
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0183

I Public reporting burden for this ''oUection of information is estimated Co .i«/er*<7? : *':ur o<:r -üsoonse. including the :ime rar reviewing instructions, searching existing data sources.
j gathering inri maintaining the d.sta needed, and completing and re'/'evung 'he -:-:l>e'~wn of r.f.-r-r-.ation. Seid comments regarding this burdun estimate or anv other asoect of this

collection of information, including suggestion* for -educing this burcen. to vVasn-ng'on Headdujr'.e's Services. Directorate tor information Operations and Reports, 1215 Jefferson
Day^s Higfv.vay. Suite 1204. Arlington. VA 2220 2--302. ,*nd to the Offu:«? of Vrt'w^emi?nt arc 3i-c-;e:. Paperwork deduction Project (0704-0188). Washington. OC 20SQ3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

1 September 1994
3. REPORT TYPE AND DATES COVERED

Final Report 1/6/93 - 1/6/96
4. TITLE AND SUBTITLE

The Detection and Extraction of Features of Low Probability of
Intercept Signals Using Quadrature Mirror Filter Bank Trees

I 6. AUTHOR(S)

Glenn E. Prescott
Thomas C. Farrell

j 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES)

Telecommunications & Information Sciences Laboratory
Department of Electrical Engineering & Computer Science
University of Kansas, Lawrence, KS 66045

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
. REPORT NUMBER

[9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research
110 Duncan Avenue, Suite B115
Boiling AFB, DC 20332

*\
<^

AFOSR-TR-96

QMS0!
11. SUPPLEMENTARY NOTES

I Distribution Unlimited

12a. DISTRIBUTION/AVAILABILITY STATEMENT 19961016 082 DDE

IBtSBimOH SWttEMEIfl
Ä)ä£covec toi p-iiciie releosq)

{tamers« üa&ntei
lYflQ <&*****.

XSSPEC?^1 ©4

5

13. ABSTRACT (Maximum 200 words)

A new type of spread spectrum intercept receiver is described which uses orthogonal Wavelet techniques
and a Quadrature Mirror Filter (QMF) bank tree to decompose a waveform into components
representing the energy in rectangular "tiles" in the time frequency plane. By simultaneously'examining
multiple layers of the tree, the dimensions of concentrations of energy can be estimated with a higher
resolution than is normally associated with linear transform techniques. This allows detection and
feature extraction even when the interceptor has little knowledge of specific parameters of the signal
being detected. In addition, the receiver can intercept and distinguish between multiple signals. For each
category of spread spectrum, the receiver estimates the energy cells' positions in the time frequency
plane, the cells' bandwidths, time widths and signal to noise ratios, and the energy distribution within
each cell. With this information, a classifier can then determine how many transmitters there are, and
which cells belong to each. In this report, algorithms are described for detecting and extracting features
for each of the spread spectrum signal formats. These algorithms are analyzed mathematically and the
results are verified with simulation. The detection abilities of these algorithms are compared with other
spread spectrum detectors hat have been described in the literature.

14. SUBJECT TERMS

Multiresolution, LPI, Signal Detection, Wavelets, Quadrature Mirror Filters

! 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
I

Unclassified tfMM
19. SECURITY CLASSIFICATION

OF *slfied

15. NUMBER OF PAGES

16. PRICE COOE

20. LIMITATION OF ABSTRACT

|\J5N 7540-01-230-5500 Standard Form 298 (Rsv 2-89)

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

Final Technical Report
to

Air Force Office of Scientific Research
AFOSR/NM (Mathematics & Signal Processing)

Boiling AFB, Washington DC 20332-6448

AFOSR Grant #F49620-93-1-0404

Detection and Extraction of Features of Low
Probability of Intercept Signal Features
Using Quadrature Mirror Filter Banks

Period of Performance 1 June 1993 - 31 May 1996

Sfl MUX

Thomas C. Farrell

Glenn E. Prescott
Principal Investigator

Associate Professor of Electrical Engineering

June 1996

/ ri&v. \

Telecommunications and Information Sciences Laboratory
The University of Kansas Center for Research, Inc.

2291 Irving Hill Drive, Lawrence, Kansas 66045

11

Ill

Table of Contents

Page

Acknowledgments iii

List of Figures vii

List of Tables xiv

Abstract XV

I. Introduction 1

Background
Problem Statement
Approach and Scope
Assumptions
Overview of the Report

2

8
8
8

10

n. The Detection of Signal Energy in Noise Using Wavelets and
Related Techniques

11

Introduction
General Framework For the Decomposition of Waveforms
Wavelet Transforms
Arbitrary Tiling
Conclusions

11
11
26
43
48

in. Filter Coefficients 49

Introduction
Common Wavelet Filters
Wavelet Filters For Energy Detection
Summary and Conclusions

49
55
66
77

IV. Simulation Programs 78

Introduction
LPI Signal Generators
Quadrature Mirror Filter Bank
Summary

78
78
84
95

iv

Page

V. Interception of Fast Frequency Hop (FH), Time Hop (TH), and FH/TH Signals 96

Introduction 96
Spread Spectrum Signals With Cell Time Bandwidth Products of One 96
Detection 99
The Nine Tile Scheme 107
Feature Extraction 121
Summary 128

VI. Interception of Direct Sequence (DS) Signals 131

Introduction 131
Direct Sequence Signals 132
Detection 134
Feature Extraction 141
Summary 147

VE. Interception of FastFH/DS, TH/DS, Fast FH/TH/DS, and Slow FH Signals 149

Introduction 149
Hopped Spread Spectrum Signals With Time Bandwidth 149

Products Greater Than One
Detection 150
Feature Extraction 156
Summary 168

VTH. Characterizing Energy Cells by Their Frequency Distribution 170

Introduction 170
Distinguishing Between the Hopped/DS and Slow FH Cells 170
Summary and Conclusions 176

K. Summary, Conclusions, and Recommendations 179

Summary and Discussion 179
Major Conclusions and Contributions of the Research 183
Recommendations For Further Research 184

Appendix A. Matlab Files Described in Chapter rv 186

Appendix B. Matlab Files Used to Carry Out Simulations Presented in Chapter V 204

Page

AppendixC. Matlab Hies Used to Carry Out Simulations Presented in Chapter VI 217

Appendix D. Matlab Files Used to Carry Out Simulations Presented in Chapter VII 224

Appendix E. Matlab Files Used to Carry Out Simulations Presented in Chapter VIII 237

Bibliography 243

VI

List of Figures

Figure Page

Chapter I.

1.1. Time Frequency Diagram For the Wavelet Transform 7

1.2. LPI Receiver B lock Diagram 9

Chapter II.

2.1. Approximations of the Energy Around nf)T 15

2.2. Chi-Square Probability Distribution Functions 20

2.3. Time Frequency Diagram For the Discrete Fourier Transform 22

2.4. True Coverage of the Frequency Domain With a 23
Rectangular Window in the Time Domain

2.5. Time Frequency Diagram For the DFT With Gaussian Window 24

2.6. Time Frequency Diagram For the Short Time Fourier Transform 25

2.7. Tune Frequency Diagram For the Wavelet Transform 28

2.8a. An Example of the Scaling Function 29

2.8b. Translated Versions of the Scaling Function 29

2.8c. Dilated and Translated Versions of the Scaling Function 30

2.9. Mother Wavelet For the Haar Basis Set 31

2.10. Wavelet Filter Bank 32

2.11. Time Frequency Diagram For the Wavelet Filter Bank 33

2.12. Decomposition and Reconstruction of a Sequence 38

2.13. Wavelet Packet Filter Bank 44

2.14. Time Frequency Diagram For the Wavelet Packet Filter Bank 45

2.15. Response of the Filters in Figure 2.13 45

2.16. Combining the Wavelet and Wavelet Packet Filter Banks 46

2.17. Time Frequency Diagram For the Filter Bank in Figure 2.16 47

vu

Figure Page

Chapter IE.

3.1. Desired Frequency Response 50

3.2. Finite Impulse Response Filters With Delays Added 51

3.3. Noble Identity 52

3.4a. Three Layer Low Pass Filter, and How to Analyze it 54

3.4b. Result of Analyzing Three Layer Low Pass Filter 55

3.5. Second Layer Equivalent FIR Filter 56

3.6. Haar Filter Magnitude Response 57

3.7. Layer Three Magnitude Response of Haar Filter Tree 5 7

3.8. Daubechies' Four Coefficient Filter Magnitude Response 58

3.9. Layer Three Magnitude Response of Daubechies' 58
Four Coefficient Filter Tree

3.10. Daubechies' 16 Coefficient Filter Magnitude Response 60

3.11. Layer Three Magnitude Response of Daubechies' 60
16 Coefficient Filter Tree

3.12. Sampling Under a Sine Envelope 61

3.13. Magnitude Response of Truncated S inc Filter 62

3.14. Magnitude Response of Hamming Windowed Truncated Sine Filter 63

3.15. |H(co)f +|G(co)f For the Windowed Truncated Sine Filter 63

3.16. \U((äf +\G((of For the Modified Sine Filter 65

3.17. Layer Three Magnitude Response of Modified Sine Filter Tree 65

3.18. Layer L Equivalent Filter and Decimator 66

3.19. Tile in the Time Frequency Plane 70

3.20. Minimum Value of U^ Versus the Number of Coefficients, When mt = 2 73

vui

Figure

3.21. 22 Coefficient Energy Detection Filter, Magnitude Response

3.22. Layer Three Magnitude Response of 22 Coefficient
Energy Detection Filter

3.23. Cell Energy at Layer 6 With Haar Filter

3.24. Cell Energy at Layer 6 With Sine Filter

3.25. Cell Energy at Layer 6 With 22 Coefficient
Energy Concentration Filter

Chapter IV.

4.1. Fourier Transform of DS Signal

4.2. Short Time Fourier Transform (STFT) of DS Signal

Page

75

75

76

76

77

79

19

4.3. STFT of Fast FH/DS Signal 80

4.4. STFT of TH/DS Signal 80

4.5. STFT of Fast FH/TH/DS Signal 81

4.6. STFT of Slow FH/DS Signal 81

4.7. Conceptual Example of Slow FH Cell 84

4.8. Layer Seven Time Frequency Diagram, 0.5 Hz Tone, Haar Filter 86

4.9. Layer Two, 0.25 Hz Tone, Haar Filter 87

4.10. Layer Seven, 0.25 Hz Tone, Haar Filter 87

4.11. Layer 13, 0.25 Hz Tone, Haar Filter 88

4.12. Layer Ten, 0.3 Hz Tone, Haar Filter 89

4.13. Layer Ten, 0.3 Hz Tone, Daubechies 4 Coefficient Filter 89

4.14. Layer Ten, 0.3 Hz Tone, Daubechies 16 Coefficient Filter 90

4.15. Layer Ten, 0.3 Hz Tone, Modified Sine Filter 90

4.16. Layer Ten, 0.3 Hz Tone, Energy Concentration Filter 91

4.17. Layer Four, Impulse, Daubechies 16 Coefficient Filter 91

IX

Figure Page

4.18. Layer Ten, Impulse, Haar Filter 92

4.19. Layer Ten, Impulse, Daubechies 4 Coefficient Filter 92

4.20. Layer Ten, Impulse, Daubechies 16 Coefficient Filter 93

4.21. Layer Ten, Impulse, Modified Sine Filter 93

4.22. Layer Ten, Impulse, Energy Concentration Filter 94

Chapter V.

5.1. A TH or FH/TH Cell 97

5.2. The Sine Squared Function. With the Areas Under 98
Key Portions of the Curve

5.3a. Spread Spectrum Cell in Time Frequency Diagram 99

5.3b. Spread Spectrum Cell in Time Frequency Diagram 100

5.4. Radiometer 100

5.5. Optimal Detector For Fast FH Signals 103

5.6. Filter Bank Combiner 104

5.7. Chi Square Probability Distribution Functions 105

5.8. FB C S imulation Results 108

5.9. Tiling at the ß layer 109

5.10. How a 1x3 Block Can Cover a Cell 109

5.11. How a 2x3 Block Can Cover a Cell 110

5.12. Two Ways Blocks Can Overlap 113

5.13. Empirical Energy Distribution For Nine Tile Scheme 114
Output With a Noise Only Input

5.14. Nine Tile Scheme Analysis Results 116

5.15. Comparison of Theoretical Radiometer Results With Observed Results 117

Figure Page

5.16. Comparison of Filter Bank Combiner Results and Nine Tile Scheme 118
Results With 22 Coefficient Tile Filter

5.17. Comparison of Filter Bank Combiner Results and Nine Tile Scheme 119
Results With 32 Coefficient Modified Sine Filter

5.18. Nine Tile Scheme With Unknown Hop Rate. Layers Three to Ten 120
Examined With 32 Coefficient Modified Sine Filter

5.19. Error in Time Estimate With 32 Coefficient Modified Sine Filter 122

5.20. Error in Time Estimate With 22 Coefficient Energy Concentration Filter 123

5.21. Error in Frequency Estimate With 32 Coefficient Modified Sine Filter 123

5.22. Error in Frequency Estimate With 22 Coefficient 124
Energy Concentration Filter

5.23. Block Energy Distribution (First 10 Blocks) 124
With 32 Coefficient Modified Sine Filter

5.24. Block Energy Distribution (First 10 Blocks) 125
With 22 Coefficient Energy Concentration Filter

5.25. Energy in Highest 50 Blocks Found With 32 Coefficient 125
Modified Sine Filter

5.26. Energy in Highest 50 Blocks Found With 22 Coefficient 126
Energy Concentration Filter

5.27. Energy in Highest 50 Blocks Found With 32 Coefficient Modified 129
Sine Filter When There Are Two FHTTH Signals Present

5.28. Energy in Highest 50 Blocks Found With 22 Coefficient Energy 129
Concentration Filter When There Are Two FH/TH Signals Present

Chapter VI.

6.1. Adding Energy Across the Observation Time to 131
Obtain a Spectral Vector

6.2. Direct Sequence Communications System 132

6.3. Example of Random Binary Waveform 133

6.4. The Sine Squared Function, With the Areas Under Key Portions of the Curve 133

XI

Figure Page

6.5. Radiometer With Threshold Detector 134

6.6. Solution to Both Sides of Equation (6.15) 137

6.7. Effect of Filter Size on the Probability of Detection 137

6.8. Simulation Results When the DS Signal Parameters Are Known 139

6.9. Simulation Results When the Signal's 142
Center Frequency and Bandwidth Are Unknown

6.10. Seven, Eight, and Nine Bin Rectangles Superimposed on Sine-Squared Curves 143
to Give an Indication of How Much DS Signal Energy Each Will Collect

6.11. Probability of Detection For Seven, Eight, and Nine Bin Rectangles, 144
as the Signal's Center Frequency is Shifted With Respect to a Bin's Center

6.12a. Rectangle Sizes Found . 146

6.12b. Rectangle Sizes Found 147

Chapter VII.

7.1. Energy Distribution in a Four Channel Slow Frequency Hopped Cell 150

7.2. Probability of Detection of Hopped/DS Cell 153

7.3. Probability of Detection of Hopped/DS Cell (Base Ten Log-Log Scale) 154

7.4. Comparison of Hopped/DS Radiometer Detection Simulation 156
With Theoretical Predictions

7.5. Block Algorithm Simulation Results Detecting a Hopped/DS Cell 157

7.6. Comparison of Slow FH Radiometer Detection Simulation 158
With Theoretical Predictions

7.7. Block Algorithm Analysis Results Detecting a Slow FH Signal Cell 159

7.8. Error in Estimates of Time Position of Hopped/DS Cells 161

7.9. Error in Estimates of Frequency Position of Hopped/DS Cells 162

7.10. Estimates of Time Duration of Hopped/DS Cells 163

7.11. Estimates of Bandwidth of Hopped/DS Cells 163

Xll

Figure Page

7.12. Estimates of Energy of Hopped/DS Cells Plus Noise 164

7.13. Energy of Blocks That Include a Hopped/DS Cell Plus Noise 165

7.14. Error in Estimates of Time Position of Slow FH Cells 165

7.15. Error in Estimates of Frequency Position of Slow FH Cells 166

7.16. Estimates of Time Duration of Slow FH Cells 167

7.17. Estimates of Bandwidth of Slow FH Cells 167

7.18. Estimates of Energy of Slow FH Cells Plus Noise 168

7.19. Energy of Blocks That Include a Slow FH Cell Plus Noise 169

Chapter Vffl.

8.1. Expected Energy Distribution in a Block's Spectral Vector 172
When a Hopped/DS Cell is Present and Centered

8.2. Results of Test to Determine Whether Cell is Hopped/DS 176

8.3. Error in Estimates of Hopped/DS Cells 177

8.4. Estimates of Bandwidth of Hopped/DS Cells 177

Xlll

List of Tables

Table Page

I. Type of Intercept Receiver to Use, Based on the Interceptor's 5
Knowledge of the LPI Spread Spectrum Signal

n. Values of C and S, For Various Numbers of Coefficients, N, 64
For the Modified Sine Filter

m. Values of the Objective Function For Various Filters 71

IV. Amount of Cell Energy Collected With Different Size B locks 111
at the ß Layer and P^ When the Threshold is Set For Pfa = 0. I

V. Amount of Cell Energy Collected With Different Size Blocks 111
at the ß -1 Layer and ?^ When the Threshold is Set For Pfa = 0.1

VI. Amount of Cell Energy Collected With Different Size Blocks 112
at the ß + 1 Layer and P^ When the Threshold is Set For Pfa = 0.1

VII. Layers in Which Maximum Energy Blocks Occurred For 127
32 Coefficient Modified Sine Filter

Vni. Layers in Which Maximum Energy Blocks Occurred For 127
22 Coefficient Energy Concentration Filter

DC. Layers in Which Maximum Energy Blocks Occurred For 130
Two Signals With Different Hop Rates

X. Signal Energy and Amplitude For the DS Signal Feature Extraction 145
Simulations

XI. Error in the Center Frequency and Energy Estimates in the 147
DS Signal Feature Extraction Simulations

xiv

The Detection and Extraction of Features of Low Probability of
Intercept Signals Using Quadrature Mirror Filter Bank Trees

Thomas C. Farrell, B.S./M.S.
Department of Electrical Engineering and Computer Science, 1996

University of Kansas

Abstract

This research describes a new type of spread spectrum intercept receiver. The receiver uses
orthogonal Wavelet techniques and a Quadrature Mirror Filter (QMF) bank tree to decompose a
waveform into components representing the energy in rectangular "tiles" in the time frequency plane.
By simultaneously examining multiple layers of the tree, the dimensions of concentrations of energy
can be estimated with a higher resolution than is normally associated with linear transform
techniques.

This allows detection and feature extraction even when the interceptor has little knowledge
of specific parameters of the signal being detected. For example, no prior knowledge of
channelization or time segmentation is assumed. In addition, the receiver can intercept and
distinguish between multiple signals. The spread spectrum formats considered are: Fast Frequency
Hopping (FH), Time Hopping (TH), Fast FH/TH, Direct Sequence (DS), Fast FH/DS, TH/DS, Fast
FH/TH/DS, and Slow FH. For each of these, the receiver estimates the energy cells' positions in the
time frequency plane, the cells' bandwidths, time widths, and signal to noise ratios, and the energy
distribution within each cell. With this information, a classifier can then determine how many
transmitters there are, and which cells belong to each.

In this research, algorithms are described for detecting and extracting features for each of the
signal formats. These algorithms are analyzed mathematically and the results are verified with
simulation. The detection abilities of these algorithms are compared with other spread spectrum
detectors that have been described in the literature.

xv

The Detection and Extraction of Features of Low Probability of
Intercept Signals Using Quadrature Mirror Filter Bank Trees

I. Introduction

Spread Spectrum signals are often used in the military environment to provide Low
Probability of Intercept (LPI), or covert, communications. Recently, spread spectrum techniques have
also been incorporated into such civilian applications as wireless local area networks and cellular
telephones, where the primary advantages are low transmitter power requirements and low probability
of interference. As the use of these techniques becomes more widespread, so do the requirements for
people, other than the intended receiver, to detect and determine key features of the signals. Two
examples of this are the requirement to police the electromagnetic spectrum, and the need for field
engineers to determine how much traffic a particular Spread Spectrum band carries in a particular
environment.

Most descriptions of Spread Spectrum detection receivers published in the open literature
begin with an assumption that the interceptor knows just about everything there is to know about the
signal to be intercepted except for its presence, and the pseudo-random sequence used to spread
(and/or hop) the signal [15] [45]. In particular, the interceptor is generally assumed to know the
channelization, time duration, and hop synchronization of frequency hopped (FH) and time hopped
(TH) signals, and the bandwidth of direct sequence (DS) signals. In addition, the assumption is often
made (sometimes implicitly) that, at most, one signal will be present

In many military and civilian environments, these assumptions are not appropriate. For
example, an FH LPI military radar might not be turned on until necessary, depriving the enemy of
channelization information until it's too late. It is also unrealistic to assume only one LPI signal will
be present in most military situations, where both sides will have radar and communications systems
operating. In the civilian world, it is easy to imagine a large office building, for example, with
dozens (perhaps hundreds) of wireless local area networks. There is, therefore, a need for an
intercept receiver that does not depend on a detailed knowledge of signal parameters, and that can
distinguish between, and categorize, signals operating in a busy environment.

This research presents a new type of LPI intercept receiver-one based on a linear
decomposition of the received waveform via a Quadrature Mirror Filter (QMF) bank tree with
Wavelet filters. This receiver provides good detection performance even when much of the structure
of the LPI signal is unknown. In addition, this receiver is able to extract certain features of the LPI
signal and distinguish between multiple signals.

As used in this report, "Detection" refers to the process, by the interceptor, of determining
whether spread spectrum signals are present. It is a binary decision: either the interceptor decides no
signals are present, or decides one or more signals are present. In the detection process, information
is not necessarily obtained about how many signals are present, or the characteristics of the signal(s).
"Feature extraction" on the other hand, as used in this report, will refer to estimating bandwidths, hop
rates, hop synchronization, and signal to noise ratios (SNRs)--features that may be used to
characterize and distinguish between signals.

Also, in this report, the term "waveform" will generally refer to whatever the interceptor is
assumed to receive, which will usually be white Gaussian noise (WGN) that may, or may not, include

a man made LPI spread spectrum signal. The term "signal", on tie other hand, will usually refer
specifically to the spread spectrum signal. (Any exceptions will either be clear from the context, or
explicitly noted.)

This chapter begins with a brief background of the LPI signal interception problem,
including a brief description of the LPI signals and intercept receivers that have been presented in the
open literature. In this section, time frequency decomposition methods are also discussed. The
problem statement is then laid out and the approach and scope of the research is described.
Assumptions used in the research are listed, and, finally, a brief overview is given, describing the
organization of the remainder of the report.

Background

LPI Signals

Knowledge of the specific formats for the LPI signals are important for determining
detection algorithms, and algorithms for extracting some of the key features. Although there are
many possibilities, certain LPI signal structures are most often described in the literature [16] [17]
[38]. The ones considered in this research are:

1) Fast Frequency Hopping (FH). For this signal, the transmitter rapidly hops a carrier
(pseudo-randomly) among a large number of center frequencies. The bandwidth of each hopped
portion of the signal is determined by the hop rate. In this report, each hop will be referred to as a
"cell". The energy distribution of each cell has a sine-squared shape in the frequency dimension
(assuming fairly sharp hops with constant energy output in the time dimension). If the hop duration
is T, it is common to take the cell bandwidth to range from the hop center frequency minus 1/2T to
the hop center frequency plus 1/2T. This gives each cell a time bandwidth product of unity, and
includes most of the cell's energy.

2) Time Hopping (TH). Similar to fast FH, except the carrier frequency is constant and the
transmitter only transmits during one of several time slots (selected pseudo-randomly).

3) Fast FH/TH. A combination of the two techniques described above.

In all three of these signal structures the cells' time-bandwidth products will be unity. These are
discussed in more detail in Chapter V.

4) Direct Sequence (DS). For this signal, the transmitter modulates the information with a
higher frequency pseudo-random waveform (known to the intended receiver). The effect is to spread
the signal over a much wider bandwidth than it would otherwise occupy. The pseudo-random
waveform is often a random binary waveform, spreading the signal energy under a sine-squared
envelope. This signal structure is discussed in more detail in Chapter VI.

5) Fast FH/DS. For this signal, each fast FH cell is further spread (in frequency) with a
pseudo-random waveform. This creates cells with time-bandwidth products much greater than unity.

6) TH/DS and Fast FH/TH/DS. A combination of techniques described above. The cells'
time-bandwidth products will be much greater than unity.

7) Slow FH. In this case, the carrier signal is first modulated by the information using
multiple frequency shift keying (MFSK). The transmitter then hops the signal relatively slowly, so
each cell's bandwidth is determined by the MFSK waveform. The cell's time-bandwidth product will
be greater than unity.

Signal structures 5) through 7) are discussed in more detail in Chapter VII.

The transmitter's goal in each of these cases is to "hide" the signal by increasing the
bandwidth over which an interceptor must search. The intended receiver is assumed to have the
pseudo-random waveform, and thus has a much smaller bandwidth to consider. This allows the
transmitter to use relatively low energy levels, so the interceptor must expect to see a fairly low SNR.

Summary of Current Knowledge

LPI Energy Detection. As with the receiver proposed in this report, most of the LPI
intercept receivers discussed in the open literature are based on some form of energy detection.

The receiver most often discussed for the detection of DS signals is the radiometer (energy
detector) [16] [41] [42]. This receiver has an input filter matched to the DS signal. The filter's
output is then squared and integrated for the duration of the observation. If X is a random variable
specifying the radiometer's output and N0 is the single sided noise spectral density, we can define
X' = 2X/N0. When WGN alone is present in the radiometer's input, the probability distribution
function (pdf) for X' has a Chi Squared distribution. When energy from a deterministic signal and
WGN are present, the distribution is Chi Squared with a non-centrality parameter [41]. By
comparing the radiometer's output against a threshold, a detection decision can be made and. because
of the nature of the pdf curves, the probability of detection will always exceed the probability of false
alarm. The .radiometer detector is described in more detail in Chapter V, where it is shown to be a
good receiver of last resort. It does the best job of detecting a signal embedded in WGN when no
assumptions about the signal structure can be made, except for the maximum bandwidth and the
maximum time interval during which the signal may be turned on.

For FH signals, detectors described in the literature consist of banks of radiometers, with
each input filter matched to a hop channel, and the integration interval matched to the cell duration
[16] [41] [45]. (Obviously, the interceptor must know the channelization, cell duration, and hop
synchronization to use these types of detectors.) There are several possible ways to combine the
radiometer outputs. The optimal method, for Fast FH, TH, and Fast FH/TH signals (and for Fast
FH/DS and Fast FH/TH/DS signals when the energy distribution due to direct spreading is assumed to
be unknowable), is derived in Appendix A of [16]. There, a maximum likelihood test statistic is
found which can be compared against a threshold to make a detection decision. Levitt, et al, in [30],
claim this architecture is not optimal for Slow FH signals because energy is not uniformly distributed
within the cells, and derive the optimal detector results for that signal.

A disadvantage of this detector is that the test statistic is based on the potential signal's cell
energy at the interceptor. A simpler, somewhat sub-optimal, technique is to compare the output of
each radiometer to a threshold, and to declare a signal present for a time slot if any outputs exceed the
threshold. This type of receiver is usually referred to as a Filter Bank Combiner (FBQ and is
described in [16] [18] [45]. [18] also discusses the effects of a mismatch between the hop times and
the interceptor's time slots on this type of receiver.

Several recent papers nave described improvements on the basic FBC. [35] assumes the
interceptor has knowledge of the statistical frequency of a hop occurring in any particular channel,
and, based on this, adapts each channel's threshold to reduce the number of false alarms. [19]
suggests using an Artificial Neural Network (ANN) in place of each channel's threshold detector and
making a detection decision based on all of the radiometers' outputs.

Table I summarizes the knowledge an interceptor may have about an LPI signal, and the
types of intercept receivers described in the literature that exploit that knowledge. As the table shows,
there is a blank space for the particular case when the interceptor knows the signal structure, and
therefore knows how the signal cells' energy (or DS signal energy) is concentrated in both time and
frequency, but does not know the specific bandwidth, channelization, hop rate, or hop
synchronization. The receiver described in this report improves on the radiometer for this situation,
by taking advantage of the concentrations of signal energy. This new type of receiver uses some
recent advances in the state of knowledge in time frequency decomposition, and so, before presenting
the receiver architecture itself, it is necessary to briefly review the literature.

Time Frequency Decomposition. Much has been published, particularly in recent years, on
various methods of decomposing a waveform and displaying it as a function on the time frequency
plane. Broadly, the most common of these methods can be divided into linear and bilinear
transforms, with the Short Time Fourier and Wavelet Transforms being examples of the former, and
the Wigner Transform being an example of the latter.

A general bilinear transform, sometimes referred to as the "Cohen Distribution" after the
author who showed it is a super set of many bilinear transforms that were developed independently, is

[11]

(1.1) a(t,f) = -^TJ|Je-jft-^2,rf+jftj<I>(e,T)x,fu-|Tlxfu+|TJdudTde

where

t and f refer to the time and frequency coordinates in the plane
x is the input signal
x* is the complex conjugate of the input signal (and would be identical to x for the real

signals we consider in this research)
O(0,T) is an arbitrary function called the kernel. For the Wigner distribution, it is unity.

These transforms are called bilinear because the input waveform appears twice. This allows better
resolution in the time frequency plane than the linear techniques, but greatly increases the
computational burden and results in other side effects. For example, with the Wigner distribution, a
signal that consists of a certain tone for a finite time, zero for a time, and then another tone of a
different frequency, will display positive values for a(t,f) where expected for the two tones, but will
also display positive values for a frequency in between the two true frequencies for the time interval
between the tones [11]. These "cross-terms" are due to the non-linear nature of the transform.

Many papers have been published showing how bilinear transforms may be used in signal
detection. For example, [20] addresses the detection of non-stationary Gaussian signals in additive
WGN when the expected value of the Wigner distribution of the signal is known, and determines a
test statistic that can be compared to a threshold. [25] develops a similar approach to detect linear

Table I

Type of Intercept Receiver to Use, Based on the
Interceptor's Knowledge of the LPI Spread Spectrum Signal

Elements of Spread Spectrum Signal
Known to Interceptor

Intercept Receiver to Use

Region of Time Frequency Plane Containing Signal Radiometer/Threshold Detector

Information Above and:
Structure (DS, FH, TH, FH/TH, etc.)

All Information Above and:
Channelization *
Cell Bandwidth1

Hop Rate/Cell Duration1

Hop Synchronization1

Filter Bank Combiner

All Information Above and:
Received Cell Energy1

"Optimal Detector"

All Information Above and:
Pseudo-Random Spreading/Hop Code-

Spread Spectrum Receiver

Notes:
1 Hopped signal structures only
2 Generally known only by the intended receiver(s)

chirp FM signals. In there, the Wigner distribution of the received waveform is integrated along all
possible lines in the time frequency plane, and the largest result is assumed to contain the chirp. [6]
discusses the cross-Wigner distribution, where the conjugate of the received signal in (1.1) is replaced
by the desired signal, and uses it to distinguish the acoustic signatures of diesel engine cylinders.

However, very little has yet been published specifically using these transforms for the
detection of LPI waveforms. This is probably because bilinear transforms have only recently appeared
in the communications literature, and there are a relatively small number of people working in LPI
research.

Due to the computational complexity and the possibility of confusing cross-terms, the
bilinear transform will not be considered further in this research. Rather, linear transforms will be
found to have all of the properties required. Linear transforms have the following form

(1.2) ak = Jf(t)¥k(t)dt

where:
*Pk(t) is the basis set
t is the time index
k is the function index

The Fourier Transform, for example, has a basis set consisting of sines and cosines of frequency 2T±.

The transforms are said to be orthonormal if we restrict the basis functions so [28]

(1.3) J>t'(t)¥m(t)dt =
1 k = m

0 k * m

It is possible to sample the input waveform at the Nyquist rate and retain all of the information [32]
[36]. In that case, the time variable, t, in (1.2) and (1.3) should be taken to be discrete, and the
integrals should be replaced with summations. This is the case discussed in Chapter H Here, it is
shown that when the waveform consists entirely of WGN, the squares of the coefficients will have
random values with a Chi Squared probability distribution. When a deterministic signal is added,
certain coefficients (depending on the signal energy distribution) will have probability distributions
that are Chi Squared with non-centrality parameters and will, therefore, tend to have larger mean
values, making threshold detection a possibility.

Recently, Wavelet bases have gained prominence in the communications literature [10] [12]
[24] [44]. These bases are effectively non-zero for only a finite time interval, and can be designed to
satisfy (1.3). In [24] [44] it is shown these orthogonal Wavelets can be implemented using QMFs:
Filter pairs designed to divide the input signal energy into two orthogonal components based on the
frequency.

The Wavelet Transform divides the time frequency plane as shown in Figure 1.1, where each
squared coefficient represents (approximately) the energy within "tiles" (rectangular regions) of the
time frequency plane. A characteristic of Wavelet transforms is that the tiles become shorter in time
and occupy a larger frequency band as the frequency is increased. However, using Wavelet
techniques to develop an appropriate basis set, and a QMF bank for implementation, it is shown in
[24] [44] that it is possible to decompose the waveform in such a way that tiles have the same
dimensions regardless of frequency. Because the transform is linear, there is a fundamental limit on
the minimum area of each of these tiles. However, the nature of the QMF bank configuration is such
that each layer outputs a matrix of coefficients for tiles that are twice as long (in time) and half as tall
(in frequency) as the tiles in the previous layer. By properly comparing these matrices, it is possible
to deduce signal features with both fine frequency and fine time resolutions.

Using these techniques, then, it is possible to decompose a waveform and estimate the
bandwidths, center frequencies, energy distribution, and SNRs of DS signals, and the bandwidths,
durations, locations in the time frequency plane, and SNRs, of individual FH and TH cells. In
addition, for signals using a combination of techniques such as FH/DS or TH/DS, it is possible to
determine the energy distribution within individual cells. All of this information, of course, can then

Frequency

Area= 1/2

0
Time

Figure 1.1. Time Frequency Diagram For the Wavelet Transform

be used by the interceptor to decide how many transmitters, and which types, are in operation.
Evidently, nothing has yet been published specifically using Wavelet, or related, transforms for this
sort of analysis. In particular, no papers have yet been published in which information is
simultaneously derived from multiple layers of the QMF bank, as described in the last paragraph.
This, again, is presumably due to the relative newness of the material and the number of researchers
in LPI detection.

Some material, however, has been published using linear transforms to detect more general
classes of signals. [4], for example, describes (in words) the use of arbitrary orthogonal basis
functions in the detection of signals. [37], develops a fairly general mathematical framework to
detect transient signals (where "transient" is used to mean a signal that begins and ends within the
observation time).

Several papers have been published in recent years on the design of QMFs [1] [7] [8] [9] [26]
[27] [31]. The primary uses of QMFs, described in these papers and in [12] [24], are for sub-band
coding and non-stationary signal compression. It can be shown these filters have inverses which lead
to theoretically perfect reconstruction of the input waveform. To compress a sequence that has most
of its energy in certain frequency bands, then, one can filter it with a digital QMF bank, and only
transmit output sequences with significant energy components.

Cydostationary Detection. This section would not be complete without mentioning
another type of LPI intercept receiver published in the literature; one that uses a technique different
from energy detection [22]. For this receiver, the LPI signal is modeled as a cydostationary random
process. The spectral correlation of the input waveform is computed and examined for periodicities
in the signal (hop rate, for example). It is claimed this technique is superior to energy detection,

particularly in conditions of varying background noise, and when more than one LPI signal is present
[22] [23].

Problem Statement

This research will develop methods to decompose a waveform, using orthogonal basis
functions and a QMF bank tree, and extract detailed information about embedded LPI signals.

Approach and Scope

The proposed receiver's block diagram is shown in Figure 1.2. A received waveform is
band-pass filtered and sampled at the Nyquist rate. The digital sequence is then fed to the QMF bank
tree where it is decomposed, and matrices of weights are output from each layer. These weights are
then squared to produce coefficients representing the energy in each portion of the waveform.

This information is then analyzed to determine: 1) Where FH and TH cells (if any) are
located, their dimensions, SNRs, and internal energy distributions, 2) Where DS signals are located
their bandwidth, SNRs, and internal energy distributions. The output of the analyzer is a list of cells
and DS signals, and their parameters.

The classifier then takes the list from the analyzer, determines which cells apparently belong
to common transmitters, and outputs a list of transmitters, their types, and parameters. In a real
world receiver, further "filtering" could be done at this point, eliminating probable false alarms and
signals that are not of interest to the interceptor. The classifier may even be adaptive—changing
classification criteria based on current and previous input and results.

The research reported on in this report is primarily concerned with the receiver's QMF bank
tree and the analyzer block. The ideal QMF would be maximally flat in the regions of interest, and
would absolutely reject all signal energy elsewhere. Since this is mathematically impossible, some
research went into finding the "best" filter shape for this application. For the analyzer block, the
research focused on developing algorithms to detect and determine the features for each of the types
of LPI signals.

This research did not look at the classifier function in any great detail, although it trespassed
in certain limited areas. In particular, it was necessary to set criteria for rejecting false alarms in
order to make valid comparisons with other detectors. The primary job of the classifier, however, is
to take the list of cells and parameters, determine the most likely number of transmitters, and group
the cells to the transmitters. This specific task was not a part of this research.

Assumptions

Background noise is always assumed to be additive WGN (bandlimited, when considered
past the initial bandpass filter).

The only signals assumed to be present are the LPI signals described above.

Baud Pass
Filter

Sampler

Time

Quadrature Mirror Filter Bank Tree

i
F
r
e
q

Time Time

List Cell Positions (Time and Frequency)
Bandwidth.
Time Width
SNR
Internal Energy Distribution

List of LPI Transmitten
Their Types
and Parameters

Figure 1.2. LPI Receiver Block Diagram

ideal.
The input bandpass filter and sampler in the receiver shown in Figure 1.2 are assumed to be

Fading, and other adverse effects (except for the addition of WGN) in the communications
channel are assumed to be negligible.

Simple, non-adaptive, thresholds are used in lieu of the classifier to make detection
decisions.

Overview of the Report

The rest of this report is primarily concerned with two parts of the receiver architecture: The
QMF bank tree, and the analyzer block. Chapters II and HI deal with the former, while Chapters V
through VEQ discuss algorithms used in the latter.

Chapter II discusses the mathematical background for signal energy detection in WGN using
Wavelets and other orthogonal signal decompositions. Here, the basic structure for the QMF bank
tree is laid out. Although most of the material in this chapter is an interpretation of material already
published in the literature, it is background necessary for what follows.

Chapter HI uses the mathematics developed in Chapter n and the particular requirements of
the intercept receiver to find several candidate sets of filters for the QMF bank tree.

Mathematical analysis is used wherever possible in this research. However, much of the
performance analysis turns out to be intractable. Therefore, Monte-Carlo simulation is resorted to at
certain points. The (Matlab) code used to generate the spread spectrum signals and to decompose the
waveforms in the manner of the QMF bank tree is described in Chapter TV and listed in Appendix A.
The code used to simulate the detection and feature extraction algorithms presented in Chapters V
through VEQ are listed and described in Appendices B through E. These are included for the sake of
the reader interested in conducting further research, as well as to help clarify details of the methods
used.

Chapter V begins by describing in detail the structure of the cells of FH, TH and FH/TH
signals. The chapter then presents more background, describing in detail the radiometer/threshold
detector, as well as the optimal receiver and FBC. This is used as a foundation to develop a new
detection algorithm for signals whose cells have time bandwidth products of one. From this
algorithm, in turn, a feature extraction algorithm is developed to determine the cells' bandwidths.
duration, energy, and position in the time frequency plane.

Chapter VI describes the DS signal in detail, and then develops a detection algorithm for this
type of signal. The algorithm is also used to estimate signal features important to the interceptor:
The signal energy, center frequency, and bandwidth.

Chapter VII deals with hopped signals with time bandwidth products greater than one:
FH/DS, TH/DS, FH/TH/DS, and Slow FH signals. The structure of these signals are described in
detail, and a detection algorithm is developed. Then an algorithm is developed to estimate the cells'
bandwidths, duration, energy, and position in the time frequency plane.

Finally, Chapter VIH looks at using a least squares algorithm to distinguish cells based on
the distribution of their energy.

10

II. The Detection of Signal Energy in Noise Using Wavelets and Related Techniques

Introduction

In this chapter we consider an issue of detection. Specifically: given a waveform, most of
whose energy comes from stationary white Gaussian noise (WGN), is a deterministic signal present?
We explore a way to answer the question by looking for concentrations of the waveform energy
distributed in a non-random manner.

We do this by decomposing the waveform into a sum of terms, with each term consisting of a
function from a basis set and a coefficient multiplier. A common example of this is the Fourier
Transform, where a function is decomposed into a sum of weighted sinusoids. Another example, as
we will see, is the Wavelet Transform.

The goal is to Find a basis set that will concentrate the deterministic signal energy in as few
terms as possible. A detection decision may then be made by comparing the values of the coefficients
against a threshold value. If any are above the threshold, a signal is considered to be present; if not,
absent. Of course, since the noise is random, there is no way to make a perfect decision. For a given
signal energy to noise energy ratio (SNR), a given detection scheme and a certain threshold will have
a given probability of detection and probability of false alarm.

Here, we will work strictly with discrete time waveforms (except for a brief digression to
compare the energy in the continuous waveform to the energy in it's sampled counterpart). We lose
nothing by doing this, since it can be shown all of the information in the waveform can be represented
by properly sampling the signal [28]. This process includes filtering before sampling to remove much
of the white noise (but, hopefully, none of the signal). Since this is the case, after sampling we will
be dealing with "band limited white Gaussian noise," a term which refers to Gaussian noise that is
band limited but has a (nearly) flat spectral density curve over the pass band [46]. Sampling is
important in practice, since much of the processing discussed in this paper is best done digitally. We
should also note the basis functions themselves may either be defined only for discrete times, or
defined for all time, but only evaluated at discrete times.

In the next section, we will develop a framework for the general decomposition of
waveforms, and discuss some properties of interest. This development is similar in some ways to that
used in many engineering texts specifically for the Fourier Transform (see, for example [28] [32] [36]
[46]). Here, however, we consider a general basis set and, subject to a few conditions, find properties
common to all. We then look at some examples of commonly used basis sets and their characteristics.
Then, we look specifically at the Wavelet transform, its development, characteristics, implementation,
and advantages in detecting certain types of signals. Finally, we look at a generalization of Wavelet
Transform techniques that offer further possibilities for detection.

General Framework For the Decomposition of Waveforms

The Basis Set

Given a waveform, f(n), we wish to decompose it as follows

(2.1) f(n) = 2>X

where:
^IJJJ is the basis set (* denotes complex conjugation)
n is the time index n e subset of integers
k function index k € subset of integers

By examination of (2.1), the first requirement for a good basis set becomes obvious: it must span the
space of possible waveforms. In other words, the waveform (actually, the deterministic signal in the
waveform) must be able to be written, at least to some suitable approximation, as a weighted sum of
the basis functions. With the Fourier basis set of sinusoids, for example, it can be shown the mean
square error of any signal we encounter in practice will approach zero as the number of basis
functions approaches infinity [28].

We next place the restriction of orthonormaliry on the basis functions

Zfl k = m

^*-- 0 k..

By taking (2.1) and adding the summation, over time, of one of the basis functions, we can find a
general formula for the coefficients

(23) ' " ' .

k n

where the last step follows from orthonormality. We are now in a position to see why this
decomposition is important for us. The energy of the waveform is the sum, over time, of the values
squared [36] [32]

X|f<n)|2=2(XaÄ)(£a;0«
D s k m

xcxx^-^o =
(2.4) B k m

XXCvCX^O -
km n

\2 xw
where, once again, the last step is due to orthonormaliry. This result, sometimes called Parceval's
theorem, is critical for detection. Since we are looking for signal energy, we can apply the basis set to
the waveform, as in (2.3), and then consider the values of the coefficients squared. A good basis set,
for our purposes, will place the signal energy in as few of the coefficients as possible. A detector who
knows what he is looking for can then disregard the other coefficients, reducing the probability of

12

false alarm. If the Fourier basis set is used, for example, a detector can filter out frequency
components that could not contain the signal.

Incidentally, any basis set meeting (2.4) is sometimes called a "tight frame" in the
mathematical literature. If we started off by declaring that to be our requirement for a basis set,
formula (2.1), reconstructing f(n), would necessarily follow [10]. For our purposes, the basis set must
form an invertible transform.

Energy of the Discrete Waveform

In (2.4) we call the sum of the squares of the waveform values the energy of the discrete
signal. If the signal given to us is discrete in nature, we can accept this as a definition. If, however,
we are sampling a continuous time signal, we must relate (2.4) to the original signal's energy. To do
this, let's assume we have a band limited continuous signal, fa(t), that we sample at the Nyquist rate,
or faster

(2.5) f(n) = f,(nT)

where T is the time between samples. To reverse (2.5) we can use the interpolation formula [36] [32]

(2.6) f,(t) = £f(n)sinc[(t-nT)/T]
n

Where the sine function is

sin(nk)
(2.7) k * 0 sine (k) = <| T±

1 k = 0

Now, the energy of the continuous time function is [28]

(2.8) - JMI2 dt

Using (2.6), we find

Ml2 = £f(n)sinc[(t-nT)/T] £f(p)*sinc[(t-pT)/T]

(2.9) £|f(n)|2[sinc[(t-nT)/T]]2

^Jf(n)f(p)*[sinc[(t-nT)/T]][sinc[(t-pT)/T]]
p»n

13

and integrating gives us

E = J|f,(t)|2dt = ^|f(n)|2 J[sinc[(t-nT)/T]]2dt +

(2.10) ^]£f(n)f(p),J[sinc[(t-nT)/T]Isinc[(t-pT)/T]]dt =

Tl>)|2

n

where the result comes from the fact that the integral of the sine squared function is T, and the
integral of the two sine functions are zero, when n and p are integers that are not equal. (2.10) tells
us our definition of the discrete signal's energy is proportional to the continuous signal's energy.
Often, T is normalized to one, making the two energies equal.

Notice (2.10) does not necessarily imply |f(n)|2 for a particular n represents the energy of

the analog waveform around fa(nT). Ideally we would like

(2.11) J|f,(t)|:dt «T|f(n0)|
2

to be an exact equality, but of course, as Figure 2.1 shows, it will only be approximately true in
general. In fact, the error will be on the order of [39]

O Hiwl t=n„T o'y

which we see can be minimized by decreasing T. This can be accomplished either by actually
sampling the analog waveform more often, or by retaining the original sampling rate and using (2.7)
to interpolate and increase the size of the sequence.

Statistical Properties of the Coefficients

Since we are going to measure the values of the coefficients of (2.3), we need to know their
statistical properties. First, let's consider a waveform consisting entirely of band limited WGN with a
mean of zero and a variance of rp-, which we will denote by f(n) = T|(n) - N(0,a^). Also, we will
assume the value for each n is statistically independent of other values. The mean, or expected value
of each of the coefficients is

(2.12) E[aJ = XEh(n)]¥ta = 0

14

Figure 2.1. Approximation of the Energy Around UQT. The Shaded Region Represents the True
Energy, While the Area of the Rectangle is the Discrete Approximation

and the variance is

(2.13)

Var[ak] = ^Var[n(n)Tta] = ^Var^n)]^2 =

a2 IX I2 - «'

Since the operation to obtain aj- from T|(n) in (2.3) is linear, a^ also has a Gaussian distribution, and
is ajj - N(0,o-) [40]. Now, we need to consider the cross correlation between coefficients

E[aka;] = E[£r,(n)¥ta£r,(p)*F;,] =
n p

E[£(Ti(n))2V;, + ^TK^^^TKp)^] =
(2 14) D n P*n

^EK^n))2]«^» +XE[Tl(n)^toXE[Tl(P)]^ =

B n ppn

JV^^ = 0 when m * k
D

Of course, when k = m, E[(a^.)*-] = <sL. So, when the basis set is orthonormal, the coefficients are
uncorrelated, and so, because we are dealing with a Gaussian waveform, are statistically independent

We are also interested in the probability distribution function (pdf) for the square of the
coefficients. This can be found using the transform techniques described in [40]

(2.15) w ■ u fx(*i)

'M

15

where

fx() is the pdf of the function to be transformed (Gaussian, in our case)
fy() is the pdf we desire
J(x) is the Jacobian of the transformation, J(x) = x^ & y in our case
Xj are the values of the variate of the original function corresponding to y
y is the variate of the pdf we are trying to find
k is the number of roots of J(x)

In our case, this leads to

aie ,,<y) = l^ßl ♦ Up. . > exp[-y/<2<,'>]
2Vy 2jy pnyc7

which, if the noise variance, (P-, is normalized to one, becomes the well known Chi-Squared
distribution with one degree of freedom.

Often, we will want to add several coefficients. The pdf of the sum of random variables is
the convolution of the variables' pdfs [40]. To find this, we will first compute the characteristic
function of the pdf in (2.16)

5 »(co) E ff :(y)exp(jcDY)dy =

(2.17) -
1 i-expKjco-^yjdy = (1-j2coc2r1/2

/2ro2j
0Vy 2°

The characteristic function is the complex conjugate of the continuous Fourier transform, and so we
can find the characteristic function of a sum of random variables by multiplying the characteristic
functions. In our case, for 7 coefficients, we will have

(2.18) E,2 , (CO) = (1-J2COCTO"
T
"

To find the pdf, we use the characteristic function's inverse transform [40]

f.»,i «> (y) ■ T" IXv ...» (co)exp(-jcoy)dco =

exp(-jcoy) 1 r exp(-icoy)
(2-19) -^ * J :'„ dco =

2jt_J>(l-j2cocr2)r/2

1 vyn-i„J-y.
'«ph

2T/2r(y/2)a1r 12a2

1.

function with 7 degrees of freedom.

)

Where !""(•) is the gamma function. When a2 is normalized to one, (2.19) becomes the Chi-Squared

16

Now, let's examine the coefficients if the waveform consists of a deterministic signal plus
band limited WGN

f (n) = s(n) + T)(n)

First we have

E[f(n)] = E[s(n)] + E[T|(n)] = s(n)

Varff(n)] = Var[s(n)] + Var[T)(n)] = a2

Since the waveform variance is equal to the noise variance, from (2.13) we have

(2.20) VarfaJ = o2

From (2.3), we have

(2.21) E[ak] = £E[f(n)]¥ta = ^(n)^
D D

SO

(2.22) ak - N ^s(n)Tto , a2

Also, from the well known relation in probability theory, we have

(2.23) E[a2] = Var[ak] + {E[ak]}2 = a2 +]Ts(n)^

From (2.13) and (2.23), we can find the ratio of energy contributed to each coefficient by the
deterministic signal, to the energy contributed by the band limited WGN

(2.24)

Xs(n)xp*
SNR, = -Ls ■■

We can now examine the difference a good choice for a basis set can make on detection. To
keep things straight, let's define the first basis set to be {Q}, and the coefficients, found from (2.3), to
be {p}; and the second basis set to be {<!>}, and its coefficients {q}. For the sake of example, let's say
a signal, s(n), is spanned by K functions of the first set, and that, further, the coefficients are all
equal. On the other hand, the same signal is spanned by a single function of the second set. This
gives us

17

(2.25) SNRr> =
X«*M I*?- ,lV2»M m,

p' o2 c2 UJ a2 U
SNRq

Thus we have an improvement by a squared factor in the SNR of each the coefficients by using the
second basis set [4].

We now want to find the pdf for the coefficient squared when the waveform consists of a
deterministic signal plus band limited WGN. First, for notational convenience, let

mk H E[aJ = £s(n)¥,
n

then the pdf for a^ is

(2.26) f. (x) = Ti--exp[-(x-mk)
2/2a2]

V27TC2

As in Equation (2.15), we have a Jacobian, J(x) = x- = y. As with (2.16), we have

(2.27) f :(y) = -S^-i- + " ; *' J'<x,) J'(x2)

where

V7 - xi - -%2

so we have

f :(y) = , 1 j exp[-(x2-2x1mk+m2.)/2c2] + exp[-(x?-2x,mt + m2.)/2a2] J =
2V2mry

—, 1 exp[-(x2 + m2.)/2c2Jexp[x1mk /a
2 J +

2V2mry

exp[-(x2 + m2.)/2a: Jexp[-x,mk /a
2 J J =

r , 2 2w, ;lJ exp[ximk /a
2] + exp[-ximk /o

:]].
^exp[-(xf+mk)/2a J\ J -

Jlna'y

-====rexp[-(y + m[) / 2a2 Jcosh[mk Jy I a2 J
V27ta2y

(2.28)

which, if rp- is nonnaiized to one, is the Chi-Squared distribution with one degree of freedom and
with a non-centrality parameter of m2.. Using the characteristic function on (2.28), we can find the
pdf for a sum of coefficients when both signal and noise energy are present, and it turns out to be [41]

(2-29) f.v ..., (y) = * (ff^expf-±±l) V, /#'
»»»w.—i-T-i 2a-{XJ { 2c J { c J

where Iy2-i(*) is the modified Bessel function of the first kind and order 7/2-1, and

k+7-1

x= 5>2

i = k

and, therefore, represents the signal energy contributed to the coefficients. When a- is normalized to
one, (2.29) is the Chi-Squared distribution with 7 degrees of freedom and with a non-centrality
parameter of X.

By comparing the functions described by (2.19) and (2.29), we now can see how a detector
can decide whether a signal is present Figure 2.2 shows these functions for the particular case where
we are adding two squared coefficients, and a*- is equal to one. fn(Y) is the pdf when noise only is
present, and fs(Y) is the pdf when noise and a signal are both present. As the figure indicates, we can
set a threshold, Th, and compare the sum of the squared coefficients against it, deciding a signal is
present if the observed number exceeds the threshold. Using this threshold detection method, we can
compute the probability of detection, given that a signal is present, by integrating under fs(Y) to the
right of Th (the shaded region labeled Q^j in the figure). Likewise, our probability of false alarm
when no signal is present is computed similarly, and is indicated by Qfa.

To summarize our main points so fan 1) To detect energy concentrations due to a signal we
want to decompose the waveform into a basis set such that the signal energy is contained in as few
terms as possible. Our ability to do this will, of course, depend on both our knowledge of the signal,
and on our ability to find a basis set that spans the signal space and is orthonormal. 2) If no signal is
present, the squared coefficients will have a Chi-Squared pdf. If it is present, the squared coefficients
containing signal energy will have a Chi-Squared pdf with a non-centrality parameter. Therefore,
threshold detection is possible.

19

f. 00

Figure 2.2. Chi-Square Probability Distribution Functions

Common Examples of Basis Sets

We now present some common examples of basis sets which should be familiar to most
readers. This is done both to reinforce the concepts discussed above and to introduce new issues
necessary in the discussion of Wavelets that follows. For the remainder of this paper, we will assume
the input waveforms are purely real.

Matched Filter. A matched filter can be thought of, mathematically, as a basis set containing a
single function. In this case, we are trying to detect a signal, and we know everything about it (shape,
arrival time, etc.) except whether it is present. This is the case, for example, at the receiver on a
digital communications link, where matched filtering is widely used. The basis function is selected to
be the shape of the signal, so it spans the signal space, and, because there is only one function, it is
orthogonal by definition. (With the proper scaling, of course, it becomes orthonormal.) For our
discussion, let's assume orthonormality, which implies the signal's energy will be unity.

From (2.3), we see the contribution to the coefficient from the signal is

20

(2.30) a =]Ts(n)s(n) = 1
D

and the SNR, from (2.24), is

J£s(n)s(n)

P 111 Wft - <■ " J 1

o a:

which is, of course, all of the signal's energy over the noise energy. This is the best we can hope to
do.

This can be extended to the detection of multiple signals simply by requiring the signals be
mutually orthonormal, and expanding the basis set appropriately. In this way, more information can
be sent down the link, with the receiver selecting the signal by finding the largest coefficient

The Discrete Fourier Transform (DFT). This is a basis set familiar to most Electrical Engineers.
It is

(2.32) w' _ e N

where

n e [0, N - 1] is the time index
k € [0, N/2 -1] is the unique, frequency index (although we only restrict k e integers, see

below)

and leads to the DFT pair

N-l .2K

y" n=0

1 N-l .2*

f(n) = ^Zake^
y " k=0

n=0
(2.33)

i N-l .2K, 1 v Kr*"

A somewhat more common form, in engineering texts, replaces I/VN with 1/N in the first equation,
and with 1 in the second. This is simply a matter of scaling, and orthogonality of the basis set is
maintained.

The coefficients, with this basis set, represent the frequency components of the waveform.
The index k is not strictly limited to the range [0, N/2 - 1], but there are only N/2 unique basis
functions, due to the cyclical nature of the complex exponential

.2K ,2K
j——On n j—-Nn .,

(2.34) e^ = e° = e^ = ej2ra

21

and the fact that

(2.35)
■2* u .2K k

= -e N 2 = -e'N £*

The value k/N is often referred to as the digital (linear) frequency [32]. We see there are N/2 unique
digital frequencies in the range [0,' 1/2 - 1/N]. We show this in Figure 2.3, where the horizontal axis
represents time, the vertical axis represents frequency, and each rectangular "tile" represents,
approximately, the location in the time-frequency plane of the energy included in each coefficient

1/2 _

1/2 - 1/N _

Digital
Frequency

1/N_

0 _

Repeat of tile at k = 0

Area= 1

_ N/2

_ N/2 -1

_ 1

0

Time N-l

Figure 2.3. Time Frequency Diagram For the Discrete Fourier Transform

There is a fundamentally important concept to note in Figure 2.3. Observe if we have more
samples to analyze (larger N), the maiimnm frequency remains the same, but the resolution in the
frequency domain increases. The area of each tile, however, remains fixed. This limit in our ability
to resolve the time frequency plane of a signal is fundamental for all orthonormal linear transform
techniques. Another thing to note: if N approaches infinity, the number of tiles will approach
infinity, their frequency dimension will approach zero, and it would be mathematically correct to
replace the summation in the second equation of (2.33) with an integral. The frequency domain
would, effectively, become continuous.

Ideally, for our purposes, all of the energy in each tile would contribute equally to that tile's
coefficient, and la^ will represent the total energy in the tile. Unfortunately, this is not possible.
To explore this, let's find the frequency response of each basis function. Consider a finite time
waveform of length N, consisting of a single frequency k/N. Mathematically, we can view this as an
infinite time waveform (n e [-«, —]). multiplied by a "rectangular window": a discrete function that
consists of values of one for n e [0, N-l], and zero otherwise. Because we consider these waveforms

22

to be of infinite length, we can, as stated above, consider the frequency domain to be continuous.
Now, a property of the DFT is [32]

(2.36) DFT[g(n)w(n)] = DFT[g(n)] ® DFT[w(n)]

where

DFT[] represents the DFT of the argument
g(n) is our, now infinite time, input function
w(n) is our window
® represents convolution

The DFT of g(n) is an impulse at k/N. The DFT of the rectangular window, on the other hand, is the
sine function (2.7). Actually, due to the window's discrete nature, the DFT repeats every m(N + k/N)
for m 6 integers, but as stated above, we only consider k from [0, N/2 - 1]. Convolving this with g(n)
will give us a sine centered at k/N. Considering several adjacent basis functions, the true tiling of the
frequency domain is shown in Figure 2.4.

-OS-
k-2

N
k/N

Digital Frequency

kj-2

N

Figure 2.4. True Coverage of the Frequency Domain With a
Rectangular Window in the Time Domain

To find the values of the coefficients for any arbitrary waveform, we could multiply in the
time domain, as indicated by (2.3), which translates to a (digital) convolution in the frequency
domain. However, each shift performed in the convolution will be for k = mN for m e integers,
and, as above, we are only concerned with k from [0, N/2 -1], so we only need consider a single shift.

23

"The result is that we can find the values of the coefficients by considering the frequency response of
an infinite length input waveform, and multiplying it with the sine curves in Figure 2.4.

To see the result of this, consider an input waveform consisting of a single digital frequency
of k/N. In the frequency domain, of course, it would be an impulse at k/N. As Figure 2.4 shows, all
of the basis functions, except one, have nulls at this frequency. Hence, all of the coefficients, except
ajj, will be zero. On the other hand, consider an input waveform consisting of a single digital
frequency of k/N + e, where e is a small number (less than 1/2N). In this case, ak will be the largest
coefficient, but will not be as large as in the previous case. Also, adjacent coefficients will no longer
be zero. This is sometimes called "leakage" in the literature [32] [33]. Of course, Equation (2.4) will
still be satisfied.

Leakage can be mitigated by replacing the implicit rectangular window described above with
truncated time domain windows of other shapes [33]. (To retain the orthonormality of Equation
(2.2), and the result of Equation (2.4), the basis functions must be rescaled.) Many window shapes
have been devised, each with certain advantages. For our purposes, we would like as much of the
energy as possible that would appear in a tile to be represented by that tile's coefficient There's an
obvious trade off here: improving the frequency characteristics will make the time characteristics less
desirable. One possible compromise is to use a (truncated) Gaussian shaped window. The DFT of a
Gaussian shape in the time domain will yield a Gaussian shape in the frequency domain.

This gives us the tiling diagram as shown in Figure 2.5, where the oval shapes represent
contours [24]. Because the window is (necessarily) truncated in time, there will still be sidelobes in
the frequency domain, but they will be much smaller than they would for the rectangular window.
Thus, most of the energy in a tile will be reflected by the proper coefficient. Unfortunately, energy
near the center of the tile will contribute more than energy near the edge. One way around this
problem is to increase the number of basis functions-forsaking orthonormality-and overlapping the
tiles. Of course, this increases the computation work involved, as well as making the evaluation more
complex.

1/2 _

Digital
Frequency

1/N_

0 _

_ N/2

_ 1

_ 0

0 Time N-l

Figure 2.5. Time Frequency Diagram For the DFT With Gaussian Window

24

For the detection of signals in noise, the DFT works best for signals that are stationary over
the evaluation time. The DFT is second nature to most Electrical Engineers. So much so, that, when
a signal is designed specifically to be covert, frequency hopping and pseudo-noise spreading
techniques are often used to "hide" the signal in noise when the waveform is evaluated with the DFT.

The Short Time Fourier Transform (STFT). For signals that are stationary (or nearly stationary)
for short periods of time, an obvious modification of the DFT is to break up the waveform into shorter
sequences, and perform a DFT on these sequences. In this case, we take the index k, from Equation
(2.32), break it into two indices, say i and m, and our basis set becomes

(2.37)

.2K.
i(mN + n)

w =
11OT"

VN

where

i e [0, N/2 -1] frequency index
n e [0, N - 1] time index
m € integers time shift

This gives us the tiling diagram shown in Fi Figure 2.6.

Digital

1/2 m

■OCJ

1
1
1
1
i

1
1
1
1
i

1
1
1
1
i

—

1/N.
Arca= 1

0 _

n = 0 N-l N-l N-l N-l
m=l m=2 m=3 m=4

Time

Figure 2.6. Time Frequency Diagram For the Short Time Fourier Transform

25

This set is orthonormal, since columns of tiles do not overlap in time. As with the DFT,
Gaussian or other windows may be used to improve the representation. Also as before, overlapping
tiles, may be used, at the expense of orthonormality, and with an increase in the required number of
computations.

Wavelet Transforms

In the last section, we saw that a time frequency analysis of an input waveform using
orthonormal basis sets can be represented as a tiling of the time frequency plane. The square of each
coefficient roughly represents the energy in a particular tile.

One drawback to the STFT is that all of the tiles must have the same dimensions. Many
signals (including, in particular, naturally occurring signals) have a "constant Q" characteristic: their
duration in time decreases proportionally as their frequency is increased. Wavelet Transforms tile the
time frequency plane in this manner, and are, therefore, a useful class of basis functions for detecting
these types of signals. In addition, the rules for the construction of filter banks to accomplish Wavelet
decomposition also lead to methods for accomplishing a more-or-less arbitrary tiling of the time
frequency plane.

Since many readers may be unfamiliar with Wavelet Transforms, we will discuss their
development in some detail in this section. (Most of the material presented here comes from [44] and
[12].) As will be seen, once the mathematical framework is laid down, relatively straight-forward
rules for implementation can be derived. In the next section we will extend these rules to allow for
arbitrary tiling.

Mathematical Framework

We have already discussed the properties basis functions must have for detection: they must
span our signal space and be orthonormal. We will only have to evaluate the functions at discrete
points, but, for purposes of mathematical development, continuous functions will be considered.

The general Wavelet basis set is

(2.38) ¥lb(t) = 4=v(—
Va V a

where

¥() is the "mother" wavelet
b is the translation variable, b is real
a is the dilation variable, a is real and greater than zero
t is the (continuous) independent variable-always time in this paper

The fundamental idea is to use a mother wavelet that is zero except for a finite time interval, and that
oscillates in that interval. We then obtain our basis functions by shifting the wavelet along the time
interval (changing b), and by shrinking the wavelet (changing a), to decrease the period of the
oscillations.

26

We have imposed two conditions on the mother wavelet: 1) It must be zero, except for a
finite interval. In the mathematical literature, it is said to have "compact support" [10] [44]. To meet
this, we require

(2.39) JVcoldt < =c

2) It must oscillate. We ensure this by imposing the "admissibility condition" [12]

|2

(2.40) J
|*(Cü)|

CO
dco < oo

where ^(co) is the Fourier Transform of the mother wavelet. With this requirement, we see the
mean must be zero, and, therefore, the mother wavelet will have to oscillate.

Since we will only evaluate the wavelet at discrete points, we can impose

a = 2m

(2.41) for m,n € integers
b — T,1m = n2

on (2.38) to get

(2.42) ^(t)=-^f_L_D

This gives us a binary dilation and a dyadic translation. (Other possibilities exist, but this is
presented most often in the literature [10] [12] [24] [44].) The tiling of the time frequency diagram,
for this case, is shown in Figure 2.7.

To summarize: we need a basis set meeting (2.42) that spans our space of signals, has
orthonormal functions, and has a mother wavelet with compact support and zero mean. We can
develop functions that meet these conditions through multi-resolution analysis [12].

In multi-resolution analysis we deal with function spaces. Specifically, we define a set of
subspaces of functions such that

... c V2 c V] c V0 c V_i c V_2 c ... c L2(5K)

nvm= {0} for m e integers

f(.) e Vmof(2.) € V^,
(2.43)

f(.) € Vm^f(.-2mn) e Vn

27

Frequency

Time

Figure 2.7. Time Frequency Diagram For the Wavelet Transform

where the last two lines deal with dilation and translation of a function and the corresponding
relationship of the subspaces. L2(SR) is the set of functions that are square integrable (which,
necessarily, includes all of our real world waveforms).

Now, let there be a function, <J>(t) € VQ , and

(2.44)
1

«5^(0 = ^=0— -n
t

*) m

such that 4>Qu(t) is orthononnal for all n e integers,

(2.45) J*oB(t)*ok(t)dt =
1 k = n

0 k*n

and <l)mn(t) spans Vm. <J>(t) is called the scaling function and defines the subspaces. An example
is shown in Figure 2.8.

Consider a continuous function, f(t), that we wish to decompose, using multiresolution
analysis. We need its projection onto the different subspaces. This is the same as saying we want to
approximate it by linear combinations of tPmn(t) for each Vm. To do this, denote the projection
operator as Pm, and we'll have

28

*(t)
Time

Figure 2.8a. An Example of a Scaling Function

o oo

<D 01

Time

(2.46)

Figure 2.8b. Translated Versions of the Scaling Function.
All Linear Combinations of These Are Functions in VQ

POf(0 6 V0

P_if(0 e V_,

P_2f(t) 6 V_2

etc.

where each projection with a smaller subscript will be more accurate (it will have finer resolution).
Also, denote the difference between projections with another operator, Qm, such that

(2.47) Qmf(t) = P^,f(t) - Pmf(t)

It is easy to see, then that f(t) is the sum of the difference projections

(2.48) f(t) = £Qmf(t)

Now we define another set of subspaces, Wm such that

(2.49) V^ = Vm © Wffi

where © denotes direct sum: the combination of two subspaces. From this, we can see

wmivffi

29

J2

$ -K>

Time

o -11

o -12

$

2 x

Figure 2.8c. Dilated and Translated Versions of the Scaling Function.
All Linear Combinations of These Are Functions in V.j

(2.50)

Wm 1 Wn for m* n

®WB =L2(5t)

and

(2.51) QBf(t) € Wffi

Now, since <I>(t) e VQ C V.J which is spanned by <J>(2t - n), there must be

(2.52) <D(t) =V2^h(n)<D(2t-n)

30

for some {h(n)}. This is called the "dilation equation". (The V2 is included for later convenience.)
It can then be shown [12]

(2.53) ¥(t) = V2^(-l)nh(n + l)0(2t + n)

and

(2.54) VmW = ¥
SF V2m — n

can be constructed, where ^„(t) spans Wm.

It is evident from (2.48), (2.50) and (2.51) that (2.54) meets our requirements for a basis set,
as long as a scaling function can be found such that the dilation equation gives us a sequence {h(n)}
with only a finite number of non-zero elements. This last condition comes from (2.53) and our
requirement that the mother wavelet have compact support.

One example where this is true is given by the scaling function in Figure 2.8. From
examination, and the dilation equation, we see

h(0) = h(i) = y^

and our mother wavelet will be as shown in Figure 2.9. This is the Haar basis set.

Time

Figure 2.9. Mother Wavelet For the Haar Basis Set

In the next sub-section, we will find it convenient to have an equation for the coefficients in
terms of the scaling function. So, before proceeding, we derive it: Let

t = —r

for r e integers. Then (2.52) becomes

31

(2.55) of-^-rj = V2^h(n)0[x-(n+2r)]

and, applying (2.44)

(2.56) <Dlr(x) =^b(n)O0(n+2r)(x)

From (2.45) we can solve (2.56) in a manner similar to (2.3)

Jolr(x)<D0ffi(x)dx = J]£b(n)ct>0(ll+2r)(x)<I>0m(x)dx =
s

(2.57) Jh(n)Jo0(n+2r)(x)O0m(x)dx =

h(m-2r)

This is the equation we desired.

Wavelet Filter Bank

We now will use multi-resolution analysis, and the results above, to design a filter bank with
the tree structure shown in Figure 2.10. We denote the discrete input waveform as the sequence
{CJJO}, and the outputs of each branch as shown in the figure. Since each branch of the tree
decimates by 2, each sequence will have half as many elements as the sequence preceding it. Our
goal will be to design the filters to give us the coverage shown in Figure 2.11, where each output
sequence, {d^}, represents the coefficients for a row of tiles.

{c.°}
^i>-

{O

H ^D {O
-CD-

id,'}

H -CD
(O

H

-©-
R1}

-©- {c.1}

Figure 2.10. Wavelet Filter Bank

32

F
r
e
q
u
e
n
c
y

d1

f

c1

d1

L.

r

i

i

c1

L

d5

r CS

Time

Figure 2.11. Time Frequency Diagram For the Wavelet Filter Bank

We begin by assuming we have an input sequence, and have selected our sub-spaces, Vm,
and an appropriate scaling function. We then construct a continuous time function

(2.58) f(t) = Xc>°,,(t)

where f(t) e V0 so Prjfft) = f(t). Since V0 = Vj © Wj, Pjf(t) e Vlt and Q^t) e Wlt we can
write f(t)= Pjf(t) + Qjf(t). Now, by expanding

(2.59) w-X0*1**«

and

(2.60) Q,f(t) = 2;d^^(t)

we will have the sequences {c^} and {d^} shown in Figure 2.10. Since Pjf(t) has half of the
resolution of f(t), {Cj,^} will cover the lower half of the frequency band, as required in Figure 2.11.
Since this is so, the "difference", {d^}, must cover the upper half.

To solve (2.59) and (2.60) for the sequences, we start by noting the requirement that Ogj^t)
is orthonormal for all integer values for k, and Equation (2.44) will then make Oj^t) orthonormal

33

for all integer values for k. ^u-ft), on the other hand, is orthonormal from our initial requirement for
orthonormal basis functions and our subsequent development

As with the solution of (2.56), we solve (2.59) by multiplying each side by *i„(t) and
integrating over time. Since ^1^(0 *s orthonormal, we have

(2.61) ck
! = Jp,f(t)0lk(t)dt

Since Pjf(t) 6 Vj c VQ, 0lk(t) spans Vj, and f(t) € V0, we can substitute f(t) for P^t) in (2.61),
and get

(2.62) ck' = Jf(t)«Plk(t)dt

Substituting (2.58) into (2.62), and rearranging, will then give us

(2.63) ck' =£cn
0J<D0D(t)cDlk(t)dt

D

The integral is what we found in (2.57), so we have

(2.64) ck> = £b(n-2k)cn°
D

With a similar development we can solve for {dj^} from (2.60). Define

(2.65) g(n-2r) = J<D0n(t)¥lr(t)dt

Then we find

(2.66) dk> = £g(n-2k)cD°
D

Equation (2.64) may be written as a matrix equation

34

ci,
4

h(2) h(3) h(4) b(5)

h(0) h(l) h(2) h(3)

h(-2) h(-l) h(0) b(l)

h(-4) h(-3) h(-2) h(-l)

*--i

4

4

4

(2.67)

which we will denote as cj = H CQ. Notice the rows of H shift to the right by 2 as they progress
down the matrix. This can be implemented as a Finite Impulse Response (FIR) filter with a
decimation by 2, just as we desired. Notice also, that when the scaling function has compact support,
so most of the elements of {h(n)} are zero, H will be a sparse matrix.

(2.68)

In a similar way, (2.66) may be written in matrix form as

d^Gco

where G will also have rows shifting to the right by 2. (2.67) and (2.68) give us a design for the first
layer of the tree filter in Figure 2.10. Since, throughout this development, we have not specified the
frequency band, but only relationships relative to the initial bandwidth, it is easy to see lower
branches of the filter will have the same structure, and will be implemented with the same H and G.

So we see that if we have an appropriate scaling function: one that meets the dilation
equation, (2.52), with a finite number of non-zero coefficients, as well as meeting the requirement for
generating orthonormal translates, we can compute the elements of H and G, and implement the
Wavelet Transform as a filter bank. Unfortunately, finding scaling functions is difficult. In the next
sub-section, however, we will develop some rules which will allow the generation of H and G without
an explicit scaling function.

Rules For the Coefficients

Rule 1. First, we impose

im
(2.69)

* oo

* oo

35

to meet our requirement for compact support for the mother wavelet. (The first part of (2.69) comes
from (2.53). The second part of (2.69) will follow from the first part and the equation for g(n) which
we will develop below.) Actually, since we only consider FIR filters, our requirement will be even
stronger we will only allow a finite number of non-zero coefficients.

Rule 2. Here we derive a rule for the coefficients from the orthonormality requirement for the
scaling function, (2.45). From that requirement, and (2.44), we get

(2.70) Jo(t+j)0(t + k)dt = |J j
1 j = k

* k

Now, substituting in (2.52) we get

2f(]£h(n)0(2t + 2j-n)XXb(m)<I>(2t + 2k-m))dt =
n m

let n' = n - 2j and m' = m - 2k

(2.71) 2f]Th(n' + 2j)$(2t-n')Jh(m' + 2k)4>(2t--m')dt =
n' m'

2^^h(n' + 2j)h(m' + 2k)fo(2t-n')<l>(2t-m')dt = \l J ~
1 j= k

k

But by substituting x = 2t into the equation under the integral, we notice it is 1/2 times (2.70), so,
when n' = m', we have

(2.72) Yh(n' + 2j)h(n' + 2k) = j* * = j

, 0 k * j

which is the rule we desire. In matrix notation, it becomes

(2.73) HHT = I

which says the rows of H are orthonormal. One of the consequences of this is that there must be an
even number of non-zero coefficients [44].

Rule 3. For the next two rules, we wish to relate G to H. Substituting (2.44) and (2.54) into our
definition for g(n), (2.65), we get

1
(2.74) g(n) = -^JV(jJo(x-n)dx

36

Substituting (2.53) then gives us

g(n) = f]^(-l)mh(m + l)*(x + m)0(x-D)dx =
m

(2.75) £(-l)rah(m+l)f<t>(x + m)0(x-n)dx =

m

(-l)nH(l-n)

where the last step follows from the orthonormality relation of (2.70). This gives us the following
matrix

G =

(2.76)

h(L-l) -h(L-2) ••• ••• h(l) -h(0) 0 0
0 0 h(L-l) -h(L-2) ••• ••• b(l) -h(0)

where there are L non-zero coefficients in both G and H. There is something important to note from
(2.76): because G is of infinite extent, we can shift all of the rows to the right or left by multiples of
two, and the only result, in (2.66), will be a shift in the time index on djj. In [24] and [44] an
alternative definition

(2.77) g(n) = (-l)Bh(L-l-n)

is used. This gives the same frequency response for the filters, permits a reconstruction of the
original sequence (which is the intention of the two papers), and makes some manipulation easier.
When constructing the time frequency diagram, however, particularly when arbitrary tiling is used, it
is important to keep the time shift in mind. For the rest of this section, we will use (2.75). Later,
when we describe Wavelet filters useful for detection, we will see certain shifts of the rows in (2.76)
will be necessary.

We see G is just H with the row elements reversed and some minus signs added. From
Rule 2, we get the following, which we call Rule 3:

(2.78) G GT = I

(It is easy to see the minus signs cancel each other.)

Rule 4. Rearranging (2.75) to find h in terms of g, we get

(2.79) b(m) = -(-l)-ffig(m + l)

37

Substituting this into (2.72) for one of the h's, we get

£h(n' + 2j)[-(-l)-(n'+2k)g(n' + 2k+l)] =
n'

-£h(n' + 2jX-l)"'g(n' + 2k + l) =

(2.80) let 2k +1 = 2p p e integers

so k= p-(l/2)

"S(_1)D h(n'+2j)g(n'+2p) = 1 p-d/2) = j
[0 p-(l/2)*j

but, since p and j are both integers, (2.80) must always equal zero. So, Rule 4 is

(2.81) HGT = 0

where 0 is a matrix with all elements equal to zero.

Some Consequences of Rules 2-4. We saw in the first section of this chapter that an orthonormal
basis set implies that the transform is invertible (i.e., the signal can be reconstructed from the
decomposed sequences). To see how this applies here, consider Figure 2.12, giving us the following
equation

(2.82)

or

(2.83)

CO = GTG en + HTH CA = (HTH + GTG) °0 IC0

HTH + GTG = I

{c,°}

H

R'}

{c.1}

GT

HT

{O

Figure 2.12. Decomposition and Reconstruction of a Sequence. Blocks H and G include a
decimation by 2 at the filter outputs. Blocks H * and G * include an expansion by 2 (the

insertion of a zero valued sample between each input sample) preceding each filter.

38

We now show the ortbonormality rules for the Wavelet filters make (2.83) true. (2.83) in a
non-matrix form can be written as

(2.84) Z[h(i)2 + 8(i)2] = *
ieveo

(2.85) Z[b(i)2 + 8(i)1 = l

iodd

(2.86) £[h(i)h(i+n) + g(i)g(i + n)] = 0 for Vn * 0
i

so we must derive these from Rules 2 - 4. Now, from (2.73) we get

(2.87) £h(i)2 = 1
i

and using this and (2.79) yields

£h(i)2 + £h(i)2 =]Th(i)2 + £[-(-iyg(i+i)]2 =
Q oo\ ieveo iodd ieven iodd

£[b(i)2 + g(i)2] = 1
ieven

which is (2.84). Of course, (2.85) can be derived similarly. To derive (2.86) from the rules above,
note that from (2.73) and (2.78) we get

(2.89) ^h(i)h(i + n) = 0 and ^g(i)g(i + n) = 0 for Vevenn * 0
i i

SO

(2.90) £[h(i)h(i + n) + g(i)g(i + n)] = 0 for V even n * 0
i

which is part of (2.86). Now, assuming n is odd, and using (2.75) we see

£[h(i)h(i + n) + g(i)g(i + n)] =
i

Y[h(i)h(i + n)] + T f(-1)1 h(l - iX-Di+D b(l - i - n)1 =
(2.91) i i

let 1-i-n = k

£[b(i)h(i + n)] -]£[b(k)h(k + n)] = 0 for Voddn
i k

which is the other part of (2.86).

39

The ability to reconstruct the signal is often called the "Perfect Reconstruction" (PR)
property in the literature. Several recent papers, [1] [7] [8] [9] [24] [26] [27] [44] for example, have
used Wavelets in sub-band coding, where the necessity of PR is obvious. (It should be noted in
passing that orthogonality implies PR, but not the reverse. In particular, there are a class of
"biorthogonal" Wavelet filters which satisfy the PR property and also have a linear phase response
[44]. These, apparently, are of no interest for us, since for energy detection we are not particularly
interested in the phase, and we do require orthogonality for equation (2.4) to be satisfied.)

A property we do need, however, is the "Power Complementary" (PC) property. As with PR,
we will first state the result, and then show how it is implied by orthonormal Wavelets. Actually,
since we have already shown orthononnality leads to PR, it will be convenient to use (2.84) - (2.86).

First, the Fourier Transform of filters H and G (before decimation) are

(2.92) H(co) = Jh(n)e~jcai and G(co) =]Tg(n)e"jfflD

and the PC property is

(2.93) |H(ü))f+|G(co)|2 = c

where c is a constant. The intuitive description of (2.93) is that, no matter what the frequency
components of an input sequence, all of its energy will be at the outputs of the two filters. (No energy
will be lost between the pass bands.) Combining (2.92) with the left side of (2.93), we have

|H((0)|2 + |G(CD)(
2
 =

]Th(n)e-HXb(k)e-H + Jg(n)e-jmB X«(k)e"jmk

± k

£2>(n)h(k)e-j<*°-k) + XI>n)i?(k>e"J03(

n k D k

let i = k - n

££[h(n)h(i + n) + g(n)g(i + n)]ejffii =

-ja>(D-k) _

JV* £[h(n)h(i + n) + g(n)g(i + n)]
V B

(2.94)

From (2.86) we can see that the part of (2.94) in parenthesis on the last line will be zero when i is not
zero. When i is zero, we get

40

\H(u>f + |G(co)|2 = £[h(n)2 + g(n)2] =

£[h(n): + g(n)2] + £[h(n)2 + g(n)2] = 2

neveo a odd

where the last part comes from (2.84) and (2.85). As we see, the constant in (2.93) is two.

Rule 5. Rules 2-4 ensure we decompose the original sequence into two orthogonal sequences. Now,
we need to ensure {dn*} contains the high frequency components and {c^} the low frequency
components. We first consider the Fourier Transform of G given in (2.92). To make G a high pass
filter, we want it to block direct current (DC), so the first half of Rule 5 is

(2.96) G(0) = £g(n) = 0
D

On the other hand, to analyze H, we consider an input sequence with zero frequency (pure DC). We
arbitrarily scale the input sequence so it is {CJJ

0
} = {1}, where {1} is a sequence of ones. We then

want {djj1} = {0} and {Cjj1} = {7}, where {0} is a sequence of zeros, and {7} is a sequence of
arbitrary, single valued, non-zero, elements. Looking at Figure 2.12, we see we want

(2.97) 7 = HI

where
7 is a column vector with all elements equal to 7
1 is a column vector with all elements equal to 1.

(2.97) gives us

(2.98) 7 = £h(n)

which, when we find 7, will be the second half of our Rule 5. To do this, we look back at Figure 2.12
and note

(2.99) HT7 = 1

or

41

h(0) 0 0

MD 0 0

: MO) 0

h(L-l) Ml) 0

0 h(0)
0 h(L-l) Ml)
0 0 ;

0 0 h(L-l

(2.100)

Examining (2.100), we see we can extract the following pair of equations

(2.101)

I>2j) T = 1

£h(2k+l)
. k

T = 1

or

(2.102)

Y h(2j) = -
T f

£h(2k + l) =

which we can manipulate as follows

£h(2p)2>(2j) = 4
(2.103)

£h(2q + l)£b(2k + l) =4"
ok y

but, from (2.72) we can see the left hand sides of (2.103) will be zero when p * j and q * k. So we
have

42

(2.104) j f

£[h(2k + l)]2 = -L

Combining these, we get

^ 2
(2.105) £[h(2j)]2+£[h(2k + l)] = 4 = S[h(n)]2 = l

j k ^ n

where the last step comes from (2.87). So we have

2

(2.106) T2

T = -Jl

Finally, Rule 5 in its entirety is

5>n) = 0
(2.107) »

n

The Regularity Criterion. In addition to the five rules just presented, references [12] [24] [44]
consider one more requirement. Since we have not considered the effects of cascading the filter, it is
possible to follow our rules, and come up with a set of coefficients that result in a non-continuous
scaling function. The "regularity criterion" handles this by requiring the scaling function (and,
perhaps, its first, second, etc. derivatives) be continuous. This is not critical for our purposes here,
since we are concerned strictly with discrete time signals.

For the purposes of detection, alternative criteria will be more useful. Specifically, we are
interested in filters that will collect as much of the signal energy within a time frequency tile as
possible, while rejecting most of the energy outside the tile. Discussion of techniques for computing
the values of coefficients for filters of this type will be discussed in Chapter HI.

Arbitrary Tiling

In the last section, we saw that by cascading filters and filtering the low pass component of
the previous output we achieved a tiling with finer frequency resolution at lower frequencies. In
many cases concerning detection, however, this is not desired., Many man made signals, for example,
will have a constant bandwidth over a wide range of center frequencies. (American television
channels, as a specific example, all have a 6 Mhz bandwidth, but range from 54 to 770 Mhz-over an
order of magnitude! [21].) Instead, we desire an arbitrary tiling, adjusted to meet specific
requirements for the type of signal we are trying to detect As it happens, we can modify the filter
bank presented in the last section to do this, and we discuss some of the possibilities here. Much of
this material comes from [24].

43

Consider the cascading filter diagram in Figure 2.13 where, instead of filtering the low pass
output of each stage, we filter the high pass output. Since our derivation of the filter coefficients in
the last section only concerned relative frequencies, we again split the input sequence at each stage
into high frequency and low frequency orthogonal sequences, and we have the tiling diagram shown
in Figure 2.14, sometimes referred to as "Wavelet Packet Tiling" [24].

{c,0}

^fiti

H -G>- -

H

2 M
G KD-,,.

2 {C„}

Figure 2.13. Wavelet Packet Filter Bank

Notice the second and third layer seem to be flipped in Figure 2.13 (the figure is drawn so
the output sequence at the top of the drawing contains the higher frequency components of the input
sequence). This will be important for us a little later. To see why they are flipped, consider the
aliased frequency spectrum of the filters, shown in Figure 2.15. We see the output from the G filter
in the first layer contains the highest frequency component of the original sequence, but shifted, so it
is actually the DC component of the output of G. The result is that the output of G is frequency
reversed, much like the lower sideband of a single sideband communications system. Of course, a
similar filtering further down the cascade will "unflip" the signal. It turns out there is a simple rule
to keep our output straight, which we will discuss in a moment.

Combining Wavelet tiling and Wavelet packet tiling will allow us to create another tiling
scheme. This is shown in Figure 2.16, and gives us the tiling diagram of Figure 2.17. The
construction rule for Figure 2.16, in order to keep the higher frequency outputs of each branch above
the lower frequency outputs, is to count the number of G filters up to the branch. If the number is
even, the next G filter will output the high frequencies. If odd, the next H filter will output the high
frequencies.

Figure 2.17 looks similar to the STFT tiling diagram. It is, except the tiles are overlapped in
time, as well as frequency, and each tile in the figure has only half of the area of an STFT tile, giving
us better resolution.

44

F
r
e
q
n
e
D
C

y

- " - f,

d' —:

• u +
i k

c1

JE SL

Time

Figure 2.14. Time Frequency Diagram For the Wavelet Packet Filter Bank

Aliased

First
Layer

Second
Layer

T
0.5

The output from G in
the first layer covers

this range

Frequency

Figure 2.15. Response of Filters in Figure 2.13

45

Note: Decimation by 2 is
included in each box

Figure 2.16. Combining the Wavelet and Wavelet Packet Filter Banks

46

(16)

(15)

(14)

(13)

(12)

F (»)

e OO)
q
u (9)

: <•>
y

(7)

(6)

(5)

(4)

(3)

(2)

(1)

Time

Figure 2.17. Time Frequency Diagram For the Filter Bank in Figure 2.16

To see why these tiles should cover half of the area, consider the portion of the time
frequency plane with digital linear frequencies ranging from -0.5 to 0.5. A real signal has equal
positive and negative components, so its energy distribution will appear as a mirror image, reflected
around the zero frequency line.

47

Now, for the sake of example, consider a 32 sample long segment of the signal and take the
DFT. We will obtain 32 coefficients, of which tne 16 tiling the plane from frequencies 0 to 0.5 will
be unique. Therefore, 16 tiles will cover an area of (32)(0.5) = 16, so each tile will have an area of
one.

FIR Filters, on the other hand, tile the plane differently. The filter passband in the positive
frequency region will have a corresponding mirrored passband in the negative region. In Figure 2.15,
for example, the H filter in layer 2 with a passband centered at 0.5 will also have a passband at -0.5.
Therefore, each filter will pass both the positive and negative frequency components of the signal. To
see that the tiles in Figure 2.17 have an area of 0.5, consider the 32 sample long segment again. In
this case, at any layer of the filter bank the total output from all of the filters will contain 32 elements,
so we have 32 tiles, each one unique. Since we are covering the same portion of the time frequency
plane as above, each tile must have half of the area of the STFT.

It is easy to see that by expanding only certain branches of the filter tree we can achieve a
variety of tiling diagrams. Furthermore, it is also possible to modify the tree with time, making
available even more possibilities.

There is another possible way of using a fully developed filter tree like the one in
Figure 2.16. A closely related problem to detection is feature extraction. For example, when looking
for frequency hopped (FH) signals, particularly in a location where many FH transmitters are present,
it would be advantageous for a detector to estimate the length of time between each hop (the dwell
time), and the frequency spread. Since sequences from higher up the filter tree have a greater
resolution in time, they may be useful for estimating the dwell time, while sequences down the tree,
having a better frequency resolution, could be used for estimation along that dimension. Using this
fact, it should be possible for a detector to simultaneously detect and classify multiple transmitters.

Conclusion

To summarize: for detection, we need to select an orthonormal set of basis functions that
will include as much of the signal energy in as few terms as possible. The "best" basis set, then,
depends on what, and how much, is known about the signal to be detected. Once the basis set is
selected, and the waveform is decomposed, the presence or absence of a signal may be decided via
threshold detection.

For stationary signals, the best choice is generally the DFT. For non-stationary signals, the
STFT, Wavelets, and variations on Wavelet filtering are all possibilities. In all of these sets, a major
question is the (3 dimensional) shape of the tile and its overlap, in both the time and frequency
domains. This question, for the fully developed filter tree like the one shown in Figure 2.16, is the
subject of the next chapter.

48

HI. Filter Coefficients

Introduction

In this chapter we build on the mathematical foundation laid out previously for orthogonal
Wavelet filters, and find filters with properties desirable for use in energy detection. Specifically, we
will first consider our basic requirements, and the characteristics of filters as a part of the filter tree of
Figure (2.16) (which, for the rest of this paper, we will refer to as the quadrature mirror filter (QMF)
bank tree). Several filters widely discussed in the literature will then be analyzed with these
requirements in mind. Finally, we will see how to develop the orthogonal Wavelet filters that best
meet our needs.

Basic Requirements

Obviously, any filter we consider must meet (or at least approximately meet) the five rules
laid out in the last chapter for orthogonal Wavelet filters. The first of these (the finite sum of the
absolute values of the coefficients) we will meet by only considering FIR filters. The other rules will
be discussed as necessary later in the chapter.

Since we assume that, in general, the cell size, hop synchronization, and channelization of
the spread spectrum signals to be detected are unknown, we will not attempt to try approximating a
matched filter. (Which would otherwise, as discussed in Chapter n, yield the best results.) Instead
we wish to find filters closely approximating the ideal tiling characteristics shown in Figure 2.17.
That is, filters passing as much signal energy as possible from within a tile, while rejecting as much
as possible from outside it.

Consider first the frequency response characteristics of the prototype (low pass, or "H") filter:
It should meet the specifications as shown in Figure 3.1. We would like 51 to be as small as possible
to minimize the variance in the amount of energy passed due to frequency shifts in the signal, as long
as the energy remains in the bandwidth of the tile. We also want 63 to be as small as possible to
minimize the amount of energy passed outside the tile. These requirements are really the same: by
meeting the PC requirement of (2.95), the frequency response of the G filter will be a mirror image of
the H filter's, and a .small ripple in the passband will result in little energy passed in the stop band.
Also due to (2.95), the H and G filters will, between them, pass all of the signal energy. However, to
minimize the amount of energy divided between them (which makes detection less likely), we would
like as small of a transition region, Am, as possible.

In the time domain, we specify our requirement a bit differently from most of the literature.
There, the total number of FIR filter coefficients is usually considered, and minimized to reduce the
amount of out of time (and, therefore, out of tile) energy collected. Really, though, only two of the
coefficients collect signal from within the time dimension of the tile. All of the rest contribute to out
of tile energy. What we want then, is to declare two of the coefficients to be "main taps" and to make
these as large as possible. All of the others, in turn, should be as small as possible. One intuitive way
to think of this is to consider the two main taps as the tile energy collectors, and the others as
necessary to keep the filter's frequency response under control. We also want the two main taps to be
as equal to each other as possible. In this way, energy at the input in each of the two samples falling
in the tile's length (in time) will be equally represented.

|H(Cü)|

Figure 3.1. Desired Frequency Response

Any two adjacent taps in our prototype filter can be made the main taps. When constructing
the G filter, however, it is important to synchronize the outputs so both H and G filters cover tiles
beginning and ending at the same time. Fortunately, this is easy to do simply by adding an even
number of zero coefficients (pure delay) to the filters, as shown in Figure 3.2. Referring back to
Chapter n, this amounts to a shift in G's coefficients relative to the rTs which may be, in general,
different from either (2.75) or (2.77).

There are also several filter characteristics frequently discussed in the Wavelet literature that
we do not particularly care about in our application. These are mentioned here mainly for the benefit
of the readers familiar with the literature, and to show our requirements, while in many ways similar
to those of others working with Wavelets, are in other respects quite different.

For example, Daubechies [12] has shown it is impossible for a FIR filter, except for the Haar
filter, to meet the orthogonality requirements and have symmetric coefficients. (The proof depends
on having a finite number of coefficients. Later, we will see how we can cheat by truncating an
infinite length filter, at the expense of perfect orthonormality.) Symmetric coefficients in a FIR filter
give it a linear phase response-a characteristic that is often desirable. Since we are looking for
energy, however, the filter's phase characteristics are of no importance. (We assume we don't know
the phase of the signal to be detected anyway. If we did, we would also have to know other signal
characteristics, and we could consider matched filters and/or coherent detection.)

50

G Filter

V 8(0)

-.12941

H Filter

'n

V"0
-12414

V7g(2) r7g(3) ^7g(4)

-.48297
main tap

rpain tap main tap

V, AS)

Xjm WKD V7^) ww) v7w \7*5)
V" V- V 48297 Y.83252 Y.22414 Y-.12941

Figure 3.2. Finite Impulse Response Filters With Delays Added
(Tap Values Are For Daubechies' Four Coefficient Filter)

Another characteristic we need not consider is the regularity criteria mentioned in
Chapter n. Daubechies' prototype filters meet this requirement by being "maximally flat" in the
frequency domain around DC [12]. This does, indeed, eliminate the passband ripple. However, as

51

we will see, by ignoring regularity, we will have more freedom to design filters that better meet our
other requirements.

Analyzing Filters on the QMF Tree

So far, we have only looked at the requirements for the individual H and G filters. We will
also need to consider bow these filters work together on a QMF filter tree like the one shown in
Figure 2.16. To do this, it will be necessary to make a slight digression in this section. Here we will
look at how we can take the string of H filters and decimators going down the low pass branch of the
tree, and develop an equivalent filter.

One tool we will use is the "Z transform" [32] [36]

(3.1) H(z) = £h(n)z-

where z is generally complex. Note that when we evaluate z along its unit circle, we can write

z = ejm and (3.1) becomes

(3.2) H(co) = £b(n)e' -jun

the frequency response (Fourier Transform) of the filter. There are two properties of the z transform
that we will need. First, just as with the DFT, a multiplication in the transform domain has the same
effect as a digital convolution in the (discrete) time domain. Second, replacing z by zm in the
transform domain is equivalent to inserting m zero valued samples between each sample of the
sequence in the time domain [43].

This leads to a "noble identity," shown in Figure 3.3, that we will use to analyze the filter
tree. What it says is that a filter, with a z transform H(z), following a decimation by two, is

mathematically equivalent to a filter with z transform H(Z
2
), followed by a decimation by two. It is

also true that a decimation by m followed immediately by a decimation by n is equivalent to a single
decimation by mn [43].

Figure 3.3. Noble Identity

With this information, we can analyze the tree. Figure 3.4 shows this, beginning with the
low pass branch of the tree (straightened for clarity). For the sake of example, we will consider a
three layer tree. Taking the last filter and the preceding decimation, we apply the noble identity,
leading to a string with two filters adjacent to each other followed by a decimation by four. We then
convolve the filter coefficients as shown, remembering to insert zero valued coefficients for the
second filter, and obtain an equivalent filter whose z transform well call H'(z). We can then repeat

this procedure (which is not shown in the figure), obtaining a filter H'(z2J adjacent to the first filter

in the string, and another decimation by two adjacent to the decimation by four. Combining these as
above, we end up with a single filter, which we will call H3~the third layer equivalent low pass filter,
and a decimation by eight.

In general, we will have a low pass filter HL, where L is the last layer, followed by a
decimation by 2*-\ The z transform of the equivalent filter is

(3.3) HL(z) = H(Z)H(Z
:
)-H(Z^')

In the time domain, each coefficient of the equivalent filter is

(3.4) hL(k) = ^hL.1(m)h(k-2m)
m

If N is the number of coefficients in the prototype filter

(3.5) NL =(2
L
-I)N-(2

L
-2)

will be the number of coefficients in the equivalent filter.

Taking the taps that were shown in Figure 3.2, we see we will obtain the equivalent second
layer filter in Figure 3.5 (which happens to be Daubechies' four coefficient filter). Since the time
frequency tiles from the second layer are four time samples long, we will have four main taps in the
equivalent filter. In general, there will be 2^ main taps, and, for uniform detection across the length
of the tile, we want these to be as equal in value to each other as possible. If we call mt the position
of the first main tap in the prototype (starting with "0" for the position of the first tap), the position of
the first main tap in the equivalent filter will be

(3.6) mtL = mt(2L-l)

For many Wavelet filters, the main taps in the equivalent filter will not necessarily have the largest
values (they don't, for example, in Figure 3.5 since h2(10)>h2(6)). However, the "best" filters for
our purposes will. Notice relation (3.6) applies whether we begin counting taps at the first non-zero
tap, or include the pure delay, as in the figures.

Of course, other branches of the QMF filter tree can be evaluated in a manner similar to that
described above for the low pass filter. Instead of strictly using the z-transform of the H filter, the
transform of the G filter would be substituted in the appropriate positions in (3.3) (depending on the
particular path down the tree of the filter under evaluation). The recursive time domain equation
(3.4) would also have to be modified. (3.5) and (3.6) remain unchanged.

53

Low Pass Branch of QMF Bank Tree:

H(z)

Equivalent:

H(z) H(z)

layer I
output

layer 2
output

layer3
output

H(z) H(z) H(z') J4

H(z2) HO)

Call this H'(z)

HD

I
h(2)

h(3)

1
* zeros inserted

®

H(z) W)

T

h(2) h(0)
hfl) •

!

IT(z) h(0)hO) h(0)hC) h(0)h<3) h(l)h(3) *2)' b<2)h<3)

K3)'

Figure 3.4a. Three Layer Low Pass Filter, and How to Analyze it

54

H,(z) = H(z) HCz3) H(z*)

Figure 3.4b. Result of Analyzing Three Layer Low Pass Filter

Common Wavelet Filters

In this section, we will look at several Wavelet filters commonly discussed in the literature
and see how they measure up to our requirements as specified above.

The Haar Filter

This is the filter discussed briefly in Chapter Ü. It has two coefficients

0.7) h(0) = ha) = yri

It is the only Wavelet FIR filter that is symmetric. Since it has only two coefficients, both are main
taps, and the filter perfectly meets our criteria for concentrating energy in time. It is easy to see the
equivalent filters for any layer of a tree constructed with Haar filters will also consist entirely of main
taps, and will perfectly concentrate energy in time.

In frequency, however, the Haar filter is not good. Figure 3.6 shows the frequency response
for both the H and G filters. Obviously, large amounts of high frequency energy may be passed by the
H filter, and vice-versa for the G filter. The situation is worse when the frequency responses of the
outputs of the higher layers are examined, as in Figure 3.7. (More accurately, these are the outputs of
the equivalent filters, and do not include the decimation by eight. For the low pass filter, the response
is found by substituting z = eja>into (3.3). For other filters, (3.3) is first modified by replacing H(z)

by G(z) in appropriate places, depending on the specific branch of the tree, and substituting z = e^.)

Daubechles Four Coefficient Filter

The four coefficient filter Daubechies presents in [12] is

h(0) = .482962913145 main tap

h(l) = .836516303738 main tap

(3.8) h(2) = .224143868042

h(3) = -.129409522551

where we declare the largest two taps to be the main taps. This is the filter shown in Figure 3.2, with
two zero value taps added to the beginning of the filter to move the main taps to the center.

The frequency response at layer one is shown in Figure 3.8, and at layer three in Figure 3.9.
It is easy to see that, although it is better than the Haar filter, much improvement is still desirable.

55

Figure 3.5. Second Layer Equivalent FIR Filter

56

Frequency

Figure 3.6. Haar Filter Magnitude Response

m
Frequency

Figure 3.7. Layer Three Magnitude Response of Haar Filter Tree

57

m
Frequency

Figure 3.8. Daubechies' Four Coefficient Filter Magnitude Response

TT/2

Frequency

Figure 3.9. Layer Three Magnitude Response of Daubechies'
Four Coefficient Filter Tree

58

Daubechies 16 Coefficient Filter

The 16 coefficient filter Daubechies presents in [12] is

h(0) = .054415842243

h(l) = .312871590914

h(2) = .675630736297 main tap

h(3) = .585354683654 main tap

h(4) = -.015829105256

h(5) = -.284015542962

h(6) = .000472484574

h(7) = .128747426620

h(8) = -.017369301002

h(9) = -.044088253931

h(10) = .013981027917

h(H) = .008746094047

h(12) = -.004870352993

h(13) = -.000391740373

h(14) = .000675449406

h(15) = -.000117476784

(3.8)

where, again, we declare the largest two taps to be the main taps. In this case, ten zero valued
coefficients will have to be added to the beginning of the H filter to center the main taps.

The frequency response at layer one is shown in Figure 3.10, and at layer three in
Figure 3.11. Here, we see, the situation improves, although there is still a large transition region.

The Sine Filter

The Haar filter perfectly concentrates energy in time. Is there an analogous filter that does
the same in frequency? Yes, but it has an infinite number of coefficients. Here we will look at a way
of modifying it slightly to make it practical.

If we start with an idea of the frequency response we want: flat passband, infinitely narrow
transition, and zero across the stop band, and we take the inverse Fourier Transform of this, we will
have a sine function (2.7) in the time domain. Since our passband ranges from -?2<co<^ or
-0.25 < f < 0.25, the nulls of the sine function will be at 2T for a sampling rate of T.

59

ir/2
Frequency

Figure 3.10. Daubechies' 16 Coefficient Filter Magnitude Response

m
Frequency

Figure 3.11. Layer Three Magnitude Response of Daubechies'
16 Coefficient Filter Tree

60

To obtain our filter coefficients, we want to sample the sine function at the normalized
sampling rate of T = 1, giving us a situation like that in Figure 3.12. One way to sample the function
would be to let the main tap sample occur at the center of the main lobe. However, as we discussed
informally above (and will see formally later), we must have two main taps, and desire their sum to be
as large as possible. For the sine function, this occurs if both of our main tap samples are equally
spaced about the center of the main lobe. We also want the sum of the squares of the coefficients to
be unity. This is achieved by scaling the sine by yj?. This is what is described by

a ft»

=\,A £\
"O^

JC Time

Figure 3.12. Sampling Under a Sine Envelope

(3.9) h(n) = -7-sinc 7-s
2

D + 0.5

\ 2
n e integers

As it happens, this filter meets all of the rules for Wavelet filters. The only problem is that it
has an infinite number of coefficients. (This, by the way, is how it is able to meet the Wavelet rules
for orthogonality and still be symmetrical.) We now explore how to truncate this filter and maintain
a good frequency response. The price we pay will be a small amount of non-orthogonality: there will
be some cross-correlation between filters.

If we simply truncate the ends of the filter, we will have a frequency response like that
shown in Figure 3.13, where 256 coefficients were used. The ripple in the passband, sometimes
called the "Gibb's Phenomena" is a well known result of this type of truncation [33]. Since we are, in
effect, multiplying the coefficients by a rectangular shaped window in the time domain, we can view
this as a convolution of the perfect filter response with a sine function (the Fourier Transform of the
rectangular window) in the frequency domain.

61

m
Frequency

Figure 3.13. Magnitude Response of Truncated Sine Filter

The solution to this is to use a non-rectangular window: one whose Fourier Transform has a
narrower main lobe and smaller sidelobes than the sine function. One that is commonly used is the
Hamming window [33]. Multiplying the coefficients from (3.9) by this window, and using the results
in a FIR filter, gives us the frequency response in Figure 3.14.

Recall that one of the results of orthonormality is the PC property: The H and G filters must
meet (2.95), which we repeat here

(3.10) |H(co)f+|G(co)f = 2

Figure 3.15 shows the left hand side of (3.10) for the windowed and truncated filters, and it is clear
that energy is lost at the filter transitions. This is primarily the result of the loss of orthogonality
from truncating the filter. For detection, we would rather not lose the energy at those frequencies; a
better trade-off would be to have a small amount of cross-correlation between the filters, so some
energy shows up in more than one tile.

Intuitively, we should be able to achieve this by causing the prototype filter to have a
passband that is slightly greater than JC/2, so the H and G filters squeeze together slightly. This can
be achieved by compressing the sine envelope of (3.9) slightly. At the same time, it will be desirable
to rescale the coefficients slightly, so the sum of the squares equals one. These modifications to (3.9)
give us

(3.11) Mn) = ^
n+0.5 , . ,

sincl —-— |w(n)

62

TT/2

Frequency

Figure 3.14. Magnitude Response of Hamming Windowed
Truncated Sine Filter

m IT
Frequency

Figure 3.15. lH(co)l2 + IG(co)l2 For the Windowed Truncated Sine Filter

63

where C is the compression variable, S is the scaling variable, and w(n) is the Hamming window. S
and C were solved iteratively in the following manner: First C was adjusted to make |H(j<)j = 1.

Then the coefficients were computed and S was set equal to

SNn)]2

The process was then repeated until C converged. Values of C and S, for various numbers of
coefficients, N, are shown in Table I. As expected, as the number of coefficients increases, C
approaches two, and S approaches one. The PC results are shown in Figure 3.16, and we see the
energy at the transitions is passed, although there is a little ripple.

Table H

Values of C and S, For Various Numbers of Coefficients, N,
For the Modified Sine Filter

N C S

16 1.80745449451012 1.22099338489190
32 1.90189442447347 1.10429475163860
64 1.95048099151118 1.05069751126202

128 1.97512319592231 1.02499785161815
256 1.98753217974055 1.01241259545240
512 1.99375872328059 1.00618488680080
1024 1.99687751845516 1.00308711196069
2048 1.99843829823671 1.00154222577172
4096 1.99921903384616 1.00077078066449
8192 1.99960948810196 1.00038530731821
16384 1.99980473684531 1.00019263291076
32768 1.99990236662119 1.00009631126893

For these filters, the greatest cross correlation occurs between tiles in the same frequency
band and adjacent in time. This was measured, and for N > 512 it was found that

(3.12) £h(n)h(n + 2)<0.001

and decreases as N is increased. For our purposes, we can regard these filters as orthonormal.

For comparison with the Haar and Daubechies filters, Figure 3.17 shows the frequency
magnitude response for the third layer of a modified sine filter (with N = 512).

64

3 m
Frequency

Figure 3.16. IH(co)!2 + IG(w)l2 For the Modified Sine Filter

I I 1 T I

m
Frequency

Figure 3.17. Layer Three Magnitude Response of
Modified Sine Filter Tree

65

The trade-off for the good frequency response is a poor time domain response. Looking back
at Figure 3.12, we see the taps adjacent to the main taps are also fairly large. In the next section, we
will develop a method for formally looking at the out of tile energy passed by filters.

Wavelet Filters For Energy Detection

Having looked at our filter requirements somewhat informally, we found the Haar filter has
good time resolution and the sine filter has good frequency resolution. Now we ask the question: can
we develop Wavelet filters that are a compromise? Ones that have the best possible combination of
time and frequency characteristics? The answer, of course, is "yes." Our strategy will be to first
develop equations for the amount of energy a filter collects outside the time limits of the tile, and the
amount of energy it collects outside the frequency limits. These will then be combined to form an
objective function. Finding the best filters will then be a matter of minimizing the objective function
subject to the Wavelet filter rules listed in Chapter n. As an additional benefit, the objective function
can be used as a numerical comparison of other Wavelet filters, to judge how well they will work for
energy detection.

Out of Time Energy

Consider the L layer equivalent filter in Figure 3.18. The energy of the sequence output
from the decimator is

(3.13) 2>(D,)]2

x(n) Layer L
Equivalent
Filter

™^p*!l

Figure 3.18. Layer L Equivalent Filter and Decimator

where n' are the sample times, n, that are passed by the decimator. Now, let's define an input
sequence with a total energy of one, and with the energy uniformly distributed over the length, in
time, of the tile of interest This gives us

(3.14) x(n) = i
1

7?"
6

n0<n<n0 + 2-l

otherwise

where riQ is such that the non-zero elements of x(n) are multiplied by the equivalent filter's main taps
at a time sample passed by the decimator. We can call the passed sample time n'g and the energy of z

66

at that time will be the amount of energy within the tile's time dimensions passed by the filter. This
gives us the following expression for "in time energy" for the layer L equivalent low pass filter

(3.15) a{ =[z(n'0)f =
,+2L-l f ! ' _1_

0L

nt, +2L-1

2>i»
n=mtL

We will find it more convenient to work with out of time energy, however. Since the total energy in x
is one, and since the filters are orthonormal, the out of time energy is

(3.16) E, = 1-a

Looking at (3.15) and (3.16), we see the amount of out of time energy is minimized by increasing the
sum of the main tap coefficients. It is also apparent that amount of out of time energy depends on the
laver examined.

Out of Frequency Energy

To evaluate the out of frequency energy passed by the equivalent low pass filter, we need to
look at the output preceding the decimator. (Decimation has the effect, in the frequency domain, of
rescaling the magnitude response so the value previously at rc/2, for example, will be moved to n
[43]. Any energy passed by the H filter above this frequency is aliased, as is any energy below this
frequency passed by the G filter. This is the specific mechanism distributing out of frequency energy
among "incorrect" filters in the tree.) In our analysis here, we will only consider the low pass branch
of the tree.

Consider an input to the equivalent filter consisting of an impulse

(1 n = nn
(3.17) x(n) =

0 otherwise

where UQ is just a specific time. Then, the impulse response of the filter is its Fourier Transform

(3.18) HL«a) = £hL(n)e- -JÜ»

Using (3.18), the amount of energy passed from the impulse that is within the tile's frequency band
will be

(3.19)

J|HL(CD)f dco

P!L=^
J|HL((0)|

:
6ID

- ft

which can be simplified as follows. First, from (3.18), we can derive

67

k i

(3.20) |HL(CD)|
2
 = 2>L(k)e-j<Bk JhL(i)e-

. k JL i

Looking at the denominator of (3.19), we find

It K

J|H(co))2dco = XZ^^^^i) Je-^^do =
-K k i -*

£2Mk)hL(i)^sin[*(k-i)] =

2n^^hL(k)hL(i)sinc(k-i) =
k i

2*£hL(k)2 = 2*

= X5>L(k)flL(i>e-J"(t -i)

(3.21)

where the last line is the result of applying (3.4) in

IM*)2 = X]£hL_,(m)h(k-2m)
k L m

£hL_,(n)h(k-2n)

£2A_1(m)hL_,(n)h(k-2m)fa(k-2n)

XXhL.1(m)hL.1(n)Xh(k-2m)h(k-2n) =

0 when m <• n

1 when m = n

2>-i(m)2

(3.22) •

which can be extended back to show

(3.23) £hL(k)2 = £hL_,(k)2 = - = Xb(k)2 = l

k k k

(3.19), then becomes

68

f
PL = ^ J|H(a>f (to =

2n
■,1-

2*k i

k i L ^ •

iSSh^k^^Dsincf^j-
2Lrr ^

(3.24)

and we define the out of frequency energy to be

(3.25) SL = l-ß£

Here we have developed an equation to measure the out of frequency energy for the
equivalent low pass filter for a particular layer. For layer one, the out of frequency energy for the
high pass filter would be identical, because the magnitude responses for the H and G filters are mirror
images. For higher layers however, the out of frequency energies of some branches of the tree will
not, in general, be the same as for the equivalent low pass filter. The intuitive reason for this is that
the H and G filters' passbands will not have perfectly flat magnitude responses, and, therefore,
different amounts of energy will be passed at different frequencies. The only perfect solution for this
is to use the Sine filters, but, as we discussed earlier, they have poor out of time energy
characteristics.

It should also be possible to develop equations like (3.24) for each equivalent filter for a
particular layer, and to incorporate them (perhaps as some sort of average) into an objective function.
We will not do that here, both because the calculations would be numerically intensive, and because
we will be interested in filters that have "good" characteristics over a number of layers and branches.
As we will see, minimizing the objective function we are about to describe for layer one will give us
good filters.

Objective Function

From (3.16) and (3.25) we can define an objective function

(3.26) UL = EL + SL = 2-(a£+ßL)

69

Figure 3.19 shows what this function really means. Energy passed by the filter that is within the time
span of the tile, but outside the frequency band will be included (in EjJ, as will passed energy that is
within the band but outside the time span (in SjJ. Energy passed by the filter that is both out of the
time span and frequency band will be covered twice. The objective function then places an upper
bound on the amount of out of tile energy, OTEL, for the low pass equivalent filter for a particular
layer of the tree

(3.27) 0 < OTEL < UL

where equivalence only occurs for the Haar and Sine filters.

Time

Figure 3.19. Tile in the Time Frequency Plane. Shaded Region
Shows the Overlap of Energy in Objective Function

As mentioned above, one of the uses for (3.26) is as metric to decide how well a particular
Wavelet filter will suit our purposes. Table II lists the values of UL for various layers, for the filters
discussed previously.

The main reason for finding (3.26), however, is to try using it to find the best filters possible.
To do this, we wish to minimize UL with respect to the prototype filter's coefficients, subject to the
Wavelet constraints. One way to do this is to find the partial derivatives of (3.26) with respect to each
of the prototype filter coefficients, applying the Wavelet constraints with Lagrange multipliers, setting
the equations to zero, and solving simultaneously. Unfortunately, the equations turn out not to be
linear. Iterative solution techniques were tried, but with only limited success: particularly for layers
greater than two, the equations often failed to converge, even when various different initial guesses
were tried.

70

Notes:

Table m

Values of the Objective Function For Various Filters

Layer Haar Da4J Dal6J Sinc^

1 0.1817 0.2581 0.2688 0.1874

2 0.2157 0.3389 0.4655 0.2252

3 0.2237 0.3771 0.5876 0.2343
4 0.2257 0.3963 0.6517 0.2366

5 0.2261 0.4060 0.6839 0.2373
6 0.2263 0.4108 0.6999 0.2376

* Daubechies' four and 16 coefficient filters
2 Hamming windowed, truncated, 512 Coefficient Sine Filter

Fortunately, another method is viable. Unconstrained minimization problems are generally
easier than multi-dimensional root finding [39], A question then becomes whether it is possible to
somehow parameterize the equations, replacing the constrained prototype coefficients with (fewer)
unconstrained parameters. This very problem is solved in [47].

Parameterizing the Wavelet Coefficients

The relevant rules for finding Wavelet coefficients from Chapter Ü can be re-written as a
series of equations which should be set equal to zero

(Pl= J[h(n)]2-1

cp2 =Jh(n)h(n + 2)
n

<p4 = £h(n)h(n+4)
n

<p; = £h<n)h[n+2(i-l)]
s

<pf =]Tb(n)h[n + 2(f-l)]
0

cp^; = £h(n)-V2
n

v = 2>n) = I>(n) - 5>(n)
n odd

(3.28)

71

where all but the last two come from the orthonormality requirement (Rule 2), and the last two come
from the low pass/high pass filter requirements of Rule 5. (3.28) was used directly in the Lagrange
multiplier problem described above. In [47], Zou and Tewfik use the same equations in their
derivation of the following (which we write in the notation used in this paper)

(3.29)
H(z)

(ZN"2G)(Z)
= V(z)ho(z)

where

(3.30) h»(z) = 72
1 + z
1-z

and

(3.31) V(z) = [i + fr-llv^v^.j-jl + tz'-lKvT

where

(3.32)
cos6k

sin6k

(Actually, Zou and Tewfik also account for the Regularity Criterion. As stated earlier, however, we
are not concerned with mat, and so have not included that part of their work in (3.29)-(3.32)).

With (3.29)-(3.32), the set of N coefficient Wavelet prototype filters map onto the set of N/2-
1 values of 9 € [0,n). For our problem then, we simply have to minimize the objective function with
respect to the 8's. The parameters we are allowed to select are the number of filter coefficients and
the position of the first main tap.

Numerical Results

The objective functions in (3.26) for U\ and Ug were minimized for a number of filter
lengths and main tap positions, using the parametric equations of (3.29)-(3.32) and the Neider-Meade
simplex algorithm for minimization [39]. Specifically, the Matlab function FMINS.M was used [34].
For this method, initial guesses for the parametric values, (6), were input to the Matlab function, and
it eventually returned an answer.

The results were generally satisfactory, although some initial guesses of {8} led to local
minimum^ This was usually obvious when it happened, since the main taps were not as large as they
should be and the other taps were not all small. The possibility cannot be ruled out, however, that
some local minimums exist, and were found, that lay close to the global minimum.

For mt = 0, good results were always found. Part of this success is due to the fact that when
all of the 8's in (3.32) are set to re/2, the resulting filter coefficients are the Haar set with

72

h(0) = h(l) = l/V2 and all other coefficients equal to zero. Since the coefficients we desire will be
close to these values, FMINS.M was always able to find a good miaimum. Other values of mt,
however, often resulted in lower minimums. Unfortunately, in these cases, particularly for filters with
larger numbers of coefficients, it was not always easy to make good initial guesses for {8}.

As it happens, for a given number of coefficients and value for mt, the coefficients to
minimize Uj and Ug are not very different. Because of this, and the added computational complexity
involved in computing the equivalent filter coefficients to find the objective function for higher layers,
it was often a good idea to first minimize Uj, and then use the values found for 6 as the initial
guesses to minimize Ug.

As for specific results: Uj was minimized for all even coefficients from four to 18, and for
all possible values of mt (values of mt greater than half of the number of coefficients were not
evaluated, since they simply result in coefficients that are time reversed). One thing to note here is
that, for any given value of mt, a solution for N coefficients is a subset of the possible solutions for
N+2 coefficients, since zero values for the last two coefficients is permissible. Therefore, for larger
filters, the true global minimum should be equal to or less than the minimum for smaller filters.

Certain values of mt always seemed to work better than others. For greater than six
coefficients in the filter, mt = 2 always worked best of all. For this reason, filters were found
minimizing Uj for mt = 2 for even coefficients greater than 18. This was done up to 24 where
FMINS.M failed to find a solution. Figure 3.20 shows the values of Uj found, versus the number of
coefficients, and we see the curve appears to approach an asymptote, leading us to suspect
Uj = 0.1166, the value found for a 22 coefficient filter with mt = 2, is about the best we can do.

10 14 18

Number of Coefficients

22

Figure 3.20. Minimum Values of Uj Versus the Number of Coefficients, When mt = 2

73

Minimum values for Ug were also found for different numbers of coefficients and values for
mt, and the results were found in all cases to be similar to those for U}. As before, the best
configuration found was for a 22 coefficient filter with mt = 2. In this case, values for Uj and Ug are
0.1189 and 0.1554 respectively. Note this value for Uj is only slightly higher than when it is
minimized.

We conclude, then, the 22 coefficient filter with mt = 2, and with Uj minimized, is a good
one to use here. The coefficients are

h(0) =-0.06937058780687

h(l)= 0.08787454185760
h(2)= 0.69303661557137 main tap
h(3)= 0.69307535109821 main tap
h(4)= 0.09491659263189
h(5) =-0.09139339673362

h(6) =-0.04245335524319
h(7)= 0.04675991002879
h(8)= 0.03613538459682
h(9) =-0.03468231058910

h(10) =-0.02281230449607
h(ll)= 0.02100935003910
h(12)= 0.02296583051731
h(13) =-0.02145780458290
h(14) = -0.01348759528448
h(15)= 0.01318436272982
h(16)= 0.01550256127783
h(17) =-0.01636308107201
h(18) =-0.00627176286924

(3.33) h(19)= 0.00993238693842
h(20) =-0.00105459770882
h(21) =-0.00083252852776

and the frequency responses for layers one and three of the QMF bank tree are shown in Figures 3.21
and 3.22.

Finally, Figures 3.23-3.25 compare the energy concentration abilities of the Haar, the
modified Sine (with 512 coefficients), and the filter in (3.33). Each figure shows the square of the
output values of layer six of the QMF filter bank tree for a particular input signal.

The signal is a sinusoid with a frequency of 0.3, turned on for 128 seconds. This length of
time would be covered by two tiles at layer six, however, the instants at which the signal was turned
on and off was purposely set so as not to have any particular relation to the tiles.

74

Frequency

Figure 3.21. 22 Coefficient Energy Detection Filter, Magnitude Response

ir/2
Frequency

Figure 3.22. Layer Three Magnitude Response of 22 Coefficient Energy Detection Filter

75

1344

(TO

Figure 3.23. Cell Energy at Layer 6 With Haar Filter

1344

0~0

Figure 3.24. Cell Energy at Layer 6 With Sine Filter

76

1344

O^o

Figure 3.25. Cell Energy at Layer 6 With 22 Coefficient Energy Concentration Filter

As we can see, the Haar filter, as predicted, does a perfect job of isolating the signal "cell" in
time, although it spreads the energy over the frequency domain. The Sine filter, on the other hand
concentrates the signal well in frequency, but spreads it in time. The filter of (3.33) proves to be a
good compromise.

Summary and Conclusions

In this chapter we examined informally, and then formally, our requirements for Wavelet
filters with good tiling characteristics in the time frequency plane. We saw the Haar filter is the best
we can do in the time dimension, while the Sine filter (or rather, one of its realizable approximations)
is the best in the frequency dimension. Each of these may be useful when one of either the time or
frequency features of a signal are being examined.

77

IV. Simulation Programs

Introduction

In this chapter we look at some of the programs used in the Monte-Carlo simulations for this
research. Simulations are used to verify mathematically derived results, and to provide results when
the mathematics are intractable. All of these simulations were carried out on a 486DX2 based
personal computer using Matlab for Windows version 4.0.

The organization of the simulation programs follow the receiver block diagram in
Figure 1.2. A waveform is assumed to be properly band pass filtered and sampled at the Nyquist rate.
The Matlab code for generating these sampled waveforms, consisting of spread spectrum signals and
additive band limited white Gaussian noise (WGN), is described below. These signals are then input
to a program, described later in this chapter, which carries out the function of the Quadrature Mirror
Filter (QMF) bank tree. The output is then written to the hard drive.

The QMF output data, from the hard drive, can then be analyzed using code written to carry
out the algorithms developed in this research. This code is discussed in later chapters, along with the
specific simulations.

LPI Signal Generators

The programs discussed in this section are listed in Appendix A along with the script files
used to produce Figures 4.1-4.6. Each program generates a sequence, with 2^ = 32768 elements,
representing a sampled signal. For convenience, we will generally assume a sampling rate
normalized to one sample per second. Because of this, all of the frequency inputs for the programs in
this section should be in the range of [0, 0J) Hz.

Each of these programs generates and uses one or more sets of "random" numbers. Of
course, as with any algorithmically generated set of numbers, these are not truly random, but are
designed to pass a number of statistical tests for randomness [39]. Matlab uses the following to
generate uniform "random" integers [34]

(4.1) 1^, = 7sIjinod(231-l)

where L is the previous integer and h+\ is the new one. For a uniform distribution, the integers are
divided by the maximum possible integer value to obtain numbers in the range of (0, 1.0). Gaussian
distributions, like the one used in NOISEGEN.M, are then obtained from the linear distribution via a
transformation algorithm built into Matlab. All of the programs discussed in this section are written
so the initial seed value for each set of numbers is a user supplied input.

All of the programs (except NOISEGEN.M) generate a signal by modulating a sine function
carrier. In order to combine signals, where the carrier phases generally will not be related to one
another, theta is provided as a user input It creates an initial phase offset in radians.

To construct an input sequence for the QMF bank, output sequences from the signal and
noise generators are scaled to obtain correct signal to noise ratios, and added.

Energy

Frequency

Figure 4.1. Fourier Transform of DS Signal

0.5

Freq

Time

Figure 4.2. Short Time Fourier Transform (STFT) of DS Signal

79

Freq

Figure 4.3. STFT of Fast FH/DS Signal

Freq

Time

Figure 4.4. STFT of TH/DS Signal

80

0.5 i —i '—'

®$.

Freq «I

■ m -

0 i i

Time

Figure 4.5. STFTof Fast FH/TH/DS Signal

0.5
■

i i i i i

Freq

0
B^2

—i 1 1 i i

Time

Figure 4.6 STFT of Slow FH/DS Signal

81

Noise Generator

NOISEGEN.M generates a sequence of numbers with a Gaussian distribution with mean of
zero and variance of unity. The only input is a seed value for the random number generator.

Direct Sequence (DS)

DS.M generates a DS signal. The signal is spread using a random binary waveform, fc is
the center frequency of the carrier, and B is the effective bandwidth of the spreading signal.

Figure 4.1 shows the Fourier Transform of the energy of a signal generated from DS.M with
fc = 0.25 Hz and B = 0.15 Hz. The figure shows that the energy distribution is approximately a sine-
squared function as we would expect when the modulating signal is a random binary waveform. (The
energy for this, and all other figures in this chapter, is plotted linearly, not in decibels.) The
irregularity in the figure is due to the finite observation time. Essentially, we have the spectrum of a
finite random binary waveform. It is important to note we are defining the signal's effective
bandwidth such that the distance between the nulls at the ends of the main lobe (sometimes called the
null to null bandwidth) is equal to two times B.

Figure 4.2 shows this same signal's energy using a Short Time Fourier Transform (STFT)
with the signal broken up into non-overlapping 128 sample segments. The figure is plotted using
Matlab's built in contour plot. Although it is hard to make quantitative measurements using this type
of plot without knowing how each contour line is derived, the figure does show the general shape of
the signal.

Fast Frequency Hopped (FH) and Fast FH/DS

FFH.M generates a Fast FH signal with, or without, DS spreading. DS spreading is included
if the user supplies a value for B, the input variable representing bandwidth. If no value is supplied,
the bandwidth is taken to be the inverse of the cell length. The cell length is determined by the input
variable T.

The number of hop channels are determined by the input variable CH. The channels are
adjacent to each other, each with bandwidth B. The lower edge of the first channel, equal to the
center frequency of the first channel minus B/2, is determined from the input variable If.

As with DS.M, the spreading sequence is a random binary waveform with a null to null
bandwidth equal to two times the effective bandwidth, B.

If the input variable phase is set to zero, the first hop transition is at the very beginning of
the signal sequence. When phase is non-zero, the signal is shifted to the left by phase samples.

Since the time bandwidth resolution of the STFT is equal to the time bandwidth product of a
Fast FH cell, it is difficult to show a signal in this way. However, when DS spreading is added to the
signal, the STFT decomposition gives a picture that is easy to interpret, and this is what is shown in
Figure 4.3. As before, Matlab's built in contour plotting function is used. In this particular case, a 20
channel signal is shown, with cell length equal to 3200 seconds and channel bandwidth equal to
0.025 Hz, yielding a time bandwidth product of 80.

82

Time Hopped (TH) and TH/DS

TH.M generates TH and TH/DS signals, depending on whether a value is given for B. The
inputs T and phase perform the same function as with FFH.M.

Each cell may be hopped to one of slots possible positions (analogous to channels in the
frequency hopping format). The available slots are adjacent to each other in time.

fc is the center frequency for the signal. As with DS.M, the spreading sequence is a random
binary waveform with a null to null bandwidth equal to two times B. If no value is given for B, the
bandwidth will be taken to be equal to the inverse of the cell length.

Figure 4.4 shows a TH/DS signal, generated with TH.M, with center frequency of 0.25 Hz,
cell length of 3200 seconds, bandwidth of 0.025 Hz, and with three possible hop slots per cell (not a
particularly realistic number, but it gives us a picture with several cells).

Fast FH/TH and Fast FH/TH/DS

FFHTH.M generates Fast FH/TH and Fast FH/TH/DS signals. It is an amalgamation of the
FFH.M and TH.M programs, and all of the input variables have the meanings described above.

With this signal format, a cell may be hopped to one of a number of positions in time and
frequency. Figure 4.5 shows an example generated by FFHTH.M, where there are 20 channels in
frequency and three slots in time. As before, the cell length is 3200 seconds and the bandwidth is
0.025 Hz.

SlowFH

SFH.M generates Slow FH signals. "Information" is generated randomly and modulates the
signal using multiple frequency shift keying (MFSK). The number of frequencies are determined by
the input variable M. The signal is then hopped among CH channels and each hop cell has a length
of T, just as for a Fast FH signal. The input variables If and phase also function identically to their
counterparts in FFH.M.

Figure 4.7 is a conceptual example of a Slow FH cell showing concentrations of energy due
to the FSK modulation, and indicating the meaning of some of the variables used in SFH.M. M, T,
and Ntpc are input variables, spt is determined by dividing T by Ntpc. bw is taken to be the inverse
of spt, and the distance between adjacent shift frequencies is taken to be equal to bw.

Figure 4.6 shows a Slow FH signal generated with SFH.M, with 20 channels, a cell length of
3200 seconds, four information channels (4FSK), and ten FSK transitions per hop. The figure was
produced using a STFT with the signal broken into non-overlapping 128 sample segments. The
resolution is not fine enough to determine the information modulation in the signal, but it is enough
to see the energy concentration in the cells. In this example, the time bandwidth product of each cell
is 40, less than the time bandwidth product of the signals shown in Figures 4.3-4.5.

83

< T P\

-•■■■■

bw
;

apt ■'■'"■ . .• y k$
:' ■'■"*""

' "*'V .. -
__~, ,J_;'..

M = 4 Channels

Ntpc = 8

Figure 4.7. Conceptual Example of a Slow FH Cell

Band Pass Filter

The initial band pass filter in Figure 1.2 is not modeled in these simulations. To filter the
signals generated by the programs described above would require a much greater sampling rate in
order to simulate the analog signal on the computer. To avoid this, we note that although the spread
spectrum signals are mathematically of infinite bandwidth, they are essentially bandlimited, as the
energy in their sidelobes becomes insignificant for frequencies far from the center frequency. We
will, therefore, restrict the frequency range of the input signal in our simulations to roughly the range
0.125 to 0.375 Hz, and will only examine outputs in that range. In this way, the signal energy outside
the range [0, 0.5) Hz will be insignificant.

Quadrature Mirror Filter Bank Tree

QMF.M, in Appendix A, decomposes an input sequence as described in Chapter II for the
QMF bank tree for arbitrary tiling, f is the input sequence, and filter is an optional string variable
input used to specify the filter file. (If filter is not specified, the HAAR.M file with Haar filter
coefficients are used.) Because the output for each succeeding layer takes an increasingly longer time
to compute, and because the later layer outputs are not always needed, N is an optional input that
dictates the last layer computed.

Output sequences from each layer of the bank are written to files C:\DATA\LA YERx.DAT
on the hard drive (where x is replaced by the layer number). These are ASCII files, and the data is
stored in double precision format as a matrix with each column representing the output from a
particular filter in the layer. Frequency is represented across each line in the file (lowest frequency to
the left), and time is represented down the file (lower representing later time).

Looking at the file listing in Appendix A: we see first that if an m file of filter coefficients is
not specified, the Haar coefficients are used by default The number of layers is then determined from
the length of the input sequence or by N. The input matrix for each layer, I, is initially set equal to

84

the input sequence, and the output matrix for each layer, out, is set equal to I (in order to reserve
space in memory).

The code then loops once for each layer of the QMF bank. Inside the loop, the layer number
is first displayed on the screen to indicate to the user what the program is doing, and flag is
initialized to 1. out is then reshaped to match the dimensions required for the output of the layer.

The code then loops again (nested inside the first loop) once for each column of the current
input matrix. G and H are the output sequences from each filter pair. As described in Chapter II,
these sequences represent a decomposition of the input into lower and upper frequency bands, and
which is which alternates down the layer, flag keeps track of this, and the sequences are written to
out in the correct order.

Finally, the output for the current layer is used as the input for the next, and the output data
is written to disk.

HAAR.M, DA4.M, DA16.M, CON22.M, and TSINC.M are listed in Appendix A and are all
m files that can be specified for use with QMF.M. HAAR.M uses the filter coefficients for the Haar
filter, and DA4.M and DA16.M use the coefficients for the four element and 16 element Daubechies
filters, respectively [12]. CON22.M uses the coefficients we found in (3.33) for a filter that
minimizes the out of tile energy, and TSINC.M uses the coefficients of a modified sine filter as
described in Chapter m.

HAAR.M, DA4.M, DA16.M, and CON22.M are similar in construction, and there are
several things worth noting. Looking at the listings: the h and g vectors are specified, with elements
depending on the coefficients. As described in Chapter EQ, zero valued coefficients are included, so
the main tap elements in the h and g vectors are in the same positions.

pad is set equal to the number of coefficients (including zeros) up to, and including, the
main taps (except in HAAR.M, where pad is not necessary). That is: pad = N - mt, where N is the
number of coefficients and mt is the position of the first main tap. The file input, cO, is augmented by
adding pad zeros onto the end of the vector. cO is then filtered using a built in Matlab function,
filter, designed to work like a finite impulse response (FIR) filter. This function assumes the filter's
delay chain is filled with zeros before the input is added. By adding pad zeros to cO, we allow the last
of the non-zero elements of the input to reach the filter's main taps.

1 is used both to eliminate the initial values of the filters' outputs, and to accomplish the
decimation by 2. The first output value saved is the one whose number equals pad, and this
corresponds to the first time inputs to the filter have reached the main taps.

TSINC.M uses N coefficients generated by TSINC_SU.M (also in Appendix A). This file
generates the coefficients described in (3.11) for a modified sine filter with a Hamming window. For
16 < N < 32768, TSINC_SU.M uses linear interpolation to determine values for C and S from those
listed in Table I. Once generated, the coefficients are saved on the hard drive, and called upon as
needed by TSINC.M. The construction of TSINC.M is similar to the files described above, except,
because the modified sine filters are symmetric, no zero delays are necessary to align the main taps.

QMF.M was tested in several different ways with the HAAR.M, DA4.M, DA16.M,
CON22.M, and TSINC.M files, and the code for all of these tests are listed in Appendix A.

85

Tone Test

The first of these were a suite of tone tests. In these, a sampled single frequency input was
applied to the filter bank, and the outputs from various layers were examined. The purposes were,
first, to verify the code for QMF.M is correct, and, second, to provide frequency response information
to compare filters.

In the first of these tests, TTGENDAT.M and TONE.M were used to generate a 0.25 Hz sine
wave with an amplitude of unity and theta (phase) of zero. The Haar filter was then used in the
decomposition, and the results were displayed using DISCON.M and CROSST.M. DISCON.M
displays a time frequency contour plot of the energy for a particular layer of the QMF output, and
Figure 4.8 shows the results for layer seven. This is what we expect to see, and so it tells us QMF.M
is working as expected, at least in this respect

255
Time (Samples)

Figure 4.8. Layer Seven Time Frequency Diagram, 0.5 Hz Tone, Haar Filter

It is also convenient to look at the frequency for a given time sample. CROSST.M does this
for a time sample approximately in the middle of the observation period. For the 0.25 Hz tone, these
are shown in Figures 4.9-4.11 for layers two, seven, and 13, respectively. Comparing these, we see
how the resolution improves as later layers are considered.

We should note that the symmetry in Figures 4.9-4.11 is due both to the fact the input
signal's frequency is 0.25 Hz, and theta is zero. When theta is not zero, the amount of energy at

86

Energy

2 3
Frequency (Bin Number)

Figure 4.9. Layer Two, 0.25 Hz Tone, Haar Filter

Energy

0 20 40 60 80 100 120
Frequency (Bin Number)

Figure 4.10. Layer Seven, 0.25 Hz Tone, Haar Filter

87

Energy

2000 4000 6000
Frequency (Bin Number)

Figure 4.11. Layer 13, 0.25 Hz Tone, Haar Filter

8000

each time remains constant, but more energy will occur in one or the other of the two bins adjacent to
0.25 Hz.

When the frequency is not the inverse of a power of two, a more serious effect is seen. This
effect, called "leakage" and described in Chapter n, is shown in Figures 4.12-4.16 for representative
time cross sections, when the Input frequency is 0.3 Hz. This leakage is due to out of band energy
passed by the filters used in QMF.M, and is evidenced here by the spikes at frequencies other than
0.3 Hz. The figures show the differences between the various filters. As we should expect, the
modified sine filter works best, while the 22 coefficient energy concentration filter does a better job
than the Haar or Daubechies filters.

Impulse Test

QMF.M was also tested by inputting a sequence of all zeros, except for a single one near the
middle of the sequence. This, again, was to verify the code is correct, and to provide a comparison of
the time response of the various filters. This test was accomplished using IMFTEST.M.

Figures 4.17-4.22 show the results of IMPTEST.M. The figures show the squared
coefficients of a particular layer of the QMF bank plotted along the time dimension. Rather than
simply plotting a cross section at a particular frequency, all frequencies are shown to illustrate the
spreading due to the various branches of the tree. The script file used to make the plots is called
CROSSF.M.

Energy

200 400 600 800 1000
Frequency (Bin Number)

Figure 4.12. Layer Ten, 0.3 Hz Tone, Haar Filter

Energy

200 400 600 800
Frequency (Bin Number)

1000

Figure 4.13. Layer Ten, 0.3 Hz Tone, Daubechies Four Coefficient Filter

89

0 200 400 600 800 1000
Frequency (Bin Number)

Figure 4.14. Layer Ten, 0.3 Hz Tone, Daubechies 16 Coefficient Filter

Energy -

3 200 400 600 800 1000
Frequency (Bin Number)

Figure 4.15. Layer Ten, 0.3 Hz Tone, Modified Sine Filter

90

Energy

0 200 400 600 800 1000
Frequency (Bin Number)

Figure 4.16. Layer Ten, 0.3 Hz Tone, Energy Concentration Filter

Energy

2048
Time (Samples)

Figure 4.17. Layer Four, Impulse, Daubechies 16 Coefficient Filter

91

Energy

!
I !
: i

!

Time (Samples)

Figure 4.18. Layer Ten, Impulse, Haar Filter

Energy .

Time (Samples)

Figure 4.19. Layer Ten, Impulse, Daubechies Four Coefficient Filter

92

Energy

Itös?

ifc»'- ■

'"•^-- ^ T " l^^

32
Time (Samples)

Figure 4.20. Layer Ten, Impulse, Daubechies 16 Coefficient Filter

Energy-

Time (Samples)

Figure 4.21. Layer Ten, Impulse, Modified Sine Filter

93

Enerev

Time (Samples)

Figure 4.22. Layer Ten, Impulse, Energy Concentration Filter

Figure 4.17 shows layer four with the Daubechies 16 coefficient filter. We see the results are
close to an impulse at the proper location, although some spreading, and differences in amplitude at
different frequencies, are observed. This is what we expect, and it gives further indication QMF.M is
working correctly.

To compare filters, Figures 4.18-4.22 show the results of IMPTEST.M at layer Ten. As we
•can see, the Haar filter yields the best results: only one point in time is non-zero, and that point has
the same amount of energy for all of the branches of the filter tree. (This is indicated by the
appearance of a line, rather than the gray region as in the other figures, which are actually many
separate line plots of the outputs from the various branches.) We can see the 22 coefficient energy
concentration filter also does a good job preventing the impulse energy from spreading, although the
amount of energy at each branch varies.

Noise Test

In this test, NOISTEST.M generates a sequence from NOISEGEN.M and inputs it to
QMF.M. There are several things examined with this test.

First, the energy in the input sequence and energy at the output of the first layer are
compared. They should be almost equal, although some (very small) round-off error can be expected.
Also, for all filters except the Haar, there will be a small loss of energy from the output sequence
because we only consider the portion generated while the non-zero elements of input sequence are
passing the filter's main taps. (In other words, some energy from the beginning and end of the input
sequence will be lost.)

94

Second, the distributions of the input sequence and first layer output are tested to determine
whether they are Gaussian with a mean of zero and variance of one. We expect this from the input
since that is what NOISEGEN.M is supposed to generate. Since the filtering process is linear, the
output should also be Gaussian, and, of course, no DC energy should be added. Since the variance
represents the noise energy and, from the test above, we know the energy from the input sequence is
equal to the energy of the output sequence (except for energy lost at the beginning and end of the
input sequence) the variance of the output should equal the variance of the input one.

The core of this test is NORMGOF.M, which takes an input sequence and applies a Chi-
Squared Goodness of fit test [14] [29] [40] to determine whether or not the sequence is likely to have
a normalized Gaussian distribution (mean of zero and variance of one). The program separates the
input data into eight bins, set up to contain approximately equal numbers if the input has a
normalized Gaussian distribution. The test variable, v, is then computed by comparing the binning
results to the expected results, v is then compared to various percentage points on the Chi-Squared
distribution to determine the degree of confidence with which we can say the input came from a
normalized Gaussian distribution. Since the program uses eight bins, and we know the mean and
variance, the program uses the Chi-Squared distribution with seven degrees of freedom.

The actual test was conducted three times for each of the filters. The seeds used for the three
tests were: 17, 1489, and 8016. The ratio

..,,. energy in - energy out
energy in

was on the order of 10"14 fee the Haar filter, and reached a maximum of lxlO-3 for the Daubechies
16 coefficient filter. For the second pan of the test, our null hypothesis is that the data has the
normalized Gaussian distribution, and we set the confidence interval at 0.05. (So there is a 5%
chance of rejecting the null hypothesis when it is true.) The filters passed the test in every case,
indicating the process itself is linear and that the Filter coefficients do not affect the mean or variance.
(The input sequence for the 8016 seed failed at the 5% level, by the way. It did, however, pass at the
2.5% level. Even in this case, the first layer output for each of the filters passed at 5%.)

Summary

This chapter discussed the portions of Matlab code used to generate input waveforms and
decompose them using a QMF bank tree. Tests for the tree were discussed. These were performed
partly to verify the files work correctly and partly to provide relative comparisons between QMF
filters.

Specifically, the tone tests show the QMF bank tree decomposes tiles correctly in the
frequency dimension and the impulse test shows the same in the time dimension. Both tests show the
leakage and dispersion of signal energy due to the non-ideal characteristics of the filters. The noise
test was used to verify linearity, to show the filters are not biasing the data, and to show energy is
conserved from layer to layer (except at the beginning and end of data sequences).

95

V. Interception of Fast Frequency Hop (FH), Time Hop (TH), and FH/TH Signals

Introduction

Here, we look into the detection and feature extraction of spread spectrum signals whose
cells have time bandwidth products of unity. These include the Fast FH, TH, and FH/TH signals.

In this paper, "detection" refers to the process, by the interceptor, of determining whether
spread spectrum signals are present. It is a binary decision: either the interceptor decides no signals
are present, or decides one or more signals are present. We do not necessarily obtain any information
about how many signals are present, or the characteristics of the signal(s).

"Feature extraction," on the other hand, will refer here to finding key cell characteristics that
can be used by a classifier to determine how many signals are present and each of those signals' key-
features. These characteristics include estimates of the SKR of each cell at the interceptor, and
estimates of the cell dimensions and location in the time frequency plane.

We will begin this chapter with a quick discussion of the characteristics of spread spectrum
cells with time bandwidth products of unity. We will then shift emphasis and examine the
radiometer-the detection receiver to be used when practically nothing (including the time bandwidth

■ product) is known about the structure of a signal to be intercepted. The radiometer will be shown to
be the optimal receiver in this case, and its implementation with the QMF bank tree will be discussed.
Since the cell time bandwidth of unity for the signals examined in this chapter represents a significant
increase in our knowledge about the signals' structure, our goal will be to find a detection algorithm
that takes advantage of this to achieve better results than the radiometer.

Our approach in this search will be to first consider detection when the interceptor knows
most of the signal characteristics. This problem has been solved and is widely discussed in the
literature. We will see how the QMF bank tree can be used to implement the solution. We will then
generalize the problem by assuming that the interceptor knows less about the signal to be detected,
and show how to generalize the detection algorithm to handle this. The algorithm we develop will
then be extended to obtain the characteristics needed for feature extraction.

Spread Spectrum Signals With Cell Time Bandwidth Products of One

Before discussing detection, we should look at these spread spectrum signals in some detail.
Figure 5.1 shows a portion of a signal containing a cell with a length of T and amplitude of A. (In
the case of the figure, it must be a TH or FH/TH signal, because there are no cells immediately
adjacent to the one shown.) Because the hop rate is greater than the information rate, the cell will be
a portion of a sinusoid that does not change frequency. The frequency of the sinusoid is the cell's
center frequency (the "channel frequency"). The phase of the sinusoid at the beginning of the cell is,
of course, determined by the transmitter, and to the interceptor is considered to be random. The
analog cell energy is

(5.1) . - A£

Time

Figure 5.1. A TH or FH/TH Cell

Our interceptor samples this analog signal, and when we take the sum of the squares of the samples,
we will have an approximation of the cell energy. However, because the sampling time and sinusoid
phase are not synchronized, we cannot know exactly how the energy will be distributed among the
individual samples.

To see what the energy distribution of a cell looks like in the frequency domain, we note the
signal in Figure 5.1 can be described mathematically as a sinusoid of infinite duration multiplied by a
rectangle function. Using Fourier Transforms, this gives us a sine function, (2.7), in the frequency
domain, centered at the sinusoid's frequency, fc, and with nulls at integer multiples of 1/T from fc

[40]. The energy distribution is, therefore, the area under a sine squared function, and this is shown
in Figure 5.2, with the cell energy normalized to one.

The figure shows how the energy is distributed in the frequency domain. Taking the cell
bandwidth as 1/T gives us B in the figure, the region under the main lobe covering 0.774 of the cell's
energy. The amounts of energy distributed in sidelobes, and in other portions of the main lobe, are
also shown.

Since we are sampling an analog signal, we should note that there will always be some
aliasing present in our sampled signal, since the sine's sidelobes extend infinitely. As the figure
shows, however, the amount of energy in the sidelobes drops off dramatically. As we mentioned in
Chapter IV, by restricting the signal in our simulations to the range [0.125, 0.375] Hz (normalized),
we will effectively eliminate the aliasing.

97

Total area = 1

fe-3/T f*2/T fc-3/T

■ area= 0.903-

area = 0.950-

■ area = 0.966-

Figure 5.2. The Sine Squared Function, With the Areas Under Key Portions of the Curve

We can now envision how a spread spectrum cell might appear when analyzed with a QMF
bank tree. Figure 5.3 shows this. Figure 5.3a shows the time frequency plane, so we are looking
down on the cell, which has sharp edges in time, and sidelobes in the frequency dimension. The time
bandwidth product of the cell, taking our definition of the bandwidth as B = 1/T, will be one.
Figure 5.3b shows this same cell, with a possible tiling overlaid. As we saw in Chapters II and FTI, if
we could have ideal QMF bank filters, the square of each element out of the bank would represent the
signal energy in a respective tile. Since each of the tiles has a time frequency product of 0.5, it will
take at least two to cover the cell, not counting the edges of the cell's main lobe or the sidelobes.

In the figure, we show the more general case, in which the tiles and the cell are not
synchronized, and the cell's dimensions are not integer multiples of the tiles'. Of course, the tiles'
dimensions change by a factor of two depending on the layer of the tree used.

98

F
r
e
q
u
e
n
c
y

i
i
i
i

> Main Lobe

Nulls /

In- B

(T •» *• i *

i
i
i
i

Time

Figure 5.3a. Spread Spectrum Cell in Time Frequency Diagram

Detection

Radiometer

One of the basic building blocks of energy detectors described in the literature is the
radiometer [15] [16] [18] [19] [41] [45]. Figure 5.4 shows a block diagram for the radiometer. The
initial bandpass filter has a bandwidth, W. The passed signal is squared, and the results are collected
for a time slot, T, by the integrator. The output is the energy of the input signal in the rectangle of
the time frequency plane described by T and W. (This is, of course, actually an approximation, since
we are assuming an ideal bandpass filter.)

It is easy to see the radiometer can be implemented by the QMF bank tree, by adding the
squared coefficients of the 2TW tiles covering the area described by T and W. When the radiometer
input is white Gaussian noise (WGN), the radiometer output can be shown to have a Chi-Square pdf,
with 2TW degrees of freedom [41]. This agrees with Equation (2.19) for the sum of squared
coefficients. Likewise, when the input consists of a signal and WGN, the radiometer output will have
a Chi-Square pdf with 2TW degrees of freedom, and a non-centrality parameter equal to the signal
energy, agreeing with (2.29).

99

F
r
e
q
u
e
n
c
y

1
1
1
1

f.- B > Ma n Lot e

<— . T 1

Area
= 0.5

1

Time

Figure 5.3b. Spread Spectrum Cell in Time Frequency Diagram

 ► J«-w4_ ►
()2 ► K

Bandpass
Filter

Square Law
Device

Integrator

Figure 5.4. Radiometer

We are now in a position to show that if we know nothing about a signal we're trying to
detect, except for the dimensions of the time frequency plane in which it is located, the radiometer set
to match these dimensions is as good as any detector we can build with the QMF bank tree. (We use
the QMF bank tree for the sake of a specific example because that is the method of decomposition we
are concerned with in this document. However, the following analysis applies to any linear
orthogonal decomposition of the input waveform.)

100

Suppose we are using a tree with orthogonal filters to cover the dimensions of interest in the
time frequency plane, and we are looking at the output from a certain layer. Since we are collecting a
data point for each tile, we will have lots of data which can be evaluated in a number of ways. For
example, we can:

1) Compare the energy in each tile, or in groups of adjacent tiles, against a threshold, and if
a certain number exceed the threshold, decide a signal is present.

2) Find the mean, variance, or some other moment and compare this to a threshold.

To consider this situation, we normalize the signal and noise energy of the input so the noise variance
equals one, and consider the pdf of each coefficient output for each tile in the examined layer. Let a^
be the coefficient for the k-th tile, a^ will have the distribution

(5.2) ak - N(0,l)

when noise only is present in the tile (where we use N(m,v) to indicate a Gaussian distribution with a
mean of m and variance of v), and

(5.3) ak - N(sk,l)

when si of the signal's energy is present in the tile. We assume the signal has no DC component, so

(5.4) E[sk] = 0

Now let pn be the (unknown) probability that a tile contains no signal, and ps be the (unknown)

probability that a tile contains the signal energy s2.. We will then have an overall distribution for an
arbitrary tile, a:, of

(5.5) a; - paN(0,l)-r£p,kN(sk.l)

where

(5.6) PI+XP'*
=l and P» * l

Of course, we know practically nothing about the distribution of sk or about pn or ps , but, because

we are dealing with Gaussian distributions, we can see (5.4) and (5.5) give us

(5.7) a; - N(O,8
2
) where S2 > 1

for an arbitrary tile when a signal is present. Thus, when we are almost totally ignorant of the signal
structure, we see the statistical variance is a sufficient statistic to test for detection. In other words,
we will obtain no further information by measuring anything other than the variance in our samples
of a:. If this variance is close to one, we should decide no signal is present; but if it is significantly
greater than one we should decide a signal is present. Going back to the question of the best way to

101

analyze the data from the output of the tree, 2) should be our choice. We should find the variance of
the output, and compare this to a threshold.

Now, we note

(5.8) E[ar] = 62 + {E[a;]}2 = 52

where we recognize the left side is the mean of the energy in our tiles. Therefore, instead of working
with the variance of the coefficients, it is mathematically equivalent for us to work with the mean of
the energy of the coefficients. But the statistical mean is (assuming ideal tiles)

. 2TW

1 = 1

where T and W are the dimensions of the observed time frequency plane. We see (5.9) is
proportional to the total energy in the region described by T and W, and, therefore, the best we can do
with the QMF filter tree is only as good as a radiometer set to T and W.

Optimal Detector

In the case described above, we assumed nothing about the signal to be detected except that it
is contained in the portion of the time frequency plane described by T and W. For the signals in this
chapter, however, we have one other important piece of information: We know they consist of cells
with time bandwidth products of one. Our goal, then, ought to be to find a way to take advantage of
this to design a detector that will yield a better performance for these signals than the radiometer.

We will now discuss intercept receivers that have been developed for cases where the
interceptor has a lot of knowledge about the signal to be detected. These receivers, the "optimal
detector" and "filter bank combiner" (F3C) have been widely presented in the literature [15] [16] [18]
[19] [30] [35] [41] [42] [45]. Our purpose for discussing them here is to: 1) show how the QMF
bank tree can be used as an FBC, and 2) present the interceptor's best case condition. That is, the one
where the interceptor knows the signal's channelization, hop rate, timing synchronization, and, for
the optimal detector, the amount of cell energy received. Later in the chapter, we will relax the
requirements and see how we can modify the intercept receiver (using the QMF bank tree) and
develop a detection algorithm for cases where the only thing known is that the cells' time bandwidth
products are one.

For the Fast FH signal, in the particular case when the interceptor knows the signal features
listed above, the "optimal" detector is the one shown in Figure 5.5 [16]. This receiver consists of a
bank of radiometers, with each one tuned to a particular hop channel, and with the integration set to
cover a hop period (synchronized with the hop). In this way, each of the radiometer outputs, xj to
xjyj, will consist of noise energy, and most of the cell energy if a signal cell is present. (If we assume
the bandpass filters in the radiometers have perfectly sharp cutoffs, and have a bandwidth of B, where
B is as described in Figure 5.2, the radiometer will pick up 0.774 of the cell's energy, for a loss of 1.1
dB over a filter with a matched magnitude response.)

102

Radiometer

X:

x«

M

L=X1^^7) Radiometer n
1
1
1
i

Radiometer

Figure 5.5. Optimal Detector For Fast FH Signals

Since, for the Fast FH signal structure, there will only be one signal cell at any given time,
the radiometer outputs are not statistically independent when a signal is present. Using likelihood
ratio arguments, the optimal test statistic for each time slot is [16]

(5.10)
M , l

j = i

where
IQ(«) is the modified Bessel function of the first kind, zero order
e is the cell energy

c~ is the noise variance
M is the number of Fast FH channels

The values of L for each time slot are saved and multiplied together for the observation time. This
number is then compared to a threshold (K in the figure) to decide if a signal is present.

Although shown for the Fast FH signal, modifying Figure 5.5 for the TH or FH/TH signals is
straightforward. For the TH signal, the radiometers are adjusted to collect energy for each possible
time slot for each hop. For the FH/TH signal, a radiometer is assigned to each possible
time/frequency slot for each hop.

Filter Bank Combiner (FBC)

Perhaps the most unreasonable assumption for the optimal detector is that the interceptor
knows the signal's cell energy. A simplification that obviates the need for this information, and also
makes implementation easier, is the FBC, shown in Figure 5.6. This receiver retains the radiometer
bank from the optimal detector, but compares each radiometer output against a threshold, treating

103

Radiometer
X, f, Th

Binary Moving Window

Figure 5.6. Filter Bank Combiner

each independently from the others. The results, which can be represented at each threshold's output
as a binary "1" if a cell is determined to be present, and "0" if absent, are then fed into a logic OR
gate and an overall cell/no cell decision is made for each time slot. There are a number of different
possible ways to combine the decisions of each of the time slots. The one shown in the figure, and the
one we will consider, is the binary moving window (BMW). In the BMW, we collect the binary
decisions for the Np time slots in the observation period, and the number of "detections" are
compared to a threshold, K. When the number exceeds this threshold, a signal is taken to be present.

The analysis of the FBC is straightforward. As usual, we normalize the noise variance to
one. Since each radiometer.covers a time bandwidth product of one, the pdf of the outputs will be Chi
Squared with two degrees of freedom

(5.11) fn(x) = -expi--

when noise only is present, and Chi-Squared with two degrees of freedom and a non-centrality
parameter

(5.12)
... 1 (£C + X
f,(x) = -expi —Sj- K(VM")

when the portion of a cell's energy collected by the radiometer, ec, is present. These are the pdfs

shown in Figure 5.7. When the threshold, Th, is set, as shown in the figure, the probability of cell
detection, Q,j, given that one is present, is the area under fs(x) to the right of the threshold.
Likewise, the probability of false alarm on the channel, Qfa, given no cell is present, is the area under
fn(x) to the right of the threshold.

104

Figure 5.7. Chi Square Probability Distribution Functions

To compute the probability of detection, pd, and probability of false alarm, pfa, at the output
of the OR gate, the following equations are used [16]

(5.13)

(5.14)

Pfc=l-(1-QJM

pd=l-(l-Qd)(l-Q&)
M-1

where, for (5.14), we assume only one signal is present and, therefore, only one Fast FH cell will be
present in a time slot.

With the BMW, the overall probability of false alarm, PIa, is related to p,a by the cumulative
binomial distribution [16]

(5.15) = I(N;p)pLa-p.)Np_i

i = K

105

and the overall probability of detection, Pd, will be related to pd in a like manner

(5.16) Pd-XWpiG-P'^
i=K

When a large number of time slots can be evaluated by the detector, the effect of the BMW is
to "amplify" the difference between pd and pf, (pd will, of course, always be greater than pfi), leading
to a greater difference between Pd and P&.

As with the optimal detector, the FBC shown here is designed to detect the Fast FH signal;
but modifications to detect the TH or FH/TH signals are identical to those described above for the
optimal detector.

Implementation of the FBC With the QMF Bank Tree

It is easy to see how we can implement the bank of radiometers in the FBC or optimal
detector with the QMF bank tree. Since the interceptor knows the signal's channelization and hop
timing, the sampling can be synchronized so the QMF tiling is aligned with the FH cells. Output can
be taken from the layer of the tree where the tiles' frequency dimension is equal to the cells'
bandwidth, and energy from adjacent time tile pairs can be added to yield the radiometer outputs.

A description and listing of the Matlab code to implement the FBC is given in Appendix B.
One of the primary goals of this simulation is to determine how closely the QMF bank tree, with the
filters we have described in Chapter III, come to matching the performance predicted by
(5.11) - (5.16) for ideal tiling. We can measure this with receiver operating characteristic (ROC)
curves, plotting the probability of detection against the probability of false alarm.

In order to estimate these values to an accuracy of about one decimal place in the simulation,
we have made 100 runs with noise alone as an input (to determine Pfa) and 100 runs with a signal
and the same noise (to determine Pd). For clarity, we will call these 200 runs a "set." By using a
vector of thresholds, we obtain a vector each for Pd and Pfa, which we use to plot the curve.

Unfortunately, it turns out that a Fast FH signal, with the cell energy and the detector's
thresholds set so as to obtain both a Pd and Pfa in our range of interest, will yield poorer results than
the same signal intercepted with a radiometer detector. With this signal, the FBC outperforms the
radiometer in the region of the ROC curve where one has a very low probability of false alarm. These
probabilities can be readily calculated with (5.11) - (5.16), but cannot be verified with simulation
without an increase, by several orders of magnitude, in the number of runs performed in each set.

Despite this, sets of simulations were run with a Fast FH signal with a (normalized) cell
length of 128 seconds, 32 channels, and cell energies of one and three (with a noise variance of one).
In these cases, all of the different wavelet filters yielded similar results. As expected, the radiometer
outperformed them all.

A FH/TH signal configured so there would be approximately ten cells in the observation
period, and each cell would have an energy of 20, was then examined. Overall, there is less signal
energy than in the Fast FH case, but it is better concentrated. Using (5.11) - (5.16) it can be verified
the FBC, with the threshold K set equal to one, outperforms the radiometer in the region where Pfa is

106

in the range of [0.1, 0.5]. By only considering K = 1, the simulation code can be used on a FH/TH
signal (vice a fast FH signal) without modification. In this case, the BMW acts like another OR gate.
We actually are looking at every region of the time/frequency plane that can contain a cell, and if the
energy in any one of them exceeds the threshold, we declare a signal to be present

The results of the simulations are shown in Figure 5.8. The modified sine filter (with 512
coefficients), the 22 coefficient energy concentration filter both described in Chapter HI, and the Haar
filter, were all tried. For each of these, three sets of runs were made. Also plotted in Figure 5.8 are
the theoretically expected results for perfect tiling. In that case, as we saw in Figure 5.2, only 0.774
of the total cell energy would fall in the tile, so ec = 15.48 was used in (5.12) to obtain the curve.
As the figure shows, in this case the modified sine filter did the best, followed by the energy
concentration filter. The Haar filter did not do nearly as well.

The Nine Tile Scheme

We now move onto cases that have not been discussed in the literature. First, we relax the
requirement that the interceptor know the channelization and hop synchronization of the signal(s) to
be detected. We will, for the present, assume the interceptor knows the hop rate to within a power of
two (later we will relax this requirement).

The immediate result of this change is that the signal cells will no longer be synchronized
with the tiles, and we will have the case depicted in Figure 5.9 (where, for clarity, the portion of the
cell outside of its main bandwidth is not shown). For this figure we have picked the QMF band tree
layer where the tiles' lengths in time are from 0.5 to one times the cells'. Since each layer's tiles are
twice as long as the last layer's, this layer will always exist for any cell length. For clarity, we will
call this the "ß layer" for a particular cell (or group of cells with the same length). (We will justify
the use of this layer shortly.) Looking at the frequency dimension, a cell's ß layer tiles will have a
heisht that ranses from B/2 to B.

Strategy

Our strategy is going to be to take adjacent tiles in the ß layer to form a "block," and to
compare each block's energy against a threshold to decide whether the block contains a signal cell.
To do this, we must decide how large the blocks should be. In our development, we will assume ideal
tiling.

Obviously, we want a block large enough to cover most of the cell's energy. On the other
hand, we do not want it so large that there is a high probability of accidentally picking up energy
from more than one cell. We also want to keep the block as small as possible to reduce the amount of
noise energy we pick up.

The first thing to notice about the ß layer is that at most, three columns of tiles will always
cover a cell. Evidently, then, the block should consist of three tiles in the time dimension. The
frequency dimension is more difficult. What we need to do is to figure out how much of a cell's
energy would be likely to be covered with different sized blocks, take the noise energy into account,
and, using Equations (2.19) and (2.29), find the best probability of detection vs probability of false
alarm.

107

1.0

OS -

Expected
(perfect/^'

T

^t::ifr.---+-

■r -<f-° „■"■

.0

O" x-"

X .

,X-'
'X

+ 512 cofficient sine

O 22 coefficient tile

X Haar

0.4 0.5

Figure 5.8. FBC Simulation Results

To figure out how much of a cell's energy would be covered, let's first consider a 1x3 block.
In this case, if the cell is centered on the tiles in the frequency dimension, as we show in the upper
part of Figure 5.10, we would have 0.467 (if the ß layer tiles' frequency dimension is equal to B/2) to
0.774 (if the ß layer tiles' frequency dimension is equal to B) of the cell's energy. On the other hand,
if the cell were as off center as possible, to the point that an edge of the tiles started at the center of
the cell's sine squared energy distribution, the block would only contain 0.387 to 0.4515 of the cell's
energy.

108

F
r
e
q
u
e
n
c
y

Cell
1

B
I 1

-T-

Time

Figure 5.9. Tiling at the ß Layer

t -

Cell 0.467 of
/ cell's energy

T
Block

Cell

0.774 of
cell's energy

t /
f- B V

Bl ock

Cell

-B- 7
0.387 of

/ cell's energy
CeU

f .,
*
R /

Ac

>' ,/

A

Bl

0.4515 of
cell's energy

Block I Block

portion of cell
outside main
bandwidth

Figure 5.10. How a 1x3 Block Can Cover a Cell

With a 2x3 block the situation gets slightly more complicated. As we show in Figure 5.11, if
the cell happens to be centered on the block, the block will have 0.774 to 0.903 of the cell's energy.
To find the worst case, though, we must realize that blocks overlap in the frequency dimension. In
other words, two blocks may have a row of tiles in common. In this case, we want to consider
whichever of the two blocks contains the most cell energy. That will be the one whose center is

109

Ce 11 0.774 of 0.903 of

r

 3.

./""-" f TT-

Cell /" cell's energy

R J
*e 1

 2

3

i

<■' K
>'

Block Block

Ce U
j >

s - 1 3 y
> i*

0.678 of
cell's energy

Block

Cell
* i

f - B /

I J

0.852 of
cell's energy

Block

shaded regions indicate the portions of the cells outside the main bandwidth

Figure 5.11. How a 2x3 Block Can Cover a Cell

closest to the main lobe of the cell. The extreme in this case, then, would be for the main lobe to be
centered right in the middle of one of the rows of tiles. In this case, the block with most of the cell's
energy would only have 0.678 to 0.852 of the total.

3x3 and 4x3 blocks can be evaluated in a similar manner. The greatest and least amounts of
a cell's energy that different size blocks can have are shown in Table IV. As the discussion above
indicates, there are two factors that go into determining the amount of cell energy: The cell's position
relative to the tiles, and the cell's dimensions relative to the tiles. We will take the worst case, the
least amount of cell energy that may be contained in a block, to continue our evaluation.

The next step is to consider the blocks containing only noise energy. In this case, we can
compute the energy pdfs with (2.19) for 3, 6, 9, and 12 tiles giving us (with our usual normalized
noise energy) Chi Squared curves with 3, 6, 9, and 12 degrees of freedom. For a given threshold, the
probability of false alarm, Pfa, for each of these curves can be computed by integrating from the
threshold value to infinity. The threshold values to give us a Pfa of 0.1 (picked for convenience) are
shown in Table IV.

110

Table IV

Amount of Cell Energy Collected With Different Size Blocks at the ß Layer
and Pd When the Threshold is Set For Pfa = 0.1

Block Size
freq x time

Minimum
Energy

Maximum
Energy

Energy
Difference

Th
foraPfe of 0.1

Pd
with £c = 10

1x3
2x3
3x3
4x3

0.387
0.678
0.838
0.899

0.774
0.903
0.931
0.950

0.387
0.225
0.093
0.051

6.251
10.645
14.684
18.549

0.473
0.583
0.605
0.584

We now can compute the energy pdfs for cell plus noise energy with (2.29), giving us Chi-
Squared curves with 3, 6, 9, and 12 degrees of freedom and non-centrality parameters equal to the
values for least amount of cell energy per block. Then, using the threshold values described above,
the probability of detection, Pd, can be calculated. These values are also shown in Table TV, when we
have a total cell energy of 10. Other cell energies give proportionally similar results. The point of
this is that the best results (highest Pd) are for a 3x3 block, hence the "nine tile scheme" appears to be
best for detection.

To show the ß layer is the best QMF layer to use for detection, Tables V and VI show results
for the "ß - 1 layer," the layer of the QMF bank tree before the ß layer where the tiles are twice as tall
in the frequency dimension and half as long in time, and the "ß + 1 layer," the layer of the QMF bank
tree after the ß layer where the tiles are half as tall in the frequency dimension and twice as long in
time. Just as the block length in time for the ß layer should be 3 tiles, the length for the ß - 1 layer
should be 5 tiles to cover the cell, and the length of the ß + 1 layer should be 2 tiles. As the tables
show, none of the results for Pd exceed those of the 3x3 block in Table IV.

Table V

Amount of Cell Energy Collected With Different Size Blocks at the ß - 1 Layer
and Pd When the Threshold is Set For Pfa = 0.1

Block Size
freq x time

Minimum
Energy

Maximum
Energy

Energy
Difference

Th
foraPfe of 0.1

Pd
with Ec = 10

1x5
2x5
3x5
4x5

0.452
0.852
0.927
0.945

0.903
0.950
0.966
0.975

0.451
0.098
0.039
0.030

9.236
15.987
22.307
28.412

0.454
0.593
0.556
0.510

111

Table VI

Amount of Cell Energy Collected With Different Size Blocks at the ß ■
and Pd When the Threshold is Set For Pfa = 0.1

1 Layer

Block Size
freq x time

Minimum
Energy

Maximum
Energy

Energy
Difference

Th
foraPfcOfO.l

Pd
with ec = 10

3x2
4x2
5x2
6x2

0.621
0.751
0.832
0.876

0.889
0.903
0.909
0.931

0.268
0.152
0.077
0.055

10.645
13.362
15.987
18.549

0.546
0.577
0.583
0.572

Of course, one key point in the discussion above was that the cell must be contained within
the block. The way we accomplish this is to first take the entire time frequency plane of interest and
compute the energy in every set of 3x3 adjacent tiles. The list of these blocks are then sorted, from
greatest to least energy. The first block on the list is than taken and overlapping blocks are discarded.
This process is continued down the list, and the result should be a list of blocks, some containing the
amount of cell energy in the range indicated in Table IV plus noise energy, and the rest containing
only noise energy and energy from outside the main bandwidth of the cell. In a receiver designed like
the diagram in Figure 1.2, this list of blocks would be sent from the analyzer to the classifier to
determine whether a signal or signals are present. The Matlab file to accomplish the nine tile scheme
is listed and described in Appendix B.

Analyzing the Nine Tile Scheme

To determine how well the nine tile scheme works for detection, we need to know the pdf
curves for the energy in the blocks for the cases where the input consists of noise only, and where it
consists of signal and noise. Unfortunately, as we will see, these curves cannot be determined
theoretically.

As we saw above, before discarding overlapping blocks, the energy pdf curves were Chi-
Squared with nine degrees of freedom (with or without a non-centrality parameter). In the nine tile
scheme, however, we discard from zero to 24 overlapping blocks, all with less energy. Analysis of
this situation comes under a branch of statistics called "order statistics," and books have been devoted
the subject [2] [3] [5] [13]. In order statistics, a number of random variables (RVs) are drawn and
arranged in either ascending or descending order. One goal is then to determine the pdfs for the RV
in the first, second, etc. positions. Unfortunately, practically all of the useful development in order
statistics relies on the statistical independence of the RVs being ordered, a case we do not have here,
since the blocks have tiles in common.

For what it is worth, we can explore what goes into the pdfs we desire. We begin by taking
the highest energy block and eliminating overlapping blocks. If this is the first time doing this, and
the highest energy block is not near one of the edges of the time frequency region being examined, we
will eliminate 24 overlapping blocks. If, however, there is a possibility overlapping blocks have been

112

eliminated previously, and/or some of the overlapping blocks don't exist because we are near the edge
of our region of observation, fewer blocks will be eliminated.

Let fm.B(x) denote the pdf for the m-th RV out of n order statistics (m < n) arranged so the
n-th RV contains the most energy. We are interested in ^„(x) for n from one to 25, where n
represents the number of overlapping blocks discarded, plus the one saved. Now, as Figure 5.12
shows, there are several ways blocks can overlap. In the first case, one block overlaps at two tiles,
while another overlaps at one of those two. In the second case, both overlapping blocks have one tile
in common with the block saved. In the cases where it is possible for blocks to overlap in different
ways, so the n overlapping blocks cover different amounts of the highest energy block, there will, in
general, be different versions of ^.„(x). Without rigorously finding the number of possibilities for

each value of n, we can denote each with (i), and each pdf as f^(x). Assuming a noise only input,

we can also denote the probability of each of these possibilities occurring as p(
D'\ and obtain the

conditional pdf for the energy of the blocks

(5.17)
WlnoiseW = P25f25-5(X) + P24f2«4(x) +

XPa fas00 + - + XPMW + Pi fuiW

rr Overlapping Blocks

r1---
Overlapping Blocks

Case T Case TT

Figure 5.12. Two Ways Blocks Can Overlap

113

where we do not know any of the functions on the right hand side. A similar equation can be found
for the case where signal plus noise are present, although the amount of signal energy in common
between overlapping blocks would also have to be taken into account.

With all of these mathematical difficulties, evidently the only way to obtain these pdfs is
empirically. The curve for the noise only case, in particular, can be obtained this way. An empirical
pdf curve, created by passing 100 noise waveforms (with the variance for each equal to one) through
the QMF bank tree with the energy concentration filter described in Chapter III, employing the nine
tile scheme on the layer six output, binning the resulting tile energies and averaging the results for
each bin, is shown in Figure 5.13. (The script file generating this curve is shown in Appendix B.)
We will not use this data directly. Rather, we will only use the maximum energy block from each set
of noise samples.

Figure 5.13. Empirical Energy Distribution For Nine Tile Scheme Output
With a Noise Only Input

Even though there appears to be no way to analyze the scheme theoretically, we can bound
our detection capabilities. As a lower bound, we can use a radiometer set to cover the portion of the
time frequency plane containing the signal to be detected. In this case, the theoretical ROC curve can
be computed by integrating under the Chi-Squared curve with the degrees of freedom equal to two
times the time bandwidth product, and under the non-central Chi-Squared curve with the same
degrees of freedom and with a non-centrality parameter equal to the signal energy in the observation
period. We should note, however, the nine tile scheme may not work as well as the radiometer in all
circumstances. This is a bound only in the sense that, if the nine tile scheme does not work as well, it
makes more sense for the interceptor to use the radiometer, as it is less complex. Just as we found for

114

the FBC, we can predict that the nine tile scheme should have an advantage in cases where the
signal(s) consist of relatively few cells in the observation period, with each cell containing a moderate
amount of energy.

An upper bound for the nine tile scheme is easy to obtain. If we did know the
channelization, cell dimensions, and hop synchronization of the signal(s) we were trying to detect, we
could match the tiling to the cells, just as we did for the FBC. It is obvious that the nine tile scheme
can not be better than this, and so a theoretical ROC curve obtained for an intercept receiver when
these characteristics are assumed to be known must bound the nine tile curve.

Analysis Results

Just as with the outputs from the radiometer bank in the FBC, there are several ways to
analyze the output of the nine tile scheme. Here we will consider one of the simplest We will find
the largest energy block at the ß layer, and compare that against a threshold. (Of course, in the
receiver described in Figure 1.2, the entire list of blocks, their locations, and energies would be sent to
the classifier block, and a detection scheme would be implemented there. We do not wish to explore
the functions of the classifier block in any great detail in this report. However, for the sake of our
simulations we must decide on a particular method for evaluating the data.) This particular method
has the advantage of having some similarity to the method we used earlier with the FBC. In fact, as
we will see shortly, the resulting ROC curves are remarkably similar.

The simulations were carried out using Matlab code listed and described in Appendix B.
The input signals were similar to those used when simulating the FBC except here the cells were
randomly offset from the tiles in both time and frequency. In these simulations, in addition to the
nine tile scheme, the energy in all of the tiles in the observed bandwidth output from layer six of the
filter bank, were collected, added, and compared to a threshold. This yielded simulated results for a
radiometer with a bandwidth matching the signal bandwidth, over the observation time.

The ROC curves resulting from these simulations are shown in Figure 5.14. The signal
parameters used are identical to those used for the FBC simulations (including the cell energy of
ec = 20), except for the phase and channel shifts. Because simulations involving the 512 coefficient
modified sine filter were so time consuming, a 32 coefficient modified sine filter was used instead.
Because the Haar filters yielded poor performance in the FBC simulations, they were not used here.
Once again, the modified sine filter yields the better results.

In Figure 5.14, the theoretical radiometer ROC curve is also shown (calculated using
Gaussian approximations to the Chi Squared pdf curves, as described in [41]). This figure shows our
signal is such that both of the filters used in our QMF bank tree yield better results. As a verification
that both the theory and simulation results are in agreement, Figure 5.15 compares the radiometer
results obtained for the six sets of runs with both filters against the theoretical curve. As can be seen,
the agreement is good.

Finally, Figures 5.16 and 5.17 compare the results ofthe FBC simulations to those described
here for each of the two filters. (Note we are comparing a 512 coefficient modified sine filter used for
the FBC simulations against a 32 coefficient filter used for the nine tile scheme simulations.)
Interestingly enough, there appears to be little difference. Evidently, then, at least within the bounds
of our simulations, the main penalty for ignorance of the signal parameters to be detected is the
increased computational cost of the nine tile scheme over the FBC.

115

1.0

,+' *+ -ff ö,JG.

+,r 4-+ -4-4-'' 'Tl-O

32 coefficient sine

22 coefficient tile

0.1 0.2 0.3 0.4 0.5

Figure 5.14. Nine Tile Scheme Analysis Results

The Nine Tile Scheme With unknown Hop Rate

Finally, we consider the case where the interceptor does not know the received energy,
channelization, synchronization, or hop rate of the Fast FH^ TH, or FH/TH signals he is trying to
detect. The most obvious approach in this case, given the discussion above, is to use the nine tile
scheme on all of the layers of the QMF bank that may be a cell's ß layer (where the tile length may be
between 0.5 and 1.0 times the cell length in time). Then, the detector can perform some sort of test
for detection on each layer, and combine the results for the various layers. In what follows, we will
compare the results for this scenario against the case where the ß layer is known.

116

1.0

+ 32 coefQcient sine

c 22 coefficient tile

line indicates theoretical results

0.1 0.2 0.3

4
0.4 0.5

Figure 5.15. Comparison of Theoretical Radiometer Results With
Observed Results

Let's consider a detection scheme, similar to the one we used previously, where only the
largest energy block in each layer is considered, and a detection decision, for each layer, is made by
comparing the energy in these blocks against a threshold. In the case where a single sign?' *s present,
if we only look at the ß layer and detect the signal, looking at additional layers do. not add
additional information. If, on the other hand, we do not detect the signal in the ß layer, our chances
of detecting it in other layers are still less; although it is, of course, possible that a fortuitous signal
and noise energy distribution would cause what, in effect, is a false alarm at another layer. It appears
then, a logical way of combining the results from multiple layers is to use OR logic, and take a
detection for any layer to be a detection for the system.

117

1.0

^ö .-i

FBC results

9 tile scheme results

0.1 0.2 0.3 0.4 0.5

■f.

Figure 5.16. Comparison of Filter Bank Combiner Results and
Nine Tile Scheme Results With 22 Coefficient Tile Filter

With this logic, the probability of detection increases only slightly from the case where the
hop rate is known, so the overall value for P^, relative to a given threshold, should be about the same.
The probability of false alarm, on the other hand, when there are no signals present, will be the same
for each layer, and for each layer will be the value for Pfa, relative to a given threshold, found for the
case where the hop rate is known. If the data from the layers were statistically independent of each
other, we could then calculate the overall probability of false alarm, rifa, in our present case to be

(5.18) m =i-(i-pa NL

118

X EBC results

9 tile scheme results

0.1 0.2 0.3 0.4 0.5

Pf.

Figure 5.17. Comparison of Filter Bank Combiner Results and
Nine Tile Scheme Results With 32 Coefficient Modified Sine Filter

where NL are the number of layers examined. The layers are not independent, however, and so
(5.18) should be regarded as a worst case upper bound on the probability of false alarm. Qualitatively
then, we can say our probability of detection will not change very much from the case where we know
the hop rate, but the probability of false alarm will increase up to the limit in (5.18). The ROC curve,
then should be expected to shift to the right, yielding poorer results.

The Matlab code for this simulation analysis is listed in Appendix B. In these, layers three
through ten were examined, the detection decision being made by comparing the largest energy block
found among all of the layers against a threshold. Because of the length of time involved in running

119

these simulations, only 50 samples of signal and noise were examined for each set. The signals were
identical to the ones used above in the case where the ß layer was assumed to be known.

Results, for the 32 coefficient modified sine filter, are shown in Figure 5.18. Also shown, for
comparison, are the FBC results from Figure 5.8 and results modified by taking the nine tile scheme
results shown in Figure 5.17, and finding TLb as indicated by (5.18) with NL = 8. Of course, since
the variance of the curves of Figure 5.17 is high for low values of P&, we should expect the variance
of n& to be high for somewhat greater values. Never the less, we see the predicted worst case results

are, indeed, worse than those actually observed.

s/ ^sr" ,Q-C>--&-Q-

v<y ' © 0-Ö---O'

^ cXL t>'''°

O

- - 4-

x EBC results

o 9 tile scheme, layers 3-10

+ 9 tile scheme, layer 6,
projected with (5.18)

0.2 0.3 0.4 0.5

Figure 5.18. Nine Tile Scheme With Unknown Hop Rate.
Layers Three to Ten Examined With 32 Coefficient Modified Sine Filter

120

This concludes our discussion of detection for the signals in this chapter. As we saw, the
nine tile scheme, although difficult to analyze analytically, appears, at least in the simulations
described here, to yield generally good results. Despite our assumptions that the interceptor does not
know the channelization, timing synchronization, or hop rate of the signal to be intercepted, the
performance is only slightly worse than the FBC, and the main cost to the interceptor is increased
computation.

Feature Extraction

We now consider the issue of feature extraction. Specifically, we are interested in features of
individual cells such as the cell energy, cell dimensions, and the cells' location in the time frequency
plane. In this section we will assume the interceptor receives enough cell energy that detection is not
a problem.

Strategy

Our strategy will be to use the nine tile scheme to obtain lists of high energy blocks for each
layer that may be the ß layer for the cells of interest to the interceptor. From these lists, we then look
for the highest energy block and save it, while discarding blocks from other layers that overlap in the
time frequency plane. Our assumption in doing this is that the highest energy block (probably from a
cell's ß layer) contains more of the cell's energy than the blocks from other layers. This procedure is
repeated until all of the blocks in the original lists have been saved or discarded.

The result should be a list of blocks representing the cells. The blocks' energy should
provide an estimate of the cells' energy, the blocks' positions in the time frequency plane should
provide an estimate of the cells' positions, and the layers the blocks came from should provide an
estimate of the cells' dimensions.

Earlier, 3 by 3 blocks--the nine tile scheme-were shown to be best for detection. The
reasons for using the same scheme for feature extraction are not as analytically precise, and are worth
some discussion. Because we will use the block energy to estimate cell energy, we would like as little
variation as possible in the amount of cell energy picked up in the blocks. As Tables TV - VI show,
the 3 by 3 blocks are good for this, but not the best. In fact, the variation decreases as the number of
tiles in the block are increased. On the other hand, as the number of tiles are increased, the variation
in noise energy increases. More importantly, however, in this case, is that the larger the blocks, the
more likely a block is to contain more than a single cell. The 3 by 3 blocks seem like a good
compromise, particularly since we are already using this size for detection.

Given the 3 by 3 tile blocks, let's examine what happens with blocks from different layers
covering a particular cell. For layers less than the ß layer, the blocks will generally not cover the cell
in the time dimension and, therefore, the ß layer block will contain more energy. Of course, as
discussed above, the distribution of cell energy in the time dimension is not entirely deterministic,
since it is partly a function of the cell carrier phase and interceptor's sampling rate, so it is possible
that some of a particular cell's energy may be lumped at one end of a cell or the other. Also, there is a
possibility that a cell in the ß - 1 layer that happens to have a length 2 to 3 times the tile length in
time may be entirely contained within a block. That depends on the cell's position in the time
frequency plane relative to the tiling grid. In these cases, since the blocks in layers less than the ß
layer are taller in the frequency dimension and therefore pick up energy from the cell's sidelobes,

121

there is a chance they will contain more cell energy than the ß layer. For layers greater than the ß
layer, the blocks will be shorter in the frequency dimension than the block in the ß layer, and will
again tend to contain less cell energy.

Of course, all of this discussion supposes ideal tiles. The non-flat passband and sidelobes in
real tiles will cause further problems.

Analysis Results

The purpose of this simulation analysis was to determine how well the block positions and
energies estimate the true cell positions and energies. In these, 25 runs per set were made. The
signal parameters are similar to the ones used for detection, with 31 channels, 25 slots, 128 second
long cells, and with the cells randomly offset from the tiles. One major difference between these runs
and the ones described above for detection is that a signal cell energy of 256 was used here.

Layers five through seven were examined, and a list of blocks found using the procedure
described above. Since at least ten cells from each signal run should occur during the observation
interval, the ten highest energy blocks were collected and saved, for a total of 250 blocks from the 25
runs in each set. The block center positions were then compared to the known cell center positions.
The energy for each of these blocks was also recorded. The results for these runs are shown in
Figures 5.19 to 5.26. One set each was run for the 32 coefficient modified sine filter and the 22
coefficient energy concentration filter.

-150 -100 -50 0 50
Seconds

100 150

Figure 5.19. Error in Time Estimate With 32 Coefficient Modified Sine Filter

122

-150 -100 -50 0 50
Seconds

100 150

Figure 5.20. Error in Time Estimate With 22 Coefficient Energy Concentration Filter

100

80

60

40

20

-0.02 -0.01 0 0.01 0.02
Hertz

Figure 5.21. Error in Frequency Estimate With 32 Coefficient Modified Sine Filter

123

100

80

60

40

20

. mr-ifl n. ^
-0.02 -0.01 0

Hertz
0.01 0.02

Figure 5.22. Error in Frequency Estimate With 22 Coefficient Energy Concentration Filter

100 150 200 250 300 350
Energy

Figure 5.23. Block Energy Distribution (First 10 Blocks)
With 32 Coefficient Modified Sine Filter

124

200 250
Energy

350

Figure 5.24. Block Energy Distribution (First 10 Blocks)
With 22 Coefficient Energy Concentration Filter

Z5U

200
\

E \

n 150 ' -
e
r
g 100 -

y

50 ■

°C) 1() 20 30 40 50
Block

Figure 5.25. Energy in Highest 50 Blocks Found With
32 Coefficient Modified Sine Filter

125

250

20 30
Block

Figure 5.26. Energy in Highest 50 Blocks Found With
22 Coefficient Energy Concentration Filter

Histograms showing the distribution of time estimate errors are shown in Figures 5.19 and
5.20. The mean error for the 32 coefficient sine filter is 1.596 seconds, and for the 22 coefficient
energy concentration filter is 2.364 seconds. Histograms showing the distribution of frequency
estimate errors are shown in Figures 5.21 and 5.22. The mean error for the 32 coefficient sine filter
is -0.00012 Hz, and for the 22 coefficient energy concentration filter is -0.00018 Hz. To consider the
relevance of these values, it should be noted the ß layer for these signals is layer six, and the tile
dimensions are 64 seconds by 0.0078125 Hz.

Histograms showing the distributions of energy in the first ten blocks from each run are
shown in Figure 5.23 for the 32 coefficient modified sine filter and in Figure 5.24 for the 22
coefficient energy concentration filter. For the modified sine filter the mean energy is 230.5 with a
standard deviation of 35.2. For the energy concentration filter, the mean is 192.1 with a standard
deviation of 32.8.

Figures 5.25 and 5.26 show results of the last run of each set for the 32 coefficient modified
sine filter and 22 coefficient energy concentration filter. In these figures, the energies of the first 50
blocks, from the complete list (sorted by energy level) are shown. It is very obvious that the first ten
blocks are those containing signal cells. This fact would be important in a receiver like the one
shown in Figure 1.2, in which a classifier is used to separate blocks containing signals from those
with noise only.

To examine the possibilities of using the maximum energy block to estimate the ß layer,
single runs were made for FH/TH signals with cell lengths varying from 68 to 188 seconds. The

126

number of channels was adjusted in each case to ensure the signal remained within 0.125 to 0.375
Hz, and the number of slots was adjusted, to ensure there were at least ten cells in the observation
interval. The amplitude of tie signal was also adjusted to maintain a constant cell energy of 256.
Layers from four to eight were examined, and the layers in which the ten highest energy blocks
occurred were recorded. The numbers are shown in Tables VII and VIII.

Table VH

Layers in Which Maximum Energy Blocks Occurred For
32 Coefficient Modified Sine Filter

Cell Size
A Slots Channels

Layers

Seconds 4 5 6 7 8

68 2.74 45 16 1 7 2 0 0

88 2.41 35 21 0 5 5 0 0
108 2.18 30 26 0 1 8 1 0
128 2.00 25 31 0 0 6 4 0
148 1.86 22 36 0 1 3 6 0
168 1.75 18 41 0 0 5 5 0
188 1.65 17 46 0 0 5 4 1

Table VTH

Layers in Which Maximum Energy Blocks Occurred For
22 Coefficient Energy Concentration Filter

Cell Size
A Slots Channels

Layers

Seconds 4 5 6 7 8

68 2.74 45 16 1 9 0 0 0
88 2.41 35 21 0 8 2 0 0

108 2.18 30 26 0 4 5 1 0
128 2.00 25 31 0 2 8 0 0
148 1.86 22 36 0 2 7 1 0
168 1.75 18 41 0 0 10 0 0
188 1.65 17 46 0 0 7 2 1

127

For the cell lengths from 68 up to and including 128, the ß layer, as it was defined earlier in
the chapter, is layer six. For the longer length cells examined in the table, the ß layer is layer seven.
As the tables show, many of the blocks with maximum energy are not from the ß layer, but rather
from layers immediately above and below. The reason for this can be seen when we re-look at why
the ß layer was picked to be significant. It was selected because it was the layer in which the cell time
width, T, and bandwidth (when defined as 1/T) is guaranteed to be contained within a block of 3 by 3
tiles. There are cases, however, where a cell's position, relative to the tiles', may allow a significant
amount of cell energy may be contained in blocks from the other layers. The algorithm, as it is
described here, appears to offer a classifier enough information to estimate the ß layer within
from which the classifier can estimate a signal's hop rate.

One goal of finding the cell features is to distinguish between multiple signals. This, of
course, is the job of the classifier and is beyond the scope of this research. However, to get an
indication of how this might work, several runs were performed with two FH/TH signals.

In the first of these, two signals, with equal cell dimensions, but greatly varying energies,
were used. The first signal was identical to the one used in Figures 5.25 and 5.26 with 31 channels,
25 slots, and a cell duration of 128 seconds, except a cell energy of 1024 was used. The second signal
also had 31 channels, 25 slots, and a cell duration of 128 seconds. This signal had a cell energy of
256. Figures 5.27 and 5.28 show the results for the 32 coefficient modified sine filter and the 22
coefficient energy concentration filter. With the modified sine filter, it is easy to distinguish between
the ten blocks containing the higher energy signal, the ten containing the lower energy signal, and the
rest of the blocks. With the energy concentration filter, on the other hand, distinguishing between the
blocks containing the lower energy signal and blocks not containing cells is not as easy. A close
comparison of the block position and the true cell positions reveals the blocks from 11 to 20 do
represent the lower energy cells. The blocks with lower energy are due to sidelobes and out of tile
energy collected from the higher energy cells. Since these "false alarms" primarily show up in blocks
with the same time dimensions but different frequency dimensions as the true high energy signal
cells, an intelligent classifier would still have hopes of recognizing them for what they are, and
discarding them.

In the second test involving two signals, cell energies were set equal, but the cell dimensions
were set to be different. The first signal was the FH/TH signal used in Figures 5.25 and 5.26
(31 channels, 25 slots). This signal had a cell duration of 128, so its ß layer is six. The second signal
was a FH/TH signal with cell duration of 1024 seconds, cell energy of 256, 255 channels and 3 slots.
This signal's ß layer is nine. One run each was made for the 32 coefficient modified sine filter and
the 22 coefficient energy concentration filter. The results for the 20 highest energy blocks are shown
in Table IX. As can be seen, the modified sine filter appears to do slightly better at distinguishing
between the signals.

Summary

In this chapter, we began by looking in detail at the energy distribution in the time frequency
plane of spread spectrum signals consisting of cells with time bandwidth products of one. We then
looked at detection, and found that, unless we exploit our knowledge of the energy concentrations due
to these cells, the best detector we can find is the radiometer, or energy detector, set to cover the entire
time frequency plane of interest.

128

1000

10 20 30
Block

Figure 5.27. Energy in Highest 50 Blocks Found With 32 Coefficient Modified Sine Filter
When There Are Two FH/TH Signals Present

1000

10 20 30
Block

Figure 5.28. Energy in Highest 50 Blocks Found With 22 Coefficient Energy Concentration Filter
When There Are Two FH/TH Signals Present

129

Table IX

Layers in Which Maximum Energy Blocks Occurred For
Two Signals With Different Hop Rates

Filter

Layers

5 6 7 8 9 10 11

Modified Sine
Enersv Concentration

0
0

8
6

1
2

4
7

5
3

2
2

0
0

We then took a different tack, and found that if an interceptor knows everything about a
signal to be detected except for the received signal energy and the specific hop sequence, the best
detector architecture is the filter bank combiner (FBC). This gave us a "best case'1 to measure our
subsequent performance results against. Simulations were also run to verify an FBC implemented
with the QMF bank tree performed as predicted.

Then we assumed our interceptor does not know the channelization, hop synchronization, or
(later) cell dimensions of the spread spectrum signal, and developed the "nine die scheme" to best
exploit the output of the QMF bank tree for detection. The performance analysis for this scheme was
shown to be mathematically intractable, and so simulation was resorted to-indicating a performance
that is promising.

Finally we turned to feature extraction, and developed a strategy to use the nine tile scheme
data to estimate the cells' energy, positions in the time frequency plane, and dimensions. Here, just
enough data was collected to indicate that the scheme should work by providing a classifier enough
information both to estimate overall signal parameters and to allow the classifier to distinguish
between transmitters, at least in some cases.

Obviously, much more work could be done in the areas explored in this chapter. One key
feature that could be added to the analysis would be a specific classifier. Then particular more-or-less
complex detecuon algorithms could be explored. For example: Requiring a certain number of
blocks, not overlapping in time, to exceed a threshold for a detection to be declared would be
analogous to adding the binary moving window to the FBC. The same situation would apply to
feature extraction, where a sophisticated classifier could work with the characteristics of the specific
filters in the QMF bank tree to eliminate the effects of sidelobes, such as the ones described in
association with Figure 5.28.

Of course, with a specific type of classifier, and a specific detection scenario, particularly
where a range of "real world" signals are examined, the ultimate limitations of this receiver could be
found. Specifically, the maximum number of signals that could be distinguished in a certain time
frequency area, as well as the minimum separation of signal characteristics such as cell energy and
dimension, could be determined.

130

VI. Interception of Direct Sequence (DS) Signals

Introduction

In this chapter we look at the detection and feature extraction of DS signals. Here,
"detection" refers to the process, by the interceptor, of determining if one or more DS signals are
present. For DS signals, "feature extraction" will refer to determining the signals' band edges and
energy.

For our analysis, we will assume the DS signal, when present, is present for the entire
observation interval, and that its energy is distributed across the frequency dimension with a sine
squared distribution. In this chapter we will not consider changes in energy distribution noted when
looking at the signal over short time intervals. (We will assume the characteristics of these changes
are unknown to the interceptor). For this reason, we will begin by taking the tiling from a given layer
of our QMF bank tree and add the energies from tiles at specific frequencies across the observation
interval, as shown in Figure 6.1.

0.5

F
r
e

q
u
e
n
c
v

Add energy in these tiles to get

c

Time

s

n

Figure 6.1. Adding Energy Across the Observation Time to
Obtain a Spectral Vector

The result is a vector of values representing the waveform's energy across the spectrum-a
"spectral vector" which is virtually identical to the results of a Fourier analysis with a suitable
window. Because the computational cost of the QMF bank tree is higher than that of a similarly sized
fast Fourier transform (FFT), the FFT is obviously a better solution if the only objectives of the
intercept receiver are those of this chapter. If, on the other hand, the intercept receiver is also
required to detect and distinguish between various types of hopped signals, and/or it is required to
make an analysis of the internal energy distribution of the DS signal(s) (as discussed in
Chapter VIII), the decomposition by the QMF bank tree will be needed anyway, and its results can be
used for our purposes here.

Because we desire very sharp transitions in the tiles' frequency dimensions, and have little
concern about the time characteristics, we will use the modified sine filter for our analyses in this
chapter.

We begin the chapter with a very quick discussion of the DS signal and its characteristics.
We examine the detection of this signal when the location in frequency and bandwidth of the signal
are known to the interceptor. Analytical and simulation results are then compared.

We then consider the case where the interceptor knows neither the center frequencies of the
signal nor the signal's bandwidth, and we derive a suitable detection algorithm. Finally, we extend
this algorithm to include feature extraction. (As we will see, this is almost automatic, and does not
require any major modification to the algorithm.) Simulation results are then discussed and
compared to analytical predictions.

Direct Sequence Signals

A communications system using DS signals is shown in Figure 6.2. Here a carrier signal,
which will generally already have information modulated on it, is further modulated with a wide band
pseudo-noise signal. The term "pseudo-noise" as used here, refers to the fact that, although the signal
look like noise to the casual observer, the intended receiver has an exact copy. There are several ways
to carry this out in practice. For example, the pseudo-noise may be generated by some deterministic
algorithm known only to the transmitter and receiver. On the other hand, a truly random signal may
be recorded ahead of time, with copies of the signal sent to both the transmitter and receiver by some
other means (compact disks sent by diplomatic pouch, for example). Regardless of the nature of the
signal, the intended receiver somehow synchronizes its version with the transmitter's, and then
demultiplexes the received signal, obtaining an estimate of the original.

osc ♦-MUX

V V
MUX BPF -► Carrier +

Information
Carrier+
Information

Pseudo-noise
Generator

Pseudo-noise
Generator

Transmitter Receiver

Figure 6.2. Direct Sequence Communications System

Often, the pseudo-random signal is a random binary waveform [17]. In a random binary
waveform, the signal's value is randomly set to ±1 at fixed intervals. An example of this waveform is
shown in Figure 6.3. The energy distribution in the frequency domain is sine squared, with a main
lobe null to null bandwidth of 2B, for B as defined in Figure 6.3. When the random binary waveform
is used to modulate a sine wave carrier with frequency fc, the resulting energy distribution is as

132

shown in Figure 6.4. This is the energy distribution of the DS signals we will consider in this
chapter.

Time

Figure 6.3. Example of Random Binary Waveform

Total area = 1

c-3/T u -in

(

U l/T

! ■-

area =
0.0235

area =
0.008

fc+2/T f +3/T

area= 0.903-

area= 0.950-

area= 0.966-

Figure 6.4. The Sine Squared Function, With the Areas Under Key Portions of the Curve

133

The energy of the DS signal is

(6.1) E =
A2T

where T is the observation time, and A is the signal's peak amplitude.

Detection

We begin this section with a question: Let's say we have a DS signal with the energy
distribution shown in Figure 6.4, and that this signal is embedded in white Gaussian noise (WGN).
We wish to make a detection decision using a radiometer/threshold scheme like that shown in
Figure 6.5, with an integration time set to our observation interval and with an ideal brick wall filter
centered at fc with a bandwidth of W. What is the best value for W? In other words: What W will

maximize the probability of detection, Pd, for a given probability of false alarm, Pfc ?

J^L o2
K -f-►

—' Th
Bandpass
Filter

Square Law
Device

Integrator Threshold
Detector

(6.2)

Radiometer

Figure 6.5. Radiometer With Threshold Detector

To answer this, we first note the signal energy collected by the radiometer will be

E fw/2 ti 2E fw/2

Ec = — sine (x/BJdx = — sine (x/B)dx
BJ-w/2 ^ B Jo ^

I-W/2B
= 2E sinc2(y)dy

Jo

where E is the total signal energy from (6.1). Next, we know the pdf of the radiometer output will be
Chi-Squared, with or without a non-centrality parameter depending on whether the signal is present.
However, for large time bandwidth products, these curves can be approximated with Gaussian pdfs
[41]. For a suitably large observation time this will be our case. With this approximation, Pfc and Pd

will be

134

(6.3)

and

(6.4)

where

Pf. = ierfc

Pd = ^erfc

Th-N0TW

V2N0
2TW

Th-N0TW-ec

V2N0
2
TW+4N0EC

Th is the threshold at the radiometer output
N0 is the one sided noise density (we will usually normalize this so N0 = 2)
T is the observation time

erfc(x) = —j= j exp(-u2)du

and erfc(x) is the "error function"

(6.5)

Rewriting (6.3) to solve for Th gives us

(6.6) Th = V2N0
2TW erfc_1(2Pli) + N0TW

and putting this in (6.4) yields

(6.7) Pd = jerfc
V2N0

2TWerfc-1(2Pfa)- ec

^/2N0
2TW + 4N0ec

Now, we will assume the noise energy collected by the radiometer, N0TW, greatly exceeds the signal
energy collected, giving us 2N0

2TW » 4N0ec which allows a simplification of the denominator in
the argument of the error function in (6.7), or

(6.8)

where

(6.9)

Pd - jerfc
V2N0

2TWerfc-1(2PIa)-Ec

■y/2N0
2TW

= ^erfc[(|)(W)]

<()(W) = erfc-1(2Pfc) - -p-%
V2VT 2n /2rVTW

We want to maximize Pd with respect to W. To do this, we take the partial derivative of (6.8)

aw a<t>(w) aw

135

and set it equal to zero. Looking at the first product on the right hand side we have

3<{>(W) 2 3<KW) L J 2 3<j>(W)
2 r~ 7 -j=\ exp(-u)du

(6.11)

= ---J-exp[-<t>(W)2] * 0

so we need to find out where the second product on the right hand side of (6.10) goes to zero

(6.12)
3d>(W) 9

3W 3W
erfc"1(2PfJ-

ErW -X

M1 Ä7 W-X 3&L _ IEcW-K
aw 2 c = o

or

(6.13) fc=. - Jt. = 0
aw 2w

From (6.2) we find

3c. a% as :B UCC _

(6.14)

aw aw 3% 2B 3%

= ^■SinC"l2Bi

(•W/2B
2E sinc"(y)dv

Jo

So, using (6.2) and (6.14), (6.13) will be satisfied when

fW/2B
(6.15) sine 2(%) = %l sinr(y)dy

So we see that, because of our assumption about the signal energy level, the best value for W will
essentially depend only on B. The solution to both sides of (6.15) with respect to W/B are shown in
Figure 6.6, and we see

(6.16)
W

LOO < — < 1.05
B

For our purposes we will accept W = B as the answer we seek.

As an indication of the sensitivity of W in determining Pd, Figure 6.7 plots these two

variables using (6.7) (not the approximation), for a specific example in which Pfa = 0.1, T = 32768

seconds (normalized) and the signal to be detected is DS spread with B = 0.015625 Hz and
E = 129. As we see, good results can be obtained for a wide range of W, even up to about 2B.

136

1.0 1.05
W/B

1.10 1.15

Figure 6.6. Solution to Both Sides of Equation (6.15)

Figure 6.7. Effect of Filter Size on the Probability of Detection

137

Detection When the Signal Parameters Are Known

We now consider detection when the interceptor knows the signal's center frequency and
bandwidth. The interceptor, therefore, knows exactly where to look in the time frequency plane for
signal energy. In this sub-section we will examine how to use the QMF bank tree as a radiometer
detector of these signals, and look at a simulation. The main purpose for this is to provide a check on
our analysis to this point. However, since the next step in the chapter will be to consider detection of
DS signals when the center frequencies and bandwidths are not known, the results here will also
provide a convenient best case to compare those results against.

From our analysis above, we saw that a radiometer detector of the form shown in Figure 6.5
will be most effective when W <= B. Let's now consider a case where we set W exactly equal to B,

and let

(6.17)

W = B = 0.015625 Hz

T = 215 = 32768 sec

N0 = 2

£r = 100

Using (6.7) and the values given in (6.17), we can plot a theoretical receiver operating characteristic
(ROC) curve, and this is shown as the solid line in Figure 6.8.

In the simulations, a waveform was decomposed using the QMF bank tree to layer five. (At
this layer, the tile width, in the frequency dimension, is equal to the values given in (6.17) for W and
B.) The energy in the layer five tiles were added as shown in Figure 6.1 to yield a 32 element spectral
vector. To obtain values for Pfc WGN alone was used for the waveform. To obtain values for Pd the
same noise was used with a DS signal added. The center frequency of this signal was set equal to the
center frequency for a particular spectral vector bin, and, to make the detection decision, the energy in
this bin was compared against various threshold values.

One hundred runs were made for each of three sets, with a signal energy of 100 and center
frequency of 0.3359375 Hz used in every case. Results of these simulations are shown (with X's)
plotted on Figure 6.8. As we can see, the agreement between the theoretical results and the
simulations are very good.

Another three sets of simulation runs were carried out with a DS signal center frequency of
0.2578125 Hz (that is, closer to the center frequency of the spectral vector). The results of these are
also shown (with o's) in Figure 6.8, and we can see they are not as good. The reason for this is due to
the non-ideal nature of the filters used in the QMF bank tree-even though 32 coefficient modified
sine filters were used. The DS signal was located near the center of the time frequency plane, and
therefore, some of its energy was sent into the low pass filter in the initial layer of the tree and
showed up in an adjacent bin.

138

1.0

02

Theoretical Results

X Simulation (fe = 0.3359375)

O Simulation (fc = 0.2578125)

0.1 02 0.3 0.4 05

Figure 6.8. Results When the DS Signal Parameters Are Known

Detection With Unknown Signal Parameters

Let's now relax the requirement that the interceptor knows the center frequency of the DS
signal to be detected. (For the moment, we will still assume the interceptor knows the signal's
bandwidth). Obviously, if the interceptor simply looked at the spectral vector whose bin width was
equal to the signal bandwidth, the signal and QMF bank tree tiles would not, in general, be aligned in
frequency. Hence, less signal energy would be collected, and detection would suffer.

A better idea is to decompose the signal further through additional layers of the QMF bank
tree, and obtain a higher resolution spectral vector. Then, the energy from certain adjacent bins can

139

be summed, and the result can be compared to a threshold. Since the interceptor is assumed to know
the signal's bandwidth, the number of adjacent bins to be summed should be whatever number times
the bin bandwidth most closely equals the signal bandwidth. Because this is a sort of two
dimensional version of a "block" introduced in Chapter V, we will call it a "rectangle" here. Since
the center frequency of the signal is unknown, all positions of the rectangle in the spectral vector
should be examined.

This search is particularly easy to carry out, once we note that it is a convolution between the
spectral vector and a rectangular window. If our goal is simply to determine whether one or more
signals are present, we can take the largest value from the convolution results, and compare that to a
threshold. (We expect this will be the value from the point where the rectangle is most nearly
centered over the signal.)

A modification of this idea, reminiscent of a similar algorithm described in Chapter V, is to
first look for the highest energy value from the convolution result, save the result and its position to a
"rectangle list", then throw out adjacent values from overlapping rectangles, repeating the procedure
to find a list of potential DS signal locations. This list could, in the case of a receiver like the one
described in Figure 1.2, then be fed to a classifier whose job is to determine which, if any, of the
positions contain DS signals. With this algorithm, multiple DS signals can be detected, so long as
they do not overlap in frequency.

Now we further relax our requirements and assume the interceptor does not necessarily know
the DS signals' bandwidths. An obvious modification to the algorithm is to simply repeat the
procedure for different sized rectangles. As we saw above, the results from the rectangles closest in
size to a signal's bandwidth should yield the best probability of detection. Of course, other sized
rectangles will also pick up the signal's energy. What we want to do is to find those results yielding
the best probability of detection, saving them to the rectangle list, and then discard overlapping
results from different sized rectangles.

This leads to a question: Given the results of two different sized rectangles, both indicating
a DS signal in a particular location, how do we decide which to save? We can't use energy, because
the larger rectangle will collect both more signal energy and noise energy. Instead, we go back to
(6.8) and note we can increase Pd by decreasing <f>(W). This is the same as increasing the second
term on the right hand side of (6.9), which, in turn is the same as increasing the test statistic

(6.18)

Our expected observed energy, e0, is

(6.19) E[e0] = E[ee] + N0TW

so we can find a value for u from

(6.20) u = E°
- N0TW

Vw

What we should do, then, is find a list of high energy rectangles, as described above, for each
rectangle size, and compute (6.20) for each. We then save the highest value of u, throwing out results
from rectangles that overlap, and repeat, until the final rectangle list contains u, the energy, and the

140

positions of non-overlapping rectangles which may contain DS signals. To make a detection
decision, we will compare the largest value of u found against a threshold.

Note that (6.20) could also be used to make the selection among overlapping rectangles of
the same size. Since W will be identical for the competing rectangles, there is no difference between
comparing values of u and comparing values of e0.

Just as with overlapping blocks in Chapter V, This algorithm cannot be fully analyzed
theoretically because the overlapping rectangles are selected based partly on shared energy. Again,
we are confronted with dependent order statistics. We can, however, use the case of a known DS
signal position and bandwidth as a best case, and compare our simulation ROC results against these.

Matlab code to carry out and simulate this algorithm is listed and described in Appendix C.

Analysis Results

The detection simulations are similar to the ones described above where the signal's center
frequency and bandwidth are known to the interceptor, except here the DS signal's center frequency
in each run is randomly set to a value between 0.125 + B/2 and 0.375 - B/2 Hz, and the spectral
vector is formed from the eighth layer output of the QMF bank tree. In these simulations, the signal's
bandwidth and energy were identical to those used in the simulations above.

Three sets of 100 runs each were made, and the results are shown in Figure 6.9, along with
the theoretical curve from Figure 6.8. As expected, the results are not as good as when the interceptor
knows the center frequency and bandwidth of the signal to be detected.

Feature Extraction

Clearly, the algorithm we developed above for detection can also be used to estimate features
of the DS signal. We are interested in the signal's bandwidth, center frequency, and energy. In this
section we will first discuss the details of making these estimates, and then show simulation results
verifvine the effectiveness of the methods.

Bandwidth

We saw above that our best probability of detecting a signal occurs when the size of the
rectangle approximately equals the signal's bandwidth. By turning this logic around, we see the size
of the rectangles output from the algorithm can be used as an estimator of the signal's bandwidth.

We should not expect too much from this estimator, however. Just as Figure 6.7 tells us we
will still be able to detect a signal when the rectangle doesn't perfectly match the signal's bandwidth,
so too does it suggest we will suffer a wide variance in our estimate. Also, we have not yet examined
how an offset of the signal's center frequency, relative to the tiling of the time frequency plane, affects
detection, or this estimate.

141

1.0

Bandwidth and Center
Frequency Known
(Theoretical Results)

Bandwidth and Center
Frequency Unknown
(Simulation)

0.5

Figure 6.9. Analysis Results When the Signal's
Center Frequency and Bandwidth Are Unknown

To examine this, let's consider a specific example-tbe one we've been using throughout the
chapter-where the signal's bandwidth is B = 0.015625 Hz, and where we decompose the waveform to
the eighth layer of the QMF bank tree to give us a spectral vector with a bin size of 1/512 Hz.
Figure 6.10 shows this, with rectangles equal to seven, eight, and nine bins, superimposed on energy
distributions of the DS signals with the best (solid curve), and worst (dashed curve) possible
alignments. The amount of signal energy collected using our algorithm is, in each case, proportional
to the area of the sine squared curve covered by the rectangle. As we can see, for the eight bin
rectangle the worst case alignment occurs when the signal's center frequency is located at the center
of a bin, while, for the odd sized rectangles, the worst case alignment occurs when the signal's center

142

Seven Bin'. Recta ngle

E . • ' 1
-

n
e
r
g

<\

-

y ^^^^ ^is^^

b Freq

Eight Bin Rectangle

E
n
e
r

'■'■ - ' i ■-...—. II.—.I....I.I. T [■.-...

■^r' "\-^
\s/ X N

jTS N
y w

Ss" \\

Freq

Nine Bin Rectangle
E
n
e
r
g
y

' 1
- -. — "~~*"^^*

^r. <* <^x
\

y \N
/V N

^^

yy
/ \\

Freq

Figure 6.10. Seven, Eight, and Nine Bin Rectangles Superimposed on Sine-Squared Curves
to Give an Indication of How Much DS Signal Energy Each Will Collect. The Solid Curves
Show Signals Centered Under the Rectangle. The Dashed Curves Show Signals as Far Off

Center as Possible.

frequency is located at the edge of a bin. (If the signal's center frequency were shifted any further
than shown in the figure, the bin on the left of the existing rectangle could be dropped off, a new bin
on the right added, and this new rectangle would collect more energy.)

143

.802

.798

.794

8 Bui Rectangle

9 Bin Rectangle

.790

7 Bin Rectangle

Distance of the Center Frequency
From a Bin's Center

b/2

Figure 6.11. Probability of Detection For Seven, Eight, and Nine Bin
Rectangles, as the Signal's Center Frequency is Shifted With Respect

to a Bin's Center, (b = Bin Bandwidth)

It is easy to compute the amount of signal energy, ec, collected with respect to various
alignments. When those values for ec, and a Pfc of 0.1, are used in (6.7), we find the curves shown in
Figure 6.11. As we can see, when the center frequency is far enough from the edge of a bin, a length
nine rectangle will actually have a slightly greater probability of detection. However, the difference
in Pdis actually very slight, and, in fact, is undetectable in our simulations. As we will see below, the
effects of the noise added to the signal will be the greater influence. (Although we don't explore the
possibility here, it seems likely that weighting the bins to obtain a window with a shape different from
rectangular—perhaps one more closely matched to the energy distribution of the DS signal-may
improve the bandwidth estimate, possibly at the expense of Pd in the detection problem. This is
discussed further in Chapter VIE.)

Center Frequency

The center frequency of the DS signal is very easy to estimate. It is simply the center
frequency of the rectangle found by our algorithm. When the signal is correctly detected, we would
expect a maximum error in this value to be equal to half of the bin size, or, in our simulations using
layer eight, 1/1024 Hz.

144

Signal Energy

Assuming we have correctly detected a signal, the pdf for the energy collected, e0, should be
a Chi-Squared curve with a non-centrality parameter equal to the amount of signal energy collected.
Since we are dealing with large time bandwidth products, we can, as we did earlier in the chapter,
approximate the Chi-Squared pdf with a Gaussian pdf.

Rewriting (6.19) we obtain

(6.21) E[EC] = E[E0] - N0TW

where W is equal to the size of the rectangle (in Hertz) found using the algorithm. We conclude,
therefore, that we can obtain an estimate of the signal energy with

(6.22) E = E - NnTW

and, because we are dealing with approximately Gaussian statistics, the distribution of EC will be
approximately Gaussian.

Analysis Results

The Matlab code to simulate feature extraction is listed and described in Appendix C. Five
sets of runs were made for this section. In each succeeding set the signal energy was increased as
shown in Table X.

Table X

Signal Energy and Amplitude For the DS Signal Feature Extraction Simulations

Set
Number Ec E = Ec/0.774 A = 72E/T

1
2
3
4
5

100
200
400
800
1600

129
258
517
1034
2067

0.0887
0.1255
0.1773
0.2512
0.3553

The results of the bandwidth estimates are shown in Figure 6.12 as histograms, with each
bar representing a particular rectangle size in numbers of bins. The actual DS signal bandwidth in
the simulations was equal to eight bin widths. As we see, the estimate improves for higher signal
energies, but even for set five we have a fairly wide variance.

145

30

20

10

0.

Set Number 1

■

 1 ~ T - 1

m "1 -^nnrnrir^r-!
5 10

Rectangle Size (Number of Bins)
15

30

20

10

Set Number 2

Imnl ml mm H_m
5 10

Rectangle Size (Number of Bins)
15

Set Number 3

5 10 15
Rectangle Size (Number of Bins)

Figure 6.12a. Rectangle Sizes Found
Vertical Axis Represents the Number Found

The mean and variance of error in the center frequency estimate for each set are listed in
Table XI. The numbers suggest that after the signal energy is raised beyond about ec =400 no
further improvement can be expected. The remaining error is due primarily to the resolution of the
tiling. The mean and standard deviation of the signal energy estimates, made using (6.21), are also
shown in Table XI.

146

30

20

10 h

Set Number A
 — f ' " :

_ r-nn
5 10

Rectangle Size (Number of Bins)
15

30

20

10

Set Number 5

-

1 1 1 1
■

1

5 10
Rectangle Size Clumber of Bins)

15

Figure 6.12b. Rectangle Sizes Found
Vertical Axis Represents the Number Found

Table XI

Error in the Center Frequency and Energy Estimates in the DS Signal Feature Extraction Simulations

Set
Number

Center Freq Error

mean variance

Signal Energy
Estimate

mean std dev
1
2
3
4
5

L15xl0"2

3.40xl0"3

L77xl0"5

L84X10"4

1.64 xlO"4

4.50 xlO"3

L20xl0"3

5.93x10"*
4.46x10"*
4.56x10"*

136
223
417
802
1591

66.016
87.036
89.566
105.820
146.423

Summary

In this chapter we began by describing the characteristics of the DS signal that we are
looking for. Right away, we concluded that the decomposition by the QMF bank tree is more
mathematically intensive, but provides no more information, than a similar FFT, and therefore should
not be performed exclusively to obtain the information we are looking for here. If the decomposition

147

is needed for other reasons, however, such as the detection of other types of spread spectrum signals,
or for an exploration of the changes in internal energy distribution in the DS signal, it can also be
used for DS signal detection, and for the estimation of the DS signal's energy, center frequency, and
bandwidth.

We then looked at the detection of these signals when the center frequency and bandwidth
were known, and found ROC curves by simulation that matched the theoretical radiometer detection
curve, except for a small loss due to the non-ideal nature of the QMF filters. Then, an algorithm was
developed to detect DS signals when the center frequency and bandwidth are not known to the
interceptor, and simulations were performed to obtain ROC curves.

Finally, we saw how the information obtained from the detection algorithm can be used to
estimate the DS signal's energy, center frequency, and bandwidth. In a QMF bank tree intercept
receiver like that shown in Figure 1.2, this information could be sent as a list from the analyzer block
to the classifier block. In this architecture, all of the possible signals found by the algorithm would be
listed and it would be the classifier's job to determine which, if any, were DS signals.

There is no reason the algorithm described in this chapter cannot be used at the same time as
the algorithm described in Chapter V for the detection and feature extraction of hopped signals with
time bandwidth products of one. Signals of that sort are unlikely to cause a false detection in the DS
signal detection algorithm because the hops are spread across the time frequency plane and little
signal energy is likely to be concentrated at any particular band of the spectral vector. Likewise, DS
signal energy is too spread in the time frequency plane to be likely to cause a detection in the
Chapter V algorithm, which looks for relatively high concentrations of energy within small areas of
the plane.

148

VII. Interception of Fast FH/DS, TH/DS, Fast FH/TH/DS, and Slow FH/DS Signals

Introduction

In this chapter we look at the detection and feature extraction of hopped signals whose cells
have time bandwidth products greater than unity. These include signals whose cells have been spread
using DS techniques (these will be referred to collectively, in this chapter, as "hopped/DS" signals),
and also Slow FH signals where the spreading of cell energy is due to the FSK modulation of the
carrier by information.

As in past chapters, we will use "detection" to refer to the process, by the interceptor, of
deciding whether one or more signals are present in a waveform. "Feature extraction" will refer to
estimating the cells' energy, position in the time frequency plane, and dimensions in both time and
frequency.

We begin the chapter with a short description of the characteristics of the signals. Then we
discuss the general problem of detecting these signals. Since much of this problem parallels the
problems of detecting hopped signals with unity time bandwidth products and detecting DS signals,
we will often refer to results deduced in Chapters V and VI.

We will then develop an algorithm specifically to detect the signals of interest in this
chapter. Its implementation will be discussed and the results presented.

Finally, we will see how me results of the detection algorithm, together with a modification
of the techniques discussed in Chapter VI, can be used to estimate the signal features we are
interested in.

Hopped Spread Spectrum Signals With Time Bandwidth Products Greater Than One

Hopped/DS Signals

These signals are similar in structure to the Fast FH, TH, and Fast FrITH signals discussed
in Chapter V, except that each cell, rather than consisting of a single tone, will be formed from a tone
modulated by a random binary waveform. The effect is that each cell will look like a short time
duration version of the DS signal discussed in Chapter VI.

The transition duration of the random binary waveform (1/B in Figure 6.3) should be much
smaller than the cell duration, so the cell's energy will be distributed across the frequency band
(approximately) with a sine squared distribution as shown in Figure 6.4, where fc is the cell's tone
frequency. The random binary waveform spreads the energy but does not affect the total cell energy.
As with unity time bandwidth cells, the cell energy is

(7.1) E =
A2T

where A is the signal's amplitude and T is the cell duration.

Slow Frequency Hopped Signals

The Slow FH signal structure has been described briefly in Chapter IV. Basically, the
information rate is faster than the hop rate, and the information is modulated using FSK, resulting in
a cell with energy concentrated as shown in Figure 4.7. In the discussion that follows, we will refer
to the gray shaded regions in Figure 4.7 as "micro-cells" to distinguish them from the larger hop cell.

Each micro-cell has a time bandwidth product of one. Since we assume the transmitter turns
each micro-cell on, and later off, instantaneously, the energy distribution in the frequency dimension
will be sine squared with a bandwidth, bw, equal to the inverse of the micro-cell's duration. When
the signal structure is designed so there are many micro-cells in each cell, there will be approximately
equal numbers in each information channel, and the cell's energy distribution across the frequency
dimension will look something like the solid line in Figure 7.1. If, on the other hand, there are only a
few micro-cells in each cell, it is likely that only a few of the available information channels will bs
filled in each cell, resulting in different energy distributions that will change drastically from cell to
cell in a single signal. This latter case is the one we will confront in our simulations. Regardless of
the distribution, the cell energy for the slow FH signal is given by (7.1).

V"^ rV."li1,1n'-i-V i'-r "ilr''

-B- Frequency

Figure 7.1. Energy Distribution in a Four Channel Slow Frequency Hopped Cell

Detection

The detection of the signals of interest in this chapter, when only one signal is present at a
time, and when the interceptor knows the hop channelization, hop duration, and hop timing of the
signals to be detected, has been widely discussed in the literature; and this discussion generally

150

parallels that presented for signals with unity time bandwidth cells [15] [16] [18] [19] [30] [35] [41]
[42] [45]. When the interceptor knows those signal features, and also the intercepted cell energy, the
optimal detector is the one presented in Figure 5.5, except the bandpass filters in the bank of
radiometers will be tuned to the wide bandwidth hop channels, and equation (5.10) will be replaced
with [16]

M Wi(4-^7]
(7.2) L = £. ^ J-

j = i — x.
a2 J

(TW-l)/2

where

TW is the cells' time bandwidth product
I-rw-i (*) is ^e modified Bessel function of the first kind, TW-1 order
£ is the cell energy
c2 is the noise variance
M is the number of hop channels

(Note that when TW equals one (7.2) simplifies to (5.10).)

When only one signal is present, and the interceptor knows all of the signal features listed
above, except for the intercepted cell energy, the FBC shown in Figure 5.6 is a good detection
architecture to use. As above, the input filters of the radiometer bank should be tuned to match the
wide bandwidth hop channels.

Our main interest here, of course, is the case where the interceptor does not know, a priori,
the amount of cell energy intercepted, hop channelization, hop duration, or hop timing. As we saw in
Chapter V, if we knew nothing about the signal structure a single radiometer covering the region,
with a threshold detector, would be the best architecture. Just as with the signals in Chapter V,
however, the signals of interest in this chapter have one important characteristic: Their energy is
concentrated in cells. We might, therefore suppose some sort of detection algorithm using
overlapping blocks in the time frequency plane, similar to the "nine tile scheme" laid out in
Chapter V, could offer some son of improvement

The next question, then, is: How large should our blocks be? In Chapter V, we used three
by three blocks because (using multiple layers of the QMF bank tree as necessary) we could be
assured a particular block covered most of each cell's energy. This, of course, depended on our
knowledge of the cell time bandwidth product. For the signals of interest in this chapter, however, we
do not have that information.

Ideally, we would like our block dimensions to match the cell dimensions. (We will see this
demonstrated in an example below.) Also, because the cell,time bandwidth products are so large
compared to our QMF bank tree tiles, the relative alignment is less significant than for the signals in
Chapter V, and we can assume that any energy falling into tiles outside of the block is insignificant.

One possibility is to use an intermediate layer (where each of the tiles' time and frequency
dimensions is certain to be less than the corresponding cells' dimensions) of the QMF bank tree, and
exhaustively search the space using blocks of every possible dimension. This does, however, increase

151

the computational burden significantly. A better idea is to determine how far our blocks can be from
the ideal and still have a high probability of detecting a cell. We could then limit our algorithm to a
single pass with a compromise block size, or if necessary (although we will not explore this further)
use several passes with widely different block dimensions.

This discussion appears to be analogous to that in Chapter VI, where we determined how the
rectangle size (in frequency) affects the probability of detection of a DS signal. We used the Gaussian
approximation for the Chi-Squared pdfs with large numbers of degrees of freedom [41] and derived
Equation (6.7), which we rewrite here for convenience (altering the notation slightly)

(7.3) PH = |erfc
V2N0

2t0Werfc-1(2Pj-£e(t0,W)

V2N0
2t0W + 4N0£c(t0,W)

This will give us the probability of detection of a single cell of a signal with large time bandwidth
cells when

t0 is the block's time duration
W is the block's bandwidth
£c(t0, W) k tiie amount of cell energy collected in the block

N0 is, as before, the noise energy density (usually normalized to two)
Pf, is the probability of false alarm due to noise energy collected in the block

The amount of cell energy collected will, of course, depend on the block size. Let us first
assume we have a hopped/DS cell, and the block is centered over the cell. (This latter assumption
will be approximately valid in our algorithm because the difference between tile and cell size will
mean there will always be a block close to this alignment.) If we assume the cell energy is uniformly
distributed in time across the cell's duration, and consider a block that covers the entire frequency
dimension but may, or may not, cover the cell's duration in time, the energy collected will be

(7.4) ec(t0) = Emin{l,t0/T}

where T is the cell's duration. If, on the other hand, we have a block that covers the entire
observation interval, the amount of cell energy depending on the block's bandwidth will yield

Ec(w) = -JW/%inc2(x/B)dx = —JW/:sinc2(x/B)dx

(7.5)
J.W/2B

Jo
= 2E sinc*(y) dy

Jo

where B is the bandwidth of the cell. Combining (7.4) and (7.5) gives us

, fW/2B
(7.6) Ec(t0,W) = 2emin{l,t0/T}J sinc-(y) dy

which is, of course, the amount of cell energy collected by a block with dimensions t0 by W, centered
over the cell.

152

Using (7.3) and (7.6) we can construct an example to explore the effect of changing the
block size on our ability to detect a cell. In this example, we use a constant Pt of 0.1, and a cell size

of B = 0.0611 Hz, T = 1637 sec, with e = 129 and N0 = 2. Figures 7.2 and 7.3 both show the
contour plot of Pd as the block size is adjusted. Figure 7.2 presents the plot on a linear scale
comparing t0/T and W/B. Figure 7.3 shows the same, but uses a base ten log-log scale. This plot is
particularly useful for answering questions like: Which is beoer, a block that is twice as large as the
cell in each dimension, or one that is half as large? Apparently, the answer is that they are about the
same.

t0/T

Figure 7.2. Probability of Detection of Hopped/DS Cell

Recall, however, that we found (7.4) by assuming the energy distribution was uniform in
time. If we use a block that is larger than the cell in time, the equation would give us EC = e
regardless of the validity of that assumption. Similarly, we assumed we had a hopped/DS cell and
based (7.5) on the energy distribution in frequency for that type of cell. If we use a block that is
larger than the cell in frequency we will collect most of the cell energy regardless of the distribution
and will achieve similar results for a Slow FH cell.

Therefore, for our detection algorithm, we should determine the range of possible cell sizes
that we wish to detect and begin by using blocks that match the largest dimensions in both time and
frequency. If, based on an analysis similar to the one producing Figure 7.3, that block size will yield
an unacceptably low Pd for smaller cells, more passes with smaller blocks may be made.

153

logW/B

Figure 7.3. Probability of Detection of Hopped/DS'Cell (Base Ten Log-Log Scale)

Notice the best block size is the one that matches the cell size, confirming a statement made
earlier.

To complete the algorithm: After obtaining the amount of energy in each overlapping block,
the blocks can be sorted, from greatest to least, and, just as with the nine tile scheme, the block with
the largest energy can be saved, overlapping blocks discarded, with the process repeated until a list of
non-overlapping blocks is obtained which will, for the most part, contain the signal(s) cells. As we
will see later, we can then look at the energy distribution in each block to estimate the cell's position,
dimensions, and enerev.

Analysis

As we saw in Chapter V, there appears to be no mathematically tractable way to analyze a
scheme that looks for concentrations of energy among overlapping blocks. Our goal, then is to use
simulation to verify that there are cases in which the block algorithm can produce better results than
the default~a radiometer detector covering the entire observation interval, and with the input filter
tuned to cover a signal's total bandwidth. (This case is, of course, mathematically tractable: The
ROC curve can be generated from (7.3) when the collected cell energy is replaced by the total
collected signal energy, t0 replaced by the radiometer's observation interval, and W replaced by the

radiometer's bandwidth.)

To simplify the simulations somewhat, we will consider detection when only a single signal
cell is present in the observation region. This simplifies the implementation of the block algorithm

154

significantly, as we only need to concern ourselves with the largest energy block, and not with
discarding overlapping blocks. It is also easy, in this case, to find an upper bound on our detection
capabilities. To do this, we assume the interceptor knows where to look for the cell, and compute an
ROC curve from (7.3).

Hopped/DS Results. Six sets of runs were made to simulate the detection of a hopped/DS
(specifically a TH/DS) signal. The 32 coefficient modified sine filter was used for the first three, and
the 22 coefficient energy concentration filter was used for the other three. The signal cells were
818 seconds long (normalized) and had a bandwidth of 0.0305 Hz. The signal amplitude was se' to
0.3496 which equates to a cell energy of 50.

As a validity check, in addition to determining data for the block algorithm, the simulation
code also finds experimental ROC values for a radiometer covering the entire region of interest in the
time frequency plane, and for a radiometer matched to the cell's position. These results are shown in
Figure 7.4, along with the mathematical (theoretical) results computed from (7.3). As can be seen,
the agreement, particularly for the radiometers covering the larger time bandwidth product, is good.
The reason the results for the radiometers matched to the cells are lower than theory is probably due
to the non-ideal nature of the filters. Note the 22 coefficient energy concentration filter is slightly
worse than the modified sine filter.

The results for the block detection algorithm are shown in Figure 7.5. Since our goal is to
out perform a radiometer covering the entire region of interest, that theoretical curve is shown for
comparison. As we see, for the particular parameters used in this simulation, the block algorithm
does do somewhat better. The modified sine filter appears to do a little better than the energy
concentration filter, although the difference is slight.

Slow FH Results. Six sets of runs were made to simulate detection of a single cell of a Slow EH
signal. Once again, the 32 coefficient modified sine filter was used for the first three sets, with the 22
coefficient energy concentration filter used for the other three. The signal cell in this case was 800
seconds long with a bandwidth of 0.03125 Hz. (These are similar to the dimensions we used for the
hopped/DS cell. For most real world spread spectrum signals, the time bandwidth product of the
hopped/DS cells will be much greater than the time bandwidth product of the Slow FH cell. It was
convenient here, however, to consider similar sized cells for the purposes of comparison and
analysis.) In this case the amplitude was set to 0.3536 so the cell energy, once again, was 50. Each
cell contained five information channels and five micro-cells.

As above, a radiometer covering the entire region of interest in the time frequency plane, and
a radiometer matched to the cell's position were also simulated. These results are plotted in Figure
7.6 along with the theoretical results. Again the agreement is good. It is interesting that the results
for the matched radiometer from the modified sine filter exceed the theory while the results for the
energy concentration filter fall slightly below. The difference between the effectiveness of the filters,
and the difference between these results and the corresponding results in Figure 7.4 must be due to
the energy distribution within the Slow FH cell. With only five micro-cells per cell, it is likely that
the energy in each cell will tend to concentrate in several of the five micro-cell channels, and so
slightly more energy from the sidelobes will be collected by the radiometer.

The results for the block detection scheme are shown in Figure 7.7. Once again, for the
specific signal parameters used in this simulation, the algorithm outperforms the radiometer covering
the entire time frequency region. The results are, as we might expect, quite comparable to those of
Figure 7.5.

155

Figure 7.4. Comparison of Hopped/DS Radiometer Detection Simulation
With Theoretical Predictions

Feature Extraction

Our goal in this section is to develop an algorithm that will estimate the cells' energy, and
their positions and dimensions in the time frequency plane. Actually, using the detection algorithm,
we already have a rough estimate of the cells' positions, since each cell is presumably embedded in a
block whose energy exceeds the detection threshold. In the development of the feature extraction
algorithm, then, we need only consider the portion of the time frequency plane covered by these
blocks.

156

1.0

0.8

0.6

0.4

0.2

.9&

Radiometer
<^Cr

(Theoretical)

32 coefficient sine

22 coefficient tile

0.2 0.3

Pf.

0.4 0.5

Figure 7.5. Block Algorithm Analysis Results
Detecting a Hopped/DS Signal Cell

Considering now a single block containing a cell, we have a situation somewhat similar to
one described in Chapter VI, where the goal was to find a DS signal's bandwidth and center
frequency. Here we want to estimate (among other things) the cell's bandwidth and center frequency,
and the idea of finding the spectral vector for the block and then convolving that with various sized
rectangles seems reasonable: By maximizing a test statistic similar to the one described in
Equation (6.20), the corresponding rectangle size should be a fairly good estimate of the cell
bandwidth. Furthermore, it is easy to see we have a similar situation when trying to find the cell's
duration and location in time: We can find the block's "temporal vector", a vector formed by
summing the energy in tiles corresponding to the same time intervals, and then convolve this with

157

-r 32 coefficient sine

O 22 coefficient tile

lines indicate theoretical results

0.2 0.3

Pft

0.5

Figure 7.6. Comparison of Slow FH Radiometer Detection Simulation
With Theoretical Predictions

various sized rectangles. Once again, the size of the rectangle that maximizes a test statistic can be
used as an estimate of the cell duration. Naturally, we will want to use a high QMF bank tree
decomposition layer to estimate the frequency parameters with high resolution, and a low layer to
estimate the time parameters with high resolution.

158

l.Of

0.8

0.6

Pri

0.4

0.2

,±>i

>-" .>% ■'0.

0' rf^'d^-*'

* $0x>ß''*/^Radiometer
isS.'*** / (Theoretical)

32 coefficient sine

o 22 coefficient tile

0.5
rf»

Figure 7.7. Block Algorithm Analysis Results
Detecting a Slow FH Signal Cell

The feature extraction algorithm, then, should go something like this:

1) The detection algorithm is first used to find blocks containing signal cells. As above, the
particular decomposition layer used here is not critical, as long as each of the blocks' dimensions are
larger than the tiles'.

2) The maximum and minimum times and frequencies are then calculated for the blocks (in
seconds and hertz, as opposed to the tile indices for the particular layer).

159

3) A higher layer of the QMF bank tree decomposition is then used, and a spectral vector is
computed. How high of a layer to use is a judgment call. The higher, the better resolution; however,
tiles from higher layers have a longer duration, and will, therefore, contain more noise from regions
of the time frequency plane where there is no cell energy.

4) Once a spectral vector is obtained, a "rectangle vector" is formed (as in Chapter VI) with
a width equal to the minimum bandwidth cell that the interceptor is interested in finding. The
rectangle vector is then convolved with the spectral vector, the position of the maximum value of the
resulting vector is noted, and a test statistic (described below) is found. The rectangle vector's size is
then increased by one, and the step is repeated until the rectangle equals the maximum sized cell that
the interceptor is interested in finding.

5) The test statistics for the various sized rectangles are then compared, the maximum is
found, and the corresponding rectangle's size and position are taken to be estimates of the cell's
bandwidth and location (in frequency).

A similar process is used to find the time estimates. The trade-offs in choosing a good low
layer of the QMF bank tree decomposition are analogous to those discussed for the high layer.

As discussed in Chapter VI, we cannot compare the energy found between convolutions of
the spectral vector and different sized rectangles, because, as the rectangles become larger, the
amount of both signal energy and noise energy is increased. Of course, a similar situation will occur
here with the temporal vector. We solved this in Chapter VI by finding Equation (6.20), a test
statistic that is adjusted for the rectangle's size and that, when maximized, maximizes the probability
of detection of the signal. Here, we need a similar test statistic, except, rather than adjusting it just
for the spectral rectangle's size, we also want to adjust it for the temporal rectangle's size. With the
same logic that we used to derive (6.20), we can begin with (7.3) and come up with

„.„ „ . hzWL
Vw

where
e0 is the observed energy (the high value resulting from the convolution)

N0 is the one sided noise energy density
Tr is the size of the rectangle when convolving with the temporal vector; the block's

duration when convolving with the spectral vector
Wr is the size of the rectangle when convolving with the spectral vector; the block's

bandwidth when convolving with the temporal vector

As a variation of the algorithm, either the time or frequency parameters could be found using
the entire region of the block, as described above, and then those results could be used to reduce the
region of the block used to find the other (frequency or time) parameters. Although this would tend
to increase the amount of signal energy versus noise energy used in the second set of estimates, any
errors in the first would hurt the second. (We do not explore this further here.)

The cell's energy can either be estimated using the block's energy (subtracting the expected
noise energy), or by using the cell position and dimension estimates to find the energy in that
particular region of the time frequency plane. The problem with the second possibility is that errors
in the position and dimension estimates will increase the error in the energy estimate.

160

Analysis

The purpose of this analysis was to verify the ability of the feature extraction algorithm to
estimate the signal parameters of interest, and to determine how well it works with real (as opposed to
ideal) QMF filters. This was done via simulation. These were set up similar to the detection
simulations whose results are described above. A single hop cell was randomly positioned on the
time frequency plane along with WGN. The cell parameters were identical to those used in the
detection simulations, except for the cell energy which was increased by ten times to e = 500. The

scenario is that the detection of the signal by the interceptor is practically a certainty, and the goal
now is to determine the features. For each of the two types of hop cells, two sets of runs were made;
one each for the 32 coefficient modified sine filter and the 22 coefficient energy concentration filter.

Hopped/DS Results. The error in the time position for each run was computed by first averaging the
estimated beginning and end time for the cell, and then subtracting the known center time. The
results are shown in Figure 7.8. The mean values of the results are -3.58 seconds for the modified
sine filter and -3.42 seconds for the energy concentration filter.

15

10

32 Coefficient Modified Sine Filter

-60 -40 -20 0 20 40 60

22 Coefficient Energy Concentration Filter

-60 -40

Figure 7.8. Error in Estimates of Time Position of Hopped/DS Cells
(Horizontal Axis is Seconds, Vertical is the Number of Estimates in Bin)

The error in the frequency position for each run was computed by first averaging the
estimated lower and upper frequencies for tie cell, and then subtracting the known center frequency.
The results are shown in Figure 7.9. The mean values of the results are -0.173 x 10"3 Hz for the

modified sine filter and -0.075 x 10"3 Hz for tie energy concentration filter.

161

20

10

0

32 Coefficient Modified Sine Filter

, 1—II—1

—I

nnr, .

20

10 •

0.02 -0.01 0 0.01 0.02

22 Coefficient Energy Concentration Filter

^ , nn 1
—

nrin n 0
-0.02 -0.01 0.01 0.02

Figure 7.9. Error in Estimates of Frequency Position of HoppeaVDS Cells
(Horizontal Axis is Hertz, Vertical is the Number of Estimates in Bin)

The estimates of the duration of the cells were made simply by subtracting the beginning
time estimate from tie end. The results are shown in Figure 7.10, and the mean values are 788
seconds and 791 seconds for the modified sine filter and energy concentration filter respectively.
Since the true cell duration is 818 seconds, it appears the energy at very beginning and end of the
cells are dispersed outside of the block. To see why this may be, consider the beginning of the cell:
The transition, being instantaneous, contains frequency components greatly exceeding the Nyquist
rate and, therefore, aliased across the band. The same effect, of course, would occur as the cell is
turned off. It seems likely, then, that the algorithm's estimate of cell duration will always have a
slight bias.

The estimate of the cells' bandwidths were made by subtracting the upper frequency estimate
from the lower, and the results are shown in Figure 7.11. The mean values are 0.0295 Hz and
0.0333 Hz for the modified sine filter and energy concentration filter respectively. The true cell
bandwidth is 0.0305 Hz and so the means are pretty close, however, as can be seen in the figure, the
variation in estimates for individual cells is large.

The energy estimates made by finding the layer seven, tiles that encompass the estimated cell
positions and adding those tiles' energies are shown in Figure 7.12. This includes both the cell
energy and noise energy, and so the expected observed energy is

(7.8) E[e0] = E[ec] + TBN0 = 500(0.774) + 50 = 437

162

20

10

0
650

32 Coefficient Modified Sine Filter

650 700 750 800 850 900

22 Coefficient Energy Concentration Filter

i-i nn
700 •50 800 850 900

Figure 7.10. Estimates of Time Duration of Hopped/DS Cells
(Horizontal Axis is Seconds, Vertical is the Number of Estimates in Bin)

32 Coefficient Modified Sine Filter

10

0
0.01 0.02 0.03 0.04 0.05 0.06 0.07

22 Coefficient Energy Concentration Filter

-

1 1 — 1

'

) nn

10

 I1" 1 —I 1 1

5 -

0 t ,

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 7.11. Estimates of Bandwidth of Hopped/DS Cells
(Horizontal Axis is Hertz, Vertical is the Number of Estimates in Bin)

163

32 Coefficient Modified Sine Filter

200 400 600 800 1000

22 Coefficient Energy Concentration Filter

1000

Figure 7.12. Estimates of Energy of Hopped/DS Cells Plus Noise
(Horizontal Axis is Energy, Vertical is the Number of Estimates in Bin)

where £c is the cell energy collected, and we expect to collect 0.774 of the total cell energy within the
bandwidth of the cell (see Figure 6.4). The cell time bandwidth product is 25, which, with a single
sided noise energy density of two, leads to the result for the second term. The mean energy collected
with the modified sine filter is 443, a value close to the one expected. The mean energy collected
with the energy concentration filter is slightly less, 408.

The block energy collected is shown in Figure 7.13. The expected value is

(7.9) . E[e0] = E[ec] + t0WN0 = 500(0.903) + 200 = 652

Here, we assume the block is approximately centered over the cell and, since its bandwidth is twice
the cell bandwidth, we collect 0.903 of the cell energy. The block's time bandwidth product is 100
leading to the result. The actual mean found using the modified sine filter is 670, while the mean
found using the energy concentration filter is 614.

Slow FH Results. The error in time position for each run was computed in the same manner as
described for the hopped/DS simulation. The results are shown in Figure 7.14. The mean for the
modified sine filter is -3.54 seconds, while the mean for the energy concentration filter is -3.06
seconds.

The error in frequency position was also computed in a manner similar to that described for
the hopped/DS simulation, and the results are shown in Figure 7.15. Here, the mean for the modified
sine filter is -0.532 Hz, while the mean for the energy concentration filter is -0.298 Hz.

164

32 Coefficient Modified Sine Filter

200 400 600 800 1000

22 Coefficient Energy Concentration Filter

800 1000

Figure 7.13. Energy of Blocks That Include a Hopped/DS Cell Plus Noise
(Horizontal Axis is Energy, Vertical is the Number of Estimates in Bin)

20

10

32 Coefficient Modified Sine Filter

- .

^__^ n

20

10

-60 -40 -20 0 20 40 60

22 Coefficient Energy Concentration Filter
1 ■"■—— " " 1 ' 7 "

, I—1 , 1—1 —J ^_n
-60 -40 -20 20 40 60

Figure 7.14. Error in Estimates of Time Position of Slow FH Cells
(Horizontal Axis is Seconds, Vertical is the Number of Estimates in Bin)

165

32 Coefficient Modified Sine Filter

10 .

5 -
r~]

0 nr,n 1 nn
-0.02 -0.01 0 0.01 0.02

22 Coefficient Energy Concentration Filter
 —r i i

10 * -

s

0 -, nn i 1 n
-0.02 -0.01 0.01 0.02

Figure 7.15. Error in Estimates of Frequency Position of Slow FH Cells
(Horizontal Axis is Hertz, Vertical is the Number of Estimates in Bin)

The estimates of cell duration are shown in Figure 7.16. The mean for the modified sine
filter is 774 seconds, while the mean for the energy concentration filter is 780 seconds. Here, as with
the hopped/DS cells, we should expect to see a slight bias resulting from the spread of energy due to
the instantaneous turning on and off of the cells. Since the Slow FH cells used in the simulation are
800 seconds long, a bias is indeed evident.

The estimates of cell bandwidth are shown in Figure 7.17. The mean for the modified sine
filter is 0.023 Hz, while the mean for the energy concentration filter is 0.024 Hz. Since the true cell
bandwidth is 0.03125 Hz, these estimates appear not to be very good. What is apparently happening,
is that, because there are five information channels and only five micro-cells in each cell, many cells
have energy concentrated within a few channels.

The energy estimates made, as for the hopped/DS simulations, by finding the layer seven
tiles that encompass the estimated cell positions, and adding those tiles' energies, are shown in
Figure 7.18. This includes both the cell energy and noise energy, and so the expected observed

(7.8) E[E0] = E[EC] + TBN0 = 500 + 50 = 550

166

10

650

32 Coefficient Modified Sine Filter

650 700 750 800 850 900

22 Coefficient Energy Concentration Filter

20

Hi ii.i
700 750 800 850 900

Figure 7.16. Estimates of Time Duration of Slow FH Cells
(Horizontal Axis is Seconds, Vertical is the Number of Estimates in Bin)

32 Coefficient Modified Sine Filter

20

10

0.01 0.02 0.03 0.04 0.05 0.06 0.07

22 Coefficient Energy Concentration Filter

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 7.17. Estimates of Bandwidth of Slow FH Cells
(Horizontal Axis is Hertz, Vertical is the Number of Estimates in Bin)

167

32 Coefficient Modified Sine Filter

200 400 600 800 1000

22 Coefficient Energy Concentration Filter

20

1 " ■ T "'"1 " "
 ,

10
r—|

—
-

0 n Mnm
2C »0 t oc 600 800 10

Figure 7.18. Estimates of Energy of Slow FH Cells Plus Noise
(Horizontal Axis is Energy, Vertical is the Number of Estimates in Bin)

where, due to the energy distribution of the Slow FH signal cells, as described in Figure 7.1, we
expect to collect essentially all of the cells' energy. As with the hopped/DS simulations, the cell time
bandwidth product is 25. The mean energy collected with the modified sine filter is 492, while the
mean energy collected with the energy concentration filter is 416. These low estimates may be due to
the error in estimating the cells' dimensions.

The block energy collected is shown in Figure 7.19. The expected value is

(7.9) E[e0] = E[ec] + t0WN0 = 500 + 200 = 700

The actual mean using the modified sine filter is 721, while the mean found using the energy
concentration filter is 660.

Summary

We began this chapter by describing the signals we are interested in intercepting: The
hopped/DS signals, which are hopped in frequency, time, or both, and also spread with a random
binary waveform; and Slow FH signals, which are hopped, and spread by the FSK coding of the
signal's information.

168

32 Coefficient Modified Sine Filter

20

10

0
200 400 600 800 1000

22 Coefficient Energy Concentration Filter

1000

Figure 7.19. Energy of Blocks That Include a Slow FH Cell Plus Noise
(Horizontal Axis is Energy, Vertical is the Number of Estimates in Bin)

We then looked at detection, and decided the best method, given the interceptor's knowledge
of the signal structure, is to use a block algorithm, similar to that described in Chapter V, except with
larger blocks. In fact we decided that, given the interceptor's limited knowledge about the range of
cell dimensions, a scheme in which the blocks equal or exceed the maximum possible size of the cells
in each dimension is best. Simulations of this scheme show that a performance better than that of a
simple radiometer is achievable under some conditions. Further investigation in this area is, of
course, possible. In particular, one might try detecting signals in which more than one cell is present
during the observation interval. In this case, rather than simply comparing the highest energy block
to a threshold, the probability of false alarm may be decreased by requiring a certain number of blocks
to exceed a threshold in order to declare a signal to be present.

Finally, we looked at a method for finding estimates of the cells' dimensions and locations in
the time frequency plane, and also estimates of the energy in each cell. It appears that most of the
estimates are fairly good, except perhaps for the estimates of the bandwidth. In the next chapter, we
will use some of these estimates in an effort to Find characteristics to distinguish between hopped/DS
and Slow FH cells.

169

Vm. Characterizing Energy Cells by Their Frequency Distribution

Introduction

In Chapters V-VII, we found algorithms that estimated the dimensions of the DS signal, or
the hopped signals' cells, in the time frequency plane. Even though we developed the algorithms
mathematically using specific distributions of cell energy (usually under a rectangular envelope in the
time dimension and, therefore, sine squared in the frequency dimension), we didn't fully exploit this
knowledge. All we were really interested in was the fact that most of the energy was concentrated in
a small region of the plane. This is reflected in our feature extraction algorithms in Chapters VI and
VII, where we used rectangular windows, rather than windows whose shape is more closely matched
to the signal's characteristics.

One advantage of this is that we should have generally good performance for a wide variety
of signal energy distributions. If the transmitter did not, as we assumed, transmit at full power for the
duration of a hop cell, but instead varied the amplitude over the duration of the cell, under a Gaussian
shaped envelope for example, our interceptor would still be capable of making a good estimate of the
cell's dimensions. Although these numbers would have a slightly different meaning than for the
rectangle or sine squared functions, they would be consistent from cell to cell, and would therefore
allow a classifier, in an intercept receiver architecture like that of Figure 1.2, to determine whether
the relevant cells may have come from a single transmitter.

In this chapter we will do something different, and look at how an interceptor can exploit the
knowledge he might have of the energy distribution from a particular type of spread spectrum
transmitter to decide whether a detected cell came from that type of transmitter. Specifically, the
interceptor will assume, as a null hypothesis, that a detected cell has a particular distribution of
energy in frequency, and we will describe an algorithm in which this hypothesis is tested. After
describing the algorithm, simulation results will be presented to verify it works. In our specific case,
we will use the sine squared energy distribution of the hopped/DS signal cell as the null hypothesis,
and the Slow FH cell as the alternative.

Finally, as we will see, the algorithm suggests a method for estimating the center frequency
and bandwidth for the hopped/DS cells that may be better than the one described in Chapter VII.
This will be discussed, the relationship between these methods will be explored, and simulation
results will be presented for comparison with those of the previous chapter.

Distinguishing Between the Hopped/DS and Slow FH Cells

For this scenario, we will assume the interceptor has used the block algorithm discussed in
Chapter VII and has detected a hop cell with a time bandwidth product larger than one. The question
then is: Is there some way for the interceptor to distinguish between the hopped/DS cell and the Slow
FH cell based on the distribution of energy within the block?

It should probably be noted that this scenario is more of a mathematical exercise than real
life problem. In a practical situation, the time bandwidth product of the hopped/DS cell will
generally be much greater than that for the Slow FH signal. In that case, a better problem might be to
see if the interceptor can distinguish between a hopped/DS cell like the one used in Chapter VII, and
any other one whose amplitude is varied by the transmitter over the duration of the cell. The
algorithm discussed here, however, should be applicable to that case also.

We will use the characteristics of the block's spectral vector to conduct the test. Initially one
might think that some sort of algorithm to look for the energy concentrations due to the micro-cells in
the Slow FH cell may be more effective. The problem with this approach is that the micro-cells,
being closely spaced in the time frequency plane, are difficult to resolve.

For our purposes, as a demonstration of concept exercise, the Slow FH cell, because of the
wide variation in spectral characteristics due to the positioning of the micro-cells, is ideal. Rather
than trying to distinguish between two known distributions, the interceptor is faced with the more
difficult problem of distinguishing a cell with the known distribution from any other. Our test then,
in terms of the null hypothesis, H0, and the alternative, H,, is

H0: Block's Spectral Vector Has Sine Squared Distribution + Noise

H,: Block's Spectral Vector Has Other Distribution +Noise

Tests similar to this are widely discussed in the literature. For example it is similar in many ways to
the Chi-Squared test to determine if a set of statistical values were drawn from a given probability
distribution function (pdf) [14] [29] [40]. For our test, the strategy will be simply to form a spectral
vector from the block containing the signal cell (as described in Chapters VI and VII), decide how
much energy we expect to see in each bin, and then find the square of the difference between that and
the amount actually found. Our test statistic will be the sum of these values.

Given a block containing a hopped/DS cell, and considering for the moment a case when
the cell is located in the center of the block and has a known bandwidth, we should expect the energy
to be distributed as shown in Figure 8.1. The expected noise energy in each bin would be

(8.2) E[Nb] = N0toWb

where
Nb is the noise energy in each bin
N0 is the one sided noise density (usually normalized to two)
t0 is the block's duration
Wb is each bin's bandwidth

while the expected signal energy would be approximately

Ww... ,(L-fA (8.3) E[ek] = e^sinc2f-k
B

where
Ek is the signal energy in the k-th bin
£ is the total cell energy
B is the hopped/DS cell's bandwidth (as defined in Figure 6.4)
fc is the hopped/DS cell's center frequency
fk is the k-th bin's center frequency

Here, we are assuming the bin bandwidth is small enough relative to the cell bandwidth that we can
approximate the area under the sine squared function in each bin with a rectangle whose height is the
value of the function at the center of the bin.

171

Spectral Vector

Figure 8.1. Expected Energy Distribution in a Block's Spectral Vector
When a Hopped/DS Cell is Present and Centered

Now, if we further assume, for the moment, that the signal energy distribution is
deterministic, so ek = E[ek], we will have the case where the pdf of total energy in each bin is the

function in (2.29): Chi-Squared with t0Wb degrees of freedom, and with a non-centrality parameter

equal to ek. For a reasonably large value of t0Wb, we can, as we did in Chapters VI and VII,
approximate this with the Gaussian distribution with a mean of £k + N0toWb and variance of

2N0ek + Nßt0Wb. From this, we can form

(8.4) y* =
vk - ek - N0toWb

V2N0ek + Nst0Wb

where vk is the observed energy in the k-th bin. If our assumptions were valid, the pdf from which
yk was drawn would have a Gaussian distribution with zero mean and variance of one. This is a

172

measure of the difference between the expected energy and true energy in each bin. We can combine
these for all of the K bins in the spectral vector to form the test statistic

(8.5) z = £(yk)
2

k = l

where we square each value of ykto prevent positive and negative values from canceling. Again if
the assumptions were valid, the distribution of this statistic would be Chi-Squared, with K degrees of
freedom. The test, then, would be similar to the Chi-Squared test of a pdf: If the cell really is
hopped/DS, the value of z should be small, and a threshold could be set based on K and the acceptable
probability of a Type I error (in this case, deciding the cell is not hopped/DS, when it actually is).

As it happens, however, the signal energy is not deterministic. The sine squared function is
the Fourier Transform of an infinitely long random binary sequence spreading the signal. Since,
however, we actually have a relatively short duration cell, the length of the random binary sequence is
so short that the true energy distribution will be a bit different in every case, and the sine squared
function is better regarded as an average distribution of the signal energy in the frequency dimension.
We can overcome this difficulty by using the expected signal energy for each bin from (8.3) in place
of Ek in (8.4). This non-deterministic nature of the signal energy will cause a greater variance on the
test statistic z than predicted from the analysis above. If we use hard thresholds (as we do in the
simulations described below) the practical result is that we will have to increase them to achieve the
same probability of avoiding a Type I error.

It may be possible to carry the mathematical analysis further and determine a pdf for £k.
However, we will not explore this further here. Our goal is merely to demonstrate that the
distribution of the spectral vector is a credible method for estimating the character of the signal cell.
Also, any analysis would depend on the specific spreading technique used by the transmitter.
Although we are assuming the signal is spread with a random binary waveform, a more general
application of the techniques described in this chapter may face a Hopped/DS cell spread with some
other random (to the interceptor) waveform. In an actual receiver architecture such as the one in
Figure 1.2, the determination of cell energy distribution would not be made using single cells in each
observation interval in conjunction with a hard threshold, but rather would be made with an ensemble
of z values for many cells and an adaptive classifier. In that case, the values for z would be passed,
along with the other estimated cell information, in the list from the algorithm block to the classifier
block

So far we have only considered the case where the interceptor knows both the center
frequency and bandwidth of the cell. When the center frequency is unknown, it is a reasonable
adaptation of the algorithm above to form a vector of expected energy, and then test it by trying every
possible alignment. This means taking the vector of expected values and "shifting" it along the
spectral vector, much as in the convolution operation. In this case, however, we take the difference in
energies for each bin and form z, using the lowest value found as the test statistic. Notice, this also
gives us an alternative method, from that described in Chapter VII, for estimating the cell's center
frequency.

When the interceptor knows neither the center frequency nor bandwidth of the cell, a further
adaptation can be made by trying different values for B when computing the vector of expected energy
values. As different values are tried, and each is shifted across the spectral vector, values of z are
computed and, it is easy to see, the smallest should correspond to the closest alignment of center

173

frequencies and bandwidths. (Giving us an alternative method, from that in Chapter VII, of
estimating the hopped/DS cell bandwidth.)

Incorporating these changes in the algorithm into (8.5), we have

h-gk+m(B)f mm
(8.6) z =

m,B
y—

(E[ek+m(B)] + N0Nb

where m is the offset as the vectors of expected and observed energy are shifted relative to each other.
(The vectors should be padded on either end by zeros, as necessary.) gk+m is the vector of expected

energy, and is

(8.7) gk+m(B) = E[e,+m(B)] + N0toWb

where E!Ek+m(B)j is the expected signal energy, for a hopped/DS signal with bandwidth B, in bin

k+m found using (8.3). (Notice the expected energy in the k+m th bin is also used in the
denominator of (8.6).)

In general, the actual values of fc and B, and the tested values will not be exactly matched,
since we can't expect to have the cell center frequency align with the spectral vector bins (which
correspond to the QMF bank tree tiles), and we can only try a discrete number of bandwidths. The
first problem can be reduced by examining spectral vectors formed from higher layers of the QMF
bank tree (yielding narrower bin bandwidths). The second can be reduced by using small increments
between tested bandwidths. In the simulations whose results are described below, the increments
used corresponded to the bin widths of the layer examined. Using high layers of the QMF tree also
reduces the error in (8.3). In fact, the reason for using (8.3) in our algorithm, rather than the more
accurate (but more computationally intense) estimate in which the integral of the sine squared
function over the width of the bin is computed, is that the error is only of the order of that due to the
mis-match in center frequency and bandwidth estimates.

To summarize the algorithm:

1) Use the block algorithm described in Chapter VII to find blocks containing signal cells.

2) Select the values of bandwidth to test

3) Form a vector of expected energy values using (8.7)

4) Shift the vectors and test for each value of m, then go to the next value of B and repeat 3), to find
the minimum test statistic as specified in (8.6).

5) Pass the resulting z, for each block, to the classifier block. Or, for our simulations, test z against a
threshold and, if z is lower, decide the cell is hopped/DS; otherwise, decide it is not.

174

Analysis Results

A simulation analysis of this algorithm was carried out using code described and listed in
Appendix E. First, 100 runs were made, each with a waveform consisting of WGN and a single cell
of a hopped/DS signal. The cell parameters were identical to the ones used in the simulations in
Chapter VII: The duration was 818 seconds (normalized), the bandwidth was 0.0305 Hz, to yield a
time bandwidth product of 25, and the cell energy was 500 (with a normalized one sided noise energy
density of one). The cell was found using the block algorithm described in Chapter VII and the test
statistic was computed using the algorithm described above with the spectral vector formed from the
layer seven output of the QMF bank tree. This was tested against a vector of hard thresholds and the
probability of making a Type I error (deciding the cell is not a hopped/DS cell) was found.

Then, 100 runs were made with a waveform consisting of WGN and a Slow FH signal.
Again the cell parameters were the same as those used in Chapter VII: The duration was 800 seconds
and the bandwidth was 0.03125 Hz, so the time bandwidth product was also 25. As above, a cell
energy of 500 was used. The test vector was computed using the algorithm described above, and this
was tested against the same vector of hard thresholds used for the hopped/DS cells. This yielded a
probability of correctly deciding the cell was not hopped/DS.

As in previous chapters, these simulations were repeated three times each for the 32
coefficient modified sine filter and the 22 coefficient energy concentration filter. The results are
presented in Figure 8.2. The vertical axis, in the figure, represents the probability of the interceptor
correctly rejecting the null hypothesis (deciding the cell is not hopped/DS) when the actual cell is
Slow FH. The horizontal axis represents the probability of the interceptor making a Type I error:
Incorrectly rejecting the null hypothesis when the cell is, in fact, hopped/DS. As can be seen, both
sets of filters yield a similar performance.

As discussed above, this algorithm can also be used as an alternative to the feature extraction
algorithm in Chapter VII for estimating the center frequency and bandwidth of the hopped/DS cell.
Because the algorithm in this chapter uses more information: The expected shape of the spectral
vector, rather than simply the greatest concentration of energy, there is reason to expect it may work
better.

The code listed in Appendix E was also used to make these estimates. To make the
comparisons with those in Chapter VII direct, fifty runs were made, each with a hopped/DS cell with
the parameters as described above. The spectral vector was formed using the layer ten output from
the QMF bank tree.

The error in the estimate of the center frequencies is shown in Figure 8.3, and can be
compared to the error in the Chapter VII algorithm shown in Figure 7.9. The histograms show no
clear benefit of one algorithm over the other.

The bandwidth estimates are shown in Figure 8.4, and can be compared to the Chapter VII
algorithm's estimates shown in Figure 7.11. For these estimates, the algorithm used in this chapter is
clearly superior.

The experiment was also conducted using Slow FH signal cells, but, not surprisingly, the
estimates of center frequency and bandwidth were no better than those made with the algorithm in
Chapter VII.

175

0.8

Probability °-6

of Correctly

Rejecting
Hopped/DS
Cell o_4

JE + -HF .
'+*-

++ 44-+ +-rPo

£too*°
00

32 coefficient sine

22 coefficient tile

0.2 0.4 0.6 0.8
Probability of Type I Error

Figure 8.2. Results of Test to Determine Whether Cell is Hopped/DS

Summary and Conclusions

This chapter very briefly explored the use of a least squares algorithm to distinguish between
cells by the distribution of their energy in frequency. This is nothing revolutionary, and we did not go
into very great depth. Rather, we merely went far enough to illustrate that the concept will work for
an intercept receiver with an architecture like that in Figure 1.2. In addition, we saw that it offers a
good method for estimating the bandwidth of the cell, when the general shape of the distribution is
known to the interceptor.

176

20

10 ■

32 Coefficient Modified Sine Filter
 ' 1

|—i

—

—|

__

1 11—1 ,

-0.02 -0.01 0 0.01 0.02

22 Coefficient Energy Concentration Filter

0.02

Figure 8.3. Error in Estimates of Hopped/DS Cells
(Horizontal Axis is Hertz, Vertical Axis is the Number of Estimates in Bin)

32 Coefficient Modified Sine Filter

10

5 -

n ' , i . i

0.01 0.02 0.03 0.04 0.05 0.06 0.07

22 Coefficient Energy Concentration Filter

10 •

5 -

0 » __J ' J 1 .

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 8.4. Estimates of Bandwidth of Hopped/DS Cells
(Horizontal Axis is Hertz, Vertical Axis is tie Number of Estimates in Bin)

177

This algorithm was discussed in terms of the block's spectral vector. There is no reason,
however, why it could not also be used on the temporal vector, in the case of a hop cell whose
amplitude is varied under a non-rectangular envelope, when that may be more of a distinguishing
characteristic than the distribution of energy in frequency.

One intriguing idea for further research would be, to add adaptive techniques to the
algorithm. This is similar in concept to digital adaptive equalizers which use least square algorithms
to adjust their filter coefficients. In our case, the actual energy observed in the bins of spectral (or
temporal) vectors, from blocks containing detected cells, could be used to adjust our expectations for
the next observation. The goal would be to "train" the intercept receiver to recognize a transmitter's
cells.

One way to accomplish this would be to use an artificial neural net (ANN) as a classifier in
the receiver architecture shown in Figure 1.2. In this case, rather than sending the test statistic, z, to
the classifier, the entire spectral (and/or temporal) vector would be sent. The ANN could take this as
an input, and be trained to recognize vector patterns, although some provision to pre-shift the vector
before input, to adjust for variations in the cell's center frequency relative to the block, might be
desirable.

178

IX. Summary, Conclusions, and Recommendations

Summary and Discussion

The goal of this research was to develop methods to decompose a waveform, using
orthogonal basis functions and a quadrature mirror filter (QMF) bank tree, and extract detailed
information about embedded LPI (spread spectrum) signals. In the first chapter, we explored the
background of the problem: Defining the specific LPI signals to be used in the analyses, discussing
the current state of knowledge in the field of LPI signal detection, and laying out an architecture
(Figure 1.2) for an intercept receiver that would accomplish the goal.

The research was primarily concerned with two parts of the receiver architecture: The QMF
bank tree, and the analyzer block. Chapters II and m dealt with the former, while Chapters V-VIII
discussed algorithms used in the latter.

QMF Bank Tree

Chapter II was, for the most part, a review and interpretation of published results in the
context of our problem. The chapter laid out the general mathematical framework for the QMF bank
tree. The decomposition of a function by orthogonal basis functions was discussed, and it was shown
how a good choice of basis set could be used to improve' the detection of a deterministic signal
embedded in white Gaussian noise (WGN). Various examples of orthogonal basis sets were then
discussed, leading to the Wavelet Transform and the QMF bank tree. In the course of this discussion,
five rules were laid out that would yield finite impulse response (FIR) filters suitable for the tree.

The most important point of the chapter was that, with good filters, the output of the QMF
bank tree would be a decomposition of the input waveform in such a way that the square of each value
would represent the energy approximately contained in a rectangular tile of the time frequency plane,
with each tile having an area of 0.5. Furthermore, the tiles represented by the output of a particular
layer of the tree were twice as long in duration, and half as tall in frequency, as those from the layer
above.

Although this representation is more-or-less true for any filters meeting the requirements
spelled out in the five rules, some filters are better than others at collecting the energy concentrated in
the tiles. (It is, of course, mathematically, impossible to do this perfectly.) Somewhat surprisingly,
there is little discussion of this specific problem in the Wavelet literature, and so, in Chapter III,
several "good" filters were derived.

The first of these was the "modified sine filter". Basically, it was determined that a tree of
filters would concentrate energy perfectly in the frequency dimension if the filters were based on a
prototype FIR filter whose coefficients were equal to samples under a sine function envelope. This
basic premise was modified to obtain practical filters meeting pur requirements.

Although the modified sine filter concentrates energy nearly perfectly in the frequency
dimension, it does not do as well in the time dimension, and so a compromise filter, trading off the
amount of out of tile energy in the time and frequency dimensions, was found. This was done by
defining an objective function and minimizing it with respect to the filter coefficients. Although a
drawback of this type of filter is that it is optimized for only one particular output of the QMF bank
tree, the ability to concentrate energy by other outputs was shown to be good. A function optimizing

the first layer low pass output was found and minimized, and the result was a 22 coefficient "energy
concentration filter". Both this filter and the modified sine filler were used in the analyses described
in subsequent chapters.

Simulation Programs

In the later chapters, Monte-Carlo simulations were used to verify mathematical results and
to provide an indication of results when the mathematics, in the analyses, were intractable.
Chapter IV described some of the programs used in the simulations. In particular, the code
generating the LPI signals was described, as was the code used to decompose a waveform in the
manner of the QMF bank tree. Various simple tests, to verify the code functions as it should, were
also described.

Detection

Chapters V-VII developed the analyzer block algorithms to detect and extract features of LPI
signals. When the signals included hopping in their structure, as they did in Chapter V (hopped
signal cells with time bandwidth products of one) and Chapter VII (hopped cells spread with a DS
signal, and slow FH cells), the best method of detection was shown to be the "block algorithm" in
which the energy from adjacent tiles (forming blocks) are summed.

The basic premise for this algorithm was laid out in Chapter V, where it was shown that the
radiometer/threshold detector is guaranteed to be the best detection architecture only when no
assumptions are made about the distribution of the signal's energy in the time frequency plane. It has
been shown in the literature, and was discussed in the chapter, that when the interceptor knows the
channelization and hop synchronization of the signal, the filter bank combiner (FBC) architecture
often yields better performance. The key to the FBC's success is that it divides the time frequency
plane into blocks matched (in size and position) with the signal cells and detects concentrations of
energy. In the problems discussed in this research, however, the interceptor is assumed not to know
the channelization or hop synchronization of the signal(s) being detected. To overcome this, the
nature of the QMF bank tree output is exploited: Overlapping blocks in the time frequency plane are
examined, with the idea that one of these blocks will best cover each cell, unfortunately, analysis of
the block algorithms' performance was found to be mathematically intractable, due to the non-
independence of the noise in the overlapping blocks. However, it was pointed out the results can be
bounded: Performance should be somewhat poorer than the FBC, but will often be better than a
radiometer/threshold detector. This was verified by example, with simulation.

In Chapter V, the "nine tile scheme" was used to look for signals whose cells have a time
bandwidth product of one. In this algorithm, the block dimensions were three tiles by three tiles. By
looking at multiple layers of outputs from the QMF bank tree, some particular block will always
contain most of the energy from each signal cell. These blocks generally contain a larger total energy
than those containing noise only, and so a detection decision can be made by taking the larger energy
blocks, throwing out the blocks that overlap, and comparing the high energy blocks to a threshold. In
the chapter hard thresholds were used, although in the architecture of Figure 1.2 the block energies
would be submitted as input to a classifier block, which may use a more sophisticated decision
scheme.

In Chapter VII, it was found that, in general, blocks that are equal to or larger than the cell
in each dimension are preferable to blocks that are smaller. This was used in the detection of

180

hopped/DS and slow FH cells-cells whose time bandwidth products are greater than one. In this
chapter a layer was selected in which the tiles were smaller, in each dimension, than the cells to be
detected. The block size was then determined by finding the number of tiles in each dimension that it
would take to equal or exceed the maximum possible cell size. Then, as in the nine tile scheme, the
larger energy blocks were found, overlapping blocks were discarded, and a detection decision was
made by comparing the large energy blocks against a threshold.

The detection of DS signals was explored in Chapter VI. However, it was quickly pointed
out if this is the sole function of the intercept receiver, it would be better to replace the QMF bank tree
with a discrete Fourier Transform. The chief advantage of the QMF bank tree 'is to simultaneously
decompose the input waveform with high resolution both in time and frequency. Since the DS signal
is assumed to be turned on for the duration of the observation, high resolution in time is not required.

The algorithm to detect DS signals involves taking a high layer of the QMF bank tree (or
taking a discrete Fourier Transform), and forming a "spectral vector", in which each element, or bin,
represents the energy from a particular narrow frequency band. Then, the spectral vector is
convolved with various sized rectangular windows and, for each rectangle size, the high energy
positions are saved, and positions that overlap are discarded. For each of these saved positions, a test
statistic is computed and used to compare the data from the different sizes of rectangles. To do this,
the test statistics are compared among the different sized overlapping positions, and the positions
with the highest value are saved, while the overlapping ones are discarded. The result is a list of
suspected DS signals with the energy collected (the result of the convolution), along with the sizes
and positions of the rectangles. The detection decision is then made by comparing the energy against
a threshold. (Once again, a hard threshold in the case of the simulations performed in the chapter,
although a more sophisticated scheme involving a classifier and soft thresholds is possible.)

As with the block algorithms, the analysis of this algorithm is mathematically intractable due
to the non-independence of the noise collected by overlapping rectangles. The performance, however,
can be bounded and will be less than that of a radiometer adjusted to the bandwidth of the DS signal,
but may be greater than that of a radiometer adjusted to the entire observation bandwidth.

Feature Extraction

"Feature Extraction", in this research, specifically meant estimating the energy, bandwidth,
and center frequency of each DS signal or hopped cell, and the duration and position in time of each
cell. In addition, in Chapter VIII, the distribution of energy in frequency was used as an estimator to
determine the type of cell present. The feature extraction algorithms described in Chapters V-VTI are
extensions of the detection algorithms.

In Chapter V, the locations of the cells (with time bandwidth products of one) were estimated
directly from the positions of the blocks determined to contain them. The cell dimensions were
estimated from the layer that the block came from, and the cell energy was estimated by subtracting
the expected noise energy from the total energy found in the blocks.

In Chapter VI, the size and position of the rectangular windows, used in the detection
algorithm described above, gave estimates of the DS signal's bandwidth and center frequency. The
amount of energy collected under each rectangle minus the expected noise energy, yielded an estimate
of the signal energy.

181

In Chapter VII, the locations of the cells (with unknown time bandwidth products greater
than one) were roughly estimated from the positions of the blocks determined to contain them. These
estimates were refined by using variations on the algorithm developed for the DS signal. A spectral
vector was formed from the area of the time frequency plane under each block, and the algorithm was
used to estimate each cell's bandwidth and center frequency. Similarly, a "temporal vector" was
formed from each block, and the convolution of rectangles algorithm was used to estimate the
duration and position in time of each cell. The energy for each cell could be estimated either from the
total block energy, or from the energy contained in the time frequency plane under the estimated cell
position (with the appropriate expected amount of noise energy subtracted off in each case).

In all three chapters, the feature extraction algorithms were verified via simulation.
Histograms of the estimates were presented to give the reader a sense of the distribution.

The advantage of using rectangular shaped windows in some of algorithms described above
is that the intercept receiver is somewhat less sensitive to the particular distribution of signal energy.
This is desirable when the interceptor does not know precisely what distribution to expect, but
disregards the possibility of using the distribution as a method to distinguish between transmitters'
signal cells. This possibility is explored in Chapter VIE, where the distribution of cell energy in
frequency is used to distinguish hopped/DS cells with sine squared distributions from others.

Specifically, the algorithm calls for the interceptor to first use the block detection algorithm
as described in Chapter VII. Spectral vectors are then computed from the blocks determined to
contain cells. "Expected spectral vectors" are then computed from the expected energy in each bin of
the spectral vector for the possible bandwidths and cell positions. These are compared against the
measured spectral vector for each block by summing the squared difference for each bin. The
minimum of these values is taken to be from the best match of expected and true bandwidth and
position. This value is then compared against a threshold and, if less, the decision is made that the
cell has the assumed distribution.

This algorithm also offers an alternative method, to the one in Chapter VE, for estimating a
cell's center frequency and bandwidth. Simply: The best match of expected spectral vector with the
true vector should occur when the center frequency and bandwidths used to compute the expected
spectral vector are closest to matching the true values.

Combining the Algorithms

In the event the interceptor wishes to simultaneously look for different types of spread
spectrum signals, there is no reason the algorithms discussed in this paper can not be combined. At
the risk of boring the reader by repeating information, here is a concise summary of a combined
algorithm for the analyzer block in the receiver architecture of Figure 1.2:

1) Form a spectral vector of the entire observed time frequency plane using the output from
the highest layer of the QMF bank tree (yielding the finest resolution). From this, use the algorithm
described in Chapter VI to look for DS signals. Namely: Form rectangular windows whose sizes
range across the possible signal bandwidths, and convolve them with the spectral vector. Save the
largest elements of convolution-representing, presumably, the energy collected when the rectangular
window best covers a DS signal--and throw out elements from overlapping rectangles. The resulting
list with energies, rectangle sizes, and positions, can then be passed to the classifier to make detection
decisions. (When the interceptor knows the shape of the spectrum of signals to be detected, the least

182

squares algorithm of Chapter VIII may also be used, in addition to, or in lieu of, the one from
Chapter VI.)

2) Pick an intermediate layer of the QMF bank tree output to look for hopped signals whose
cells have time bandwidth products greater than one. The layer should have tiles that are smaller
than the maximum cell dimensions in both time and frequency. Then perform the block detection
algorithm described in Chapter VI: From the intermediate layer, form overlapping blocks, with the
block dimensions equal, in each case, to the maximum possible cell dimension. Look for blocks
containing the highest amounts of energy, and throw out overlapping blocks. The resulting list of
blocks, with their locations and the amounts of energy, can then be passed to the classifier to make
the detection decision.

When a large range of cell sizes are looked for, detection performance can be improved by
repeating 2) with smaller block sizes.

Once the blocks are found using 2), the cell dimensions and positions can be estimated by
forming spectral and temporal vectors from the blocks (using, respectively, high and low layers of the
QMF bank tree to improve resolution) and convolving them with rectangular windows, in a manner
similar to that described in 1) above. Results can be passed to the classifier along with the list of
blocks.

Alternatively, the least squares algorithm discussed in Chapter vm may be used to find the
cells' center frequency and bandwidth, when the interceptor knows the cells' spectral shape. This
algorithm may also be used to distinguish between cells.

3) For hopped cells with time bandwidth products of one, carry out the detection algorithm
discussed in Chapter V: Select a range of QMF bank tree output layers such that the frequency
dimension of three by three tile blocks exceeds the maximum cell bandwidth for the lowest layer, and
the time dimension exceeds the duration of the cell at the highest layer. For each of these layers, find
the three by three blocks containing the maximum energy and save those while discarding
overlapping blocks. Then repeat this, comparing the blocks from the different layers. The resulting
list of block energies, sizes, and positions, can then be passed to the classifier to make a detection
decision and to estimate the cell features.

Major Conclusions and Contributions of the Research

This research establishes that:

1) The overall architecture of the intercept receiver presented in this paper, as shown in
Figure 1.2, is sound. It is a good alternative to the simple radiometer/threshold detector, particularly
for detecting hopped LPI spread spectrum signals when the channelization, cell duration, and hop
synchronization are unknown.

2) Both the modified sine filter and energy concentration filter yield good results when used
in the QMF bank tree.

3) The nine tile scheme appears to yield good detection performance against cells with time
bandwidth products of one. Although it is dangerous to generalize too widely from simulation
results, they do seem to indicate the nine tile scheme will out-perform the radiometer/threshold
detector in many situations.

4) The QMF bank tree appears not to be the best method for decomposing an input signal
when the only goal is the detection of DS signals.

5) For detecting hopped signals whose cells' time bandwidth products are greater than one,
the block detection algorithm, as laid out in Chapter VII, yields good performance results.
Simulations indicate this exceeds the performance for the radiometer/threshold detector.

6) By examining the dimensions of the blocks resulting from the nine tile scheme, the
dimensions of cells with time bandwidth products equal to one may be estimated. These estimates
should be close enough, in many cases, for a classifier to determine which cells came from separate
transmitters. Similarly, each nine tile block's energy provides a good estimate of the signal cell's
energy.

7) Estimates of DS signals' center frequencies and bandwidths may be made with the
algorithm described in Chapter VI. A similar algorithm may be used to estimate cell sizes and
locations within blocks, for blocks found using the algorithm described in Chapter VII for detecting
cells with time bandwidth products greater than one. The estimates of position and time duration are
generally good, although the estimates of bandwidth may leave something to be desired. In the case
where the interceptor knows the general spectrum of the signal energy, the least squares algorithm
described in Chapter Vm appears to offer better results.

8) Chapter Vffl's least squares algorithm is a good method to distinguish transmitters' cells
when the cells' spectral shapes differ significantly.

9) When desirable, the various algorithms discussed in this paper may be combined as
discussed in the last section above.

Recommendations For Further Research

The research reported in this paper has explored the possibilities of using QMF bank trees to
decompose a received waveform to look for and detect LPI spread spectrum signals. As such, it has
necessarily been rather broad in scope, and, because of this, most, if not all, of the areas discussed in
this paper could be examined in greater depth. What follows is a brief list of ideas that have occurred
to the author during the course of investigation. The reader may, of course, have further inspiration
or insight.

1) Although the performance evaluation of algorithms involving overlapping blocks appears
to be mathematically intractable (see Chapter V), additional work in this area may prove valuable.
Tighter bounds, or suitable approximations, yielding detection probabilities for given signal
parameters, would be a great aid to the engineer in determining if this intercept receiver is
appropriate for a particular scenario. This appears to be a problem in non-independent order
statistics.

2) In this research, whenever signal energy was treated as a random variable, only the
expected values were used in the analysis. For example, in Chapter VIII, the expected signal energy
in each bin of the spectral vector was used. Further insight may be gained by determining (or
approximating) the pdf, or at least the second moments. Even more valuable would be to extend this
analysis and, look not just at the pdf of signal energy in each spectral bin, but in each tile of the time
frequency plane. In the research in this paper, the energy from each signal cell contained in a block

184

was taken to be more-or-less deterministic. An analysis determining the pdf of the energy in each tile
might well lead to better detection algorithms, and additional methods for distinguishing between
multiple signals.

3) Including the classifier in the analysis is an obvious next step. Especially in some
particular scenario, it would be interesting to see how well an adaptive classifier, such as an artificial
neural network, can use the information output from the analyzer algorithms to detect and classify
signals. Including the relatively new developments in "fuzzy logic" adds even more possibilities.

4) Cyclostationary detectors have not been discussed in this paper with the exception of a
very brief mention in the literature review in Chapter I. In this sort of detector, the spectral
correlation of the input waveform is computed, and examined for periodicities that may be due to an
LPI signal [22] [23]. It would be interesting to compare the capabilities and performance of this
method to the ones discussed in this paper. It may also be possible to combine some of the concepts
presented here, particularly the QMF bank tree, with cyclostationary detection.

5) Chapter Vffl explored the possibilities of distinguishing between different transmitter's
cells based on the cells' spectral shapes. There, hopped/DS cells were compared to the radically
different slow FH cells. It would be interesting to see well this method works for distinguishing
between more subtle differences in energy distribution. For example: In the hopped/DS cells
considered in this paper, the transmitter was assumed to turn the cell on and then off instantaneously.
This, of course, is not possible in reality-any real transmitter will broadcast transients shaping the
cell in some manner. One possibility for further research would be to determine whether individual
transmitters might be distinguished from one another based on these transients. In addition to
looking at the spectral vectors, as in Chapter VII, temporal vectors may well prove worthy of analysis
in this effort. An adaptive classifier would also probably be vital here, since it could attempt to find
and match subtle differences in cell shapes without a priori knowledge.

185

Appendix A: Matlab Files Described in Chapter IV

Table of Contents

LPI Signal Generators

DS.M

FFH.M
FFHDEMO.M
TH.M

SFH.M

HAAR.M
DA4.M

Page

NOISEGEN.M 187

187

DSDEMO.M 188

188
189
189

THDEMO.M 190

FFHTH.M 191

FHTHDEMO.M 192

193

SFHDEMO.M *94

Quadrature Mirror Filter Bank

QMF.M 194

196
196

DA16.M 197

CON22.M 198

TSINC.SU.M 1"
TSINC.M 20°
TONE.M 200
TTGE^fDAT.M 201
DISCON.M 201
CROSST.M 201
IMPTEST.M 201
CROSSF.M 201
NOISTEST.M 202
NORMGOF.M 202

function[n] = noisegen(seed)
%
% [n] = noisegen(seed) Generates a file of 32768 elements
% of Gaussian distributed noise with
% mean = 0, var = 1
%
% seed is the seed value

NUM_SAMPLES = 32768;

randn('seed',seed);

n = randn(NUM_SAMPLES, 1) ;

function [signal] = ds(seed,theta,fc,B)
%
% [signal] = ds(seed,theta,fc,B)
%
% The signal is assumed to be sampled at one sample/sec, so
% the normalized digital frequency range is [0,1/2).
%
% INPUTS:
% seed seed for DS spreading
% theta carrier offset
% fc center frequency of signal
% B bandwidth of signal
%
% Both fc and B are digital frequencies
%
% OUTPUT:
% signal the signal sequence

NUM_SAMPLES = 32768;
t = [1:NUM_SAMPLES] ;

% A is a random binary waveform that varies from +1 to -1
rand('seed', seed);
bin = floor(2 .*rand(ceil(NUM_SAMPLES.*B),1)) ;
A = 2 .*bin(ceil(t(:).*B)) - 1;

signal = A(:).*sin(2 .*pi.*t(:).*fc + theta);

187

% dsdemo.m Script file to demonstrate ds.m

[signal] = ds(86,0,.25, .15);

M = stft(signal,128,128);
M = M.*conj(M);
[m,n] = size(M);
M = M([l:m./2],:);
contour(M);

figure;
f = fft(signal);
f = f.*conj (f);
f = f([length(f).12:length(f)]);
plot([1:length(f)],f);

function [signal, channel] = ffh(seedl,seed2,theta,If,CH,T,phase,B)
%
% [signal, channel] = ffh(seedl,seed2,theta,If,CH,T,phase,B)
% Fast Frequency Hopped Signal.
%
% The signal is assumed to be sampled at 1 sample/sec, so the
% normalized digital frequency range is [0,1/2).
%
% INPUTS:
% seedl seed for random hop sequence
% seed2 . seed for DS spreading
% theta carrier phase
% if lowest frequency (If = center freq of channel 1 - B/2)
% CH number of channels
% T cell length (in samples)
% phase shifts the cells by <phase> samples, range: [0,T)
% B (optional) cell bandwidth
%
% If B is not present, the signal generated will be pure FH.
% Otherwise, each cell is spread with a DS sequence.
% If and B are both digital frequencies.
%
% OUTPUTS:
% signal the signal sequence
% channel the hop sequence

NUM_SAMPLES =327 68;
t =[1:NUM_SAMPLES];

% Select channels randomly -- channel will be the hop sequence,
% its length will equal the number of cells

channel = ceil(CH.*rand(ceil(NUM_SAMPLES./T)+1,1));

% Spread cells with a random binary waveform
% A is the waveform and varies between +1 and -1
if nargin < 8

B = 1 ./T;
A = ones(NUM_SAMPLES,l) ;

else
rand('seed', seed2);
bin = floor(2 .*rand(ceil(NUM_SAMPLES.*B),1));
A = 2 .*bin(ceil(t(:).*B)) - 1;

end;

% cell_number is a sequence equal in length to t
% It indicates which cell is on at which time
cell_number(:) = (floor((t(:)+phase-l)./T) + 1)';

signal = A(:).*sin(2 .*pi.*t(:).* ..
(If B./2+B.*channel(cell_number(:)))+theta);

% ffhdemo.m Script file to demonstrate ffh.m

[signal, channel] = ffh(10,57,0,0,20,3200,0, .025);

M = stft(signal,128,128);
M = M.*conj(M);
[m,n] = size(M);
M = M([l:m./2],:);
contour(M);

function [signal, position] =
th(seedl,seed2,theta,fc,slots,T,phase,B)
%
% [signal, position] = th(seedl,seed2,theta,fc,slots,T,phase,B)
% Time Hopped Signal
%
% The signal is assumed to be sampled at 1 sample/sec, so the
% normalized digital frequency range is [0,1/2).
%
% INPUTS:
% seedl seed for the random position sequence
% seed2 seed for DS spreading
% theta carrier phase
% fc center frequency
% slots number of slot positions per transmitted cell
% T cell length (in samples)
% phase shifts the cells by <phase> samples,
% range: [0,T*slots)
% B (optional) cell bandwidth
%
% If B is not present, the signal generated will be pure TH.
% Otherwise, each cell is spread with a DS sequence.
% fc and B are both digital frequencies.
%
% OUTPUTS:
% signal the signal sequence
% position the position sequence

189

NUM_SAMPLES = 327 68;
t = [1:NUM_SAMPLES];

% Select cell positions randomly
rand('seed',seedl);
spc = slots.*T; % samples per cell
N" = ceil(NUM_SAMPLES./spc + 1); % Number of cells
position = ceil(slots.*rand(N,1));

% TX will be used to turn the signal on during transmit positions
TX = zeros(NUM_SAMPLES + spc,l);
on = ones(T,1);
for i = 1:N

% j is the position of the 1st sample of a cell
j = (i-l).*spc + T.Mposition(i)-l) + 1;
TX(j:(j+T-1),1) = on(:,l);

end;
TX = TX((1 + phase):(NUM_SAMPLES + phase),1);

% Spread cells with a random binary waveform
% A is the waveform and varies between +1 and -1
if nargin < 8

B = 1 ./T;
A = ones(NUM_SAMPLES,1);

else
rand('seed', seed2);
bin = floor(2 .*rand(ceil(NUM_SAMPLSS.*B),1)),-
A = 2 .*bin(ceil(t (:) .*B)) - 1;

end ;

signal = A(:) .*TX(:) .*sin(2 . *pi.*t(:) .*fc + theta);

% thdemo.m script file to demonstrate th.m

[signal, position] = th(10,57,0, .25,3,3200,0,.025) ;

M = stft(signal,128,128);
M = M.*conj(M);
[m,n] = size(M);
M = M([l:m./2],:);
contour(M);

190

function [signal,channel,position] = ..
ffhth(seedl,seed2,seed3,theta,If,CH,slots,T,phase,B)

%
% [signal,channel,position] =
% ffhth(seedl,seed2,seed3,theta,If,CH,slots,T,phase,B)
% Fast Frequency Hopped/Time Hopped Signal.
%
% The signal is assumed to be sampled at 1 sample/sec, so the
% normalized digital frequency range is [0,1/2).
%
% INPUTS:
% seedl seed for the random position sequence
% seed2 seed for random hop sequence
% seed3 seed for DS spreading
% theta carrier phase
% If lowest frequency (If = center freq of channel 1 - B/2)
% CH number of channels
% slots number of slot positions per transmitted cell
% T cell length (in samples)
% phase shifts the cells by <phase> samples, range:
% [0,T*slots)
% B (oDtionai) cell bandwidth
%
% If B is not present, the signal generated will be pure FH.
% Otherwise, each cell is spread with a DS sequence.
% If and B are both digital frequencies.
%
% OUTPUTS:
% signal the signal sequence
% channel the hop sequence
% position the position sequence

NUM_SAMPLES =3 27 68;
t = [1:NUM_SAMPLES];

% Select cell positions randomly
rand('seed',seedl);
spc = slots.'T; % samples per cell
N*= ceil(NUM_SAMPLES./spc +1); % Number of ceils
position = ceil(slots.*rand(N,1));

% TX will be used to turn the signal on during transmit positions
TX = zeros(NUM_SAMPLSS + spc,l);~
on = ones(T,1);
for i = 1:N

% j is the position of the 1st sample of a cell
j = (i-l).*spc + T. * (position (i)-l") + 1;
TX(j: (j+T-D.l) = on(:,l);

end;
TX = TX((1 + phase):(NUM_SAMPLES + phase),1);

191

% Select channels randomly -- channel will be the hop sequence,
% its length will equal the number of cells
rand('seed', seed2);
channel = ceil(CH.*rand(ceil(NUM_SAMPLES./spc)+1,1));

% Spread cells with a random binary waveform
% A is the waveform and varies between +1 and -1
if nargin < 10

B = 1 ./T;
A = ones(NUM_SAMPLES,1);

else
rand('seed', seed3);
bin = floor(2 .*rand(ceil(NUM_SAMPLES.*B),1)) ;
A = 2 .*bin(ceil(t(:).*B)) - 1;

end;

% cell_number is a sequence equal in length to t
% It indicates which cell is on at which time
ceil_number (:) = (f locr ((t-(:) +phase-l) . /spc) + 1)';

sianal = A(:) .*TX(:) . * . .
sin(2 .*pi.*t(:).*(lf-3./2+B.»channel(cell_number(:))) +.

theta);

% fhthdemc.m script file to demonstrate ffhth.m

[signal,channel,position] = ffhth(7 , 47 , 43 , 0, 0,20,3,3 2 00,0, .025) ;

M = stft (signal,128,128);
M = M.*conj(M);
[m,n] = size(M);
M = M([l:m./2],:);
contour(M);

192

function [signal, channel] =
s fh(s eedl,seed2,theta,1f,CK,T,phase,M,Ntpc)
%
% [signal, channel] = sfh(seedl,seed2,theta, If, CH,T,phase,M,Ntpc)
% Slow Frequency Hopped signal
%
% The signal is assumed to be sampled at 1 sample/sec, so the
% normalized digital frequency range is [0,1/2).
%
% INPUTS:
% seedl seed for random hop sequence
% seed2 seed for information sequence
% theta carrier phase
% If lowest frequency
% CH number of channels
% T cell length (in samples)
% phase shifts the cells by <phase> samples, range: [0,T)
% M number of FSK frequencies
% NtDC number of FSK transitions per cell
%
% OUTPUTS:
% signal the signal sequence
% channel the hop sequence

NUM_SAMPLES = 327 68;
t = [1:NUM_SAMPLES];
spt = T./Ntpc; % samples per transition
bw = 1 ./spt; % bandwidth of symbol
5 = K.*bw; % ceil bandwidth

% randomly generate an information sequence
rand('seed', seed2);
info = ceil(M.»rand(ceil(NUM_SAM?LES./spt + Ntpc),l));

% Select channels randomly -- channel will be the hop sequence,
% its length will equal the number of cells
rand('seed', seedl);
channel = ceil(CH.*rand(ceil(NUM_SAMPLES./T)+1,1)) ;

% ceil_number is a sequence equal in length to t
% It indicates which cell is on at which time
cell_number(:) = (floor((t(:)+phase-l)./T) + 1) ' ;

% symbol is a sequence eqjal in length to t
% It indicates which information symbol is on at which time
symbol(:) = ceil((t(:)+phase-l+eps)./spt)';

% frequency at each sample time
freq(:) = If - B + ..

B.»channel(cell_number(:)) - bw./2 + bw.*info(symbol(:));

signal = sin (2 . *pi . *t (:) . *freq (:) + theta,);

193

% sfhdemo.m Script file to demonstrate sfh.m

[signal, channel] = sfh(10,57,0,0,20,3200,0,4,10);

M = stft(signal,128,128);
M = M.*conj(M);
[m,n] = size(M);
M = M([l:m./2],:);
contour(M);

function qmf(f,filter,N)
% qmf(f,filter,N)
%
% Quadrature Mirror Filter. This takes the input waveform f, and
% processes it with a QMF. bank. 'filter' is optional and
% specifies a file of filter coefficents. Default is haar.m
%
% Modification: 19 Feb 95. N is an optional input and specifies
% the last layer to be computed. This can save time if the
% higher layers are not needed. The default is to compute all of
% the layers (this provides backward compatibility).

if nargin < 2
filter = 'haar.m';

end ;

n = floor(log2(length(f)));

% number of layers
if nargin < 3

N = n;
end ;

I([1:2 .Än],1) = f ([1:2 .»n]l;
out = I;

194

% decompose the function
for lay = 1:N % layer

diso(lay)
flag = 1;

% reshape the output matrix
[r,c] = size(out);
out = zeros(r./2, c.*2);

for i = 1:2 .A(lay-1) % column of I (low to high)
[G,H] = feval(filter, I(:,i));

if flag
out(:, i.*2-l) = H;
out(: , i.*2) = G;

else
out(:, i.*2-l) = G;
out(:, i.*2) = H;

end;
flag = -flag;

end ;

I = out;

% save the data to disk
eval(['save c:\data\layer',int2str(lay),'.dat I /ascii /double']);

end;

195

function [dl, cl] = haar(cO)
%
% [dl, cl] = haar(cO) uses Haar filter to decompose the column
% vector cO into a (high frequency) column
% vector dl and(low frequency) column vector cl

% Daubechies filter coefficients
hO = 2 ."(-1/2);
hi = hO;

h = [hO hi] ;
g = [hi -hO];

N = length(cO);

% i will decimate by 2
i = 2:2:N;

% comoute cl
cl = filter(fliplr(h),l,cO);

% decimate
cl = cl(i);

% compute dl
dl = filter(fliplr (g),l,cO);

% decimate
dl = dl(i);

function [dl, cl] = da4(c0)
%
% [dl, cl] = da4(c0) uses Daubechies' 4 coefficient Wavelet filter
to
% decompose the column vector cO into a (high
% frequency) column vector dl and (low frequency)
% column vector cl.

% Daubechies filter coefficients
% main coefficient
% main coefficient

hO = .482962913145;
hi = .836516303738;
h2 = .224143868042,
h3 = -.129409522551;

h = [0 0 hO hi h2 h3];
g = [h3 -h2 hi -hO 0 0];

N = length(cO);

% pad with zeros to clear out filter
pad = 4;
cO = [cO; zeros(pad,1)];

% i will decimate by 2
i = pad:2:(N+pad-2);

% compute cl
cl = filter(fliplr(h),l,c0) ;

196

% decimate
cl = cl(i);

% comoute dl
dl = filter(fliplr(g) ,l,cO) ,-

% decimate
dl = dl(i) ;

function [dl, cl] = dalo(cO)
%
% [dl, cl] = dal6(c0) to uses Daubechies' 16 coefficient Wavelet
% filter to decompose the column vector cO into a
% (high frequency) column vector dl and (low
% frequency)column vector cl.

% Daubechies filter coefficients
hO = .054415842243;
hi = .312371590914;
h2 = .675630736297; % main coefficient
h3 = .585354633654; % main coefficient
h4 = -.015829105256;
h5 = -.284015542962;
h6 = .000472484574;
h7 = .128747426620;
h8 = -.017369301002;
h9 = -.044083253931;
hiO = .013981027917;
hll = .008746094047;
hi2 = -.004870352993;
hl3 = -.000391740373;
hl4 = .000675449406;
hl5 = -.000117476734;

h = [zeros(1,10) hO hi h2 h3 h4 h: h6 h7 h3 h9 ...
hlO hll hi2 h!3 hl4 hl5];

g = [hl5 -h!4 h!3 -h!2 hll -hlO hS -hS h7 -ho ...
h5 -h4 h3 -h2 hi -hO zeros(1,10)];

N = length(cO);

% pad with zeros to clear out filter
pad =14;
cO = [cO; zeros(pad,1)];

% i will decimate by 2
i = pad:2:(N+pad-2);

% compute cl
cl = filter(fliplr(h),l,c0);

% decimate
cl = cl (i) ,-
% ccmDute dl
dl = filter(fliplr(g),l,c0);
% decimate
dl = dl(i) ;

197

function [dl, cl]
%
% [dl, cl] = ccn22(cO)

cor.22 (cO)

uses the energy concentrating 22 coefficient
Wavelet filter to decompose the column vectc:
cO into a (high frequency) column vector dl
and (low frequency) column vector cl.

% filter coefficients

hO =
hi :
h2 :
h3 :
h4 :
h5 :
ho :
h7 :
h3 :
h9 =
hlO
hll
h!2
hl3
h!4
hl5
hi 5
hl7
hl3
hl9
h2 0
h2i

[ze
hi
[h2

0.069
0.087
Q.693
0.693

094
091
042
046
036
034
022
021
022
021
013
013
015

0.016
0.006
0.009
0.001
0.000
ros (1
0 hll
1 -h2
10 h9

0.
-0
-0,
0,
0,

-0.
-0.
0.
0.

-0.
-0.
0.
0.

3705
8745
0366
0753
9165
3933
4533
7599
1353
6823
S123
0093
9653
4573
4375
1843
5025
3630
2717
9323
0545
8325:
,15)

" hi 2
hi!
-h3

780637
4185760
1557137; % main tap
5109821; % main tap
9263189
9673362
5524319
1002879
8459632
1058910
0449607
5003910
3051731
0458290
9528443
6272982
5127782
8107201
6236924
8693342
9770882
2352776
hO hi h2 h3 h4 h5 ho h7
h!3 hi4 hl5 hi5 hi" his .._.
-hl3 h!7 -hi5 hl5 -hi4 h!3

h7 -ho h.5 -h4 h3 -h2 hi -hO

h8 h9

-h!2 h]
zeros (3 16) j;

N length(cO);

% pad with zeros to clear cut filter
pad =20;
cO = [cO; zercs;pad,1)];

% i will decimate by 2
i = pad:2:(N+pad-2);

% compute cl
cl = filter(fiiplr(h),l,c0);

% decimate
cl = cl(i);

% compute dl
dl = filter (fliplr(g),l,c0);

% decimate
dl = dl(i);

198

function tsinc_su(N);
%
% tsinc_su(N) finds the coefficients for the truncated sine
% filters. These are saved in the data directory
% under h.dat (Ipf) and g.dat (hpf). The Hamming
% window is used to suppress the Gibb's phenomena.
%
% N is the number of coefficients. If N is between
% 16 and 32768, the sine is compressed slightly to
% eliminate the loss of energy in the filter tran-
% sitions. For best results, N should be a power
% of two.

tabl = [16 1.80745449451012
32 1.90189442447347
64 1.95048099151118
128 1.97512319592231
256 1.98753217974055
512 1.99375872328059
1024 1.99687751845516
2048 1.99843829823671
4096 1.99921903384616
8192 1.99960948810196
16384 1.99980473684531
32768 1.99990236662119];

tab2 = [16 1.22099338489190
32 1.10429475163860
64 1.05069751126202
128 1.02499785161815
256 1.01241259545240
512 1.00618488680080
1024 1.00308711196069
2048 1.00154222577172
4096 1.00077078066449
8192 1.00038530731821
16384 1.00019263291076
32768 1.00009631126893];

if (N < 16) I (N > 32768)
C = 2;

else

end;

S = 1;

C = tablel(tabl,N);
S = tablel(tab2,N);

x = [-floor(N./2):floor(N./2)-l]' ;
h = sqrt(S./2).*sinc((x + .5)./C);

% window
w = hamming(N);
h = w.*h;
% find hpf
g = h;
g([2:2:N]) = -h([2:2:N]);

% save data
save c:\data\h.dat h /ascii /double;
save c:\data\g.dat g /ascii /double;

199

function [dl, cl] = tsinc(cO)
%
% [dl, cl] = tsinc(cO) uses truncated sine filter coefficients to
% decompose the column vector cO into a (high
% frequency) column vector dl and (low
% frequency) column vector cl.
%
% tsinc_su must have been run previously to create h.dat and
% g.dat. That program determines how many coefficients are used.

% load filter coefficients
load h.dat; h = h';
load g.dat; g = g ' ;

N = length(cO);

% pad with zeros to clear out filter
pad = length(h)./2 + 1;
cO = [cO; zeros(pad,1)j;

% i will decimate by 2
i = pad:2:(N+pad-2);

% comDUte cl
cl = filter(fliplr(h),l,cO);

% decimate
cl = cl(i) ;

% ccirtDute dl
dl = filter(fliplr(g),l,cO);

% decimate
dl = dl(i);

function [signal] = tcr.e(amD, df, theta);
%
% [signal] = tone(amo, df, theta) generates a tone.
%
% amp amplitude
% df digital frequency (0 to 1/2)
% theta phase (in radians)

NUM_SAMPLES = 2 .A15;
t = 1:NUM_SAMPLES;

signal = amp.*sin(2 . *pi.*t.*df + theta)';

200

% ttgendat.m script file to generate qmf test data for a tone

df = 0.3;
amp = 1;
theta = 0;

tt = tone(amp, df, theta);
qmf(tt,'dal6');
clear tt;

% discon.m script file to display a contour plot of the
% output of a layer of the qmf bank

load layer7.dat;
M = layer7 . A2;
clear layer7;

contour(M')

% crcsst.m shows a section of the qmf output data taken halfway
% through the observation period.

load layerl0.dat
[m,n] = size(layerlO);
dat = layerlO(ceil{m./2),:),A2;

clear layerlO;

plot(1:n,dat);
axis([l n 0 (1.1).*max(dat)]);

% imptest.m script file to generate qmf test data for an impulse

length = 2 ."15;
f = zeros(lencth,1);
f(length./2) = 1;
qmf(f, 'haar');
c1ear i;

% crossf.m shows sections of the qmf output data taken at
% all frequencies

load layerl0.dat
[m,n] = size(layerlO);
cat = layerlO ."2;

clear layerlO;

plot(l:m,dat(l:m,:), 'r');
a:<is ([1 m 0 (1.1). *max (max (dat))]) ;

201

% noistest.m script file to test linearity and
% Parceval relationship, with noise

seed = 8016;
noise = noisegen(seed);
qmf(noise, 'haar',1);

enO = sum(sum(noise."2));
load layerl.dat;
enl = sum(sum(layer1 ."2));

disp('(energy in-energy out)/energy in')
disp((en0 - enl)/en0)

ci = normgof(noise);
disp('noise: ')
disp(ci)
disp(mean(noise))
disp(var(noise))

ci = normgof(layerl(:));
disp('layerl:')
disp(ci)
disp(mean(layerl(:)))
disp(var(layerl (:)))

function [ci] = normaof(V)
%
% [ci] = normgof(V) Performs a Chi-Squared Goodness of Fit Test on
% . the elements of vector V to see if they are
% from a Gaussian distributed random process with
% mean = 0 and variance = 1.
%
% V is the input vector. The elements are placed
% into 8 bins and results are compared with a
% Chi-squared variable with 7 degrees of freedom.
%
% The output, ci, is a 0-1 vector giving the
% results of the following confidence tests:
%
% .995 .990 .975 .950 .050 .025 .010 .005
%
% Gaussian and Chi-Sguared results come from the
% Appendicies in Random Signals, Detection,
% Estimation, and Data Analysis by Shanmugan and
% Breipohl

% Percentage Points on Chi-Sguared Distribution with 7 degrees of
% freedom
cs = [.989265 1.239043 1.68987 2.16735 14.0671 16.0128...

18.4753 20.2777];

% Set up bins
bin = [-1.43 -.87 -.48 -.16 .16 .48 .87 1.43];

% bin data
x = hist(V,bin)';

202

% expected
ex = (0.125).»length(V);

% test variable
v = sum(((ex - x(:))."2)./ex);

% compare test variable to each confidence value
ci = (v.»ones(1,length(cs))) <= cs;

203

Appendix B: Matlab Files Used to Carry Out Simulations Presented in Chapter V

Table of Contents

Page

QMFFBCM 205
FBCSIM.M 206
TILE.M 206
TILEMAX.M 208
NTNOISE.M '209
QMF9DET.M 210
SIM9DET.M 210
QMF9ML.M 211
SIM9ML.M 212
BLOKLIST.M 213
FINDDIM.M 214
STBLOKLS.M 215
TW1FE2.M 215

QMFFBC.M decomposes a waveform with the QMF bank tree and evaluates the output as a
filter bank combiner (FBC) receiver. The first input is the waveform, assumed to consist either of
WGN, or of WGN and a Fast FH signal with cells 128 samples long each in 32 channels from 0.125
to 0.375 Hz. The other two inputs are the thresholds, Th and K, shown in Figure 5.6. Th may be a
vector of threshold values yielding a vector of corresponding results. The advantage of this will be
seen when the simulation is described.

The file first evaluates the waveform with QMF.M, then finds the energy in the tiles at layer
six from 0.125 to 0.375 Hz. Energy in pairs of tiles adjacent in time are then added to create a matrix
ro. The values of ro are then compared to each threshold in Th, and the results are evaluated in a
manner logically identical to the OR gate and BMW. Finally, each element in the binary output
vector, det, is assigned "1" if a signal is taken to be present and "0" otherwise, for each corresponding
threshold in Th.

function dec = qraffbc (waveform,Th,K)
% det = qmffbe(waveform,Th,K) Uses the QMF as a F3C tc
% evaluate a waveform
%
% The signal is assumed to be FH with cell length = 123 and with
% 32 channels
%
% Th is the threshold on the radiometers, and may be a vector.
% X is the threshold on the 3MW and must be a number.

det is a binary output vector and is 1 if a signal is assumed
to be present.

%

qmf(waveform,'con22' , 6} ;

load layer6.dat
[m,n] = size (layerS);
cat = layer5 ."2;
clear layers;
% only look at frequencies w channels
cat = dat(l:m, (n./4 + l): (3.*n./4)) ;
% combine signal as in a F3C
[m,n] = size(dat);
ro = dat (1:2: (m-i) , :) + dat (2 : 2 :m, :) ;

% threshold
for i = 1:length(Th)

L = ro > Th(i);
x = sum(any(L ')) ;
det (i) = x > K;

end;

205

Simulations of an FBC were carried out with the script file FBCSIM.M. As described in
Chapter V, each "set" consists of 100 runs with noise only, and 100 runs of signal and noise. To do
this, FBCSIM.M was called separately for eacb 100 runs. For noise only inputs, the line determining
the signal was commented out, and the line constructing waveform was modified. The signal in this
case is created by FFHTH.M (described in Chapter IV and listed in Appendix A). Each cell is located
among 32 channels and 25 time slots. The channels range from 0.125 to 0.375 Hz. Each time slot is
128 seconds long. In the 32768 second observation period, we should see 10 cells, and will
occasionally see the first part of another. To obtain a total cell energy of 20, the signal is multiplied
by 0.559, as indicated by (5.1).

% fbcsim script file to simulate using the qmf bank as a FBC

start = clock;

Th = [16:0.2:23];
K = 1;
rep = 100;

fcr loop = l:rep
disp(loop)
% generate signal
[signal,channel] = ...

ffhth(3 00000 + loop,500000-rloop, 67 , 0 , 0 .125 , 3 2 , 2 5 , 123 , 0) ;
noise = ncisegen(loop+100000);
waveform = noise + (. 559).'signal;

detflccp,:) = qmffbc(waveform,Th,K);
end ;

? = sum(det)./rep;

disp(etime(clock,start));

TTLE.M carries out the "nine tile scheme" as described in Chapter V. The input, M, is a
matrix of the squared coefficients from a layer of the QMF bank. Following the code listing: bf and
bt are the block dimensions in frequency and time (changing these are all that is necessary to change
this from a "nine" tile scheme to one with other block dimensions), and bit and blf are the number of
blocks along each dimension in the time frequency plane. The matrix block, with dimensions bit and
blf. is allocated, and will be used to hold the energy for each 3 by 3 block.

The energy for each block is then found by iterating through a nested loop, with i being the
time index and j the frequency. X is a 3 by 3 matrix taken from the appropriate portion of M, and
containing the energy coefficients for the 9 tiles in each block. These values are summed, and the
result is stored as the appropriate element in block.

celljist will be the eventual output for the file, and is a three column list. The first column
will contain block energy, while the second and third columns will contain the blocks' positions in
time and frequency, respectively. Since the final length of celljist will depend on how the block
energy is distributed and the way blocks overlap, we cannot know how long the list will be, but we
know it will be at least nine times (bt times bf) smaller than the number of elements in block, so this
amount of space is (over) allocated for celljist.

206

Rather than sort the values in block, then go through the list looking for overlaps, as
described in the strategy sub-section above, it was found to be faster (and is logically equivalent) to
retain block as is, use the built in "max" command to find the largest element, save the element value
and its position to cell_list, zero out that element and adjacent overlapping elements, and then to
repeat this procedure until all of the elements in block have been zeroed. Continuing with the listing:
this is accomplished with the while loop, which will run until all of the elements in block are set to
zero, k is used as an index, and is incremented for each loop iteration.

For each loop iteration, the maximum element in block is found by first treating block as a
vector. I is the vector position of the element while Y is the element's value. The matrix position, i
and j are then found from I and bit. The element's value and location are then added to celljist.
The elements representing overlapping blocks are then calculated, and the range is indicated by
i_min, l_max, j_min, and j_max. (When finding these values, the edges of block must be
considered.) The maximum element and overlapping elements are then set to zero.

Finally, celljist is sized to eliminate the unused rows.

function cell_list = tile(M)
% cell_list = tile(M) This function takes as input a layer
% from the QMF, and evaluates it using the 9 tile scheme. The
% output iscell_list, a three column list with the block energy,
% the oosition in time; and the position in frecuencv.
% "

% block dimensions
bf = 3; % frequency dimension
bt = 3; % time dimension

[m,n] = size(M);
bit = m-bt+1;
blf = n-bf+1;
block = zeros(bit,blf) ;

% compute the block energy
j. or j = l : Di i.

for i = i:blt
X = M([i: (i + bt-1)] , [j : (j+bf-1)]) ;
block (i,j) = sum(X(:));

end;
end ;
clear M;

% over-allocate space for cell_list
cell_list = zeros(length(blockt:))./(bt.*bf),3);

207

% find the energy concentrations and list results
k = 0;
while max(block(:)) > 0

k = k+1;

% find the largest energy block
[Y,I] = max(block(:));
i = rem(I,blt);
if i == 0

i = bit;
end;
j = ceil(I./bit);

% add entry to list
cell_list(k,:) = [Y i j];

% zero out overlapping blocks
i_min = max(l,i-bt+1); i_max = min(blt,i+(2 .*bt)-l);
j_min = max(l, j-bf+1) ; j_max = min(blf,j+(2 .*bf)-l);
x = i_max - i_min + 1;
y = j_max - j_min + 1;
block([i_min:i_max],[j_min:j_max]) = zeros(x,y);

end; % while

cell_list = cell_list([l:k],:);

TILEMAX.M is similar to TILE.M, except it only finds the largest energy block (and takes
far less time to run). This is particularly useful for some types of signal detection, where the
signal/no signal decision is based on the largest amount of energy found in a block. The code is,
literally, a cut and paste modification of the code in TTLE.M.

function cell_max = tilemax(M)
% cell_max = tilemax(M) This is a short version of tile(M)
% that computes only the largest energy cell in cell_list.
%
% The tile(M) function takes as input a layer from
% the QMF, and evaluates it using the 9 tile scheme. The output
% is cell_list, a three column list with the block energy, the
% position in time, and the position in frequency.
%

% block dimensions
bf = 3; % frequency dimension
bt = 3; % time dimension

[m,n] = size(M);
bit = m-bt+1;
blf = n-bf+1;
block = zeros(bit,blf);

208

% compute the block energy
for j = l:blf

for i = l:blt
X = M([i:(i+bt-1)],[j:(j+bf-1)]j;
block(i,j) = sum(X(:));

end;
end;
clear M;

% find the largest energy block
[Y,I] = max(block(:));
i = rem(I,blt);
if i == 0

i = bit;
end;
j = ceil(I./bit);

% add entry to list
cell_max = [Y i j];

NTNOISE.M was used to generate Figure 5.13 in Chapter V.

% NTNOISE.M script file to generate empirically the noise
% pdf curve (as a histogram)

N = 100;
x = [0:0.5:50]'; % histogram bins
y = zeros(size(x));

for loop = 1:N
disp(loop)

% generate noise waveform and find QMF bank output
noise = noisegen(loop);
qmf(noise,'con22',6);

load layer6.dat;
dat = layer6 .~2;
clear layer6;

% find block cell energy
cell_list = tile(dat);

% genrate histogram
y = hist(cell_list(:,1),x)' + y;

end;

% display histogram
NB = sum(y);
y = y./NB;
bar(x,y)
axis([0 50 0 max(y)])

209

QMF9DET.M decomposes a waveform with the QMF bank tree and evaluates the output
both using the nine tile scheme, and as a radiometer/threshold receiver. In QMF9DET.M, each
signal is analyzed with QMF.M, the results from layer six are collected for the observation
bandwidth, squared, and stored in dat. The highest energy block is then found using T3LEMAX.M
and the result is compared to the vector of thresholds, Th. For the radiometer part of the simulation,
the elements of dat are summed, and the result is compared to the vector of thresholds, ThR.

function [det,rad_det] = qmf9det(waveform,Th,ThR)
% [det,rad_det] = qmf9det(waveform,Th,ThR)
% Uses the QMF and the 9 tile
% scheme to detect a signal
%
% Th is the threshold, and may be a vector.
% det is a binary output vector and is 1 if a signal is assumed
% to be present.

qmf (waveform, ' cor.22 ' , 6) ;

load layer6.dat
[m,n] = size(layer5);
dat = layers ."2;
clear layer6;
dat = dat(1:m,(n./4 + 1):(3.*n./4)); % only look at frequencies

% w channels

% find highest energy block
cell_max = tilemax(dat);

% compare to threshold
det = cell_max;l,1) > Th(:)';

% find radiometer detection (for comparison)
sd = sum(dat(:));.
rad det = sd > ThR(:)';

SIM9DET.M simulates detection with the nine tile scheme and with a radiometer.
Following the listing: 100 signals for each set are generated that are similar to the signals used in the
FBC simulations. In this case however, we make no assumptions about alignment between the cells
of the signal and the tiles of our analyzing filter bank. For this reason, a random phase offset,
affecting the timing of the hops, are included when generating each signal, phase is a 100 element
vector of random integers from 0 to 127. Similarly, the channelization for each signal was shifted
randomly by shifting If over the bandwidth of one channel (0.0078125 Hz). In order to assure the
signal stayed within the observation bandwidth, only 31 channels are used, vice 32 for the FBC
simulations. If is a 100 element vector of random integers from 0 to 127. QMF9DET.M is then used
to make the detection decision.

no

% sim9det script file to simulate detection using the 9 tile scheme

start = clock;

ThR = [16800:5:17500];
Th = [30:0.2:50];
rep = 100;

% set random phase
seed4 = 200000;
rand('seed',seed4);
phase = floor(128*(rand(1,rep)));

% set random channelization
seed5 = 3 00000;
rand('seed',seed5);
If = 0.125 + (.0078125).*rand(l,rep);

for loop = l:rep
disp(loop)
% generate signal
[signal,channel] = ...

ffhth(800000+loop,500 000+loop,67,0,If(loop),31,25,12 8,phase(loop));
noise = ncisegen(loop+100000);
waveform = noise + (.559).'signal;

[D(loop,:.i DRdoop,:)] = qmf9det (waveform, Th, ThR) ;
end ;

P = sum(D)./rep;
PR = sum(DR)./rep;

cisp(etime(clock,start));

QMF9ML.M decomposes a waveform using the QMF bank tree, and evaluates the output
from various layers using the nine tile scheme. The largest energy block obtained from all of the
layers is then compared against the vector Th, and a 1-0 detection vector, det, is returned.

function det = qmf9ml(waveform,Th,l_layer,h_layer)
% det = qmf9ml(waveform,Th,l_layer,h_layer)
% uses the QMF and the 9 tile
% scheme to detect a signal over several layers
%
% Th is the threshold, and may be a vector.
% l_layer is the first (lowest) layer examined
% h_layer is the last (highest--or farthest down the tree)
% layer examined
% det is a binary output vector and is 1 if a signal is assumed
% to be present.

211

gmf(waveform,'con22',h_layer);

cm = 0;
for loop = l_layer:h_layer

loopstr = int2str(loop);

% load the layer data
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr, ')']) ;
dat = eval(['layer',loopstr,' . *2']);
eval(['clear layer',loopstr]);
% only look at frequencies w channels
dat = dat(l:m,(n./4 + 1):(3.*n./4));

% find highest energy block
cell_max = tilemax(dat);
cm = max (cm, cell_max(l, 1)) ,-

end ;

% compare to threshold
det = cm > Th(:)';

SIM9ML.M is similar to SIM9DET.M, except that tbe evaluation is performed for multiple
layers of the QMF bank tree output, through QMF9ML.M.

% sim9ml script file to simulate detection over multiple layers of
% the qmf bank, using the 9 tile scheme

Th = [20: .2:60] ;
rep = 50;

l_layer = 3;
h_layer = 10;

% set random phase
seed4 = 200000;
rand('seed',seed4);
phase = floor(128*(rand(l,rep)));

% set random channelization
seed5 = 300000;
rand('seed',seed5);
If =0.125 + (.007 8125).*rand(1,rep);

for loop = l:rep
disp(loop)
% generate signal
[signal,channel] = ...

ffhth(800000+loop,500000+loop,67,0,If(loop),31,25,128,phase(loop));
noise = noisegen(loop+100000);
waveform = noise + (.791).*signal;

D(loop,.-) = qmf 9ml (waveform, Th, l_layer ,h_layer) ;
end;

P = sum(D)./rep;

212

The Mailab files to accomplish the feature extraction algorithm are BLOKLIST.M.
FINDDIM.M, and STBLOKLS.M'.

BLOKLIST.M finds the lists of blocks, using the nine tile scheme, for layers between the
lower layer, 1 Jayer, and upper layer, h_layer. It assumes the signal has already been decomposed
with QMF.M, and loads the results which have been previously stored to the hard drive. As with the
detection simulations, here we will assume the signal ranges between 0.125 and 0.375 Hz, and so the
code only examines this range (with dat). The nine tile scheme list, for each layer, is found using
TILE.M (described above), and all of the results are saved to cl. The first three columns of cl are
from the output of TILE.M and are the block's energy, left most (earliest) position in time, and lower
position in frequency, respectively. The fourth column is added by BLOKLIST.M and is the layer the
block came from.

FINDDIM.M takes cl from BLOKLIST.M and computes the beginning and end times and
lower and upper frequency limits for each block. The code is straight forward. Note the dimensions
of the blocks (in tiles) are set by bf and bt, and must agree with the values set in TILE.M. Also,
when computing the frequency parameters an offset of 0.125 is added to account for the fact we are
only looking at signals in" the band 0.125 to 0.375 Hz. The output of FINDDIM.M is a list,
blockjist, where the first column shows the energy in each block, the second column is the layer
number, the third and fourth columns are, respectively, the lower and upper time limits of the block,
and the fifth and sixth columns are, respectively, the lower and upper frequency limits.

STBLOKLS.M takes blockjist from FINDDIM.M, finds the largest energy blocks, and
eliminates overlapping lower energy blocks. Following the listing: It does this by first sorting the
rows of blockjist by the blocks' energy, in descending order, and saving the result in sortJist. The
code then goes into a while loop which executes until sortjist is empty. For each iteration of this
loop, a logic vector L of zeros is created, whose length is the number of rows in sortjist. L will be
used to indicate which rows will be saved, and so sortjist will become smaller with each iteration.
Continuing with the listing: The first row of sortjist, for each iteration, is saved to twl Jist, and the
dimensions of this block are compared to all of the other blocks in sortjist. For blocks not
overlapping, the corresponding element of L is set to one. Finally, the rows of sortjist
corresponding to zero elements of L are eliminated. The output, twl Jist, is the list of blocks we
desire. As with blockjist, the first column shows the energy in each block, the second column is the
layer number, the third and fourth columns are, respectively, the lower and upper time limits of the
block, and the fifth and sixth columns are, respectively, the lower and upper frequency limits. In a
receiver like the one shown in Figure 1.2, twl Jist would be the list output from the analyzer block to
the classifier block.

function [cl] = bloklist (l_layer,h_layer)'
% [cl] = bloklist d_layer,h_layer")
%
% This uses TILE.M and finds cell lists
% for layers from l_layer to h_layer.
%
% The lists are concatenated, and output as
% cl, a four column list. The fourth column is
% the layer number (the other three come from TILE.M)
%
% Only the portions in each layer from 0.125 to
% 0.375 Hz are examined.

213

cl = [];
for loop = l_layer:h_layer

loopstr = int2str(loop);
disp(['collecting cell list for layer ',loopstr,j

% load the layer data
eval(['load layer',loopstr,'.dat']) ;
[m,n] = eval(['size(layer',loopstr, ')']) ;
dat = eval(['layer',loopstr,' ."2']);
eval(['clear layer',loopstr]);
% only look at frequencies 0.125 to 0.375 Hz
dat = dat(l:m, (n./4 + 1): (3.*n./4)) ;

% get the cell list
clnew = tile(dat);

% add the layer number and include clnew in cl
clnew = [clnew loop.*ones(length(clnew),1)];
cl = [cl;clnew];

end;

function [block_list] = finddim(cl)
% [block_list] = finddim(cl)
%
% This takes cl from BLOKLIST.M and computes the
% beginning and end times for each block and their
% lower and upper frequency limit
%
% for each row, the order is:
% energy layer # low time hi time low free hi freq

% block dimensions
bf = 3 ;
bt = 3 ;

N = lenath(cl);
n = [1:N]';

% preallocate & fill in known columns
block_list = zeros(N,6);
block_list(:,1) = cl(:,l); % energy
block_list(:,2) = cl(:,4); % layer

% find beainninq time of block
block_list(n,3)"= (cl (n,2)-1) . * (2."block_list(n,2));

% find end time of block
block_list(n,4) = block_list(n,3} + bt.*(2.Ablock_list(n,2)) - 1;

% find lower frequency
block_list(n,5) = (cl(n,3)-1)./ (2."block_list(n,2)).*(0.5) +0.125;

% find upper frequency
block_list(n,6) = block_list(n,5) + bf./(2.Ablock_list(n,2)).*(0 .5)

214

function [twl_list] = stblokls(block_list)
% [twl_list] = stblokls(block_list)
%
% This takes block_list from FINDDIM.M, and sorts
% the rows of the list by energy in each block
% (descending order). It then looks for overlapping
% blocks and eliminates the lower energy blocks of
% any that do overlap.

twl_list = [];

% sort block list based on energy
[Y,I] = sort(block_list(:,l));
I = flipud(I);
sort_list = block_list(I,:);

while sort_list ~= []
% L is a logic vector
L = zeros(length(sort_list(:,1)),1)■

% transfer the top row of sort_list to twl_list
twl_list = [twl_list;sort_list(1,:)];

% eliminate overlapping blocks from sort_list
L = ((sort_list(1,3) >= sort_list(:,4)) I ... % time

(sort_list(1,4) <= sort_list(:,3))) I ...
((sort_list(1,5) >= sort_list(:,6)) I ... % freg
(sort_list(1,6) <= sort_list(:,5)));

sort_list = sort_list(L,:);
end;

TW1FE2.M simulates the feature extraction of hopped signals whose cells have time
bandwidth products of unity. In a manner similar to that used in SIM9DET.M, 25 signals are
generated for each set, each with a random phase and channelization. Inside the loop, the signal is
generated, added to noise, and the cell center frequencies and times are saved in cell. The waveform
is then decomposed using QMF.M and the (large) input vectors are cleared. The QMF bank tree
outputs are then analyzed using BLOKLIST.M, FINDDIM.M, and STBLOCKS.M, as described
above, resulting in a list, twljist, of blocks, their energies and positions in the time frequency plane.
These entries include blocks containing signal cells, and blocks containing energy from cell sidelobes
and noise. Of these, the largest energy blocks are taken and sorted by time-and these blocks were
found to be the ones, generally, containing the cells. (This was done heuristically here. In the actual
receiver, like the one shown in Figure 1.2, this would be the job of the classifier.) The positions of
these blocks are then compared to the known cell positions and the differences are save in
delta_time, and delta_freq. The energy of the blocks is also saved to energy.

% twlfe2.m script file to extract features from a TW = 1 signal

delta_time = [];
delta_freq = [];
energy = [];

l_layer = 5;
h_layer = 7;

215

rep = 25;

% set random phase
seed4 = 200000;
rand('seed',seed4);
phase = floor(128*(rand(1,rep)));

% set random channelization
seed5 = 300000;
rand('seed',seed5);
If = 0.125 + (.0078125).*rand(l,rep);

for loop = l:rep
disp(loop)
% generate signal
[signal,channel,slots] = ...
ffhth(800000+ioop,500000+loop,67,0,If(loop) ,31,25,128,phase(loop))
noise = noisegen(100000+loop) ;
waveform = noise + (2).*signal;

% determine the first 10 cells' center frec's and times
N = 10;
n = [1:N]';
cell = zeros(N,2);
cell(n,2) = (0.0078125) .* (channel(n)-l) + (0 . 0078125) ./2 + ...

If(loop);
celKn.l) = (n-1) .* (128) .* (25) + (128) .* (slots (n) -1) + 64 - ...

phase(loop);

qmf(waveform,'con22',h_layer);

% remove the inputs that are no longer needed
clear noise;
clear signal;
clear waveform;

% find the lists'of blocks for all of the layers
[cl] = bloklist(l_layer,h_layer);

% find the locations of the blocks
[block_list] = finddim(cl);

% sort the blocks and eliminate overlaps
[twl_list] = stblokls(block_list) ;

% determine statistics
% take blocks of twl_list > 100
L = twl_list(:,1) > 100;
1 = twl_list(L,:);
% sort by time
[Y,I] = sort(l(:,3));
1 = 1(1,:);
1 = 1(1:10,:); % only look at first 10 -

% find differences in time & freq
delta_time = [delta_time; (1(:,3)+1(:,4))./2 - cell(:,l)];
delta_freg = [delta_freq; (1(:,5)+1(: , 6))./2 - cell(:,2)];

energy = [energy; 1 (: ,1)];
end;

216

Appendix C: Matlab Files Used to Carry Out Simulations Presented in Chapter VI

Table of Contents

Page

RADSIM.M 218
QMFRAD.M 218
DS.SIM.M 219
ISOLATE.M 220
LOCATE.M 221
STRECTLS.M 221
DSSIM.M 222
DSFESIM.M 223

RADSIM.M and QMFRAD.M are used to simulate the detection of DS signals with a
radiometer/threshold detector, as shown in Figure 6.5. When the probability of false alarm is
measured, the line generating signal is commented out.

% radsim script file to simulate using the qmf bank as a radiometer

start = clock;

Th = [1000:5:1100];
rep = 100;

for loop = l:rep
disp(loop)
% generate signal
[signal] = ds(300000+loop,0,0.3359375,0.015625);
noise = noisegen(loop+100000);
waveform = noise + (.0887).»signal;

det(loop,:) = qmfrad(waveform,Th);
end ;

P = sum(det)./rep;

disp(etime(clock,start));

function det = qmfrad(waveform,Th,K)
% det = qmfrad(waveform,Th,K)
% uses the QMF as a radiometer to evaluate a waveform
%
% The signal is assumed to be DS, with a bandwidth of 0.015625
% centered in the 22nd tile (in freer) of the 5th laver.
%
% Th is the threshold on the radiometer, and may be a vector.
% det is a binary output vector and is 1 if a signal is assumed
% to be present.

qmf(waveform,'tsinc',5);

load layer5.dat
dat = sum(layer5(:,22).^2) ;
clear layerS;

% threshold
det = dat > Th;

218

The code to compute a rectangle list is DS.SIM.M. It calls: ISOLATE.M, LOCATE.M,
and STRECTLS.M. Beginning with the listing of DS.SIM.M: The inputs are the waveform, which
may contain WGN or a DS signal plus WGN, the observation time, T, and the one sided noise
density, No. waveform is decomposed with the QMF bank tree to the eighth layer, and this layer is
loaded and saved to dat. The eighth layer was picked as a compromise. A higher layer increases the
resolution, but at the expense of computation time.

To minimize aliasing problems, the center frequencies of the DS signals in our simulations
are restricted to [0.125 + B/2, 0.375 - B/2] Hz, and so dat is trimmed so we only consider the region
from [0.125, 0.375] Hz. The energy in the tiles are saved to en_dat by squaring the elements of dat,
and then the spectral vector, sv, is computed.

The range of rectangle sizes considered (in terms of the number of bins of the spectral
vector) is set from lr to hr. The code then loops, with each iteration considering a single rectangle
size. A convolution of the spectral vector and a rectangular window is performed, the result is
trimmed to remove edge effects, and then saved as x. The elements of x represent the energy of the
rectangle as it is slid across the spectral vector. ISOLATE.M is used to find the largest energy-
elements, and to eliminate the elements of overlapping rectangles. The results of this are returned as
y, a vector of the surviving energy values, and pos, an equal sized vector indicating the original
positions of the corresponding elements of y. Using this information, the rectangle size, and the
number of elements in x (computed from layer), the file LOCATE.M computes the lower and upper
normalized frequency edges for each rectangle.

The test statistic, u, is then computed for each element of y. newjist is then formed, where
each row represents a rectangle and the columns represent, from left to right, the test statistic, the
rectangle's energy, the rectangle size (in spectral vector bins), the lower frequency edge of the
rectangle, and the upper frequency edge, newjist is then concatenated onto list.

Finally, after list is complete, it is fed to STRECTLS.M, which sorts it based on u, saving the
results to sortjist. It then saves the rectangles with high values of u to its output rect_list, while
throwing out overlapping rectangles.

function [rect_list] = ds_sim(waveform,T,No)
% [rect_Iist] = ds_sim(waveform,T,No)
%
% Performs the detection and feature extraction of DS
% Signals as described in Chapter 6. The output, rect_list,
% is a list of possible DS signals. For each row, the order
% is:
% u energy # of tiles low freq high freq
%
% where u is the test statistic described in Chapter 6
% and # of tiles refers to the number of tiles used to
% form the rectangle.

% decompose waveform & retrieve last layer
layer = 8;
Is = int2str(layer) ,•
qmf(waveform,'tsinc',layer);
eval(['load layer',1s,'.dat']) ;
eval(['dat = layer',Is,';']) ;

219

% form spectral vector from dat
[m,n] = size(dat);
dat = dat(l:m, (n./4 + l) : (3 .*n./4)) ;
en_dat =.dat."2;
sv = sum(en_dat) ;

% size range of rectangles (in tiles)
lr = 6,-
hr = 10; .

list = [];
for rs = lr:hr

rect = ones(l,rs);
x = conv(sv,rect);
x = x(rs:length(x)-rs+1); % trim ends
[y,pos] = isolate(x,rs-1); % find max energy rectangles
% find the lower & higher frequency limits
% for each rectangle
[lf,hf] = locate(pos,rs,layer);

% find the test statistic
W = rs.*(0.5) ./ (2"layer);
u = (y - No*T*W)./sqrt(W);

% add items to list
n = length(y);
new_list = [u y rs.*ones(n,1) If hf];
list = [list; new_list];

end ;

rect_list = strectls (list);

function [y,pos] = isolate(x,z)
% [y,pos] = isolate(x,z)
%
% This takes a row vector, x, finds the maximum sizec
% element, and zeros out z adjacent elements on eithe:
% side. This is repeated until there are no non-zero
% adjacent elements. The high valued elements and thei
% original positions in x are returned as the column
% vectors y and pos.

i = 1;
while max(x) ~= 0

[y(i,l),1] = max(x) ;

In = max(l,(I-z));
hn = min(length(x),(I+z));
x(ln:hn) = zeros(1,length(In:hn)) ;
pos(i,l) = I;
i = i+1;

end;

220

function [if,hf] = locate(pos,rs,layer)
% [lf,hf] = locate(pos,rs,layer)
%
% Takes pos from ISOLATE.M and, with the rectangle
% size, rs, and layer number, layer, finds the lower
% and high frequency limits for each rectangle.

% assumes the sDectral vector ranges from
% 0.125 to 0.375 Hz
offset = 0.125;

% find the resolution, in Hz, for the layer
res = (0.5)/(2"layer);

If = (pos-l).*res + offset;

hf = If + rs.*res,-

function [rect_list] = strectls(list)
% [rect_list] = strectls(list)

' %
% This takes list from DS_SIM.M, and sorts
% the rows of the list by the test statistic for each
% row (descending order). It then looks for overlapping
% rectangles and eliminates the lower energy rectangles
% of any that do overlap.

rect_list = [];

% sort list based on test statistic
[Y,I] = sort(list (: ,1));
I = flipud(I);
sort_list = list(I,:);

while sort_list ~= []
% L is a logic vector
L = zeros(length(sort_list),1);

% transfer the top row of sort_list to rect_list
rect_list = [rect_list;scrt_list(1,:)];

% eliminate overlapping rectangles from sort_list
L = ((sort_list(1,4) >= sort_list(:,5)) I ... % freq

(scrt_list(1,5) <= scrt_list(:,4)));
sort_list = sort_list(L,:);

end;

221

DSSIM.M simulates the detection of DS signals when the center frequency and bandwidth
are unknown, using the algorithm described in Chapter VI. The code is similar to RADSIM.M.
except DS_SIM.M is called to find rect_list. Also, the center frequency of the DS signal is randomly
varied between 0.125 + B/2 and 0.375 - B/2 Hz.

% dssim script file to simulate the detection of DS signals

No = 2;
T = 2*15;
B = 0.015625;
W = B;
Th = ([800:5:1500] - No*T*W)./sqrt(W);
rep = 100;

seedl = 200000
seed2 = 300000
seed3 = 100000

% generate center frequencies
rand('seed',seedl);
range = 0.25 - B;
fc = 0.125 + (B/2) + range."rand(1,rep);

for loop = l:rep
disp(loop)
% generate signal
[signal] = ds(seed2+loop,0,fc(loop),3);
noise = noisegen(loop+seed3);
waveform = noise + (. 0887).»signal;

rect_list = ds_sim(waveform,2*15,2);

% compare energy in first rectangle against thresholds
detdoop,:) = rect_list (1,1) > Th;

end;

P = sum(det)./rep;

222

DSFESIM.M simulates the esümaüon of a DS signal's center frequency and bandwidth using
the algorithm described in Chapter VI. This code is similar to DSSIM.M. In DSFESIM.M, however,
the DS signal will always be present in the waveform to be examined. Because there is no detection
decision, there is no threshold. Rather, as rect_list is found for each of the 100 runs per set.
estimates of signal features are made for the highest energy rectangle. An estimate of the signal
energy is made using (6.21) and saved in EcGoop). An estimate of the bandwidth in terms of number
of adjacent bins are saved in bw(loop). An estimate-of the center frequency is made by averaging
between the high and low frequency edges of the rectangle, and is saved in fc_est(loop). From this,
the difference between the estimate and true center frequency are found and saved in the vector
fc err.

% dsfesim script file to simulate the detection of DS signals
start = clock;

No = 2;
T = 2"15;
B = 0.015625;
W = B;

rep = 100;

seedl = 2000
seed2 = 3000
seedS = 1000

% generate center frequencies
rand('seed',seedl);
range = 0.25 - B;
fc = 0.125 + (3/2) + range.*rand(l,rep;;

for loop = l:rep
disp(loop)
% generate signal
[signal] = ds(seed2+loop,0,fc(loop),B);
noise = noisegen(loop+seed3);
waveform = noise i- (.3545) . 'signal ;

rect_list = ds_sim(waveform,2"15,2);

Noise = No*T*(rect_list(1,3)*(0.001953125)) ;
Ec(loop) = rect_list(1,2) - Noise;
bw(loop) = recr_list(1,3);
fc_est(locp) = (rect_list (1,4) + rect_list .(1, 5)) /2;

end;

fc_err = fc - fc_est;
disp(etime(clock,start));

'?3

Appendix D: Matlab Files Used to Carry Out Simulations Presented in Chapter VH

Table of Contents

Page

SIMFDDET.M 225
FHDSDET.M 226
SIMSFDET.M 228
SIMFDFE.M 229
SIMSFFE.M 230
FHDSFE.M 231
TIMEDIM.M 233
SPECDIM.M 235

SIMFDDET.M is a script file used to simulate detection of hopped/DS signals. As with
simulations described in earlier chapters, 100 runs were made for each set, first with noise alone to
determine the probability of false alarm, and then with a signal added to determine the probability of
detection. In addition to determining data for the block algorithm, the code also finds experimental
ROC values for a radiometer covering the entire region of interest in the time frequency plane, and
for a radiometer matched to the cell's position. These results can then be used as a check on the
mathematical results discussed in Chapter VII.

Following the listing for SIMFDDET.M: rep is the number of runs made, A is the signal
amplitude, B the signal cells' bandwidth, and T the signal cells' duration. TR, TB, and TS are the
thresholds for the radiometer matched to the cell, block algorithm, and radiometer covering the entire
region of interest, respectively.

Continuing with the listing, a vector of cell center frequencies (one element for each run in
the set), fc, is generated randomly in the range [0.125+B/2, 0.375-B/2]. This range is used to ensure
the signal is not too close to the upper or lower frequency limits of the QMF bank tree, so the effects
of aliasing are minimized. The program then loops, once for each run, and generates a single cell of
a TH/DS signal using TH.M (described in Chapter IV). This is represented as signal, and the cell's
position among the time hop slots is saved as position, waveform is then generated from noise and,
when finding the probability of detection, signal. In the last line of the loop, the information is
passed to FHDSDET.M which decides whether a signal is present.

% simfddet script file to simulate detection of hopped/DS

start = clock;
rep = 100;
A = 0.3496;
3 = 0.03 05;
T = 818;
TR = [16000:10:17000];
TB = [260:325] ;
TS = [50:150] ;

% random seeds
seedl = 1000;
seed2 = 2000;
seed3 = 3000;
seed4 = 4000;

% set center freq
fmin = 0.125 + B/2;
fmax = 0.375 - B/2;
rand('seed',seed4)
fc = (fmax-fmin).*rand(l,rep) + fmin;

225

for loop = l:rep
disp(loop)
% generate signal
[signal,position] = ...
th(seedl+loop,seed2+loop,0,fc(loop),40,818,0,0.0305);

noise = noisegen(loop+seed3);
waveform = noise + A.*signal;

[DR(loop,:),DB(loop,:),DS(loop,:)] = ...
fhdsdet(waveform,TR,TB,TS,fc(loop),position,B,T);

end;

PR = suin(DR) ./rep;
PB.= sum(DB)./rep;
PS = sum(DS)./rep;

disp(etime(clock,start));

Detection decisions for 1) a radiometer covering the entire region of interest in the time
frequency plane, 2) a radiometer just covering the cell's position, and 3) the block algorithm, are
made with FHDSDET.M. Following the listing: The inputs are waveform, TR, TB, TS, fc,
position, B, and T. Inside the function, waveform is decomposed using QMF.M, and the seventh
layer is loaded. (As we described above, any layer would do, as long as the tiles are smaller than the
signal cell in both time and frequency.) The elements from the seventh layer are squared, and only
the range from [0.125, 0.375] Hz is saved to dat.

The highest energy block is then found using TILEMAX.M, described in Chapter V and
listed in Appendix B. In the case of all of the simulations in this chapter, the size of the blocks were
set so bt = 13 (1664 seconds) and bf = 16 (0.0625 Hz), approximately two times the cell size in each
dimension. The result from TILEMAX.M is then compared to the threshold vector TB, and the
results of this comparison are saved in the output vector, DB.

All of the elements in dat are then summed to obtain the total energy collected by a
radiometer set to the observation period with a bandpass filter covering [0.125, 0.375] Hz, and the
results are compared to TR. The results of this comparison are then saved to DR.

fc, position, B, and T, are then used to compute the edges of the signal cell (in seconds and
hertz). Then, the tile indices of those edges for layer seven are computed as yh, yl, xh, and xl.
Finally, the relevant elements from dat are saved to cell, summed, and compared to TS. The results
are saved to DS.

function [DR,DB,DS] = fhdsdet (waveform,TR,TB,TS, fc,position,B,T)
%
% [DR,DB,DS] = fhdsdet(waveform,TR,TB,TS,fc,position,B,T)
%
% This takes the input waveform, decomposes it with QMF.M,
% and uses the block algorithm to find the highest energy
% block (with TILEMAX.M). The energy in this block is then
% compared to a vector of thresholds, TB, to create a vector
% of detection decisions, DB.
%

226

% The position of the cell (in seconds and hertz) are also
% found from the inputs, fc (center freq), position (in time),
% B (the cell's bandwidth), and T (the cell's duration). This
% is then used to find the energy in the layer 7 decomposition
% corresponding to the cell position, and the result is compared
% to a threshold of vectors, TR, to create a vector of detection
% decisions, DR.
%
% Finally, the energy from the time frequency plane in the
% observation period within [0.125,0.375] Hz are found and
% compared to the vector of thresholds, TS, to create a vector
% of detection decisions, DS.

% decompose the signal
qmf(waveform,'tsinc',7);

% load data
load layer7.dat
[m,n] = size(layer7);
dat = iayer7 . ~2;
clear layer7;
dat = dat (l:m, (n./4 + 1) .- (3 . »n. /4)) ;
[m,n] = size(dat);

% find highest energy block & compare to threshold
cell_max = tilemax(dat);
DB = ceil_max(l,1) > TB (:) ' ;

% find radiometer detection
sd = sum(dat(:)) ;
DR = Sd > TR(:)';

% find the edges of the cell (free & time)
fh = fc + 3/2;
fl = fc - 3/2;
tl = T'(pcsition(l)-1) + 1;
th = T*(position(l)-1) + T;

% find the tile dimensions
layer = 7;
yh = min(n,floor((fh - 0 .125)*2"(layer+1) + 1));
yl = max(1,floor((fl - C . 125)*2A (layer+1) + 1));
xh = min(m,ceil((th+1)/(2~layer))) ;
xl = max(1,ceil{ (tl + 1)/(2"layer)));

% find the energy in that portion of t/f plane
cell = dat([xl:xh],[yl:yh]);
cd = sum(cell(:));

DS = Cd > TS(:)';

227

The script file SIMSFDET.M is similar to SIMFDDET.M, and is used to simulate the
detection of Slow FH signals. Since we are only interested in using a single cell of the signal in each
run, and since the only code for generating these signals (SFH.M) generates cells over the entire
observation period, it is necessary for SIMSFDET.M to produce a "mask" vector consisting of zeros
for the times when the signal should not be observed, and ones for the duration of the cell that should
be observed. This mask is then multiplied by the Slow FH signal to obtain the desired effect To do
this, first the vector position is generated randomly, with each element representing the particular cell
that will be seen for each run. Then, inside the loop, mask is created with elements of one positioned
appropriately.

% simsfdet script file to simulate detection of slow FH

rep = 100;
A = 0.3536;
B = 0.03125;
T = 800;
TR = [16000:10:17000] ;
TB = [260:325] ;
TS = [50:150] ;

% random seeds
seedl = 1000;
seed2 = 2000;
seed3 = 3 000;
seed4 = 4000;

% set center freq
fmin = 0.125 + B/2;
fmax = 0.375 - B/2;
rand('seed',seed4)
fc = (fmax-fmin).*rand(1,rep) + fmin;

% set cell position in time
rand (' seed' , seedl) ,-
position = ceil(((2A15)/T-1).*rand(l,rep)) ;

for loop = l:rep
disp(loop)
% generate signal
signal = sfh(1,seed2 + loop,0,fc(loop)-B/2,1,T,0, 5, 5);
% mask all but one cell of signal
mask = zeros(2^15,1);
mask([T*(position(loop)-1)+1:T*(position(loop)-1)+T]) =

ones(T,1);
signal = signal.*mask;

noise = noisegen(loop+seed3);
waveform = noise + A.*signal;

[DR(loop,:),DB(loop,:),DS(loop,:)] = ..:
sfdet(waveform,TR,TB,TS,fc(loop)»position(loop),B,T);

end;

PR = sum(DR)./rep;
PB = sum(DB)./rep;
PS = sum(DS)./rep;

228

SIMFDFE.M simulates the estimation of parameters of hopped/DS signal cells. Because of
the amount of time the code takes to run, only 50 runs were made per set. In each run a waveform
consisting of noise and a single hopped/DS signal cell is formed (in a manner similar to the detection
simulation script file SIMFDDET.M) and passed to FHDSFE.M. Vectors of true center frequencies,
fc, and center times, tc, of the signal cells are also computed for later comparison with the estimates.
The signal cells in these simulations had the same dimensions as those for the detection of hopped/DS
signals, but the energy for these was increased by ten times to E = 500.

% simfdfe script file to simulate feature extraction of FH/DS
signals

start = clock;
rep = 50;

% cell parameters
A = 0.3496*sqrt(10);
B = 0.03 05;
T = 818;

% random seeds
seedl = 1000;
seed2 = 2000;
seed3 = 3 000;
seed4 = 4000;

% set center freq
fmin = 0.125 + B/2;
fmax = 0.375 - B/2;
rand('seed',seed4)
fc = (fmax-fmin).*rand(l,rep) + fmin;

for loop = l:rep
disp(loop)
% generate signal
[signal,position] = ...
th(seedl+loop,seed2+loop,0,fc(loop),4 0,T,0,B);

noise = noisegen(loop+seed3);
waveform = noise + A.*signal;

[energy(loop),If(loop),hf(loop),It(loop),ht(loop)
fhdsfe(waveform);

% find center of cell time
tc(loop) = T*(position(1)-1) + T/2;

end;

disp(etime(clock, start)) ;

229

SIMSFFE.M is similar to SIMFDFE.M, except it simulates the estimation of parameters of
Slow FH cells. The waveforms are constructed in a manner similar to the detection simulation script
file SIMSFDET.M, with the same cell dimensions. As above, the cell energy is increased so
E =500.

% simsffe script file to simulate feature extraction of slow FH
% signal

start = clock;
rep = 50;

% cell parameters
A = 0.3536*scrrt (10) ;
3 = 0.03125;
T = 800;

% random seeds
seedl = 1000;
seed2 = 2000;
seed3 = 3000;
seed4 = 4000;

% set center freer
fmin = 0.125 + B/2;
fmax = 0.375 - B/2;
rand('seed',seed4) ;
f c ' = (fmax-frain). *rand (1, rep) + fmin;

% set cell position in time
rand{'seed',seedl);
position = ceil(((2"15)/T-l).'rand(1,rep));

for loop = l:rep
disp(loop)
% aenerate signal
signal = sfh(l,seed2+loop,0,fc(loop)-3/2,1,T,0,5,5);
mask = zeros(2~15,1);
mask([T*(position(loop)-1)+1:T*(position(loop)-li-rT])

ones(T,1);
signal = signal.*mask;

noise =■ noisegen(loop+seed3);
waveform = noise + A.*signal;

[energy(loop),If(loop),hf(loop),It(loop),ht(loop)] =
fhdsfe(waveform);

end;

% find center of cell time
tc(:) = T*(position!:)-l) + T/2;

disp(etime(clock,start));

230

Both script files above call FHDSFE.M. Following the listing: The noise energy is first set,
and then the minimum cell dimensions that the algorithm will look for are set. The minimum cell
duration, let = 400 seconds, and minimum bandwidth, lef = 0.015 Hz, were used for all simulations.
The block size is then set with bt and bf to match the parameters set in TTLEMAX.M. bt = 13 and
bf = 16 were always used here. The QMF layers that will be used are then set. As in the detection
simulations, the block algorithm was performed on layer seven (mjayer). In all of the simulation
results reported on below, the lower layer, IJayer, used for the time estimates was four while the
higher layer, h Jayer, used for the frequency estimates was ten. (Other layers were also tried, with
similar results.)

Continuing with the listing, the waveform is then decomposed, the mjayer loaded, energy
computed and results trimmed to include only [0.125, 0.375] Hz (signal cells are restricted to this
region). The block algorithm is then performed using TILEMAX.M, and the highest energy block,
and information about its position, is returned. The block's position, first in terms of the mjayer
indices, and then in terms of seconds and hertz, are then computed, and information is passed to
TIMEDIM.M and SPECDIM.M whose job is to estimate the position and dimensions of the cell
within the block. Finally, using these results, the cell's energy is computed. For some of the
simulation runs described below, these last lines were commented out, and the block energy (from
TILEMAX.M) was returned instead.

function [energy,If,hf,It,ht] = fhdsfe(waveform)
% [energy,If,hf,lt,ht] = fhdsfe(waveform)
%
% This takes the input waveform, decomposes it with
% QMF.M, performs a block detection on the result
% (using m_layer as set in the code), saves the highest
% energy block (using TILEMAX.M), and then finds the
% block's dimensions (in seconds and hertz).
%
% The function then uses TIMEDIM.M and SPECDIM.M to estimate
% the cell's position in the block.

low frequency of cell estimate
high frequency of cell estimate
low time of cell estimate
high time of cell estimate
energy of tiles under cell estimate

% OUTPUTS :
% if
% hf
% It
% ht
% energy

No = 2 ;

% minimum rell size
let = 400;
lef = .015 '

% block size (these.should be set the same as in TILEMAX.M)
bt = 13;
bf = 16;

% QMF tree layers for time estimate, block algorithm,
% and frequency estimate, respectively
l_layer = 4;
m_layer = 7;
h_layer = 10;

231

% decompose signal
qmf(waveform,'tsinc',h_layer);

% load data
loopstr = int2str(m_layer);
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr,')']);
dat = eval(['layer',loopstr,' . A2']);
eval(['clear layer',loopstr]);
dat = dat(l:m,(n./4 + 1):(3.*n./4));
[m,n] = size(dat);

% find highest energy block
cell_max = tilemax(dat);
energy = cell_max(1);
i = cell_max(2);
j = cell_max(3);

% compute block position (tile indicies)
xbl = i;
xbh = i+bt-1;
ybl = j;
ybh = j+bf-1;

% compute block position in sec and Hz
Ibf = (ybl-1)/(2"(m_layer+l)) + 0.125;
hbf = ybh/(2^(m_layer+l)) + 0.125;
lbt = (xbi-1) *2'sm_layer;
hbt = xbh*2"m_layer - 1;

% estimate the cell's position within the block
[lt,ht] = timedim(l_layer,lbf,hbf,lbt,hbt,let,No)
[lf,hf] = specdim(h_layer,lbf,hbf,lbt,hbt,lcf,No)

% isolate cell and comDUte energv
yl = max(l, floor ((lf-o". 125) *2^ (m_layer+l) + 1)) ;
yh = min(n,floor((hf-0.125)*2"(m_layer+l) + 1));
xl = max(1,ceil((lt+1)/(2"m_iayer)));
xh = min(m,ceil((ht+1)/(2^m_layer;));

% estimate the cell energy
cell = dat(xl:xh,yi:yh);
energy = sum(cell(:));

232

TIMEDIM.M and SPECDIM.M are responsible for determining the time and frequency
parameters (respectively) of the cell embedded in the block. The code for these functions are similar,
and so only the listing for TIMEDIM.M will be described here. The inputs are: The layer to be used
in finding the temporal vector, layer; the block dimensions (in seconds and hertz), Ibf, hbf, Ibt, hbt;
the lower limit on the cell size, let; and the noise energy density, No. The data for layer is loaded,
the energy is computed, and the results are trimmed to [0.125, 0.375] Hz. The resulting matrix, dat,
is then further trimmed to include only the tiles of layer that include the block. From this, the
temporal vector, v, is formed. The lower and upper range of cell sizes, lr and hr, in terms of the tiles'
time dimensions, are then determined, with the lower range based on let, while the upper range is set
equal to the block's duration. Then, the block's bandwidth, W, in hertz, is found. This will be used
when calculating test statistics.

list is then preallocated as a three column matrix. When filled, each row will consist of the
test statistic value, and the beginning and end positions in time of the maximum result from each
convolution. The code then loops. In each iteration, a rectangle size (one tile length larger than in
the previous iteration) is computed, the convolution is performed, the results are trimmed, the
maximum value of the result is found as y, and its position is found as I. The test statistic for these
results, u, is then computed and placed in list.

When the loop is completed, list will be full. The maximum test statistic is then found and
the second and third columns of that row of list are used to compute the outputs: The lower position
of the cell, 1, and the upper position, h, both in seconds.

function [l,h] = timedim(layer,lbf,hbf,lbt,hbt,let,No)
%
% [l,h] = timedim(layer,lbf,hbf,lbt,hbt,let,No)
%
% This function takes a block from the time frequency
% plane, computes a "temporal vector", and then
% convolves the vector with various sized rectangular
% windows, computing a test statistic, and finding an
% estimate for the beginning and end times for a signal
% cell.
%
% INPUTS
% layer the layer of the QMF bank tree
% decomposition used
% lbf,hbf the block's lower and upper
% ■ frequencies (in hertz)
% lbt,hbt the block's beginning and ending
% times (in seconds)
% let the lowest sized cell that the function
% looks for
% No noise variance (for test statistic)
%
% OUTPUTS
% l,h estimate of cell's beginning and end time

233

% load data
loopstr = int2str(layer);
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr,')']);
dat = eval(['layer",loopstr,' . A2']);
eval(['clear layer',loopstr]);
dat = dat(l:m,(n./4 + 1):(3.*n./4));
[m,n] = size(dat);

% Trim dat to block dimensions
yl =max(l,floor((lbf-0.125)*2"(layer+l) 4 1));
yh = min(n,floor((hbf-0.125)*2A(layer+1) + 1));
xl = max(1,ceil((lbt+1)/(2"layer)));
xh = min(m,ceil((hbt+1)/(2Alayer)));
dat = dat(xl:xh,yl:yh);

% Form temporal vector
if yh-yl > 0
v = sum(dat'■ ;

else
v = dat';

end;

% find lower and upper range of cell sizes
% in number of tiles
Ir = rnaxd, ceil (let/ (2Alayer))) ;
hr = xh - xl 4' 1;

% find block bandwidth (hertz)
W = hbf-lbf;

% convolve temporal vector with various
% sized rectangles
list = zeros(hr-lr+1,3);
for rs = lr:hr

rect = ones(1,rs);
x = conv(v,rect);
x = x(rs:length(x)-rs+1);
% find maximum of convolution for particular sized
% rectangle
[y,I] = max(x);
% compute the rectangles' size (in seconds)
to = rs"(2"layer) - 1;
% compute test statistic
u = (y - No*to*W)/sort(to*W);
% list the test stat, beginnning position in time,
% and end position in time
list(rs-lr+1,:) = [u xl+I-1 xl+I+rs-2];

end;

% find the list row with the largest test statistic
[u,I] = max(list(:,1));
list = list(I,:);

% comoute cell positions in seconds
1 = (list(2)-l;*2Alayer;
h = list(3)*2Alayer - 1;

234

function [l,h] = specdim(layer,lbf.hbf,Ibt,hbt,lef,No)
%
% [l,h] = specdim(layer,lbf,hbf,Ibt,hbt, lef,No)
%
% This function takes a block from the time frequency
% plane, computes a "spectral vector", and then
% convolves the vector with various sized rectangular
% windows, computing a test statistic, and finding an
% estimate for the lower and upper frequencies for a
% signal cell.
%
% INPUTS
% layer the layer of the QMF bank tree
% decomposition used
% lbf.hbf the block's lower and upper
% frequencies (in hertz)
% Ibt,hbt the block's beginning and ending
% times (in seconds)
% lef the lowest sized cell that the function
% looks for
% No noise variance (for test statistic)
%
% OUTPUTS
% l,h estimate of cell's lower and upper frequencies

% load data
loopstr = int2str (layer) ;.
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr, ')']) ;
dat = eval(['layer',loopstr,' .^2']);
eval(['clear layer',loopstr]);
dat = dat(1:m,(n./4 + 1):(3.*n./4));
[m,n] = size(dat);

% Trim dat to block dimensions
■ vl = max(l, floor ((lbf-0.125) *2" (laver-rl) + 1));
yh = min(n, floor ((hbf-0.125)*2~(layer+1) + D);
xl = max(1,ceil((lbt+1)/(2Alayer)));
xh = min(m,ceil((hbt+1)/(2"layer)));
dat = dat(xl:xh,yl:yh);

% Form spectral vector
if xh-xi" > 0
v = sum(dat);

else
v = dat';

end ;

% find lower and upper range of cell sizes
% in number of tiles
lr = max(l,floor(lef*(2A(layer+l))));
hr = yh - yl + 1;

% find block duration (seconds)
to = hbt-lbt+1;

235

% convolve spectral vector with various
% sized rectangles
list = zeros(hr-lr+1,3);
for rs = lr:hr

rect = ones(l,rs);
x = conv(v,rect);
x = x(rs:length(x)-rs+1);
% find maximum of convolution for particular
% sized rectangle
[y,I] = max(x);
% compute rectangles' size (in hertz)
W = rs/(2"(layer+l));
% compute test statistic
u = (y - No*to*W)/sqrt(to*W);
% list the test stat, lower position in freq
% and upDer position in freq
list(rs-lr+1, :) = [u yl + I-1 yl+I+rs-2];

end ;

% find the list row with the largest test statistic
[u,I] = max(list(:,1));
list = list (I, :);

% compute the cell oositions in hertz
1 = (list (2)-l)/2A(layer+l) + 0.125;
h = list (3)/2" (layer+1) + 0.125;

236

Appendix E: Matlab Files Used to Carry Out Simulations Presented in Chapter VIU

Table of Contents

Page

SIMEDCH8.M 238
SIMSFCH8.M 239
LS2.M 240

SIMFDCH.M is a script file used to generate waveforms containing noise and a single
hopped/DS cell, and to test the waveform using the least square algorithm described in Chapter VIII.
This file is virtually identical to SIMFDDET.M, described in Appendix D, except the LS2.M,
described below, is called to perform the analysis.

% simfdch8 script file to distinguish hopped/DS signals

start = clock;
rep = 50;

% cell parameters
A = 0.3496*sqrt(10) ;
B = 0.03 05;
T = 818;

% random seeds
seedl = 1000;
seed2 = 2000;
seed3 = 3 000;
seed4 = 4000;

% threshold
Th = [1:1000] ;

% set center freq
fmin = 0.12 5 + B/2;
fmax = 0.375 - B/2;
rand('seed',seed4);
fc = (fmax-fmin).*rand(1,rep) + fmin;

for loop = l:rep
disp(loop)
% generate signal
[signal,position] = ...
th(seedl+loop,seed2+loop,0,fc(loop),40,T,0,B);

noise = noisegen(loop+seed3);
waveform = noise + A.*signal;

[D(loop,:),Bfd_est(loop),fest(loop)] = ls2(waveform,Th);
end;

Pfa = sum(D)./rep;
posfd_est = fc - fest;

disp(etime(clock,start));

238

SIMSFCH.M is a script file used to generate waveforms containing noise and a single
hopped/DS cell, and to test the waveform using the least square algorithm described in Chapter VIII.
This file is virtually identical to SIMFDDET.M, described in Appendix D, except the LS2.M.
described below, is called to perform the analysis.

% simsfch8 script file to distinguish slow FH cells

start = clock;
reo = 50;
A = 0.3536*sqrt(10);
B = 0.03125;
T = 800;

% random seeds
seedl = 1000;
seed2 = 2000,
seed3 = 3000;
seed4 = 4000;

% threshold
Th = [1:1000];

% set center freq
fmin = 0.125 + B/2,
fmax = 0.375 - B/2;
rand{'seed',seed4)
fc = (fmax-fmin).*rand(1,rep) + fmin;

% set cell position in time
rand('seed',seedl);
position = ceil(((2"15)/T-1).*rand(l,rep));

for loop = l:rep
disp(loop)
% generate signal
signal = sfh(1,seed2+loop,0,fc(loop)-B/2,1,T,0,5,5);
mask = zeros(2"15,1);
mask([T*(position(loop)-1)+1:T*(position(loop)-1)+T]) = ...

ones(T,1);
signal = signal.*mask;

noise = noisegen(loop+seed3);
waveform = noise + A.*signal;

[D(loop, :),Bsf_est(loop),fest(loop)] = ls2 (waveform,Th);
end;

Pd = sum(D)./rep;
possf_est = fc - fest;

disp(etime(clock,start)) ;

239

LS2.M performs the least square algorithm described in Chapter VIII. The first portion of
the code decomposes waveform and performs the block detection algorithm using the mjayer output
from the QMF bank tree. This code is block copied from the relevant portions of FHDSFE.M,

described in Appendix D.

Once the maximum energy block is found, the hjayer QMF bank tree output is loaded, the
portion including the block is saved to dat, and the spectral vector, v, is formed. From this a square
matrix, Mv, is formed, all of whose rows are equal to v. Then, the lower and upper range of
bandwidths, lr and hr, are computed, the block duration, to, tile bandwidth, wb, and the total energy
in the spectral vector, Ehat, are found.

The code then loops, with the estimated bandwidth changed for each iteration. Inside the
loop, the expected energy in the spectral vector is computed as v_est. (v_est is actually twice as long
as v, so that the two vectors may be shifted and compared, without having to pad v_est with zeros.) A
toeplitz matrix, Mest, is then formed, with the first row equal to v_est, and subsequent rows shifted
one position to the right. A square portion of this matrix is then taken, so the result will have the
same dimensions as Mv, and so the largest element of v_est is the diagonal element. The
denominator of (8.6) is then formed as den, and a toeplitz matrix, Md, is formed in a manner similar
to that described above. The test statistic z is then found (for the particular bandwidth then being
considered in the loop), and saved to list, as are the bandwidth and the estimated center frequency.

After the loop has completed, the minimum of the test statistics is found, and that is
compared to the vector of thresholds Th. A determination of whether the cell is hopped/DS is made
and the results are saved to the output vector D. The bandwidth and center frequency estimates that
vielded the minimum test statistic are also output, as Best and fest respectively.

function [D,Best,fest) = ls2(waveform, Th)
% [D,Best, fest) = ls2 (wavef onr,, Th)
%
% This takes the input waveform, decomposes it with QMF.M,
% performs the least square algorithm described in
% Chapter VIII, and then compares the test statistic against
% a vector of thresholds, Th.
%
% OUTPUTS:
% D vector of decisions (0 = hopped/DS cell;
% 1 = other cell)
% 3est estimate of cell bandwidth
% fest estimate of center frequency

No = 2;

% minimum cell bandwidth
lcf = .015;

% block size (these should be set the same' as in TILEMAX.M)
bt = 13;
bf = 16;

240

% QMF tree layers for decomposition and frequency estimate
m_layer = 7;
h_layer = 10;

% decompose signal
qmf(waveform,'tsinc',h_layer);

% load data
loopstr = int2str(m_layer);
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr,')']);
dat = eval(['layer',loopstr, ' ."2']);
eval(['clear layer',loopstr]);
dat = dat (l:m, (n./4 + 1):(3.*n./4));
[m,n] = size (dat);

% find highest energy block
cell_max = tilemax(dat);
energy = cell_max(l);
i = cell_max(2);
j = cell_max(3) ;

% compute block position (tile indicies)
xbl = i;
xbh = i+bt-1;
ybl = j;
ybh = j+bf-1;

% comDUte block position in sec and Hz
Ibf =* (ybl-1)/(2"(m_layer-l)) + 0.125;
hbf = ybh/(2A(m_layer-rl)) + 0.125;
Ibt = (xbl-1)*2"m_iayer;
hbt = xbh*2~m_layer - 1;

% Now switch to higher layer

% load data
loopstr = int2str(h_layer);
eval(['load layer',loopstr,'.dat']);
[m,n] = eval(['size(layer',loopstr,')*]);
dat = eval(['layer \ loopstr, ' ."2']);
eval(['clear layer',loopstr]);
dat = dat(l:m,(n./4 + 1):(3.*n./4));
[m,n] = size(dat);

% Trim dat to block dimensions
yl = max(l,floor((lbf-0.125)*2"(h_layer+l) + 1));
yh = min(n,floor((hbf-0.125)*2"(h_layer+l) + 1));
xl = max(1,ceil((lbt+1)/(2"h_layer)));
xh = min(m,ceil((hbt+1)/(2"h_layer)));
dat = dat(xl:xh,yl:yh);

241

% Form spectral vector
if xh-xl > 0
v = sum(dat);

else
v = dat';

end;
K = length(v);
k = 1:K;
% form square matrix
Mv = V; ■
for i = 2:K
MV = [Mv;v];

end;

% find lower and upper range of cell bandwidths
% in number of tiles
lr = maxd, floor (lcf* (2A (h_layer+l)))) ;
hr = yh - yl + 1;

% find block duration (seconds)
to = hbt-lbt+1;

% find tile bandwidth (Hz)
Wb = (0.5)./(2."h_layer);

% find measured total cell energy
Ehat = sum(v) - No*tc*Wb*K;

% convolve spectral vector with various
% sized rectangles
list = zeros (hr-lr+1, 3) ,-
for rs = lr:hr

% estimate energy vector
Bhat = rs*Wb;
Ebhat = Ehat.*(Wb/Bhat).*sinc_sg(Wb.*([1:(2*K)]-K)./3hat);
v_est = Ebhat + No*to*Wb;
% form matrix
c = zeros(1,K);
c(l) = v_est (1) ;
Mest = toeDlitz(c,v_est);
Mest = Mest(;,[K:(2*K-1)]);
% form test statistic denomenator matrix
den = 2*No*Ebhat + No~2*to*Wb;
c(l) = den(l) ;
Md = toeplitz(c,den);
Md = Md(:,[K:(2*K-1)]);
% find test statistic (for this bw)
z = sum((((Mv-Mest)."2)./Md)');
[list(rs-lr+1,1),pos] = min(z);
list(rs-lr+1,2) = Bhat;
list(rs-lr+l,3) = (yl + pos -l).*Wb - Wb./2 + 0.125;

end ;
[z,I] = mindist (:, 1)) ;
D = z > Th;
Best = list (1,2) ;
fest = list (1,3) ;

242

Bibliography

[1] Akensu, A. N. "The Binomial QMF-Wavelet Transform for Multiresolution Signal
Decomposition, "IEEE Transactions on Signal Processing. Vol. 41, No. 1: 13-19 (January
1993).

[2] Arnold, B. C. and N. Balakrishnan. Relations, Bounds, and Approximations For Order
Statistics. Berlin: Spring er-Verlag, 1989.

[3] Arnold, B. C, N. Balakrishnan, and H. N. Nagaraja. A First Course in Order Statistics. New
York: John Wiley & Sons, 1992.

[4] Auslander, L., C. Buffalano, R. Orr, and R. Tolimieri. "A Comparison of the Gabor and Short-
Time Fourier Transforms For Signal Detection and Feature Extraction in Noisy Environments,"
SPIE Vol. 1348 Advanced Signal-Processing Algorithms, Architectures, and Implementations.
(1990).

[5] Balakrishnan, N. and A. C. Cohen. Order Statistics and Inference, Estimation Methods. San
Diego, CA: Academic Press, 1991.

[6] Boashash, B. and P. O'Shea. "Time-Frequency Analysis Applied to Signaturing of Underwater
Acoustic Signals," Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, ICASSP88: 2817-2820 (1988).

[7] Chen, C. K. and J. H. Lee. "Design of Quadrature Mirror Filters with Linear Phase in the
Frequency Domain," IEEE Transactions on Circuits and Systems-II: Analog and Digital
Signal Processing, Vol. 39, No. 9: 593-605 (September 1992).

[8] Chen, C. K. and J. H. Lee. "Design of Linear-Phase Quadrature Mirror Filters with Powers-of-
Two Coefficients," IEEE Transactions on Circuits and Systems--II: Analog and Digital Signal
Processing, Vol. 41, No. 7: 445-455 (July 1994).

[9] Chen, T. and P. P. Vaidyanathan. "Multidimensional Multirate Filters and Filter Banks
Derived from One-Dimensional Filters," IEEE Transactions on Signal Processing, Vol. 41, No.
5: 1749-1765 (May 1993).

[10] Chui, C. K. An Introduction to Wavelets. San Diego, CA: Academic Press, 1992.

[11] Cohen, L. "Time Frequency Distributions - A Review," Proceedings of the IEEE, Vol. 77,
No. 7: 941-981 (July 1989).

[12] Daubechies, I. "Orthonormal Bases of Compactly Supported Wavelets," Communications on
Pure and Applied Mathematics, Vol. XL1: 909-996(1988).

[13] David, H.A. Order Statistics, Second Edition. New York: John Wiley & Sons, 1981.

[14] Devore, J. L. Probability and Statistics For Engineering and the Sciences. Monterey, CA:
Brooks/Cole Publishing Company, 1982.

243

[15] Dillard, R. A. "Detectability of Spread-Spectrum Signals," IEEE Transactions on Aerospace
and Electronic Systems, Vol. AES-15, No. 4: 526-537 (July 1979).

[16] Dillard, R. A. and G. M. Dillard. Detectabilin of Spread Spectrum Signals. Norwood, MA:
Artech House, 1989.

f 17] Dixon, R. C. Spread Spectrum Systems. New York: John Wiley & Sons, 1976.

[18] Engler, H. F. and D. H. Howard. A Compendium of Analytic Models for Coherent and
Noncoherent Receivers. Avionics Laboratory, Air Force Wright Aeronautical Laboratories.
Report Number: AFWAL-TR-85-1118. Wright-Patterson Air Force Base, OH, September

1985.

[19] Faxrell, T. C, G. Prescott and S. Chakrabarti. "A Potential Use For Artificial Neural Networks
in the Detection of Frequency Hopped Low Probability of Intercept Signals," IEEE Wichita
Conference on Communications, Networking and Signa! Processing: 25-30 (April 1994),

[20] Flandrin, P. "Time-Frequency Receivers For Locally Optimum Detection," Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP88: 2725-
2728 (1988).

[21] Foreign Broadcast Information Service. "Characteristics of VHF and UHF Television Systems,"
Appendix to Broadcasting Stations of the World, Part TV, 25th Ed. Washington: Foreign
Broadcast Information Service (United States Government), July 1972.

[22] Gardner, W. A. "Measurement of Spectral Correlation," IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. ASSP-34, No. 5: 1111-1123 (October 1986).

[23] Gardner, W. A. and C. M. Spooner. "Signal Interception: Performance Advantages of Cyclic-
Feature Detectors," Department of Electrical Engineering and Computer Science, Universin oj
California, Davis. (April 1991).

[24] Herley, C, J. Kovacevic, K. Ramchandran. and M. Vetterli. "Tilings of the Time Frequency
Plane: Construction of Arbitrary Orthogonal Bases and Fast Tiling Algorithms," IEEE
Transactions on Signal Processing, Vol. 41, No. 12: 3341-3359 (December 1993).

[25] Kay, S. and G. F. Boudxeaux-Bartels. "On the Optimality of the Wigner Distribution for
Detection," Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP85: 21.2.1-212A (1985).

[26] Koilpillai, R. D. and P. P. Vaidyanathan. "Cosine-Modulated FTR Filter Banks Satisfying
Perfect Reconstruction," IEEE Transactions on Signal Processing, Vol. 40, No. 4: 770-783
(April 1992).

[27] Koilpillai, R. D. and P. P. Vaidyanathan. "A Spectral Factorization Approach to Pseudo-QMF
Design," IEEE Transactions on Signal Processing, Vol. 41, No. 1: 82-92 (January 1993).

[28] Lathi, B. P. Signals, Systems, and Communication. New York: John Wiley & Sons, 1965.

244

[29] Leon-Garcia, A. Probability and Random Processes For Electrical Engineering. New York:
Addison-Wesley, 1989.

[30] Levitt, B. K., U. Cheng, A. Polydorus, and M. K. Simon. "Optimum Detection of Slow
Frequency-Hopped Signals," IEEE Transactions on Communications, Vol. 42, No. 2/3/4: 1990-
1999 (February/March;April 1994).

[31] Lim, Y. C, R. H. Yang, and S. N. Koh. "The Design of Weighted Minimax Quadrature Mirror
Filters," IEEE Transactions on Signal Processing, Vol. 41, No. 5: 1780-1789 (May 1993).

[32] Ludeman, L. C. Fundamentals of Digital Signal Processing. New York: Harper & Row, 1986.

[33] Marple Jr, S. L. Digital Spectral Analysis With Applications. Englewood Cliffs. NJ: Prentice-
Hall, 1987.

[34] Math Works, The. The Student Edition of Matlab For MS-DOS Personal Computers.
Englewood Cliffs, NJ: Prentice-Hall, 1992.

[35] Nemsick, L. W. and E. Geraniotis. "Adaptive Multichannel Detection of Frequency-Hopping
Signals," IEEE Transactions on Communications, Vol. 40, No. 9: 1502-1511 (September 1992).

[36] Oppenheim, A. V. and R. W. Schäfer. Digital Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall, 1975.

[37] Porat, B. and B. Friedlander. "Performance Analysis of a Class of Transient Detection
Algorithms-A Unified Framework," IEEE Transactions on Signal Processing, Vol. 40, No. 10:
2536-2546 (October 1992).

[38] Prescott, G. Course notes distributed in EENG 673, Applications of Communications
Technology, Spread Spectrum Communications, Department of Electrical and Computer
Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1988.

[39] Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipies in C,
The Art of Scientific Computing, Second Edition. New York: Cambridge Universirv Press.
1992.

[40] Shanmugan, K. S. and A. M. Breipohl. Random Signals: Detection, Estimation and Data
Analysis. New York: John Wiley & Sons, 1988.

[41] Torrieri, D. J. Principles of Secure Communications Systems. Norwood, MA: Artech House,
1985.

[42] Urkowitz, H. "Energy Detection of Unknown Deterministic Signals," Proceedings of the IEEE,
VoL 55, No. 4: 523-531 (April 1967).

[43] Vaidyanathan, P.P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ: Prentice Hall,
1993'

[44] Vetterli, M. and C. Herley. "Wavelets and Filter Banks: Theory and Design," IEEE
Transactions on Signal Processing, Vol. 40, No. 9: 2207-2232 (September 1992).

245

[45] Woodring, D. and J. D. Edell. "Detectability Calculation Techniques," Washington, DC: U.S.
Naval Research Laboratory, September 1977.

[46] Ziemer, R. E., W. H. Tranter, and D. R. Fannin. Signals and Systems: Continuous and
Discrete, Third Edition. New York: Macmillan, 1993.

[47] Zou, H. and A. H. Tewfik. "Parametrization of Compactly Supported Orthonormal Wavelets,"
IEEE Transactions on Signal Processing, Vol. 41, No. 3: 1428-1431 (March 1993).

. .. V o> j,

3 e*A . ••••■ a

o
, t:T< :i £

I O
> -A

-J '3

246

