
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7441- -96- 7719

Survey of Spatial Topology:
Issues and Approaches

DAVID K. ARCTUR
JOHN F. ALEXANDER

University of Florida
Gainesville, FL

MIYI J. CHUNG
MARIA A. COBB
KEVIN B. SHAW

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

September 20, 1996

Mm m
Approved for public release; distribution unlimited.

DTIC QUALITY TSSE^SSSD Ä

REPORT DOCUMENTATION PAGE Form Approved
OBM No. 0704-0188

n=*£vfP }?9 ", ? ■ !Lc?lleotl°n °f mfonna'ion '? estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources
gathering and maintaining the data needed and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 20, 1996
4. TITLE AND SUBTITLE

3. REPORT TYPE AND DATES COVERED

Final

Survey of Spatial Topology: Issues and Approaches

6. AUTHOR(S)

David K. Arctur*, John F. Alexander*, Miyi J. Chung,
Maria A. Cobb, and Kevin B. Shaw

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Chief of Naval Research
Code 824
800 North Quincy Street
Arlington, VA 22217-5050

11. SUPPLEMENTARY NOTES

'University of Florida, Gainesville, FL

5. FUNDING NUMBERS

Job Order No. 5745137A6

Program Element No. 0603207N

Project No.

Task No. R-1987

Accession No. DN 153-135

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/MR/7441-96-7719

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report documents our current experience and understanding with respect to the design of the Object-Oriented Vector
Product Format prototype viewer/editor application for managing graphical primitive objects and operations while maintaining full
spatial topology. This is an interim progress report within the Object-Oriented Database Exploitation Within the Global Geospatial
Information and Services (GGIS) Data Warehouse project, sponsored by the Defense Mapping Agency (DMA). The goal of the
overall project is to investigate, through research and prototyping efforts, the potential impact of object-oriented technology on
DMA's GGIS modernization program.

14. SUBJECT TERMS

Tactical oceanography, dynamical oceanography, physical oceanography,
electronic/electrical engineering

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

14
16. PRICE CODE

20. LIMITATION OF ABSTRACT

SAR

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

Introduction
This report documents our current experience and understanding with respect to the

design of the Object-Oriented Vector Product Format (OVPF) prototype viewer/editor
application for managing graphical primitive objects and operations while maintaining full
spatial topology. This is an interim progress report within the Object-Oriented Database
Exploitation Within the Global Geospatial Information and Services (GGIS) Data
Warehouse project, sponsored by the Defense Mapping Agency (DMA). The goal of the
overall project is to investigate, through research and prototyping efforts, the potential
impact of object-oriented (00) technology on DMA's GGIS modernization program (other
reports include Shaw 1995, Arcturl995a, Arctur 1995b, Chung 1995).

This report provides a basic description of topology through a review of current
literature, with references to node graph theory. An overview of design issues and
implementation of full spatial topology in OVPF is then presented. Examples of current
usage are drawn from a commercial Geospatial Information and Services (GIS) software
product, Arc/Info by Environmental Systems Research Institute (ESRI1994), both to help
clarify some of the concepts and to illustrate features that a complete GIS product must
include in its design. Arc/Info is chosen because it is a mature software product for
manipulating georelational data, rather than simply a specification for the structure of such
data. This will provide a useful context for comparison and discussion of VPF specification
(DMA 1993), and the OVPF application.

Key Concepts of Graph Theory and Topology
Geographic features have both metric properties (location, length, and other attributes,

including nonspatial attributes), and topological properties (adjacency and connectivity), as
described in Laurini (1994). The metric information is used for:
• drawing maps of nodes, lines, and surfaces;
• differentiating between duplicate edges;
• locating intermediate points on edges;
• measuring distances, perimeters, shapes, areas, or volumes; and
• determining positions of entities.

Various degrees of topological information may be needed, depending on the application
and resources available. The topological information is used for:
• tracing and buffering analysis;
• determining the character of adjacent area units;
• automating some error detection procedures;
• making data updates more feasible by separating the metric information from the

structural;
• facilitating aggregation of primitive spatial units into larger units;
• providing a basis for automation in map matching and transformations; and
• facilitating spatial reasoning.

Basic understanding of graph theory is a prerequisite to a description of topology. For
purposes of this report, a graph is a combination or network of line segments (Laurini
1994). In a stricter mathematical setting (Harary 1969), a more general definition is usually
assumed, but Harary acknowledges that graph and other related terms are frequently
defined according to the frame of reference in which they are used. As we are concerned
with applications to digital cartography, we will start with Laurini's definition here.

Figure 1 below shows two alternate forms of graphs for maps. In Figure 1(a), spatial
areas from the diagram on the left become nodes in the graph on the right, while in Figure
1(b), the intersections of spaces on the left become nodes in the graph on the right. Both
approaches have useful applications, .to be developed shortly. In either case, absolute
positioning and other metrics from the maps are not retained in the graphs; only the
structural relationships of connectivity and contiguity.

With respect to the graphs in Figure 1, we can define the following terms (most
commonly used terms are emphasized):

1. The intersections or end points of lines are usually referred to as vertices, nodes, or
0-cells (as in zero-dimensional).

2. The lines are generally called edges, arcs, links, chains, or 1-cells.
3. The vacant spaces between or outside arcs are also called faces, polygons, regions,

or 2-cells. Arc/Info actually uses the term region in a stricter sense to represent
user-specified groups of polygons.

In Figure 1 all connections between the graph lines are planar, that is, all crossings
occur in the same plane and result in a node. Graphs in general need not be planar, as in a
road network with underpasses and overpasses, but this will be seen to violate the
conditions of topological consistency.

tr

(a) Map is transformed into graph in which
graph nodes represent geometric spaces (Harary 1969, p. 6)

(b) Map is transformed into tesselation graph in which each polygon
has minimum of three sides and three vertices (Laurini 1994,p.187)

Figure 1. Alternate graphs of geometric spaces

A line segment with at least one node that is not connected to another line segment is
called a subgraph (see Figure 2). Arc/Info refers to the unconnected end of a subgraph as a
dangling node. While dangling nodes can be an indication of data errors in digitizing or
graph-building from the map, they can also be perfectly valid, as in the case of a cul-de-sac
in a street network. An isolated, unconnected node in space is not considered to be part of
any graph.

An open polygon

> —A

» (

(

t 1 i \ «

» Iffl \ HI

An "undershoot" An "overshoot"

Hgure 2. Examples of subgraphs and dangling nodes (ESR11994)

There are five basic rules of topology (Corbett 1979). We are substituting VPF's node-
edge-face terminology for that used by Corbett. These rules are illustrated in Figure 3
below:

1. Every edge is bounded by two nodes.
2. Every edge is bounded by two faces.
3. Every face is bounded by edges and nodes.
4. Every node is bounded by edges and faces.
5. There are no intersections that are not nodes.

Under these rules, isolated points will still be points, but points that are topological
junctions will be called nodes. Similarly, disconnected or unrelated linear features are not
edges ; this term refers only to bounding edges of faces. Within the VPF specification, an
isolated point may also be an entity node, and have a topological relationship with its
containing face. What Laurini and Arc/Info refer to as a node is what VPF defines as a
connected node, for distinction from entity nodes.

^ \ "**
• —- /" V N X^ \ 1 A^>N

y >—r* \ / s' I
\/S /

^r ~~ — ■"'' s

Anode is bounded A face is bounded by
by edges and faces edges and nodes

Rgure 3. Topological relationships (Laurini 1994, p. 187)
There are some additional classifications of graphs that can be made, such as (Laurini

1994, p.178):
• If a graph has no loops, circuits, or cycles, it is called a tree graph, or just a tree

(Figure 4a).

• If a graph has directed arcs but no circuits, it is called a directed acyclic graph (Figure
4b).

• Graphs with circuits, that is cyclic graphs, have at least one vertex connected to itself
without the need for traversing one edge in both directions (Figure 4c).

• Both cyclic and acyclic graphs may be directed or oriented, as indicated by arrows.

Topology can be seen to represent a specific set of constraints applied to graphs to
facilitate the use of graph theory and algorithms in addressing questions related to

Connectivity, contiguity, and proximity among areal, geometric features. A number of
interesting and sophisticated techniques have been developed for traversing and
manipulating graphs (Lau 1989, Harary 1969), which serve well in many cartographic
applications (Laurini 1994, Unwin 1981, Haggett 1969). In addition to supporting

» •—•

•—fT -•

*>

Unoriented Oriented
(e.g., railways) (e.g., rivers)

(a) (b)

Unoriented with circuits Oriented with circuits
(e.g., highways) (e.g, air routes)

(c) (d)

Figure 4. Some types of graph patterns (Laurini 1994, p. 179)

connectivity-oriented queries and processing, the topology model also affords certain kinds
of data integrity checks (Laurini 1994), which will be further discussed below.

Another key term to be introduced in relation to topology is coverage. This generally
refers to the set of all geospatial features for which topological relationships have been
determined. Arc/Info defines a coverage as:

"... the framework for vector data storage in Arc/Info. It generally
represents a single set of geographic objects such as roads, parcels,
soil units, or forest stands in a given area. A coverage supports the
georelational model—it contains both the spatial (location) and
attribute (descriptive) data for geographic features." (ESRI1994)

VPF uses coverage in a slightly broader sense to refer to a grouping of several related
feature classes for which topological relationships have been established within a specified
geographic area.

Not all cartographic situations can be easily handled topologically, as noted in the case
of depicting underpasses or overpasses in transportation networks. Different levels of
topology have been considered in various GIS databases and applications. VPF categorizes
these as:

•Level 0- (boundary representation only; no intersections of lines or areas considered)
•Level 1- (nonplanar graph, commonly referred to as "spaghetti")
•Level 2- (planar graph, commonly referred to as "network topology")
•Level 3- (full spatial topology, with no overlapping areas or line segments)

Even within VPF specifications, different levels of topology may be used for a given
database, library or coverage. For example, Digital Nautical Chart uses Level 3 topology
for all coverages except LBREF and TILEREF libraries, which use Level 2.

Further discussion on other aspects and applications of the topology model will be
found in the sections following, beginning with a survey of key historical developments in
this field.

Review of Alternative Proposals for Dealing with Topology
The earliest data organization approaches for representing digital cartographic data did

not encode topology, but simply stored all individual spatial units as separate unconnected
elements, as in the polygon model of the SYMAP software, developed primarily at Harvard
University in the late 1960s. In these nontopological data models, only positional

information is stored, such as the point coordinates and the list of points forming each
polygon.

The first topologically explicit data model was the line segment structure, developed and
used by the U.S. Census Bureau for the 1970 census. This DIME (Dual Independent Map
Encoding) format had a data record for each line segment, including from-node, to-node,
left-polygon, and right-polygon, as well as the coordinates of the nodes and names of the
polygons. There were no intermediate "shape" points stored, so that a single record could
handle both geometry and topology. Only line segments were stored, so polygons had to
be laboriously assembled from the data encoded in the line segment records.

The chain model, sometimes known as the POLYVRT structure, extends the line
segment structure by encoding intermediate points along lines, as well as the line end
points. One table contains the list of points or nodes (and their coordinates) making up each
chain, while another table lists the end-nodes and adjacent faces for each chain. This
system was used at Harvard University about 10 years ago. The U.S. Geological Survey's
(USGS) first digital line graph (DLG) concept was encoded in a similar way, with
additional information such as centroid coordinates for areas.

Connectivity Map
h_2_4

Link
From-
node'

To-
node

a

b

1

2

2

3

6 l (a) Link list

t
Node 1 2 3 4

1 - 1 0 0
2 1 - 1 0
3 0 1 - 1

Node Connected to

1

2

3

2

1,3,5

2,4,5

(b) Connectivity matrix and node list

Figure 5. Recording data for connectivity.
Contiguity follows the same principle with areas identifi ed instead of nodes.

(Laurini1994, p.209)
Connectivity and contiguity tables provide a straightforward way of representing

topology (Figure 5 above). Connectivity can be handled by link-node lists, showing/rom-
node and to-node labels, with a separate table for the lines' coordinates (Figure 5a). An
alternative to these lists is the use of a connectivity matrix and separate node coordinate list
(Figure 5b). The same idea is applied to a contiguity table, in which the left- and right-
polygons for each link would be identified. Note that these can be used for either directed
or undirected graphs. Lists seem to be better for some purposes than matrices, and are
certainly less sparse. However, some arithmetic operations are performed more easily on
matrices than on lists.

The more recent TIGER (Topologically Integrated Geographic Encoding and
Referencing) model ((Marx 1986); see Figure 6), developed jointly by the USGS and the
U.S. Census Bureau, grew considerably from the agencies' experiences with DIME and
DLG. TIGER provides a rich data model that supports full spatial topology based on the
work of (Corbett 1979).

Feature
Name

7T
O-Cell
(Node)

Attributes

H
Key

Geographie
Location

1 -Cell
(Arc)

Address
Range

H
Shape

Coordinates

2-Cell
(Polygon)

H
Area

Landmark

Geographic
Cover

Figure 6. TIGER Structure
(Marx 1986)

Shortly after TIGER's release with the published 1990 census data, another data model
standard was released by the USGS and U. S. Census Bureau, the Spatial Data Transfer
Standard (SDTS), (National Institute of Standards and technology 1992). SDTS was
initially developed to make the TIGER database easier to use, and following the public
release of SDTS in 1991, the TIGER database has been provided in that format. The most
notable feature about SDTS is its oo flavor. It cannot be said to be an oö system, as it does
not incorporate behavior, but simply provides a data structure specification. However, it
supports many of the characteristics of oo design, including a class hierarchy of spatial
objects, generalization (abstract classes), aggregation (composite classes), and association
(objects linked by phenomena rather than by definition). Because of its flexible approach,
the U. S. Census Bureau was able to completely define the TIGER data entities in terms of
SDTS spatial objects, while retaining certain key elements unique to the TIGER model. The
SDTS model supports both topological and nontopological (geometrical) spatial entities,
and in fact provides classifications for each of several degrees of completeness in
topological information that may be available (see Figure 7 for a partial list). It appears the
USGS and the U. S. Census Bureau have created considerable growing room for future
digital products (Fegeas 1992, Lazar 1992, Davis 1992, Szemraj 1992).

Line Segment

String

Arc

Link

Chain

- Complete Chain

-Area Chain

- Network Chain

Ring

- G-Ring

- GT-Ring

One-Dimensional Spatial Objects

An object representing a straight line connecting two points.

An ordered sequence of connected, nonbranching line segments (a string
may intersect itself or other strings).

A curve that is defined by a mathematical function.

Atopological connection between two nodes.

A directed, nonbranching sequence of nonintersecting line segments and/or
area bounded by nodes.

A chain that explicitly references left and right polygons, and beginning and
ending nodes.

A chain that references left and right polygons, but not beginning and ending
nodes.

A chain that references beginning and ending nodes, but not left- and right-
polygons.

A sequence of nonintersecting chains, strings, and/or arcs that close to form
the boundary of an area.

A ring created from strings and/or arcs.

A ring created from complete and/or area chains.

Figure 7. Primitive line-vector object names and definitions in SDTS (Davis 1992, p. 324)

While many other frameworks may exist, these should suffice to illustrate the main
issues involved and approaches currently being used. The next section focuses on current
implementations of topology.

Current Implementations of Topological Structure
For simplicity of comparison, this and following sections present just the frameworks

used in VPF and Arc/Info. Both use directed cyclic graphs to represent edges and faces,
and assign a unique integer identifier to each. The internal organization of topology data
used by Arc/Info to represent these structures is similar in some ways to VPF. For
example, each arc (edge) knows its start- and end-nodes, as well as its left- and right-
polygons (faces). However, Arc/Info stores the location coordinates of arcs in a separate
file from the topological relationships, while VPF specifies that a single file contains both
location and topology data for each type of topological primitive (nodes, edges, and faces).
In VPF, an edge also knows its left edge from the start-node, and its right edge from the
end-node. This is part of VPF's winged-edge topology, illustrated in Figure 8. And while
Arc/Info stores an arc's length with its topological relations, VPF does not specify that an
edge knows its length.

Topological Attributes

Entity nodes

-containing face

Connected nodes

entitvmode \

•connected node

-first edge right face \ Ä

Edges:

- start- and end-nodes

- left and right edges

- left and right faces

left edge
end-nod^L^

«^-"■"■""'^ Nk-^X>rahtedge
start-node ^|

Faces:
- ring (fi rst edge) left face /

Figure 8. Winged-edge topology relationships in VPF (Cobb 1995)

Topological Operations
Most GIS software products today provide two principle operations related to

construction of topological structures: build and clean. The job of build is to take the
spaghetti of lines digitized from a map (Laurini 1994, p. 190) and:
• Determine the containing face of entity nodes.
• Determine where lines cross to establish the connected nodes.
• Create all the separate edges.
• Assemble ordered sets of nodes to make nonoverlapping faces.
• Associate edges with their nodes.

• Run the clean operation to address the more obvious geometric and topological errors.

In carrying out these steps, the five principle rules of topology provide the main
guidelines for the algorithms, but various errors can occur in either the digitizing or the
topology-building processes. Some geometric error conditions include (Laurini 1994,
p.191):
• A node is missing or misplaced.
• An edge is missing or misplaced.
• An edge has a bad shape or too many (or too few) points on it; or coordinates are

missing or incorrect.
• A node has more than one position.

Some topological conditions include:
• Unconnected edges exist.
• A face has a gap between two edges that is it is not closed.
• Duplicate edges are present.

• A face has more than one or no reference point associated with it.
• A node has only one or two edges, rather than at least three.
• A face may be missing.

As Laurini points out (p. 191),
"At times, unless external data are available for checking, it may not
be easy to validate whether a condition is inherently geometrical or
topological, or indeed, whether or not it even represents an error."

In identifying and attempting to correct some of these errors, the clean operation in Arc/Info
takes into account numerous user-specified tolerances, including (ESRI1994):
• Fuzzy tolerance - an extremely small distance used to resolve inexact intersection

locations due to limited arithmetic precision of computers.
• Dangle length - the minimum allowed length for a dangling arc.
• Node snap tolerance - the minimum distance within which two nodes will be joined

(matched) to form one node.
• Arc snap tolerance - the distance within which a new arc will be extended to intersect an

existing arc.

• Weed tolerance - the minimum allowable distance between any two vertices along an arc
(used to reduce the number of coordinates in an arc).

• Grain tolerance - further controls the number of vertices in an arc and the distance
between them.

The foregoing discussion provides an indication of the types of issues and difficulties
involved in creating and maintaining topological structures based on geographic source
data. The next section summarizes the main points of our design for an oo representation
for topology.

Topology Design Issues in an Object-Oriented
Environment

As we introduce OVPF's oo framework, it is important to point out some basic
distinctions between the OO approach and the georelational approach. In the georelational
approach, all data are organized into tables of rows and columns, and a given row's
identity is based on its primary and foreign key values. Query and analysis procedures are
external to the data tables, and maintained independently of them. As the data structures and
the procedures become increasingly complex, keeping them in sync through changes
becomes increasingly difficult.

An object is somewhat analogous to a row in a relational table. An object's attributes
correspond to the columns of a relational table. But in the OO paradigm, we think of
objects as data elements that know what kinds of operations they can perform and how to
perform them. Basically, the query and analysis procedures are distributed among all the
objects, rather than being external to, and manipulating, isolated data elements. This results
in much tighter coupling between a given data structure and the procedures that are
concerned with it, which facilitates easier and more rapid maintenance to keep them in sync
through changes in the system. Another distinction is that each object has a unique identity,
and holds direct pointers to its component objects' identities, resulting in inherent support
for complex object webs without the need for the application software to maintain primary
and foreign key values. We will now see how these kinds of differences affect our design
of spatial topology in an OO framework.

From the literature, it appears that graph mathematics have a lot to offer, but that
topology is computationally expensive to determine, debug, and maintain. Thus, topology

should be physically stored within the spatial data model if it is desired. The question of the
possible implementations then depends on:
• How much topological information should be stored?
• When and how should it be determined?

It seems safe to say that each feature object should be capable of holding onto direct
pointers to its connected and adjacent neighbors, depending on its status as a node, edge,
or face object, and on the context of the application. It also seems safe to say that these
pointers should be computed as seldom as possible, and within as limited a geographic
scope as possible, and still support accurate, topologically-based queries and analysis.

The topology design is also complicated by the issue of scale, which is not addressed in
any of the previously cited data models. For example, a feature that may be an area object at
one scale could be a point object at another scale, or not even shown at still another, as we
"zoom out" in relation to the map. Presently, VPF stores these different representations in
separate libraries of coverages, but DMA has indicated dissatisfaction with this approach,
as it imposes arbitrary restrictions on some cross-feature queries. Shall we consider all
features to be instantiations of their largest-scale (closer-in) representation, and only change
the display attribute as the scale changes? Under what conditions shall the topology data
change as the map's scale and features' representations change? It could impose
considerable, seemingly unnecessary overhead at smaller scales (viewing from a more
distant vantage point) to keep track of all features, whether displayed or not. However, the
fine detail may be required, regardless of scale, depending on the nature of a user's query
(e.g., "zoom in on the bridge that is four miles up a small stream from buoy 'A'.")

Finally, the OVPF design for handling topology must take into account the need to
export feature data back to relational VPF files. It is expected that OVPF will be used to
import, edit, and export relational VPF data to support the current and future needs of
DMA's customer base. Certainly from this requirement, OVPF must include at least the
topological attributes already specified in VPF.

An Object-Oriented Topology Implementation
In OVPF, we have introduced an object known as a DrawOrder. This is a very simple

structure whose inspiration is drawn from Digitalk's Smalltalk/V for OS/2 Presentation
Manager (Digitalk 1989, p.464). The structure contains a variable-length array of bytes (the
contents attribute). Each DrawOrder's contents array has the following organization:
• opcode - a single byte whose integer value (0 - 255) represents an operation code, such

. as set polyline, continue line, set color, etc.
• byte length - a single byte whose integer value (0 - 255) represents the number of bytes

remaining in this draw order.

• data bytes - the bytes whose integer or floating-point values represent the location
points, the line-color index, etc., for this draw order.

The byte-array contents from several DrawOrders can be concatenated into a single
DrawOrder to include an arbitrary number of instructions for displaying complex graphical
objects. This structure is not only versatile, it is very compact and efficient for representing
location coordinate data.

Even without the need to manage spatial topology, DrawOrders are useful objects for
primitive graphical data and operations. Supporting VPF graphical primitives with full
spatial topology represents a refinement of this definition, so these primitives are
implemented by subclassing the DrawOrder class. A straightforward example would be to
have EntityNode, ConnectedNode, Edge, Face, and Ring classes defined as direct
subclasses of DrawOrder. In this way, each subclass would inherit the contents attribute,
and add its own specific topological attributes as needed. It is also important, however, for
each graphical object to hold onto a collection of the VPF feature objects that use that

graphical object. This is handled in OVPF by defining the TopologicalStructure class as a
subclass of DrawOrder and as a superclass of each VPF graphical primitive class (see
Figure 9). The TopologicalStructure's features attribute is handled as a collection of
features because a given unique graphical primitive may be used to represent any number of
VPF features. Each feature object holds onto an identity-pointer to its corresponding
collection of graphical primitive objects (see (Arctur 1995a)), thus enabling both features
and primitives to have access to each other.

nrawflrHar

contents

TopoloqicalStructu -e
features
primld
tileld

EntityNode
containingFace

CnnnpntPriNlnHfl

first Edge

Legend:

Suporrlacc

attribute

Subclass
attribute

Edge
startNode, endNode,
leftEdge, rightEdge,
leftFace, rightFace

X
Pa^o

ringPtr

Ring
first Edge

Figure 9. Object hierarchy for representing VPF graphical primitives with spatial topology

In addition, the primld (primitive ID) and tileld attributes of TopologicalStructure are
inherited by each subclass, providing a holding place for primary-key data from the
relational VPF files. For simplicity of supporting both import and export operations with
the relational VPF data, the primld, tileid, and topological attributes are assigned the primld
value of the corresponding graphical primitive objects, rather than unique object-identity
pointers. As features are added, deleted, and moved with respect to each other, these
primld values are maintained just as they would be in a relational GIS framework.

Presently, all source data comes to OVPF from relational VPF databases. At this stage in
our prototype development, we assume that all feature attribute, location, and topological
relationships in the source data are initially correct. Thus, we can focus our attention on
developing full build and clean topological support in a step-wise manner, beginning with
simply maintaining topology during isolated feature changes. We now have the capability
to interactively add, delete, and change location coordinates of a single point, line, or area
feature at a time within a given tile, while maintaining correct topological relationships with
adjacent and contiguous features (Chung 1995). This is handled through a graphical user
interface that requires the user to accept and commit changes to each topological
relationship. The next step will be to support changes to features that span tile boundaries.
After that, we will build support for batch changes to topology, such as from merging
multiple coverages. At that stage, separate noninteractive build and clean procedures will be
implemented. For efficiency and performance, we will continue to use localized, interactive
techniques for maintaining topology whenever possible, and use the batch-oriented build
and clean procedures only when necessary.

Summary
Topology is not always needed in GIS applications. Geometric information is not

always important in GIS applications. Each of these has significantly different implications

for data model design, perhaps more so in an oo model, since the analytical behavior is
more closely associated with the structural data objects. In the present OVPF prototype, we
have designed and implemented a versatile and efficient framework for representing
graphical primitives in general, as well as for handling full spatial topology. We have
implemented the capability to add, delete, and change coordinate locations of point, line,
and area features, while maintaining correct topological relationships. This framework can
easily be extended and even reorganized as needed to support future enhancements, such as
to provide batch-mode build and clean operations for merging coverages.

Acknowledgement

We wish to thank our sponsor, the Defense Mapping Agency Mr. Jim Krause and
Mr. Jake Garrison as program managers, for sponsoring this research.

References
Arctur, D. K., K. B. Shaw, M. J. Chung, and M. A. Cobb (1995), "OVPF Report:

Object-Oriented Database Design Issues," Interim Project Report to DMA, June 1995.
Arctur, D. K., K. B. Shaw, M. J. Chung, and M. A. Cobb (1995), "OVPF Report:

Evaluation of Illustra Hybrid Object-Relational DBMS," Interim Project Report to DMA,
July 1995.

Chung, M. J., M. A. Cobb, K. B. Shaw, and D. K Arctur (1995), "OVPF Report:
Network Investigation Results," NRL Memorandum Report MR/7441--95-7713, Jury
1995.

Cobb, M. A., and K. Shaw (1995), "FY95: Object-Oriented VPF (OVPF) Project
Status," notes from presentation by Naval Research Laboratory to Defense Mapping
Agency, July 26, 1995.

Corbett, J. P. (1979), Topological Principles in Cartography, Technical Report No. 48,
U.S. Bureau of the Census, Washington, D.C., U.S. Government Printing Office.

Davis, B. A., J. George, and R. Marx (1992) "TIGER/SDTS: Standardizing an
Innovation," Cartography and Geographic Information Systems 19, 5: 321-327.

Digitalk, Inc. (1989), Smalltalk/VPM Tutorial and Programming Hankbook. Los
Angeles:, CA, Digitalk, Inc.

Defense Mapping Agency (1993), Military Standard: Vector Product Format, Draft
Document No. MJL-STD-2407, Fairfax, VA, DMA.

Environmental Systems Research Institute (1994), Arc/Info Users Guide, Release 7,
Redlands, CA, Environmental Systems Research Institute.

Fegeas, R. G., J. Cascio, and R. Lazar (1992), "An Overview of FIPS 173, The
Spatial Data Transfer Standard," Cartography and Geographic Information Systems 19, 5:
278-293.

Haggett, P; and R. Chorley (1969), Network Analysis in Geography, New York, NY,
St. Martin's Press.

Harary, F. (1969), Graph Theory, Menlo Park, CA, Addison-Wesley.
Lau, H.T. (1989), Algorithms on Graphs, Blue Ridge Summit, PA, TAB Books.
Laurini, R. and D. Thompson (1994), Fundamentals of Spatial Information Systems,

New York, NY, Academic Press.
Lazar, R. A. (1992), "The SDTS Topological Vector Standard," Cartography and

Geographic Information Systems 19, 5: 296-299.
Marx, R. W. (1986), "The TIGER Aystem: Automating the Geographic Structure of the

United States Census," Government Publications Review 13: 181-201.
National Institute of Standards and Technology (1992), Spatial Data Transfer Standard

(SDTS), FIPS Pub. 173, Springfield, VA, National Technical Information Service.
Samet, H. (1990), The Design and Analysis of Spatial Data Structures, Reading, MA,

Addison-Wesley.
Shaw, K. B. (1995), "Object-Oriented Database Exploitation Within the GGIS Data

Warehouse: Initial Report to DMA,"NRL Report FR/7441-95-9639, Stennis Space
Center, MS.

Szemraj, J. A., (1992), "TIGER/SDTS Topology," Cartography and Geographic
Information Systems 19, 5: 328-331.

Unwin, D. (1981), Introductory Spatial Analysis, New York, NY, Methuen & Co.

