance parameters of the Paragon are given in Table 1. 
The communication expression in this table is obtained by using the specific com- 
munication scheme employed in subsequent experiments with the complete exchange 
and thus differs from the expressions reported elsewhere [2, 5]. 

Table 1: Performance Parameters for the Paragon 

Synchronization n x n processors 
Communication, message m > 8640 bytes 

2741og2n — 134 //sec 
231 + 0.022m //sec 

Figure 2 clarifies the concepts of node and link contention, as applied to chains 
of processors. The interpretation of these concepts for meshes is very similar though 
difficult to explain in a simple diagram. 

The successor machine to the Paragon is the Intel ASCI (Accelerated Strate- 
gic Computing Initiative) Teraflop3[12], which is currently being installed at Sandia 
Laboratories4.   This machine also has a mesh interconnect and the techniques de- 

3http://www.ssd.intel.com/tflop.html 
4http://www.cs.sandia.gov/teraflop.html 



A 

B 

C 

D 

E 

0 
G 

H 

0 
0 

K 

0 

M 

N 

O 

P 

A 

E 

0 
M 

B 

F 

0 
N 

c 

G 

K 

0 

D 

H 

0 
P 

P1 P2 P3 P4 

(a) (b) 

P1 P2 P3 P4 

(C) 

Figure 3: Complete Exchange on 4 Processors. To change storage from column order (a) 
to row order (c), each processor must send a distinct message to every other processor (b). 

scribed in this paper should be applicable to the new machine as well. 

3    The Complete Exchange 

On a distributed memory parallel computer, the complete exchange requires each of 
TV processors to send a distinct m byte block to each of the remaining TV — 1 proces- 
sors. This communication pattern, which is also known as all-to-all personalized, is 
at the heart of many important multicomputer algorithms such as matrix transposi- 
tion, matrix-vector multiply, Fast Fourier Transforms and the Alternating Directions 
Implicit (ADI) method for solving partial differential equations. To understand the 
data movement required by this pattern refer to Figure 3 which shows a 4 x 4 block 
matrix stored on 4 processors. In part (a) of this Figure the matrix is stored in col- 
umn order. In part (c) the layout has been changed to row order. It is clear that to 
change from (a) to (c), each processor must transmit a block of data to every other 
processor. This is shown in part (b) which is a complete directed graph of four nodes. 

In general, complete exchange on TV processors can be represented by a complete 
directed graph of TV nodes. It is thus the densest possible communication require- 
ment and the time required by a distributed memory multicomputer to execute it 
is an important performance parameter. At the same time, it is a challenge for the 
algorithm designer to develop good algorithms for complete exchange on different 
parallel architectures. 

A number of algorithms have been developed for executing the complete exchange 
on hypercubes [4, 6, 7, 8, 11] and meshes [1, 9]. These algorithms attempt to obtain 
high performance by carefully scheduling communications so as to avoid node and 
link contention. We can classify these algorithms into two categories. In Direct 
algorithms each block is transmitted once to its ultimate destination; in Store-and- 



forward algorithms a block is combined with others and transmitted in stages via 
intermediate processors. Store-and-forward algorithms [7] strive to reduce the impact 
of startup time by incurring data permutation and extra transmission overhead. It 
has been shown that such algorithms perform well for small message sizes. Direct 
algorithms [11, 9], on the other hand, have better performance for large message 
sizes. 

The time required to execute the complete exchange will depend on the intercon- 
nection network and the schedule of data transfers. We shall address the problem 
of developing good direct algorithms for mesh connected parallel architectures. The 
sparsity of the mesh interconnect makes this a difficult endeavor. This is in contrast 
with hypercubes, for which optimal direct algorithms (i.e., those that require N — 1 
transmissions for an N processor system) have been known for some time. 

4    Scott's Algorithm 

The problem of implementing complete exchange on a mesh architecture has been 
studied by Scott [9] under the following assumptions: 

• A node can send and receive at most one message at a time. 

• A communication link can carry at most one message in each direction at one 
time. 

• Messages are routed according to the "row-column" algorithm, that is, a mes- 
sage from processor Xi,y\ to processor £2,2/2 first travels along a row to a^J/i 
and then along a column to x^-, J/2- 

Scott shows that, under these assumptions, a square mesh of N nodes cannot achieve 
the complete exchange in fewer than A3/2/4 steps, unlike a hypercube, which requires 
N — 1 steps. The intuitive reason for this is the far richer interconnection of the 
hypercube which comes, of course, at the cost of a logarithmically increasing node 
degree. 

Scott goes on to describe a procedure that will generate a schedule of transmissions 
that takes exactly A3/2/4 steps, for the case where A is a multiple of 4. This procedure 
is based on composing or "cross-multiplying" pairs of 1-dimensional permutations and 
can lead to many different sets of schedules, depending on the choices made when 
composing the permutations. Figure 4 shows three permutations out of a set of 128 
generated for an 8 x 8 mesh. The cells in this diagram are assumed to be numbered in 
row-major order. A non-blank cell indicates the coordinates of the target to which the 
corresponding processor has to transmit. A blank cell indicates that the corresponding 
processor does not transmit anything during that permutation. As we increase the 
size of the mesh, the proportion of these idle processors increases because the mesh 
interconnect cannot support transmissions by all processors. It is these idle processors 
that lead to the superlinear A3/2/4 expression for run time. 



1,4 1,2 1,5 1,3 
7,4 7,2 7,5 7,3 

3,6 3,0 3,7 3,1 

5,6 5,0 5,7 5,1 

2,6 2,0 2,7 2,1 

4,6 4,0 4,7 4,1 

0,4 0,2 0,5 0,3 

6,4 6,2 6,5 6,3 

2,1 2,7 2,0 2,6 

4,3 4,5 4,2 4,4 

7,1 7,7 7,0 7,6 

1,3 1,5 1,2 1,4 
6,3 6,5 6,2 6,4 

0,1 0,7 0,0 0,6 

3,3 3,5 3,2 3,4 

5,1 5,7 5,0 5,6 

3,5 3,0 3,7 3,2 

2,3 2,6 2,1 2,4 

6,3 6,6 6,1 6,4 

7,5 7,0 7,7 7,2 

0,5 0,0 0,7 0,2 

1,3 1,6 1,1 1,4 
5,3 5,6 5,1 5,4 

4,5 4,0 4,7 4,2 

Figure 4: Three out of a set of 128 permutations for an 8 x 8 mesh. The cells in this 
figure represent processors and are numbered in row-major order. An empty cell indicates 
an inactive processor. A non-empty cell gives the coordinates of the cell to which that cell 
transmits. 



5    Bounded Contention Algorithm 

The permutations generated by Scott's procedure assume that only one message can 
travel over a link in one direction at a time. As a result all nodes cannot, in general, 
transmit during any given step. This is evident in Figure 4, where we see that half 
the nodes are always inactive. If we have a square mesh of n x n = N nodes, the 
number of steps required is n3/4 = N3/2/A and during each step a fraction 4/n of the 
nodes is inactive. 

If we relax the constraint that a link only carry one message at a time, it becomes 
interesting to explore if schedules can be generated in which contention is bounded by 
some integer c. The permutations shown in Figure 4 cannot simply be superimposed 
because the active nodes in any pair of permutations are not disjoint. 

Scott's generation technique creates permutations that can be executed in any 
order to achieve the complete exchange. The set of permutations generated is not 
unique. We have developed an algorithm to generate a set of permutations in a special 
collapsible order. This generates permutations in such a way that consecutive entries 
in the sequence can be collapsed to form a denser permutation (i.e., one in which 
more nodes are active), with greater contention. The collapsibility property is not 
true of Scott's permutations in general. 

Figure 5 shows two permutations for an 8 x 8 mesh that can be collapsed to form 
a third. Since each of the constituent permutations has link contention bounded by 
1, the contention in the collapsed permutation is bounded by 2. It is also clear that 
each node is transmitting exactly once. 

For the 8x8 mesh shown in Figure 5, the fraction of active nodes in the constituent 
permutations is 4/n = 1/2. We can combine sets of two permutations each and thus 
halve the number of steps required to achieve complete exchange. 

We have developed a theory of collapsible schedules for the complete exchange 
on meshes. We can show that for a square mesh of n x n = N nodes that permits 
contention c on its links, the number of steps required is n3/4c, where c is an integer 
< n/4 and c divides n/4 (i.e., n/4c is an integer). 

We have implemented an algorithm based on this theory and used it to generate 
and verify schedules for meshes of size 4 x 4, 8 x 8, ..., 32 x 325. Table 2 shows the 
improvement possible as the permitted contention is allowed to increase. For each 
mesh size, the minimum steps possible are n2 at c = n/4. This is within 1 of the 
theoretical minimum n2 — 1. The blank entries below the principal diagonal in Table 
2 are caused by the constraint that n/4c be an integer. This table assumes that no 
node contention is permitted, i.e., a node cannot transmit more than one message at 
a time. 

The schedules generated by this algorithm have the interesting property that they 
can be collapsed to whatever degree is permitted by the rules stated above. Thus the 
schedule for 16x16 meshes could be collapsed for link contention 2 or 4 by combining 

5Schedules for meshes of size 4 x 4, 8 x 8, 12 x 12 and 16 x 16 are available at the following site: 
ftp://ftp.icase.edu/pub/cs/shahid 



1,1 1,7 1,0 1,6 

7,1 7,7 7,0 7,6 

3,3 3,5 3,2 3,4 

5,3 5,5 5,2 5,4 

2,3 2,5 2,2 2,4 

4,3 4,5 4,2 4,4 

0,1 0,7 0,0 0,6 

6,1 6,7 6,0 6,6 

1,3 1,5 1,2 1,4 
7,3 7,5 7,2 7,4 

3,1 3,7 3,0 3,6 

5,1 5,7 5,0 5,6 

2,1 2,7 2,0 2,6 

4,1 4,7 4,0 4,6 
0,3 0,5 0,2 0,4 
6,3 6,5 6,2 6,4 

1,1 1,7 1,3 1,5 1,2 1,4 1,0 1,6 

7,1 7,7 7,3 7,5 7,2 7,4 7,0 7,6 

3,1 3,7 3,3 3,5 3,2 3,4 3,0 3,6 

5,1 5,7 5,3 5,5 5,2 5,4 5,0 5,6 

2,1 2,7 2,3 2,5 2,2 2,4 2,0 2,6 

4,1 4,7 4,3 4,5 4,2 4,4 4,0 4,6 

0,1 0,7 0,3 0,5 0,2 0,4 0,0 0,6 

6,1 6,7 6,3 6,5 6,2 6,4 6,0 6,6 

Figure 5: The first two permutations can be collapsed to form the third. This is possible 
because the active cells in the first permutation correspond exactly to the inactive cells in 
the second and vice versa. Since the link contention in the first two permutations is 1, the 
combined permutation has link contention 2. 



Table 2: Steps required as contention is allowed to increase. 

Mesh size 
(n x n) 

Permitted Link Contention (c) 
1 2 3 4 5 6 7 8 

4x4 16 
8x8 128 64 

12 xl2 432 144 
16 x 16 1024 512 256 
20 x20 2000 1000 400 
24 x24 3456 1728 1152 576 
28 x28 5488 784 
32 x 32 8192 4096 2048 1024 

consecutive sub-sequences of 2 or 4 permutations as shown in Figure 6. If the first 
synchronization in part (c) of this figure were removed we would have a schedule with 
node as well as link contention. Two nodes would be attempting to transmit at a 
time while the link contention would be doubled from 4 to 8. This can lead to further 
improvements in run time, as described below. 

6    Implementation Considerations 

The nx message passing library was used for our experiments on the Paragon. This li- 
brary has its origins in the Intel iPSC-860 hypercube which has two types of messages: 
FORCED and UNFORCED. FORCED messages are transmitted from source to destination 
under the assumption that a receive has already been posted (i.e., buffer space for 
reception has been specified) at the destination. If an arriving message does not find 
a receive posted, it is discarded. UNFORCED messages do not require a receive to be 
posted beforehand. Before an UNFORCED message is transmitted there is an exchange 
of control messages between source and destination to allocate operating system buffer 
space for the message. This leads to additional overhead in communication (because 
•of the control messages), extra memory requirements, and the penalty of copying 
from operating system buffers to user areas [3]. Further details of the communica- 
tion overhead on the Paragon appear in [2]. Shirley et al. [10] discuss how operating 
system timer interrupts complicate performance measurement and prediction on this 
machine. 

On the Paragon, FORCED and UNFORCED messages are supposed to perform iden- 
tically. It has been our experience that operating system space is allocated for all 
possible arriving messages in addition to any user memory locations that may be 
set aside by explicitly posted receives. The user can specify the amount of memory 
buffers that the operating system is to set aside for this purpose. Despite this, when 
large numbers of large-sized messages are expected, the operating system can run 
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Figure 6: (a) The first 8 (of 1024) members of a collapsible schedule for a 16 x 16 mesh. 
Active nodes are indicated by square blocks. When alternate synchronizations are removed 
(X), pairs of successive permutations collapse as shown in part (b) giving a schedule with 
maximum link contention 2. Repeating this process results in a schedule with link contention 
4 (c). Further removal of synchronization steps results in increasing node contention. 
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out of resources thereby causing the machine to hang. Needless to say, FORCED mes- 
sages should only be used if communication requirements are well understood and 
receives can be posted before any messages are launched. Deadlocks can develop if 
this requirement is not satisfied. 

The Bounded contention complete exchange algorithm that we have developed has 
a completely determined communication requirement and we could thus use FORCED 
messages. To compare the performance of the Bounded contention algorithm against 
an algorithm that does not take the topology of the mesh into account, we imple- 
mented a naive algorithm to carry out the complete exchange. This algorithm simply 
transmits blocks of data from each processor to the remaining processors without 
regard for link or node contention. We were unable to get the naive algorithm to 
function reliably beyond 12 x 12 processors because the large numbers of outstanding 
receives required could not be accommodated by the operating system. 

Each node of the Paragon has an i860 processor dedicated to interprocessor com- 
munication. This processor takes over a considerable portion of the overhead of 
starting a data transfer. We have found that asynchronous receives and sends yield 
much better performance because the compute processor can spawn a task on the 
communication processor and carry on with its work without having to wait for the 
operation to complete. This, in fact, is how the machine manages to perform well 
under node contention. 

Memory access and thus data communication on the Paragon is heavily affected 
by the starting address of a transfer. In our experiments we have aligned all arrays 
to 4k boundaries (the page size of the machine) to minimize this impact. 

7    Experimental Results 

When implementing Bounded contention complete exchange on the Paragon, several 
aspects of the machine performance had to be taken into account. 

1. The amount of contention in a schedule can only be controlled by global syn- 
chronization. The overhead of this operation is substantial (Table 1). 

2. While the machine can tolerate node and link contention, there is non-zero 
overhead associated with such contention. 

3. Overheads for node and link contention are heavily dependent on the type of 
communication being carried out. It is very difficult to obtain simple expressions 
for these overheads. For example, measurements taken of the 1-dimensional 
communication patterns in Figure 2 do not apply to 2-dimensional communi- 
cations. 

The above aspects coupled with the use of virtual memory on the machine and 
the complex effects of operating system interrupts [10] make it extremely difficult to 
predict the communication performance of this machine under varying amounts of 
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Naive (+) 

time (sec) 

0.02 

0.015 

0.01 

0.005 

1,1 

Bounded contention 

2,2 
4,4 

node, link contention 

30000 
25000 

20000 
15000 

10000   message length (bytes) 

16,16 

Figure 7: Naive algorithm ("+") compared with Bounded contention algorithm on a 4 x 4 
Paragon. The naive algorithm run times, which do not vary with contention, have been 
shown as a series of strips for clarity. 

node and link contention. This in turn also makes decision of the level of contention 
to be used difficult. 

Our approach is to evaluate the algorithm for various levels of permitted con- 
tention and empirically decide on the best level for a given mesh size. This is easily 
done once a collapsible sequence has been generated for a mesh: simply insert bar- 
rier synchronizations in the sequence, modulo the permitted contention. Thus, for a 
32 x 32 mesh we would insert barriers after every 1, 2, 4 or 8 permutations. For ex- 
ample, inserting barriers after every 4 permutations causes each group of 4 to collapse 
into one permutation with contention 4. 

Figures 7, 8, 9 and 10 compare the performance of the naive and Bounded con- 
tention algorithms on meshes of size 4x4,8x8, 12x12 and 16 x 16 respectively, 
for varying amounts of contention and message sizes. The z-axes of these plots are 
labeled with the pairs (node contention, link contention), as clarified in Figure 2. The 
performance of the naive algorithm, which does not vary with contention, is shown 
as a series of strips so that the surface of the Bounded algorithm can be seen clearly. 

The small size of the 4x4 mesh does not permit a collapsible schedule to be 
generated (see Table 2). Despite this, there is an improvement in performance as 
contention increases, because the number of synchronization steps required is reduced. 
Furthermore, node contention also results in slight decreases in time as launching two 
or more messages in quick succession permits the utilization of intranode parallelism 
due to a separate communication processor. 

Figures 8 and 9 show much more interesting results obtained from experiments 
on 8 x 8 and 12 x 12 meshes.   Here, the performance of the Bounded algorithm 
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Figure 8: Comparison of the two algorithms on an 8 x 8 Paragon. 
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Figure 9: Comparison of the two algorithms on a 12 x 12 Paragon. 
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Figure 10: Performance of Bounded contention algorithm on a 16 x 16 Paragon. The 
naive algorithm fails to work on this mesh and the Bounded algorithm fails at contention 
(256,1024) because of operating system limitations. 

is initially much poorer than the naive algorithm but improves very rapidly with 
increasing contention. The initial steep drop is due to the collapsing of the schedule, 
(which increases link contention but not node contention) and to the large reduction 
in synchronization steps. As contention increases, further improvements are obtained 
because of reduction in synchronization and because of the concurrent operation of the 
communication processor. However the improvement is arrested at node contention 
= 16 when the decrease in synchronization steps can no longer offset the overhead 
due to node and link contention. After this point the time starts increasing. 

The performance of the Bounded algorithm for 16 x 16 meshes is shown in Figure 
10. The Paragon failed to execute the naive algorithm for this mesh size. This is 
because the operating system could not allocate enough resources to accommodate 
the 256 receives required by the algorithm. The Bounded algorithm itself could not 
be be tested for this mesh size for node contention = 256 for the same reason. 

The relative performance of the two algorithms is clear in Figure 11 which shows 
contours that indicate the percentage improvement of Bounded over naive. These 
contours show that improvements of greater than 25% are possible on 8 x 8 and 12 x 12 
meshes for most message sizes, provided the contention level is chosen carefully. The 
contours help us pick the best contention level for a given message size. 

To study our experimental results in greater detail we provide slices, at message 
size 15232 bytes, through the surfaces of Figures 7, 8, 9 & 10. 

The solid curves in these figures show the measured time to execute Bounded con- 
tention complete exchange. This measured time is compared with the predicted time, 
obtained by adding synchronization and communication time taken from Table 1. 
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Figure 11:   Contour plots of percentage improvement provided by Bounded contention 
algorithm over naive algorithm for 4 x 4, 8 x 8 and 12 x 12 Paragon meshes. 
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Figure 12: A slice through the surface for a 4 x 4 Paragon. 

Figure 12 shows a slice through the surface for a 4 x 4 mesh (Figure 7). Three 

aspects of this figure are noteworthy. 

• The agreement between predicted and measured times is good. 

• The communication time fraction of the total predicted time is constant. This 
is because in a 4 x 4 mesh schedule there are no idle processors. Thus, even 
when we increase permitted contention, the schedule cannot collapse because of 

the lack of "holes" in the permutations. 

t The increase in performance comes about because of reduction in synchroniza- 

tion overhead. 

The slice of the 8 x 8 surface (Figure 13) brings out several interesting issues. 
To circumvent the difficulty of predicting performance we have inserted upper and 
lower bounds for time to execute complete exchange in this and subsequent figures. 
The lower bound gives the sum of communication and synchronization times as given 
in Table 1. Note that the communication time is halved going from link contention 
1 to 2. This is because, as shown in Table 2, the number of communication steps 
drops from 128 to 64 for an 8 x 8 mesh. Since the lower bound does not include the 
overheads of node and link contention, the measured time should not drop below this 

curve. 
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Figure 13: A slice through the surface for an 8 x 8 Paragon. 

The Bounded contention algorithm increases permitted contention by deleting 
barriers. This removes control over the launching of messages: a processor can fire 
off the next message in its schedule without waiting for synchronization. Some mes- 
sages may be launched along paths already in use, thereby increasing contention. 
The impact of this contention is very difficult to estimate because the communica- 
tion patterns of the Bounded algorithm are complex and their contention cannot be 
characterized simply. 

The upper bound curve gives the sum of synchronization and communication 
times, assuming that all 128 message steps are executed serially. We would expect 
the measured times to lie between the two bounds. The closer the measured time is 
to the lower bound, the greater is the success of the Bounded approach. On the other 
hand, the measured curve would approach the upper bound when the contention 
overheads exceed the reduction in communication and synchronization time. 

In Figure 13 we see that the measured time is close to the lower bound for link 
contention 1, 2 & 4. Beyond 4 the measured time starts deviating significantly, 
reaching a minimum at link contention 16. Similar comments apply to the slices for 
12 x 12 and 16 x 16 meshes (Figures 14 & 15). In the latter it is noteworthy that the 
measured time almost touches (but does not cross) the upper bound at contention 
(128,512). (Recall that this experiment could not be run for the last contention value 
of (256,1024) because of operating system limitations.) This shows that our algorithm 
is robust in the sense that the measured time remains bounded by the time to execute 
the individual communication steps. 
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Figure 14: A slice through the surface for a 12 x 12 Paragon. 
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Figure 15: A slice through the surface for a 16 x 16 Paragon. 
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Figures 13, 14 and 15 show that a careful choice of contention levels is necessary to 
obtain the best performance. It is not enough to blindly remove all synchronization 
steps. 

8    Conclusions 

Complete exchange is an important communication requirement that is difficult to 
execute efficiently on meshes. We have developed a new Bounded contention algo- 
rithm that takes advantage of the high performance communication mechanism on 
the Paragon to achieve good timings. The performance of this algorithm has been 
measured to be better than that of a naive algorithm that does not take network 
topology into account. Our experience appears to contradict the commonly held be- 
lief that topology does not have to be considered when designing parallel algorithms 
for modern parallel computer systems. 

Our results are applicable to all meshes in which, like the Paragon, the rate at 
which data can be transmitted across the interconnect is higher than the rate at which 
data can be injected into the interconnect. The successor to the Intel Paragon is the 
ASCI Teraflop machine with a dual mesh interconnect [12]. This machine can take 
advantage of our results in an interesting fashion. Our algorithm essentially "slices" 
the complete exchange communication pattern into a series of sub-patterns, each 
with a bounded contention. These sub-patterns can be alternately assigned to the 
two meshes permitting us to take full advantage of the ASCI's powerful interconnect. 
These results are also applicable to 3-d meshes because Scott's basic algorithm can 
be extended to higher dimensions. 

An interesting area of further research would be to combine the Bounded algorithm 
which is optimal for large message sizes, with the multiphase algorithm [4] which has 
been shown to be applicable to the Paragon [5], and gives the best performance for 
small message sizes. 

Perhaps the most crucial conclusion to be drawn from our experiments is the 
importance of synchronization time in determining the overall execution time of a 
communication step. Our results indicate that investment in an improved synchro- 
nization mechanism, perhaps relying on a network distinct from the network used for 
data communication, would yield handsome dividends in terms of improved commu- 
nication performance. 
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