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SPECKLE GENERATION BY PHASE-ONLY SPATIAL LIGHT MODULATORS: 
Random Phase Properties that Produce Fully Complex Modulation 

and that Model Optical Processor Performance 

ABSTRACT 

Optoelectronic processors that use phase-only and amplitude-phase coupled spatial light 
modulators (SLMs) can be profoundly affected by phase errors. These errors arise not only from 
irregularities in the modulators themselves, but at a number of points along the signal processing 
chain. Traditional theories of speckle generation by rough surface scattering are adapted to 
analyzing SLMs. SLMs are modeled as arrays of subapertures/pixels that are perturbed by 
random phase components (constant and linear retardations). The effects of not only random, but 
also systematic phase errors on the performance of diffractive optical elements (DOEs) and optical 
correlators are evaluated. While traditional speckle theory models random surfaces as stationary 
random processes, SLMs can be programmed to produce nonstationary optical surfaces. This 
generalization is used to devise a new class of computer generated holography algorithms, 
referred to as pseudorandom encoding. The method is notable in that it 1) uses all available 
space bandwidth of the SLM; 2) produces diffraction patterns having large signal to noise ratio; 
and, most notably, 3) can be calculated in real-time by serial processors. Simulations and 
experimental demonstrations using SLMs are presented, and applications to pattern recognition, 
optical interconnects, multi-spot beam steering and acceleration of DOE design algorithms are 
described. 

1.0 INTRODUCTION 

1.1 Technical problem and objective of the study. Phase errors can profoundly distort the 
intended diffraction patterns of spatial light modulators (SLMs) thus impacting the performance 
of optical processing systems that use SLMs. Phase errors are introduced by a variety of 
mechanisms. Phase-modulating SLMs can have inherent phase errors, due to fabrication process 
variations from pixel to pixel. Noise (e.g. thermal, quantization, etc.) on the video signals 
modulating SLMs is also transformed into phase errors. Furthermore, many applications, 
including composite filters for pattern recognition, binary diffractive optics and optical neural 
networks, can often be better understood and analyzed by modeling the modulations/signals as 
random, rather than as deterministic. 

Random phase modulations across the surface of the SLM diffract into broadly spread noise 
patterns. These noise patterns not only have the appearance of speckle patterns, but in fact, arise 
from the identical situation of scattering of light from a random surface. There is a wealth of 
information on laser speckle ( J.C. Dainty, Laser Speckle and Related Phenomena, Springer, 



1984) and statistical optics (J. W. Goodman, Statistical Optics, Wiley, 1985) that is applicable 
to SLM-based optical processors. This study was motivated by our opinion that speckle theory 
could be applied in new ways to advance both performance modeling of optical processors, and 
to lead to new applications of SLMs. As we report, advancements in both applications and 
analysis have been made as a result of this approach. 

1.2 General methodology. This study included the mathematical modeling and computer 
simulation of diffraction from phase-only and coupled amplitude-phase SLMs. Models and 
simulations of the performance of optical correlators that use phase-only SLMs were also derived 
as specialized cases of the analysis methodology. Experimental confirmation of our theories using 
real devices was another major emphasis of the study. This provides better appreciation of the 
theories, allows us to refine the models based on the outcome of the experiments, and also 
enhances the art of using SLMs. The combined emphasis on theory and experiment also led to 
improved SLM measurement/characterization techniques which are reviewed below. The 
experiments included experimental demonstrations of spot arrays designed to have up to 100 
uniform intensity spots, and single spots that were simultaneously steered and shaped from 
circular to elliptic with up to a 5:1 eccentricity. 

During this study there were many discussions on properties of SLMs with SLM developers 
(including Meadowlark Optics, Hughes, Texas Instruments, Hamamatsu, Boulder Nonlinear), 
SLM users (Rome Labs Hanscom and Griffiss; U. S. Army Missile Command; Army Research 
Lab, MD; R. Juday, T. H. Chao, and J. Downie of NASA; Dr. Y. Sheng, U. of Laval; TOPS 
participants: Teledyne Brown and Martin Marrieta) and diffractive optics groups (P. Maker of 
NASA JPL and with Teledyne Brown). Results of this study were communicated to these groups 
and feedback from these groups influenced the focus of the study. An additional benefit of the 
discussions is that Hughes, subsequent to this study, provided us with custom made light valves 
having phase ranges in excess of 360°. 

1.3 Report outline. This report is written to provide enough background so that even readers 
who are not specialists in the areas of optical processing, scalar diffraction, rough surface 
scattering and statistics will be able to evaluate the technical approach and accomplishments of the 
study. The reports begins by comparing the assumptions of traditional models of speckle 
generation from rough surfaces with the assumptions needed to model speckle generation by 
spatial light modulators. We then present a summary of the mathematical models that describe 
speckle generation. These models are then used to develop performance analyses of optical 
processors and to develop algorithms that approximate fully complex modulation on SLMs that 
have a constrained (i.e. phase-only or coupled amplitude-phase) modulation range. The latter 
procedure we refer to as pseudorandom encoding. The most significant simulated and 
experimental results are also presented. 

More detailed information and additional specific results are presented in the attached publications 
that were written during the study. These are liberally referenced throughout the report and may 
be consulted by the reader desiring additional detail. Citation numbers appear as superscripts and 



refer to the contract-supported publications list in Sec. 7.0. 

This outline concludes with a summary of significant findings and a list of recommendations for 
future studies. To most readers this summary is too brief to follow in the first reading of the 
report. However, in future readings it can be used as an index to directly guide the reader to 
specific results of interest in the report and the attached papers. 

Summary of SignificantJEmdings 

Closed form expressions for the expected intensity and standard deviation of the Fourier 
plane diffraction pattern from arrays of independent non-identically distributed random 
complex-valued pixels were derived and verified for correctness and numerical 
efficiency.1-7 The expressions were applied 1) to the analysis of diffraction from SLMs 
having random phase piston and tilt errors;1 2) to the effect of random phase errors on 
phase-only optical correlators;2 and 3) to the development of an in situ method of 
measuring the phase modulation depth of SLMs.9 (Sec. 3.0) 

• Mathematical models of the effect of systematic phase errors (including quantization, 
linear and quadratic gain, and saturation) on the performance of phase-only correlators 
were developed and verified against simulations.3,4 (Sec. 5.0) 

The above two analyses were combined into a single model and applied to error analyses 
of SLMs in optical correlators having combined random and systematic filter plane phase 
errors.56 (Sec. 5.0) 

• A statistically based algorithm pseudorandom phase-only encoding was developed which 
uses pseudorandomly selected values of phase to represent arbitrary complex values on a 
phase-only SLM.7 (Sec. 3.1) The method has been demonstrated both with 
simulations7-8'11'1315 and experiment315 using SLMs to produce highly accurate 
diffraction patterns having low levels of noise. Specific designs have been demonstrated 
that include beam steering and shaping,7"9 (Fig. 4), multiple spot beam steering,1315 (Sec. 
4.2) and composite/synthetic discriminant function filters for pattern recognition.1011 (Sec. 
4.5) Error analyses show that the quality of the diffraction patterns is closely related to 
the diffraction efficiency r\ and it can be easily calculated prior to actually performing the 
encoding.7911 (Sec. 3.2) The encoding method, as opposed to most numerically intensive 
diffractive optic design procedures, can be performed in real-time, thus making it well 
suited for real-time and adaptive optical processors. 

Pseudorandom encoding was extended in several ways including 1) improving 
performance by only selective or partial encoding of the desired complex values,11'15 (Sees. 
4.3,4.4); 2) developing encoding formulae for modulators for which the value of 
amplitude is a function of the value of phase,1617 (Sec. 3.1); 3) inventing a type of fixed- 



pattern diffractive optic, referred to as a patterned diffuser array together with a low cost, 
high speed fabrication method.1213 (Sees. 4.6-4.9) These diffractive optical elements 
(DOEs) effectively produce fully-complex modulation and have much lower noise than 
possible for the encoding method for SLMs. It was also found that partial pseudorandom 
encoding produced higher performance composite pattern recognition filters on phase only 
SLMs than Homer's phase-only mapping, Juday's minimum euclidean distance (MEDOF) 
design procedure, or pseudorandom encoding by itself.11 

Detailed characterizations of the phase modulating properties of the TVT6000 liquid 
crystal SLMs were performed including characterizations of the effects of modulation 
transfer function (MTF) on phase depth.9 

Recommendations for Future Studies are to 

• Extend analyses of random errors to Fresnel diffraction and investigate the possibility of 
pseudorandom synthesis in this regime. 

• Extend models of systematic and random errors of correlators to specifically analyze 1) 
coupled amplitude phase SLMs; 2) composite/SDF filters. 

• Develop an analytic procedure for determining the best operating curve from a range of 
curves (such as the polarization dependent properties of liquid crystal SLMs) so that a 
correlator optimally recognizes the target. The goal is to develop a method of selecting 
this curve that can be solved in real time. 

• Develop a pseudorandom encoding formula for an available (i.e. coupled) SLM and 
experimentally demonstrate pseudorandom encoding with this SLM. Experimentally 
demonstrate and characterize the performance of optical correlation using encoded SLMs. 

• Investigate ways that pseudorandom encoding could be used to accelerate current 
diffractive optic and composite filter design methods over the current numerically intensive 
solution methods. 

• Demonstrate a prototype system to fabricate patterned diffuser arrays. 

• Demonstrate usefulness of patterned diffuser arrays as accurate, easily fabricated grayscale 
masks in projection printers for photolithographically patterning three dimensional surfaces 
for diffractive optics, micro-optics and other applications requiring topographic structures. 

• Further evaluate usefulness of pseudorandom grating in distributed feedback lasers and 
couplers, acousto-optic tunable filters, artificial dielectric/submicron scale gratings, and 
for thick and volume holographic recording. 



2.0 QUALITATIVE DESCRIPTION OF SPECKLE GENERATION 

2.1 Basic concepts of rough surface scattering and generation of speckle. Speckle patterns are 
produced by scattering plane waves off of rough surfaces and observing the resulting pattern of 
intensity at some distance from the surface. This is illustrated in Fig. 1. Surfaces that are 
perfectly smooth produce mirror reflection. The resulting far field pattern is referred to as the 
specular component. The diffraction pattern from a very rough surface (for which the rms optical 
path differences are much greater than a wavelength) instead produces diffuse scatter which is 
observed as a speckle pattern. The high spatial frequency of the surface causes the light to diffract 
over a much greater angular range than the specular component, and the (typically) random 
texture of the roughness gives the speckle pattern its noise-like intensity pattern. Fig. 1 only 
illustrates the average intensity envelope of the speckle pattern. The shape and spread of the 
envelope is due mainly to the size of the individual rough grains. Surfaces that are less rough 
produce partially developed speckle patterns which are composed of the broadly diffused speckle 
pattern, plus a specular component of reflection. Fig. 1 illustrates that it is possible to vary the 
intensity of specular light by controlling roughness. 

The formation of speckle can be viewed as the random phasing of plane wavefronts at a great 
distance from the surface. This is specifically illustrated in Fig. 2. The wavefronts arise from 
an array of Npoint sources (which might model a surface or a spatial light modulator). We will 
consider the effect of different types of source distributions on the far field pattern. If all the 
wavefronts are of the same phase then they will reinforce each other and produce an intense light 
distribution on the optical axis. This corresponds to the purely specular diffraction pattern in Fig. 
1. If the phases of the point sources are randomly distributed between 0 and 2n radians then the 
wavefronts interfere with all different phases and the observed intensity is much weaker. This 
corresponds to the purely diffuse diffraction pattern in Fig. 1. The percentage of diffuse to 
specular energy can be varied from 0 % to 100 % by increasing the randomness of the phases 
from 0 to 2%. 

The superposition of randomly phased wavefronts (as illustrated in Fig. 2) can also be interpreted 
as performing statistical averaging. The concept is similar to Monte Carlo simulation methods. 
If a large number of repeated experiments or trials are performed and the results are averaged 
together then the average result is approached with increasing accuracy as the number of trials is 
increased. This is often referred to as the law of large numbers. For example, considering simply 
pouring a stream of salt onto the ground. After only a few grains are scattered, the distribution 
of grains appears random, but over a period of time a mound forms that becomes increasingly well 
defined, smooth and deterministic. From this statistical viewpoint, the superposition of 
wavefronts is identical in concept. Increasing the number of interfering wavefronts results in 
diffraction patterns that more accurately approach the average (i.e. the expected value) of the 
diffraction pattern. This study is heavily based on this particular viewpoint. Since SLMs have 
a moderately large number of pixels (10,000 to one million,) we have observed and report 
diffraction patterns that very closely approximate their true average (that would result for an 
infinite number of pixels.) 
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Fig. 2.   Typical phased array geometry for which large numbers 
of wavefronts from SLM are added together in far-field. 

Extension of these basic concepts leads to (1) new methods of evaluating the performance of 
optical processors and (2) new and faster methods of programming fully complex-valued (i.e. 
arbitrary amplitude and phase) spatial modulation onto limited range (e.g. phase-only) SLMs. 
We refer to these new design algorithms as pseudorandom encoding. Mathematically, it can be 
viewed as design based on statistical averages. Physically, it can be interpreted as the result of 
light scattering from rough surfaces. These surfaces are more general than traditional speckle 
theories, especially in that the statistical properties of each SLM pixel can be selected to effectively 
(i.e. on average) produce a desired modulation. 

2.2 Comparison of traditional speckle models with models needed for SLMs. A significant 
amount of research has been devoted to statistical modeling and experimental characterization of 
speckle properties (see Dainty, cited above.) These models have focused on naturally rough types 
of surfaces such as machined surfaces, paper, and biological tissues.   The surface is typically 
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modeled as a plane perturbed by a roughness function that is a stationary random process (i.e. the 
statistics of roughness are unchanging with position across the surface.) 

The most fundamental difference between the traditional surface models used in the theory of 
speckle and the models developed in this study are that we generalize the surface so that it is 
modeled by a nonstationary process. This is to say that the statistics of the process (thus the 
texture of the roughness) varies with position. The nonstationary model is required to synthesize 
diffraction patterns by the pseudorandom encoding method (Sec. 3.1) in which the randomness 
(corresponding to roughness) in a particular position on the surface determines the amount of light 
specularly reflected from that position (see Fig. 1.) 

A second difference between traditional surfaces and surfaces possible with SLMs becomes 
apparent when considering SLMs that are composed of arrays of individually programmable pixels 
(or equivalently, when the signal used to program the SLM is discrete rather than continuous.) 
SLM pixels have finite width apertures that can modify the sample values of the signal. This 
transformation, referred to as a sampling effect, can modify the signal in simple or complicated 
ways, depending on the exact modulation properties of a pixel. A pixel may simply convert a 
discrete signal value into a constant value of modulation across its aperture (akin to a sample and 
hold circuit), or it may produce a varying modulation across its aperture [for example, a cantilever 
beam Deformable Mirror Device (DMD) which produces a linear phase ramp.] While, natural 
surfaces typically lack these deterministic structural details, we have found it necessary to include 
pixel structure in our SLM models. 

A similarity between our models of the signal and traditional models of the roughness function 
is that each are usually assumed to be composed of statistically independent samples. This is 
equivalent to saying that the function is statistically uncorrelated with shifted versions of itself. 
However, once the signal is applied to program the SLM, some spatial correlation can be 
introduced. For instance, pixels that convert signal samples into a constant value over the pixel 
aperture cause the SLM surface to be correlated over that the width of the aperture. Limited 
spatial resolution of an SLM can also lead to correlated spatial modulation. For the experimental 
studies that we performed using liquid crystal televisions (LCTVs) we found that the electronic 
drive circuitry actually lowpass filtered the video signal causing the correlation distance to be 
greater than the pixel spacing.9 Thus the resolution of these devices is actually significantly lower 
than the spatial frequency of the pixels. In experimental comparisons with theories assuming 
uncorrelated samples, we took steps to minimize the degree of correlation; most notably, 
programming clusters of pixels identically as a superpixel. 

In this study we specifically modeled SLMs as arrays of pixels that are deterministic, but which 
can be perturbed by random parameters, e.g tilt (phase ramp) and piston (phase retardation).IX1 

In addition, the random parameters are statistically independent and (in the most general case) 
non-indentically distributed (which is comparable to a white but non-stationary stochastic process.) 
Early in the program SLMs with pixels that produce both piston and tilt (representative of 
deformable mirror devices) were modeled.   When it became apparent that Texas Instruments 



would not be able to complete fabrication of Flexure Beam DMDs (FBDMD), the modeling 
focused in on devices with ideal phase-only (piston) modulating pixels. Towards the end of the 
study we recognized that the analyses developed could be applied with some modification to 
modulators for which amplitude is a function of phase— the so called amplitude-phase coupled 
modulator. An example of a coupled modulator characteristic (illustrated both in rectangular and 
polar) is given in Fig. 3. Most current SLMs have coupled amplitude phase modulation. Most 
notable are liquid crystal SLMs which can be varied from amplitude-mostly to phase-mostly 
modulation depending on the polarization of the illumination. 

-K 0 71 
V   (radians) 

Fig. 3.   Amplitude coupling compared for identical slopes with and 
without phase modding.   Shown both as cartesian and polar functions. 

3.0 MATHEMATICAL MODELS OF SPECKLE GENERATION. 

In this section we mathematically describe the two properties of scattering from randomly 
modulated SLMs that permitted us to analyze the performance of optical processors (Sec. 4.0) 
and that we used to develop pseudorandom encoding algorithms. (Sec. 5.0) The first property 
(referred to as the complex modulation property) is that an average, or effective, complex value 
of modulation can be ascribed to randomly modulated SLM pixels for purposes of modeling the 
far-field diffraction pattern. The second property (referred to as the noise or speckle background 
property) is that the far-field pattern will contain a noise/speckle background in proportion to the 
randomness of the SLM modulation pattern. The fundamentals of these properties are presented 
in this section. Then in Sees. 4.0 and 5.0 detailed applications of the complex modulation 
property to designing diffraction patterns and of the noise/speckle background property to 
evaluating the performance of SLM-based optical processors are presented. 

3.1 Complex modulation property.7 This property is most easily shown for phase-only surfaces. 
A plane wave reflected from a phase-only surface can be represented by the complex-valued 
(indicated by bold) function a(x,y) = exp[/i|/(*,y)]. The phase modulation ty(x,y) is a random 
field consisting of independent non-identically distributed random variables with co-ordinates x 
and y. The statistics of the phase are then fully specified by the probability density function (pdf) 
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of phase p[ty(x,y)] which varies with position. These assumptions about SLMs correspond to 
those given in the previous section. With these definitions we can directly calculate 1) the 
complex amplitude of the far-field diffraction pattern; 2) the expected complex amplitude of the 
far-field diffraction pattern; 3) the expected intensity of the far-field diffraction pattern; and 4) the 
standard deviation of the diffraction pattern intensity. 

The far-field diffraction pattern of any modulation pattern a is known to be 

A(f,'f,)    =    ^[fl]    =    f fa{x,y)exp[j27t(fxx+fyy)}dxdy (1) 

where «?"[•] is the fourier transform operator. The expectation or ensemble average of any 
random variable i|r is written 

(i|>>   =   / iM*) *t|r (2) 

where <•} denotes the expectation operator. The average complex-amplitude of the far-field 
pattern of the random complex modulation a can be written 

where the linearity of the fourier transform and ensemble average operators has been used to 
interchange their order. Under the assumption that the random samples of a are statistically 
independent with position, the expectation of/the far-field intensity pattern is 

</)   =   <W2>   -   \{A)\2 + {IS) (4) 
where Is(fJy) is a residual noise pattern due to the random phasings in the far-field. As long as 
the noise [represented by the second term of eq. (4)] is adequately low, then eq. (4) is 
approximately the magnitude squared of eq. (3). In this average sense, any complex-valued 
modulation can be represented by the random phase-only modulation a(x,y) = exp[/\|r(x,v)]. This 
is seen by explicitly taking the ensemble average of a which yields 

(a)    =   JVciOexpC/ilOrfilr    =    apexp(j$p) (5) 

where ap is the resulting expected amplitude modulation. We will often refer to a, as the effective 
amplitude, 4>,=<i|f> as the effective phase, and ap=(a) as the effective complex amplitude or 
modulation. 

Eq. (5) demonstrates the first property: that randomness can be used to effectively produce fully 
complex modulation. Even though the actual (non-averaged) modulation is phase-only 
modulation, each pixel can represent, in an average sense, any desired amplitude ap{x,y) between 
1 and 0. To show this amplitude control explicitly, consider the family of uniform density 
functions having random phase spreads v e [0,2TT]. Evaluating the uniform family in eq. (5) gives 
all values of amplitude between 0 and 1 according to 
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a      =    sinc(v/27t)    . (6) 

Eq. (6) shows that it is possible to select a desired effective amplitude by choosing an appropriate 
value of v. The value of v can be different for each pixel (non-identical/non-stationary statistics) 
thus enabling near arbitrary diffraction patterns. This observation is the basis for us proposing 
phase-only pseudorandom encoding. 

The encoding algorithm for an array of Npixels having the desired complex amplitudes aci is: 
for/ = l toiV: 

a) invert eq. (6) for v, given the value of api= \aci\ 
b) select a number between -V2 and V2 using a uniform random number generator 
c) scale this number by v, and offset by §p, to get the pseudorandom phase i|r, 

Specific diffractive optic designs produced using this algorithm will be reviewed in Sec. 4.0. 
Before proceeding to the second property of diffraction it is also worth considering how 
pseudorandom encoding for phase-only SLMs can be extended to coupled amplitude-phase SLMs. 

Complex modulation property for coupled amplitude phas£^LMs.1611 Most practical and 
currently available SLMs are actually coupled. The current model can be extended so that rather 
than the amplitude a being unity, its value a(i|/) is now a deterministic function of phase I|J. Under 
this assumption eq. (5) is generalized to 

■(fl(i|r)exp(yi|i)>    =    f a(i|r)exp(./i|;)/>(i|/) dty   . (7) 

The phase coupled amplitude a(ty) can be interpreted as adding a weighting function to the phasor 
average of eq. (5). Our approach to developing a pseudorandom encoding algorithm for coupled 
modulators was to make eq. (7) look like the effective amplitude for phase-only pseudorandom 
encoding in eq. (5). This can be done by specifying an effective probability density function of 
the form 

Peffm   =   a(i|0/>(i|0 (8) 

so that the phase pdf/?(ijj) compensates for the amplitude weighting/coupling a(i|/). For instance, 
one can select the product of the effective amplitude and the phase pdf to equal a uniform 
function.  Then eq. (7) can be integrated to give a sine function similar in form to eq. (6). 

Note that individual non-uniform random number generators are needed depending on the 
particular coupling between amplitude and phase. One direct way to synthesize random numbers 
with the required pdf p(i|x)is to transform a uniform distribution into the required pdf according 
to 

ty =   P -\s) (9) 

where s is a uniform random variable contained between 0 and 1, and P(t|/) is the cumulative 
distribution function of i|/ [i.e. p(ty) = dP(\|/)/di|/].   In the field of image processing, this 
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procedure for transforming statistics is referred to as histogram equalization. With these 
modifications it is possible to use randomness to overcome the limited modulation range of many 
types of SLMs in addition to phase-only SLMs. 

For either phase-only or coupled SLMs, pseudorandom encoding offers a direct, pixel-by-pixel 
method of encoding. Since there are only a few numerical calculations per pixel the method has 
the potential for real-time implementation. This is the major advantage of the algorithm over most 
current techniques that search for globally optimal solutions, and which usually require hours of 
computer time. In the 1960s and 1970s fast encoding techniques were developed for computer 
generated holography. These work by clustering groups of pixels together to achieve an effective 
complex value. These methods are as fast as pseudorandom encoding but by clustering pixels they 
reduce the available spatial bandwidth of the SLM. Considering the small number of pixels in 
current SLMs (100x100 to 1000x1000) as compared to holograms, we feel that the bandwidth loss 
from clustering is unacceptable. Pseudorandom encoding does use the full bandwidth of the SLM, 
which we believe is another of its major advantages. 

3.2 Noise/speckle background property.7 The term (I) in eq. (4) can be interpreted as the 
average noise or speckle background that is generated by randomness in the modulation. This 
noise envelope corresponds to the diffuse background in Fig. 1. The other term |(A>|2 in eq. (4) 
corresponds to the desired specular component in Fig. 1. The specular component can be much 
more complicated than the single diffraction peak drawn, since it results from the arbitrary 
phasing of a large number of SLM pixels (as illustrated in Fig. 2). 

While eq. (4) does provide information on the expected specular diffraction pattern and the 
expected background noise, it does not (directly) provide information on the variance of a 
particular design. In concept, the variance can be directly calculated according to 

o)ifx,fy)   -   (l
2)-(lY a«) 

where I = \A\2. In practice, the mathematical manipulations can be quite involved. A very 
general derivation for an array of pixels is presented in Ref. 7. We have found that the resulting 
expression can greatly simplify the effort of rederiving the variance over performing the 
operations using the fundamental operations described in eq. (10) for each new SLM 
characteristic. The results are general enough to apply to both phase-only and coupled amplitude 
phase SLMs and there is also no constraint on the spatial properties of the pixel. For example, 
we have used these general equations to evaluate the performance of SLMs using phase-only 
pixels having random tilts.12 Presentation of the specific equations in this summary would 
provide little additional insight. Instead, Ref. 7 (contained in Sec. 10) can be consulted as needed. 

The most direct application of eq. (10) is in simply calculating the error bounds for the far-field 
diffraction pattern as produced by a randomly perturbed SLM. An example of this is illustrated 
in Fig. 4. The curves shown are one dimensional cross sections from a computer simulation of 
diffraction from a phase-only (piston-only) SLM. The specific pattern was designed (using 
pseudorandom encoding) to give an equiripple (i.e. Chebychev) approximation to a brick wall 
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response. The central curve of the three curves drawn with thin lines represents the expected 
intensity pattern calculated using eq. (3) and the outer curves are the one standard deviation error 
bars calculated using eq. (10). The error bounds give an idea about the quality of the design. The 
actual diffraction pattern (thick curve) compares closely with the average result (thin lines). That 
the fluctuations of the actual diffraction exceed the one standard deviation error bounds is not 
unexpected. If we had wanted to show a bound on almost all errors we would have instead plotted 
the 3a error bounds. Grayscale plots of the diffraction pattern are also presented in Ref. 7. 
Comparable results are experimentally demonstrated with an available SLM in Ref. 9. 

The equations for expected complex amplitude, expected intensity and standard deviation of 
diffraction patterns [eqs. (3),(4) and (10)] have also led to the development of analytic expressions 
for important performance metrics, including signal-to-noise ratio (SNR), peak-to-noise ratio 
(PNR) and diffraction efficiency r). The exact meaning of these metrics can vary depending on 
the specific problem analyzed. Some specific results are presented to give more details on the 
properties of eqs. (3),(4) and (10) and how these are used to develop metrics. 
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Fig. 4.   Brick wall diffraction pattern achieved by pseudorandom encoding. 
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MetdcsJhaLdes£rib£jMMbißj^J}UMjwM. We will describe the diffraction efficiency for 
pseudorandom encoding of phase-only SLMs. Diffraction efficiency generally measures the ratio 
of energy that diffracts into the desired/design pattern compared to the total energy available. The 
definition can vary depending on whether the transmittance loss of the SLM is accounted for. 
Phase-only SLMs are sometimes stated as being 100% diffraction efficient because they introduce 
no transmission losses. However this often has little practical relevance because there will be 
implementation losses due to the limited (i.e phase-only) modulation range of the SLM when 
designing an arbitrary diffraction pattern. For phase-only pseudorandom encoding we have 
chosen to define diffraction efficiency n as the ratio of energy that goes into the desired diffraction 
pattern compared to the total energy (which is the sum of energies from both the desired and the 
speckle/noise diffraction patterns.) We found this expression for diffraction efficiency by 
summing up the energy in the corresponding desired and noise terms in eq. (4). The diffraction 
efficiency for a pseudorandom encoded phase-only (piston type pixels) SLM is then found to be911 

n  = ^ t v- <n> 
N j=i 

where TV is the number of pixels in the SLM and api = \ (a) \. The ratio of the energy that appears 
as speckle is then 1-T|. In Ref. 7 we originally interpreted the quantity (l-r\)N as an effective 
number of random pixels. Diffraction efficiency or effective number give a clear physical picture 
and a mathematical measure of the quality of any pseudorandom encoded design. Eq. (11) is 
especially important because it is expressed in terms of the desired complex modulation. Thus 
the quality of each pseudorandom design is known in advance of actually performing the 
encoding. In Sees. 4.3 and 4.4 we describe how this metric has been used to rapidly search for 
the highest efficiency diffraction pattern by evaluating the efficiencies of the set of Fourier 
transform pairs that all produce the same intensity pattern (but which produce different phase 
patterns). 

We can also show to what degree diffraction efficiency influences performance as measured by 
SNR and PNR metrics. A conventional definition of signal-to-noise ratio is SNR=(/)/o/. We 
specifically considered single spot diffraction patterns (e.g. shown in Fig. 4 and in Ref. 7) that 
were designed by phase-only pseudorandom encoding. The SNR metric developed specifically 
measures the ratio of diffraction peak intensity to its fluctuation at that same point. The reciprocal 
of SNR is the relative error of the peak intensity of the diffraction pattern. We found7 that the 
SNR can be approximated for this case as 

SNR 
N      T)2 (12) 

\   2    1 -Ti 

where we have expressed the result in terms of diffraction efficiency rather than effective number 
(as it was originally presented in Ref. 7). The result clearly shows the influence of the number 
of SLM pixels and of the diffraction efficiency on the accuracy of the resulting diffraction pattern. 
To gain an appreciation of the relationships between SNR, n, N and the resulting diffraction 
patterns specifically consider the result illustrated by Fig. 4. For this case the 128x128 pixel SLM 
has N= 16,384 pixels, an SNR of 8:1 and a diffraction efficiency of 8%. 
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A second measure describing the quality of single spot diffraction patterns is PNR. This can also 
be described a a measure of peak intensity to standard deviation. The distinction with SNR is that 
for PNR the standard deviation is measured away from the spot in the noise background. This 
definition of PNR is often referred to as SNR in many publications (but we use the term PNR to 
distinguish from our first definition of SNR.) Further evaluation of eqs. (3), (4) and (10) showed 
that PNR is closely related to SNR and r| according to 

PNR    «   2 SNR2    =   -^-3- (13) 1 -n 
Continuing with the numerical example from the previous paragraph we see that the PNR for the 
example in Fig. 4 is calculated to be 128:1 . These correspond well with the resulting pattern (the 
thick curve in Fig. 4) in which the individual speckles are barely discernable on the plot. 

These results give an idea of the usefulness of the analysis equations [eqs. (3), (4) and (10)] for 
modeling performance. The specific results described here on the performance of phase-only 
pseudorandom encoding provide both engineering design criteria and physical insight. The 
analysis equations are easy to apply to a variety of modeling problems in optical processing. A 
detailed application of the noise property to modeling the performance limits of optical correlators 
is presented in Sec. 5.0. We first describe in Sec. 4.0 an application of the complex modulation 
property. 

4.0 COMPLEX MODULATION PROPERTY USED TO DESIGN COMPOSITE FILTERS 

This section describes our most advanced procedure, built around pseudorandom encoding, for 
mapping sophisticated composite functions onto SLMs. Algorithms for encoding fully complex 
composite functions onto limited modulation range SLMs and that can be performed with a small 
number of numerical operations in real- or near real time would greatly extend the performance 
and flexibility of optical processors by making them adaptive to changing and unpredictable 
situations. For instance, the algorithm to be described could be used to program a phase-only 
SLM to adaptively and independently steer a number of spots to arbitrary locations in the far-field. 
Such a system is comparable to a phase-only phased array antenna. The algorithm could also be 
used to construct in real time composite filters for optical correlators. For instance, the composite 
filters could be constructed on-the-fly to recognize a particular subset of objects (say tank, humvee 
and mortar) or a specific subset of views of an object (for distortion invariant recognition and 
tracking). However, multispot beam steering or distortion invariant pattern recognition is quite 
difficult to perform if only phase (but not amplitude) of the SLM is controlled. The 
pseudorandom encoding algorithm described so far overcomes the problems in designing the 
correct SLM modulation in real-time but it also has a low diffraction efficiency compared to that 
possible using numerically intensive algorithms (requiring hours of computation.) Our generalized 
algorithm can produce higher diffraction efficiencies than the original pseudorandom encoding 
algorithm and the generalized algorithm can run in near-real time (or with further development 
effort, in real-time.) 
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4.1 Definition of composite function. Two broad classes of composite functions are the 
composite pattern recognition filter and the spot array generator. Either class of functions can be 
viewed as linear combinations of real and/or complex valued functions. The composite filter is 
used for recognizing an object in the presence of distortions. Being able to identify the same three 
dimensional object from various two dimensional views is an example of distortion invariant 
recognition.10-11 Distortion invariance can be built into the filter for a matched filter correlator 
by adding together filters that recognize the object from its individual views. The spot array 
generator is a diffractive optic that produces an array of equal intensity spots. These have many 
applications to machine vision and robotic inspection, and to optical processors where they can 
be used as fan outs for free-space optical interconnects and neural networks. The ideal modulation 
required for a spot array generator corresponds to a composite function that is a linear 
combination of complex sinusoids. This would then produce diffraction spots at locations 
corresponding to the spatial frequency of each sinusoid. 

4.2 The problem of mapping composite functions onto limited range SLMs. The problem with 
any algorithm that maps composite functions onto limited range SLMs is that this mapping is a 
nonlinear transformation. Thus, when composite functions are encoded, the individual functions 
of the composite function can effectively mix and produce noticeable sum and difference 
frequency harmonics. These undesired orders are quite evident for spot array generators from 
Bell Labs for photonic switching and from Teledyne Brown for structured light inspection 
systems. In optical correlators such mixing products can be incorrectly identified as false 
correlation peaks. This problem is illustrated in Fig. 5a for phase-only pseudorandom encoding. 
The diffraction pattern in the left column is the result of encoding the desired complex function 
by pseudorandom encoding and the right column is the result for encoding using the phase-only 
filter (i.e. each desired amplitude is encoded as unity, and each desired value of phase is exactly 
realized. J. L. Horner and P. D. Gianino, "Phase-only matched filtering," Applied Optics, 25, 
3767-3772. (1984)). The harmonic nature of the mixing products is evident for the right column. 
For the left column, the speckle noise is uniformly spread over the diffraction plane and thus the 
intensity is substantially lower than the intensity of the individual noise harmonics found for the 
phase-only filter. Thus false peaks are less evident if pseudorandom encoding is used. Also, the 
non-uniformity of the 64 desired spots is 7 % rms for the pseudorandom encoded modulation but 
over 100 % for the phase-only filter for the simulated results in the first row of Fig. 5a. (This 
information on nonuniformity is shown in Fig. 5c. This graph will be described in Sec. 4.3.) 
Since mapping errors are transformed into a broadly spread and average low level noise pattern, 
pseudorandom encoded SLMs behave more like complex valued SLMs and suffer much less from 
undesirable nonlinear interactions. This is a decided advantage of random encoding. The level 
of performance achieved by pseudorandom encoding has been further improved through our 
development of a generalized algorithm. 

4.3 The generalized pseudorandom encoding algorithm.1115 This algorithm improves the 
diffraction efficiency of composite functions and can run at near real time rates on conventional 
low-end digital processors. The algorithm adds two more steps to the original pseudorandom 
encoding algorithm: 
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d) Specification of high efficiency encodings.14 The individual functions are added together with 
different phases. In particular we choose the values of phase using a random number generator. 
Even better performance is achieved by repeating this step a number of times and each time 
recalculating the diffraction efficiency n. The complex modulation having the highest diffraction 
efficiency is selected for pseudorandom encoding by steps a-c. (Sec. 3.1) The individual functions 
are specified in the SLM plane so that the addition of the functions, as well as the calculation of 
the diffraction efficiency are done without using the fast Fourier transform. This permits the 
calculation to be performed with a relatively small number of computations. 

e) Pnrrinl encoding for balancing randomaadsMtßmaäc£nms.nl5 The complex values of the 
desired modulation that have amplitudes that are less than a specified value, referred to as the 
threshold radius, are pseudorandom encoded. (Fig. 5b illustrates the desired complex values, 
resulting from step d, and four possible threshold radii.) Complex values exceeding the threshold 
radius are encoded by specifying the corresponding phase-only filter (of Horner and Gianino, 
reference given above.) This phase-only encoding consists of setting each amplitude to the same 
level (that of the threshold radius) and keeping the phase angles identical to those of the desired 
complex values. Currently the optimal threshold radius is found iteratively. Steps a-c are 
repeated for different values of radius until a modulation is found that produces the best 
performance according to a specified criterion (e.g. diffraction efficiency, SNR, PNR, etc.) It 
appears that models, derived using eqs. (3),(4) and (10), can be developed to select a nearly 
optimal radius directly. 

4.4 Results for the specific design of an 8 x 8 spot array generator.1315 The generalized design 
procedure was applied to design an 8x8 spot array generator. The results (both theoretical and 
experimentally demonstrated) are illustrated in Fig. 5. Fig. 5b shows the complex values 
comprising the desired filter. These values were found using the procedure described in step d. 
The diffraction efficiency r\ increased from under 5 % (all phases identical) to 22 % after 
performing this step. Next the threshold radius was adjusted over the range from 1 to 0 (step e). 
For this design we define the optimal encoding to be the one producing the maximum intensity 
diffraction spots to peak background intensity. This metric is designated as signal to max clutter 
ratio in Fig. 5c. It is maximum at a diffraction efficiency of 42 % which corresponds to a 
threshold radius of 0.7. (Unless otherwise stated these values are for the theoretical calculations.) 
Note that over this plotted range of r\ from .22 to .56 the radius decreases from 1 to .55 in a 
nearly linear fashion. The 64 spots were found to be most uniform in intensity for a threshold 
radius of .8 (5% standard deviation from uniform). The designs are nearly as uniform for radii 
of 1 and .8 (6.8 % and 7.5 % respectively.) The corresponding diffraction patterns (for various 
threshold radii) are show in the top row of Fig. 5a. These grayscale images of intensity are 
saturated (50x in first two columns and 33x in the third column) in order to bring out the 
background noise and to specifically illustrate that the middle image indeed has the lowest 
background noise. The experiment (using a Hughes LCLV) shows similar trends. While the left 
and center images do appear to have roughly the same level of background speckle, note that the 
diffraction spots more heavily saturate the CCD camera for partial encoding and thus the signal 
to background noise is higher in the experimental demonstration as well. It should be noted that 
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the experiment is only qualitatively correct. Further experimental characterization of this SLM 
and calibration of the optical experiment is required before a quantitative comparison is possible. 

Explanation nfimprovement from step A. Since the phases of the diffracted spots are randomly 
selected, the complex modulation (the inverse Fourier transform of the desired diffraction pattern) 
looks quite similar to a speckle pattern. The speckle pattern has a much lower dynamic range in 
the values of intensity. Basically this reflects the fact that the peak intensity of a speckle pattern 
resulting from M randomly phased radiators is 1/M times smaller than for M coherently phased 
radiators. 

Further increase in diffraction efficiency is possible by choosing one of several possible random 
phasings. The reason for this can be qualitatively explained with reference to Fig. 5b. This 
figure shows that there are fewer complex values with increasing radius. Pseudorandom 
encoding normalizes the complex values by the maximum complex value, as indicated by the 
radius of 1 in Fig. 5b. But the maximum value is in the tail of the statistical distribution of all 
amplitudes and thus its value can vary significantly from iteration to iteration of the design 
algorithm. There are, however, a large number of values of small amplitude, and due to this large 
number, the statistical distribution does not vary significantly from iteration to iteration. 
Therefore, the statistical fluctuations of the maximum intensity modulation value sets the 
diffraction efficiency. Thus the objective of step d is essentially a search for a set of complex 
values for which the maximum intensity is minimum. 

Explanation of improvement for step e. The improvements resulting from partial encoding can 
be understood in terms of systematic and random types of errors. (A fuller discussion of 
systematic and random phase errors can be found in Sec. 5.1) Consider Fig. 5b. For a radius 
of unity the only errors are due to the randomness of the pseudorandom encoding algorithm. The 
encoding of amplitude as randomness of phase causes the lowest amplitude values to introduce the 
most noise. If the radius is reduced then the distances to the lower amplitude values are reduced, 
and this reduces the amount of random noise. However, a systematic error (in amplitude) is also 
introduced for each complex value outside the circle. The systematic error is the distance between 
a desired value and the threshold circle. Essentially any point outside the circle is reduced in 
amplitude (i.e. saturated) to the radius of the circle. The plot in Fig. 5c shows that there is a 
balance between systematic and random errors that produces the best performance. These results 
are even more suprising when one recognizes that for the best uniformity case (r| = .33 or 
equivalently radius = .8 ) that only 5 % of the values are outside the circle and that for the best 
signal to clutter case (r\ = .42 or radius = .7 ) that only 12 % of the values are outside the circle. 
These results on partial encoding will be reported in Ref. 15. { 

4.5 Results for distortion invariant pattern recognition.1011 A simulation study was performed 
in which composite filters were designed to recognize an aircraft in any one of many distinct 
orientations. The filters (designed by Hassebrook) were encoded using steps a-c,and e. However, 
the particular composite filter design method did not permit the use of step d. The improvements, 
while improved over the phase-only filter, are not as dramatic as for the encoding of spot arrays. 
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The reasons include 1) the lower number of pixels in the filter SLM (64x64 as oppossed to 
300x300); 2) that step d was not used to level the filter amplitudes; and 3) that the Fourier spectra 
of the individual training images (aircraft silhouettes), being low bandwidth, are much less level 
to begin with than the individual sinusoids used in designing spot arrays. Future investigations 
should focus on modeling to what degree these effects influence the quality of encoded composite 
filters. Models already developed by us (Sec. 5.0) already describe the effects of number of 
pixels and bandwidth on single function recognition filters. It appears likely that these models can 
be extended to reasonably model the performance of encoded composite filters. 

4.6 Patterned diffuser arrays: Pseudorandom encoding applied to diffractive optics.1213 We 
have also begun developing an application of the pseudorandom encoding concept to the design 
and fabrication of fully-complex fixed_pariern diffractive optics. The diffractive optic would 
consist of an array of pixels. Each pixel is a diffuser having a custom specified step height and 
a custom specified vertical roughness. The height corresponds to the desired phase and the 
roughness corresponds to a desired amplitude. Therefore, according to the physical model of 
scattering (Sec. 2.1 and Fig. 1) the amplitude of the specular component depends on the vertical 
roughness. Furthermore, the specular components from an array of diffuser pixels can be added 
together in the far-field, as illustrated in Fig. 2 to produce the desired diffraction pattern. 

The advantage of the diffuser pixel over a pixel that represents a single random value of phase is 
that the higher spatial frequency of the diffuser produces a much broader pattern of diffuse scatter. 
This reduces the average noise power that can interfere with the desired (specular) diffraction 
pattern. In terms used by antenna designers, using a diffuser instead of a single pixel increases 
the directivity of the desired pattern with respect to the extent of the noise pattern. Say a 
diffractive optic is designed to have 100 /xm square pixels and 2 /xm roughness cells. The 
directivity gain is 50x50 or 2500! This provides a dramatic improvement in signal to noise over 
the designs presented above. Some preliminary simulations and comparisons that demonstrate the 
improvement are presented in Ref. 13. The diffuser array is a much better representation of the 
desired complex modulation than single phase per pixel devices. As with pseudorandom encoding 
in general, the design procedure is greatly simplified since the pixels are effectively complex 
valued. 

These advantages of diffuser arrays may not at first appear compelling. For instance, many 
methods have been developed that produce an effective complex modulation by defining a 
superpixel as a cluster of individual pixels. However, it is the additional potential for reduced 
fabrication time and cost that makes the diffuser arrays quite appealing. The fabrication method 
we have been considering is to expose photoresist one diffuser pixel at a time. There is a range 
for which photoresist thickness (after development) is proportional to exposure energy intensity. 
This has already been used for laser writing of diffractive optics by raster scanning. For highly 
resolved patterns, such as the roughness functions we wish to pattern, the patterning can take 
several hours and the patterning equipment (typically an e-beam system) is quite costly. Instead 
we would pattern an entire pixel with a single exposure, step to the next pixel, and then expose 
with a new pattern. The exposure parameters consist of the average energy per unit area (which 
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corresponds to step height) and the spatial nonuniformity of the illumination (which corresponds 
to roughness). 

There are many ways to achieve the desired pixel exposure pattern. Perhaps the simplest is to 
generate a rough pattern by passing laser light through a diffuser to produce laser speckle. The 
size of a roughness cell corresponds to the diameter of an individual speckle. A uniform intensity 
bias can be effectively created by time averaging speckle patterns together on the photoresist. 
Translating or spinning the diffuser in front of the laser beam with a specified velocity can be used 
to produce the desired offset. Additionally, a shutter or modulator is needed to control the total 
dose. In our lab we have found that there is negligible blurring of 2 /mi speckle exposures, even 
when the recording was performed without a vibration isolation table. For this reason we 
consider the goal of 100 /xm pixels with 2 /mi roughness cells to be achievable in a laboratory 
setting. With standard commercial photoresists, lasers and translation stages it appears that it 
would be possible to construct a patterning system with less than $40,000 of equipment. This 
machine could easily pattern custom-specified complex-valued modulations having 16,000 pixels 
in 5 minutes. Dust would be non-critical and patterning could be performed without using a clean 
room. 

4.7 Application to photomasks for grayscale photolithography.13 If a diffuser is used as a mask 
in a projection printer, it will scatter some portion of the light outside the aperture of the imaging 
system. If the source illumination is incoherent then the resulting image will be a uniform 
intensity gray level illumination. A patterned diffuser array would then produce a grayscale 
image. This makes it possible to directly pattern three dimensional structures (such as micro- 
lenses and prisms) in photoresist in a single exposure. Thus the patterned diffuser array could 
serve as a master for mass-producing integrated and diffractive optics. References to related 
activities in grayscale photolithography at other institutions are also cited in Ref. 13. 

4.8 Application to fully complex real-time programmable SLMs.13 We have briefly considered 
if it is practical to produce a programmable SLM that consists of individually controllable 
diffusers. It may be possible to cascade a phase-only modulator (e.g. the FBDMD) with a random 
diffusing liquid crystal (e.g. polymer dispersed liquid crystal) to achieve fully complex modulation 
with only two electrical controls per pixel. This type of liquid crystal is already used in 
commercial applications, especially as electronically controllable privacy blinds for windows. The 
problems in developing such a device are limited by the current problems in developing good 
SLMs in general, and phase-only SLMs in particular. In this environment, the development of 
cascaded SLMs are viewed as being unnecessarily risky and costly. However, we believe that the 
addition of an electrically controllable diffuser would be one of the lowest risk approaches to 
consider for a tandem SLM. 

4.9 Possibility of fully complex modulation for Fresnel diffraction. Because the roughness is 
so much higher in spatial frequency than the pixel sampling rate, the devices should also 
reasonably represent complex-valued modulation functions even into the Fresnel region (i.e. 
because the law of large numbers can be approached for the interference of the wavefronts from 
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even a few pixels. Refer to Fig. 2.) 

5.0 NOISE PROPERTY USED TO ANALYZE OPTICAL PROCESSOR PERFORMANCE 

Analyses of optical correlators have been developed26 which are heavily based on the random 
phase analysis equations, eqs. (3),(4), (10). The particular emphasis of these analyses is to model 
the effect of phase errors in the filter plane SLM on the performance of the 4f correlator. 
Moreover, approximate forms that can be easily calculated. These equations, which give general 
insights into the performance of the correlator, are often to be preferred over numerically exact 
solutions that can only be found through detailed simulation. In these studies we have also shown 
that the performance levels predicted by the new models often agree quite closely with the results 
found through rigorous simulations, even when using using real-world imagery. 

In our early work the filter plane SLM was assumed to be phase-only and only systematic phase 
errors were considered.4 This was generalized to 1) include the case that the SLM can produce 
any value of amplitude between 1 and zero (e.g. Kumar and Hassebrook's fractional power filter) 
in addition to its phase modulation and 2) that the SLM produces both random and systematic 
phase errors.6 The results of the generalized analysis are summarized following a review of the 
definitions of random and systematic phase errors. 

5.1 Definitions of and sources of random and systematic phase errors in SLMs. Random 
phase errors ö(j>r are simply phase errors that differ from the desired filter phase by a random 
amount. That is to say the phase errors are modeled as random variables. A simple example of 
a source of this phase error is thermal noise on the video signal used to program an electronically 
addressed SLM. Systematic phase errors bfys are nonrandom. They are described as a known 
function of the desired phase. A well known example of a source of systematic error is incorrect 
calibration between the video drive level and the desired phase shift. Another source of 
systematic error is simply that the SLM cannot produce a full 360° of phase shift. Thus (for a 
calibrated SLM) there is no phase error for desired phases less than the maximum phase shift and 
an increasing phase error for desired phase shifts in excess of the maximum phase shift. Another 
systematic phase error is quantization of either the address signal or the levels that the SLM can 
produce. In this viewpoint the binary phase-only filter is quantized to two levels and the phase 
error is due to the difference between the closest of the two binary phases and the desired analog 
phase. These examples show that many limitations of current SLMs can be viewed as systematic 
errors. 

5.2 The resulting model.6 The model developed evaluates the correlation peak formed in the 
output plane of the 4f optical correlator when the desired object is present on the input SLM. In 
this model the filter plane SLM is programmed to represent a distorted version of the complex 
spectrum of the input object. The distortion is due to the systematic and random phase errors 
inherent in the SLM and also the amplitude weighting programmed by this SLM. For an 
amplitude spectrum of the form a'(f) the amplitude of the filter can be of the form [a'(f)]n for 
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any value of the exponent n. For n = -1,0,1 the SLM represents respectively the inverse, phase- 
only and matched filters. This general class of filters, for all values of n, is referred to as the 
fractional power filters (FPF). For this model the spectrum that is found at the output of the filter 
plane SLM is then a exp\j(b<br+ö$J\ where a= [a']n+i . It is easy to see that the FPF is a slight 
generalization of the phase-only filter (that was originally analyzed in Ref. 4). For this 
mathematical analysis each FPF designated by n, can be equivalently viewed as a phase-only filter 
being illuminated by an amplitude spectrum to the n+1 power. Once the wavefront at the output 
of the SLM is known, the resulting correlation peak that will form in the output plane is 
determined. 

We have already shown how to evaluate random phase errors using eqs. (3),(4),(10). It is 
however, particularly interesting that the effect of systematic phase errors on correlation peaks 
is mathematically similar to that of random phase errors, to the extent that both systematic and 
random effects can both be calculated using averages. This is shown in Ref. 4 where the 
correlation peak amplitude c(0) is written 

Bf/2 

c(0)    =      f   a(/)exp[;6(j)//)]rf/ (14) 

where Bf is the spatial extent of the filter plane SLM.  This equation is essentially of the form of 
Bf multiplied by the temporal or time average 

772 
1 

g 

1   I £. 

-   f g(t)dt (15) 
T 

-772 

where / corresponds to the time coordinate and Bf corresponds to the period.    Under many 
practical circumstances the temporal average can be equated to the ensemble average 

(g)    =    fgP(g)dg (16) 

where p(g) is the probability density function of g. This property [that eqs. (15) and (16) are 
equivalent] is referred to as ergodicity. In the analyses in Refs. 4 snd 6 this assumption was 
applied the spectrum at the output of the filter plane SLM g=aexp(jö^>s). The assumption that the 
temporal average can be replaced with an ensemble average is also justified by the physics of 
diffraction from the filter plane to the correlator plane. The correlation plane is the Fourier 
transform plane of the filter plane. Thus the resulting correlation peak is a direct result of 
wavefront superposition [illustrated in Fig. 2 and mathematically expressed in eq. (14) for the 
amplitude on the optical axis] and the superposition is describable as an ensemble average. 

To perform the analysis indicated by eq. (16) a joint probability density functionp(a,5$s) must 
be specified. After looking at histograms of amplitude and phase spectra of a number of images 
of faces and tanks provided by J. L. Horner of Rome Laboratory, we felt justified in making the 
following assumptions: 1) that the amplitudes and the systematic phase errors could be modeled 
as random variables; 2) that the phase <$>s of the input spectrum (not the phase error) is uniformly 
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distributed over 360°; and 3) that each amplitude is statistically independent of each phase. 
Obviously the spectrum is non-random but, just as the histogram of an image is used to develop 
statistically-based models in image processing, we find it convenient and useful to model the 
image spectrum statistically. These two assumptions, while not precisely true for most images, 
appear to be adequately correct for modeling purposes and for developiong better insight into the 
performance of optical correlators.   With these assumptions eq. (14) for the correlation peak 
amplitude is approximated as 

B ä n   
c(0)    «    -J—  f exp(/ö(b)d(|>     =   BflexpO'ocJ))    . (17) 

2%   1 f 

-71 

Eq. (17) shows that if there is no systematic phase error then the maximum peak amplitude of the 
correlation peak is obtained. The maximum is set solely by the spatial extent of the SLM and its 
average transmitted amplitude. Eq. (17) has been used to evaluate and compare several different 
types of systematic phase error.3"6 We also compared these approximate results with exact 
simulations for specific images and found very close agreement.34 We further found, by assuming 
that random and systematic phase errors are independent, that the peak correlation amplitude for 
combined systematic and random phase errors can be approximated as 

c(0)    *    Bf a exp(; 6(J)s)  (exp(; b$}}    =     Bfapspr (18) 

where the symbols ps and pr are used as a shorthand to represent the amplitude loss due to 
systematic and random phase errors.56 Eq. (18) is the main result needed to derive many different 
metrics of correlator performance. The one we focused on in the study was peak to noise ratio 
(PNR) (as defined by J. L. Horner in "Metrics for assessing pattern-recognition performance," 
Appl. Opt. 31, 165-166 (1992)). This PNR metric is similar, but not mathematically identical to 
PNR as described in Sec. 3.2. Basically, PNR measures the peak intensity to the average intensity 
of the correlation plane background. The background level is calculated by omitting the peak 
intensity from the calculation of the average correlation plane intensity. Often signal to noise ratio 
(SNR) is defined similarly except that the correlation peak intensity is included in the calculation 
of the average correlation plane intensity. This difference is often ignorable except for the case 
where the correlation peak is very sharp and the noise level is low. We will show this below. 
In this report we also define PNR to be a ratio of intensities, rather than of amplitudes (as is done 
in Refs. 3-6). The amplitude ratio was originally chosen to reduce the dynamic range of plots of 
PNR versus amount of systematic phase error. The intensity ratio is used in this report to 
coincide with the PNR definition in Sec. 3.2 on pseudorandom encoding metrics. 

The resulting expression developed in ref. 6 for PNR as a function of systematic and random 
errors is 

(N-l) p) p) 
PNR    s     ll_l (19) 

Z   ~ Ps   Pr 

where the approximation symbol is a result of dropping terms in the expression that are usually 
very small.  The full expression is given in Ref. 6. The parameter 
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z   -=  ^/ä2 <20> 
is a normalized measure of the bandwidth of the amplitude spectrum at the output of the filter 
plane SLM. Z is maximum for a white signal. In this case the numerator (which is simply the 
variance of the amplitude spectrum) is equal to the denominator (which is the square of the 
average amplitude). Most image spectra have values of Z that have much smaller bandwidth. This 
leads to less sharp correlation peaks and lower PNR. Values of 6 or larger were used for the 
simulations in Refs. 3-6. For values of Z this large it is reasonable to ignore the term pspr in the 
denominator since it is always less than or equal to unity. Ignoring this denominator term shows 
the numerical similarity between PNR and SNR which is written 

SNR    =    Al p] p) I Z (21) 

Since for SLMs the number of pixels N is usually quite large, the difference between N and N-l 
is of no practical significance. These expressions simply show the relationships between number 
of pixels, spectral bandwidth and phase errors in determining the quality of the correlation peak. 
While simple in form, the results often approximate the exact values of the metrics quite well. 
For instance, for the phase-only correlator that was digitally simulated in Ref. 4, eq. (19) for PNR 
and eq. (21) for SNR produced estimates that differed by no more than 10 % for all cases 
(consisting of 2 images x 6-7 levels of phase error x 2 different types of phase error). These 
mathematically simple results should be especially helpful to system engineers who are trying to 
quickly develop error budgets and performance analyses of correlator-based system, without 
performing detailed simulations. If it is decided that simulations should be performed, our 
performance analysis can serve as a guide to help in intelligently designing simulation studies. 

5.3 Specific additional results and extensions. Specific phase errors (inluding systematic errors 
of quantization, binarization, linear phase error and saturated phase error; and random uniform 
and gaussian errors) were evaluated in closed form and their relative effects were compared in 
Ref. 6. Systematic quadratic phase errors were evaluated numerically in in Ref. 3. This specific 
result can be used to help decide whether it is necessary to compensate for phase shift that is 
proportional to the square of address voltage in FBDMDs. This problem was first described by 
J. L. Horner and P. D. Gianino in "Effects of quadratic phase error on correlator performance," 
Appl. Opt., 31, 3876-3878, (1992). Our analysis indicates that the performance loss for not 
compensating the quadratic phase error is ignorable if the maximum phase error introduced is less 
than one quarter wavelength. In fact, this new quarter wave criterion for correlators appears to 
be a good rule of thumb for most types of systematic and random phase errors. However, this 
analysis is valid for there being only one type of phase error. Either eq. (19) or eq. (21) shows 
that a tighter bound is needed if there are multiple sources of phase error. Statistical error bounds 
on the PNR due to the random phase errors are also derived in Ref. 6 through the use of eqs. (3), 
(4), (10). 

The methods applied in the development of the current model could be applied to the more 
involved modeling of amplitude-phase coupled SLMs, the mapping of composite, distortion 
invariant filters to the SLM, and the addition of noise to the input scene. 
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6.0 CONCLUDING REMARKS 

This study grew out of the assumption that statistical models of scattering and diffraction from 
random rough surfaces could be used to gain insight into the performance of optical processors, 
and could be used to devise new approaches to performing signal processing operations with 
phase-only and amplitude-phase coupled SLMs. Both of these objectives were achieved. 

The specific signal processing operation developed was the mapping of complex valued filters onto 
SLMs that do not produce all complex values through the procedure known as pseudorandom 
encoding. The method is especially useful for real-time processors because the encoding 
algorithm requires as few as one function calculation per SLM pixel to be encoded, and the 
calculation be done even faster using lookup tables. Several logical extensions to pseudorandom 
encoding were also begun and further developed during the study. These include the generalized 
pseudorandom encoding algorithm for improving the performance of composite filters, 
pseudorandom encoding of coupled amplitude phase SLMs, patterned diffuser array, low cost 
systems for fabricating patterned diffuser arrays and additional applications of patterned diffuser 
arrays to the mass production of three dimensional micro-optics by projection printing methods. 

The performance analysis equations developed here provide a useful starting point for analyses 
of many optical processors in that they simplify the mathematics needed to evaluate diffraction 
from arrays of random phase and amplitude SLM pixels. These analyses were used to evaluate 
the performance of SLMs perturbed by piston and tilt errors, of correlators subject to random 
errors in the filter plane and of the performance limits of pseudorandom encoding. The insight 
developed by the statistical modeling also led us to the new result that the spectrum of a 
deterministic image can often be well modeled as a random signal for the purposes of evaluating 
the effects of systematic phase errors on correlators. This result even led us to the development 
of a model that combines the effects of random and systemic SLM phase errors and which 
provides information on the relative effects of either type of error. A more detailed summary of 
the findings is listed in Sec. 1.3. 

There are many fruitful directions in which this work can be extended. Some are in progress, 
under funding from Federal agencies (Sec. 8.0). Many of these recommendations pertain to 
logical extensions of pseudorandom encoding and error analyses to the fields of optical processing, 
diffractive optics and photolithography. This research is all concerned with diffraction from one 
plane to another. 

However, perhaps the most interesting, mathematically challenging and having the greatest 
potential payoff is the analysis and application of scattering from thick or distributed gratings. 
Many systems including volume holograms, three dimensional optical memories, distributed 
feedback lasers, acousto-optic tunable filters, submicron scale gratings and distributed reflector 
filters in fibers all work on the principle of scattering from multiple reflectors. There is a well 
known Fourier transform relationship between the strength of the scattering from the reflectors 
and the the wavelength selectivity (i.e. frequency response) of the grating.    Full complex 
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weighting could be envisioned by including a spatially varying, random perturbation on top of a 
periodic grating structure. This could provide the ability to shape the frequency response of the 
structure. A pseudorandom encoded gratings could ultimately lead to significant reduction in the 
crosstalk between adjacent wavelengths in the acoustooptic tunable filter; extend the tuning range 
of distributed feedback laser diodes; and similarly improve any distributed grating structure. 

However, it is well known that if there are too many scatterers along the propagation direction 
then multiple scattering can seriously affect the filtering properties of the grating, even if the 
individual scatterers are weak. For deterministic gratings, Kogelnik's coupled wave theory for 
thick gratings is widely used. The logical step then in applying pseudorandom gratings would be 
to develop the statistical equivalent of Kogelnik's coupled mode equations. The mathematics 
appears daunting, but we believe that closed form equations that are simple enough to provide 
physical insight should be possible to develop in many cases. A complete list of recommendations 
for future studies are listed in Sec. 1.3. 

A general conclusion that we have drawn from this study is that while statistics is usually viewed 
as a difficult field, statistics actually simplifies modeling and reasonably describes the wavefront 
superposition inherent in optical (especially Fourier transform type) processors. 

7.0 LIST OF PUBLICATIONS 

In all, there have been 21 publications or presentations resulting from this study. At least 4 more, 
for which the studies are essentially complete, are anticipated to be submitted in the near future. 
Citations have been grouped first by subject area, and secondly in chronological order. Each 
citation of a full-length paper or patent is identified by the reference number used in the report. 
If available, a reprint of each has been attached. Reprints of future publications will be forwarded 
to the contract monitor as they become available. 

7.1 Resulting from Contract Support to Date. These include 6 papers in refereed journals, 1 
patent, 1 invention disclosure being prepared for patent application, 5 proceedings papers, and 8 
talks. Note that Ref. 7 received a best research paper award from the American Society of 
Engineering Educators (ASEE). 
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Statistical moments of the transmittance of phase-only spatial light modulators 

Robert W. Cohn and Robert J. Nonnenkamp 

University of Louisville, Department of Electrical Engineering 
Louisville, KY 40292 

ABSTRACT 

The monochromatic diffraction patterns from phase-only spatial light modulators, such as deformable mirror- and liquid crystal- 
SLMs, are routinely modeled using the Fast Fourier Transform. Random errors in phase have typically been evaluated by 
Monte' Carlo analysis. This can require the averaging of numerous runs to find the expected value of intensity and its standard 
deviation However, the pixel structure of current modulators, which allows each pixel to apply arbitrary piston or tilt 
modulation, greatly simplifies the form of the expectations. Specifically, we assume that the parameters of piston, and likewise 
tilt, describing the entire SLM transmittance are gaussian, independent and identically distributed random variables. Expressions 
for the expected value of the Fourier plane intensity spectrum and its standard deviation, and for propagation of the intensity 
pattern to any arbitrary observation plane using the angular spectrum of waves formulation are presented. Each expression 
reduces to a small number of Fourier transform operations that may be efficiently calculated by the FFT. 

1.  INTRODUCTION 

Phase-only spatial light modulators (SLM) are desirable for application to reconfigurable interconnects, neural networks and 
correlators They can be made from liquid crystal1-2 and deformable micro-mechanical mirrors. - The mirror elements 
currently of most interest either displace parallel to the optical axis (piston) or angularly deflect (tilt). Thus they may be used 
to either retard or deflect an incident plane wave a given amount corresponding to the amount of electrostatic force applied by 
addressing circuitry . A piston element suspended by four flexure-beams was recently demonstrated that imparts up to 4x 
piston phase modulation at visible wavelengths.5 Arrays of 128 x 128 flexure-beam mirrors integrated with a video addressing 
circuit are anticipated this year from Texas Instruments. 

Because SLMs are analog devices, they are subject to errors and imprecision that can be the limiting factor in the performance 
of information processing systems. Errors cannot be perfectly controlled for a number of reasons. For example, the 
microfabrication process for deformable mirror devices (DMD) can leave unwanted material residues and residual strains that 
alters the hinge mechanical properties.6 Addressing circuitry variations, noise in electronics, and charge recombination all 
contribute to uncertainties about the absolute deflection of a deformable mirror pixel. 

7 
We have previously observed effects of phase errors in inverted cloverleaf DMDs (four opposing cantilever beams per pixel). 
In the photograph (Fig. 3 of that article) the brightest diffraction orders are surrounded by a hazy background illumination 
approximately four diffraction orders wide.   The haze is undesirable in that it reduces the contrast and diffraction efficiency 
of the SLM.   In Monte Carlo simulations in which phase errors were modeled as randomly perturbed mirror deflections, a large 
number of narrow, closely spaced intensity peaks arose which qualitatively matched the intensity footprint of the observed haze. 

Q 

This diffuse background is often called speckle, which is observed when laser light scatters from rough random surfaces. 
The current statistical models of speckle are most developed for rough and uncorrelated random surfaces. However, SLM 
surfaces are typically very smooth and structured. Rather than considering the SLM as a rough surface, it is reasonably 
modeled as a smooth surface perturbed by random parameters, e.g. piston, tilt, curvature, etc. The models need to be valid 
for any value of variance since precisely manufactured SLMs can have small phase errors, while binary phase encoding has 
and pseudo-random modulation is modeled as having large phase errors. 

From this perspective we develop and present various statistical moments that describe the sensitivity of the diffraction patterns 
to random phase errors of arbitrarily programmed phase-only SLMs. 

2.  PHASE MODEL AND PIXEL TRANSMITTANCE 

In this analysis we are primarily interested in pixels that are intended to perform either piston or tilt, but not both. It may 
however be the case, due to fabrication errors or the physical nature of an SLM that two or more motions may be present 
simultaneously (Fig. 1.) For instance, a piston-type pixel may have a random component of tilt; a liquid crystal light valve 
(LCLV) illuminated by a point source optical control could exhibit, in addition to piston, a parabolic phase modulation due to 
fringing electric fields across the thickness of the liquid crystal layer.   Certain other phase errors may be ruled out.  We will 
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assume that cantilever-beam, torsion-beam and flexure-beam (pistoning) pixels are made from thick metal, and that they are 
deflected by straining the much thinner hinge metal.   The pixels will then be treated as perfectly planar and unwarped but which 
may be tilted. 

The equations and subsequent plots are for reflective SLMs and thus there is 4x of phase shift for one wavelength of physical 
displacement of the SLM surface.   This leads to the model for the phase of the i'th pixel 

t»,Cx) = Y < *,' + nnie,'(x-a)] }   «   t,   +   6,(1-0) (1) 

This definition of phase is negative of the standard convention for describing the complex-valued description of waves (and is 
used to cancel the negative sign in the standard phasor of the complex-valued description.) Since available SLMs have small 
tilts (0j' less than 10 °), the small angle approximation to the sine has also been used. The parameter a in eq. 1 is included 
to model different hinge positions for cantilever and torsion type DMD pixels. For instance for a DMD mirror of width w 
setting a equal to 0 places the hinge at the pixel center which represents the torsion-beam pixel while setting a to w/2 represents 
a right connected cantilever beam. 

4>{x) 

V 

1 l<fy 
\S2ie N 

~T~" —X, N 

no error piston tilt piston 
and tilt 

Fig. 1.  Terms describing the phase of SLM pixels. 

The expected value of a complex phasor with random arguments is easily found by using the definition of the characteristic 
function   of the random variable u 

<exp(y'o)u)> = J exp(y(o«)p{/(«) du = 2n &"1{pu(u)) (2) 

where y is the Fourier transform operator.   If the parameters of piston \f/t and tilt dt are independent and gaussian random 
variables then using eq. 2 the expected value of pixel transmittance a^x) is found to be 

a,(x) = <a,(x)> = <K*)exp{y[i|r( + 6((*-«)]}> 

= r(x)rap{-{ [oJ + oftx-BO'lJexpl./r.*, + 6((x-a)]} 

= sOOexpfj«^) 

(3) 

where <r > is the standard deviation of i^, Oa is the standard deviation of 0-,, and where r(x) = rect(x/w) and g(x), the amplitude 
of the expectation of transmittance are defined to simplify subsequent expressions. 

Eq. 3 shows that <a;(x)> is reduced in amplitude over a;(x). For errors in piston only, the amplitude of transmittance is 
reduced uniformly across the aperture of the pixel, while for tilt errors there are position dependent changes in amplitude. Thus 
tilt apodizes the effective length (or area in two dimensions) of a pixel. For large values of 0^ the pixel on average behaves 
as a point source centered on the hinge at x=a. Thus random tilt reduces the effective area of the pixels and is anticipated 
to diffract light over a greater angular extent. 

3.  SLM TRANSMITTANCE AND ANGULAR SPECTRUM 

The transmittance of an N-pixel, phase-only SLM is 
N 

t(x) = E at(x) = E r(x-xt) exj}[jb,(x-x.)] (4) 
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Any inactive area between the pixels has been treated as non-reflecting and the amplitude and phase of each pixel have been 
defined in local coordinates centered around x=0 and then shifted to pixel locations Xj. ( This will prove useful in later 
equations (such as eq. 15) where autocorrelation operations translate all pixels back to local coordinates.) The expected value 
of SLM transmittance in eq. 4 under the assumption that all piston errors are identically distributed and all tilt errors are 
identically distributed is _ 

<t(x)> =L<ai(x)> ='Eg(x-xi)exp[j4>{(x-xl)] (5) 
i i 

This result would further require the assumption that the parameters are independent at this point if the pixels physically overlap 
in space (which would be possible if fringing from one pixel address voltage, affects a neighboring pixel.) In any case, the 
additional assumption of independent parameters is made in order to simplify the form of the higher order moments or 
transmittance.   We are particularly interested in the expected intensity spectrum 

</(£)>   =   <T(fx)T'(fx)>   =   ^-'{<t(*)0*(*)>} (6) 

and the expectation of the square intensity spectrum 

<I2> = <TTTT> = 2r{<t(x)@t(x)@t(x)®t(x)> } (7) 

where T(f ) is physically, the angular spectrum and mathematically, the Fourier transform of the transmittance t(x); and where 
we have used linearity of expectation and the Fourier transform to interchange these two operations in eqs. 6-7; and where © 
indicates the correlation integral 

a(x) ©fc(x) = f a(x' + x)b'(.x')dx' (8) 

The standard result for standard deviation of intensity crj(fx) is then 

oj -</»»-/' (9) 

The simplifications resulting from statistical independence are illustrated by applying this assumption (in several successive 
steps) to eq. 6 as follows 

/(/,) =  E£<4(/xM/(/,)> 

= EE<Aj><^;> + t<\At i2> 
t*J ' (10) 

= EE<^><A;> -E I<VI
2
 + E<|A,I

2
> 

=  |r|J + E[<M(|
2>- |<v|a] 

This general result shows that the expectation nearly separates into <T>2 except for where the transmittances of the same pixel 
overlap. A similar procedure, with a lot more algebra (for more details see related derivation in appendix C of ref. 9,) can 
be performed to find the second order moment of the intensity spectrum. 

</2>=   EIEE<V/'4^i> 

i   j   k    i 

2[72- |r|4] + |T
2
 + E(<^>-A

2
)| 

+ ARe T'Z(<\Ai\
2Ai>-<\Ai\

2>Ai- +2\A,\*AI-2<\A, \2 > A,) 
t 

+ E[<|A,r>-6|Ä,r ♦a<M,|1»|ÄJ2- \<Al
i>\2-2<\Ai\

2>2 

+ 4Re(<Al
2>Ä?2 - < \Ai\

1Aj>Äi' )] 

(ID 
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Using the assumptions of identical gaussian statistics for the parameters of tilt and piston, along with the linear phase model 
ofeq. 1 will lead to significant simplification of eqs. 10-11. With the additional simplification that a = 0 in the phase model 
these equations become 

'(/,)   = ^ 

where 

iW®r(i) + [g2(x)-pgn(x)] XeJB'x\ (12) 

</*(/,)>-   2[/2- \T\']+\T2 + TA\
2 +4Re[fT;] + GA 

tA(x)   =   E \p2g2(x-2Xl) - pgu(x-2x,)] exp{;[ 2f, + 8,(x-2x,) ]} 
' t (13) 

r,(x)   =   p*E[*,(x-*() -(2+p2)^21(x-*j) +2pjn(x-x,)]exp{;[*, + 8,(x-xl)]} 
i 

*„<*)   =   [*«(*) + 4p«31(x) - (2+p4)fe(x) + 4p(2+/>2)*211(x) - 6/>2*llu(x) ] E exp(;6,x) 

and where the g-functions and constant p are defined as 

p   =   exp(-a*) 

»pW = *,(*)©*/*)©**(*)©*,(*) (i4) 

*„(*> r(x) © ••• © r(x) exp(-io2x2) 

and n indicates an n-term correlation (n-1 integrals.) In the case of piston-only pixel modulation the equations further reduce 
to 

/(/,) = \T(fx)\
2 +NqRHfx) <15> 

(16) 

(17) 

</*(/,)>   =   2[12 - ±± \f\*}- ±[\T\> + Zq*R2}2 +\f2 - pqT,\2 

where _ 
tA(x)   =   Eg11(x-2xj)exp(;2*j)   =   r(x) © r(x) * E »(x - 2xj)exp(y21,) 

i i 

where "*" is the convolution operator and where 
q   =   1 -p 

R(fz) =^{Kx)} 

Remembering the definition that r(x)=rect(x/w) then R(fx) is a sine function. 

3.1   Comments on the form of the equations 

Referring to any of the expected intensity spectra (eqs. 12,15 or even 10) the equations are seen to reduce to two terms. The 
first term expresses the coherent or "specular" reflection from the surface and contains the coherent signal intended from the 
SLM. This contribution to the intensity spectrum is \&~ {< t(x) > } |2 and is easily calculated using the FFT. The expected 
transmittance of each pixel in the SLM is reduced as the standard deviation in piston and tilt is increased according to eq. 3. 
The second term in the SLM plane is only non-zero over a width of 2w (w being the width of a single pixel). The Fourier 
transform of this narrow impulse adds a broad pedestal to the coherent intensity spectrum. Terms comparable to this for 
theories of rough surfaces are referred to as "diffuse halo".10 They are considered to be essentially incoherent, containing 
none of the information t(x) that is modulated onto the SLM. The incoherent spectrum is bandlimited by the transform of the 
rectangular r(x) functions that describe the finite width of the pixel. Note especially in eq. 15 that the pedestal is most 
pronounced when the standard deviation of piston is largest, i.e. when q equals unity. At this point p also equals zero so the 
coherent spectrum vanishes. Experimentally observing halo, we would actually expect to see a grainy spatial variation which 
is referred to as speckle. If the individual pixels were not independent (but selected from a correlated stationary process) their 
correlation would tend to broaden the impulse term in the transmittance, and consequently narrow the incoherent portion of the 
angular spectrum. 

The following three subsections compare these equations with Monte Carlo simulations by considering: 1) computational 
efficiencies, 2) calculated results, 3) histograms of repeated Monte Carlo runs. 
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3.2  Implications for Computer Modeling 

Eqs. 12-13 for tilt and piston, or 15-16 for piston alone are written in a form to suggest efficient computer calculations of the 
angular spectrum (or Fraunhofer diffraction pattern.) The < t(x) > and the g-functions may be directly calculated in the space 
domain and then Fourier transformed by the FFT. The impulse terms, gA(x) and the pedestal term in eq. 12 have so few data 
points that the discrete Fourier transform (DFT) can often be computed with far fewer operations than the FFT. At most, eqs. 
12-13 require five FFT's. If FFT's are used to perform the nine distinct g-functions, they need not require many calculations 
because of their short length. Eq. 13 (specifically tA) requires non-zero samples over twice the extent of the SLM. Thus, 
Monte Carlo methods can take advantage of using half as wide an FFT. In our examples, however, in order to have adequate 
resolution in plotting narrow diffraction orders, the same size FFT was used for both. 

We have coded these eqs. 12-13 and compared them with Monte Carlo simulations in terms of accuracy and computational 
efficiency. Fig. 2. shows these results plotted against m the number of Monte Carlo diffraction analyses run incorporated in 
the estimates of expected value and standard deviation of efficiency. For this case there is .1 X standard deviation of piston 
error and the statistical averages are calculated at the peak of the zero-order diffraction pattern resulting from a nominally 
unmodulated 128 pixel SLM. While 20 Monte Carlo runs takes about the same amount of time as calculating eqs. 12-13, the 
accuracy of the standard deviation is not very good. Specifically, Fig. 2a. shows the relative error between the Monte Carlo 
estimate and the statistical moment. These errors are calculated from the mean and variance of 30 m-run Monte Carlo estimates 
of <rr each of m runs. The upper curve is the standard deviation of the Monte Carlo estimate of oY normalized by av Over 
200 runs are needed to reduce the standard deviation of the Monte Carlo estimate of oj to under 10 % relative error. The lower 
curve shows the relative error in bias between the estimate of OJ and crj relative to cr,. Each curve is apparently converging to 
our equations for the statistical moments. The expected value of intensity (not shown) was found to be within .1 % relative 
error for averaging 100 Monte Carlo runs. Away from the main peak the relative errors increase and more averaging is needed 
to obtain equivalent accuracy. The convergence of the Monte Carlo simulations to eqs. 12-13 (as indicated in Fig. 2) convinces 
us of their correctness for piston errors. This accuracy analysis has not yet been performed for the case of tilt errors; however, 
we have, to this point observed that single Monte Carlo runs qualitatively track the expected intensities and their sigma limits. 
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Fig. 2.  Comparison between Monte Carlo analysis and statistical moment equations in terms of a) accuracy 
and b) computational efficiency. 

3.3  Specific Examples 

Figs. 3-5 plot single Monte Carlo runs on top of the corresponding expectation of intensity, and the ± 0i(fx) limits. In all cases 
these results are for a 128 pixel row with 100% duty cycle (fill factor) pixels, and there are nine FFT samples per pixel.  Fig. 
3 is the result if all pixels are identically deflected except for random piston error of standard deviation .IX. It may also be 
viewed as the correlation peak resulting due to residual phase-matching errors in the filter plane. The diffraction peak is 
reduced by a factor of .2 from the error-free case, but it is clearly distinguished from the sidelobes. Note that the negative 
one ffj(fx) limit is zero (not negative) over most of the sidelobe region. Fig. 4 is the result for a diffraction grating that was 
designed by simulated annealing procedure to generate 4 equal-intensity, equally spaced spots. The design procedure was 
similar to that of Dames with the exception that it used eight phase levels rather than two.1   The diffraction pattern in Fig. 
4 corresponds to illuminating 4 periods of the 32 pixel design. The diffraction pattern may also be viewed as the response of 
a correlator to four identical, equally-spaced targets.   The standard deviation of piston error is again .1 X.   With the light shared 
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between four diffraction peaks, the reduced energy into the desired diffraction peaks leads to severe interference from the 
sidelobes. Fig. 5 is again the case of all pixels identically deflected but with piston error of .3 X. The standard deviation of 
intensity is essentially equal to the expected value of intensity, so that the negative standard deviation limit is the horizontal axis. 
The intensity of the erratic peaks tracks the broad sine2 pedestal. This is the envelope predicted by the pedestal term in eq. 
15. Fig. 6 is the result for the case of 1 X / w standard deviation of tilt (i.e. 1 X total declination across the extent of the pixel.) 
In these figures the first diffraction order would be seen at 64 units of spot resolution for pixel duty cycles less than 100% 
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Fig. 3. Analysis of a nominally unmodulated 
phase grating with piston error of standard 
deviation .IX. 

Fig. 4. Analysis of a four spot generating 
kinoform with piston error of standard 
deviation .IX. 
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Fig. 5. Analysis of nominally unmodulated 
phase grating with piston error of standard 
deviation .3 X. 
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Fig. 6.   Analysis of nominally uniform phase 
grating with tilt error of standard deviation 

1 X/w. 

3.4 Histograms 

From the large number of Monte Carlo runs used to generate Fig. 2 it was also possible to form histograms of the probability 
density function (PDF) of the intensity of the diffraction pattern. Results for the peak (^=0) are shown in Fig. 7a,b,c and 
the RMS errors of several least squares fits are shown in Fig. 7d. For small piston errors the gaussian gives the best fit and 
for large piston error the exponential gives the best fit. Neither fits the histogram for intermediate values of piston error. 
Similar results were found at the sidelobes, with the only difference being that much lower levels of piston error were required 
for the histogram to take on the exponential shape. 
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Fig 7.  Histograms and their least squares fits for piston error of standard deviation a) . 1 X b) .2 X c) . 15 X 
and d) fitting error vs. Oy 

These histograms suggest the modified Rician functions.8 The Rician family arises in describing the amplitude of complex 
random phasor sum added to a constant amplitude, and the family is parameterized as a function of incoherent to coherent 
magnitudes. The modified Ricians are simply the PDFs that result from the transformation of the Rician PDFs from random 
variables of amplitude into intensity. With no coherent background, the modified Rician is the exponential PDF. The standard 
deviation of an exponential PDF is equal to its expected value, which agrees with our earlier observations that the lower Oj 
bound is often zero in the sidelobe regions or when the piston error is large. When the piston error is small the modified 
Ricians PDF can be shown to be well approximated by a gaussian PDF with a mean equal to the intensity of the coherent 
background, and a variance that is equal to twice the product of the background intensity multiplied by the expected intensity 
of the random phasor sum. At least for the case of piston errors only, the similarity of the modified Ricians to our histograms 
suggests that it may be possible to closely estimate the actual PDF based on knowledge of the expected value of intensity, the 
portion of the intensity due to the pedestal term, and the standard deviation of intensity. Knowledge of the PDF might then 
be employed in the determination of the probability of correctly identifying the presence of correlation peaks. 

These equations for intensity and standard deviation of the intensity diffraction pattern should prove useful in determining the 
sensitivities of monochromatic diffraction patterns to random errors in phase-only SLMs with simultaneous reductions in 
simulation times. 
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4.  GENERAL DIFFRACTION ANALYSES 

There are several valuable physical interpretations of the Fourier transform in scalar diffraction theory: 1) as the primary 
component of Fraunhofer diffraction, 2) as the Fresnel diffraction from the object plane to the focal plane of a thin lens 3) 
as the Fresnel diffraction from the Fourier plane to the correlation plane of an optical correlator, and 4) most generally as the 
angular spectrum of plane waves (ASW) of the object plane transmittance.12 The last interpretation allows straightforward 
diffraction calculations to any plane by multiplying the object plane spectrum by a diffraction kernel and inverse transforming: 

t(x,y,z)   -   ST-* {T(fJy) txv(j 2*^1-HO2-(X V*)}   =   *{t(x,y,0)} d» 

where 5K has been used to indicate the ASW operator and which is mathematically equivalent to the Fresnel-Kirchhoff diffraction 
integral.13 The field t(x,y,0) is also written as t(x,y), or as t(x) in the one-dimensional equations given m this paper. The 
ASW formula when implemented using the FFT is often referred to by the name beam propagation method (BPM). 

This section considers the generalization of the statistical moments of phase-only SLM diffraction patterns from the Fourier 
plane only to a plane at any arbitrary distance z from the SLM. The expected intensity at any plane follows by taking the 
expectation of the square of eq. 18 and rearranging using the correlation property of the Fourier transform as follows 

<|»(x,z)|2> = /   Jr-i h(fz)txV[j2nj-Jl-(Xfx)
2]\ *j 

= ?-x f/r(/,)exp[;27;|/r^ä^]er(/I)exp[y21:|/wr^)5] jj (i9) 

- *"*{/ rT(/x;fx)^j2nj-[^-X2(/x+fx)
2 - ^l-(^)2])^} 

where 
(20) TT(/Xift)   =   < T(fx+fx) T'(/x) >   =   r{<t(x)exv(-j2nfxx)@t(x)>} 

is a statistical self correlation functionof the angular spectrum T(fx). TT could also be called the spatial (as opposed to 
temporal) self coherence or the mutual intensity JT.9 The second argument of the correlation indicates that in general the 
integral in eq. 19 space variant and not practically simplified by applying Fourier transform properties. However, for the case 
of piston and tilt errors as described by eq. 1 the coherence function becomes 

.IVU;/,)   =   T{f'x*fx)T(j'x) +^{[[r(x)c^(-j2nfxx)®r(x)]ex1?(-Ulx2) ^ 

-   g(x)oLp(.-J2xfxx)®g(x) )Eexp[;(6,x - 2«/,*,)] J 

4.1 Implications for computer modeling 

The first term and the third (the correlation containing two g(x) functions) considerably simplify eq. 19. Each results in a 
correlation integral inside the Fourier transform operation. Thus the magnitude squared of the ASW operation on each term 
(see eq. 18) generates the corresponding two terms in eq. 19. The second term, the correlation containing two r(x) functions 
multiplied by a gaussian, does not simplify. While the calculation of the correlation function TT is not a large part of the total 
numerical calculation, because the function does not separate in the Fourier plane, a two-dimensional ASW integral must be 
performed in order to solve eq. 19. Furthermore, if each tilt <6i> is a distinct value, then the ASW spectrum is translated 
and a different ASW analysis is performed for each pixel. Thus this equation simplifies somewhat if <öj > is unbiased or at 
least constant for all i.   Specific approximations are also needed to simplify the second term. 

For the case of piston errors only, eq. 21 reduces to 
<|/(x,z)|2>   =    | «{?(*)} |2 + q\Stir(x))\2 *'£b(x-xi) (22) 

This is especially easy to calculate. Eq. 22 suggests one approach for arbitrary tilt models by subdividing each pixel into 
multiple segments each with successively increasing amounts of piston. In this case however, the subelements are statistically 
correlated and this must be further accounted for. 
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5.  CONCLUSIONS 

We have presented expressions that describe the effects of random phase errors on the diffraction patterns of phase-only spatial 
light modulators. These equations extend the standard FFT-based deterministic models of diffraction and can be performed 
with 2 tp 5 times the number of FFT operations as the deterministic case, which can be substantially faster than Monte Carlo 
estimates of the mean and variance of diffraction patterns. We also observed that histograms of piston only modulators track 
the modified Ricians probability density functions that are associated with laser speckle added to a coherent background, and 
that it may be possible to determine the correct pdf at every point of the diffraction pattern from our equations for mean and 
variance alone. While only one dimensional equations have been presented, they may be easily extended to two dimensional 
cases if it is physically reasonable to assume that tilts in x and y are independent of each other. 

These equations may be applied to any phase-only modulators including optical interconnects and matched filters. In the design 
of binary optical fanouts there can be many local solutions.14 It may be possible to incorporate the knowledge of the 
sensitivity of each solution to random phase errors into the design procedure so that fewer local solutions need to be examined. 
Some examples and extensions of these equations with specific application to optical correlators is presented in a companion 
paper. 
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ABSTRACT 

Piston-only spatial light modulators, such as the flexure-beam deformable mirror device, hold great promise for real-time optical 
processors because of their ability to accurately match the phase of arbitrary laser images. Non-ideal devices may have 
uncontrolled phase errors which can limit performance. A statistical analysis has been developed which models the effect of 
random piston and tilt errors on the diffraction pattern of phase-only SLMs. A slight modification of these equations describes 
the performance of these SLMs in the phase-only correlator and the phase-only correlator modulated by pseudo-random 
sequences. Results on correlator diffraction efficiency versus amount of phase error are presented. For the specific case of 
a binary phase-only matched filter a diffraction efficiency of 40.5 % is found. 

1. INTRODUCTION 

Among phase-only spatial light modulators, the flexure-beam deformable mirror device (FBDMD) under development by Texas 
Instruments1 appears the most promising for optical information processing applications, especially those of coherent 
correlation and adaptive optics. This assessment is based on the already demonstrated kilohertz frame rates of deformable 
mirror devices (DMD),2 its small size (50 jim x 50 /*m pixels) and its anticipated near unity diffraction efficiency. Since the 
micro-mechanical pixels are designed to move in a piston motion with more than a half wavelength of displacement, reflected 
light may be phase modulated over a full 2x. This will allow exact phase matching of monochromatic illumination patterns 
up to the (spatial) Nyquist frequency .5/^ where Ax is the spacing between adjacent pixels. The FBDMD is capable of 
approaching the 100 % efficient theoretical limit of the phase-only filter4 as limited by its large area fill factor (currently 85 
%) and its highly reflecting surface (currently evaporation-deposited aluminum.) 

In practice the actual diffraction efficiency can be smaller for several reasons: 1) The microfabrication process for deformable 
mirror devices can leave unwanted material residues and residual strains that alter the hinge mechanical properties. For the 
FBDMD this could cause pixel-to-pixel variation in displacement and unintended tilt; 2) Addressing circuitry variations, noise 
in electronics, and charge recombination all contribute to uncertainties about the absolute deflection of a deformable mirror 
pixel; 3) The constraints of a particular application effectively reduce the efficiency. A typical constraint that is also studied 
below is that of truncation errors caused by using binary phase-only filters (BPOF).   Each of these effects leads to phase errors. 

One practical approach to quantifying the effect of these errors on diffraction is to use statistical models in which the phase 
errors are considered to be random. We recently developed specific expressions for the expected value and standard deviation 
of the intensity of the far-field diffraction pattern statistical of an arbitrarily modulated phase-only spatial light modulator 
(SLM).6 These are applicable to any phase-only SLM whose pixels are well modeled by piston and tilt. While the assumption 
that all random parameters describing the SLM modulation are statistically independent and identically distributed (i.i.d) is used 
to simplify the equations, experiments verifying these equations can be designed that ensure independence. For arbitrary 
modulation the equations may be efficiently calculated using a small number of fast Fourier transforms (FFT). 

Even in devices where errors are negligible, applications can be envisioned in which pseudo-random modulation is used in order 
to maximize the information content represented by an SLM.7 Evaluation of pseudo-random modulation of SLMs by 
deterministic simulation of diffraction is essentially a Monte Carlo procedure which provides only limited insight. Our equations 
are equally applicable to this situation, and may be extended to the case where random errors are present as well. 

In this paper we consider the applicability of these equations to the analysis of phase-only SLMs by way of example numeric 
calculations and reductions of the equations to specific cases. In particular, we are interested in the performance of piston-only 
modulators such as the FBDMD, which may also be perturbed by random tilt errors. These equations are also either directly, 
or with slight modification, applicable to the performance of these SLMs in phase-only correlators. Before presenting these 
results we briefly summarize the equations describing expected value and standard deviation of the far field diffraction pattern. 
For details on their derivation consult ref. 6. 
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2.  STATISTICAL MOMENTS OF PHASE-ONLY SLMs 

2.1 SLM Transmittance 

The models for phase errors are described in Fig. 1. The pixels are treated as perfectly planar and unwarped but which may 
be tilted. The equations and subsequent plots are for reflective SLMs, and thus there is Ax of phase shift for one wavelength 
of physical displacement of the SLM surface.  This leads to the model for the phase of the i'th pixel 

*,(*) - Y [ *,' + «nee;*) ]   «  +,   +  6,x (1) 

in local coordinates.  Since available DMDs have small tilts (0/ less than 10 °), the small angle approximation to the sine has 
also been used. 

xp- 

no error piston tilt piston 
and tilt 

Fig. 1.  The phase model for the SLM pixels. 

The transmittance of an N-pixel, phase-only SLM is 

t(x) = E r(x-xt) expl./^*-a:,.)] (2) 

where r(x) = rect(x/w) is used to represent a pixel of width w. Any inactive area between the pixels has been treated as non- 
reflecting and the amplitude and phase of each pixel have been shifted to pixel locations Xj. 

2.2 Expected SLM transmittance 

The expected value of the transmittance of a phase-only SLM is 

i(x)   =   <t(x)>   =  /»'ErCx-^ejpI-ioJCx-x^lexpiy^ + e^x-x,)] 

where the definition of the characteristic function of the random variable u 

<exp(;'o)u)> = fexp(juu)pv(u) du = 2« ^""'{/»„(u)) 

(3) 

(4) 

has been used and where 9" is the Fourier transform operator. Eq. 3 is specific for tilt 8t a gaussian random variable of 
standard deviation Og. The probability distribution for piston V'; determines the constant p in Eq. 3. It is the square of the 
characteristic function of the piston error.   For the case of gaussian distributed piston errors of standard deviation a^ 

2 p   =   exp(-o^) 

and for the case of uniformly distributed piston errors with total spread 

a = /l2ot 

then 

sine 

(5) 

(6) 

(7) 
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2.3 Expected far-field intensity patterns 

In general the expected intensity spectrum and the expectation of the squared intensity spectrum are 

/(/,)   -   <nfx)T'(fx)>   -   9-{<t{x)@t{x)>] W 

</*>   =   I2 * a2   =   <TT'T'T>   »=   f{<t(x)®t(x)®t(x)@t(x)> ) <9> 

where T(fx) is mathematically the Fourier transform of t(x), physically the angular spectrum, and essentially the Fraunhofer 
diffraction pattern of the SLM.  The correlation operator ffi indicates the integral 

a(x) © b(x) - J a(x'*x) b\x') dx' <10) 

Eqs. 8,9 give the standard deviation of intensity ffj(fx). 

2.4 Expected far-field intensity patterns with piston and tilt error 

Applying the i.i.d assumption for the parameters of tilt and piston, along with the linear phase model of eq. 1 to eqs. 8,9 leads 
to 

!(/,)  =-rh(x)®-t(x)+[g2(x)-pgu(x))i:ejW>x\ (ID 

</*(/,)> =  2[72 - |r|«] + |ra + TA\
2 + 4Rt\TT;} + GA 

where _      _ 
tA(x)   =   E[/>2£2(*-2*,) -/»*n(jt-2*,)]exp{y[2lr( +. efCx -2*,) ]} 

'• _ (12) 

tB(x)    =   p» E [^(Jt-x,) - (2 +/>2)*21(x-;r,) ♦ Ipg^x-x,) ] «p{;[ *, + 6,(*-*,)]}■ 

ft,00   -   [*4W + *PgtiM - (2*p*)g22(x) * 4p(2+p2)gin{x) - 6p2gnn(x) ] E exp(;e,.x) 

where the g-functions are defined as 

r l (13) 

*,(*)   =   [•r(x)e — ©r(x)J(ie3[p(-ioJxa) 

and n indicates an n-term correlation (n-1 integrals.) 

2.5 Expected far-field intensity patterns with piston error 

In the case of piston-only pixel modulation eqs. 11,12 further reduce to 

'(/,>= \f<Jt)\
2 +NqR2{fx) tt4> 

</»</,)> = 2[71-^|Tr]-i[|rp*f«*^]2
+|T

I-p,rA|
1 

where "*> 
tA(x)   =   Egu(x-2x()exp(;2^)   =   r(x) ©/<*) * E 6(x - 2xi)exp(;2i|ri) 

i 1 

where "*" is the convolution operator and q = 1 - p. In all cases variables in the Fourier transformed variables are written 
as capitalized versions of their equivalent space domain variables. 

3. COMMENTS ON THE FORM OF THE EQUATIONS 

Eqs. 11,14 are seen to reduce to two terms. The first term in each is simply calculated as |y {<t(x)>}| , the magnitude 
squared of the Fourier transform of eq. 3. We will refer to this term as the intended SLM diffraction pattern or simply 
"signal". The name signal, however, presumes that the error-free phase is identical to the expected value of phase. Also, with 
reference to eq. 3, piston errors only attenuate the signal over the error free case.  The tilt errors actually distort the signal by 
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convolving T(f ) (actually the Fourier transform of eq. 2 using the expected, rather than the random, values of piston and tilt) 
Ste Fourier transform of a replicated array of truncated gaussian functions. This convolution or filtering process ,s 
responsible for aliasing of the signal unless T(fx) is bandlimited between the positive and negative Nyquist frequencies The 
Tnd temmeqs if and 14 wi?l be referred X«o as "pedestal". This term results from «heFourier transform con*ta«of 

r*o functions of pixel width w. This Fourier transform adds a broad base to the signal, and hence the name pedestol. We 
think of it as the average level of phase error induced noise. We have chosen the term pedestal to distinguish it from the 
standard deviation of intensity, which is usually thought of as a measure of the "noise". 

The two terms of signal and pedestal are apparent in Fig. 2. These curves represent the far-field diffraction pattern of a 128 
cixel 100 % fill-factor FBDMD which has all pixels nominally set to identical deflections and which is perturbed by various 
amounts of gaussian random piston errors. The curves are normalized so that the peak intensity in the error-free case is unity 
The peak intensity decreases as the standard deviation of piston error increases. Between a standard deviation of 2 and .3 the 
coherenTsignal entirely disappears under the fully developed pedestal. The peak intensity of the pedestal is 1/128 that of the 
error-free case and its shape is described by sinc2(fx), the intensity diffraction pattern of a single pixel. The zeroes of this 
element factor for a 100 % fill factor pixel are located at the diffraction orders of the gratmg/SLM. 

Fig. 2.  Expected intensity of Fraunhofer diffraction for piston errors of standard deviation 
0, .025, .05, .1, .2, .3X. 

Fig 3 is an expanded view around zero frequency of the curve in Fig." 2 with piston error of standard deviation IX. The 
arbitrary unit, spot resolution, is 1/64 of a diffraction order. Fig. 3 also shows the ± <r,(fx) limits of the expected intensity 
and a single Monte Carlo run. The diffraction peak is reduced by a factor of .2 from the error-free case, but it is clearly 
distinguished from the sidelobes. Note that the <I(fx)> - <r,(fx) curve is zero (not negative) over most of the sidelobe region. 
The Monte Carlo curve gives a qualitative feel that our statistical moment equations are correct, but numerous Monte Uirlo 
runs must be averaged together to accurately estimate the mean and standard deviation of the diffraction pattern "»tensity. In 
most applications the moments provide the desired information at less computational cost and are easier to interpret than Monte 
Carlo analysis. 

Fig 4 is a similar to Fig. 3 in that piston error is again .IX. In this case the simulation is of a diffraction grating that was 
designed by a simulated annealing procedure to generate 4 equal-intensity, equally spaced spots. The design procedure was 
similar to that of Dames9 with the exception that it used eight phase levels rather than two. The diffraction pattern in Fig. 
4 corresponds to illuminating 4 periods of the 32 pixel design. With the light shared between four diffraction peaks;, and also 
approximation errors which reduce the diffraction efficiency by roughly 25 %, the reduced energy into the desired diffraction 
peaks leads to severe interference from the sidelobes. 
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0 2 

Spot Resolution 

Fig. 3. Analysis of a nominally unmodulated 
phase grating with piston error of standard 
deviation .1 X. 

-4 0 4 
Spot Resolution 

Fig. 4. Analysis of a four spot generating 
kinofonn with piston error of standard 
deviation . 1 X. 

Eqs. 11-14 are written in a form that is most easily programmed and calculated. In addition to the calculation of 9~ < t(x) >, 
the other space domain functions, which are of extent no wider than 4w, are computed by correlation. These basis functions 
are copied to multiple equations in a few arrays, multiplied by complex phasors and each of the arrays is Fourier transformed 
using the FFT. Most of the computation time is spent performing FFTs. Figs. 2-4 were calculated with 16,384 point FFTs 
with 9 FFT points per pixel. 

4.  DIFFRACTION EFFICIENCY OF PHASE-ONLY CORRELATORS 

Figs. 2-4 may be viewed as the correlation peak resulting due to residual phase-matching errors in the filter plane of a 
correlator. Figs. 2-4 are analogous to responses of coherent optical correlators when the error-free target matches the reference 
template. In the case of a phase-only matched filter being illuminated by a phase-only signal spectrum Figs. 2-4 identically 
describe correlators. Fig. 4 represents the result for a filter that contains four references or a scene that contains four identical 
targets. With this interpretation, the peak intensities at fx = 0 in Fig. 2 correspond to the effect of random piston errors on 
Horner efficiency.10 Since the shape of the signal (i.e. correlation peak) is unchanged for piston errors (see Sec. 3) and since 
the phase-only correlator can have 100 % efficiency, the peak values of intensity are equivalent to Horner efficiency. These 
efficiencies are plotted in Fig. 5. Fig. 6 shows the reduction in peak intensity for various amounts of tilt. These may be related 
to Homer efficiency for the same reasons. In this case, the shape of the zero diffraction order can change with increasing tilt 
(see Sec. 3), but the change was insignificant over the range of tilts shown in the simulation. 

.10 .15 
Piston Error (A) 

Fig. 5.  Diffraction   efficiency   vs.    piston 

0 "Ü     r     .4 .6 .8 
Tilt Error   (X/w) 

Fig. 6.   Diffraction efficiency vs. tilt error. 
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4.1  Specific example: the binary phase-only filter 

Fig. 5 is in fact the gaussian p(a,) in eq. 5 as predicted by eqs. 3 and 11. An interesting point on this curve is piston error 
of standard deviation .072 X. This corresponds to the binary phase-only matched filter (BPOF) in that this value of standard 
deviation is that for a uniform probability density function of total spread x. Diffraction efficiency for this case is 43.9 % . 
However, if the phase error is also modeled as uniformly distributed, which is more appropriate for truncation-type errors 
inherent in BPOF designs, then p would actually be a squared sine function (eq. 6) and the diffraction efficiency would actually 
be 40 5 % This may be compared with a simulation by Homer in which the reduction in diffraction efficiency of a BPOI- 
relative to an analog phase-only filter 35.7 % and his calculation of efficiency for a deterministic square wave grating which 
was found to be 40.5 % -11 

The relative error in the diffraction efficiency for random truncation errors in the design of a (tilt free) BPOF may also be found 
from eqs 14 15. These equations can be simplified for the assumption of equally-spaced pixels of pitch \. Dividing the 
signal term of eq. 14 and the standard deviation of eq. 15 by the pedestal term in eq. 14 yields a signal-to-pedestal term 

I = äP S\fx) 
(16) 

n       q 

and a standard deviation-to-pedestal term 

(17) 1L - 
n   "N 

2 [1 - 4r " P*(2/,)l - ♦ P2 W,) ♦ 1 - £ N n « 

where 

S{fx), ^M> (18) 

The element factor has been cancelled out which shows that these ratios are independent of pixel width w. Also these equations 
are periodic. Figs. 7,8 present one period of these equations (-.5 to .5 diffraction order) for a 16 pixel BPOF (uniform noise 
assumption). Fig. 7 shows the expected value of intensity (s/n + 1) and its one standard deviation bounds. It is most 
interesting that as the sidelobes become hidden in the pedestal the standard deviation approaches the value of pedestal. This 
is consistent with the statistics for the exponential probability distribution which are the same as those for fully developed laser 
speckle.6-12 The signal-to-noise ratio (eq. 26 divided by eq. 27) is plotted in Fig. 8. The dashed line indicates unity signal- 
to-noise level. The relative error in diffraction efficiency is the inverse of Fig. 8 at zero frequency. For N much larger than 
1/p the relative error at zero frequency is approximated as   

°,,n, IT <19> — (0)   ■   q.  — 
s N Np 

Even for 16 pixels the BPOF relative error (32.5 %) differs by less than 2 % with this approximation for relative error. For 
a 128 x 128 pixel FBDMD the relative error is around 1 %, assuming no other sources of error. 

In passing we note that the relative error near the Nyquist frequency fn (.5 diffraction order) is 

^(/.) - f vTT7 > (20) 

where we have used that the peak intensity of a sidelobe in this region is roughly 1/N2 of the intensity at zero frequency. 
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Fig. 7. Expected intensity and error bounds 
for 16 pixel binary phase-only filter. Curves 
are normalized by pedestal term NqR2(fx). 
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Fig. 8.  Signal-to-noise ratio' s/ffj, which is 
the inverse of the relative error. 

5. EXTENSIONS TO THE MODELS 

Sec. 4 considered the diffraction pattern of a nominally unmodulated FBDMD to be representative of the correlation surface 
of a phase-only correlator when the reference and target are the same. Equations can be developed that explicitly consider both 
the SLM transmittance t(x) and the SLM illumination u(x) containing the spectrum of the target. The assumption of statistical 
independence of pixel transmittances a^x) = rCxJexpfcA^x)] (expressed in local coordinates) and non-random illumination leads 
to the intensity diffraction pattern 

<|C(/Z)|
2>   =   f<u(.x)t(x)®u(x)t(x)> (21) 

=   /[«W"(We«WtW + T f u,(x'+x)\<al(.x'+x)a'(x')> -ä,(x/+x)ä;(x')]«j*(*0&/} 

where u(x) = u(x + Xj) has been used in order to express rectangularly sampled line segments of u(x) and a(x) in local 
coordinates. 

5.1 Expected correlation intensity for arbitrary non-random SLM illumination 

For the case of pixel phase described in terms of i.i.d. piston and gaussian i.i.d. tilt errors this simplifies to 

< I C{fx) |2 > = 9- lu(x)i(x) e«(x)f(x) (22) 

+ E ([ u,(*)rOO ®«,.(x)r(*) ]exp(-lo2
ex

2)-^^ 

The correlation surface C(fx), which is usually thought of as in the spatial coordinates, has been expressed in frequency 
coordinates to be consistent with the equations presented above. 
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5.2 Expected correlation intensity for bandlimited non-random SLM illumination 

If u(x) is sufficiently bandlimited so that it may be approximated in terms of its samples Uj(0), eq. 22 approximates to 

< \C(fx) \2 >   «   ft «(x)i(x) 6 «(*)*(*) ♦ [*,(*) - pgu(x) ] £ | 8,(0) pexpUe^) j (23) 

This result is closely similar to eq. 11 with the illumination weighting the signal and pedestal terms. This equation could then 
be used to calculate Homer efficiency for amplitude weighted illumination in a similar manner to Sec. 4.1. 

5.3 Expected correlation intensity for random phase-only SLM illumination 

For the case that u(x) is a phase-only signal with random phase modulation that is uncorrelated with and has identical statistics 
as the phase of t(x) then the further expectation of the u(x) terms in eq. 22 gives 

< |C(/,)|2>   =   rh(x)~t'\x)®«x)~t'\x)+2[g2(x) - pgn{x) ] exp(-io2*2)E exp[/(6, -Of)*] J f24) 

where t*'(x) = "00 has been used in order to emphasize the correlation being sought. As was true eq. 23, eq. 24 also is quite 
similar to eq. 11. In this case the pedestal term is scaled by a factor of 2 [one due to t(x) and one due to t'(*)•] An especially 
important change is that the influence of errors is the square of that in eq. 11. For example, assume there are only piston 
errors, then the signal is attenuated by p2 rather than p. Furthermore if t(x) and t'(x) are completely random (a = IT) and 
uncorrelated, say pseudo-random sequences, then p=0 and the pedestal term completely describes the expected intensity of the 
optical cross correlation. 

5.4 Correlated phase models 

To this point the random variables have been assumed to be independent. There are however many practical situations in which 
the random variables are correlated. Slow spatial variations in a microfabrication process (say for fabricating DMDs) might 
also cause slowly varying changes in pixel deflection across a chip. White gaussian noise added to video signals that 
electrically-control SLMs can become correlated (colored) if the signal is filtered; and filtering is frequently unavoidable: A/D 
and D/A conversion (e.g.frame grabbers), resampling an image to a different resolution, and signal conditioning all require 
filters. In DMDs and other SLMs using CCDs in the addressing circuitry, both non-unity charge transfer efficiency (though 
in practice usually high enough to ignore13) and the sampling of continuous signals, filters and thus correlates the noise. 
Therefore we expect to see correlated pixel errors in many cases. 

Correlated errors do not necessarily invalidate the theory presented to this point. Not only can similar theories be developed 
for correlated models, but also experiments can be designed that minimize correlation. The simplest model for the correlated 
pixel errors is to assume that they arise from sampling a continuous signal. The signal noise is modeled as a stationary 
stochastic process derived by passing gaussian white noise through a linear filter. For lowpass filtering of gaussian noise we 
expect to see additional bandlimiting of the pedestal. In experiments, if the control signal is filtered, the specular signal will 
be filtered, as well. For special cases, such as correlations over a few pixels, it is practical to develop expressions similar to 
eq. 11. For instance, if only adjacent pixels are correlated eq. 14 contains two additional integrals that are associated with halo. 
These integrals represent impulses of width 2w, centered at ±Ax for equi-spaced pixels. The Fourier transform of these two 
integrals together with the integral in eq. 14 represents the pedestal in the case of nearest neighbor correlated pixels. Extension 
to any correlation distance is always possible though the expressions become unwieldy. 

In experiments, depending on the source of the noise, it is also possible to observe the test signal and whiten its noise. The 
deterministic portion of the signal would, in the process, also have its high frequencies enhanced. An ideal solution for 
experiments is to generate white noise using a thermal noise source or pseudo-random code generator. If the signal is brick- 
wall filtered at the Nyquist frequency of a sampler or A\D convertor then the samples are known to be independent. These 
samples can be computer generated off-line by any number of computer routines and written into a video frame grabber or 
programmable waveform generator. Thus, it appears likely that we will be able to closely approximate in experiments the 
inherent assumptions of eqs. 11-15. 
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6.  CONCLUSIONS 

We have analyzed the effects of random piston and tilt errors on the diffraction patterns of phase-only spatial light modulators. 
In general we observe that piston and especially tilt error must be well controlled in phase-only SLMs in order to perform 
coherent optical processing with large diffraction efficiency and low noise. The analysis also describes the operation of 
correlators which use phase-only SLMs in filter plane. One special case is the binary phase-only matched filter correlator which 
by this analysis is 40.5 % as efficient as the phase-only correlator, and is in agreement with earlier deterministic simulations 
and modeling. The analysis equations presented here are especially useful when one is concerned about rapidly simulating the 
effect of phase errors on correlation with very rich and textured images. 
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ABSTRACT 

Phase modulating devices, especially spatial light modulators, are often incapable of producing a full 360 degrees of phase 
modulation. Other limitations due to calibration errors, signal distortion and quantization can cause the actual phase modulation 
to differ from the desired modulation. Such limitations on the filter plane modulator can reduce the performance of phase-only 
correlators. We quantify these performance losses for various phase limitations, both through simulation and through the 
development of an approximate model of performance. In one case we quantitatively compare the performance of phase-only 
filters that are optimized for limited-range phase modulation (as prescribed by Juday's "minimum Euclidean distance" principle) 
with the performance of non-optimal filters. In another case we analyze the effect of not compensating a quadratic dependence 
of phase on signal voltage which is anticipated for some spatial modulators, e.g. deformable mirror devices. 

1.   INTRODUCTION 

Ideally, phase-only correlation is performed with a filter plane spatial light modulator (SLM) that produces the conjugate phase 
spectrum of the object that is to be recognized. However, current SLMs usually cannot produce all desired values of phase, 
and thus, the limited range of modulation can lead to a reduction in performance. Various phase limitations are shown in Fig. 
1. In each case the desired value of phase <£d is mapped to an achievable value (the actual) value of phase <j>u. We view the 
SLM as producing a prescribed amount of phase mismatch (or systematic error) 5<t> = 4>d - <t>, from the ideal phase-only filter. 
For each value of phase desired there is a known, or systematic, amount of phase error according to the known phase mapping 
characteristic (e.g. Fig. 1.). The best known example of limited phase modulation is where the SLM produces less than a full 
2TT modulation range (Fig. la., solid line.) There are numerous potential sources for these various limitations. In general, 
the SLM might be physically incapable of producing the desired modulation, or alternatively, the signal to be placed on the 
modulator could be distorted. For instance, analog SLMs addressed by quantized signals can be limited in exactly the same 
way as an SLM that only produces quantized levels. This point of view allows one to consider, in addition to the intrinsic 
performance of the SLM, the combined performance of the SLM along with its associated address electronics. 

The recognition of limited range SLMs has led to filter design procedures that maximize various performance metrics under 
the constraint of limited modulation range.1-7 Juday has shown that optimal performance can be obtained for any specified SLM 
limitation by a mapping between the optimal filter (for which the modulation can be perfectly general) and a filter that is 
achievable with the SLM.3 The optimal mapping minimizes the mean squared error (i.e. the "Euclidean distance") between 
the desired filter and the achievable filter. Using this approach, after a filter is designed, the metric for the optimal achievable 
filter can be directl/ calculated and compared with all other filters (achievable or otherwise). However the value ot the metric 
depends stroncly on the exact image to be recognized in each design - thus a new simulation is required for each new image. 
This approach works well for prescribing an optimized design, but it can become cumbersome, especially in that numerous 
simulations can be required, such as if one wishes to perform a detailed sensitivity study with respect to a disparate set ot 
images and various SLM constraints. We have instead developed an approximate model of the effect of limited range phase 
modulation on correlation. The model provides new insight into the operation of phase only correlation, it is easy to calculate 
and, while approximate, it permits quantitative evaluations of various phase limitations. 

2.   MODEL OF PEAK CORRELATION AMPLITUDE 

The new model follows from observations that the correlation peaks can be viewed as a summation of a large number of 
coherent wavefronts. This summation is similar in form to an expected value or ensemble average. This correspondence with 
statistical models provides insisht into correlation and is used in the development of our mode! of correlator performance. The 
correspondence with statistical models is seen as follows:  In the phase-only correlator the signal s(x) is Fourier transformed 
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Fig. 2.   Comparisons of PNR model (curves) with PNR simulation (data points) for the phase limitations described in Fig. la. 
The image used for the input and filter is the face of a woman. 
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to produce 

S(f)   =   fl(/)exp[/«K/)]    =   #~{s(x)} (D 

where a(f) is the positive valued amplitude spectrum and <KD >s we phase spectrum. The phase-onJy, like the matched filter, 
correlator is designed so that the filter exactly cancels all phases. This produces a peak correlation plane amplitude on the 
optical axis of 

c(0)   =      /   a(f)df  =   Bsa & 
-Bf/2 

where the overline is used to indicate the spatial average (across the frequency plane) of the variable a. This average is 
identical in form to the temporal average.8,9 If a limited-range phase-only spatial light modulator is used in the filter plane 
then the peak correlation amplitude becomes 

B,\I   

c(0)   =     f a(f)exp{jWMf);k]}df  =   Bf atxp(j6<t>) (3) 
-B/2 

where the phase error 5<t> is a function of <f> and depends on the parameter k. For instance, the simplest expression for this 
is b(j> = (l-k)4> for the non-unity slope curve (fig. la.)  Eq. 4 can be rewritten as 

c(0)   =   Bf ( f azxp(jb<b)p(a,<b)d<bda   =   Bf (atxp(jb<b)) (4) 

Thus the spatial average in eq. 3 is equivalent to the integral in eq. 4. It takes the form of and approximates an ensemble 
average or expected value of the random variable contained between the brackets < > (i.e. the ensemble average operator.) 
The density function p(a,<£) that arises when performing a transformation of variables in integration represents a histogram ot 
the ordered pairs (a,0). As such, it approximates the joint probability density function of the random variable (a,0). This 
correspondence between deterministic and random quantities is no different than intensity histogramming which is commonly 
used in image processing; except that we are using complex-valued rather than real occurrences. 

In order to appreciate how limited phase affects correlation we make the following simplifying approximations to eq. 3 
j, —    n 

c(0)   =   B, a exp(/6<t>)   =   -j—   /" exp(y5<p)rfdp (5) 

A heuristic explanation for the first approximation is that phase more strongly influences correlation than amplitude. This 
approximation will generally be better if the values of phase error do not depend on the values of amplitude and is exactly taie 
if a and 4> are independent random variables. The second approximation is true if the phase <j> is uniformly distributed over 
27T. This assumption is definitely false for reference objects which are real-valued, symmetric and centered on the optical axis. 
In this case phase takes on only values of 0 and -K and a binary phase only filter will produce identical performance as the full 
range phase-only filter. Also if the phase of the image spectrum is non-uniformly distributed and the modulator phase is 
limited, there is a phase offset that optimizes correlation (the threshold line angle.)3'7 As far as our analysis is concerned there 
is no preferred phase offset under the assumption of uniformly distributed phase. However, also note that we have made 
histograms of images from commonly available digital image libraries and found that many do have phase that is roughly 
uniform in distribution. 

Specific functional expressions for peak correlation amplitude with the phase limitations shown in Fig. 1 are found by evaluating 
eq. 5.   These are 

cs(0)   =   BfZ[k + (\-k)sinc(l-k)] (6) 

c„(0)   =   B^asincd-*) (7) 

c, -,(0)   =   VsincU     =   cn(0)\t^ (8) 

where the correlation amplitude for the saturated characteristic is cs; the non-unity slope is c„; and the quantized case is c,,. 
The second equality in eq. 8 indicates that using k = (m-l)/m where m is the number of quantization levels, that correlation 
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performance is identical for both the non-unity slope characteristic and the quantized characteristic.   Quadratic phase limitation 
has been evaluated numerically and is presented in a subsequent graph. 

3.  MODEL OF PEAK-TO-NOISE RATIO 

The effect of systematic phase errors only acts through the peak amplitude, for many of the recently discussed correlation 
metrics.11,12   One of these metrics is the peak-to-noise ratio (PNR) 

PNR   = 140) I 

N 

BJ2 i.n 

j   \c(x)\2dx   -     I   \c(x)\2dx 

-BJ1 "VJ 

(9) 

where the denominator represents the RMS amplitude across a correlation plane of spatial bandwidth B, which excludes a small 
region of width A, centered around the correlation peak. For an SLM of N pixels of width A, ( Bx = NAX ) and using eq. 
5 and properties of the Fourier transform eq. 9 can be approximated as 

PNR   = 
SIFT [ a exp(j6<t>) 

V   a2  - \ a exp(_/6(J)) 

N - 1 

Z exp(/6<|>)     - 1 

where the parameter 

a2 

(10) 

(11) 

This model for PNR, eq. 10, depends on only three parameters, N the number of pixels in the frequency plane SLM, k the 
parameter which controls the amount of phase error for a given type of phase limitation, and Z which solely describes the 
distribution of the amplitude spectrum. It is especially useful that our model only depends on the image data to this small 
degree and that quite varied images can produce identical values of Z (as can be seen by considering eq. 11.) Using our 
statistical interpretation (correspondence between the spatial average and the ensemble average) it can be seen that the numerator 
of Z is simply a variance of" the spectral amplitudes. Minimizing the variance (or standard deviation) minimizes Z. A white 
spectrum (over the full width of the phase-only SLM) will produce the smallest value, of Z, which is unity and consequently 
it will produce the largest values of PNR. In the case of no phase errors PNR is infinite indicating that all energy has been 
focused to a single pixel in the correlation plane and no energy coincides with the other pixels. Infinite PNR is not physically 
possible if the frequency plane illumination is of finite extent. Nonetheless it is obtained as a result of designing our model 
to match the discretely sampled images used for our FFT-based simulations (described below.) 

4.   COMPARISONS OF PHASE LIMITATIONS ON PEAK-TO-NOISE RATIO 

In the simulations, the phase-only filters are either the conjugate phase spectra of the image to be recognized (for k= 1) or the 
conjugate phase with the phase limitations as indicated in Fig. 1. No additional phase offset was added to any filter (i.e. we 
did not perform optimization with respect to the threshold line angle.) For the examples shown here the image used is a 
woman's face.12 It is a 64x64 array of pixels and is padded by zeroes in a 128x128 array. The correlation is performed by 
fast Fourier transforming the image and multiplying its spectrum by a 128x128 array of unit magnitude, complex-valued 
numbers which represent the N= 16,384 pixels of a phase-only SLM. The value of Z for this image is 6.23 and this value is 
used for Z in calculations of et]. 10. 

4.1.   Simulations compared with model 

According to Juday's theory, even if the line angle is not adjusted, the saturated phase mapping produces a larger PNR than 
the non-unity gain mapping (both shown in Fig. la.)3 This is relationship is evident for the simulated PNRs in Fig. 2 (with 
" +" representing PNR for non-unity slope and "o" representing PNR for the saturated phase mapping.) The curves represent 
the model for the two types of phase errors. Specifically eq. 6 (for non-unity slope) or eq. 7 (for saturation) is substituted into 
eq. 10. We find that the curves for this and other images favorably track the simulated results for the purposes of making 
relative comparisons between the effects of various systematic phase errors. The fact that the simulated PNR exceeds the 
modeled PNR is an indication that more of the image spectrum can be phase matched by the limited-phase SLM than for a 
uniformly distributed spectrum, for this particular image. Other images (or line angles) can produce simulated PNR that is less 
than the modeled PNR.   We do note that for each value of k and for either model or simulation, the saturated phase mapping 
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produces greater PNR than the linear mapping; as expected according to Juday's theory. Uniquely in contrast to Juday's 
approach is that a simple model (only requiring the vaguest of information about the image) has been used to quantity the 
difference in performance for the two different types of phase limitations. 

4.2.   Comparisons of linear, quadratic and quantized phase mappings 

These results are plotted in Fig. 3. The linear (non-unity slope) is the same curve as shown in Fig. 2, except that k ranges 
from zero to two. Simulations of performance for the quadratic mapping (Fig. lb) were presented previously in ref. 13, though 
for a different metric. Note that the value of k=l corresponds to (j>m = 2% in ref. 13. Additionally the performance tor 2 to 
5 levels of phase quantization are plotted in Fig. 3. As indicated by eq. 8, PNR for the quantized mappings is equivalent to 
that for non-unity slope at k=.5, .67, .75 and .8. The quadratic mapping is practically indistinguishable from the non-unity 
slope mapping for k < .5. These values are all noticeably less than the PNR for the saturated mapping (shown in Fig. 2.) 
For k=l the non-unity slope and the saturated mappings produce no phase mismatch and thus they produce PNR identical with 
the ideal phase-only filter. It may at first appear surprising that the PNR for the quadratic mapping with k approximately equal 
to 1 produces PNR greater than 90 % of that for the ideal filter. However, the phase mismatch for any value of phase never 
exceeds one quarter wavelength (90° maximum at <f>d = it.) While this may appear to be a large amount of phase error, there 
is an analogous result for imaging systems: They are considered to behave as essentially diffraction-limited if the phase errors 
are less than a quarter wavelength." PNR that is nearly identical to that for the maximum PNR for the quadratic case for 4 
levels of quantization (k = .75.)  Again we note that the maximum phase error is-one-quarter wavelength. 

5.  CONCLUSIONS 

These findings indicate that several correlation metrics of interest can be modeled with reasonable accuracy by employing the 
approximation of eq. 5. The model reduces to easily computed functions for phase errors of current interest which can arise 
from limitations in current SLMs and tradeoffs between cost and performance of electronic interface circuits. Since the model 
requires only general knowledge of image properties (namely the bandwidth parameter Z, which is identical for any number 
of different images,) it relieves system designers from the necessity of performing image-based simulations every time a design 
parameter, component specification or tolerance changes. 
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Effects of systematic phase 
errors on phase-only correlation 

Robert W. Cohn and Joseph L. Homer 

The performance of phase-only optical correlators is usually reduced if the filter-piane phase differs from 
that prescribed for the classical matched filter. Current spatial light modulators, which frequently 
produce less than 2TT phase modulation, and interface circuits, which quantize or incorrectly amplify 
signals placed on the spatial light modulator, both can produce systematic phase errors. We examine 
these effects using a model of correlation-peak amplitude as a function of phase error. The correlation 
peak is reasonably approximated as the product of an average of unity-amplitude error phasors multiplied 
by the average amplitude across the filter plane. The trends predicted by this new model compare 
favorably with computer simulations that use gray-scale images. 

Key words:   Phase-only correlators, pattern recognition, spatial light modulators, correlation metrics, 
coherent optical processors, real-time correlators, binary optics, optimal filters. 

Introduction 

Limitations of Spatial Light Modulators Used for the 
Filter Plane 

The phase-only correlator consists of an amplitude- 
only spatial light modulator (SLM) in the input plane 
and a phase-only transparency in the filter plane.1 

The phase of the filter is, by definition, the negative of 
the phase spectrum of the object to be recognized. 
The enthusiasm for the phase-only correlator has 
centered in great part around its higher diffraction 
efficiency, its narrower correlation peaks in relation 
to those for matched-filter correlators, and its ease of 
writing on available SLM's. However, it has been 
difficult to realize SLM's that are continuously vari- 
able over a 2TT range of phase modulation and that 
cause no residual modulation of amplitude.2-3 The 
recognition of these practical limitations is probably a 
major reason for the current popularity of the binary 
phase-only filter in optical correlators. Also, in rec- 
ognition of the problem of limited modulation range 
of SLM's, several studies have been devoted to devel- 
oping filter design procedures that maximize various 
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performance metrics under the constraint of limited 
modulation range.2-8 The emphasis of the optimal 
filter design studies is more on minimizing the effects 
of limited modulation range than on evaluating and 
understanding the effects on performance. Most 
similar among these studies in relation to the current 
study is that of Farn and Goodman,6 especially in 
their developing a lower performance bound for corre- 
lation with quantized phase-only filters that are 
optimized by adjustments of a phase offset with 
respect to the threshold line angle.5'8 We note below 
an interesting correspondence between one of Farn 
and Goodman's results and our's. 

Instead, we choose to focus directly on describing 
the effects of limited-phase modulation characteris- 
tics on correlation. We view limited-phase SLM's as 
producing a phase error 8<t>, which is the difference 
between <j>d, the phase required for (ideally, the 2TT 
range) phase-only correlation and 4>a> the phase actu- 
ally achievable with a constrained SLM. The com- 
parisons presented here make no special provisions 
for optimizing filter performance in the presence of a 
limited-phase constraint, especially since our most 
basic model does not use detailed information about 
the object to be recognized. However, a more gen- 
eral model is discussed that shows how the spectral 
distribution of the object with respect to the thresh- 
old line angle influences correlator performance. 

In general, phase errors arise from unintended 
transformations of signals to be placed on the SLM. 
Thus phase errors can also result from the nonideal 
performance of electronic and optical components 
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between the signal source and the SLM. Therefore 
this study is applicable to many practical issues that 
must be considered in the design and the develop- 
ment of actual phase-only correlators. Some pos- 
sible sources of phase error are suggested in the next 
subsection, but in general the practical issues relate 
to calibration of signal levels and to the tolerances 
and the accuracy of components that process the 
signal that is ultimately transformed into the phase 
modulation. 

In this paper we are interested specifically in 
systematic as opposed to random errors. By system- 
atic phase error we mean that the phase-error distri- 
bution 8<f>(/") across the filter plane (of frequency 
coordinate f) is nonrandom or deterministic. Recent 
studies on effects of systematic phase errors have 
focused primarily on simulation and experimental 
measurement9'10 rather than on developing models of 
correlator performance, as is done in this study. 
The study by Downie et al.6 included the effects of a 
static pattern of phase errors across the SLM, whereas 
the study by Homer and Gianino9 considered cases in 
which phase error at each pixel is describable as an 
explicit function of the phase desired. While both 
static and filter-dependent phase errors are types of 
systematic error, our study considers specifically the 
filter-dependent case. 

Our proposed model follows from observations that 
the correlation peaks can be viewed as a summation 
of a large number of coherent wave fronts. This 
summation is similar in form to an expected value or 
an ensemble average. This correspondence with sta- 
tistical models provides insight into correlation and is 
used in the development of a simple analytic model of 
correlator performance. The expressions that de- 
scribe performance of phase-only correlators as a 
function of systematic phase-error characteristics are 
derived below and are shown to have good correspon- 
dence with computer simulations. 

Phase-Error Characteristics of Interest 
Figure 1 illustrates a variety of systematic errors that 
can be reasonably anticipated in nonideal phase-only 
SLM's and practical optoelectronic correlation sys- 
tems. Figure 1(a) shows two types of continuous 
phase errors. Both curves are typical of SLM's that 
produce phases only between ±krn. The solid curve 
represents an SLM that matches exactly the signal 
phase within these limits. The dashed curve has a 
slope of value k, and thus phase error 8<f> is propor- 
tional to 1 - k. The solid transfer characteristic 
could result from either the limited modulation range 
of the SLM or the saturation of amplifiers in the 
signal interface circuits. The dashed curve could 
result from an incorrect amplifier gain setting, and, 
as drawn, the saturated SLM could also produce the 
nonunity slope characteristic if its signals were attenu- 
ated by the factor k. 

Figure 1(b) shows a discontinuous phase transfer 
curve. This is a generalized characteristic for the 
binary phase-only filter, in which the two phases may 
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Fig. 1. Various systematic phase errors: (a) two continuous 
mappings for which the actual phase has less than a 2ir range of 
modulation, (b) binary phase-only mapping in which the range of 
phase modulation is not necessarily IT, (c) mapping in which the 
actual phase is quantized into m levels [in which Eq. (1) gives the 
relationship between k and m\. 

be separated by other than IT. Such an error can 
result from incorrect fabrication of a binary optic or, 
once again, from incorrect gain of the signal applied 
to the SLM. Another type of discontinuous phase 
characteristic is that resulting from quantization of 
the phase, as illustrated in Fig. 1(c). Quantization is 
to be expected for filters fabricated by binary optical 
techniques or for SLM's that are addressed by digital 
circuits. For this case, k is related to the number of 
quantization levels, m, as 

k = ■ (1) 
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For example, Fig. 1(c) shows four phase levels, and 
thus k equals 0.75. This relationship is used [specifi- 
cally, in Eq. (12)] to map the performance curves for 
quantization errors onto the performance curves for 
slope errors. In all subsequent analyses, k is always 
assumed to be less than or equal to one. 

A secondary objective of this paper is to compare 
specifically the effects on performance of the two 
continuous phase-modulation characteristics shown 
in Fig. 1(a). It was our trying to understand these 
differences that first suggested the analysis presented 
in this paper. We present this comparison as a 
detailed demonstration and confirmation of our 
theory. As further background on this problem, we 
now review what is already known about the effect of 
these SLM phase errors and how the current design- 
oriented methodologies could also be used to under- 
stand their effects. 

Juday has shown that, if the filter-plane SLM 
produces less than a 2ir range of modulation, then the 
optimal performance under this constraint is ob- 
tained by mapping of the optimal phase under no 
constraints [or in Fig. 1(a), the desired phase] to the 
achievable (or actual) phase according to the satu- 
rated curve.4 Furthermore, there is a value of phase 

'offset (adjusted with respect to the threshold line 
angle58) that minimizes the mean-squared error (or, 
in Juday's terminology, the Euclidean distance) be- 
tween the optimal filter and the filters achievable 
with the SLM. With Juday's approach, after a filter 
is designed to optimize a specific performance metric, 
the metric for the optimal achievable filter can be 
directly calculated and compared with all other filters 
(achievable or otherwise). However, the value of the 
metric depends strongly on the exact image to be 
recognized in each design; thus a new simulation is 
required for each new image. Juday's approach can 
be generalized directly to incorporate systematic phase 
errors. One can do this by altering systematically 
the phase-modulation curve by the known error and 
then by redesigning the filter. This approach is 
perfect for design optimization but becomes cumber- 
some, requiring numerous simulations, for systems 
analysis of the dependence of correlation on disparate 
imagery and SLM phase errors. For this reason we 
instead choose to develop a simple model that, while 
sacrificing the numerical accuracy of available ap- 
proaches, provides general insight into correlator 
performance. Also, note a difference in comparing 
our results to the earlier research on optimized 
phase-only filters2-8: In our derivation we make 
simplifying assumptions about the image spectrum 
that permit the dependence on threshold line angle to 
be removed altogether. 

Model of Peak-Correlation Amplitude 

The performance of optical correlators is character- 
ized by any one of several metrics.11'12 These usually 
depend strongly, and for several metrics, exclusively, 
on the peak amplitude of the correlation surface. 
Our analyses can then be understood by recognition 

of the similarity between the peak-correlation ampli- 
tude and a specific type of average across the filter 
plane. 

In the phase-only correlator the signal s(x) is 
Fourier transformed to produce 

S(f) = a(f)exp[Mf)} = y{s(x% (2) 

where a(f) is the positive-valued spectral amplitude 
and <|>(/") is the spectral phase. The phase-only 
correlator, similar to the matched-filter correlator, is 
designed so that the filter exactly cancels all phases. 
This produces a peak-correlation plane amplitude on 
the optical axis of 

c(0) a\ 
J-B/-/2 

(fW=Bjä (3) 

for an SLM of finite extent or spatial bandwidth Bf. 
The overbar in Eq. (3) is used to indicate the spatial 
average (across the frequency plane) of the variable a, 
where the spatial average for a general function g(f) 
and for a given bandwidth B is defined as 

8 
= 1 [m 

B
 J-B/2 

g(fW- (4) 

This form is identical to the temporal average.13'14 

If the SLM exhibits systematic,phase errors, then the 
peak-correlation amplitude becomes 

fBf/2 

c(0) a(f)exV{JWWY, k])d/~ 
J-Bf/2 

= Bfa exp{jh<b), (5) 

where phase error 84> is a function of <t> and depends 
on parameter k. For instance, the simplest expres- 
sion for this is 8<t> = (1 - &)4> for the nonunity slope 
curve [Fig. 1(a)]. 

A transformation of variables also permits Eq. (5) 
to be written as 

c(0) -41 >>0     «-17 

a exp(j84))p((f), a)d<|>da 

= Bf(a exp(./'8<t>)). (6) 

Thus the spatial average in Eq. (5) is equivalent to the 
integral in Eq. (6), which takes the form of an 
ensemble average or an expected value, defined by 

(8) 
< 

gp{g)dg, (7) 

where p(g) is the probability-density function of the 
random variable g. Even though a and 4> are known 
quantities and are not thought of as random vari- 
ables, the collection of these variables across the 
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frequency plane permits them to be mathematically 
evaluated in the same way as random variables. 
This correspondence provides useful insights into our 
modeling method. Thuspfa, 4>) is the joint density 
of occurrences of the pair of values a and 4>. A 
histogram of the ordered pairs (a, 4>) approximates 
the joint-density function. 

For our purposes of developing a general under- 
standing of how systematic phase errors affect corre- 
lation we make the following simplifying approxima- 
tions to Eq. (6): 

c(0) ~ Bfd exp(fö§) = 2-L exp(j54>)d(j>.    (8) 

A heuristic explanation for the first approximation is 
that phase influences correlation more strongly than 
amplitude. This approximation is generally better if 
the values of phase error do not depend on the values 
of amplitude. The second approximation is true if 
the phase <{> is uniformly distributed over 2TT. This 
assumption is definitely false for reference objects 
that are real valued, symmetric, and centered on the 
optical axis. In this case, phase takes on values of 0 
and -IT only. We made histograms of images from 
commonly available digital-image libraries and found 
that many do have phases that are rougly uniform in 
their distribution. 

In general, phase does depend on amplitude, and 
the correspondence between Eq. (5) and approxima- 
tion (8) is most clearly seen by rewriting of Eq. (6) as 

C(0) = BJ   ap(a)da       exp(./5<|>)p(<|>|a)d<|>,    (9) 

where the standard identity from statistics p(a, <j>) = 
p(<k\a)p(a) is used and p(4>|a) is the density of 4> 
conditioned on the value of the parameter a. For 
cases in which p{<&\a) does not depend on a, then a 
and <f> are by definition independent, in which case 
the first approximation in approximation (8) is equiva- 
lent to Eq. (9). It also not necessary that a and 
<J> be independent. It is sufficient that the argu- 
ments of the ensemble average are uncorrelated; i.e., 
(a exp(y§4))) = (a) (exp{jb<$>)). Equation (9) can thus 
be used to resolve differences between our conceptual 
models based on approximation (8) and experimental 
results obtained by images with known joint distribu- 
tions of amplitude and phase. An example in which 
the form of the joint distribution is an issue is that of 
designing binary phase-only and ternary filters. It is 
exactly the distribution of amplitude and phase that 
determines the optimal choice of phase offset with 
respect to the threshold line angle. 

Correlation-Peak Amplitude as a Function of the 
Systematic Phase Errors 

The expressions for peak-correlation amplitude found 
by evaluation of approximation (8) with the specific 

functions of<|) given in Fig. 1 are 

cs(0) = Bfa[k + (1 - A)sinc(l - k)], 

c„(0) = Bfa sinc(l - k), 

c,(0) = Bfa sine I— J = c„(0)|A=m_1/m, 

Bfa 
|C(,(0)| = ^cos k) (l-k) 

(10) 

(11) 

(12) 

C,(0)|m=2, 

(13) 

where the correlation amplitude for the saturated 
characteristic is cs, the nonunity slope is c„, the binary 
phase is cb, and the quantized case is cq. As indicated 
by the second equality in Eq. (12), which uses the 
definition from Eq. (1), the correlation performance 
as a function of k is identical for both the nonunity 
slope characteristic and the quantized characteristic. 
It is interesting to note that we have derived the same 
result as Eq. (12).by assuming that phase-mismatch 
errors from quantization are uniformly distributed 
random variables of spread ±m/2.16 In Eq. (13), 
absolute value signs are included to eliminate a 
phase-offset term that is not of interest. For k equal 
to unity the correlation amplitude for the binary 
characteristic is identical to the two-level quantized 
characteristic, as expected. Equation (13) shows that 
the binary phase-only correlator is fairly insensitive 
to phase offsets that are not exactly IT. Also, the 
amplitude of the binary phase-only correlator (for 
k = 1) is identical to the nonunity slope correlator 
when k = 0.5. 

Another systematic error of recent interest is the 
quadratic phase error that can arise as a result of the 
quadratic relationship between address voltage of a 
deformable-mirror pixel and the phase modulation it 
produces.9 Approximation (8) can be applied in the 
same manner as before. The resulting expression 
contains several Fresnel integrals. 

An additional observation is in order on the func- 
tional form of Eq. (12). This term appears in previ- 
ous studies on quantized phase-only filters6 and 
kinoforms.16'17 Of special interest is Farn and Good- 
man's results on the lower bound of performance for 
correlators using quantized phase-only filters [their 
Eq. (39)]. This ratio of signal-to-noise ratio when 
phase is quantized to signal-to-noise ratio when there 
is no quantization is identical to the ratio of c(0) in 
Eq. (12) to e(0) when there is no quantization. It is 
interesting to note that Farn and Goodman's perfor- 
mance bound is applicable to filters that are opti- 
mized under the constraint of quantized phase (i.e., 
on the basis of the threshold fine angle), while under 
our set of assumptions of uniformly distributed phase 
and independent amplitude, optimization is not re- 
quired and does not improve the performance of our 
model. Therefore our equality for nonoptimized 
quantized filters coincides with Farn and Goodman's 
lower bound.   Perhaps this result can be used in the 
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establishment of performance bounds with other 
types of phase constraint. 

Models of Correlation Metrics:    Continuous and 
Discrete Signals 
As mentioned above, the effect of systematic phase 
errors acts only through the peak ampltide for many 
of the recently discussed correlation metrics.1112 

We show the dependence on peak amplitude for one of 
these metrics and also make clear the correspondence 
between our continuous-signal model and the discrete- 
signal models that are typically used to simulate 
optical correlator performance. 

Peak-to-noise ratio (PNR) is 

PNR 
|c(0)| 

B.-Ar /: 

Ji/2 

|c(x)|2dx 
Bx/2 

\c(x) 
V-A^ 

|2d% 

(14) 

iwhere the denominator represents the rms amplitude 
across a correlation plane of spatial bandwidth Bx 

that excludes a small region of width Ax. This metric 
is the continuous-signal equivalent to peak-to-correla- 
tion energy (PCE") for discrete signals: 

PCE" = 
(AT-I)1" | c„ | 

Co 

(15) 

2   1/2 

where N = Bx/Ax is the number of sample points in an 
image.11 (The metric PCE", some of its properties, 
and its relationship to Kumar and Hassebrook's 
PCE12 is described in Ref. 11.) The equivalence 
between PNR and PCE" follows by insertion of the 
standard piecewise approximation for integrals into 
Eq. (14): 

I    /»Ax/2 

x v-Ai/2 
g(x + iAx)dx « g{iAx (16) 

which is valid as long as the function varies slowly 
enough over the limits of integration A*. In the case 
of digital simulations of optical correlation (including 
those simulations presented here), which typically 
use the fast-Fourier transform (FFT), Bx represents 
the extent of the FFT window and Ax represents the 
separation between FFT sample points. For these 
analyses we also assume that the SLM in the fre- 
quency plane has N pixels of pitch Af that extends 
over a bandwidth Bf. The signal s(x) is also spatially 
limited to Bx/2 or, equivalently, s; is limited to N/2 
samples so that the SLM can sample the signal 
spectrum S{f) at or below the half-Nyquist rate. 
For these sets of assumptions, PNR is approximately 
equal to PCE" to within the limits set by the Nyquist 
sampling theorem.18 

APPLIED OPTICS / Vol. 33, No. 23/10 August 1994 

For these assumptions, the PNR in Eq. (14) can be 
rewritten as 

PNR 
(AT- l)1/2|c(0)| 

"[Ec-\c(0)\ 1211/2 
(17) 

where, through applying Parseval's relation to the 
phase-only correlator, we can express the correlation 
energy Ec as 

fBx/2 m/2 

'.e=\        |c(x)|2dx = \a(f)exp(jH)\2df 
J-B./2 "-Br!2 

-i 
Bx/2 

•Bf/2 

Bf/2 
a2(f)df. 

Thus, with reference to Eq. (5), it can now be seen 
that the dependence of PNR on 8cj>, or, equivalently, 
the parameter k, is caused by the peak amplitude c(0) 
only. Explicitly, substituting identity (4), approxima- 
tion (8), and Eq. (18) into Eq. (17), our model for PNR 
becomes 

(N- l)^\äexp(M)\ 
PNR = i=- 

[a2-|äexp(./o<|>)|2] 1211/2 
(19) 

where the approximate equality is due to approxima- 
tion (8). Except for this approximation, which we 
are evaluating in this paper, approximation (19) is 
equivalent to Eq. (15). For modeling purposes it is 
most convenient to view the averaging operator as a 
continuous integral, while for simulation with signals 
represented by their spectra the averages are well 
approximated as 

1  N 

8 ~N&,gh (20) 

which follows directly from the validity of approxima- 
tion (16). 

Discussion on the Form of Peak-to-Noise Ratio 

Our model for PNR, approximation (19), depends on 
only three parameters: N, the number of pixels in 
the frequency-plane SLM; k, the parameter that 
controls the amount of phase error for a given type of 
systematic error characteristic; parameter 

(21) 

which depends solely on the distribution of the values 
of the spectra. Using our statistical interpretation 
(correspondence between the spatial average and the 
ensemble average), we can see that the numerator of 
Z is simply a variance. Minimizing the standard 
deviation of the spectral values minimizes Z. 
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In its most compact form, approximation 
then written as 

PNR2 = 
(N - DIexpW)!' 

Z - |exp(./o<t>)|2 

19) is 

(22) 

Thus in the phase-only correlator the value of PNR is 
also influenced by the spectral distribution of the 
signal that is to be recognized. A white spectrum 
(over the full width of the phase-only SLM) will 
produce the smallest value of Z, which is unity, and 
consequently gives the largest values of PNR. In the 
case of no phase errors, PNR is infinite, indicating 
that all energy is focused to a single pixel in the 
correlation plane and no energy coincides with the 
other pixels. Infinite PNR is not physically possible 
if the frequency-plane illumination is of finite extent, 
but it is nonetheless obtained in simulations as a 
result of designing our model to match the discrete 
model used for FFT-based simulations. The infinite 
value of PNR is a direct result of the discrete Fourier 
transform of the white spectrum producing the (dis- 
crete-signal) delta function.11 

An example showing the sensitivity of PNR to 
spectral distribution for a reasonably broad set of 
model spectra is presented. Since we usually ob- 
serve low-pass spectra when working with real-world 
images, we choose a variable-exponent power law: 

a(f)=   1- jrect(i (23) 

where 2w represents the spectral width of the signal 
arid p is assumed to be greater than zero. The 
resulting value of the bandwidth parameter Z is 

Z = 
P + 1 B 
2p + 1 w 

f (24) 

The term (p + l)/(2p + 1) only varies between 0.5 
and 1 for all values ofp between 0 and ». 

This analysis can be extended directly to two- 
dimensional rectangularly separable spectra with the 
result that 

Z = ZfZf, (25) 

where Eq. (24) is specified independently for the fx 

and fy coordinates. For two-dimensional circularly 
symmetric spectra with radial power-law dependence 
identical to Eq. (23), 

Z = 
p + 2 Bf

2 

P  +   1 TTW2 (26) 

For/3 = co (the spectrum is essentially a circ function) 
and 2w = Bf, Z in Eq. (26) is 4/ir. The minimum 
value of Z is greater than unity for the circular 
spectrum, but this is to be expected since it has a 
smaller total bandwidth than the rectangular spectra. 
Basically, Eqs. (24)-(26) indicate that there is an 

effective bandwidth for every spectral distribution 
that produces identical correlator performance. For 
understanding PNR, the equating of Z values from 
different distributions determines the definition of 
effective bandwidth. 

Comparison of Modeled and Simulated 
Peak-to-Noise Ratio 

In the simulations the phase-only filters are either 
the conjugate-phase spectra of the image to be recog- 
nized (for k = 1) or the conjugate phase with the 
systematic phase errors, as indicated by Fig. 1(a). 
In none of the simulations did we add phase offsets to 
the filter (in order to optimize performance; see 
discussions above on threshold line angle). The 
images consist of a 64 x 64 array of pixels padded by 
zeros in a 128 x 128 array. We performed the 
correlation by fast-Fourier transforming the image 
and multiplying its spectrum by a 128 x 128 array of 
unit-magnitude complex-valued numbers that repre- 
sent the N = 16,384 pixels of the phase-only SLM. 

Figure 2 shows phase-only correlator performance 
for the saturated and nonunity slope phase-error 
characteristics for the specific input image of a wom- 
an's face.19 The curves represent Eq. (21) for the 
two types of phase errors. We used a value of Z = 
6.23 in the model in order to produce the same value 
of PNR as was simulated for no phase errors (i.e., for 
k = 1). This is not a free parameter but rather a 
recognition that for no phase error, approximation (8) 
(our principal approximation) is equivalent to Eqs. (3) 
and (5). We find that the curves for this and other 
images track favorably the simulated results for the 
purposes of making relative comparisons between the 
effects of various systematic phase errors. The fact 
that the simulated PNR exceeds the modeled PNR is 
an indication that more of the image spectrum can be 
phase matched by the limited-phase SLM than for a 
uniformly distributed spectrum, for this particular 
image. Other images (or phase offsets) can produce 
a simulated PNR that is less than the modeled PNR. 
The finer resolution of these effects, along the lines of 
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Fig. 2. Comparisons of PNR model (curves) with PNR simulation 
(data points) for the systematic errors described in Fig. 1(a). The 
image used for the input and the filter is the face of a woman.19 
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Eq. (9), is probably of practical interest only in 
sophisticated pattern-recognition problems for which 
the image data sets have rather specialized proper- 
ties. .    r 

We also observed the same trends, in Fact, with 
even closer agreement, for the phase-only correlation 
of a tank image19 with the same tank on a natural 
cluttered background (Fig. 3). In this case we know 
that the undesired signal produces additional phase 
errors and alters the spectral distribution of .ampli- 
tude. The value of Z is again set to force the model 
and simulation to be equivalent if there are no 
systematic phase errors. However, in this case, Z 
incorporates these additional affects as well. For 
clutter modeled as a noise process the additional 
phase errors can be analyzed by the approaches 
described in Refs. 7 and 20. The closer agreement 
between the model and the simulation in this case is 
probably because of the additional randomization of 
phase that is caused by the addition of clutter. 

The simulation with the image of the woman (and 
images of smaller bandwidth) show that the PNR 
depends essentially on peak amplitude c(0). For its 
specific value of Z = 6.23, ignoring variations in the 
denominator of approximation (19) changes the val- 
ues of the PNR curve only by ~ 8%. 

Since spectral bandwidth is used widely, we con- 
sider briefly the range of bandwidths for which the 
denominator of approximation (19) has as small an 
effect on PNR as does the test image. We do this by 
determining the relative bandwidth 2w/Bf for each 
spectrum that gives a value of Z equivalent to that of 
the test image. For brick-wall spectra (i.e., power 
p - oo) the one-dimensional model has a relative 
bandwidth of 16%, the square-separable model [Eqs. 
(24) and (25)] has a relative bandwidth of 40%, and 
the circular model [Eq. (26)] has a relative bandwidth 
of 44%. For spectra that are most heavily weighted 
toward dc (i.e., p = 0) the relative bandwidth becomes 

— Saturated 
- Nonunity Slope 

0.2 0.4       0.6 0.8 

Fig. 3. Comparisons of PNR model (curves) with PNR simulation 
(data points) for the systematic errors described in Fig. 1(a). The 
image used for the filter is a tank. The image used for the input is 
the same tank with clutter added.19 The model does not include 
the effect of the clutter. However, for purposes of comparison the 
value of the model at the end point (* = 1) is set equal to that for 
the simulation. 

32% for one-dimensional, 80% for square-separable, 
and 64% for circular spectra. While the bandwidths 
vary for the brick-wall-model spectra between 16% 
and 44%, the effective bandwidth area (for example, 
the rectangular case B = BxBy = 16%), or equiva- 
lently, the effective number of SLM pixels illuminated 
is constant (2621 for a 16,384-pixel SLM). 

In summary of this section, we examined the effects 
on correlation when the filter-plane SLM is incapable 
of modulation over the full 2TT range. We performed 
a detailed comparison of a phase-only filter correlator 
for which the desired phase is mapped to a limited- 
phase SLM in two different ways: linear scaling of 
phase and saturation of phase. For each value of k 
and for either model or simulation, the saturated 
phase mapping produced a greater PNR than the 
linear mapping, as expected according to Juday's 
theory. Uniquely in contrast to Juday's approach is 
that a simple model (requiring only the vaguest of 
information about the image) was used to quantify 
the difference in performance for the two different 
phase characteristics. 

Conclusions 

These findings indicate that several correlation met- 
rics of interest can be modeled with reasonable 
accuracy by use of approximation (8). The model 
reduces to easily computed functions for phase errors 
of current interest that can arise from limitations in 
current SLM's and trade-offs between cost and perfor- 
mance of electronic interface circuits. Since the 
model requires only general knowledge of image 
properties (namely, the bandwidth parameter Z, which 
is identical for any number of different images), it 
relieves system designers from the necessity of per- 
forming image-based simulations every time a design 
parameter, a component specification, or a tolerance 
changes. 

This is not the first evidence that correlation 
metrics for a variety of images show the same trends. 
Even though phase errors were not considered, Ku- 
mar and Hassebrook found similar trends for simula- 
tions of various correlation metrics with a variety of 
images.12 It appears that their results can also be 
explained in terms of an effective image bandwidth. 
The most interesting and surprising result of this 
study as observed by Kumar and Hassebrook and 
ourselves is the very limited dependence of correla- 
tion performance on the detailed parameters defining 
an image. Such results are analogous to nonparamet- 
ric statistics21 in which the resulting statistic (the 
correlation metric) is, at best, only weakly dependent 
of the functional form of the underlying distribution 
(the image). 
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ABSTRACT 

Hybrid correlators are composed of numerous non-ideal electronic and optical components that, to one degree or another, limit 
performance through unintended transformations of signals. Many of these effects show up as phase errors at a spatial light 
modulator (SLM) plane. The errors can be described as random variables, or as systematic offsets from the correct phases 
as appropriate Sources of systematic phase errors include quantizing circuits, incorrect or nonlinear amplifier gam, limited 
range phase modulators and residual phase modulation of amplitude-mostly SLMs. Random phase errors arise from electronic 
noise and fabrication variations of SLMs. In this paper several systematic and random filter plane errors are related through 
a single parameter that describes the amount of phase mismatch. A model of peak-to-noise ratio (PNR) is also presented that 
describes the combined effects of random and systematic errors. This expression contains the products of two functions, one 
that depends only on systematic, the other on random, phase mismatch. PNR is also a function of the number of pixels in the 
filter plane modulator and a normalized moment the amplitude of the image spectrum. The model is useful for developing phase 
error budgets for correlation systems. 

1.  INTRODUCTION 

Optical correlation is highly dependent on the amount of phase mismatch or wavefront error across the filter plane. If the filter 
perfectly conjugates or matches the incident wavefront then essentially all the energy is focused mto a single bright spot at the 
correlation plane. If the filter poorly matches the incident wave then the filter behaves like a diffuser m that the correlation 
intensity is greatly reduced and that a broad background of scattered light is produced akin to a speckle pattern. It has been 
noted for various types of phase errors that small to moderate errors, say less than a quarter wave, produce slight losses m 
correlation intensity and add only slight amounts of background noise to the correlation plane.2'3 A quite similar situation is 
that imaging systems are known to produce, essentially, diffraction-limited resolution if the total aberrations are less than one 
quarter wavelength 4 As in imaging systems, the critical issue is the total amount of phase error rather than the functional 
description of the phase error. The physical reason for this is that the formation of a correlation peak is due to the coherent 
superposition of a large number of coherent wavefronts. Each cell or pixel in the filter plane contributes a wavefront with a 
specific amount of phase error and thus, the amount of filter plane phase error, rather than its spatial distribution, appears to 
be the critical factor. 

We have recently begun modeling the coherent formation of the correlation peak as a statistical process. The model is 
applicable even when the phase errors are non-random (i.e. systematic). Our earlier work on phase errors considered 
systematic5 and random6"8 phase errors individually. In this paper we now are able to make direct comparisons between the 
relative effects of various systematic and random phase errors. The model can also be used to calculate the combined effects 
of systematic and random errors. The earlier work also focused on phase-only filters. The models here apply to any rully- 
complex filter (including the special case of the phase-only filter). 

2.  BACKGROUND: DIFFRACTION FROM THE FILTER PLANE TO THE CORRELATION PLANE 

Classes of phase error. We consider phase error to be any deviation from a planar wavefront. In our current work on optical 
correlation we have been evaluating how residual phase errors on the field transmitted through the filter influence the formation 
of correlation peaks. In this Situation the phase error can be defined as the difference between <J> the phase of the signal 
spectrum and $, the phase of the filter.  The phase error expressed as a function of f the position across the filter plane is 

»*(/)   -♦</)- ♦//) (1) 

SPIE Vol. 2240 0-8194-1544-X/94/$6.00 

67 



If the errors are random they can be described by a probability distribution. We will generally assume that the random portion 
of the phase errors are unbiased with respect to a plane wavefront. If there is a bias term, we consider this to be the systematic 
portion of the phase error. One broad class of systematic phase errors is filter-dependent or SLM-umited errors.5 These phase 
errors can be described as an explicit, non-random function of the values of the signal phase. For example, one type of 
systematic phase error is a gain or slope error in which the phase error 

a<t>(/s*)  = (i-*)*(/) (2) 

is linearly proportional to the value of the signal phase and where the parameter k indicates the degree of phase match. Other 
examples are shown in Table 1, that is discussed in Sec. 4. 

General results from our previous work on the effects of phase errors are reviewed in the remainder of this section. The 
equations from ref. 8, originally described Fourier diffraction between any two Fourier planes. Those expressions are rewritten 
here in terms of filter plane and correlation plane fields. The expressions from ref. 5 on systematic phase errors are identical; 
however, we show that that analysis for phase-only filters also applies to fractional power filters9 if the spectral amplitude of 
the signal is replaced with the amplitude of the light transmitted through the filter. These results are quite useful for analyzing 
various random and systematic effects. The general equations in this section will be evaluated in Sees. 3 and 4 for the specific 
case of combined random and systematic phase errors. 

2.1 Diffraction from an array of pixels 

The complex transmittance of an array of N pixels can be expressed as 

T'(f) = i g,(f-ft) expUW-f,)] (3) 

where each pixel is described by an amplitude & and phase ty, function centered at position f: in the filter plane. Eq. 1 also 
describes the complex amplitude of .the light transmitted through an array of pixels. We will use the "prime" symbol to 
distinguish T'(f) the filter transmittance, from T(f) the complex amplitude of the transmitted light. The transmitted light 
diffracts to the complex amplitude in the correlation plane according to the Fourier transform relationship 

c(x)   =   Eil/x)   =   &{T(J)) (4) 
i 

where A, is the complex amplitude of the diffraction pattern from the i'th pixel. 

Diffraction from independently random pixels. The operations of expectation and summation are linear. Thus the expected 
value of the correlation amplitude is simply the sum of the expected values of the individual A;. The observable of interest in 
correlators is typically the intensity Ic(x). For the case in which each pixel transmittance, or equivalently, each Aj is mutually 
independent of the other the general expression for the expected correlation plane intensity is 

</e(*)>   =   EL<AJ(*M/W>   =   \<c(x)>\2 +-E[<\At\
2>- \<At>\2} (5) 

i  J ' 
where < > represents the ensemble average or expectation operator. This expression shows that the expectation nearly 
separates into I<c(x) > 12 except for terms involving the autocorrelation of the filter plane pixels (i.e. terms for which i=j.) 
Under the same assumption of independent pixels, the most general expression for the squared far-field intensity is 

< // > =   E E E E <AtA,'A^Al> 
i    j    k    I 

2[</c>
1-1<c<x)>|4] + \<c(x)>2 + E(<A;> -<V

2
) 

4 Re <c'(x)> Z(<\At\
2A,> - <At

2><A{> + 2|<V|2<V " 2<\A,\2><Ai>) (6) 

+ E[<|AJ|«> -6|<V|4 + 8<|A,|2>|<V|2 - l<V>|2 -2<|Ai|
2>2 

+ 4Re( <A2><A,'>2 - <\At\
2Ai><Ai'>)\ 

The derivation of these equations is given in ref. 8.   The standard deviation of intensity 0[(x) is then directly found using the 
well known result 

0
2   =   <I2>-<I>2 ™ 
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2.2 Correspondence between correlation and expectation. 

The correspondence follows from the fact that correlation involves integration and that integration is a smoothing or averaging 
operation.   We show this for continuous signals in general. 

In the classical correlator the signal s(x) is Fourier transformed to produce 

S(f)   =   fl'(/)exp[7<|>(/)]   =   F{s(x)) (8) 

where a'(f) is the positive valued amplitude spectrum and <t>(f) is the phase spectrum.  The transmittance chosen to recognize 
the signal is 

(9) 
T'(f)   =   [aW«p[-y4>(/)] w 

The exponent n allows one to consider any fractional power filter.9 (Our previous analyses only considered phase-only filters, 
i.e. n = 1.) The correlation peak amplitude produced in response to the signal S(f) is 

c(0)   =      /  a(J) df  =   B~a (10) 

-B//2 

where a(f) = [a'(f)]n+1 which is the magnitude of T(f). The overline in eq. 10 is used to indicate the spatial average (across 
the filter plane) This average is identical in form to the temporal average.10-11 It indicates the importance of the signal 
spectrum on correlation. Correlation in the presence of systematic, modulation-dependent phase error can also be viewed as 
an average when expressed as 

B,I7 
(ID c(0)   =     / a(f)exV{jbm<J)lk)}df  =   fl^aexpaö*) 

-Bsn 

where the phase error 8<J) has been expressed in the general form introduced in eq. 2.  Eq. 11 can be rewritten as 

c(0)   =   Bf f f aexvijbty p(a,<b)d<$>da   =   Bf (a expUH)) (12) 

0 -n 

As we noted in ref 5 the spatial average in eq. 11 is equivalent to the integral in eq. 12. It takes the form of and approximates 
an ensemble average or expected value of the random variable contained between the brackets < >. The density function 
p(a d>) that arises when performing a transformation of variables in integration represents a histogram of the ordered pairs (a,(J>). 
As'such it approximates the joint probability density function of the random variable (a,*). This correspondence between 
deterministic and random quantities is no different than intensity histogramming which is commonly used m image processing; - 
except that we are using complex-valued rather than real occurrences. 

In order to appreciate how limited phase affects correlation we make the following simplifying approximations to eq. 11 

c(0)   =   Bfaexv(jdV)   =■   -^-  [exfy(]b$)d$ (13) 

-Tt 

A heuristic explanation for the first approximation is that phase more strongly influences correlation than amplitude. This 
approximation will generally be better if the values of phase error do not depend on the values of amplitude and is exactly true 
if a and (J) are independent random variables. The second approximation is true if the phase $ is uniformly distributed over 2*. 
These approximations are especially useful in simplifying the analyses. The range of validity of these two approximations is 
considered father in ref. 5. Ref. 5 also shows good correspondence between models using eq. 13 and computer simulated 
correlations using gray scale images. 

3.  MODELS OF THE CORRELATION PEAK AMPLITUDE 

In this study we treat the transmittance (and likewise the spatial variation of the illumination) across the aperture of each pixel 
as a constant. This is reasonable as long as the spatial variation of the illumination is at most half the sampling rate of the pixel 
array.   Under these assumptions the transmittance in eq. 9 can be simplified to 
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T'{f) = E [ß/]"exp(-y(t)() rect /-/, (14) 

where a> and (fr are constants across the pixel aperture of width w. From the Fourier transform of T(f) the peak amplitude of 
the correlation peak is found to be 

c(0)   =   Ea,exp(./Ö(|>,)   =   Nwäö^iJW) (15) 
i 

where the approximations from eq. 13 have been used. 

Statistical expressions. For the analysis of phase errors we will consider the amplitudes to be non-random and the phases to 
be composed of a non-random component plus a random component of zero mean (i.e. at each pixel the phase is of the form 
<|> = <j)s + <j)r where the subscripts indicate systematic and random phase.) The random components of phase are assumed to be 
independent and identically distributed random variables for this analysis. As such, the expected value of the random phasor 
components at each pixel will be identical. Under these conditions the expected value of the peak correlation amplitude becomes 

<c(0)>   =   M(l)Ea(exp(y(|)ls)    =   JVwaexp(./<jgM(l)   »   NwaMs(l)M(l) (16) 
i 

where 

M(co) = <exp(;u(|>)> = JexpC/oxj))/^^) d<$> (17> 

is referred to as the characteristic function11 of the random variable § and where p4(((>) is the probability density function of <}>. 
The approximation in eq. 16 again follows from eq. 13. Eqs. 12 and 13 together are also used to approximate the spatial 
average of the phasors as the characteristic function Ms(l). 

The expected intensity of the correlation peak follows from eqs. 5 and 16 as 

</(0)>   =    |<c(0)>|2 + Nw2qa2   =   {Nwäf (pps + qZ/N) (18) 

where the shorthand 

p   =   Af2(l) 

(19) 
Ps   =   *?(D 
q   =   1 -p 

a1 

is used.  The standard deviation of the correlation peak is found by evaluating eq. 7 and using eqs. 16 and 18 to get 

Z, 

where we use the additional shorthand notation 

%(d-p)ds 

2 7 7 
+ 4-L[2p-d-l]pp, + — [4p-6p2 + 4pd-d2-l]{    (20) 

N2 N3 

d   =   Af(2) 

ds   =   MAI) 

Z,   .*! 

(21) 

-i 
a1 

4.  COMPARISON OF THE EFFECT OF VARIOUS PHASE ERRORS ON CORRELATION AMPLITUDE 

In eq. 16 the effect of each type of phase error can be seen to produce a loss in amplitude that is proportional to the 
characteristic function of that phase error. Their combined effect is multiplicative. For purposes of comparison it is useful 
if each characteristic function can be written in terms of a single argument that describes the amount of phase match or 
mismatch. We have done this is in Table I where we have chosen to use k, the maximum phase match as the single parameter. 
The third column shows the same results in terms of the parameters that are typically used.  For example, uniformly distributed 
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random noise is usually described in terms of its total spread v. This spread describes the amount of phase mismatch rather 
than phase match and is in units of radians. The gaussian has been rewritten in terms of k by relating v for the uniform 
distribution to its standard deviation. This proportionality has then been used to substitute out o in the characteristic function 
for the gaussian. The fourth column shows that many types of phase errors affect correlation amplitude to a similar (if not 
exact) degree when expressed in terms of k. The saturated characteristic is especially interesting in that its effect can be 
described as a linear combination of k multiplied by c(0;l) the correlation amplitude without phase errors and 1-k multiplied 
by cn(0;k) the correlation amplitude for the non-unity slope characteristic. 

Phase Characteristic Phase Error 
|c(0)| 

Nwa 
k(0s*)l 
Nwa 

SYSTEMATIC 6<b 

Saturated for -^ a k 
it (b —   ilcblfefat 

1*1      '   ' 
Jfc + (l-*)sinc(l-ifc) 

Non-unity slope of k (1-*)* sinc(l -k) 

Quantized in m levels mod <j)+—,— 
\     mm) 

sine — sinc(l-£) 

RANDOM />•(*) 

Uniform of spread v 
1   ,       -v      ,     V 

— for — ä <bä — 
v           2           2 

sine — sinc(l -k) 

Gaussian of 
standard deviation o 

1  exp 
v^5 expK exp 

0 

Table 1. Definitions of various phase errors and relation of their effects through the parameter k. 

5.  MODEL OF PEAK-TO-NOISE RATIO 

In order to illustrate the combined effects of random and systematic phase errors more clearly we develop a model expression 
for the peak correlation amplitude to noise ratio (PNR).913 We start with the general expression of 

PNR 

\ 

</c(0)> 
BJ2 A,/2 

j <Ic(x)>dx   -     J <Ic(x)>dx 
-BJ2 -A,/2 

(22) 

where the denominator represents the root-mean-square amplitude across a correlation plane of spatial bandwidth Bx which 
excludes a small region of width Ax centered around the correlation peak. 

We have chosen to model the filter plane SLM as an array of equally spaced pixels of pitch A,. This leads to a non-redundant 
bandwidth Bx = A,"1; i.e.the spacing between diffraction orders of the array. The width Ax = Bx / N corresponds to the 
resolution of an N element array and these definitions also lead to Bf = NAf = Af"'. These choices have been made specifically 
so that our model closely correspond to typical fast Fourier transfom based computer simulations that represent each filter plane 
pixel with one sample.14 Consistent with these assumptions we approximate the second integral in the denominator of eq. 22 
as Ax<Ic(0)>. The first integral is the energy in the central diffraction order. It can be related to the energy in the filter plane 
through Parseval's theorem.  The total energy in the filter plane and the correlation plane is 
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V2 _ 
Ef  =     / a\f)df  =   Bfa

2   =   Ec <&) 
-Bfl2 

The energy in the central diffraction order is found by recognizing that the ratio of energy in each diffraction order is 
determined from the Fourier series of a square wave grating of duty cycle D = w/Af where w is the width of each pixel. 
Therefore the first integral in eq. 22 can be written as D2Ef.  Using these results eq. 22 can be written as 

PNR   = 

N 
Using eq. 18 for <IC> in eq. 24 gives 

PNR 

(N-1)<IC(0)> m 

N2w2ai   -   </c(0)> Af 

(N-l)(pps+qZIN) (25) 

>|   Z-(pps+qZ/N) 

Evaluation of the model. Fig. la shows the effect on PNR of combined non-unity slope (described by parameter k) and 
uniformly distributed random phase (described by the parameter k,.) It has been calculated for a 128x128 SLM, i.e. N=16,384 
and a transmitted amplitude spectrum of Z=6.23. These parameters correspond to those for a companion simulation on the 
effect of systematic phase errors.5 The curve for 1^=1 is identical to our modeled results from that study. The term pps is 
typically much larger than the term qZ/N. This can also be seen in fig. la. which plots (as dotted lines) eq. 25 with the term 
qZ/N set to zero. The dotted lines are barely distinguishable except for where the PNR is less than 3. Fig. lb quantifies these 
differences as a relative error with respect to PNR as given by eq. 25. 

For the example plotted in fig. 1 the denominator has a small effect. This is because the term subtracted from Z is never 
greater than unity. The minimum value of Z is unity which occurs if the amplitude of the optical field that is transmitted 
through the filter is constant. This situation occurs if an inverse filter, i.e. a fractional power filter of n = -1, is used. In this 
instance PNR will be infinite when there is no phase error. This points out one idealization in our model. It is that the signal 
amplitude and the filter amplitude (for n=l) are identical. This will not be the case for a signal in noise or clutter, or for scale 
or rotation errors. Evidence (via computer simulation) that these models are applicable for images in clutter by adjusting the 
value of Z is given in ref. 5. 

PNR depends on the expected value of Ic(0) the peak intensity. One way to estimate the sensitivity of PNR to phase error 
induced intensity fluctuations is to perturb the expected intensity in eq. 24 by ± o,(0) from eq. 20 to get 

PNR ± bPNR 
(N-l) \pps + qZ/N + aß)l(Nwa)2] (26) 

\|    Z - [pps + qZ/N + O/0)/(WWO)
2
] 

Fig. 2 shows ± 8PNR/PNR the relative fluctuation for the PNR curves in Fig. 1. The smallest fluctuations are found for 
values of k and k, near unity. As the values of these parameters decrease, the fluctuation increases, but only to a point. Below 
that point the fluctuation decreases. The reason for the decrease is that the intensity of the correlation peak is being dominated 
by noise or speckle background. The turning point occurs when pps (which is proportional to b(o)l2 is of the same order of 
magnitude as qZ/N (which is proportional to the average intensity of the speckle background.) The light lines in Fig. 2 are 
approximations in which all but the first of the four terms in braces in eq. 20 have been omitted in the calculations. The 
differences are barely distinguishable. This differences are primarily due to the second of the four terms. We originally chose 
to use values of Z3=Z15 and Z4=Z2 but numbers a few orders of magnitude larger caused no noticeable difference. What is 
interesting is that correlation performance can be predicted with such a small amount of specific information about the 
amplitude. In our model, the normalized second order moment of amplitude Z=Zj (see eqs. 19 and 21) is required but almost 
no useful information is provided by the third and fourth moments Z3 and Z4. It is also interesting that the fluctuations in PNR 
are quite low even when the PNR has been reduced by random phase by over a factor of ten. This is of course due to the large 
number of pixels available in current SLMs. 

Fig. 3a shows PNR for specific ratios of k, divided by k. Fig. 3b shows the corresponding fluctuations. The combination of 
errors is noticeably, though not catastrophically reduced by adding random phase error that is equivalent to the systematic error. 
A k of .5 also corresponds to the systematic phase errors produced by a binarized phase filter phase (see Table 1.) For k,/k 
= 1 the spread v of the random phase errors equals to the quantization. The PNR is only reduced about 40 % at k = .5 by 
this amount of random phase.  The positive fluctuation is around 3 % and can be read from either fig. 2 or fig. 3b.  The curves 
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can be used to consider any amount of quantization by using the mapping k = (m-l)/m. Note also in fig. 3b that the fluctuation 
is essentially zero for tyk = 2 around k = .5 .  At this point the fluctuation is again dominated by speckle. 

6.  CONCLUSIONS 

We have developed a model that describes the performance of optical correlators subject to a combination of phase errors. The 
effect of various types of phase errors were related through a single parameter k. Other systematic and random phase errors 
of interest can be described by different characteristic functions and used in the performance model. It has been possible to 
develop such a simple model by decoupling any dependence between the phases and the amplitudes in the filter plane. When 
this is done the effects of amplitude is totally contained in the single parameter Z which the normalized second moment of the 
amplitude spectrum. This approximate model provides much insight and is useful at the early stages of design. It should be 
considered prior to performing exhaustive simulations and design studies on the effects of phase errors. Part of this analysis 
should consider the values of Z for the objects in the image training. 

Of course, for many SLMs the values of phase and amplitude are coupled.15 We did not consider this problem here. However, 
it seems reasonable that there are alternate evaluations or approximations of eq. 12 that can lead to a model of nearly 
comparable usefulness and simplicity. 
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Fig. 1.   PNR as a function of systematic and random k.   a) PNR heavy lines, approximated PNR dotted lines,   b) 
Relative error between PNR and approximated PNR. 
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Fig. 2.   Fluctuation in PNR due to perturbation of intensity by plus and minus the standard deviation of intensity. 
Fluctuation shown as heavy lines, approximated fluctuation shown as light lines. 
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Fig. 3. a) PNR shown as a function of k and Vk. b) Relative fluctuation of PNR due to perturbation of intensity by 
plus and minus the standard deviation of intensity. 
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Abstract. Hybrid correlators are composed of numerous nonideal elec- 
tronic and optical components that, to one degree or another, limit per- 
formance through unintended transformations of signals. Many of these 
effects show up as phase errors at a spatial light modulator (SLM) plane. 
The errors can be described as random variables, or as systematic off- 
sets from the correct phases, as appropriate. Sources of systematic 
phase errors include quantizing circuits, incorrect or nonlinear amplifier 
gain, limited range phase modulators and residual phase modulation of 
amplitude-mostly SLMs. Random phase errors arise from electronic 
noise and fabrication variations of SLMs. Several systematic and random 
filter plane errors are related through a single parameter that describes 
the amount of phase mismatch. A model of peak-to-noise ratio (PNR) is 
also presented that describes the combined effects of random and sys- 
tematic errors. This expression contains the products of two functions, 
one that depends only on systematic, the other on random, phase mis- 
match. PNR is also a function of the number of pixels in the filter plane 
modulator and a normalized moment of the amplitude of the image spec- 
trum. The model is useful for developing phase error budgets for cor- 
relation systems. 

Subject terms: optical correlation; spatial light modulators; phase errors; correla- 
tion metrics; pattern recognition; diffractive optics; laser speckle. 

Optical Engineering 34(6), 1673-1679 (June 1995). 

1    Introduction 

Optical correlation is highly dependent on the amount of 
phase mismatch or wavefront error across the filter plane. If 
the filter perfectly conjugates or matches the incident wave- 
front, then essentially all the energy is focused into a single 
bright spot at the correlation plane. If the filter poorly matches 
the incident wave, then the filter behaves like a diffuser in 
that the correlation intensity is greatly reduced and that a 
broad background of scattered light is produced akin to a 
speckle pattern.1 It has been noted for various types of phase 
errors that small to moderate errors, say less than a quarter 
wave, only slightly reduce correlation intensity and only 
slightly increase the level of background noise in the cor- 
relation plane.2'3 A quite similar situation is that the resolution 
of imaging systems is nearly diffraction limited if the total 
aberrations are less than one quarter wavelength.4 Just as in 
imaging, the critical issue in optical correlation is the total 
amount of phase error rather than the functional description 
of the phase error. The physical reason for this is that the 
formation of a correlation peak is caused by the coherent 
superposition of a large number of wavefronts. Each cell or 
pixel in the filter plane produces at the correlation plane a 

Paper 20094 received Sep. 24, 1994; revised manuscript received Jan. 12, 1995; 
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at the SPIE conference on Advances in Optical Information Processing VI, April 
1994, Orlando, FL. The paper presented there appears (unrefereed) in SPIE 
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© 1995 Society of Photo-Optical Instrumentation Engineers. 0091-3286/95/S6.00. 

wavefront with a specific amount of phase error and thus, 
the amount of filter plane phase error, rather than its spatial 
distribution controls the intensity of the correlation peak. 

We have recently begun modeling the coherent formation 
of the correlation peak as a statistical process. The model is 
applicable even when the phase errors are nonrandom (i.e., 
systematic). Our earlier work on phase errors considered 
systematic5 and random6"8 phase errors individually. In this 
paper, we now are able to make direct comparisons between 
the relative effects of various systematic and random phase 
errors. The model can also be used to calculate the combined 
effects of systematic and random errors. Whereas the earlier 
models focused on phase-only filters, the models here apply 
to fully complex fractional power filters9 (including the 
phase-only filter). 

2   Correlation in the Presence of Filter Phase 
Errors 

To focus on the effect of filter plane phase errors on corre- 
lation we model the idealized situation of a signal being 
correlated with a distorted version of itself. All distortions 
are produced by the spatial light modulator at the filter plane 
of the classical correlator and there are no other sources of 
noise or clutter. The optical correlator is translation invariant 
so it is sufficient to consider only the case where there is no 
coordinate shift between the signal and the impulse response 
of the filter. Thus, in this analysis the correlation plane re- 
sponse c(x) peaks at x — 0. 
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The Fourier plane spectrum of the input plane signal s(x) 
is written 

£(/) = «'(/) exp[./W>] , (1) 

where a'(f) is the positive valued amplitude spectrum and 
4>(/) is the phase spectrum. The filter transmittance is of the 
form 

r(/) = [a'(/)]nexp[-7'4)(/)+j84>(/)] , (2) 

where 84> is the phase error introduced by the SLM and the 
exponent n allows one to consider any fractional power filter, 
including the phase-only filter for n = 0. It is worth empha- 
sizing, that although the amplitude and phase of many current 
SLMs are known to be coupled,10 we are not considering this 
possibility in this analysis. Multiplying the two spectra [Eq. 
(1) and (2)] together produces the transmitted spectrum 

T(f) = [a'(f)]n+l exp[v5<K/)]=a expO'o4>) , (3) 

where <z = |7"|. 
The results developed in the following can be directly 

applied to a 2-D array of N pixels for which the pixels are 
regularly spaced with pitch A^,A/y in the frequency plane 
coordinates/ and/, and for which each pixel has clear area 
w. To simplify explanation, however, the SLM is modeled 
as a 1-D array of N pixels, each of finite aperture of width 
w and regularly spaced with pitch Af. (For examples of ap- 
plying 1-D models to 2-D problem see Refs. 5 and 8.) If the 
illumination S(f) contains no spatial frequencies that exceed 
half the sampling rate of the pixel array it is reasonable to 
assume that the transmitted spectrum can be described as a 
sampled function of the form 

N                              /f-A-iA, 
T(f)= 2>; exp(78<J>,-) rect   (4) 

where a,- and 8<|>, are the transmitted amplitude and phase at 
the i'th pixel. Value of the offset A is set to center the trans- 
mitted spectrum on the optical axis. The transmitted light 
diffracts into the complex amplitude distribution in the cor- 
relation plane according to the Fourier transform relationship 

c(x) = ^mf)]^Ai(x) (5) 

where A, is the complex amplitude of the diffraction pattern 
from the f th pixel. The amplitude of the resulting correlation 
peak is 

c(0) = 2a; expO'8(j>i) = A?iva expO'84>) . (6) 

Centering of the transmitted spectrum (via A) in Eq. (4) elim- 
inates a phase shift in Eq. (6) that is unimportant in our 
analysis. The second equality in Eq. (6) shows that the peak 
amplitude corresponds to the spatial average (indicated by 
overline) of T{f) multiplied by Nw the active transmitting 
area of the SLM. If there are no phase errors the correlation 
peak is a direct measure of a the average amplitude of 
T{f). Equation 6 makes clear that the peak amplitude is in- 
dependent of the spatial distribution of the phase errors across 
the filter plane, as initially discussed in Sec. 1. 

2.1    Influence of Systematic Phase Errors on the 
Correlation Peak 

One class of systematic phase errors is modulation-dependent 
errors.5 These phase errors can be described as an explicit, 
nonrandom function of the form S(j>(4>'Ä where phase error 
is a function of the value of the signal phase <j) and a parameter 
k that selects one function from a class of similar functions. 
For example, if the SLM only produces - k<& for each value 
4> from the signal spectrum then the phase error is 

5cb(cb;fc) = (l—fc)<b . (7) 

We refer to this type of phase error as a gain or slope error. 
The parameter k indicates to what degree the SLM phase 
matches the phase of the signal spectrum and l-k indicates 
the magnitude of the phase errors. Various phase errors that 
result from systematic mappings of the desired phase <j> to 
the actual phase produced by the SLM are defined in Table 1. 
The first column of the table describes the mapping rela- 
tionship and the second column gives the expression for sys- 
tematic phase errors (including nonunity slope error) as func- 
tions of k. Note for the case of phase quantized SLMs, which 
are commonly described in terms of the number of levels of 
quantization m, we have defined an equivalent phase match 
parameter k using the relationship5 m= 1/(1 —k). 

A reasonable first-order approximation to Eq. (6), the cor- 
relation peak amplitude is5 

NWä f ' 
c(0;*)«-—    exp[./8<Kct>;fc)] d<|> , 

2TT  J 
(8) 

which follows from modeling the amplitudes a; and the 
phases 4>,- of the transmitted spectrum as random variables. 
Specifically, the approximation follows if the amplitudes and 
phases are statistically independent of each other, and if the 
phases <)>, are uniformly distributed over 2TT. The errors in- 
troduced by this approximation can be surprisingly small as 
compared to what one actually finds when digital simulating 
the optical correlation process using image of real-world ob- 
jects, such as tanks and faces.5 The closeness of the approx- 
imation to the exact result depends on the actual statistics or 
histogram of the occurrences of (a,-,c)>,). Equation (8), how- 
ever, is often preferable to an exact result because it can be 
evaluated in closed form for many cases of interest. Closed- 
form expressions for Eq. (8), the effect of four specific types 
of systematic phase error on c(0) are given in the third and 
fourth columns of Table 1. The third column is expressed in 
terms of commonly used parameters, e.g., m, if available. 
The fourth column is written in terms of k. Expressing cor- 
relation peak magnitude in terms of a single parameter is used 
to more directly compare the effect of each systematic (and 
also random) phase error in Sec. 2.3. 

Note also that the magnitude of Eq. (8) is unchanged if 
there is a constant offset in the phase error. This has been 
used to simplify some of the expressions for phase error in 
Table 1. For the case of a phase quantized SLM, the phase 
error varies between 0 and 2-n/m. One might initially assume 
that quantizing so that the phase error varies between 
— -n/m and -n/m would produce a larger correlation peak. 
Because the constant expO'iT/m) can be factored outside the 
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Table 1  Definitions of various systematic phase errors and relation of their effects through the param- 

eter k.  

PHASE MAPPING 5<>(A) |c(0)| /NH>5 |c(0;A)| /Nico 

Saturated at ±kn 

Non-unity slope of k 

Quantized in m levels 

Binarized at 0 and kn 

0 ;0<,\^\<,kn 
4> - knsgni)   ; Arc <l<t>l<7i 

(1-ft)* 

mod [<t>,27c(l-A)] 

<t> ;0<4>< kn 
(l-/c)4>     ;ftn<<j)<2jc 

sine m 
1    .   kn 

sine — sin — 

k + (l-Ar)sinc(l-ft) 

sine (1-ft) 

sine (1-A) 

k sine ■ 

Table 2 Definitions of various random phase errors and relation of their effects through the parameter k. 

|<c(0;A)>l /Nwä 
RANDOM ERRORS pdf (6 4>) |<c(0)>| /Nwa 

Uniform of spread v 
1      t 54) 
7rectlT 

V 
sine — 

In 
sinc(l-Ä) 

Gaussian of 
standard deviation a 

1          -l/54>\2 

V2a eXPlb) 
-a1 

exp — 
IT2                2 

exp ^ (1-*) 
6 

integral in Eq. (8), however, there is no change in the mag- 
nitude of the correlation peak. This property has been used 
to remove two additive terms of tr/m from the expression 
for phase error. 

2.2   General Analysis of the Influence of Random 
Phase Errors on the Correlation Peak 

Another class of phase errors is random. We specifically 
consider the case in which the phase errors are independent 
and identically distributed random variables, and the ampli- 
tudes are nonrandom. Furthermore, spatial variation of the 
transmitted spectrum over the aperture of a pixel is neglected 
[see Eq. (4)]. We derive expressions for <c(0)>, the expected 
peak correlation amplitude; </c(0)>, the expected intensity of 
the correlation peak; and 07(0), its standard deviation, where 
(   ) represents the ensemble average or expectation operator. 

The desired expressions follow from equations developed 
by Cohn and Liang that describe diffraction from an array 
of pixels in an illumination plane to a Fourier transform 
plane.8 The equations were developed under the assumption 
that the light transmitted through any pixel is statistically 
independent of the light at any other pixel. No other as- 
sumptions were made about the spatial or statistical properties 
of the light transmitted through the SLM. The equations are 
more general than the present analysis in that (1) the SLM 
transmittance and the transmitted spectrum amplitude can 
vary with position across the aperture of a pixel, (2) both 
amplitude and phase can be random variables, and (3) the 
statistics from pixel to pixel can be nonidentical. 

These general equations are rewritten here to specifically 
represent diffraction from the filter plane to the correlation 
plane. Equation (5) is the general form of the correlation 
plane amplitude. [The additional spatial description provided 
by Eq. (4) is not needed at this point. It will be used in 
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Sec. 2.3.] Taking the expectation of Eq. (5) gives the expected 
correlation amplitude ' 

<cW> = S<A,-W> (9) 

The general expression for the expected correlation plane 
intensity is 

ato>=25>,-(*M;«> 

= KcW>|2 + 2[<|A,|2>-|<A,.>|2] (10) 

This expression separates into | (c(x)) |2 plus additional terms 
that result from the term A,(x) not being statistically inde- 
pendent from itself (i.e., terms in the double summation for 
which i=j). The general expression for the standard devia- 
tion of the correlation plane intensity distribution under the 
assumption that the A^x) are statistically independent is 

a^ = </c>2-2|<c>|4 + |<c>:! + 2«A?>-(A,)2)|2 

+ 4Rel(c*)2((\Ai\
2Ai)-(A^{A-) + 2\(Ai)\

2(Al)'2(\Al\
2)(Al))] 

+ ?[<l-4,-l4)-6|^>l4 + 8<M.-l2>K^>l2-K-4'>l2-2<lAl2)2 

+ 4 Re(^2)(/t*>2-<|A,|2A;>(/!•»] , (11) 

which was originally derived by evaluating 

<a=XX22v4A*^>=a>2+^w.      (i2) 
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The specific results for the on-axis amplitude, intensity, and 
standard deviation when T(f) is of the form of Eq. (4) are 
not given until Sec. 2.3, where they are directly found by 
setting the systematic errors to zero in subsequent equations 
that describe combined random and systematic errors. 

2.3    Influence of Random and Systematic Phase 
Errors on the Correlation Peak 

The deviation of phase of the transmitted wavefront at the 
filter plane is of the form 8<|> = 8<|>, + 8<t>,., where the sub- 
scripts indicate the systematic and random phase errors. Us- 
ing the preceding results and assumptions the expected peak 
correlation amplitude becomes 

<c(0)) = w(expO'84>r)>Xa/ exp(./8c)>,,) 

*Nwa expO'S^j) <exp(./8(j>,.)) (13) 

The approximation in Eq. (13) follows from Eqs. (6) and (9). 
Equation (13) shows that the correlation amplitude is pro- 
portional to the product of the average systematic and the 
average random error phasors. 

2.3.1 Influence of random phase errors alone 

If the systematic phase errors are set to zero, then Eq. (13) 
describes the effect of specific random phase errors on cor- 
relation peak amplitude. Results for two specific types of 
random phase errors, uniform and Gaussian distributed, are 
given in Table 2. These distributions are commonly described 
in terms of the spread v for the uniform and the standard 
deviation a for the Gaussian. The probability density function 
pdf(8<|)) is given in the second column of Table 2 and (c(0)) 
is given in the third column in terms of v and a. Each pa- 
rameter has been transformed into k, the degree of phase 
match (in units of wavelengths), and these results are pre- 
sented in the fourth column. For the Gaussian case, a, the 
standard deviation for the Gaussian distribution, has been 
defined in terms of k by using the proportionality between 
spread v and a„, standard deviation of the uniform distribution 

(oi = v2/12). 

2.3.2 Comparing effects of various phase errors in 
terms of the phase match parameter k. 

Both systematic and random average error phasors can be 
evaluated in closed form for a number of specific cases of 
interest. Six cases are shown in Tables 1 and 2. Comparisons 
can easily be made, especially for the cases of nonunity slope, 
quantization, and uniform random phase errors, which have 
results of identical form. For the saturated case, the effect 
can be described as a linear combination of k multiplied by 
c(0;l), the correlation amplitude without phase errors, and 
\-k multiplied by c„(0;fc), the correlation amplitude for the 
nonunity slope characteristic. An additional correspondence 
between the quantized and binarized cases is brought out in 
the third column of Table 1. The result for quantized phase 
was calculated assuming that quantization is in steps of 
2tT/m, whereas the result for binarized phase considers the 
phase levels to be other than 0 and IT. The third column for 
the binarized case is written in the form of the correlation 
amplitude for quantized case when m = 2 multiplied by a sine 
function. Written in this way, it can be seen that the reduction 

in correlation amplitude is slight for a separation between 
phase levels that is somewhat less than IT. In all cases, as k 
decreases from unity, correlation amplitude decreases from 
its maximum of Nwä. 

2.3.3   Expected peak intensity and its standard 
deviation 

The expected intensity of the correlation peak follows from 
Eqs. (10) and (13) as 

(/c(0)) = |<c(0)>|2 + A'w2
g? 

= (Nwo)2{pp, + qZIN) , 

where the shorthand 

/> = (expO'8ci>r)}2, 

(14) 

p^expO'8^,)' 

9=1-P. 

-2 a 
(15) 

is used. In Eq. (14), the only terms that depend on phase error 
arepj, p, and q. Note that Tables 1 and 2 give the dependence 
of ps and p on the phase match parameter k because these 
terms are simply squares of the expressions in the fourth 
columns of the tables. For purposes of analyzing the effects 
of combined phase errors we will distinguish between the 
parameters describing systematic and random phase errors 
using the symbols k and kr, respectively. 

Equation (14) is composed of two additive terms. The first 
term is the intensity of the desired coherent correlation peak 
in Eq. (13). The second term can be identified with the average 
intensity of incoherent noise or speckle background.1 The 
relative magnitude of the coherent term will exceed that of 
the incoherent term as long as the phase errors and Z, a 
normalized moment of the transmitted amplitude spectrum, 
are not too large. The values of the parameter Z range from 
a minimum value of unity if the amplitude spectrum is uni- 
form across the SLM to a maximum value of N if only one 
of the N pixels is transmitting. A unity value of Z corresponds 
to the case of inverse filtering; i.e., a fractional power filter 
with n = — 1. 

The standard deviation of the correlation peak is found 
by evaluating Eq. (11) along with the results in Eqs. (13) to 
(15)to get 

dj(0) = (Nwa)A 2-[q + (d-p)ds]pps + -Nid-P)ds 

+ ^(p-d-q)pPs + j±(3p-6p2 + 4pd-d2-q) 

(16) 

where we use the additional shorthand notation 

fif = (exp(;'284>r)), 

^expO'284^), 
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z>=7< (17) 

3   Model of Peak-to-Noise Ratio 
To illustrate the combined effects of random and systematic 
phase errors more clearly we develop a model expression for 
the peak correlation amplitude to noise ratio9,11 (PNR). We 
start with the general expression5 of 

PNR2 = 
r 

<4(0)> 

B,-*x 

|   </c(r)> Ax-    [   </c(x)> Ax 

-B,/2 (18) 

PNR±8PNR = 
(N- \)[pps + qZIN±u,{0)l(Nwa)2} 

Z- [pp, + qZ/N±u,(0)/(Nwa)2] 

1/2 

(21) 

Setting the standard deviation to zero in Eq. (21) gives the 
expression for PNR. Equation (21) for the PNR and the per- 
turbed PNR has no dependence on pixel width or duty cycle. 
[The factors of Nwa in Eq. (21) cancel with those in a/0); 
see Eq. (16).] Equation (21) also shows that PNR essentially 
depends on the square root of the number of pixels in the 
SLM. The effect on PNR of the term Z, which characterizes 
the spatial pattern of attenuation across the SLM, is nearly 
reciprocal to that of N. This relationship between N and Z is 
quite accurate if N»Z» 1 and it can even be accurate for 
Z= 1 if the phase errors are large [i.e., if the denominator 
term in brackets in Eq. (21) is much less than unity]. This 
relationship has led us to define (N- 1)/Z as an "effective 
number'' of SLM pixels that are uniformly illuminated (this 
definition is discussed further in Refs. 3 and 8). 

where the denominator represents the root-mean-square am- 
plitude across a correlation plane of spatial bandwidth Bx, 
which excludes a small region of width A^. centered around 
the correlation peak. With the filter plane SLM modeled as 
an array of equally spaced pixels of pitch A^, the nonredun- 
dant bandwidth is Bx = Afi; i.e., the spacing between dif- 
fraction orders of the array. The width A^ = BJN corresponds 
to the resolution of an TV-element array and these definitions 
also lead to S/-=/VA/r = A~'. These choices have been made 
specifically so that our model closely corresponds to typical 
fast-Fourier-transform-based computer simulations that rep- 
resent each filter plane pixel with one sample. Consistent 
with these assumptions, we approximate the second integral 
in the denominator of Eq. (18) as A^(/c(0)). The first integral 
is the energy in the central diffraction order. It can be related 
to the energy in the filter plane through Parseval's theorem. 
The total energy in the filter plane and the correlation plane 
is 

4   Example Analysis of Combined Systematic 
and Random Errors 

The combined effect on PNR of nonunity slope (described 
by parameter k) and uniformly distributed random phase (de- 
scribed by the parameter kr) is calculated using Eq. (21) 
[together with the definitions in Eqs. (15) to (17)]. The anal- 
ysis is for a 128 X 128 SLM, i.e., N= 16,384 and a transmitted 
amplitude spectrum of Z=6.23. These values were chosen 
to enable comparisons with the results given in Ref. 5 on 
systematic errors. The calculated results are presented in Figs. 
1 through 5. 

In Fig. 1, the curve for kr= 1 is identical to the modeled 
results for the case of nonunity slope in Ref. 5. For large 
values of k the other curves are depressed by a factor of 
roughly p>/2. This follows from the term Z being much larger 
than/?/?, anApps being much larger than qZ/N'for large values 

Bf/2 

-Bfii 

(f) Af=B,a2 = Ec (19) 

The energy in the central diffraction order is found by rec- 
ognizing that the ratio of energy in each diffraction order is 
determined from the Fourier series of a square wave grating 
of duty cycle D = w/Af, where w is the width of each pixel. 
Therefore the first integral in Eq. (18) can be written as 
D2Ef. Using these results, Eq. (18) can be written as 

PNR = 
(/v-i)(4(0)) ' 

_/V2w2a2-(/c(0)>. 

'/2 

(20) 

Using Eq. (14) for (/c(0)) in Eq. (20) completes the derivation 
of PNR (this expression is given presently). The PNR mea- 
sured in an actual correlator will be subject to statistical flucr 
tuations. One way to estimate the sensitivity of the measured 
PNR to randomness is to perturb (/c(0)) the expected i-tensity 
in Eq. (20) by ±o-,(0) from Eq. (16), and then use Eq. (14) 
to get 

60- k, = 1.0 

50- 

40- 
k, = .50 

30- 

20- 
kr = .20 

10- 
k, = .06 

n - U1 f"''" i i    ■    i i     ■    i 

( )      .2 .4      .6 
k 

.8       1 

Fig. 1 PNR as a function /cfor various values of kr\ PNR is plotted 
as solid lines and its approximation as dotted lines. 
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CD 

DC 

— kr = .06 
— kr = .20 
— k, = .50 

Fig. 2 Relative error between PNR and the approximation to PNR 
plotted as a function of k and for the same values of kr as in Fig. 1. 

for the decrease is that the intensity of the correlation peak 
is being dominated by noise or speckle background. The 
noise-dominated region occurs when pps [which is propor- 
tional to |(c(0))|2] is less than qZIN (which is proportional 
to the average intensity of the noise background). The turning 
point in each of the curves occurs when pp, is of the same 
order of magnitude as qZIN. The light lines in Fig. 3 are 
approximations in which all but the first of the four terms 
inside the braces in Eq. (16) have been omitted in the cal- 
culations. The differences are barely distinguishable and are 
primarily due to the second of the four terms. (We originally 
used values of Z3 = Z'5 and Z4 =Z2, but numbers a few 
orders of magnitude larger cause no noticeable difference). 
What is interesting is that correlation performance can be 
predicted with such a small amount of specific information 
about the amplitude spectrum of the signal. It is also inter- 
esting that the percentage fluctuation in PNR is quite low for 
substantial amounts of random and systematic phase errors. 
This is a result of the coherent superposition of wavefronts 
from the typically large number of pixels in current SLMs. 

An alternate way to plot Eq. (21) is to define kr in terms 
of k. In particular, we have chosen to plot PNR for a constant 
ratio of phase mismatch 

*, - .06 

\-k 
(22) 

Fig. 3 Fluctuation in PNR resulting from perturbation of intensity by 
plus and minus the standard deviation of the expected intensity plot- 
ted as a function of k and for the same values of kr as in Figs. 1 
and 2; fluctuation is shown as heavy lines and approximations to 
fluctuations are shown as light lines. 

of k. The term qZIN can be practically ignored in this ex- 
ample, because the dashed curves that represent the values 
of PNR calculated with the term set to zero are only distin- 
guishable at the lowest levels of PNR. In Fig. 2, the difference 
between PNR and its approximation is plotted as relative 
error with respect to PNR. The largest relative error is for 
k-0. At this point, PNR equals one and its approximation 
equals zero. 

Figure 3 shows ±8PNR/PNR the relative fluctuation for 
the PNR curves in Fig. 1. The smallest fluctuations are found 
for values of k and kr near unity. As the values of these 
parameters decrease, the fluctuation increases, but only to a 
point. Below that point the fluctuation decreases. The reason 

That is, as the slope of the phase error 1 - k increases, the 
random phase spread v = 2TT(1 - kr) increases proportionally. 
This is plotted in Fig. 4 for various valuesiof a. For instance, 
for the case a = kr/k=l, PNR is reduced over the nonrandom 
case by no more than 40% for k greater than 0.5. The cor- 
responding fluctuation curve in Fig. 5 shows that random 
fluctuation resulting from one-standard-deviation perturba- 
tion in the expected intensity of the correlation peak is less 
than around 3 % for k greater than 0.5. To relate the magnitude 

Fig. 4 PNR shown as a function of k for various values of a, a con- 
stant proportional to the ratio of random to systematic phase mis- 
match. 
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32 n 

Fig. 5 Relative fluctuation of PNR resulting from perturbation of the 
expected intensity by plus and minus the standard deviation of in- 
tensity plotted as a function of k for the same values of a as in Fig. 4. 

of these effects to well-known optical correlators note that 
for A: = 0.5 the model also describes the systematic phase 
errors produced by a binary phase-only filter (see Table 1). 
The PNR for the binary filter is reduced by roughly 40% over 
that of the analog phase-only filter. Phase randomness with 
a uniform spread over -rr (i.e., a = 1) reduces the PNR for the 
binary case by another 40%. The random fluctuations are also 
useful in establishing the maximum level for the decision 
threshold. For example, for this noise-corrupted correlator, 
dropout or misclassification of the correlation peak is highly 
unlikely for thresholds set 10% below PNR [corresponding 
to a perturbation from the expected peak intensity of roughly 
-3a,(0)]. 

Also note in Fig. 5 that the fluctuation is essentially zero 
for the a = 2 curve at k = 0.5. This is not a noise-immune 
operating point. Instead, PNR has dropped to a value of one 
and thus (as discussed for Fig. 3) the expected correlation 
peak intensity is small compared to the average intensity of 
the noise/speckle background. 

5   Conclusions 
We have developed a model that describes the performance 
of optical correlators subject to a combination of phase errors. 
Various types of phase errors are related through a single 
parameter k. Their effects on peak correlation amplitude are 
given in Tables 1 and 2. The effect on correlation amplitude 
of other systematic and random phase errors of interest can 
also be evaluated [using Eq. (8)], and in many cases, reduced 
to a functional form. This result can then be inserted in the 
model for PNR [Eq. (21) with the standard deviation set to 
zero] and the statistical fluctuation of PNR [Eq. (21) along 
with evaluation of the standard deviation using Eqs. (16) and 
(17)]. 

It was possible to develop such a simple method by de- 
coupling any dependence between the phases and the am- 
plitudes in the filter plane. When this is done, the influence 
of the transmitted amplitude spectrum is totally contained in 

the single parameter Z, which is the normalized second mo- 
ment of the amplitude spectrum. This approximate model 
provides much insight and is useful at the early stages of 
design. It should be considered prior to performing exhaus- 
tive simulations and design studies on the effects of various 
phase errors. As part of this analysis, it may be desirable to 
consider the values of Z for the objects in the image train- 
ing set. 

Of course, for many SLMs the values of phase and am-, 
plitude are coupled.,0 We did not consider this problem here. 
It seems reasonable, however, that there are alternate eval- 
uations or approximations of Eq. (6) that can lead to models 
of nearly comparable usefulness and simplicity. 
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Approximating fully complex spatial modulation 
with pseudorandom phase-only modulation 

Robert W. Cohn and Minhua Liang 

Any desired diffraction pattern can be produced in the Fourier plane by the specification of a 
corresponding input-plane transparency. Complex-valued transmittance is generally required, but in 
practice phase-only transmittance is used. Many design procedures use numerically intensive, con- 
strained optimization. We instead introduce a noniterative procedure that directly translates the 
desired but unavailable complex transparency into an appropriate phase transparency. At each pixel the 
value of phase is pseudorandomly selected from a random distribution whose standard deviation is 
specified by the desired amplitude. We also derive statistical expressions and use them to evaluate the 
approximation errors between the desired and achieved diffraction patterns. 

Key words:   Optical information processing, spatial light modulators, phase-only filters, laser speckle, 
rough surface scattering, statistical optics, binary and diffractive optics, phased arrays. 

Introduction 

This study is motivated by our desire to design 
phase-only filters and diffractive elements with a 
small amount of electronic computation, and thereby 
permit programming of arbitrary spatial modulation 
at real-time rates. Popular design procedures (e.g., 
the Dammann grating,1"3 simulated annealing,4 itera- 
tive constrained optimization,56 and other iterative 
procedures) are only practical if performed off line 
because of both the numerical cost of performing 
Fourier transforms repeatedly and the further cost of 
evaluating the sensitivity of the transform with re- 
spect to a large number of pixels (frequently every 
pixel of the input-plane spatial light modulator.) 
Although it can be argued that for some applications 
all necessary phase-only filters can be computed off 
line and stored in memory, in other applications 
either too much memory is needed to do this afford- 
ably or there may not be advance knowledge of what 
filter is needed. 

There are many procedures in the area of computer- 
generated holography, especially kinoforms, that per- 
mit direct synthesis of the input plane. These presup- 
pose that the Fourier transform pair between the 
fully complex-valued input and the Fourier planes is 
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known, and they work by encoding the desired com- 
plex values to appropriate phase settings. The direct- 
synthesis design procedures thus permit program- 
ming at real-time rates if the desired Fourier plane 
pattern is known.7 The amount of memory is also 
minimized if the complex-valued Fourier transform 
pair can be written as an easily computed function. 

Most frequently the direct procedures group a few 
adjacent pixels together as a single pixel that approxi- 
mates several discrete settings over the complex 
plane (i.e., cell-oriented encoding).8 However, this 
reduces the space bandwidth, which is already quite 
small (say 128 x 128 pixels) for current spatial light 
modulators, as compared with traditional fixed pat- 
tern holographic and diffractive optical elements. 
The procedure we present here is also a direct method, 
but one for which a continuous value of phase is 
selected for each individual pixel, independent of all 
other settings (i.e., point-oriented encoding.)8 

Our method directly follows from mathematical 
models (presented below) of far-field diffraction from 
arrays of randomly phased point sources. More 
specifically, the phases are treated as independent 
and nonidentically distributed random variables. 
Many previous studies have considered random phase 
diffusers in which the phase statistics are identically 
distributed across the diffuser.9-10 Their objective 
was improved holographic reconstruction of the inten- 
sity of objects, for which the phase was of no concern 
to the observer. In our design we are interested in 
reconstructing full complex objects from a variably 
random phase-only filter plane.   In our analysis and 
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design procedure it is convenient to represent the 
random variables with a single probability-density 
function that is varied in its mean and standard 
deviation. Our analysis shows that, on average, the 
pixels with phases drawn from distributions of larger 
standard deviation behave as if they have smaller 
amplitude transmittances. This result originally oc- 
curred to us when we noted an average contrast loss 
for arrays of phase-only pixels that have identically 
distributed phase errors.11 We now recognize that 
this earlier result is just a special case of the more 
general result for nonidentically distributed phases. 

The ideal spatial light modulator (SLM) for our 
procedure modulates phase continuously over a full 
2TT range. Regularly spaced pixels are assumed in 
the examples below but are not required in our 
theory. These characteristics are typical of those 
anticipated for the piston-modulating (or flexure- 
beam) deformable mirror device12 and are achievable 
with birefringent13 and twisted nematic14 liquid crys- 
tals. For binary and multilevel optics the quantized 
values of phase can be modeled as statistical depar- 
tures from the desired analog phase, and this added 
effect on the diffraction pattern can be estimated.11'15 

Concept 

Our design procedure specifies the degree of random- 
ness (i.e., standard deviation) of phase at each pixel as 
away of approximating arbitrary values of amplitude. 
This is analogous to placing a diffuser of spatially 
varying roughness over the input plane. Increasing 
roughness at a pixel decreases its coherent contribu- 
tion to the far-field pattern. The remaining incoher- 
ent or diffused light is spread over the entire diffrac- 
tion pattern and contributes a noise background that 
is frequently referred to as speckle. The design 
phase at any pixel is specified as the expected value of 
its random phase distribution. Thus the full com- 
plex input plane can be viewed as a cascade of a 
deterministic phase screen with a variable roughness 
phase screen. 

This interpretation follows from the statistical 
expectation of a complex exponential of a random 
argument, which is schematically illustrated in Fig. 1 
and is derived in the following section. Figure 1 
shows the spatial phase and amplitude for two types 

■a 

a. 
E < 

-»I    W    K- 

of phase-only pixels: piston-only pixels, those that 
produce a single value of phase across the pixel width, 
and tilt-only pixels, those that produce a linearly 
varying value of phase across the pixel width. The 
design procedure is concerned with the former struc- 
ture, and the latter is provided as a further example of 
the concept. The leftmost of the four plots of ampli- 
tude and phase represents a random phase pixel. 
Because phase is a random variable we show an 
ensemble of phase values. The ensemble average of 
the random complex exponential produces the result 
in the second column: an average value of phase and 
a loss in amplitude transmittance. The example of 
pixels with random tilts shows a similar result in that 
the average amplitude transmittance decreases with 
increasing phase fluctuations that directly corre- 
spond with distance from the pivot point. Further 
discussion and analysis of the effects of random tilts 
are described in Ref. 11. 

Because both expectation and Fourier transform 
are linear operations, the expected complex ampli- 
tude of the far-field pattern of the piston-only pixel, as 
well as an array of pixels, is the Fourier transform of 
the expected transmittance. The expected intensity 
of the far-field pattern consists of the magnitude 
squared of the complex amplitude plus a broad pedes- 
tal caused by the average intensity of speckle. 

In our design procedure, rather than average many 
trials, we instead select a single value of phase from 
the ensemble for each pixel. The expected complex 
amplitude and intensity of the far-field pattern for 
this situation is mathematically 'equivalent to that 
described in the previous paragraph. More impor- 
tantly, the actual far-field pattern approximately 
resembles the average pattern that results from the 
coherent summation of a large number of random 
wave fronts. Thus the formation of the far-field 
pattern can be viewed as a physical example of the 
central limit theorem, i.e., the so-called law of large 
numbers.16 

Mathematical Analysis 

Deterministic Expressions 

The following definitions for arrays of piston-only 
pixels are used in the development of the statistical 
expressions. The complex transmittance of an indi- 
vidual pixel centered at position x equal to xt in the 
input plane will be written as a;(x), and the transmit- 
tance of the array of the N individual pixels is 

t{x) = 2 afa) = ^r(x - *,-)exp(./'i|»i). (1) 

03 
<n 
sz 
a. 

Pistons    Average      Tilts      Average 
Fig. 1.    Expected transmittance of random phase-only pixels (both 
piston-only and tilt-only pixels). 

where i|j; is the phase shift produced by the i th pixel of 
the SLM. The appreviation r{x) = rect(x/w) has 
been used where w is the width of each pixel. 
Equation (1) shows that the amplitude and phase of 
each pixel have been defined in local coordinates 
centered around x = 0 and then shifted to pixel 
locations x;.    In this and subsequent equations the 
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inactive area between the pixels is treated as being 
zero amplitude. We do this to focus on the fundamen- 
tal effect. It is also a reasonable assumption in light 
of current SLM's that either have nearly unity fill 
factors (in the case of deformable-mirror devices and 
binary optics) or that are fabricated with opaque 
shadow masks (such as current liquid-crystal displays.) 
The intensity of the far-field diffraction pattern is 
written 

standard deviation cr„ 

I(fx) = T(fx)T*(fx) = nt(*)®t(x) (2) 

where T(fx) is the Fourier transform of the transmit- 
tance t(x), i.e. T{fx) = &{t{x)}, and where © indicates 
the correlation integral 

a(x)®b(x) =    a{x' + x)b*{x')dx'. (3) 

The squared intensity spectrum expressed in terms of 
the fourth-order autocorrelation of SLM transmit- 
tance is 

p = TT*T*T = ^px) e ^x)j ® [fa) ffi j(x)]}_    (4) 

Unlike convolution, the order in which correlations 
are performed affects the result, and thus the brack- 
ets are required in Eq. (4). 

Statistical Expressions 

The expected value of a complex phasor of a random 
argument is frequently referred to as the characteris- 
tic function16 of the random variable <\i: 

M'(ü)) = (exp(j<ü»|))) 
V-c 

exp(./'ü>i|;Wi|Od<|; 

= ^^M^W). (5) 

where ( ) is the ensemble average (i.e., expectation) 
operator and where p^{ty) is the probability-density 
function of i|>. The last equality in Eq. (5) empha- 
sizes the well-known Fourier transform relationship 
between the probability of the density function and 
the characteristic function. If the phases tyi are 
independent random variables, then the expected 
value of pixel transmittance o,(x) is 

at(x) = (a;(x)) = {r{x - x^expO"»]»,-)), 

= r(x - xM'W, 

= r{x - Xi)exp(7^i)Mi(l), (6) 

where M;' is the characteristic function of i|/; andM; is 
the characteristic function of the unbiased values of 
phase »|>; - (i|/j).17 We have written the last line of Eq. 
(6) to identify the magnitude and phase components, 
and it corresponds to the average piston case in Fig. 1 
(second column). 

We considered two specific probability distributions 
for phase i|i;.   For Gaussian distributed phase of 
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Af,(l) = exp(- 2an< (7) 

and for uniformly distributed phase with total spread, 

Vt = y/ÜOi, (8) 

M,-(l) = sine 
2T7 

(9) 

For either distribution the average amplitude trans- 
mittance at each pixel i can be controlled explicitly by 
selection of the value of the standard deviation a;. 
In digital simulations we prefer the uniform distribu- 
tion because most Gaussian random-number genera- 
tors are derived by performing additional numerical 
operations on uniform samples. A further advan- 
tage of using uniform statistics is that the total 
spread never need exceed 2ir, whereas with Gaussian 
statistics the standard deviation can be infinite, and 
which can lead to overflow and underflow errors if not 
handled carefully. 

The expected value of Eq. (1), using either probabil- 
ity distribution, is the expected SLM tranasmittance 

N 

t(x) = 2 <a,{*)) = 2 r(x - Xi)Pi
1/2 exp(Ä),   (10) 

i=l i 

where we use the parameter 

Pi = M?(l) (11) 

to simplify subsequent expressions. Note that be- 
cause the expectation and Fourier transform opera- 
tors are both linear, the expected far-field transmit- 
tance (more precisely, the angular spectrum) is 

T(fx) = sr{t{x)). (12) 

The nomenclature in Eq. (12) of using lowercase 
letters for space-domain variables and uppercase 
variables for frequency-domain variables will be used 
throughout this discussion. 

The most general expectation for the intensity of 
the far-field diffraction pattern of SLM's with statisti- 
cally independent pixels follows from the first equal- 
ity in Eqs. (1) and (2).   It is 

7(/y = 22wm-*(/y), 
■   j 

= £2 (AiW) - 2 mi2 + 2 <|412), 
i    j i i 

= \T\2 + 2[(\Ai\')-\Äi\
2l (13) 
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where the intermediate results indicate how we used 
independence to simplify the expression. This ex- 
pression shows that the expectation nearly separates 
into | (T) |2, except for terms involving the autocorrela- 
tion of the input-plane pixels (i.e., terms for which 
i = j). Under the same assumption of independent 
pixels, we find that the most general expression for 
the squared far-field intensity is 

</2> = 2222 (AiWAi) 
i j k i 

= 2[72-|T|4] + T2 + 2 ((A?) ' A2) 

+ 4 Re T*2((|A,l2A,)-(Ai
2)A* 

+ 2\Ai\
2Ai-2(\Ai\

2)Al] 

+ 2[<I4-|4>-6|£J|
4+J8(I4I2>|Ä-.I2 

i 

- \(A?)\2 - 2{\A\2)2 

+ 4M(A?)Äi*
2-(\Ai\

2Ai)Äi* (14) 

It was found by substituting Eq. (1) into Eq. (4) and 
then taking the expectation of Eq. (4). The second 
quality was found by a procedure similar to that of 
Goodman.18 (See Appendix A for more details.) 
The standard deviation of intensity a^fx) is then 
directly found through the use of the well-known 
result 

a/ = (72> - I2. (15) 

For the specific case of piston-only, nonidentically 
distributed random phase, Eqs. (13)-(15) simplify to 

7(fx) ■= & *(*) © *(*) + W) © H*)] 2 9. 
i * 

= \T(fx)\
2 + R2(fx)2,qi, (16) 

i 

where 

qi^l-Pi, (I?) 

a\fx) = It-2\T\i + \Ti-TA\
i 

- 4 Re[TTB*] - GA. (18) 

We introduce a shorthand for defining repeated auto- 
correlations of the rect function r(x): 

gn(x) = [r(x) @ ■ • ■ 0 r{x)]n, (19) 

where n indicates the number of rect functions (i.e., 
n - 1 integrals).   Equation (18) is completely speci- 

fied with the additional definitions for the Gaussian 
distribution 

tA{x) = 2 gzix - 2xi)exp{Mi)QiP; 
i 

tB{x) = 2 8s(x - Xi)exp{Mi)<liW/2, 

fo(x)=ft(x)2?i4. (20) 
i 

and for the uniform distribution 

tA(x) = 2 Si{x - 2xi)exp{j2^i){pi - d,), 
i 

tB{x) = 2 g^x - Xi)exp{$i>{<li ~ Pi + d,)Pi1/2, 
I 

gA(x) = g*(x) 2 fe - 3Pi + 6p;
2 - *Pidi + d,2), 

where 

d, = sine 

(21) 

(22) 

Discussion and Interpretation 
The expected intensity pattern, Eq. (16), contains the 
desired design intensity pattern, the magnitude square 
of Eq. (12), plus an additional term proportional to 
G2{fx) = R2{fx) that we associate with the average 
level of speckle intensity, and which is often referred 
to as halo or pedestal.19 This second term is propor- 
tional to the far-field diffraction pattern intensity of a 
single pixel. Examination of Eq. (18) also reveals 
that each of its terms has the common factor G4{fx) = 
G2

2(fx)- Thus for a standard definition of signal-to- 
noise ratio (SNR), 

SNR(£) (23) 

the term G2{fx) cancels out and is independent of 
spatial frequency. The reciprocal of Eq. (23) basi- 
cally describes the relative approximation error (espe- 
cially when a; is small compared with I and the 
contribution of pedestal can be practically ignored). 

Another type of SNR that is quite common in 
describing the quality of an optical correlation peak is 
the ratio of peak intensity to background noise level; 
this is often referred to as the peak-to-noise ratio 
(PNR). The analysis above permits calculation of 
this as well; however, unless the pixels are point 
sources, the pixel element factor 02t/!) has to be 
considered and so there will be different values of the 
SNR depending on the pixel fill factor. 

Summary of the Design Procedure 
The above analysis indicates that a phase-only source 
distribution can be treated as a full complex distribu- 
tion for the purpose of approximating a desired 
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far-field pattern. The results from above can be 
used in a design procedure as follows. Specify the 
desired far-field pattern T(fx). Fourier transform to 
the desired source distribution t(x). For each pixel i, 
invert Eq. (9) [preferred, or Eq. (7)] to find a,-, and 
select a pseudorandom number, appropriately scaled 
by a, to represent the random phase ij/,. Then Fou- 
rier transform the array of random phase-only pixels 
to evaluate the actual far-field pattern. If desired, 
compare the actual far-field pattern I(fx) with Eqs. 
(16), (18), and (23). In the next section we use this 
procedure to illustrate designs of diffraction patterns, 
including evaluations of the quality of the approxima- 
tion. 

Computer Verification and Demonstration of the Theory 

General Experimental Conditions 

Several designs have been simulated and analyzed, 
two of which are presented in some detail here. In 
every case the design is for a 128 x 128 pixel 
phase-only SLM. It is represented as a 128 x 128 
array of samples embedded in the center of a 512 x 
512 array of zeroes. We use a fast Fourier transform 
(FFT) routine to approximate the Fourier transform 
of the array and of the individual terms comprising 
the expectations in Eqs. (16) and (18). 

The uniform random-number generator DRNUNF 

(from the IMSL numerical software library from 
IMSL, Inc., Houston, Tex. 77042-3020) with initializa- 
tion subroutine RNOPT(6) was used. We mention this 
because initially there were problems when we used 
the random-number generator RANI given in Ref. 20. 
Specifically, when we attempted to verify Eqs. (16) 
and (18) by Monte Carlo estimation (i.e., ensemble 
averaging of a large number of identical designs 
generated with different random-number seeds), the 
estimates sometimes converged to different results 
than in the equations. The discrepancies were espe- 
cially obvious at harmonically related sets of spatial 
frequencies. This may indicate that RANI produced 
correlated sequences in these experiments. These 
problems, however, were not discernible in individual 
design runs because of the magnitude of the random 
fluctuations. 

When using DRNUNF we did find that plots of Monte 
Carlo estimates of the expected value and standard 
deviation of intensity, except for small fluctuations, 
appear to match our expressions closely when 1000 
design runs are used in the estimate. We also checked 
that the relative error between the theory and the 
estimate decreases with an increasing number of 
design runs and that this improvement is roughly 
proportional to the square foot of the number of 
design runs used in the estimate, as would be expected. 
Our closest result, using 105 design runs, converged 
to the theoretical expressions with a fluctuation of 
less than 0.4% standard deviation. 

Pseudorandom Encoding of Binary Amplitudes 

Figures 2 and 3 illustrate the design of a phase 
modulation to approximate an elliptically shaped 

aperture of eccentricity 6:1. Figure 2(a) shows the 
desired amplitude modulation, and Fig. 2(b) shows 
the corresponding phase-only modulation. The 
mottled region in Fig. 2(b) corresponds to phase that 
is totally random (uniform statistics with spread 
Vi = 2u), and the white region corresponds to con- 
stant phase (Vj = 0). Figure 2(c) shows the expected 
intensity, Eq. (16) from the random modulated SLM, 
and Fig. 2(d) shows the resulting intensity pattern. 
It is basically an elliptical version of the Airy pattern 
(the exact far-field pattern of an elliptical aperture) on 
top of a uniform intensity (dark gray) background. 
The actual diffraction pattern [Fig. 2(d), the far-field 
pattern of the phase-only modulation] also resembles 
the elliptical Airy pattern on top of a speckle pattern. 
Figure 3 presents quantitative information along the 
vertical axis of Figs 2(c) and 2(d). The thin curves 
depict the error bars of ±07 added to the expected 
intensity. These provide a rough idea of the magni- 
tude of the actual fluctuations, both of the coherent 
peak and the speckle-dominated sidelobe region. 

It should be apparent that fluctuations and thus 
approximation errors will be smaller for those binary 
amplitude designs that use a greater number of 
nonrandom pixels. This relationship can be seen in 
Eq. (23), which simplifies to 

SNR(0) = 
NN

2 + NR NN 

(2NRNN* -NR + iVfi
2)V2 

(24) 

at zero frequency where thei diffraction intensity 
peaks.21 Here NR is the number of randomly modu- 
lated pixels on the SLM and NN is the number of 
nonrandomly modulated pixels, and their sum is the 
total number of SLM pixels, 16,384. The approxima- 
tion in Eq. (23) is valid except for SNR close to unity; 
for instance, for 1000 nonrandom pixels the relative 
error is roughly 1% and the SNR is 5.7. Figure 4 
plots relation (24) against 500 run Monte Carlo 
estimates of SNR(0). These estimates correspond to 
elliptical aperture designs, with a major axis of 128 
pixels and eccentricity ranging from 1 to 13, and 
circular apertures of diameter from 42 to 128 pixels. 
For reference, there are 2016 nonrandom pixels in 
the ellipse of eccentricity 6:1. This data point on 
Fig. 4 is nearly indistinguishable from the point for a 
circular aperture with a diameter of 50 pixels and 
that contains 1976 pixels. 

A second performance measure describing the qual- 
ity of the far-field diffraction pattern is the PNR,22"24 

which we choose to define here as 

PNR: 
1(0)      NN

2 1(0) 
-^-2SNRW-^i,    (25) 

tritt) 

where fx is assumed to be a frequency in the sidelobe 
region. The approximations follow by assuming the 
expected transmittance is negligible, i.e. (T(fx)) = 0 in 
Eqs. (16) and (18), with respect to the speckle inten- 
sity in the sidelobe region. Additionally, we set the 
ratio of G2{0)/G2(fx) to unity, mainly to indicate more 
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(a) 

(c) 

(b) 

(d) 

Fig. 2. Pseudorandom phase-only design of elliptical aperture, (a) Desired amplitude modulation, (b) Phase-only approximation to (a), 
(c) Expected value of (d) the intensity of the far-field diffraction pattern. Only the central 128 x 64 pixels of the 128 x 128 modulation are 
shown in (a) and (b). Only the central 128 x 128 pixels of the 512 x 512 FFT are shown in (c) and (d). We have nonlinearly transformed 
the intensities in (c) and (d) by the exponent 1.3 (i.e., gamma) to increase the contrast of low-lying sidelobes of the Airy pattern. 

dramatically the simple relationship between PNR 
and SNR(O). In our simulations, for which we chose 
fx as the Nyquist frequency [i.e., the point halfway 
between the (0, 0) and the (1, 1) diffraction order], the 

-16 

Cross Section (0,fy 

Fig. 3. Diffraction pattern of phase-only approximated elliptical 
aperture. The actual pattern (thick curve) is compared with the 
expected intensity plus and minus the error limits of one standard 
deviation. Horizontal dashed lines indicate the saturation (full- 
white) level of corresponding figures, Figs. 2(c) and 2(d). The 
spatial coordinates are normalized so that one unit corresponds to 
one of the 128 resolvable scan positions of the SLM or four samples 
of the FFT window. 

first approximation is within 1.5% of the exact value 
of the PNR for 1000 or more nonrandom pixels. The 
third approximation indicates that the average level 
of speckle in the sidelobe regions is equal to the 
standard deviation of intensity. This result is not 
unexpected based on previous observations that the 
intensity of fully developed speckle patterns is expo- 
nentially distributed and that the standard deviation 
of this distribution is equal to its mean."19 

100n 

o 

z 

0 5 10 x10 

Number of Nonrandom Pixels 
Fig. 4. SNR at diffraction peak as a function of number of 
nonrandom pixels for pseudorandom encoding of binary ampli- 
tudes. 
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Pseudorandom Encoding of Continuous Amplitudes 
We have also evaluated the design procedure for the 
approximation of an apodized input plane. Two- 
dimensional Gaussian, Airy pattern, and sine func- 
tions with varying aspect ratios have been synthesized. 
We originally chose the sine and Airy functions to 
produce brick-wall and top-hat diffraction patterns. 
However, the finite spatial extent of the SLM severely 
truncates the ideal functions and produces significant 
in-band ripple (Gibbs phenomena) and large sidelobes. 
The only feature that recommends this design is the 
extremely rapid transition band. 

The transition bandwidth can be readily traded off 
with ripple and sidelobe level by the window design 
method that is widely used in the design of finite 
impulse response digital filters.25 In this method 
one controls truncation effects by multiplying the 
ideal, infinite extent functions by an amplitude- 
tapered window in place of a rect function. One of 
the best windows for the design of uniform intensity 
patterns is the Dolph-Chebyshev function. It is 
considered optimal in the sense that its Fourier 
transform produces the minimum mainlobe width for 
a given sidelobe level.26 The parameter a specifies 
the sidelobe level of 20a in decibels. 

We have used the window method to design a 
pseudorandom phase modulation that will diffract 

into a close approximation of a brick-wall shape. 
The design function is a one-dimensional sine func- 
tion multiplied by a Dolph window in both coordinates. 
Our general design goal for this example is to produce 
a diffraction pattern with the largest aspect ratio (or 
eccentricity) possible that still reasonably resembles a 
brick-wall shape. We feel that for a 128 x 128 SLM 
this goal is met by the function sinc(4x) multiplied by 
Dolph functions in x and y that each have a equal to 
1.3. 

This result is presented in Figs. 5 and 6. In order 
to show the correspondence between amplitude in 
Fig. 5(a) and random phase in Fig. 5(b) more clearly, 
the gray-scale image shows, rather than phase error, 
the absolute phase error 

Svjjfe)  =|l(/,-   V|/;|. (26) 

The value of a has been chosen just large enough so 
that the sidelobes disappear in the speckle back- 
ground in Fig. 5(d). They are still somewhat appar- 
ent in the expected intensity, Fig. 5(c). Figure 6(a) 
makes clear that increasing a further also increases 
the intensity of speckle, and overall passband ripple is 
not reduced because the random fluctuation is al- 
ready larger than the ripple for the Dolph function. 
The aspect ratio of this diffraction pattern is 6.7:1 at 

(a) 

(c) 

Fig. 5. Pseudorandom phase-only design of Dolph-windowed sine apodization: (a) Desired amplitude modulation, (b) Phase-only 
approximation to (a), (c) Expected value of (d) the intensity of the far-field diffraction pattern. All units and settings are the same as in 
Fig. 2 except the recording gamma, which is unity for (c) and (d). 
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Fig. 6. Diffraction pattern of a phase-only approximated Dolph- 
windowed sine apodization. (a) Cross section across vertical axis 
[0,fy). The actual pattern (thick curve) is compared with the 
expected intensity and the expected intensity plus and minus the 
errors limits of one standard deviation. Horizontal dashed lines 
indicate the saturation (full-white) level of corresponding figures, 
Figs. 5(c) and 5(d). Legend and units identical to those in Fig. 
3. (b) Cross section across horizontal axis (/"„ 0). The expected 
intensity (thick curve) is compared with the expected intensify 
sinc2( fx) if no Dolph windowing had been employed. 

the half-power points as measured from the plots in 
Fig. 6. Figure 6(b) also shows that the Dolph window- 
ing in the vertical direction has widened the diffrac- 
tion pattern by approximately 25% at the half-power 
points. 

To compare the performance of various design 
functions with the phase-only encoding procedure, we 
introduce the definition of the effective number of 
random pixels, 

NR^?,> (27) 

Equation (27) is identically the amplitude of the noise 
pedestal term in Eq. (16), and it is identical to NR for 
the case of binary modulation. Figure 7 compares 
the SNR for the various functions studied. The 
curves demonstrate a rough correspondence, with the 
apodized functions being more closely clustered than 

80 

EC 
z    40 
CO 

o 

- Dolph Windowed 
• Binary 
- Gaussian 
• Sine 

0 2000 4000 6000 

Effective Number of Nonrandom Pixels 
Fig. 7. SNR as a function of effective number of nonrandom pixels 
for pseudorandom encoding of continuous amplitudes. SNR(O) is 
plotted for Gaussian and binary, and average SNR across passband 
is plotted for Dolph and sine designs. The sine is a rectangularly 
symmetric function, and the Gaussian is a circularly symmetric 
function. 

the binary amplitude functions. The circularly sym- 
metric approximation to an Airy pattern on the input 
plane is not shown, but its performance nearly over- 
lays that for the sine curve in Fig. 7. For reference, 
the SNR of the design in Figs. 5 and 6 has a SNR of 
roughly 8, which corresponds to an effective number 
of 1000 nonrandom pixels. 

Conclusions 
We have presented a method, based on properties of 
random phase having spatially varying statistics, that 
approximates fully complex input-plane modulation. 
Diffraction patterns from pseudorandom phase-only 
modulation can be as energy efficient as any passive, 
fully complex modulation, with performance loss 
arising from the addition of a nearly uniform level 
speckle background. Designers can use the method 
to specify diffractive optical elements directly from 
Fourier transform relationships between the input 
plane and far field. The performance of any design 
can be readily evaluated, and the quality of the 
far-field patterns can be anticipated from the effective 
number of nonrandom pixels in the input plane. In 
the remainder of this section we consider potential 
applications of the method. The method is espe- 
cially useful in that phase and amplitude are specified 
independently of each other. Although the ex- 
amples in the last section demonstrate the approxima- 
tion of amplitude-only inputs, the mathematical analy- 
sis shows that any value of phase (specified as the 
average value of phase) is permissible. For example, 
the far-field pattern can be translated by adding a 
phase slope to the design values of phase values. 
Therefore, one can use a single phase-only SLM to 
perform simultaneous and independent beam shap- 
ing and beam steering. Two-dimensional scanners 
can be envisaged that have much more flexibility than 
current ones. Scanning is not limited to rastered 
formats, and multiple spots can be formed. For such 
applications, it should generally not be necessary for 
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one to use a new set of random numbers each frame. 
Instead of generating them on the fly, one can store a 
single frame of random numbers in a video memory. 
A simple class of functions can also be selected for 
beam shaping that use a small number of function 
calculations and memory. 

It may be possible to apply this flexibility in scan- 
ning to pattern recognition, tracking, and sensing. 
Currently raster scanning of lasers is used as a way to 
sense outlines of objects.27 An edge point is identi- 
fied by a sudden change in reflectance while scanning. 
A phase-only SLM-based scanner can locate edges 
and then adapt the beam shape to enhance the return 
from the edge. Spots could be contoured and posi- 
tioned to fit over multiple edges and corners, and this 
could be used as a feature-based method28 of tracking 
or recognition. 

The pseudorandom design procedure may have 
various applications to the design of free-space optical 
interconnects. Certainly designs can be directly syn- 
thesized, and their performance can be readily evalu- 
ated; however, their optimality is not guaranteed. 
We believe that the approach may nonetheless reduce 
the computation time of other design procedures by 
providing a better initial guess for the iterative design 
procedures, especially simulated annealing ap- 
proaches4 that start with a pseudorandom array of 
weights anyway. 

What our design procedure does not address is the 
numerous local minima that one forms by placing the 
constraint of a phase-only input plane on the design 
statement. For example, the Dammann grating has 
a multiplicity of unique solutions consisting of evenly 
spaced diffraction peaks of equal intensity and phases 
of 0 or T7.2 One finds the most diffraction-efficient 
design by exhaustively solving for every possible 
combination of phase. However, we already know 
that the most diffracation-efficient designs corre- 
spond to those that have a large number of nonran- 
dom pixels. It may be possible for one to use this 
information to guide such global searches more effi- 
ciently. 

In optical correlators, pseudorandom phase modu- 
lation can represent (typically) real-valued images in 
the input plane and complex filters in the filter plane 
with an accuracy that is reasonably modeled. We 
have proposed a compact phase-only correlator that 
uses a single phase-only SLM to perform both input- 
and filter-plane modulation.29 The pseudorandom 
encoding is an alternative to nonlinearly transform- 
ing real-valued image data to phase. In the filter 
plane one may use pseudorandom modulation to 
approximate the full complex matched filter without 
employing a full complex SLM. Even though the 
performance will be reduced from that from full 
complex filters, it may provide useful experimental 
information for researchers in advance of practical 
full complex devices. 

Pseudorandom phase-only design may well prove 
useful in many optical processing applications be- 
cause it is a direct noniterative procedure,  and 

straightforward mathematical expressions are avail- 
able for the determination of performance bounds of 
the procedure. 

Appendix A 

We present a brief sketch of the derivation of Eq. (14), 
the second-order statistical moment of the far-field 
intensity I{fx). Under the assumption of statistically 
independent pixels, we find that the expectation 
simplifies to expectation over each pixel when sub- 
scripts i, j, k, and I are not equal; however, there are 
many cases where some or all of the subscripts are 
equal. In fact, there are 15 possible combinations of 
equal and nonequal subscripts. These are enumer- 
ated in Goodman.18 The 15 terms can be grouped 
into seven distinct terms as 

</2> = 2222 {AiAfAfA,) 
i    j    k    I 

= 2222 Ä,A>^*^ + 2 < \Ai i4) 

+ 4 Re 22(1^1^,*)^. 

+ 2 22 <I^I
2

KIA,I
2

> + 22 <AW2> 
i*j >*J 

+ 4 222<I^I
2
>AA* 

+ 2Re222<A;
2)Ä>Ä*- (Al) 

Each multiple summation with unequal subscripts 
can be rearranged as a few summations for which 
there is no inequality constraint on the subscripts. 
An example of this is presented in the derivation of 
Eq. (13) for the double summation that describes the 
expected value of the far-field intensity. The summa- 
tions in Eq. (Al) over two, three, and four subscripts 
are handled in a similar manner, only the algebra is 
more tedious. One can handle the algebra more 
easily by using the following tensor shorthand: 

[ ijhl 2222 a-ibfikdi, 
i    j    k     I 

Ti ijkl 2 22 2 afijCkdi- 
ixjxkrl 

(A2) 

Summations over two and three subscripts are simi- 
larly defined as Tu and Tijk. There should be no 
confusion between the use of the tensor symbol T^u 
and transmittance T(fx) in this discussion. 

The relationships between tensors with subscripts 
that can be equal and those that cannot be equal are 

T■■   = T ■■ - T- 

   rp          rp         rp    rp           rp 
ijk       —■ ■» ijk       •* Hi        1 iij L iji x ijj ' 
i*j*k i*j i*j i*j 

= Tijk + 2TUi - TUj - Tiß - Ttjj.    (A3) 

The second line of the second equation in Eq. (A3) 
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follows from the first equation. 
Eq. (A3) to derive 

Similarly, we use 

•* ijkl ~~ * ijkl      "I an + 1 njj + 1 ijij + I ijji 
i*jxk*l 

+ 2[Tüij + Tuji + TiJä + Tijjj) 

~ (Tujk + Tijik + Ttjjk + Ttjki + Tijkj + Tijkk). 

(A4) 

We use Eq. (A4) to represent the first term of Eq. 
(Al). When (At) = a, = b* = c* = dit as is the case in 
the first term of Eq. (Al), we can use this symmetry to 
simplify Eq. (A4) to 

Tijki       = Tißi — 6Tiiu + 2TUjj + Tijji 
ixjxkxl 

+ 8 Re TülJ - 4Tlljk - 2 Re Tljki.    (A5) 

We use Eqs. (A3) and (A5) to evaluate the six terms in 
Eq. (Al) that have unequal subscripts. Certain terms 
are recognized as (/) and (T) [see Eq. (10), (12), and 
(13)], which then leads to Eq. (14). 

The authors are grateful to M. Hudak of Codonics, 
Inc. and S. Nowell of Alden Electronics, Inc. for 
providing hard copies of our gray-scale images. This 
research is sponsored by the Advanced Research 
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through contract F19628-92-K0021. 
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[57] ABSTRACT 

A five step method is used to produce an optical wave. 
The first step is to pick the desired far field pattern of 
the diffractive optical wave. The second step entails 
transforming the desired far field pattern to the desired 
source using a fast fourier transform (FFT). Injhe third 
step we use the formula exp(j<f>,<o-/)]=AiexpQ<\>i) to find 
the standard deviation 07 for each pixel i that produces 
the desired/average amplitude. Next, we use a pseudo- 
random number generator to select phases <J>,from dis- 
tributions of standard deviation 0-7 for each pixel. Fi- 
nally, we check the solution with the FFT and our 
analyses of performance. 
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U.S. Pat. No. 5,012,253 issued to Schuster; 
METHOD OF PRODUCING AN OPTICAL WAVE U.S. Pat. No. 4,995,102 issued to Ichinose, et al; and 

WITH A PREDETERMINED OPTICAL FUNCTION U.S. Pat. No. 5,276,636 issued to Cohn, et al. 
The patent to Ichinose et al discloses a reversed spiral 

STATEMENT OF GOVERNMENT INTEREST 5   scanning method used by laser radar. The remaining 

The invention described herein may be manufactured patents are of interest. 
and used by or for the Government for governmental ^ost frequently the direct procedures operate on a 
purposes without the payment of any royalty thereon. small number ofadjacentptxels together as a group that 
r   r approximates several discrete settings over the complex 

BACKGROUND OF THE INVENTION 10 plane (i.e., cell-oriented encoding). This however re- 
—,              . •        »■        , .              ,,   *    ..„.    ... duces the space bandwidth, which is already quite small 
The present invention relates generally to diffractive ,       ,-,*,.,,,   ■   i \ «■     '        .      ,• , ■■ .,       ., 
..   ,   ,        ..         .                   ...   „ '.    . (sav 128X128 pixels) for current spatial light modula- 

optical elements, and more specifically the invention ;   y                     A L »„^;*,«„„i «™* _f»„_ i. i *V .                 ',    , .         .Z   ■       i_           • ti   ? tors, as compared to traditional fixed pattern holo- pertains to a method to synthesize phase weights for '..       . ,"„.    ..    „ ..   ,  .„„„,,. JL            . 
j   •    J j-o-    »■                   c        ^   i   i        f • graphic and diffractive optical elements. The procedure derived diffraction patterns for opücal elements ,n ap- ^£               myention £ ^ , ^ method        one 

pl.cat.ons such as a phase-only spatial light modulator for J^ & continuous value of phase ^ ^^ for 

*•   .    '' ._    ..         _            ,          ,      , .   .,    _ each individual pixel independent of all other settings 
Any diffraction pattern can be produced in the Fou-       -• . „    •   jl-      ,;„„-, ° 

•        ,             r-   .■        r                     J- (i.e., pomt-onented encodmg.) ner plane by specification of a corresponding input r 

plane transparency. Complex-valued transmittance is 2Q               SUMMARY OF THE INVENTION 
generally required but, in practice^ phase-only transmit- ^           { ^^ mcludes a five st    method t0 

tance is used. Many design procedures use numerically g   ^^ the  ^   ^ ^ -^p^des of ^ optical 

intensive,  constrained optimization. What is needed wave ^ fiRt ste   fa tQ   ick ^ desired faf field 

instead is to introduce a non-iterative procedure that tm Q{ ^ diffractive opticai wave. ^ ^„d ste 

directly translates the desired, but unavailable, complex 25 entaüs ^fo^g ^ desired far field pattem t0 ^ 
transparency into an appropriate phase transparency desired ^^ ^   a fast fourier transform (FFT). In 
such that at each pixel the value of phase is pseudoran- ^ thkd        we me ^ forrflula exp[j<Mcn)]=Ä;exp(- 
domly selected from a random distribution whose stan- ß;) to fmd ^ staadald deviation oyfor each pixel i that 
dard deviation is specified by the desired amplitude, and produces the desired/average amplitude. Next, we use a 
to derive statistical expressions and use them to evaluate 30 pSeUdo-random number generator to select phases <j>,- 
the approximation errors between the desired and from distributions of standard deviation ay for each 
achieved diffraction patterns. pixel finally, we check the solution with the FFT and 

This invention is motivated by a desire to design our -masses 0f performance. As mentioned above, 
phase-only filters and diffractive elements with a small phase-only holograms are often designed to produce 
amount of electronic computation and thereby permit 35 ^.figid diffraction patterns that approximate desired 
programming of arbitrary spatial modulation at real- patterns. Iterative search for the optimal transform pair 
time rates. Popular design procedures (e.g. the Dam- m^,. ^ constraint of phase-only modulation is not 
mann grating, simulated annealing, iterative constrained always required. In the present invention, we instead 
optimization, and other, iterative procedures) are only ^j^ a desired far-field pattern which specifies the 
practical if performed off-line due both to the numerical 40 SOurce distribution. Amplitude and phase are encoded 
cost of performing Fourier transforms repeatedly and by controlling the randomness of phase across the 
the further cost of evaluating the sensitivity of the trans- source. 
form with respect to a large number of pixels (fre- The method is analogous to placing a variable rough- 
quently every pixel of the input plane spatial light mod- ness diffuser over the source. Increasing roughness at a 
ulator.) Of course, the solutions can be precomputed 45 pj^i decreases its coherent contribution to the far-field 
and stored in memory, but only if the number of designs pattern. 
required is not too great. Any array of random phase pixels has an average 

There are many procedures in the area of computer far-field pattem that is identical to the Fourier trans- 
generated holography, esp. kinoforms that permit direct form of the average pixel transmittances. It follows that 
synthesis of the input plane. These presuppose that the 50 the average far-field pattern is approximated by setting 
Fourier transform pair between the fully complex- each pixel to a value randomly selected from its individ- 
valued input and Fourier planes are known and work by ual phase ensemble. 
encoding the desired complex values to appropriate Tnis process described above can be used by either a 
phase settings. The direct synthesis design procedures radar or an optical phased array steering system, and 
thus allow programming at real-time rates, if the desired 55 applied to a feature based tracking system for auto- 
Fourier plane pattern is known. The amount of memory mated production line technology, 
is also minimized if the complex valued Fourier trans- It is an object of the present invention to produce a 
form pair can be written as an easily computed function. method to design phase-only diffractive optical ele- 

The task producing an optical wave with a predeter- ments. 
mined function is alleviated, to some extent, by the 60     It is another object of the present invention to synthe- 
systems disclosed in the following U.S. Patents, the size desired phase weights for desired diffractive pat- 
disclosures of which are incorporated herein by refer- terns. 
ence: These objects together with other objects, features 

U.S. Pat No. 5,258,996 issued to Fräser, et al; and advantages of the invention will become more 
U.S. Pat. No. 5,187,484 issued to Stove; 65 readily apparent from the following detailed descrip- 
U.S. Pat. No. 5,184,218 issued to Gerdes; tion when taken in conjunction with the accompanying 
U.S. Pat No. 5,142,289 issued to Peterson; drawings wherein like elements are given like reference 
U.S. Pat. No. 5,252,981 issued to Grein, et al; numerals throughout. 
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DESCRIPTION OF THE DRAWINGS itS rand°m pha?e distribut ion- ™™ the
f 
M> f

COmP'« 
input plane can be viewed as a cascade of a determmis- 

FIG. 1 is an illustration of expected pixel and SLM tic phase screen with a variable roughness phase screen, 
transmittance of the phase and amplitudes of random This interpretation follows from the statistical expec- 
phase-only pixels; 5   tation of a complex exponential of a random argument 

FIG. la is a chart of the diffraction pattern of a phase- which is schematically illustrated in FIG. 1 and derived 
only elliptical aperture; (cross section along long axis); m the following section. FIG. 1 shows the spatial phase 

FIG. lb is a chart of the performance of a 128 by 128 and amplitude for two types of phase-only pixels: 
SLM for various elhplicities; L piston-only, those that produce a single value of 

FIG. 3 is a chart of the signal to noise ratio at diffrac- 10         phase across the   ixd vddih. and 

tion peak as a function of the number of non-random 2   ^^^     those ^     ^^ a i^early-varying 
tPÜd2         Vsead0Tand0m encodmS of bmary ampli- value of pfaase across ^ pbce] ^^ 

.,.;,   . .        .   .^       , L , .      , . .   „ .     ..„ The design procedure is concerned with the former 
FIG. 4 is a set of two charts (a) and (b) of the diffrac-       „,    _ jh.  i „    • -A A       C _*■_ T ^ r      , , •    / j T% i t    ■ . - structure, and the latter is provided as a further example 

tion pattern of a phase-only approximated Dolph-wm- 15    ft, ♦ -n.   i &_   .   r.t.   r        >.    ;T^,. 
dowed sine« anodization where (a) cross section is °f *e TT                               /       J^* °f Tt' 
across vertical axis (0,f,) and the dashed horizontal tade Md PhaSe rePresents a random phase pixel. Be- 
lines indicate the saturation (full-white) level; and «f5? phase* a rf?dom vanable we show m ense«ble 

FIG. 5 is a chart of the SNR as a function of effective of Phase values- ^f e^mble average of the random 
number of non-random pixels for pseudorandom encod- 20 comPlex exponential produces the result in the second 
ing öf continuous amplitudes, were the SNR(O) is plot- column-an average value of phase and a loss in ampli- 
ted for gaussian and binary, and average SNR across tude transmittance. The example of pixels with random 
passband is plotted for Dolph and sine designs, and the mts shows a similar result in that the average amplitude 
sine is a rectangularly symmetric function and the transmittance decreases with increasing phase fluctua- 
gaussian is a circularly symmetric function.                   25 ^ons that directly correspond with distance from the 

pivot point. 
DETAILED DESCRIPTION OF THE Because both expectation and Fourier transform are 

PREFERRED EMBODIMENT imear operations then the expected complex amplitude 
The present invention includes a process for design- of the far-field pattern of the piston-only pixel, as well as 

ing phase-only diffractive optical elements and to syn- 30 an array of pixels, is the Fourier transform of the ex- 
thesize phase weights for desired diffraction patterns. pected transmittance. The expected intensity of the 

The present method directly follows from mathemat- far-field pattern consists of the magnitude squared of 
ical models (presented below) of far-field diffraction the complex amplitude plus a broad pedestal due to the 
from arrays of randomly-phased point sources. More average intensity of speckle. 
specifically, the phases are treated as independent and 35 In our design procedure, rather than average many 
non-identically distributed random variables. It is con- trials, we instead select a single value of phase from the 
venient for analysis and the design procedure to repre- ensemble for each pixel. The expected complex ampli- 
sent the random variables with a single probability den- tude and intensity of the far-field pattern for this situa- 
sity function that is varied in its mean and standard tion is mathematically equivalent to that described in 
deviation. Our analyses shows that on average, the 40 the previous paragraph. More important, the actual 
pixels with phases drawn from large standard deviation far-field pattern approximately resembles the average 
distributions behave as if they have a smaller amplitude pattern that results from ^e coherent summation of a 
transmittance. This result was noted in an average con- large number of landQm wavefronts. Thus, the forma- 
trast loss for arrays of phase-onlypixels that have identi- tion of the far.field attern ^ be viewed ^ a h ical 
cally distributed phase errors. This result is a special 45 e le of ^ ^^ limit ^ ; e ^ M ^^ 
Ca^.° ■!,, £ n,on;,dentlCally Routed phases. -Uw of j       nurnberl!». 

The ideal SLM for our procedure modulates phase The movAn   definitions for arrays of pistononly 
continuously over a full 2* range. Regularly spaced ^ m ^^ ^ deve,          t 'of ^ statistical 
pixels are assumed in the examples below but are not ~ ,    _       r .„ „     .   ,. ..    . ... iU _        L      »   ■ ^ ^   •   i »„ expressions. The complex transmittance of an individual required m our theory. These characteristics are typical 50    ■,,„_,   ^       .j     ,,     .„ .        .„ ~~ 
of those anticipated for the piston-modulating (or flex- £** located at P°s

f"T X' wD.bf w"tten. *»*««"> 
ure-beam) defonnable mirror device and is achievable the transnuttance of the array of the N individual pixels 
with birefringent and twisted nematic liquid crystals. m 

For binary and multi-level optics the quantized values 
of phase can be modeled as statistical departures from 55 *• ■> -   if   /i-s^_v „,-(> C 
the desired analog phase and their additional effect on * " fei °     " i      ~ '""PW 
the diffraction pattern can be estimated. 

The design procedure of the present invention sped- where V is the phase shift produced by the i'th pixel of 
fies the degree of randomness (i.e. standard deviation) the SLM. The abbreviation r(X)=rect(x/w) has been 
of phase at each pixel in order to approximate arbitrary 60 used where w is the width of each pixel. Any inactive 
values of amplitude. This is analogous to placing a dif- area between the pixels has been treated as non-reflect- 
fuser of spatially varying roughness over the input ing and the amplitude and phase of each pixel have been 
plane. Increasing roughness at a pixel decreases its co- defined in local coordinates centered around x=0 and 
herent contribution to the far-field pattern. The remain- then shifted to pixel locations x,-. The intensity of the 
ing incoherent, or diffused light is spread over the entire 65 far-field diffraction pattern is written 
diffraction pattern and contributes a noise background 
that is frequently referred to as speckle. The design Ktt)=T(fx)T*(fx)=J{t(x)©t(x)} (2) 
phase at any pixel is specified as the expected value of 
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where T(Q) is the Fourier transform of the transmit- -continued 
tance t(x) and where © indicates the correlation inte- (9) 

a«eb<x) = /a0''+'0b*(x')d*' (3)   5 
For either distribution the average amplitude transmit- 

The squared intensity spectrum expressed in terms of tance at each pixel i can be controlled explicitly by 
the fourth-order autocorrelation of SLM transmittance selection of the value of the standard deviation 07. In 
is digital simulations we prefer the uniform distribution 

10 since most gaussian random number generators are 
I2=TT'T=3-{[t(x)©t(x)]®[t«et(x)]} (4)       derivecj by performing additional numerical operations 

on uniform samples. A further advantage of using uni- 
Unlike convolution, the order in which correlations are form statistics js that the total spread never need exceed 
performed affects the result, and thus the brackets are 2^ whereas ^th gaussian statistics the standard devia- 
required in eq. 4. 15 tion can be infinite, and which can lead to overflow and 

The expected value of a complex phasor of a random       underflow errors if not handled carefully. 
argument is frequently referred to as the characteristic The expected value of eq. 1, using either probability 
function of the random variable * distribution, is the expected SLM transmittance 

Af(w) = (5) 20 N (10) 
<x) = .2   <a£x)> = 2 r(x~xi)p,*cxp(j<lid 

f   CD 

J  — 00 

1=1 

where the parameter 

where <> is our symbol for the ensemble average (i.e. 25 p—M^ (11) 
expectation) operator and 3-is the Fourier transform 
operator, and p¥ is the probability density function of JS used to simplify subsequent expressions. Note that 
the random variable ¥. If the phase *; are independent because the expectation and Fourier transform opera- 
random variables then the expected value of pixel trans- tors are both linear the expected far-field transmittance 
mittance a*(x) is 30 (more precisely, the angular spectrum) is 

Hfyc)    = «JX*)> = <K* - x;)expW</)> 
T(Q=Xt(x)} (U) 

= r(x - xi)Mi'(V) The nomenclature in eq. 12 of using lower-case letters 
_ -  _ xDagpd^jftf^i) 35 for space domain variables and upper-case variables for 

frequency domain variables will be used throughout 

where M', is the characteristic function of*, and M/is thisdiscussion. 
tne characteristic function of the unbiased values of g The most general expectation for the intensity of the 
phase^-<<I',>.Thelastlineofeq.6hasbeenwritten ^-field diffraction pattern SLMs with statistically m- 
fo identify Ae magnitude and phi components and « dependent ptxels follows from the first equality in eq. 1 
corresponds with the second average piston case in *"" <*!• 2- " ls 

We considered two specific probability distnbuüons ■~Rf) = zz <A*fJA/'(f)> 
for phase*,-. For gaussian distributed phase of standard *      'j 

deviation en = 2 2 <Ai><Af> + 2 <|^,|2> 

1 = exp f.- Y <r? J 
P) = 2 2 <Ai><Aj*> - 2 \<A,->\Z + 2 <|/f,|2> 

50 

and for uniformly distributed phase with total spread 

J 

= |F|2 + 2[<M;|2> - |3|2] 

where the intermediate results indicate how indepen- 
„1       dence was used to simplify the'expression. This expres- 

_ NfJJ" o-, sion shows that the expectation nearly separates into 
"' ~" ■' 55  j <T> |2 except for terms involving the autocorrela- 
then tion of the input plane pixels (i.e. terms for which i=j.) 

Under the same assumption of independent pixels the 
most general expression for the squared far-field inten- 
sity is 

</2> =2222 <AjA,*Ak'Ai> 
i j k 1 

(14) 

2[71 - |714J + \T- + 2 (.<A?> - Ah\2 + 

|r*2«|^|2^/> - <A?>I,* + 2\Äi\2Äl- 2 <\Ai\2>Td  \ + 4Ri 
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-continued 

I [<K|4> - 6|^|4 + 8 <|A|2>|^I|2 - K^2>l2 - 2 <M;I2>2 + 4R«A,2>7r2 - <M,|2^/>3?)] 

It was found by substituting eq. 1 into eq. 4 and then 
taking the expectation of eq. 4. The second equality was 
found by a procedure similar to that shown in eq. 13. 
The standard deviation of intensity cn(f;c) is then di- 
rectly found using the well known result 

terms has the common factor G4(fx)=G22 (&)• Thus for 
a standard definition of single-to-noise ratio 

10 
SNR(fx) ■■ Kfx) 

<riVx) 

(23) 

o-,2=</2>-/2 (15) 

for the specific case of piston-only, non-identically dis- 
tributed random phase eqs. 13-15 simplify to 

Kfx)   = 3 {<toe^*) + M*)©**)] ^ m J 

= \TVx)\2 + R2(fx)Zv 

20 

where 
q,= l-/>; (17) 25 

and 

<r2<fI)=7a—2| T\*+1 F1-7-.<|
2-4/!<17Tg']-<r/< 

We introduce a shorthand for defining repeated auto- 
correlations of the rect function r(x) 

gn00=W*)© • • ■ ©rtoln (19) 

where n indicates the number of rect functions (i.e. n— 1 
integrals). Eq. 18 is completely specified with the addi- 
tional definitions for the gaussian distribution 

tA(x) = 2 «2(x - 2*j) expvW qpi 
i 

tjstx) = 2B(i- xd «pWi) tfa* 
i 

K/lW = «(*) ? 1* 
t 

and for the uniform distribution 

lA*) = 2 S2(.x —ted expv'AMfo - dD 
i 

ts(x) = Zgi(x- x;) expvü,X?i - Pi + <*iW 
i 

Mi*) = «W ? (ft - 3;/ + 6/>,2 - 4M' + d?) 
t 

where 

di = sine m 
The expected intensity pattern (eq. 16) contains the 

desired design intensity pattern (the magnitude square 
of eq. 12) plus an additional term [proportional to 
<nffx)='RHfx)] that we associate with the average level 
of speckle intensity (and which is often referred to as 
"halo" or "pedestal".) This second term is proportional 
to the far-field diffraction pattern intensity of a single 
pixel. Examination of eq. 18 also reveals that each of its 

the term Gi(ix) cancels out and is independent of spatial 
frequency. The reciprocal of eq. 23 basically describes 
the relative approximation error (especially when 07 is 

15 small compared to I and the contribution of pedestal 
can be partially ignored.) 

Another type of signal-tc-noise ratio, that is quite 
(16) common in describing the quality of an optical correla- 

tion peak, is the ratio of peak intensity to background 
noise level, and is often referred to as peak-to-noise ratio 
(PNR). The analysis above permits calculation of this as 
well, however, unless the pixels are point sources the 
pixel elements factor G2(f*) needs to be considered and 
so there will be different values of signal-to-noise-ratio 
depending on the pixel fill factor. The steps of the de- 
sign procedure of the present invention are: 

1) Specify the desired far-field pattern T(f)- 
2) Fourier transform to the desired source distribu- 

(18)              tion t(x) such that for each pixel i: invert eq. 9 
30 (preferred, or eq. 7) to find o-,-. 

3) Select a pseudorandom number, appropriately 
scaled by 07 to represent the random phase <f>,\ 
Fourier transform the array of random phase-only 
pixels to evaluate the actual far-field pattern. If 
desired, compare the actual far-field I(Q with eqs. 
16, 18 and 23. 

Several designs have been simulated and analyzed, 
two of which are presented in some detail. In every case 
the design is for a 128 X128 pixel phase-only SLM. It is 
represented as a 128 X128 array of samples embedded in 
the center of a 512x512 array of zeroes. A fast Fourier 
transform (FFT) routine is used to approximate the 
Fourier transform of the array and of the individual 
terms comprising the expectations in eqs. 16 and 18. 

45 The uniform random number generator DRNUNF 
(from the IMSL numerical software library) with ini- 
tialization subroutine RNOPT(6) was used. We mention 
this because initially there were problems using the 

(21) random number generator RANI Specifically, when 
50 we attempted to verify eqs. 16 and 18 by Monte Carlo 

estimation (that is ensemble averaging of a large number 
of identical designs generated with different random 
number seeds) the estimates sometimes converged to 
different results than the equations. The discrepancies 

55 were especially obvious at harmonically related sets of 
spatial frequencies. This may indicate that RANI prc- 

(22) duced correlated sequences in these experiments. These 
problems however were not discernable in individual 
design runs because of the magnitude of the random 

60 fluctuations. 
When using DRNUNF we did find that plots of 

Monte Carlo estimates of the expected value and stan- 
dard deviation of intensity, except for small fluctua- 
tions, appear to closely match our expressions when 

65 1000 design runs are used in the estimate. We also 
checked that the relative error between the theory and 
estimate decreases with increasing number of design 
runs and that this improvement is roughly proportional 

(20) 

35 

40 
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to the square root of the number of design runs used in 
the estimate, as would be expected. Our closest result, 
using 105 design runs, converged to the theoretical ex- 
pressions with fluctuation of less than 0.4% standard 
deviation. 5 

A phase modulation was developed to approximate 
an elliptically shaped aperture of eccentricity 6:1. FIG. 
2a presents the diffraction pattern along the vertical 
axis. FIG. 2b is a chart of the expected intensity profiles. 
The 1+01 ratio is nearly equivalent to the diffraction 10 
pattern along the horizontal axis for all values of eccen- 
tricity. FIGS. 2a and 2b together are examples of beam 
shaping by this method. FIG. 2a presents quantitative 
information along the vertical axis. The light curves 
depict the error bars of ±/added to the expected inten- '5 
sity. These provide a rough idea of the magnitude of the 
actual fluctuations, both of the coherent peak and the 
speckle dominated sidelobe region. 

It should be apparent that fluctuations, and thus ap- 
proximation errors will be smaller for those binary am- 20 

plitude designs that use a greater number of non-ran- 
dom pixels. This relationship can be seen in eq. 23 
which simplifies to 

SNR(0) ■■ 
Ntt + NR NN 

(24) 
25 

N 2 NRNN* - NR + NR
2
       N INR 

the zero frequency where the diffraction intensity 
peaks. NK is the number of randomly modulated pixels 30 

on the SLM and N;v is the number of non-randomly 
modulated pixels and their sum is the total number of 
SLM pixels, 16,384. The approximation in eq. 23 is valid 
except for SNR close to unity; for instance, for 1000 
non-random pixels the relative error is roughly 1% and 35 

the SNR is 5.7. FIG. 3 plots eq. 24 against 500 run 
Monte Carlo estimates of SNR(0). These estimates cor- 
respond to elliptical aperture designs with a major axis 
of 128 pixels and eccentricity ranging from 1 to 13 and 
circular apertures of diameter from 42 to 128 pixels. For 
reference, there are 2016 non-random pixels in the el- 
lipse of eccentricity 6:1. This data point on FIG. 3 is 
nearly indistinguishable from the point for a circular 
aperture of diameter 50 pixels and which contains 1976 
pixels. 

A second performance measure describing the qual- 
ity of the far-field diffraction pattern is the peak inten- 
sity to noise ratio which we choose to define here as 

40 

45 

««--^-^«»"^-fi- 
(25) 

50 

standard deviation of this distribution is equal to its 
mean. 

We have also evaluated the design procedure for the 
approximation of an apodized input plane. Two dimen- 
sional gaussian, airy pattern and sine functions with 
varying aspect ratioes have been synthesized. The sine 
and airy functions were chosen to produce brickwall 
and top-hat diffraction patterns. However, the finite 
spatial extent of the SLM severely truncates the ideal 
functions and produces significant in-band ripple (Gibbs 
phenomena) and large sidelobes. The only feature to 
recommend this design is the extremely rapid transition 
band. 

The transition bandwidth can be readily traded off 
with ripple and sidelobe level by the window design 
method that is widely used in the design of finite im- 
pulse response digital filters. In this method truncation 
effects are controlled by multiplying the ideal, infinite 
extent functions by an amplitude tapered window in 
place of a rect function. One of the best windows for 
designing uniform intensity patterns is the Dolph- 
Chebyshev function. It is considered optimal in the 
sense that its Fourier transform produces the minimum 
mainlobe width for a given sidelobe level. The parame- 
ter a specifies the sidelobe level of 20a in dB. 

We have used the window method to design a pseu- 
dorandom phase modulation that will diffract into a 
close approximation to a brickwall shape. The design 
function is a one dimensional sine function multiplied by 
a Dolph window in both coordinates. Our general de- 
sign goal for this example is to produce a diffraction 
with the largest aspect ratio (or eccentricity) possible 
that still reasonably resembles a brickwall shape. We 
feel that for a 128 X128 SLM this goal is met by the 
function sinc(4x) multiplied by Dolphs in x and y that 
both have a equal to 1.3. 

This result is presented in FIG. 4. 
FIG. 4a makes clear that increasing further also in- 

creases the intensity of speckle and overall passband 
ripple is not reduced because the random fluctuation is 
already larger than the ripple for the Dolph function. 
The aspect ratio of this diffraction pattern is 6.7:1 at the 
half power as measured from the plots in FIG. 4. FIG. 
4 also shows that Dolph windowing in the vertical 
direction has widened the diffraction pattern by about 
25% at the half power points. 

In order to compare the performance of various de- 
sign functions with the phase-only encoding procedure 
we introduce the definition of effective number of ran- 
dom pixels 

where fx is assumed to be a frequency in the sidelobe 
region. The approximations follow by assuming the 55 
expected transmittanCe is negligible (i.e. <T(fx)> =0 in 
eqs. 16 and 18) with respect to the speckle intensity in 
the sidelobe region. Additionally, we set the ratio of 
G2(0)/G2(fr) to unity, mainly to more dramatically 
indicate the simple relationship between PNR and 60 
SNR(0). In our simulations, for which we choose fx as 
the Nyquist frequency [i.e. the point half way between 
the (0,0) and the (1,1) diffraction order], the first ap- 
proximation indicates that the average level of speckle 
in the sidelobe regions is equal to the standard deviation 65 
of intensity. This result is not unexpected based on pre- 
vious observations that the intensity of fully developed 
speckle patterns is exponentially distributed and that the 

NR< 
N 

i 2$; 
(26) 

Eq. 27 is identically the amplitude of the noise pedestal 
term in eq. 16 and it is identical to NJJ for the" case of 
binary modulation. FIG. 5 compares SNR for the vari- 
ous functions studied. The curves demonstrate a rough 
correspondence, with the apodized functions being 
more closely clustered than the binary amplitude func- 
tions. Also not shown is the circularly symmetric sap- 
proximation to an airy pattern on the input This curve 
very nearly overlays the sine curve. For reference, the 
SNR of the design in FIG. 4 has SNR of roughlt 8 
which corresponds to an effective number of 1000 non- 
random pixels. 

The present invention is a method, based on proper- 
ties of random phase having spatially varying statistics, 
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that approximates fully-complex input plane modula- mathematical expressions are available for determining 
tion. Diffraction patterns from pseudorandom phase- performance bounds of the procedure, 
only modulation can be as energy efficient as any pas- While the invention has been described in its pres- 
sive, fully complex modulation; with performance loss ently preferred embodiment it is understood that the 
arising from the addition of a nearly-uniform level   5 words which have been used are words of description 
speckle background. Designers can use the method to rather than words of limitation and that changes within 
specify diffractive optical elements directly from Fou- tne purview of the appended claims may be made with- 
rier transform relationships between the input plane and °ut departing from the scope and spirit of the invention 
far-field. The performance of any design can be readily m lts broader aspects, 
evaluated and the quality of the far-field patterns can be 10 What is claimed is: 
anticipated from the effective number of non-random l A method of producing an optical wave having a 
pixels in the input plane. predetermined   optical   function   and   wherein   said 

The method is especially useful in that phase and method comprises the following steps: 
amplitude are specified independently of each other. selecting a desired far-field pattern for said optical 
Although the examples in the last section demonstrate , < ^ave containing P^el phases and pixel amplitudes 
approximation of amplitude-only inputs, the mathemati- 15 ™at rePrese« *»£ predetermined optical function; 
cal analysis shows that any value of phase (specified as Performing a fast Fourier transform on said desired 
the average value of phase) is permissible. For example, t

f^lfi
H

eld Pat em J° ^ a desl,red source dlstnbu- 
the far-field pattern Jan be translated by adding a phase df^&T H   fif ^ T5      v,   •   , • ,       *   ,,    j   ■ 1        r  t_ 1       TT.     / determining a standard deviation 07 for each pixel 1 slope to the design values ofphase values ^Therefore, a that    ^ thg    ^^^     tical fu^ 
single phase-only SLM can be used to perform simulta- to ^ thereb   ^ ^ „^ M ^ 
neous and independent beam shaping and beam steer- generating the pixel phases <(,,- from random distribu- 
ing. Two dimensional scanners can be envisioned that tions of the standard deviation     for ^   ^ L 

have much more flexibility than previously. Scanning is 2. A method as defined in claim 1, wherein said deter- 
not limited to rastered formats and multiple spots can be mining step comprises using a formula given by 
formed. For such applications, it should generally not " 
be necessary to use a new set of random numbers each expü<M°v)) =Äjexp(j$i) 
frame. Instead of generating them on-the-fly, a single 
frame of random numbers can be stored in a video mem- to find the standard deviation 07 for each pixel i that 
ory. A simple class of functions can also be selected for produces a desired average amplitude, 
beam shaping that use a small number of function calcu- 30     3. A method as described in claim 1, wherein said 
lations and memory. generating step comprises using a pseudo-random num- 

It may be possible to apply this flexibility in scanning ber generator to select phases <J>,- from distributions of 
to pattern recognition, tracking and sensing. Currently standard deviation 07 for each pixel, 
raster scanning of lasers is used to sense outlines of *■ A method as described in claim 2, wherein said 
objects. An edge point is identified by a sudden change 35 generating step comprises using a pseudo-random num- 
in reflectance while scanning. A phase-only SLM based ber generator to select phases <f>; from distributions of 
scanner can locate edges and then adapt the beam shape standard deviation 07 for each pixel, 
to enhance the return from the edge. Spots could be 5. A method as described in claim 2, wherein said 
contoured and positioned to fit over multiple edges and generating step comprises using a pseudo-random num- 
corners and this could be used as "feature based" 40 ber generator to select phases <j>,- from distributions of 
method of tracking or recognition. standard deviation 07 for each pixel. 

The pseudorandom design procedure may have van- ?• &■ method as defined in claim 1, in which after 
ous applications to the design of free space optical inter- using the selecting, performing, deterrnining and gener- 
connects. Certainly designs can be directly synthesized, atmS stePs.to produce said optical wave with an actual 
and their performance can be readily evaluated; how- 4, configuration, further including the steps of: 
ever, their optimality is not guaranteed. We feel that the comparing the actual configuration of the optical 
approach may nonetheless reduce the computation time wave Produced by the method with the predeter- 
of other design procedures by providing a better initial mmed °Ptical function to evaluate the method, 
guess for the iterative design procedures; especially /• A meüiod as defined in claim 2, in which after 
simulated annealing approaches that start with a pseu- us.mg tne Meeting, performing, determining and gener- 
do-random array of weights anyway.                              X atmf steP*to P/00"0«5 «w» °?ticai wave «M« «» actual 

In optical correlators, pseudo-random phase modula- configuration further including the steps of: 
tion can represent (typically) real-valued images in the comparing the actual configuration of the optical 
input plane and complex filters in the filter plane with wave produced by the method with the predeter- 
an acciiracv that i« reasnnahlv modeled  We have nro- mUled °Ptlcal function to evaluate the method. an accuracy that is reasonably modeled, we nave pro- 8 A method      d f   d m   ^ ,  m    u fa ^ 
posed a compact phase-only correlator that uses a smgle D:> „■„,., .,-        ,      .      '.     '. .   wulv'" <"tcl 

L          1   cr xr\      _r       1. .L ■      *     J ci*      l using the selecting, performing, determining and eener- phase-only SLM to perform both mput and filter plane „t- „ ct„. ,„ „,jy,.„„ „ -j    f • u^iumuiiugoiiu gc.ici 
™^^„i„»;~, -n,« „<.™^~..<i,v~ .„~Ai„n ;* .„ oifl™. atmS stePs t0 produce said optical wave with an actual modulation. The pseudorandom encoding is an alterna- «,„^3^ further mcludmg ^ st      of: 

üve to the nonlmearly transforming real-valued image comparing the actual configuration of the optical 
data to phase. In tiie filter plane pseudorandom modula- wave produced b   ^ m*hod ^ the      d

P
eter. 

tion may be used to approximate tiie full-complex 60 mjjied opücal fwcüon {o eva]uate ^ J^ 
matched filter without employing a full^omplex SLM. 9. A method as defined in claim 4, in which after 
Even though the performance will be reduced from that ^mg the selecting, performing, determining and gener- 
from full complex filters, it may provide useful expen- ating steps to produce said optical wave with an actual 
mental information for researchers in advance of practi- configuration, further including the steps of: 
cal full-complex devices.                                               65 comparing the actual configuration of the optical 

Pseudorandom phase-only design may well prove wave produced by the method with the predeter- 
useful in many optical processing applications because it mined optical function to evaluate the method, 
is a direct non-iterative procedure, and straightforward *    *    *    *    * 
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Pseudorandom phase-only encoding of real-time 
spatial light modulators 

Robert W. Cohn and Minhua Liang 

We previously proposed a method of mapping full-complex spatial modulations into phase-only 
modulations. The Fourier transform of the encoded modulations approximates that of the original 
complex modulations. The amplitude of each pixel is encoded by the property that the amplitude of a 
random-phasor sum is reduced corresponding to its standard deviation. Pseudorandom encoding is 
designed for phase-only spatial light modulators that produce 360° phase shifts. Since such devices are 
rare, experiments are performed with a 326° modulator composed of two In Focus model TVT6000 
liquid-crystal displays. Qualitative agreement with theory is achieved despite several nonideal 
properties of the modulator. 

Key words: Optical information processing, spatial light modulators, liquid-crystal televisions, 
phase-only filters, laser speckle, rough-surface scattering, statistical optics, binary and diffractive 
optics, phased arrays, measurements of phase,    o 1996 Optical Society of America 

1.    Introduction 

Pseudorandom phase-only encoding1 is a method for 
designing phase-only niters and diffractive optical 
elements that approximately produces the same 
Fraunhofer diffraction pattern as would result from 
a desired, but unrealizable, full-complex filter. The 
encoding procedure adds amplitude control to the 
phase-only filter2 through the addition of phase 
offsets that have specified statistical properties. 
The randomness of the phase offset at a given pixel, 
as measured by the standard deviation of this ran- 
dom variable, determines the effective attenuation 
caused by the pixel insofar as it describes its effect on 
the Fraunhofer pattern. Each pixel can be pro- 
grammed in this way to have a specified value of 
phase and effective amplitude. The fact that the 
resulting diffraction pattern approximates the de- 
sired diffraction pattern from the full-complex modu- 
lation is a result of the law of large numbers. In 
this situation the individual Huygens wave fronts 
from all spatially separated pixels in the modulator 
plane all coincide and coherently add together across 
the Fraunhofer plane (as illustrated in Fig. 1).   If 
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the amount of randomness present in the input 
pixels is not too large, then a coherent reconstruction 
is observed that approximates the diffraction pat- 
tern from the full-complex modulation. If the ran- 
domness is too great, only a speckle pattern is 
observed. We also show that the quality of the 
reconstruction, in terms of how well it approximates 
the desired diffraction pattern, is closely related to 
the average intensity transmittance of the desired 
full-complex modulation. Since this metric is calcu- 
lated directly from the full-complex modulation, it 
can be used in advance of performing the encoding to 
determine whether or not the phase-only modulation 
provides adequate performance for the given applica- 
tion. 

The method is especially well suited for real-time 
programming of spatial light modulators (SLM's). 
The mapping, since it requires one function calcula- 
tion (or table lookup) per pixel, can be computed at 
the frame rate by a serial electronic processor. This 
is in contrast to many diffractive-optic and filter- 
design procedures that focus on optimal synthesis of 
a desired diffraction pattern under the constraint of 
phase-only modulation. These latter approaches 
are appropriate for the design of fixed-pattern filters; 
however, since they are numerically intensive, they 
usually cannot be performed in real time. For some 
applications it may be adequate to precompute the 
mapping offline, but for other applications (e.g., those 
in which the number of precomputed images exceeds 
the amount of available memory or those in which 
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Fig. 1. Fraunhofer diffraction geometry illustrating superposi- 
tion of a large number of wave fronts from independently phased, 
equal-intensity point sources. 

the desired full-complex function is not necessarily 
known in advance), it may only be possible to pro- 
gram the SLM by a real-time algorithm such as 
pseudorandom encoding. 

Several devices can in principle produce a 2-rr 
phase-modulation range, but far fewer are available 
in practice. Parallel-aligned nematic liquid crys- 
tals (also referred to as birefringent liquid crystals) 
have been known to produce pure phase modulation 
for some time.3 However, such devices have become 
available only recently. These include devices from 
Hughes, Hamamatsu, and Meadowlark Optics. 
Only the optically addressed SLM from Hamamatsu 
has a 2-rr modulation range (according to their techni- 
cal data sheet dated October 1993). Epson research- 
ers have also demonstrated programmable kino- 
forms using a birefringent liquid-crystal television 
(LCTV) panel.4 However, the device is a custom- 
modified version of a commercially available twisted- 
nematic display, and this device is not available 
outside Epson. Using commercially available 
twisted-nematic LCTVs, several researchers have 
identified phase-mostly modulation characteristics.5-7 

These are achieved by the proper selection and 
orientation of polarizers and/or wave plates. Most 
interesting is the eigenpolarization mode in which 
an elliptical polarization is transformed into an 
identical polarization independent of the voltage 
applied across the liquid crystal.6 Phase shifts of 
195° and better than ±4% uniformity of amplitude 
were achieved for a panel from the In Focus model 
TVT6Ö00 video projector. Soutar and Monroe iden- 
tified a configuration that produces 2.5-rr of modula- 
tion for LCTV panels from an Epson E1020 video 
projector.7 However, Soutar and Lu later noted 
that the modulation characteristics can vary substan- 
tially across this device.8 The (phase-only) deform- 
able mirror device produces phase shifts through the 
displacement of micromechanical pixels in a direc- 
tion parallel to the optical axis.9 However, fully 
addressable devices with this type of pixel have not 
yet been successfully demonstrated. 

In spite of the limited availability of 2TT modula- 
tion it is still possible to experimentally demonstrate 
the method of pseudorandom encoding on current 
modulators and to produce diffraction patterns that 
are quite similar to those predicted for 2-rr modulators. 
For the TVT6000 LCTV, several nonideal properties 
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must be recognized and controlled. Most critical is 
that, since the SLM does not produce full 2-TT modula- 
tion, there is always a dc component of the modu- 
lated light that is focused onto the optical axis. In ■ 
order to separate the dc peak from the designed 
diffraction pattern, we add a phase ramp to the 
desired modulation. Since the SLM cannot produce 
all values between 0 and 2-rr, multiple harmonics in 
addition to the fundamental of the designed diffrac- 
tion pattern are produced. Although use of a car- 
rier frequency in practical systems leads to an 
undesirable reduction in the usable bandwidth of the 
SLM, for our purpose of demonstration, this condi- 
tion is acceptable. Before presenting the results of 
the experimental demonstrations, we review the 
method of pseudorandom encoding and describe how 
the modulator is configured for the experiments. 

2.    Review of the Method 

The encoding procedure is designed for SLM's com- 
posed of one- or two-dimensional arrays of pixels. 
However, the subsequent equations describing the 
procedure [in particular, Eqs. (4)-(6)] are presented 
only as a function of one spatial coordinate. This is 
done in part to simplify presentation, but more so to 
emphasize that the performance of the procedure 
depends directly on the total number of pixels. [The 
generalization to two dimensions simply requires 
the replacement of any spatial coordinate x or spatial 
frequency component fx with the two-dimensional 
components (x,y) or (fx, fy).\ The encoding procedure 
can be applied to any array of arbitrarily positioned 
pixels, but in the experiments we considered, only 
regularly spaced arrays. The pixels have identi- 
cally shaped apertures. Each pixel has unity- 
amplitude transmittance and can produce any value 
of phase between 0 and 2-rr. For purposes of design 
the value of the phase of the ith pixel located at 
position Xi is assumed to be its statistical average: 

<W = (»h). (1) 

where ( ) represents the expected-value or ensemble- 
average operator. The value of the phase actually 
produced by the pixel is 

ifc = i|i; + 8iK-, (2) 

where 84/,- is an unbiased random-phase offset. The 
offset is selected from a prespecified random distribu- 
tion. The distribution determines the design value 
of the effective amplitude produced by the pixel. 
The set of all uniform random distributions with 
spreads between 0 and 2-rr is especially convenient 
for this purpose. Amplitude control between unity 
and 0 is provided according to 

a,- = (exp(j54/;)) = sine 
2-rr, 

(3) 

where v,- is the spread of the uniform distribution. 
Since the values of Eq. (3) are in the range between 
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zero and one, we always assume that the full- 
complex modulation is normalized so that its maxi- 
mum amplitude is unity. (A maximum amplitude of 
less than one would reduce diffraction efficiency and 
increase noise.) 

To summarize the algorithm, we_set the design or 
effective complex modulation (a,-, ij»,-) equal to the 
desired full-complex modulation. Equation (3) is 
inverted to solve for spread v;. A value of b\\it is 
selected from a uniform unbiased distribution of 
spread v; by a random number generation routine. 
The random-phase offset is added to the design value 
of phase [see Eq. (2)] to produce the actual modulation 
(1,44 

The complex transmittance produced by a phase- 
only SLM consisting of an array of TV identical 
subapertures centered at positions a;,- is 

*(*) = 2 exp(ji|j;)r(a; ' X;, (4) 

where r[x) is a function defining the clear area of the 
subaperture. The effective complex transmittance 
resulting from encoding each pixel is likewise writ- 
ten 

t[x) = 2 ai expt./'il'iM* - Xi). (5) 

The quality of the diffraction patterns produced by 
pseudorandom encoding can be appreciated by con- 
sideration of the expression for the expected inten- 
sity of the diffraction pattern. It has been shown to 
be1 

Aß = Ml2 + J\fc-■««), (6) 

where fx is the spatial frequency, 7\fx) and R(fx) are 
Fourier transforms of t[x) and r[x), respectively, and 
the average intensity transmittance 

i-fig5? (7) 

can be viewed as a type of diffraction efficiency, as we 
describe below. 

Equation (6), the expected value of the intensity, is 
composed of two terms. The first term represents 
the specular component of the diffraction pattern 
(caused by the coherent superposition of wave fronts 
originating from the SLM). It is identical to the 
diffraction pattern of the desired full-complex modu- 
lation, i.e., the square magnitude of Eq. (5). The 
second term represents the diffuse component (or 
speckle pattern) that is due to the superposition of 
randomly phase wave fronts. Its spatial distribu- 
tion is identical to the diffraction pattern from the 
aperture of a single pixel, Many diffraction pat- 
terns of interest are much more directional than the 
pattern of a diffuse scatter.   This directionality gain 

H 

over the more nearly white background noise often 
makes itpossible to produce a close approximation to 
the desired diffraction pattern. 

The amount of noise, and thus the quality of the 
reconstruction, is largely understood in terms of the 
diffraction efficiency T|. The diffraction efficiency 
indicates the fraction of energy that appears in the 
coherent portion of the diffraction pattern. Since 
phase-only modulation does not attenuate, the re- 
maining fraction of the incident energy, 1 - r\, is 
diffracted into the incoherent speckle background. 
In Ref. 1 we interpreted t\N as an effective number of 
nonrandom phase-only pixels. Equation (6) shows 
that increasing the diffraction efficiency (or equiva- 
lently, the number of nonrandom pixels) reduces 
diffuse scatter and would thus be expected to pro- 
duce more accurate designs. Another way of view- 
ing the relationship between the desired modulation 
and its pseudorandom encoding is that the more 
efficient a full-complex modulation is, the greater is 
its similarity to phase-only modulation. 

An expression for the standard deviation of the 
intensity of the diffraction pattern is also presented 
in Ref. 1. It provides a precise statistical bound on 
the accuracy of the diffraction pattern at every point 
across fx. Although the expression is not duplicated 
in this paper, it is used here to calculate error bars on 
plots of the designed intensity patterns. Although 
the effective number does not provide as detailed 
information as the standard deviation, it can be 
calculated with much lower computational overhead. 
Also it is well-enough correlated with the standard 
deviation that it can be used to gauge the quality of 
the diffraction pattern in real-time applications. 
Standard deviation, r\, and N can be used together to 
define peak-to-background noise and the signal-to- 
noise ratio as was done in Ref. 1. 

3.    Experimental Configuration 

The experiments are performed with two LCTV 
panels from the red channel of two different TVT6000 
video projectors. Oscilloscope measurements show 
thayhe signals from the red, green, and blue drjicer 
h^aTd^joliiie^roie^torare essentially ideootical/when\ 
;a^lack^ji-white~l3ignj^ video^ 
vjnputt. One TXITVls^ectrically^econnecTerrt'o' the 
driver board for the red channel, and the other LCTV 
is connected to the driver board for the blue channel 
(as illustrated in Fig. 2). Each of the two panels is 
connected through its own cable extender that we 
fabricated from a 1-m, 23-conductor, flat-laminated 
cable from Parlex Corporation and two zero-insertion- 
force flexible-printed-circuit connecters from Amp 
Incorporated. 

The green LCTV is left in the projector. This is 
used to preview visually the image exactly as it is 
displayed by the LCTV panels. This provides an 
especially simple way to verify that the LCTVs 
respond correctly to the applied image. In fact, 
when a RS-170 standard composite video is applied 
to the video input of the projector, we observe that 
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Fig. 2. Apparatus used for the experiments: VM; video micro- 
scope (or optical powermeter where noted in text); PC, personal 
computer that contains a frame grabber; VP, video projector; LCI, 
LC2, LCTVs from the video projector; S, viewing screen; M, video 
monitor; 0, digital oscilloscope; P, polarizer; Al, A2, apertures; Ql, 
Q2, quarter-wave plates. 

only 440 video lines and only -94% of the viewable 
portion of each line is displayed by the projector. 
In terms of sending a 640 X 480 digitized image in 
video format from our frame grabber (Dipix 360f with 
optional video-display board), only 600 X 440 pixels 
are displayed. Since the LCTV has 480 X 440 
pixels, there is a 1:1 mapping from frame-grabber 
lines to LCTV lines and a 5:4 mapping between 
pixels on a line. 

A second issue in the mapping of the digital pixels 
is the modulation transfer function of the display. 
Loudin noted that a single video line produces two 
lines of video on the projected image from the 
LCTV.10 We also observed this. We further note 
that the projected lines are roughly half the bright- 
ness possible. When two adjacent rows are turned 
on, one fully bright row is displayed, and there is a 
dim row to each side of the bright row. Apparently, 
the LCTV pixels cannot fully charge during the pixel 
time slot, and thus the sampling time (of the thin- 
film transistors) is extended to overlap with that of 
the adjacent lines. With projector sharpness set at 
minimum the effect is of roughly the same magni- 
tude in both the horizontal and the vertical direc- 
tions. 

The optical apparatus used to produce and mea- 
sure diffraction patterns is shown in Fig. 2. A 
collimated, nearly uniform-intensity laser beam of 
632.8-nm wavelength and linear polarization illumi- 
nates the entrance port of the optical system. 
Standard optical components between the laser 
source and the entrance port are used to filter and 
expand the beam spatially, rotate the polarization, 
and control the intensity of the beam. The SLM 
consists of the components between the two quarter- 
wave plates. Light from the output of the second 
wave plate is focused with a 381-mm focal-length f/5 
(Sorl F15/5) lens. The optical Fourier transform of 
the SLM is observed with a video microscope that 
consists of a Cohu 4915-2000 CCD video camera with 
an active imaging area of 6.4 mm X 4.8 mm, a 
C-mount 120-mm extension tube/microscope barrel, 

and a microscope objective. The camera output is 
observed on a video monitor or captured with the 
frame grabber. The frame grabber is configured to 
simultaneously acquire images while continuously 
outputting a single image. Individual video lines 
are viewed with a digital oscilloscope (HP54503A) 
that has built-in video triggering. 

Alignment of the two LCTVs. The first LCTV 
(LCI) is imaged onto the second one (LC2) with a pair 
of228.6-nm focal-length, //4.5 imaging lenses (Plum- 
mer lenses purchased from MWK). The second 
LCTV is rotated by 180° to account for the image 
inversion produced by the 4f imaging system. An 
Ealing adjustable rectangular aperture (Al) at the 
Fourier plane between the two lenses is set to pass 
only the signal information surrounding the central 
diffraction order of the LCTV grating/pixel pattern. 
The coordinates used to describe the polarizations 
are chosen so thatx, or horizontal, is in the direction 
of the video scan line, y is in the vertical direction of 
the video, and z is opposite of the direction of laser 
propagation. Both LCTVs are oriented so that the 
laser light emerges from the side of the panels on 
which the electrical cable is visible. The first LCTV 
(LCI) is oriented so the cable is attached below the 
horizontal axis. In this coordinate system, the first 
quarter-wave plate (Ql) is illuminated from a red 
helium-neon laser with a linear polarization of 70° 
from x and toward^. The fast axis of the first wave 
plate is at 45°, and the fast axis of the second 
quarter-wave plate (Q2) is at -45°. The polarizer (P) 
is oriented to pass light at 70°, the same as the 
incident linear polarization. The polarizer pro- 
duces a substantial amount of wave-front distortion 
across its full aperture. The illuminated area and 
consequently distortion are reduced by placement of 
the polarizer near the focus of the Fourier-transform 
lens. The projector brightness and contrast con- 
trols are set to maximum, and the sharpness is set to 
minimum. 

The effect of maximum sharpness is clearly evi- 
dent on broadly extended diffraction patterns. In 
particular, if the LCTV is driven by a digital image of 
white noise, the envelope of the resulting speckle 
pattern resembles the diffraction pattern of a single 
pixel except that it is modulated in the horizontal 
direction by six high-contrast stripes covering the 
separation between adjacent diffraction orders of the 
SLM. This scallop-shaped pattern is reduced for 
the minimum sharpness setting. We further re- 
duced the effect in our experiments by programming 
multiple adjacent pixels with the same video level, 
i.e., grouping pixels together into superpixels. The 
scalloped diffraction pattern is probably due to filter- 
ing produced from the combination of sharpness 
control, the LCTV pixel integration/charging time, 
and the 5:4 mapping between the frame grabber and 
the LCTV pixels. 

Aperture A2 is chosen to be 15.2 mm X 15.2 mm. 
This limits the illuminated area of the SLM to 272 
pixels by 332 lines.    For the available lenses this 
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Fig. 3. Point-spread function of the SLM aperture as measured 
and predicted. The cross section is taken across the center of the 
spot perpendicular to the horizontal lines of the SLM. 

permits registration of the image of the first LCTV 
onto the second LCTV to better than 0.5 pixel in both 
x andy. We verified the alignment by modifying the 
optics to make amplitude modulation evident. We 
did this by rotating the wave plates into an appropri- 
ate orientation and placing the polarizer and the 
video microscope immediately after the second LCTV. 
Aperture Al at the Fourier plane between the two 
LCTVs is also opened so that the edges of individual 
pixel apertures from the first LCTV are observable 
through the pixel apertures on the second LCTV. 
Single line and row patterns are programmed onto 
the LCTVs, and micropositioners are used to align 
the patterns. The microscope is mounted on trans- 
lation stages, and the alignment is checked at sev- 
eral positions across aperture A2. The alignment 
errors only become noticeable close to the edges of 
the aperture and appear to be caused by a slight 
barrel distortion in the imaging optics. After the 
alignment is set and/or tested in this way, aperture 
Al is once again set to pass only the central diffrac- 
tion order, and the system is reconfigured according 
to Fig. 2. 

In addition to registration, aperture A2 is also 
needed in order to improve optical flatness so as to 
achieve near-diffraction-limited Fraunhofer patterns. 
We determined this by measuring the point-spread 
function of the SLM aperture with the video micro- 
scope. For the modulated light to be separated 
from the unmodulated light, the SLM, rather than 
being programmed with a constant gray-scale level, 
is programmed with a periodic ramp that displaces 
the point-spread function from the optical axis. 
(Details on selection of the ramp function and offset 
are given in Section 4.) Figure 3 compares the 
spread function measured at the focal plane of the 
transform lens with the diffraction pattern ideally 
produced by a 15.2-mm aperture and a 381-mm 
transform lens. The experimental intensity trace is 
taken across the center of the intensity peak, and it 
is aligned along a horizontal line of the camera in 
order to improve resolution. The correct scale for 
the spatial coordinates was determined by the manu- 
facturer-quoted dimensions for the CCD imager to- 
gether with the measured magnification of 9.76Z 

(nominally a 10X objective is used) for the video 
microscope. 

Amplitude-modulating properties of the SLM. 
We also measured (using a photodetector and a 
powermeter in place of the video microscope) the 
variation in intensity of this central diffraction order 
when the uniform gray-scale image from the frame 
grabber is varied from full black to full white. The 
residual amplitude modulation is ±3.7% of the aver- 
age amplitude modulation. The maximum trans- 
mittance is at a gray scale of-128, and there are two 
local minima at ~40 and —256. 

We also measured energy utilization of the SLM 
between the input face of Ql and the output face of 
Q2. We did this by measuring the intensity flux 
across the (effective) input and output apertures (A2 
projected onto Ql and Q2.) With the SLM set for 
maximum transmittance, only 0.325% of this inci- 
dent energy is measured at Q2. Since one desirable 
feature of the eigenpolarization mode is its low loss, 
we were initially concerned about the low optical 
efficiency. We also configured the system as a phase- 
only modulator by illuminating each LCTV with a 
linear polarization and passing the linear polariza- 
tion that most closely approached phase-only opera- 
tion. The efficiency of this cascade is l/6 that of the 
eigenpolarization arrangement. (It also has a simi- 
lar phase-modulation range.) 

The most significant loss factor is apparently 
related to the shadow mask in each LCTV panel. 
Measurements under a microscope indicate that the 
pixel aperture is roughly 28 um X 28 um on a pitch of 
56 urn horizontally by 46 um vertically leading to a 
fill factor of approximately 30%. Therefore only 
30% of the energy is transmitted through the first 
shadow mask. Based on the Fourier-series analysis 
of a square wave, only 30% of this energy remains in 
the zero order at the filter plane between the two 
lenses of the imaging system. Owing to the spatial 
filtering of the nonzero orders, the second LCTV 
should produce an identical reduction in the transmit- 
ted flux. Overall, these losses would lead to a 
transmittance of 0.86%. Thus in this configuration 
even moderate fill factors can be the dominant 
source of loss. 

Phase-modulating properties of the SLM. We ini- 
tially measured the phase shift by building a Mach- 
Zehnder interferometer around the SLM arrange- 
ment shown in Fig. 2. The reference beam was 
tilted to produce fringes vertical to the video scan. 
The shift of the fringe between the row driven with 
gray scale 0 and a row driven with another value of 
gray scale was measured. These measurements 
indicate that the phase increases monotonically from 
0° to 326°. A rough curve that approximately de- 
scribes the phase shift as a function of gray scale is a 
curve that has a linear slope of 2° gray-scale level 
between gray-scale levels 0 and 140 and 0.4° per 
gray-scale level between 140 and 255. 

This measurement procedure, however, appears to 
be subject to several errors, including coherent noise, 

10 Month 1996 / Vol. 35, No. 00 / APPLIED OPTICS 

105 



7(0) = N2R2[( 
1 + COS l|f 

(8) 

0 256 64 128 192 
Gray Scale 

Fig. 4. On-axis diffraction intensity for random binary gray- 
scale patterns and with superpixels of various sizes. Each curve 
is normalized to the peak intensity with the gray scale equal to 

curvature, low contrast, and vibration (caused by air 
turbulence) of the fringes. Furthermore, we had 
concerns about errors introduced by the additional 
optical components of the interferometer. A second 
measurement procedure was devised in order to 
confirm the phase measurements. The procedure 
also indicates the dependence of the phase modula- 
tion on the spatial frequencies of the signal applied 
to the SLM. To perform the measurement, one 
loads a pseudorandom binary-level pattern into the 
frame grabber. An aperture and a powermeter are 
positioned at the focal plane of the transform lens 
shown in Fig. 2 so as to intercept the central 
diffraction order. Half the SLM pixels are ran- 
domly selected and driven with a gray-scale value of 
0. The other half are driven with a second gray- 
scale value chosen between 0 and 255. The inten- 
sity measured on the powermeter is recorded as a 
function of gray scale. The measurement was re- 
peated for various SLM pixel sizes, where an SLM 
pixel is defined to be an n X m array of LCTV pixels 
that are programmed with the same gray-scale 
value.    These results are plotted in Fig. 4. 

Diffraction from a binary-level, phase-only modu- 
lation can be understood by the analyses from Ref. 1 
that were used originally to describe pseudorandom 
encoding. In this case each pixel is programmed to 
have an identical effective amplitude that produces 
an expected intensity pattern consisting of a diffrac- 
tion-limitd spot centered on the optical axis and a 
broad background noise level. Since the light from 
all SLM pixels mutually interferes at the intersec- 
tion of the optical axis and the focal plane (i.e., fx 

equal to zero), as illustrated in Fig. 1, the intensity of 
the spot depends directly on vp, the difference be- 
tween the two phases present on the SLM. The 
phasing on axis can be evaluated by deterministic 
analysis alone. For an ideal phase-only SLM in 
which each pixel can be controlled independently of 
all others, the intensity of the diffraction peak on the 
optical axis is 

where N is the number of SLM pixels and R(fx) 
(introduced in Section 2) is the element factor corre- 
sponding to the pixel clear aperture. As would be 
expected, Eq. (8) indicates that there is perfect cancel- 
lation of the spot for a phase difference of 180°. (In 
practical measurements a finite detector size and 
nearby speckles would introduce errors into the 
measurement of power. However, since TV is usu- 
ally a large number, speckle noise is not a serious 
source of error over most of the phase range. 
Assuming that the SLM has adequate phase range, 
it would also be possible to offset the lower gray-scale 
value from zero to a larger value in order to more 
clearly measure the 180° point.) 

Based on the initial phase measurements with the 
Mach-Zehnder interferometer, it is reasonable to 
expect that there would be a simple and direct 
relationship between the phase difference and the 
nonzero gray-scale value. Indeed, the curves in Fig. 
4 show a qualitative agreement with this model in 
that they resemble a cosine function for gray-scale 
values of <128. For gray-scale values of >128 the 
intensity increases but much more slowly than for 
the lower gray-scale values. This tracks with the 
interferometer measurements of phase in which the 
phase sensitivity to gray scale decreased at large 
values of gray scale. 

The curves indicate that the phase-modulation 
range increases with SLM pixel size. The maxi- 
mum range in these curves is for the 12 X 12 array. 
The maximum value of 7(0) after the phase exceeds 
180° is 0.57. Inverting Eq. (8) gives an estimated 
modulation range of 278°. For the 4 X 1 SLM pixel 
there is barely a 180° range. The correspondence 
with the original interferometer measurements ap- 
pears to be good for low spatial frequency patterns of 
modulation; however, the actual phase modulations 
needed for the encoding experiments have a range of 
frequencies from high to low. 

Summary of SLM properties. The cascade of two 
SLM's was originally intended to produce a phase 
modulator with a range of 360°. The measured 
SLM does have a small degree of residual amplitude 
modulation. It also has a large phase-modulation 
range that is close to 360° but only for modulations 
with low spatial frequencies. The phase-modulat- 
ing characteristics can be made independent of 
spatial frequency by use of large SLM pixels; how- 
ever, this significantly reduces the number of avail- 
able pixels for the encoding experiments. (For the 
case of 12 X 12 SLM pixels and the available clear 
aperture there are fewer than a thousand invidiaul 
pixels.) 

4.    Experimental Demonstrations of Pseudorandom 
Encoding 

Adjustments made for demonstrations with the avail- 
able SLM.    Since the available SLM does not achieve 
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Fig. 5. Intensity of the deflected point-spread function as a 
function of the carrier period. Intensities are normalized to the 
intensity of the undeflected (on-axis) point-spread function. The 
unit for the carrier period is the number of horizontal SLM lines 
per period. 

a 360° range, there is usually a dc component in the 
spatial modulation and a corresponding diffraction 
peak at fx equal to zero. We chose to separate the dc 
component by multiplying the modulation by a peri- 
odic function. We accomplish this by adding to- 
gether a linear ramp function with the gray-scale 
values of the encoded signal, modding the result to 
between 0 and 255, and placing this image in the 
display memory of the frame grabber. Several har- 
monically related diffraction patterns are generated, 
of which the fundamental is usually the brightest. 
It is this fundamental diffraction pattern that we 
compare with those anticipated from our presumed 
phase-only modulator. 

The fundamental spatial frequency of the phase 
ramp (i.e., the carrier frequency) also affects the 
quality of the diffraction pattern. This is most 
evident in that the point-spread function decreases 
with increasing phase ramp or carrier frequency. 
This is illustrated in Fig. 5, in which diffraction 
efficiency is plotted against the period of the carrier. 
Efficiency for this measurement is denned as the 
peak intensity normalized by the intensity of the 
spread function when it is centered on the optical 
axis (specifically, when all pixels of the SLM are 
programmed to gray-scale value 0). The peak inten- 
sities are measured (by the digital oscilloscope in Fig. 
2) across a single video line of the CCD camera 
(rotated 90° from horizontal lines of the SLM). 
Figure 5 can be viewed as a type of modulation 
transfer function. The curve shows for periods be- 
tween 20 and 70 SLM lines that the diffraction 
efficiency is close to flat. The efficiency falls off 
rapidly at <10 lines. For the pseudorandom- 
encoding demonstrations, presented below, a period 
of 20 lines was found to be acceptable. As the 
period increases to >20 lines, interference from 
overlap with the dc and the first-harmonic order 
becomes increasingly significant. Figures 5 and 4 
indicate that individual pixels are notcgej^d;eti1?of 
the modulation of nearby pixels. It is surprising 
that there is still residual correlation between pixels 

that are 10 and 20 lines apart. Certainly, by any 
criteria, the resolution of the SLM is far worse than 
one pixel. 

The various issues relating to making the SLM 
behave as an array of independently controllable 
pixels cannot be well satisfied with the given con- 
straints of maintaining a diffraction-limited aper- 
ture, the low spatial resolution of the SLM, the lack 
of 1:1 mapping between display board pixels and 
SLM pixels along the seal line, and the need for a 
large number of pixels. These constraints led us to 
program the SLM as clusters of superpixels. Each 
superpixel consists of 4 pixels along a single scan line 
for 22,000 total pixels, which is roughly the same 
number of pixels (16,384) as used in the simulations 
in Ref. 1. Using a 4 X 2 superpixel was not consid- 
ered after noting, based on Fig. 4, that the total 
phase-modulation range would increase to only 193°, 
an increase of as little as 13°. Thus the SLM is 
programmed as if it consists of 68 X 332 superpixels, 
and the carrier has a period of 20 lines in the vertical 
direction. 

Design and encoding of full-complex modulations 
for beam shaping. Three apodizations are designed 
to produce rectangularly shaped diffraction patterns 
centered on the optical axis. The apodization is the 
product of a sine function and a Dolph window in the 
x, or horizontal, direction.11 This window is chosen 
to reduce the Gibbs ripple that can result from the 
finite extent of the SLM truncating the sine function. 
The specific Dolph function selected is defined by the 
sidelobe level of its Fourier transform d(fx), which for 
these designs is 26 dB. Higher sidelobe-level Dolphs 
are known to further reduce the Gibbs ripple, but 
they also increase transition bandwidth. As for 
pseudorandom encoding, higher-sidelobe-level Dolphs 
are more steeply tapered, which reduces the value of 
diffraction efficiency -n [see Eq. (7)] and consequently 
increases the speckle noise [see Eq. (6)j. In the 
computer simulations of random-encoding-designed 
diffraction patterns in Ref. 1, a 26-dB sidelobe level 
was empirically found to provide a good trade-off 
between reduction in the Gibbs ripple and back- 
ground noise. The same apodization was applied 
both in the horizontal and the vertical directions. 
In the designs for the experiments presented here, 
the apodizations vary in only the vertical direction. 
The one-dimensional apodization is used with the 
objective of further increasing the diffraction effi- 
ciency and reducing the random noise inherent to 
the encoding procedure. The apodizations are cho- 
sen to produce diffraction-intensity patterns of the 
form 

I(fx, fy) « sinc2(/;)[ci(/,)Arect(/»]2, . (9) 

where sinc2(fx) is the point-spread function in the x 
direction and d[fx) is the Fourier transform of the 
Dolph window. The amplitude in the y direction is 
designed to approximate a rect function of width w 
for values of 2, 3, and 4. The width is normalized in 
terms of the unity width (from peak to first null) of 
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— Measured 
—Theory 

Fig. 6. Gray-scale images of the measured diffraction-pattern 
intensity: (a) the measured point-spread function (cross section 
shown in Fig. 3). The measured diffraction patterns that are 
designed to approximate a rect function in/J, are of widths (b) w = 
2, (c) w = 3, and (d) w = 4. The images are oriented so that/j. is 
horizontal to the page. 

sinc2(/y), the point-spread function in they direction. 
From Fig. 3 it can be seen thatw = 1 corresponds to a 
physical distance of ~ 15 um. 

Each of the three apodizations are pseudorandom 
encoded by Eqs. (l)-(3). As described above, these 
modulations are then multiplied by a carrier fre- 
quency with a period of 20 video lines before being 
loaded onto the frame grabber. Theoretical diffrac- 
tion patterns of the apodizations are also calculated. 
This is done by a 256 X 4096 fast Fourier transform 
on the 68 X 332 designed modulations (zero padded 
to the size of the fast-Fourier-transform array). 
Cross sections in they direction from the centers of 
the theoretical diffraction patterns are saved for 
comparison with the measured diffraction patterns. 

Summary of experiments and their comparisons 
with theory. The diffraction patterns are recorded 
with the CCD camera in the video microscope ro- 
tated by 90° from the x (horizontal) and the y 
coordinates of the SLM. The resulting images are 
shown in Fig. 6. In each of the four images the CCD 
camera is saturated by roughly the same factor with 
respect to the peak intensity of the desired pattern in 
order to aid in comparisons of the background levels. 
Figure 6(a) is the image of the point-spread function. 
(The cross section of this diffraction pattern is shown 
in Fig. 3.) The cross sections corresponding to Figs. 
6(b)-6(d) are shown in Figs. 7 and 8(a). Except for 
changes in attenuator settings, the corresponding 
curves and images were recorded under identical 
conditions and within a few minutes of each other. 

Figure 6(a) shows that a substantial amount of 
energy is deflected into the fundamental order and 
that there is much less energy at dc and the first 

(b)    0.06 

I 0.04- 

0.02- 

-150 -75 0 75 
Distance (urn) 

150 

Fig. 7. Theoretical and measured diffraction patterns. Mea- 
sured intensity curves are normalized with respect to the peak 
intensity of the measured point-spread function in Fig. 3. Cross 
sections are taken from the centers of the diffraction patterns 
shown in (a) Fig. 6(b) and (b) Fig. 6(c). Theoretical intensity plots 
are scaled by 1.96X in (a) and by 1.53X in (b) with respect to the 
peak intensity of the theoretical point-spread function in Fig. 
3. Both measured curves are plotted with a +4-um offset from 
the center of the measured point-spread function. 

harmonic. The first diffraction order (not shown) to 
the left of dc is much weaker than the fundamental 
but stronger than dc and the first harmonic. Fig- 
ures 6(b)-6(d) show the successive widening of the 
beam footprint. The first harmonic is still quite 
faint for the shaped beams, but dc is now very bright. 
As can be seen from the vertical axes in Figs. 7 and 
8(a), the intensity of the fundamental is much less 
than it is in Fig. 6(a). The sidelobe structure of the 
dc component in Figs. 6(b)-6(d), although more heavily 
saturated, closely resembles the point-spread func- 
tion in Fig. 6(a). Each of these diffraction patterns 
also shows, as expected, both a background speckle 
pattern and sidelobes along the narrow direction of 
the beam footprint. 

Figures 7 and 8(a) provide more precise informa- 
tion describing the measured diffraction patterns. 
The three measured curves are normalized to the 
peak intensity of the experimental point-spread func- 
tion in Fig. (3). The three theoretical curves were 
initially normalized by the peak intensity of the 
theoretical curve in Fig. 3, but the curves were found 
to be somewhat lower than the experimental intensi- 
ties. Multiplying the theoretical curves by vertical 
scale factors (between 1.53 and 1.96 as noted in the 
corresponding figure captions) helps to show just 
how similar the curves are in shape. Offsetting the 
measured data by 4—5 pm further improves the 
correspondence, but to a much lesser degree.   In 
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Fig. 6. Grayscale images of the measured diffraction pattern intensity, a) The measured point 

spread function which would ideally be of the form sinc(*)sinc(y). The measured diffraction 

pattern designed (using a window design procedure) to approximate b) rect(x/2)sinc(y), c) 

rect0c/3)sinc(y), d) rect(x/4)sinc(y). Each image is saturated by approximately the same factor 

with respect to the peak intensity of the (desired) pattern centered at the carrier frequency. 

109 



-75 0 75 
Distance (um) 

(a) 

-75 0 
Distance 

(b) 

\im) 
-75 0 75 

Distance (um) 

(c) 

150 

Fig. 8. Theoretical (dashed curves) and measured (solid curves) diffraction patterns: (a) cross section of the center of the diffraction 
pattern shown in Fig. 6(d); (b) the average of 120 cross sections with a different random seed for each experiment; (c) the error bars (plus- 
and minus-one standard deviation) of the average intensity in (b). Curves are normalized the same as in Fig. 7 except that the measured 
curves are plotted with a +5-um offset and the theoretical curves are scaled in intensity by a factor of 1.64X. 

these experiments the scale-factor difference be- 
tween experiment and theory is the most significant 
discrepancy. The offset in position is rather small 
when compared with the diameter of the point- 
spread function. These discrepancies are probably 
due to one or more of the nonideal properties of the 
actual SLM, none of which were factored into our 
theoretical model. It is not our goal to account for . 
these differences quantitatively but rather to gain 
insight into how the encoding method would behave 
when 360° modulators become available. For this 
reason we think that the degree of correspondence, 
while qualitative, is nonetheless excellent, and we 
are encouraged by this result. 

Further evidence of the correspondence between 
experiment and theory can be demonstrated by 
repeated trials of the pseudorandom-encoding proce- 
dure. An example of this is given in Fig. "8. Here, 
the experiment leading to the result in Fig. 8(a) is 
repeated 120 times. The only difference between 
each trial is that the random-number generator is 
initiated with a different random seed for each 
encoding. The average intensity of the 120 trials 
(both experiment and theory) is calculated, as is the 
plus- and minus-one standard-deviation error bars 
of the intensity pattern. The number of trials is 
adequate to produce theoretical diffraction patterns 
that, for purposes of plotting, are nearly identical to 
the ensemble average that would be found for an 
infinite number of trials (i.e., found by Eq. (6) and the 
equation for standard deviation in Ref. 1). One can 
appreciate the small difference by noting that the 
theoretical curve in Fig. 8(b) has almost equal-level 
ripples, whereas the expected intensity for an infi- 
nite number of trials has exactly equal-level ripples. 
This degree of agreement between theory for a finite 
and theory for an infinite number of trials was found 
for the theoretical results in Fig. 8(c) as well. 

The measured and the theoretical average curves 
in Fig. 8(b) show more clearly the correspondence 

than does Fig. 8(a). The discrepancies between the 
two average curves indicate differences caused by 
systematic errors in the experiment.12 Most nota- 
bly, the measured curve exhibits more ripple and 
higher sidelobes, or noise. The larger error bounds 
in Fig. 8(c) indicate that more random noise is being 
introduced into the measurement than that for the 
theory (in which noise is due only to the random 
statistics used in encoding). The measured error 
bounds are only ~60% wider than theoretical in-band. 
Nonetheless, we think that the degree of agreement 
is quite good considering that the SLM is so different 
from the assumed device, a 360° phase-only SLM. 
Most important is that the diffraction patterns pro- 
duced do qualitatively agree with our theory in that 
the beam shape is controllable and there is a broad, 
near-uniform intensity speckle background. As de- 
vices that do produce 360° become available, it 
appears that it will be possible to synthesize diffrac- 
tion patterns with greatly improved accuracies. 
Elimination of the need for a carrier frequency will 
also make it possible to use the entire bandwidth of 
the SLM for signal processing. 

5.   Summary and Conclusions, of H%\^ ^^ 

SLM measurements arid-characterization procedures. 
A secondary goal- of this paper has been to describe 
the properties 'and-the eharacterization-of-the SLM., 
In most previous studies of electrically addressable 
SLM's, the modulation transfer function has been 
ignored. Our measurements, in which we applied 
different carrier frequencies, indicate that spatial 
frequencies of <5 SLM lines are substantially filtered. 
There is even a nontrivial amount of filtering a_t 
10-15 SLM lines. The filtering reduces thephase- 
modulation range and causes the random-phase 
components at nearby pixels to become statistically 
correlated. This point may have been overlooked in 
some previous interferometric studies of SLM phase- 
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modulating properties in which large blocks of pixels 
were programmed with the same gray-scale value. 

Recently, two groups have focused on common- 
path interferometric approaches in order to elimi- 
nate vibrations.13'14 One procedure is as follows: 
(1) the beam is split with a Ronchi ruling; (2) one 
beam is passed through a reference portion of the 
SLM (programmed to gray scale 0), and the second 
beam is passed through a portion of the SLM that is 
modulated with a second gray-scale value; (3) the 
beams are recombined and detected by camera; and 
(4) the phase shift of the sinusoidal interference 
pattern is measured.13 The second procedure is as 
follows: (1) a 50% duty-cycle square wave (Ronchi 
ruling) is programmed onto the SLM with half the 
gray scale values set a? 0 and the other half set to a 
second level; (2) the diffraction pattern of the SLM is 
detected by camera; and (3) the phase is decoded 
based on the relative intensities of the first and the 
third diffraction orders.14 An alternative common- 
path procedure is described here in which a pseudo- 
random binary-phase-modulation pattern is applied 
to the device. The method is useful in that it is an 
iTi situ measurement procedure that requires no 
extra beam splitters or combiners, and various-sized 
superpixels can be evaluated. Since only the inten- 
sity of the on-axis diffraction pattern is needed, the 
measurement can be performed with a single photo- 
detector. Also, over most of the phase range, the 
diffraction-limited spot is much brighter than the 
background speckle noise, which can lead to repeat- 
able measurements of phase. For SLM's that have 
fairly uniform characteristics across the surface of 
the device and for which the amplitude variation is 
also known, it will also be possible to measure the 
phase with high precision. 

Experimental demonstration of pseudorandom en- 
coding. We attempted to develop a 360° modulator 
by cascading two TVT6000 SLM's. A modulation 
range of 326° was measured initially. However, the 
phase modulation was also found to depend on the 
spatial frequencies present on the SLM. For high 
spatial frequencies the modulation range decreases 
to -180°. Although it was found that increasing 
the size of superpixels also increases the phase- 
modulating range, the superpixels could not be made 
large enough to simultaneously eliminate the sensi- 
tivity of the SLM to spatial frequencies and provide a 
reasonably large number of pixels for the encoding 
experiments. It is comforting to note that the car- 
rier frequency and the apodization are slowly vary- 
ing functions. However, the random-phasor portion 
[see Eq. (2)| of the modulation pattern (that controls 
amplitude) contains the highest spatial frequencies. 
The portions of the apodization that are designed to 
produce the smallest amplitudes will have the larg- 
est random spread [see Eq. (3)] and thus the most 
rapid phase transitions between adjacent pixels. 
Thus the low-amplitude portions are expected to be 
the most in error owing to the modulation-transfer- 
function limitations of the SLM.    In addition, the 

nonlinear mapping between gray scale and phase 
was not factored into the theoretical diffraction 
pattern. The use of the carrier frequency also means 
that different portions of the apodization pattern are 
phase encoded by different ranges of the nonlinear 
mapping curve. Despite these properties, which 
are significantly different from an ideal array of 
independent 360° phase-only pixels, qualitatively 
similar results were produced. Not only were the 
diffraction patterns very similar in shape to ideal, 
but a broad background of speckle was observed. 
The statistically averaged experimental results were 
also quite similar to theory, and the error bounds 
were only somewhat noisier than theory. These 
experimental results lead us to conclude that pseudo- 
random encoding is a robust procedure in that the 
theoretical predictions will reasonably match the 
experimental results without use of a perfectly ideal 
SLM. 
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ABSTRACT 

Any desired diffraction pattern can be produced in the Fourier plane by specification of a corresponding input 
plane transparency. Complex-valued transmittance is generally required but, in practice, phase-only transmittance is used. 
Many design procedures use numerically intensive, constrained optimization. We, instead, use a non-iterative procedure 
that directly translates the desired, but unavailable, complex transparency into an appropriate phase transparency. At each 
pixel the value of phase is pseudorandomly selected from a random distribution whose standard deviation is specified 
by the desired amplitude. We apply the pseudorandom phase-only encoding to Hybrid Composite filter design. These 
filters are used in a filter bank architecture to perform intensity- and distortion-invariant pattern recognition. 

2. INTRODUCTION 

This study is motivated by a desire to design phase-only composite filters with a small amount of electronic 
computation and thereby permit programming of arbitrary spatial modulation at real-time rates. Popular design 
procedures (e.g. the Dammann grating,1"3 simulated annealing,4 iterative constrained optimization,5,6 and other iterative 
procedures) are only practical if performed off-line due both to the numerical cost of performing Fourier transforms 
repeatedly and the further cost of evaluating the sensitivity of the transform with respect to a large number of pixels 
(frequently every pixel of the input plane spatial light modulator.) While it can be argued that for some applications all 
necessary phase-only, fillers can be computed off-line and stored in memory, in other applications either too much 
memory is needed to do this affordable or there may not be advance knowledge of what filter is needed. 

There are many procedures in the area of computer generated holography, especially kinoforms, that permit direct 
synthesis of the input plane. These presuppose that the Fourier transform pair between the fully complex-valued input 
and Fourier planes are known and work by encoding the desired complex values to appropriate phase settings. The direct 
synthesis design procedures thus allow programming at real-time rates, if the desired Fourier plane pattern is known.7 

The amount of memory is also minimized if the complex valued Fourier transform pair can be written as an easily 
computed function. 

Most frequently the direct procedures group a few adjacent pixels together as a single pixel that approximates 
several discrete settings over the complex plane (i.e., cell-oriented encoding).8 This however reduces the space 
bandwidth, which is already quite small (typically 128 x 128 pixels) for current spatial light modulators, as compared 
to traditional fixed pattern holographic and diffractive optical elements. The procedure developed by Cohn and Liang,' 
which we apply here is also a direct method, but one where a continuous value of phase is selected for each individual 
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pixel independent of all other settings (i.e., point-oriented encoding).8 

Cohn and Liang's method directly follows from mathematical models of far-field diffraction from arrays of 
randomly-phased point sources. More specifically, the phases are treated as independent and non-identically distributed 
random variables. Many previous studies have considered random phase diffusers in which the phase statistics are 
identically distributed across the diffuser. The objective of that work was improved holographic reconstruction of the 
intensity of objects and for which the phase was of no concern to the observer. In our design we are interested in 
reconstructing full complex objects from a variably-random phase-only filter plane. In our analysis and design procedure 
it is convenient to represent the random variables with a single probability density function that is varied in its mean 
and standard deviation. Our previous analysis9, shows that on average, the pixels with phases drawn from distributions 
of larger standard deviation behave as if they have smaller amplitude transmittances. This result originally occurred to 
us when we noted an average contrast loss for arrays of phase-only pixels that have identically distributed phase errors.10 

We now recognize that this earlier result is just a special case of the more general result for non-identically distributed 
phases. 

The ideal SLM, under consideration, modulates phase continuously over a full 2K range. Regularly spaced pixels 
are assumed in the examples but are not required in theory. These characteristics may be achievable with twisted 
nematic11 liquid crystals. For binary and multi-level optics the quantized values of phase can be modeled as statistical 
departures from the desired analog phase and this added effect on the diffraction pattern can be estimated.1012 

3. RANDOM PHASE CONCEPT 

Our design procedure specifies the degree of randomness (i.e. standard deviation) of phase at each pixel in order 
to approximate arbitrary values of amplitude. This is analogous to placing a diffuser of spatially varying roughness over 
the input plane. Increasing roughness at a pixel decreases its coherent contribution to the far-field pattern. The remaining 
incoherent, or diffused light is spread over the entire diffraction pattern and contributes a noise background that is 
frequently referred to as speckle. The design phase at any pixel is specified as the expected value of its random phase 
distribution. Thus the full complex input plane can be viewed as a cascade of a deterministic phase screen with a variable 
roughness phase screen. 

In our design procedure, rather than average many trials, we instead select a single value of phase from the 
ensemble for each pixel. The expected complex amplitude and intensity of the far-field pattern for this situation is 
mathematically equivalent to that described in the previous paragraph. More important, the actual far-field pattern 
approximately resembles the average pattern that results from the coherent summation of a large number of random 
wavefronts. Thus, the formation of the far-field pattern can be viewed as a physical example of the central limit theorem. 

3.1  Mathematical analysis of random phase 

Definitions for arrays of pixels are used in the development of the statistical expressions. The complex 
transmittancc of an individual pixel centered at position x equal to xf in the input plane will be written as a^x) and the 
transmiltance of the array of the N individual pixels is 

t(x) = E at(x) = E r(x-xt) exp(y^), U) 
i-i t 

where y{ is the phase shift produced by the i'th pixel of the SLM. The abbreviation r(x) = rect(x/w) has been used where 
w is the width of each pixel. The amplitude and phase of each pixel as shown in Eq. (1) has been defined in local 
coordinates centered around x=0 and then shifted to pixel locations X;. In this and subsequent equations Ihe inactive area 
between the pixels is treated as being zero amplitude. This is done in order to focus on the fundamental effect. The 
intensity of the far-field diffraction pattern is written as 

/(/,) = nfx)T'{fx) = sr{t(x)®t{x)}, (2) 
where T(fx) is the Fourier transform of the transmittance t(x) (i.e. T(fx) = ^]t(x)}) and where ® indicates the correlation 
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integral such that 

fl(x)©*(x)--/a(x'+x) &•<*')*'• (3) 

The squared intensity spectrum expressed in terms of the fourth-order autocorrelation of SLM transmittance is 
Unlike convolution, the order in which correlations are performed affects the result, and thus the brackets are required 

/2 = rrrr= p-{[t(x)®t(x)]@lKx)®t(.x)]}. (4) 

in Eq. (4). 

3.2 Statistical expressions 

The expected value of a complex phasor of a random argument is frequently referred to as the characteristic 
function of the random variable xjr 

M'(a) = <exp(./oi|0> = /exp(y»*)/>T0|r) <fy = 2TI .F~'{/>,01r)}, (5) 

where <> is our symbol for the ensemble average (i.e. expectation) operator and where py(y) is the probability density 
function of y. The last equality in Eq. (5) emphasizes the well known Fourier transform relationship between the 
probability of the density function and the characteristic function. If the phases \|/; are independent random variables then 
the expected value of pixel transmittance a^x) is 

ät(x) = < at(x) > = < r(x -xt) exp(y i|r,) > 

= rlx-xjltfa) (6) 

= r(jc-Jc,)MP(y*,)Af,(l) , 

where M/ is the characteristic function of ^ and M; is the characteristic function of the unbiased values of phase \ft - 
<\|/i>.   The last line of Eq. (6) has been written to identify the magnitude and phase components. 

We consider two specific probability distributions for phase y{.  For gaussian distributed phase of standard 
deviation a{ 

J«i(l)   =   cxp(-iof), (7) 

and for uniformly distributed phase with total spread 

».-VE»,. « 
then 

(9) Afj(l)   =   sine 

For either distribution the average amplitude transmittance at each pixel i can be controlled explicitly by selection of the 
value of the standard deviation at. In digital simulations we prefer the uniform distribution since most gaussian random 
number generators are derived by performing additional numerical operations on uniform samples. A further advantage 
of using uniform statistics is that the total spread never need exceed 2TC, whereas with gaussian statistics the standard 
deviation can be infinite, and which can lead to overflow and underflow errors if not handled carefully. 

The expected value of Eq. (1), using either probability distribution, is the expected SLM transmittance 
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t(x) = E <fl/x)> = £ r(x-xt) M,(l) expUV,) (10) 

Note that because the expectation and Fourier transform operators are both linear the expected far-field transmittance 
(more precisely, the angular spectrum) is 

T(fx) = *-{»(x)). <n> 

3.3 Summary of the design procedure 

The above analysis indicates that a phase-only source distribution can be treated as a full-complex distribution 
for the purpose of approximating a desired far-field pattern. The results from above can be used in a design procedure 
as follows: 

1. Specify the desired far-field pattern T(Q or frequency domain filter. 
2. For each pixel i: 

Invert Eq. (9) (preferred, or Eq. (7)) to find a-t. 
Select a pseudorandom number, appropriately scaled by O; to represent the random phase \|/; and add 
to the existing pixel phase. 

4. HC FILTER DESIGN 

The Hybrid Composite (HC) filter design13 is a family of filters. Each HC filter in this family is a combination 
of four different designs; Synthetic Discriminant Function (SDF)1*, SDF Linear Phase Response (SDFLPR),15 Minimum 
Average Condition Energy (MACE),16 and Linear Phase Coefficient Composite (LPCC)15 filters. These filters are 
combined into a unified form by two different parameters al and o2. Various choices of (Oj,o2) lead to one of the 
above fillers. Hassebrook et al., developed this filter family in an effort to understand the underlying differences and 
similarities between the different filter designs. They found the HC filter detection and discrimination performance was 
the same or superior to any one of its component filter types. We give brief background explanation and design equations 
for the HC composite filter. 

4.1 SDF and SDF LPR 

The SDF design14 is based on linearly weighting the training images.  If the dxN matrix X represents the 
target training image matrix, with N training images and d pixels for each image in the training-set then the SDF filter 
design is 

A«, " X,fl . <12> 

where Nx 1 vector a is the weight vector.   In SDF design the weights are chosen to satisfy a specified response 
constraint at the origin of the correlation plane. 11 the NxN matrix 

R = KTX , (13) u       i    t 

represents the correlation matrix for the target class, the ft     design is given by 

SDF t   It * 

where Nx 1 vector y. is the specified response of SDF at origin for the target training set. By constraining the output 
response to be complex with constant magnitude and linear phase, we define the SDF Linear Phase Response (SDF LPR) 

filters.  Therefor the vector v. for SDF-LPR is y = *„$*, the magnitude value is real and positive and vector $! is 

Fourier vector with element values defined by exp(,-2nkn/N) for k=0,l,...,N-l and n=0,l,...,AM. 
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4.2 MACE niters 

The MACE filter16 was designed to simultaneously constrain the correlation origin response while minimizing 
the average correlation energy for all the training images. The resulting correlation tends to have a relatively sharp peak 
at origin and low sidelobes. The MACE filter was originally designed in the frequency domain and its filter equation 

iMCE = tftsTWt <15> 
where the symbol "A" represents the filter in frequency domain, "H" represents the complex conjugate of the matrix, anddf xd 

diagonal matrix ß is the energy matrix. 

The spatial domain version of MACE, (SMACE),17 is obtained by using the inverse pseudo-DFT matrix and is 
given by 

<w = ^xortr* "* • (16) 

4.3 LPCC filter 

LPCC filter design13 is a family of filters. It uses' phasor relationships, in conjunction with proper training set 
selection to obtain inherently discriminating filters. The filter equation for the £th order LPCC filter is 

*«c = *Ä ' (17) 

with $* defined as before and for Jt = 0,1 AM. The LPCC filters are orthogonal and are combined into a filter bank 

for better performance. 

4.4 Filter unification 

The HC filter is designed to unify the aforementioned types into a single filter family. Two parameters arc used 
for the unification. One parameter is ax which is used to control the variation between SMACE and classical SDF 

designs by weighting the sum of the spatial energy matrix fi, used in SMACE, and the white noise (zero mean and 

variance of o2/2) assumed for SDF design. The resulting filter equation is 

K - fc'WW1 *' (18) 

where 

Ea = fljfi +(l-o1)Wo2/(<, <19> 

where the dxd matrix / is an identity matrix and the dxd matrix £ contains the spectrum of the training set. Each 

element y[n] of the Nx\ vector v. represents the origin response for the nth training image. The parameter op 

(0<; ax £. 1) allows incremental variation between ß (i.e. training set spectrum information) and / (i.e., the white noise 

spectrum). When Oj=0 we have 

Ä  --XR'y, (2°) O J        f    II     * 

which is the classical SDF.  When Oj = 1 we have SMACE equation. 

The second parameter, o2, is used in a matrix called "transitional smoothing matrix" and is given by 
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^«^.V^^-M^V (21) 

The HC family of filter vectors are given by the columns of the dxN matrix, fiB by 

a =£-1xs4. (22> 
B SIB 

By varying a1 and o2, we can find optimum weights in the design of HC filters to yield a filter combination 
whose performance is better than each of the individual filters comprising the unification. 

We selected the filter vectors from Eq. (22) based on their discrimination and detection capabilities.15 The filter 
bank architecture13" is a weighted linear sum of the magnitude responses of the selected filters. The sum is thresholded 
to decide whether a target of a nontarget is present. 

5. PHASE-ONLY IMPLEMENTATION OF HC FILTERS USING PSEUDORANDOM NUMBER STRINGS 

In using a 4f (i.e. as having input plane SLM, filter plane SLM and correlation plane CCD array) phase-only 
correlator we are required to encode the input images, as well as the complex filters, into phase-only format. We 
approach this design by first designing a filter based on phase-only input images. The resulting HC frequency domain 
filter is fully complex having variable amplitude and phase at each element location. There are a variety of ways to 
encode the input images as well as the filters. We chose an intensity-invariant method to encode the input training 
images. Test images are encoded in the same way. The frequency domain filter is encoded using the pseudorandom 
string technique.  Motivation and design methods are presented in the following subsections. 

5.1 Phase-only encoding of training and test images 

Images are typically acquisitioned in grey levels of intensity. Due to illumination and reflectance variations, 
a target image may or may not be brighter than the background and non-target imagery. We denote this variation as 
intensity-variance. We desire an encoding scheme that satisfies the phase-only constraint of the input plane SLM as well 
as being intensity-invariant. 

Consider a numerically simple mapping of intensity level directly to a phase angle of a unit magnitude complex 
element value. For the mth element of a grey level input image vector / we have 

z(m) = 6xp{jKAm)} , (23) 

where Z(m) is the phase-only mapping and K is chosen such that 

Jf = ^  . (24) 
max{fim)} 

Given this mapping, the phase is proportional to the image grey level. However, if the image varied in intensity then 
we could get a significantly different phase mapping, thus the mapping procedure is intensity-variant. A simple method 
for reducing this effect is to take the logarithm of the input image gray levels. In this way, a variation in illumination 
or reflectance coefficients becomes a constant phase offset across the image of interest. For example, consider an imageaj 
where a is a reflectance coefficient and jf is the image. We would have 

Xim) = enpUKQo^a * log^m))} = expUKlogj.a} expiytflogjj)«)} . (25) 

Note that the elements of J are offset such that min{J(m)} = l such that the log^m) is never negative. When £ is 
correlated with a complex filter image, a phase cancellation will occur independent of the coefficient "a." That is the 
magnitude of the correlation will not be affected by the value of "a." Thus we have an intensity-invariant phase-only 
encoding scheme. Test images may be encoded in the same manner. 
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5.2 Pseudorandom string encoding of frequency domain HC filters 

To create an ideal HC filter family we select training images encoded to be phase-only and intensity-invariant 
as described in the subsection 5.1. The resulting filter family described in Eq. (22) is in the spatial domain. We perform 
a 2-D DFT on these filter images to obtain the frequency domain filters. These ideal frequency domain filters are 
encoded to phase-only filters based on the pseudorandom number algorithm described in subsection 3.3. There are 
conditions related to HC filter design, which require the correlation matrix structure for Linear Phase Coefficient 

Composite filters to approximate a circulant matrix. However, if the training set is complex than the correlation matrix 2Jf/=X.*X*t 

is, in general, Hermitian. As it turns out, if the training images have a left-right mirror symmetry which does not change 

with the distortion (this is the case with in-plane rotation) then R will be real. We assume this is the case and leave 

the effects of a complex Hermitian correlation matrix on filter performance for future research. It should also be noted 
that the response constraint included on the HC filter design should compensate for the undesirable effects of a complex 
valued Hermitian matrix. 

6. CONCLUSIONS 

We have unified a phase-only encoding algorithm with a composite filter design methodology. The phase-only 
encoding scheme is a pseudorandom string technique introduced by Cohn et al. and the filter design was introduced by 
Hasscbrook et al.. The result is a system design procedure for a 4f correlator. The system detection and discrimination 
performance is both intensity- and distortion- invariant Issues were raised in regards to a Hermitian correlation matrix 
causing suboptimal performance. This issue as well as actual performance tests are left for future research. 
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The mapping of complex-valued functions onto phase-only spatial light modulators is examined. Random 
phase encoding effectively adds amplitude control to the phase-only filter and can be used to trade off systematic 
errors of the phase-only filter for random errors. This is illustrated for the problem of recognizing a three- 
dimensional object from arbitrary views. The complex-valued composite filters that constitute a filter bank 
design are encoded by phase-only and pseudorandom methods. The best recognition probabilities are achieved 
by blending the two methods so that only the smallest amplitudes are randomly encoded. © 1996 Optical 
Society of America 

By properly composing a filter from several views of 
an object it is possible to recognize the object despite 
distortion, thus achieving a degree of distortion invari- 
ance. One general approach has been to form a filter 
bank that uses multiple composite filters. The de- 
sign of linear phase coefficient composite filter banks 
produces a set of complex-valued filters.1 Synthetic 
discriminant function2 and minimum average correla- 
tion energy3 filters are also complex valued. These 
single composite filters have since been generalized 
into the form of filter banks.1,4 The hybrid compos- 
ite (HC) filter bank combines the properties of all these 
filter banks through the selection of specific values for 
the two parameters ax and a2-4 This study uses a spe- 
cific HC filter bank that is a balanced combination of 
synthetic discriminant function, minimum average cor- 
relation energy, and linear phase coefficient compos- 
ite properties.4 Therefore the results reported here 
are relevant to a variety of composite filters of current 
interest. 

A significant and recognized problem limiting the 
use of composite filters in real-time optical correla- 
tors is that currently available filter plane spatial 
light modulators (SLM's) do not produce full-complex 
modulation.5,6 This limitation is known to mod- 
ify the peak intensities and produce false peaks 
through nonlinear intermodulation of the composite 
signals.7 Casasent and Rozzi originally noted that 
peak fluctuations could dramatically change peak 
correlation intensities while keeping only the phase 
of the full complex design and that even a small 
degree of amplitude control greatly improves recogni- 
tion.5 Previous solutions to minimize the degradation 
caused by limited range SLM's required numerically 
intensive optimization techniques.8,9 Faster encoding 
procedures are needed for those applications in which 
the time available for optimization is a limiting factor. 

Pseudorandom encoding is a specific encoding tech- 
nique for mapping full-complex filters onto phase-only 
SLM's.10 It is a fast procedure because it requires only 
one function calculation or table look-up operation per 
pixel. The encoding procedure adds amplitude control 
to the phase-only filter11 (POF) through the addition of 

0146-9592/96/040272-03$6.00/0 

phase offsets 8 fa that have specified statistical prop- 
erties. For a uniform random distribution of spread 
vi the effective amplitude control achieved at the ith 
SLM pixel is known to be 

at = {expijSipi)) = smc(vi/2ir), (1) 

where <> is the expected value operator. In the en- 
coding procedure the value of the amplitude in Eq. (1) 
is set to that of the desired full-complex modulation, 
and then Eq. (1) is inverted to yield the spread vt. 
For each pixel a randomly generated number is scaled 
by the appropriate spread to produce a phase offset 
8ipi with the appropriate statistical properties. The 
random phase offsets are added to the phases ipi of 
the desired full-complex modulation to complete the 
encoding. Inasmuch as the values of Eq. (1) range 
between zero and one we always assume that the full- 
complex modulation is normalized so that its maximum 
amplitude is unity. Whereas no individual pixel 
actually produces amplitude modulation at the SLM 
plane, we have shown that the resulting far-field 
diffraction pattern is well approximated by treating 
each pixel as if it produced an average amplitude 
modulation at.10 

An indicator of quality of a pseudorandom encoded 
filter (PRF) is the diffraction efficiency (under uniform 
illumination) 

1    N 

-Ja:2 
N 

(2) 

where N is the number of pixels of the SLM. The 
diffraction efficiency for the PRF represents the 
fraction of the energy illuminating the SLM that is 
used to form the diffraction pattern of the full-complex 
filter (FCF). In fact, it is exactly the diffrac- 
tion efficiency of the desired, but unachievable, 
full-complex filter. The remaining 1 - T? frac- 
tion of the energy from the PRF is diffracted 
into a white-noise pattern resembling speckle. 
With the energy divided between desired signal 
and random noise it is clear that, as -n increases 
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toward unity, the encoded filter will be less noisy and 
will more closely approximate the full-complex filter. 
Our searching for optimal y is much like Juday's 
optimization of gain parameter G.12 For phase-only 
SLM's performance is independent of G, and the 
traditional POF" always results. There is, however, 
an optimal value of y. 

The traditional POF,11 for which all amplitudes of the 
full-complex filter are mapped to unity, may also be 
viewed as another type of encoding. The POF can be 
considered to have unity diffraction efficiency. How- 
ever, as noted in Ref. 7, the encoding also introduces 
systematic (rather than random) errors between the de- 
sired full-complex and realized phase-only filter. 

The question considered in this study is whether the 
amplitude control offered by pseudorandom encoding 
can be used to improve performance of filter banks over 
that possible with the phase-only filters. We analyze 
this problem by designing a filter bank to recognize a 
specific object, encoding the complex filters to POF's 
and PRF's, and comparing the performance of the 
encoded filter banks at recognizing the object in the 
presence of noise, clutter, and distortion. The filters 
are designed for implementation on a 4f correlator 
containing a 32 x 32 pixel amplitude-only SLM in the 
input scene plane and a 64 X 64 pixel phase-only SLM 
in the filter plane. 

The HC filter bank design follows identically the 
steps described in Ref. 4. This includes the identical 
choice of parameters ax — a2 = 0.4. In the design pre- 
sented here the goal is to identify the Space Shuttle and 
reject all other aircraft types. The training set con- 
sists of 36 images obtained from a three-dimensional 
Space Shuttle model that is viewed with an altitude 
angle of 60°, rotated uniformly in azimuth from 0° to 
360° in 10° increments, and then projected to form 
32 x 32 pixel silhouette (i.e., binary amplitude) images. 
Nontarget objects are not needed for obtaining clutter- 
resistant HC filters and thus were not used.4 The 
training images are zero padded to 64 X 64 pixel 
images. The HC filters are derived from these train- 
ing images in the form of impulse responses and then 
fast Fourier transformed to produce the frequency 
plane filters. These are the filters that are encoded 
by various methods. 

Three nontarget aircraft have also been chosen to 
represent clutter objects for simulations of filter bank 
performance. Silhouette images of these objects are 
taken for the same view angles and approximate 
scale as the target object. Representative views of the 
Space Shuttle and of one clutter aircraft are shown 
in Fig. 1. The noise shown in the figure was added 
only for the specific set of tests described below. 
Performance of the filter banks is characterized by the 
minimum probability of error (MPE).4 One achieves 
the MPE by setting the decision threshold to produce 
the least total number of false alarms and misses. 
In our simulations we calculate MPE empirically. 
First we find the value of the peak response of the 
filter bank for the in-class object and the maximum 
peak value of the 3 clutter objects for each of their 
36 views. The MPE is then the minimum sum of 
false alarms and misses divided by 72 for all possible 
threshold settings.    Although the filter bank design 

produces as many filters as training images (in this 
case 36), one can usually achieve adequate recognition 
by selecting a subset of the filters that have the largest 
discrimination-to-noise ratios.4 For our simulations 
we calculated MPE for filter banks of 1-5 filters. 

In a preliminary simulation we found that filter 
banks using POF's usually had fewer recognition errors 
than filter banks using fully encoded PRF's. This 
result is due to the low diffraction efficiency (only a few 
percent) of the FCF's, which consequently introduces 
too much random noise. This result led us to consider 
a blending of encoding procedures so that only some of 
the pixels are pseudorandom encoded and the rest are 
phase-only encoded. • Because the lowest amplitudes 
of the FCF's produced the most systematic error for 
phase-only encoding, we now pseudorandom encode 
only those amplitudes that are below a given threshold. 
Currently the threshold that gives the smallest value 
of MPE is found empirically by repeated simulations. 
The amount of random encoding for a given amplitude 
threshold can be quantified in terms akin to those for 
diffraction efficiency [Eq. (1)] as 

1     Nr 

N 
(3) 

where Nr is the number of pixels below threshold 
that are random encoded. A relative measure of the 
amount of pseudorandom encoding is y = 17,-/17'. A y 
equal to zero corresponds to phase-only encoding, and 
a y of unity corresponds to pseudorandom encoding all 
N pixels. 

The results of the simulations of MPE for various 
encodings and two (related) sets of test imagery are 
summarized in Table 1. For each set of test imagery 
the table presents MPE for filter banks composed of 
FCF's, POF's, and PRF's. The first of the two PRF 
columns reports the lowest value of MPE found for 
all values of the encoding parameter y. The corre- 
sponding encoding parameters ranged from 0.002 to 
0.07. The second PRF column reports MPE for a 
single fixed value of the encoding parameter (7 = 
0.004) that produces reasonably low MPE's for the two 
sets of test imagery used. A HC filter and its pseu- 
dorandom encoding are illustrated in Fig. 2. The left 
side shows the gray-scale magnitudes of the filter. 
The right side of the figure has been binarized to in- 
dicate the pixels (in white) that are random encoded. 

Fig. 1. One of the 36 views of the test imagery: target 
(Space Shuttle, left) and one of three clutter objects 
(Phantom, right). The noise was included in the test 
images only for case a of Table 1. 
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Table 1.   Filter Bank MPE (%) for Bank Size and 
Type of Test Imagery  

Bank Size FCF      POF        PRF[y]        PRF[0.004] 

Case a, noisy test images 
1                  22 28 27 [0.003] 28 
2                    7 9 6 [0.004] 6 
3                    6 4 2 [0.008] 3 
4                    1 4 1 [0.008] 1 
5                    4 2 0 [0.003] 1 

Case b, noise-free, angle offset test images 
1                   31 40 37 [0.07] 41 
2                   17 28 20 [0.07] 23 
3                   20 25 17 [0.07] 22 
4                   11 24 17 [0.06] 17 
5                     9 23 15 [0.07] 18 

Fig. 2. Gray-level magnitudes of one HC filter. The 
right-hand side of filter has been binarized, indicating 
in white the pixels that are pseudorandom encoded for 
y = 0.004. 

The filter corresponds to filter number 1 in Table 1 and 
has a diffraction efficiency 77 of 4.6%. As the filter is 
quite nearly symmetric, the pattern of random encod- 
ing at the right of the figure will appear quite similar. 
For this encoding of the filter, y = 0.004, Nr = 480 of 
the N = 4096 total pixels, and the maximum ampli- 
tude randomly encoded is 0.057 of the maximum (i.e., 
unity) filter amplitude. 

To demonstrate the performance that results from 
different encodings we tested the filter banks against 
degraded imagery. In Table 1, case a, additive white 
Gaussian noise is added to each test image. Typical 
images are shown in Fig. 1. The total signal-to-noise 
ratio is 4:1, or 6 dB. The MPE for the 36 views is 
calculated 10 times, each time with a change of only 
the random seed for the scene noise generator. The 
average MPE of this test is reported in the table. 
In all cases the PRF has equal or lower MPE than 
the POF. This is true even for the case of the fixed 
encoding parameter y = 0.004. However, in some 
cases the MPE for the PRF, and even for the POF, 
is lower than that for the FCF.   These crossovers are 

not inconceivable when one recognizes that a\ and a% 
have been selected to give best overall performance 
for various scene distortions, noise, and clutter and 
are not necessarily the optimal choices, for any one 
environment. Therefore phase-only encoding could, by 
chance, have lower MPE. 

In case b the test images are distorted views of the 
original training and clutter objects. The views are 
taken with a fixed angular offset in azimuth from the 
original 36 views. The MPE is calculated for each 
offset, 1° to 9°, in 1° increments, and the average of 
the MPE's is presented in Table 1. With larger MPE's 
the filter bank learning curves appear more stable and 
the differences are more easily seen. For more than 
one filter, both PRF columns have lower MPE than the 
POF. The PRF with optimized MPE for two and three 
filters has MPE that is comparable with that for the 
FCF. 

An additional trend noted in Table 1 is that the en- 
coding parameter y appears to increase as the dis- 
crimination task becomes more challenging. Case b, 
which has the most errors for a given number of filters, 
typically has the largest values of y. This means that 
more of the pixels are pseudorandom encoded for this 
case. Further study is needed to determine whether 
the trend is reliable and, if it is, the reason for it. 

We have shown that pseudorandom encoding the 
lowest amplitude pixels of composite, fully complex 
filters can noticeably improve recognition performance 
over that which is possible with the traditional phase- 
only encoding. Although pseudorandom encoding 
does not produce the optimal mapping for correlation, 
it does provide some level of improvement in recogni- 
tion and is easy to use with real-time hardware. For 
the study we did searches to find the best threshold 
for random encoding. However, a fixed encoding 
threshold can often produce improved recognition. 
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Abstract 
The properties of random phase are applied to the synthesis of fully complex aperture functions. 
Arbitrary functions can be envisioned and also implemented as arrays of individually specified 
diffusers For any given diffuser pixel, two parameters, average step height and vertical roughness 
independently control phase and amplitude. Noise introduced by roughness can be quite low for 
many designs of interest, especially if the roughness pattern is of much finer scale than the pixel 
dimensions A potentially low cost fabrication method is proposed in which the desired pixel 
topography is patterned by exposing photoresist with partially developed laser speckle patterns. 

Keywords. Signal synthesis, kinoforms, computer generated holography, rough surface scattering, 
laser speckle, micro-fabrication of three dimensional surfaces, optical information processing, 

statistical optics, phased arrays 

1. Introduction 
The properties of random phase have been widely applied to analyze the scattering of 

monochromatic light from rough surfaces.1-2 The inverse problem of specifying the statistical 
properties of phase-only structures so as to obtain desired far-field diffraction patterns has received 
little attention. Recently Cohn and Liang introduced a point oriented encoding method, referred to 
as pseudorandom phase-only encoding, in which phase modulation drawn from a custom-specified 
nonstationary random process is used to represent the desired amplitude modulation.3 While 
pseudorandom phase codes are widely used in optical information processing, holography and 
optical memory storage, these approaches all appear to only use pseudorandom phase sequences that 
are totally random (e.g. phase uniformly distributed over a 2* range.) Instead, the pseudorandom 
encoding method individually specifies phase randomness at each point in proportion to the 
reduction in amplitude transmittance (or reflectance) desired. We use pseudorandom encoding 
concepts to show how arrays of diffusers can produce nearly arbitrary diffraction patterns. 

Introduction to complex modulating property of diffuser pixels. The effective amplitude 
modulation at a point corresponds to the specular component scattered from that point. This is most 
easily seen by considering the formation of partially developed speckle patterns as illustrated in fig. 
1. The far-field diffraction pattern can be varied from purely specular to purely diffuse scatter (i.e. 
a fully developed speckle pattern.) As drawn, the roughness is of a much higher spatial frequency 
than the illumination footprint, and thus the specular component can be much brighter than the 
diffuse component for a wide range of roughnesses. For purposes of diffractive optics design the 
specular component represents the desired diffraction pattern and the diffuse component represents 

noise. 

125 



Near arbitrary diffraction patterns, only limited by speckle noise, can be produced by 
superposition of the specular components from arrays of surfaces of specified roughness (e.g. the 
surface shown in fig. 2.) This can be shown as follows: The modulation of a plane wave reflected 
from a phase-only surface is represented by the complex-valued (indicated by bold) function a{x:y)= 
exp[/'i|/(x,v)]. The far-field diffraction pattern of the modulation pattern \sA(fxfy = &\a\ where &[•] 
is the fourier transform operator. Since the fourier transform and ensemble average are both linear, 
the average complex-valued far-field pattern of a random complex pattern can be written 

(A)    =    *\(a)\ (1) 

where (•) is the expectation operator. Under the assumption that the random samples of a are 
statistically independent with position, the expectation of/the far-field intensity pattern is 

(/>    =   <M|2>   =   |^>|2 + (/f> (2) 

where Is(ffy) is a residual noise pattern due to the random phasings in the far-field.3 As long as the 
noise [represented by the second term of eq. (2)] is adequately low, then eq. (2) is approximately the 
magnitude squared of eq. (1). In this average sense, any complex-valued modulation can be 
represented by the random phase-only modulation a(x,y) = exp\jty(x,y)] using the relationship 

(a)    =   fp(^)cxp(j^)d^    =   apexp(j{ty)) (3) 

where p(ty) is the probability density function (pdf) of the phase and ap is the resulting expected 
amplitude modulation. We will often refer to ap as the effective amplitude, §p={ij>) as the effective 
phase, and ap={a) as the effective complex amplitude or modulation. 

A desired modulation ac{x,y) is produced by specifying a probability density function p(\\s) in eq. 
(3) that gives (a) = ac . The actual value of phase is selected from a random number generator 
having the required density function. Amplitudes can be encoded using simple pdf s; for example, 
the uniform family of density functions, with spreads v e [0,2T:] when evaluated in eq. (3) gives all 
values of amplitude between 0 and 1 according to 

a     =    sinc(v/27l) (4) 

Thus the correct density function for implementing a particular value ofap can be found by inverting 
eq. (4) for the appropriate value of v. The most widely available random number generator routine 
is uniform with a spread of 1 and a mean of lA. A number selected by this routine would be scaled 
by u and offset by (jyv/2 to produce the actual random phase ij;. The procedure is repeated for all 
points to specify the analog phase-only function a(xy) that represents the desired modulation flc(xj/). 

The pseudorandom encoding method, as described above, can be directly applied to designing 
a kinoform. One could spatially sample ac up to the resolution of the pattern generation system, and 
then apply eqs. (3) and (4) to each sample. Alternately, if the bandwidth of ac is lower than half the 
sampling rate of the pattern generator then, according to nyquist theory, ac can be adequately 
represented with fewer samples. This is desirable for reducing machine time. However, for 
pseudorandom encoding there is still a significant advantage if the sampling rate is high. That is, 
as illustrated in Fig. 1, the spatial extent of the speckle noise will be greatest, and thus its intensity 
will be lowest, for the highest sampling rate. It would seem that IJJC the phase of ac could be sampled 
at the lower rate and the amplitude ac could be sampled at the highest rate with little loss.  This 
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would result in the structure shown in fig. 2., which is an array of diffusers for which each diffuser 
has a unique step height and for which the vertical roughness varies (depending on the effective 
amplitude desired) from diffuser pixel to diffuser pixel. Fabrication of such a diffuser by writing 
each individual random phase value in sequence would require a high resolution and costly pattern 
generator. Instead we propose methods for fabricating each diffuser pixel in a single patterning step 
that appear to be less costly than traditional pattern generators. Before describing the fabrication 
system, we compare the patterned diffuser array design approach with prior kinoform design 
procedures and we review the prior fabrication approaches. 

Relationship to prior kinoform design procedures. Currently numerically intensive global search 
and optimization algorithms are widely used for synthesizing modulation functions under the 
constraint of phase-only (in many cases binary phase-only) modulation.4"8 Depending on pixel 
dimensions or the maximum spatial bandwidth of the desired complex modulation, direct pixel-by- 
pixel or point-by-point encoding can be a practical alternative. Several methods of encoding complex 
functions onto phase-only diffractive structures were developed shortly after the introduction of the 
kinoform.9'10 The most direct is the Kirk and Jones method" where a periodic carrier of spatial 
frequency^/o that is modulated in amplitude a and phase i|jais converted into the phase-only function 

a(x,y)    =   exp[;i|/(x,v)]    =   ^?{j[ah(2Tif0x) + tya(x,y)]}   ■ (5) 

One specific case considered by Kirk and Jones was for h{ •) = cos(«). For this case the Fourier 
series expansion of eq. (5) produces a D.C. component of complex amplitude 

ac    =    acexp(ytc)    =   JQ{a) exp(jtya) (6) 

where J0(a) is the zero order Bessel function. Thus ac is proportional to the complex amplitude of 
the D.C. or zero order far-field diffraction pattern. Any desired value of amplitude ac between 1 and 
0 can be implemented by inverting J0(a) to find the appropriate value of a. Similar results can be 
developed for 7z( •) a square wave carrier, and also for a rectangular carrier of variable duty cycle. 

From the perspective of the Kirk and Jones approach, patterned diffuser arrays use a random 
carrier. That is to say, rather than use a single frequency carrier h( •), the carrier is a randomly 
phased combination of a continuous range of frequencies. Whereas, the traditional Kirk and Jones 
method scatters unwanted energy into a set of harmonics at discrete frequencies, a random carrier 
scatters unwanted energy uniformly (on average) into all frequencies of the carrier. In many 
applications a low level of diffuse background noise in-band, may be preferable to the presence of 
harmonics out of band. As far as fabrication, it may be easier to synthesize the random carrier than 
a single frequency carrier. For any of these carrier based methods it is important to note that the 
maximum useful diffraction efficiency of a(xy) is only limited by the efficiency of the desired 
complex modulation ac{xy). Thus, there is no implementation loss for the on-axis diffraction order. 
Furthermore, the optimization of the function ac required to meet a specific set of design criteria, is 
decoupled from the constraints imposed by the phase-only implementation. This could potentially 
lead to simplified and improved diffractive optic design procedures. (For instance non-iterative 
optimal window design procedures become possible; see ref. 3 for a specific design of a top hat far- 
field pattern.) 

Comparison with prior fabrication methods.   Kirk and Jones also presented a fabrication 
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procedure in which a photomask having a sinusoidally varying intensity transmittance is placed in 
contact with a photographic recording medium for which thickness depends linearly on exposure 
energy. The medium is exposed with an intensity pattern proportional to the function a(x,y). Then 
the mask is removed and the medium is further exposed with a second pattern proportional to tya{xy) 
= tyc(xj>) +2n- a{xy) that adjusts thickness to produce the desired phase modulation tylxy). [The 
term 2K- a compensates for the average thickness variations introduced by a h( •). ] 

If a square wave carrier is used instead of a sinusoid, the photomask is much easier to produce. 
If a rectangular carrier is used, the duty cycle is varied. This has the advantage that every pixel can 
be exposed with the same dose, but it has the disadvantage that the photomask must be written with 
extreme precision and a custom photomask is needed for each new device design. Also, all three 
deterministic carriers (sinusoidal, square and rectangular) require two exposures to produce a desired 
complex value at a point. A single exposure method can be envisioned in which laser interference 
is used to produce sinusoidal fringes, and beam balance is adjusted to control phase bias. This 
pattern would be projected through a small aperture and the entire photographic medium would be 
exposed by translating it under the aperture. This method, of course, requires good fringe stability. 

The Kirk and Jones approach does not seem to have been widely used; apparently, because of the 
requirement for analog control of the exposure. Currently it is most common to fabricate computer 
generated diffractive optical elements as binary and m-ary phase steps. However, lately there has 
been considerable progress in producing analog phase-only relief structures. Various approaches 
include projection printing, and laser or electron beam direct write onto photoresist.12'16 For highly 
resolved structures current laser beam scanning can be quite slow.16 E-beam scanning can be fast if 
there are a limited number of mechanical steps between fields, but e-beams are generally very 
expensive to purchase and maintain. Both e-beam and laser systems have very accurate, precise and 
expensive positioning systems. As a result of these recent developments in fabrication art we 
propose an alternate approach to topographic patterning of photoresists. In particular, we consider 
the possibility of producing patterned diffusers arrays and the technical issues that would affect the 
quality of the resulting diffraction patterns. 

2. Advantage of Diffuser Pixels over Single Step Pixels: Directionality Gain 
A random rough surface or diffuser can be modeled as an array of random step heights. 

According to the law of large numbers,17 increasing the number of random steps, or equivalently 
phase values, across the diffuser will make the far-field diffraction pattern more predictable. For a 
partially developed speckle pattern the specular component will be more clearly seen over the noise 
for diffusers having a larger number of phase samples. This effect can be interpreted as a 
directionality gain of the specular component over the diffuse component. If there are N statistically 
independent roughness samples, or cells, filling an aperture then the intensity of the far-field 
diffraction pattern will be reduced by a factor of I/N over there being one roughness cell filling the 
aperture. Since the diffraction pattern of the single roughness cell is identical to the pattern of the 
uniformly illuminated aperture, then the directionality gain of specular to diffuse is N. 

Fig. 3 illustrates the improvement resulting from increasing the number of rough samples from 
1 to 9 per pixel for a diffractive optical element (DOE) designed to produce an 8x8 array of uniform 
intensity spots. Both DOEs represent the same 100x100 fully complex array of numbers whose 
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amplitudes are encoded into phase according to eq. (4). Rather than performing the encoding step 
once per pixel (as originally prescribed by ref. 3) it is performed 9 times for the 3x3 array of phases 
used to represent each diffuser pixel. The phases of the i'th pixel are randomly selected from the 
uniform random distribution having spread v,. The top row of fig. 3 shows the resulting diffraction 
patterns as simulated using the fast Fourier transform (FFT) and the bottom row shows the result for 
diffraction from a Hughes birefringent liquid crystal light valve that is programmed to approximate 
the desired phase modulation. As anticipated, the photographs show that the speckle is more broadly 
scattered and its intensity is reduced by using diffuser arrays. The non-uniformity of the diffraction 
pattern (defined as the standard deviation of the intensity of the 64 spots divided by average intensity 
of the 64 spots) improved from 23.6 % to 9.9 % by using diffüsers in place of single phase pixels. 
The signal to noise ratio (defined as the average intensity of the 64 spots to average background 

intensity) also improved from 72 to 1639. For the experimental intensity patterns the as-measured 
non-uniformity improves from 36.9 % to 30.4 % . However, the images indicate that the intensity 
gradually decreases with distance from the optical axis. This is due to limited resolution of the SLM 
(which includes rolloff in the video output of the frame grabber and the cathode ray tube that is the 
write light source for the light valve.) Applying a least squares regression (of constant, linear and 
quadratic factors in both x and y) we have removed this systematic trend. With the trend removed 
the nonuniformity due to statistical fluctuation alone is 29.4 % using single pixels and 21.6 % using 
diffuser pixels. (For comparison the nonuniformity for the theoretical images after removing linear 
and quadratic trends was only reduced about 2 % in each case.) For the experimental measurements, 
the signal to noise ratio (in the vicinity of the spot array) also increased from 14 to 35 by using the 
diffuser pixels. Even though the experimental spot arrays are less uniform and more noisy than 
theory (due to loss of resolution and inexact phase control of the SLM) the improvements possible 
using diffuser pixels are apparent. Furthermore, the experiment shows that applying pseudorandom 
encoding to non-ideal devices produces results that are qualitatively similar to theory. 

3. Microtopographic Patterning Methods 
Our goal is to develop a robust, repeatable and easy to implement patterning technique. While, 

in concept, we can write one random phase at a time by direct pseudorandom encoding [eqs. (3-4)] 
there is really no need for this precise and detailed control. Instead we can directly use the statistical 
properties of laser speckle which is known to be reproducible and controllable. 

Fig. 4a illustrates one basic pattern generator concept. This apparatus is a type of proximity 
printer. An aperture (perhaps patterned on a chrome photomask) having the area of a diffuser pixel 
is kinematically supported as close to the photoresist as practical. The photoresist is exposed 
through the aperture and then the substrate is translated to the next location to be exposed. The high 
spatial frequency random carrier is a fully developed speckle pattern generated by the ground glass 
diffuser. An average intensity offset needed to produce a phase bias can be generated by temporal 
averaging of speckle patterns. This can be achieved, as illustrated in fig. 4a, by spinning a ground 
glass diffuser with a constant angular velocity. The radial separation between the beam and the 
diffuser axis determines the linear velocity of the diffuser. Linear velocity together with exposure 
time then determines the effective bias. A theory for this is described in Sec. 4. 

Fig. 4b shows a modified approach in which a uniform intensity pattern can also be used to 
provide a phase bias. Statistical properties of the intensities of coherently biased speckle patterns 
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are described in ref. 1. We specifically consider the case in which the bias and speckle pattern are 
mutually incoherent. For the second approach, the uniform and speckle illumination could obviously 
be combined with a beam splitter. However, in order to eliminate beam splitter loss and multiple 
reflections it is possible to bring a uniform coherent illumination through a small aperture (say a 
fiber optic) in the diffuser, as illustrated in fig. 4b. Mutual coherence between the spatially uniform 
and non-uniform sources can be achieved by rotating a polarized fiber into the cross polarized state 
or by using the fiber to introduce a delay difference in excess of the coherence length of the laser. 

A third approach would be to simply apply appropriate random signals to the exposure control 
signal on an electron beam or laser beam direct write system. The only advantages of this technique 
over previous direct written DOEs is that the complexity of the design procedure is simplified and 
the number of values placed in machine memory can be greatly reduced. 

We briefly mention two other potential applications of the diffuser array concept. Liquid crystal 
under applied voltage can be converted between isotropic and randomly oriented states. It may be 
possible to develop a real-time spatial light modulator in which this type of liquid crystal layer is 
cascaded with pure phase retarding pixels. We present this device more to illustrate the concept of 
diffuser arrays than as a serious candidate device. The currently prevailing view is that the 
development of any tandem SLM is viewed as too costly and risky. The second application is to use 
patterned diffuser arrays as grayscale masks in projection printers. These masks could be used in 
place of true gray scale and halftone masks that were recently used to demonstrate projection 
printing of three dimensional diffractive optical structures in photoresist.13,14 For either the half-tone 
mask or the pseudorandom patterns grayscale is achieved by diffracting light outside the aperture 
of the imaging lens. Speckle would not be present in the projected image if the source illumination 
is adequately incoherent. The grayscale effect can be easily demonstrated by placing a piece of 
ground glass on the platen of an overhead projector. The pseudorandom masks for projection 
printing could be fabricated with either system shown in fig. 4. The remainder of this paper 
considers technical issues associated with the patterning systems shown in fig. 4. 

4. Technical Considerations for Patterning Diffuser Pixels in Photoresist 
Issue 1: Proximity recording of laser speckle. Projecting laser speckle through a small aperture 
may unacceptably blur the exposure pattern. As an example consider fig. 5 which shows how a fully 
developed speckle pattern (457 nm argon-ion wave length) diffracts at various distances past a 100 
um slit. At a distance of 100 pm past the slit the edges of the pattern are still rather sharp. This 
indicates that pixels having a large fill factor can be made by proximity exposure for reasonable 
separations between the mask and resist. For a uniform bias illumination (coherent or incoherent) 
and a separation of 100 pm the transition from light to dark (due to Fresnel diffraction) is 
approximately 5 pm. 

As compared to recording interference fringes, speckle requires minimal vibration isolation. For 
a diffuser, laser and ccd observation camera on a 2" thick optical breadboard supported by a wood 
table we observed that speckle patterns displayed on a video monitor exhibited no apparent 
displacement for speckle diameters larger than 2 pm. Vibration was noticeable for .6 pm speckle 
but no blurring was observed for 1/30 second exposure frames recorded using a frame grabber. Thus 
it seems that it is quite practical to illuminate resist with 2 pm speckle though an aperture in near 
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contact (100 um or less). For pixels on the order of size of current SLM pixels (12.5 
directivity gains can be 39 to 2500. 

100 um) the 

Issue 2: Complex Modulation for Recording Speckle in Linear Resist. The probability density 
function ofIs the intensity of fully developed speckle is known to be exponentially distributed1'2 and 
is written 

PV.) 
l 

C> 
exp 

M. 
(7) 

where (I) is the average intensity of the speckle pattern. Also, since speckle intensity is exponentially 
distributed, (/,) can be interpreted as the standard deviation of the speckle intensity. For a photoresist 
which linearly maps exposure energy into resist thickness, i|/v the random phase depth produced is 
proportional to exposure energy Es and intensity I of the speckle pattern. Likewise, a mutually 
incoherent and spatially uniform illumination can be used to produce a bias phase shift I(J4 so that 
the total phase random phase shift can be expressed i|/ = ^ +i|r, where T\sb is proportional to Eb, the 
bias exposure. The effective complex modulation produced by this surface can be found by treating 
the actual phase depth i[r as an exponentially distributed random variable. Using the pdf for \JJ of the 
form of eq. (7) in eq. (3) yields 

expfy^+atan^))] 
(8) («>     = 

f+W 
The amplitude decreases monotonically with increasing average phase depth of the resist ity) (which 
is also proportional to average energy density of the speckle {Es}.) The phase shift due to speckle 
alone only varies from zero to ir/2, but i|/6 can be chosen to produce any phase shift from zero to 2TI. 

Issue 3: Selecting Resist Thickness to Ensure Linearity. A linear resist will effectively saturate 
if developed through its entire thickness down to the substrate. This nonlinearity will change the 
complex modulation over that predicted by eq. (8). Consider that the total resist thickness is 
proportional to the maximum phase shift i|/„, = % +i|i„ where % is the maximum phase shift 
available for speckle recording at a given bias. The effective complex modulation for this case is 
found by evaluating eq. (3) as 

(a)    =    exp(yl|/6) x Jp(i|f)exp(yT|r)rfi|r + exp{JVmt) f P ($)<*$ 

where the density function is of the exponential form in eq. (7). This evaluates to 

(9) 

(«)'    =    e*p[;(^+atan(^))1   . '    ♦/ 
I <W JI 

■  (10) .  l + (t) exP[J (*„, " n/2)} exP 

where the prime is used to indicate that this result is perturbed from the result in eq. (8). If the 
saturated value of phase i(f„„ is much greater than (ty) the average phase produced by a purely linear 
recording of speckle then eq. (10) reduces to eq. (8). Thus the second term in braces of eq. (10) 
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represents the errors due to finite resist thickness. A minimum thickness can be selected based on 
the minimum amplitude amin of q € [qin ,1] that is practical to implement, and the maximum 
allowable error e between eq. (10) and eq. (8). The worst case absolute error is approximately 

z(ae)   ~~    exp(-«ct„0 (11) 

where the approximation ac = \(a)\ = 1/ (i|;,> for average phase depth much greater than one radian 
has been used in eq. (10). The minimum total resist thickness is then proportional to 

t   s   *»* +$ms     =     27t   -   ln(emin)Amin (12) 

where emin = e(amin) and i|/„lft = 2TC is the maximum bias shift required to achieve all possible phase 
shifts. Using i|/„„ as defined in eq. (12) in eq. (11) gives error as a function of ac of 

As a specific example of using these equations to select resist thickness consider the case for a 
minimum amplitude of amin=.025 and an absolute error emin=0025, or 10 % relative error. Using eq. 
(12) the resist thickness is i|r, = 246 radians or 39.1 optical wavelengths. For a reflective surface 
relief pattern, and an optical wavelength of .633 um, the resist can be as thin as 12.3 urn. Eq. (13) 
shows that the relative error decreases rapidly for ac greater than .025 . For example, for a =.03 the 
error drops to .00075 . Resist thickness is then only a significant concern for very small amplitudes, 
i.e. those values smaller than .025 . The thickness is quite reasonable for standard photoresists.18 

For comparison, the Kirk and Jones method using a sinusoidal carrier requires a thickness of at 
least 

i|/,    =   271 +2J0\amin) (14) 

which follows from eqs. (5) and (6). For amin equal zero the total thickness for a reflective surface 
is .56 urn. While the thickness of the resist using for the random method is much larger than the 
deterministic method, it should be recognized that the selection of thickness in eqs. (11) and (12) 
used a worst case design. Furthermore, the maximum average speckle exposure energy is 
proportional to (f) ~ 1/ amin which corresponds to an average depth of 2 um. Thus the comparison 
in terms of energy use is more favorable. The basic conclusion for these example numbers is that 
the resist can be treated as infinitely thick for resists 6 times more thick than the average speckle 
depth. 

The pseudorandom method can also produce an effective zero. If the magnitude of the second 
term in the braces in eq. (10) is unity and i|/,,„ = T|J, - t|rd and {ty) are chosen to produce a phase shift 
of 7C, then eq. (10) is zero. This is equivalent to having a relative error of 100 % between eqs. (8) 
and (10). For example, for the 39.1 wavelength thick resist discussed above, an exposure depth of 
9.6 wavelengths or 3.05 um produces a zero according to eq. (10) as compared to an amplitude of 
ac = .0165 for an infinitely thick resist [according to eq. (8).] Unless the exposure system is precisely 
controlled and the resist thickness is precisely known it would actually be quite difficult to 
accurately implement a true zero by this method. In most applications a very low minimum effective 
amplitude should be adequate. 
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Issue 4: Transformation of Speckle Statistics by Recording in Log Nonlinear Resist. For many 
resists, thickness is proportional to the logarithm of exposure over a wide dynamic range. For such' 
resists the exposure curve (depth into the resist / vs. exposure energy E) takes the form 

t{E)    =    m\n(E/Eb) (15) 

where Eb is a reference recording level corresponding to a reference thickness t=0 and m is the 
logarithmic slope of the resist. The exposure curve of a 9.5 um thick film of resist (AZ 4903 
positive) presented in ref. 15 is well fit over a 7 um range for a slope of m=2.70 urn and a reference 
energy £4=75 mJ/cm2. For 5 um films of Shipley SI 650 resist we have experimentally determined 
that the slope is m=823 um over a 2.6 um range starting from a reference energy of £4=40 mJ/cm2. 

Using the logarithmic range of a resist leads to effective amplitude that depends on the ratio of 
the speckle exposure to bias exposure rather than absolute intensity. This may prove to be an 
advantageous feature since it is often easier to control ratios (using a halfwave plate and a polarized 
beamsplitter) than it is to individually control the absolute energy in two independent exposures. 

The effective amplitude can be found using the following analysis. The logarithmic recording 
medium produces the total phase shift 

% ■=   % + >,    =    alnK+£J (16> 
where a is the logarithmic slope in radians (i.e. a = 4nm/X for a reflective surface) and i\ib= a \n(Eb). 
This definition allows the phase shift due to speckle to be written as 

V,    =     ocln(l *E,/Eb) (17) 

Using the definitions in eqs. (15) and (16), the exponential density of the form of eq. (7) and the 
change of variables x = EJ(E) in eq. (3) leads to 

(a)    =     exp(/l|r)   f exp(-x) expfya ln(l +yx)]  dx 
[ (18) 

=   exp[y(t6+alnY)]exp(l/Y)r(l+/a,l/Y) 

where y=(E)/Eb and T(a,b) is the incomplete gamma function.19 Fig. 6 shows the effective 
amplitude produced by exposing the Si650 and AZ4903 resists (described above) with speckle 
patterns and then reflecting 633 nm light from the resulting surfaces. This corresponds to using 
oc=16.34 and 53.6 in the evaluation of eq. (18). For these values of a the effective phase (excluding 
bias f,,) varies by slightly more than TC/2 for all values of y. This amount of phase modulation is 
comparable to the maximum phase shift for linear resists [see eq. (8) and fig. 6]. 

The minimum resist thickness that effectively behaves as infinitely thick [thus permitting the use 
of eq. (18)] can be determined by an analysis similar to that in Issue 3. The maximum phase shift 
for which the resist is exposed down to the substrate is once again written as I|J„, = ife +ty„ . 
However, the maximum phase shift due to speckle is now explicitly written as v|/„„=a ln(l + EJEb) 
where E^ is the amount of energy above bias at which the resist is completely exposed. With these 
definitions the perturbed version of eq. (18) is written 
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(a)' = («>+£ ={«)+exp(yi|JA) exp 
~Y 1 n 

J  T ms 
-   f e.xp[-x+ja\n(l+yx)]dx 

V„,'Y 

(19) 

where the definition ynv=E ,/E fthas been used and e is the absolute error resulting from the 
perturbation. 

Continuing with the numerical example begun in Issue 3, a value of y is found using eq. (18) for 
which ac=025 . For the resist with the smaller logarithmic slope (a= 16.34) a value of y of 2.45 is 
needed to produce this amplitude. For the resist with the larger slope a value of y= .745 is needed. 
For an absolute error e of less than .0025 then the ratio y,Jy=E,J{E) needs to be approximately 
6 or greater [as found by numerical evaluation of eq. (19).] This is essentially identical to the result 
for linear photoresist. However due to the nature of the logarithmic resists the resist thickness can 
be much less than for linear resists. The minimum thicknesses are 2.26 um for the low a resist, 4.59 
urn for the high a resist as compared to 12.1 urn for the linear resist. The required thickness can be 
appreciated by comparing it against the probability density function for the recorded depths (which 
are proportional to the random phases i[r,. .) This is shown in fig. 7. The density function for 
logarithmically recorded speckle has been derived by a standard technique for transformations of 
random variables.17 This function is written 

V, 1 (j\ (20) P($,)    =    -^-exp-)— +— 1 -exp 

Note that for each curve in Fig. 7 /?(0)=.025= ac . Also note that for the logarithmic resists 
p(0)=l/(ay). The relationship between the pdf and effective amplitude is approximately valid for 
a greater than or equal to 4. For a near 5 the pdf curve is even more sharply peaked and narrow than 
for the a=16.34 curve and the maximum resist thickness is around 1 um. For a greater than 53.6 
the pdf more closely approaches the exponential distribution for a linear resist. For an appropriately 
chosen value of a, logarithmic transformation of speckle permits the use of much thinner films than 
for linear resists. 

Issue 5: Special case: low sensitivity log resist. For resists having sensitivities below 4 the 
effective amplitude cannot be continuously controlled between one and zero. This can be seen by 
evaluating eq. (18). For large values of y the effective amplitude is well approximated as 

(a)   *    exp[y(i|r4+alnY)]r(l+ya) (18a) 

where r(-)-r(-,0) is the gamma function. The magnitude of eq. (18a) decreases monotonically with 
increasing a. For example for a=.0\, .25, .5, .75 then a=4, 1.62, 1.04, .625 respectively. The 
effective amplitude as a function of y [as calculated using eq. (18)] can oscillate around the limiting 
value of effective amplitude, but this is usually a negligible amount. The only significant undershoot 
is evident for a close to e=2.72 . In this instance the effective amplitude as a function of y dips to 
zero (at y*5) before settling to an effective amplitude of .058 . The most important point is that a 
high contrast material (a>4) is required in order to produce fully complex modulation. 

Issue 6:   Time-average recording in linear resists.   Consider recording M equal intensity, 

134 



uncorrelated speckle intensity patterns in sequence in a linear resist. The pdf for each exposure is 
eq. (7) and the pdf for the total exposure is the result of convolving the M identical pdfs.17 The pdf 
for the phase i|/, due to this total exposure is the gamma density1 

/W ¥1 
M-l 

M 

iW {(*.)) 
exp (21) 

where (\Jj,)/Mis proportional to the exposure energy of an individual speckle pattern. The effective 
complex amplitude is known to be the characteristic function of the pdf evaluated at frequency equal 
to unity2 and thus, the complex amplitude is of the form of the M'th power of eq. (8) 

(-> 1 + 
M 

exp 
/ 

M atan <♦.» 
M I . 

(22) 

Eqs. (21) and (22) approximately (though with good accuracy) describe the case for time average 
intensity recording of speckle through a spinning ground glass diffuser (ref. 1, ch. 4.) The analysis 
given there interprets Mas an effective number of statistically independent speckle patterns. The 
parameter Mneed not be an integer and for a fixed velocity diffuser Mis proportional to exposure 
time. 

The effective amplitudes and phases are plotted in fig. 8 against average exposure and for various 
values of M. The markers on the curves indicate specific points for which the effective phase shift 
is 2.5TT. For these markers the amplitude varies between .031 and .95 for Mbetween 10 and 602. 
[For M=l the results are the same as eq. (8).] Near unity amplitudes can be produced but not for all 
values of phase. It may not be practical to increase M further as this increases recording time. One 
way to address this wide variation in Mis to control multiple parameters such as intensity, diffuser 
angular velocity, and radial position of the laser beam on the diffuser. This would allow a modest 
range of control (less than 10:1) on each of the three parameters. It may also be desirable to add a 
separate phase bias I|JA for amplitudes that are close to unity in order to reduce recording time. 

The principal advantage of time-averaged recording is that the maximum recording depth is 
substantially less than for non-averaged recording. This is shown in fig. 9 for the density functions 
corresponding to M=2, 10 and 29 and effective amplitude ^=.025 . The effective values of phase 
shift are respectively .9TC, 2.6rc and 4.67t . These curves can be compared with fig. 7. They are 
substantially narrower than the exponential density. The curves for M=l to 10 and M=10 to 29 both 
produce a 2% range, however the second set of curves (compare M=2 to M=29) are even narrower. 
Also the exposure energy used for time-averaged recording will the be smaller by a factor of 2 to 4. 
This can be seen by inverting the amplitude in eq. (22) for average exposure energy 

(Es)   «    (1,,)   =   Mf^l      . (23) 

For a =.025 and M=l, which corresponds to the exponential distribution, the average intensity is 
proportional to 12.7TC. For M=2 the exposure drops to 4.0TT . For M=5 the energy is minimum at 
2.97t and it increases gradually to 5.0TC at M=29 . Therefore, both exposure energy and film 
thickness can be much less if temporal averaging is used. 
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Since we are only concerned about the modulo value of effective phase, there are multiple 
exposure conditions that produce the same value of desired amplitude a=ap . One choice of 
exposure conditions may be preferable from various considerations of energy efficiency, accuracy 
and recording time. We illustrate this by expressing the amplitude ap in terms of the phase <$>p in eq. 
(22). This is done by substituting out (ty)/Mthat is in common between the expressions of amplitude 
and phase which gives 

cos ZJL 
M 

(24) 

This is plotted in fig. 10 for <b=n/2, 5ix/2 and 9rt/2 as a function of M. Fig. 10 also plots {$) which 
is proportional to average exposure energy. The markers in these figures are identical to the circular 
markers in Fig. 8. A second set of diamond-shaped markers indicates alternate combinations of 
recording time (M) and exposure energy that produce the same effective complex amplitudes. For 
the smallest amplitude marker (.031) the 9TT/2 curve does use more energy than the 5n/2 curve, but 
the amplitude is less sensitive to exposure time. For the two larger amplitude markers the alternate 
choices on the n/2 curve use less energy but are much more sensitive to exposure time. Fig. 8 shows 
that the sensitivity of the amplitude with respect exposure energy generally decreases with increasing 
exposure energy. 

The gamma density function in eq. (21) can be approximated as a gaussian of the form 

i LiU.-^2! 
/>(*!>)   -   —z=.—7 exP 

i/2ij/(*,) 

1 

2M 
(21a) 

for Ma large number, through the use of the central limit theorem, [see ref. 17 pp. 214-221, 240] 
Substituting this result in eq. (3) approximates the effective amplitude of eq. (22) as 

(a)    ~    exp(;(l|J,)) exp (zM.) 
2M 

(22a) 

This result is quite good for M greater than 10. Eq. (21a) is used in the next section, Issue 7. 

Issue 7: Time averaged recording in log resist. The analysis of effective amplitude is identical 
to that used in deriving eq. (18) except that the gamma density is used in place of the exponential 
density. This gives 

(-> exp (i%) / 
.u-i 

T(M) 
exp(-x) exp yalnl  1 +^- 1        M 

dx (25) 

The amplitude again depends on the ratio of speckle to bias intensities. For M equal to 1 eq. (25) 
is identically eq. (18). For any value of M the amplitude decreases monotonically with increasing 
y. For M a large number the gamma density in eq. (25) can be replaced by its approximate form eq. 
(21a). After appropriate change of variables eq. (25) is approximated as 
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(a)    *    expW    fexp(-x2/2) exp[ya ln(l + Y+YW^)]  dx' (25a) 

Factoring out the term 1+y in the log function and using the approximation ln(l+z) ~z for values of 
z less than 1, eq. (25) further simplifies to 

(a)    «    exp[y^+yaln(l+Y)]exp ^ (f^j ■ <25b> 

The range of validity of the expansion depends on the extent of the gaussian in eq. (25a). The 
gaussian is essentially zero forx in excess of 3. This leads to M> 9[y/(l+Y)]2 which is always true 
for M greater than 9. 

Eq. (25b) shows that the effective amplitude ap monotonically decreases with increasing speckle 
to bias ratio y. For low sensitivity resist (see Issue 5) the curves saturate without reaching zero. 
Increasing Monly raises the saturation value, and does not increase depth of amplitude modulation 
over recording without time-averaging. The amplitude control provided by time-averaging in log 
photoresist is similar to that for time-averaged recording in linear resists as can be seen by 
comparing eq. (22a) to eq. (25b). The main difference between the two results is that eq. (22a) 
always approaches zero given a large enough exposure while eq. (25b) instead settles to a constant 
amplitude determined by a2/M. 

Issue 8: Spatial resolution of linear and log resists. Photoresists generally have much higher 
spatial resolution than the diffraction limit. However, if speckle is reimaged through a projection 
system it would be possible to use an adjustable iris in place of the spinning diffuser. The blurred 
speckle pattern can then be considered as spatially integrated. The problem is analyzed in ref. 1, ch. 
2 and it is not surprising that the results are identical to the analysis of time integrated speckle given 
above. As above, the gamma function is a good approximation of the probability density function 
of the spatially averaged speckle intensities. The parameter Mis now interpreted as the effective 
number of speckles averaged together in a rectangular window. Thus the results presented above 
in Issues 6-7 can be used without modification to analyze the effect of resolution loss in linear 
resists. 

5. Experimental demonstration of speckle recording 
The theory presented in Sec. 4 primarily describes the complex amplitudes that could be produced 

by recording laser speckle in photoresist. In order to better anticipate the potential problems in 
developing the proposed exposure system we have also performed some preliminary experiments 
in which we use a phase-only liquid crystal light valve to represent photoresist. Unlike the 
demonstration reported in Sec. 2, in which the SLM represented an array of pixels, in this section 
the SLM represents a single pixel. The purpose of the experiment is to show the control of effective 
amplitude by varying the exposure. 

The SLM chosen for this demonstration is a gallium arsenide photodetector, birefringent liquid 
crystal light valve from the Lebedev Physical Institute. It was chosen because it produces the largest 
phase shift (up to 4 it) of the SLMs available to us. Measurements in an interferometer of the read 
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side of the light valve indicate that there is a roughly logarithmic dependence of the phase 
modulation depth on the exposure intensity. However, the exact phase shifts measured can vary 
dramatically based on the spatial frequency content of the illumination and the exposure intensity. 
In particular, the spatial resolution of the device (4 to 40 lp/mm) is known to depend on the exposure 
intensity. For these reasons, rather than attempting to completely characterize the device, we have 
chosen to demonstrate the control of effective amplitude by varying the speckle recording 
parameters. The experimental results for the light valve are compared with our theory for ideal 
logarithmic resists. 

The write side of the light valve is illuminated by two mutually incoherent (850 nm) laser diode 
sources. One beam is expanded and illuminates the light valve with a spatially uniform bias. The 
other beam is focused into a small spot on the surface of a ground glass diffuser to produce a speckle 
pattern illumination on the light valve. The speckle diameter is varied by translating a diffuser along 
the path of the beam so as to change the beam diameter intercepting the diffuser. The light valve is 
electrically driven with a 2 kHz, 10 V rms sinusoidal potential from a signal generator. The read 
side of the light valve is illuminated with a 633 nm wavelength HeNe laser beam. The beam is 
spatially filtered and expanded using a collimator. The collimator lens is positioned to slightly 
converge the beam. At the face of the SLM the beam is 14.5 mm in diameter. The reflected beam 
is observed using a ccd camera positioned at the focus of the collimator lens. A digital oscilloscope 
connected to the video output of the camera is used to measure the intensity of the specular 
diffraction peak as the bias and speckle exposures are varied. 

Experimental Results. The experimental results are plotted in fig. 11 (solid lines). For these plots 
the effective amplitude ap is considered to be the square root of the intensity of each measurement 
after it has been normalized by the maximum intensity from all the measurements. For each set of 
measurements the speckle intensity is varied from 0 to 365 uW/cm2. For one set (fig. 1 la) the bias 
Eb is stepped from 0 to 29.3 uW/cm2 (with the speckle diameter held constant at 1 mm.) The actual 
value of bias used in each experiment is given in the first column of Table 1. The top curve in fig. 
11a corresponds to the first row in the table, the second curve corresponds to the second entry, and 
so on. For the other set (fig. 1 lb) the speckle diameter is stepped from .07 to 1 mm (with the bias 
held constant at zero.) The measured speckle diameters are listed in the first column of Table 2. The 
curves in fig. 1 lb and Table 2 are also sequenced so that the top curve corresponds to the first row, 
and so on. 

The measured curves in fig. 11 demonstrate that effective amplitudes between 1 and nearly zero 
can be produced with this particular device. Both increasing bias and decreasing speckle size 
increase the minimum possible amplitude. The reduction in modulation range as a function of bias 
(fig. 1 la) is probably due to the limited phase modulation range of the SLM. Increasing the bias 
reduces the range of phase modulation produced by the speckle portion of the exposure and thus, 
saturation effects (comparable to finite thickness in resists) become more prevalent. The third 
column of Table 1 lists the phase shifts t|/Ä that are produced for the bias levels given in column 1. 
The phase shifts were measured using an interferometer to observe fringe displacement as a function 
of exposure intensity. In fig. 1 lb the reduction in the range of amplitude modulation with decreasing 
speckle diameter is apparently due to spatial averaging related to the limited resolution of the SLM. 
Further evidence of this is that a curve for 3 mm diameter speckle (not shown) is nearly, identical to 
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the 1 mm curve over most of the range of y. The only apparent discrepancy is around the minimum 
of each curve where the 3 mm case only dips to .16 instead of .09 . We believe that this difference 
is mainly due to the increased level of background noise for the 3 mm case, which is anticipated as 
a direct result of its lower directivity (18:1 for the 3 mm case as opposed to 165:1 for the 1 mm 

case.) 

Comparison of experiment with theory for logarithmic resist. The effective amplitude produced 
by a resist film having logarithmic slope a=1.65 and different levels of bias has been calculated 
using eq. (19) and is plotted in fig. 1 la. For low energy speckle exposures (i.e. low values of y) the 
effective amplitude is unaffected by the finite thickness of the resist and thus, all theoretical curves 
are identical in this region. However, the SLM does not actually behave as a single function of y 
for all values of bias. Instead, the experimental curves in fig. 1 la have been plotted so that the initial 
slope of each curve matches that of the theoretical curves. This corresponds to using values of bias 
from the third column of Table 1 (instead of the first column) in the calculation ofy=(E)/Eb. The 
middle two experimental curves do have the same initial slope. The value of <x=1.65 has been 
chosen so that the initial slope of the theory and experiment match for the measured values of bias. 
In this theory, increasing the bias level corresponds to reducing i|/„„ the total phase range available 
for speckle recording. The values of i|/„„ used for the theoretical plots in fig. 1 la are listed in the 
fourth column of Table 1. If the SLM were to closely fit the model of the log resist then we would 
expect that the total phase range of the resist i|/„, = tyb +\J/„„ (the sum of the third and fourth columns 
of Table 1) would be a constant for each level of bias, rather than between 2% to 3TL While the SLM 
and ideal resist are significantly different, we believe that these comparisons are helpful in better 
anticipating the practical issues of using resists and in appreciating the theory of speckle recording. 

We continue these comparisons for the recording of spatially-averaged speckle (fig. 1 lb.) The 
effective amplitude is calculated for a resist film exposed to averaged speckle. The equation used 
is not explicitly presented. It combines the results for thin logarithmic resists [from eq. (19)] with 
the results for time averaged resists [eq. (25)], and it can be derived directly by using the gamma 
density function forp($) in eq. (9). The effective amplitude for all the theoretical curves have been 
calculated for a single value of film thickness corresponding to IJJB„=2.26TI:, resist sensitivity a=2.0, 
and the values of M listed in the third column of Table 2. These values have been selected so that 
the middle theoretical curve (for M=3) in fig. 1 lb closely fits the experimental results. With respect 
to the experimental curves, the other four theoretical curves appear to be overly compressed (for the 
lower two curves) or overly expanded (for the upper two curves) along the y coordinate. 

We also compare the numerical values of M with the measured values of diameter (Table 2.) 
Since M (the number of speckle images averaged together) is inversely proportional to the square 
of the speckle diameter, we have arbitrarily selected the proportionality constant so that the speckle 
diameter for experiment and theory is identical for the third row of Table 2. The other values of 
diameter (the second column of Table 2) are then calculated from Musing this proportionality. As 
with the corresponding curves of fig. lib, the difference in diameter between the theory and 
experiment depart increasingly as M differs from 3. 

Discussion of these results. While the optical properties of the SLM and the idealized resist are 
quite different similar trends are apparent.   As discussed in Issue 5 of Sec. 4, low values of 
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sensitivity a limit the minimum achievable value of effective amplitude for a logarithmic resist; and, 
as discussed in Issue 4, finite phase modulation range i|/„„. causes the effective amplitude to increase 
for large intensity speckle exposures. In fact, the phase modulation range is so small that any level 
of bias exposure at all reduces the total range of effective amplitude modulation. These 
characteristics seem to also qualitatively describe the behavior of the SLM, which we know has low 
(though signal dependent) sensitivity and phase modulation range. For practical recording of 
arbitrary complex values we clearly need greater phase range and sensitivity; especially, since 
applying any bias (which is intended to realize the correct phase) further reduces the range of the 
effective amplitude. Likewise, speckle averaging reduces the depth of modulation, which limits our 
ability to achieve all complex values. These limitations reflect the shortcomings of using SLMs as 
demonstration vehicles, rather than of the concept of speckle recording itself. As described in Issue 
4, there are many resists that are adequately sensitive and which can be spun on in adequately thick 
layers. 

5. Summary and Conclusions 
In this paper we have presented the concept of the patterned diffuser array in which each pixel 

is directly synthesized or encoded on a pixel by pixel basis. The main application of this device is 
the realization of complex valued spatial filters (e.g. composite pattern recognition filters, spot array 
generators and structured light illuminators) with phase-only structures. A second potential 
application of patterned diffuser arrays is as gray level photomasks for projection printing. 

We have also proposed a photoresist exposure system for the custom fabrication of diffuser arrays 
by exposing individual pixels to appropriate combinations of spatially uniform and nonuniform 
illumination. The exposure system appears to place no critical requirements on optical components, 
vibration isolation, or air cleanliness. For this reason we believe that the components required to 
construct a turn key system would cost well under $100,000. The most costly component appears 
to be the translation stages, which should be as fast as possible to reduce fabrication time. If 
multiple copies of a diffuser array are required, then greater speeds are possible by using various 
replication methods.16 

Patterned diffuser arrays provide a direct way to implement complex-valued modulation without 
resorting to numerically intensive design procedures. This approach could be used to significantly 
shorten the time required to design and, in many cases, to fabricate, a wide variety of diffractive 
optics functions. 
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Table and Figure Captions 
Table 1. Parameters specific to the measured and theoretical curves in fig. 1 la. Also the measured 
speckle diameter is 1 mm, and the theory uses a=l .65 radians. 
Table 2. Parameters specific to the measured and theoretical curves in fig. 1 lb. The measured bias 
Eh=0 uW/cm2. The theory uses bias Eb=5A uW/cm2, <x=2.0 radians and i|/„„=2.267t. 

Figure 1. Controlling specular intensity by varying surface roughness. 
Figure 2. An array of diffusers that produces a custom complex-valued modulation. 
Figure 3. Comparison of diffraction patterns from random encoding a 100 x 100 array of desired 
complex values to a 100 x 100 array of phase-only pixels and to a 100 x 100 array of diffuser pixels. 
Each diffuser pixel is a 3x3 array of random phases that are randomly encoded to produce the same 
effective value of amplitude ap. Grayscale images of diffraction pattern intensity for arrays of (a) 
phase-only pixels, theory; (b) diffuser pixels, theory; © phase-only pixels, experiment; and, (d) 
diffuser pixels, experiment.   The on-axis or DC component, upper left of© and (d) is primarily due 
to Fresnel reflection from the cover glass which has not been anti-reflection coated for this LCLV. 
Figure 4.   Proximity exposure systems for producing complex-valued pixels.   Phase offsets 
produced by (a) time averaged recording of speckle patterns from spinning diffuser, (b) adding a 
spatially uniform exposure which, as shown, is derived from a single mode optical fiber used as a 
point source. 
Figure 5. Grayscale intensity images of speckle patterns recorded at (a) 0 urn, (b) 100 urn, and © 
500 urn past a 100 um slit. The diameter of the speckle is approximately 2.5 p.m. Patterns were 
imaged onto a 1/3" ccd camera using a 40x microscope objective approximately 160 mm from the 
ccd. The images were then recorded with a video frame grabber. 
Figure 6. Effective amplitude ap and phase $p for log and linear resists. For linear resist, which 
depends on absolute intensity, the x-axis is defined to be y=(tys)/%. 
Figure 7. The probability density functions for depths of speckle recorded into log and linear resists. 
Each distribution produces effective amplitude ap=.025 . 
Figure 8.  Effective complex amplitude for time-averaged recording of speckle in linear resist. 
Average recorded depth is proportional to average exposure energy (E) . For Mof 80,180, 602 the 
effective phase curves are nearly identical. The dots (•) indicate where effective phase is 2.571. 
Figure 9.   Probability density functions for time-averaged recording in linear resist.   Each pdf 
produces identical effective amplitude ap=.025 . 
Figure 10. Effective amplitude for time-averaged recording in linear resist for a constant value of 
effective phase. The dots (•) indicate identical points from fig. 8. The diamonds (♦) indicate points 
identical in amplitude but that differ in phase by an integer multiple of 2 TH. 

Figure 11. Experimental demonstration of speckle recording using a phase-only liquid crystal light 
valve to represent a photoresist. The plots show how the effective amplitude curves change for (a) 
different levels of uniform bias Eb and (b) different speckle diameters. Specific values used in the 
experiment and theory are given in Tables 1 and 2. 
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 AXuSftcm^..-. 4»,!, measured i|rB„ theory 

Measured Theory (radians) (radians) 

29.3 12.3 2.0n 0.9171: 

15.3 15.3 1.571 1.267t 

9.8 9.8 1.0m 1.67K 

0.0 5.1 O.OTC 2.0671 

Table 1. Parameters specific to the measured and theoretical curves in fig. 1 la. Also the measured 
speckle diameter is 1 mm, and the theory uses a=l .65 radians. 

imeiexXmm) M 
VIeasured Theory Theory 

0.07 0.14 10.0 
0.15 0.20 4.5 
0.25 0.25 3.0 
0.4 0.35 1.5 
1.0 0.43 1.0 

Table 2. Parameters specific to the measured and theoretical curves in fig. 1 lb. The measured bias 
£A=0 uW/cm2. The theory uses bias £A=5.1 |iW/cm2, a=2.0 radians and ^„=226TZ. 

TJOSA A Cohn, Vasiliev, Liu, Hill] 
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Fig. 1.  Controlling specular intensity by varying surface roughness 
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Fig. 2.   An array of diffusers that produces a custom complex-valued modulation. 
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Figure 3. Comparison of diffraction patterns from random encoding a 100x100 array of 
desired complex values to a 100x100 array of phase-only pixels and to a 100x100 array 
of diffuser pixels. Each diffuser pixel is a 3x3 array of random phases that are randomly 
encoded to produce the same effective value of complex amplitude ap . Grayscale images 
of diffraction pattern intensity for arrays of (a) phase-only pixels, theory; (b) diffuser 
pixels, theory; (c) phase-only pixels, experiment; and, (d) diffuser pixels, experiment. 
The on-axis or DC component, upper left of (c) and (d) is primarily due to Fresnel 
reflection from the cover glass which has not been anti-reflection coated for this LCLV. 

[JOSAA Cohn, Vasiliev, Liu, Hill] 
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Fig. 4.  Proximity exposure systems for producing complex-valued pixels. 
Phase offsets produced by (a) time averaged recording of speckle patterns 
from spinning diffuser, (b) adding a spatially uniform exposure which, as shown, 
is derived from a single mode optical fiber used as a point source. 
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(a) 

(b) 

(c) 

Figure 5. Grayscale intensity images of speckle patterns recorded at (a) 0 um, (b) 100 urn, 
and (c) 500 urn past a 100 urn slit. Patterns were imaged onto a 1/3" ccd camera using a 
40x microscope objective approximately 160 mm from the ccd. The video images were 
then recorded with a video frame grabber. 

[JOSAA Cohn, Vasiliev, Liu, Hill] 

148 



1- 
i\       —log a =16.34     ^"^ 2 

\   \     -- log  a =53.64     '   / 
[\     \   ■■■■ linear                / /                       .-■ - 

0 11             * 1   /                           •*' 
T3 1 1 I / 0 
3 [ 1                 * f                                             9 * CO 

-t—> ■ I 1                                         ♦ * 03 
"5.    - 1 I '  / JZ 

E 
CO      - i\                         *♦ If                            4 

Q. 

-E    0 
0 1   \ ll 4   > 
> I II Ü 

"-4—» II                                      * # .1                 * 0 
Ü \                                         « 

1                * M— 

0 
<4— \   \                      ***• 1            *' 

M— 

LU 
M— ■    \                                    ^ 
LU i    \                                  i 

s              ^  • — 

»*                 ^^—     - m 

n 
•» „__                   ^^ 

L_ n u i    i    i    i    1    i    i    i    i ~™| ■   i   i   i    i    i    i    i    ■   r   ^ 

0                                10                                1 
Speckle to bias ratio (Y) 

Fig. 6.   Effective amplitude a, and phase <j>, for log and linear resists.  For linear 
resists, which only depend on absolute intensity, the x-axis is defined 
to be Y=< Y,>/n. 
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Fig. 7.  The probability density functions for depths of speckle recorded into 
log and linear resists.  Each distribution produces effective amplitude a,=.025 
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Average phase depth < ¥5 > 

Fig. 8. Effective complex amplitude for time-averaged recording of speckle in linear resist 
Average recorded depth is proportional to average exposure energy <E,> . 
For M of 80, 180 and 602 the effective phase curves are nearly identical. 
The dots (•) indicate where effective phase is 2.5 ft . 
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Fig. 9.  Density functions for time-averaged recording in linear resist 
Each pdf produces identical effective amplitude of a =.025   . 
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Fig. 10.  Effective amplitude for time-averaged recording in linear resist for a 
constant value of effective phase.   The dots (•) indicate identical points from 
fig. 8.   The diamonds (♦) indicate points identical in amplitude but that differ 
in phase by an integer multiple of 2% . 

[JOSA A Cohn, Vasiliev, Liu, Hill] 

153 



Speckle to bias ratio (Y) 

Fig. 11.   Experimental demonstration of speckle recording using a phase-only 
liquid crystal light valve to represent a photoresist.  The plots show how the 
effective amplitude curves change for (a) different levels of uniform bias Et 

and (b) different speckle diameters.   Specific values used in the experiment 
and theory are given in Tables 1 and 2. 
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