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FOREWORD 

Monopulse radars are often used by the U.S. Navy Department to track low elevation 
airborne targets such as missiles attacking ships. In order to effectively make use of the target 
position data provided by the radar, an estimate of the radar output accuracy must be known. 
This accuracy information is necessary in order to judge how much distance and at what angle 
the actual target can be located away from the radar estimated location. Such information is 
necessary for defensive actions against the target. Also, radar accuracy information is needed in 
order to make efficient use of the radar equipment itself since the amount of time the radar 
requires in tracking the specific position of a target increases with the desired accuracy. 

This report describes portions of research performed at the Naval Surface Warfare 
Center, Dahlgren Division (NSWCDD) to develop statistical models of monopulse ratio behavior 
to improve accuracy analysis of the monopulse radar. The products of this work are mainly new 
formulas and confirmations of existing formulas. These results are useful in developing 
algorithms for assessing the accuracy of target location estimates by monopulse radars. 
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helping to examine some of the problems encountered during this research. 
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CHAPTER 1 

INTRODUCTION 

Monopulse radars are used by the U.S. Navy Department for tracking low elevation 
airborne targets such as missiles attacking Naval ships. One such missile in this category is the 
Antiship Cruise Missile. In order to effectively make use of the target position data provided by 
the radar, an estimate of the radar output accuracy must be known. This accuracy information is 
necessary in order to judge how much distance and angle the actual target can be located away 
from the radar estimated location. Such information is necessary for defensive actions against 
the target. Also, radar accuracy information is needed in order to make efficient use of the radar 
equipment itself since the amount of time the radar requires in tracking the specific position of a 
target increases with the desired accuracy. 

As with any signal processing instrument, random disturbances, commonly known as 
random noise, are generated during its use. These disturbances occur from both sources external 
to the radar as well as from the instrument itself. The random noises in the radar signal form 
errors in the radar reading that constitute a significant source of inaccuracy in target position 
estimation. Analyzing the nature of this random noise is useful in minimizing the impact of such 
errors and making efficient use of radar resources. 

Another reason of why a better understanding of random disturbances is useful is related 
to how radar tracking is performed. Estimating algorithms such as the Kaiman filter are used in 
the tracking software in order to estimate the position, velocity, and/or acceleration of the target. 
One of the inputs of such estimators is the measurement error covariance. In the past, there have 
been no adequate approximations of this quantity. One other application of the study of random 
disturbances is a better understanding of how and (to what extent) the errors caused by such 
noise propagate through the radar system, causing inaccuracy in the final reading. 

Due to the random nature of this noise, deterministic mathematical methods do not form 
adequate models of radar signals. Hence, radar signals needs to be studied from a statistical and 
probabilistic point of view. There has been research work that performed on the statistical nature 
of monopulse ratio radar signals. Some of this work was documented in References 1, 2, and 3. 
The additional new research shown in this present document supplements and extends these 
investigations. The products of this work are mainly in the forms of new formulas as well as 
confirmations of existing formulas. These results are useful in developing algorithms for 
assessing the accuracy of target location estimates by monopulse radars. 

In analyzing the statistical nature of a monopulse radar, any information on the nature of 
the joint probability density function of the complex valued monopulse ratio is important for 
specifying the statistical parameters. This joint probability density function for various cases has 
been derived in Reference 1, the distribution of the real part of the monopulse ratio was then still 
unknown. Yet, the probability density function of the real part of the complex monopulse ratio 
along with any other properties that can be derived to further describe this probability density 
function is useful in determining the errors of the angular displacement of the target being 
tracked by the radar. The research described in this report helped to characterize the real part of 
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the monopulse ratio. In this report, the probability density of the real part of the monopulse ratio 
for the zero mean and partially correlated case is derived based upon the joint density described 
in Reference 1. In addition, two methods of analyzing this probability density function to help 
determine its closeness to a normal (Gaussian) distribution are described. Furthermore, a 
comparative study is performed that compares some of the results given by Seifer (References 2 
and 3) to the results reported by Groves and Blair (Reference 1). In order to enhance clarity, an 
explanation of the equivalence of a complex valued random variable to a bivariate random vector 
is given in the last section of this report. The derivation of the variance of the real part of the 
probability density function for the zero mean and partially correlated case is described in 
Appendix A. This variance formula is needed in one of the methods for analyzing the closeness 
of the probability density to the normal density. 

1-2 
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CHAPTER 2 

PROBABILITY DENSITY OF THE REAL PART OF THE MONOPULSE RATIO 

gh the blvanate density of the monopulse ratio with partial correlations is known 
(Reference 1), the density of the real part of the monopulse ratio was not yet derived In this 
section, the probability density function of the real part of the monopulse ratio is derived as the 
marginal density of the joint probability density function of the real and imaginary portions of 
the monopulse ratio. The magnitude of the signal is assumed to exceed a given threshold level in 
order to be considered. This is further explained in the next paragraph. 

In a monopulse radar, the signal consists of four beams, which is modeled as four random 
variables, X, Y, U, and V. Each of these random variables is assumed to be normally distributed 
Furthermore, these four forms of the signals are transformed into the sum and difference 
channels. Let S=U+iV be the sum channel of the monopulse ratio and D=X+iY be the difference 
channel. Let P+iQ=R=D/S be the monopulse ratio and p be the correlation between x and u (the 
real parts), which is assumed to be the same as that of y and v (the imaginary parts). 
Furthermore, let ax and au represent the standard deviations of x and u, respectively, and 
y=Cx/au. The threshold assumption, mentioned in the previous paragraph, is that the magnitude 
of the sum channel must exceed a given positive constant Ro in order to be considered a true 
signal. In other words, the assumption states that in order to be recognized as a legitimate signal, 
the signal must be such that V(U2+V2) >Ro > 0. 

Suppose that the monopulse ratio is zero mean and has the following covariance matrix: 

Z = o', 

Y 

0 

PY 
0 

0 PY 0 
2 

Y 0 PY 
0 1 0 

PY 0 1 

(2.1) 

Then, the joint probability density function of the real and imaginary parts of the monopulse ratio 
is shown in Equation (7.12) of Reference 1 to be as follows: 

,PiQ(p,q).i!iizfy <-; -ys ->™>+y.v+qw-2pyp> 
71 (P    +q    +Y    -2pyp) 

(2.2) 
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where h is a "normalized" threshold, defined as 

h = Ro 

OXV2(1-P) 
(2.3) 

and Ro is the actual threshold level. For the sake of completeness, one may note that a general 
probability density function for P and Q with any given correlation of the noises and without the 
threshold restriction was derived and given in Equation (6.12) of Reference 1. Definitions of 
various variables in this equation are given by Equations (6.2), (6.6), and (6.13) of Reference 1. 
This formula for the general probability density function for P and Q was later empirically 
confirmed. The empirical confirmation was done by programming the formula using the 
MATLAB computer language and numerically integrating the formula over all p and q. (The 
numerical result of this integration was one. See Appendix B for more details.) 

The probability density of the real part, P, of the monopulse ratio can be derived as the 
integral over the real line of the joint density with respect to q. Hence, 

PP(P) = 

(2.4) 

2d-p2)  7 rh
2(p2 +q2 +Y2 - 2pyp) +1 222 2 

J   1 I        2 2 2 lexP[-h    (P    +q    + PY    -2p7p)]dq 
Jt — oo fn      + n      -4- v      — •?.nvnl 

Let ci=p2+y2-2p7p and C2=p2+p272-2p7p. Since by definition of correlation, the magnitude of 

p is no greater than one and p2+Y2>2yp, one can conclude that ci=p2+y2-2p7p>0. Therefore, 
ci, being a non-negative number, can be represented as ci=c2 for some quantity c. Using these 
symbols, 

PP(P) = 

Y2d-P2)  7 rh
2(q2 + c2 ) + 1 22 

j   [ _ ]exp[-h    (q    +c2)]dq 
« -oo        (q     + c    ) 

Y2(l-p2) 2 ~ h2 _h2Q2 oo j 22 

(2-5) 

n 
exp(-h   c2)[  I   — — e        q   dq+   J   — —- e"

h  ^   dq] 
-°°(q    +c   ) -°°(q    +c   ) 
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One can see that this probability density contains the sum of two integrals.  Consider the first 
integral. Looking at Equation (3.466) of Reference 4, 

2   2 
°° h2 ■ 2   2 - °°   -~~h   q 

~h q  J    ,,.2 r  e 

:        n    dq = 2h    )■ j    e        i    dq = 2h    J dq 
2       2 2       2 -°°(q    +c    ) 0(q    +c    ) 

2 *    h2c2 

2h    [l-<|>(ch)]— e 
2c 

where 

2   ch       2 
<|)(ch) = — Je.     dt=> 

Vrc 0 

7 h2 -h2q2 Tth2    h2c2 
J   __ _ e        4   dq = en        [l-<|,(ch)] 

-oo (q    + c   ) c 

Now consider the second integral in the formula for Pp(p). Note that 

-   /   "j 2-e dq = -2h   c  J   — — e        q   dq 
dc- oo q     +c -oo(q    +c    ) 

1 _h2
q
2 -1       d     «       h2 _h2 2 

e       q   dq = (—^-) —(  J   — -e   h q   dq) '        2        2,2 " M~\,2   '.   v J      2        2 -oo (q    + c    ) 2h   c   dc   -oo q    + c 

-1       d    7th2    h2„2 
= (—2~) —[ e (l-<t»(ch))] 

21   c   dc      c 

j       he -n    a    e 
= (—) —[ (l - 4>(ch))] 

2 c   de        c 

(2.6) 

(2.7) 

(2.8) 
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Taking the derivative of the first factor, 

2   2 
d    exp(h   c   ) 2   2 2       1 

— ( ) = exp(h   c    )(2h" - —) 
dc c c 

2   2 
d    exp(h   c    ) 2   2 2       1 

— [ (1 - <t>(ch))] = exp(h   c   )(2hi' - —)(1 - 4>(ch)) - 
dc c c 

2  2 
exp(h   c   ) d 
 <|>(ch) 

c dc 

With the derivations just given, one can conclude that 

2 2 
7      e"h q -n   h2c2 2       i i  d 

J   —"a 2~Tdq = e [(2h    --J-Kl-♦(«*))- <t>(ch)] 
-oo (q    + c    ) 2c c c dc 

~n     h2c2     2h   c   -1 d 
_e [( )(l-<t>(ch))-— (|)(ch)] 

2 c c dc 

where 

(2.9) 

(2.10) 

d d     2    «=h    2 2h   _c2h2 
— <|>(ch) = —(—)/ e1   dt = —e   C n 

dc dc   VTC   0 VTT 

Note that the formula for the derivative of (|)(ch) was derived by using the Leibniz theorem. Now 
putting the two integrals together, 

T       fa2        -hV,, ^ T        1 "h2q2, 
~2 2~~e dq+   J   —2 2~Te dtl 
(q     + c    ) -oo(q     +c    ) 

h2c2 .       ».2   2 

(2.11) 

TO 2 1      2h   c   -1 d 
 {h   [1 - <|>(ch)] - —[( )(1 - 4>(ch))- — <j)(ch)]} 

c 2c c dc 
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Now recalling the equation for Pp(p) given by Equation (2.5), the following must hold true: 

i>    ,   x     Y2(1~P2)   h2c2   ~h2c2      2 
Pp(p) = e e 2{h   [l-<j>(ch)]- 

1      2h2c2-l d 
— [( )(l-<)>(ch))-— <t>(ch)]} 
2c c dc 

Y2d-P2)   h2c2   "h2c2      2 1      2h2c2-l 
— e * {h    [1 - <(»(ch)] - — [( )(l-<|)(ch))] 

« 2c c 

(2.12) 
1      2h     _c2h2 

+ (—)( —)e       h    } 
2c     VTI 

I>    /   *     y2^~P2)   h2c2   -h2c2      2                           1      2h2c2-l 
•••Pp(p) = e e 2{h   [l-^(ch)]-—[( )(l-4>(ch))]} 

c 2c c 

2 2-» 
y  (l-p   ). -h2c2 2 r c   Vn 

(2.13) 

-h2c„ 
he 

with C2=p2+p2y2-2p7p and c2=ci and ci=p2+Y2_2p7p, as were previously defined. So the 
formula for the probability density function of the real portion, P, of the monopulse ratio has now 
been derived. 

This formula will now be modified to a form that can be more easily programmed on a 
computer for use in monopulse ratio radar signal processing. The given formula for PP(D) 
implies that 

'2n_i£!2eh2Y2a-p2){[h2_(
2JLi2 

c 2c: 

P    t   *     Y   (1~P   }   h2Y2a-p2)„   2       2h   c   -1 
PP(P) = e v  '{[h    -( - )][l-(|)(ch)]} 

(2.14) 

Y2(l-p2)     -h2c- 
—— he * 

2   r      ne 

c   Vrc 
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This implies that 

PP(P) = ^[l-((,(ch)]eh 7  (1  P  } + Y   ('     P   j he        2 (2.15) 
2c c2Vn 

y2(l-p2) h2Y2(l-02)      2ch   -h2c, 
•••Pp(p) = 3 {[l-<|>(ch)]en Y U  P  J + —e 2 } (2.16) 

2c Vrt 

Notice that the probability density function of P is obviously not normally distributed. In 
the next two sections, formulas will be derived that can be used to provide some form of 
measuring how close the real part of the monopulse ratio, whose probability density function was 
just derived, is to a Gaussian density function. The first method exploits the fact that any 
Gaussian distribution has a kurtosis value of 3, and the second method uses a stochastic distance 
measure. 

2-6 
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CHAPTER 3 

FOURTH MOMENT ABOUT THE MEAN AND 
KURTOSIS OF THE REAL PART OF THE MONOPULSE RATIO 

One method of giving a measure of the closeness between the real part, P, of the 
monpulse ratio and a normally distributed random variable uses the fact that the kurtosis of any 
Gaussian (that is, normal) distribution has a is 3. Hence, finding the kurtosis of P and comparing 
it with 3 is one method of comparison of the closeness of P to a Gaussian distribution. Certainly, 
there can be distributions other than Gaussian that also have a kurtosis of 3, but this is still one 
form of comparison between P and a normally distributed random variable. Furthermore, 
deriving the formulas for the fourth moment of P along with its kurtosis may themselves be 
useful information concerning the statistical nature of monopulse ratio radars. 

Recall that kurtosis is defined as in the following. 

Definition: Let X be a random variable. The kurtosis of X is given as 

E[(X-E[X])4] 
Kurtosis (X ) = ^  (3.1) 

°X 

In order to simplify notations, let t=P-E[P]. Also, let El be defined as the following 
function for any given real number y: 

CO,"« 

E1(y)^l du (3.2) 
y u 

Also, let Y and p be as previously defined.   One may note the fact that according to Reference 1 
(on the top of page 7-3), 

E[P]=PY (3.3) 

The fourth moment of P about the mean, py, will now be derived. With the notations that 
were just given, the fourth moment about the mean can be denoted by E[t^].   In finding the 
fourth moment, a transformation from the Cartesian coordinates to the polar coordinates will be 

3-1 
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made. Hence, let t=P-E[P]=Rcos6. From Equation (7.16) of Reference 1 the variance (second 
moment about the mean) of P is given by the following equation: 

E[t2] = 

(3.4) 

Y   (1-P   )2n      2       7   3       h   [R    +Y   (1-p   )] + l 7   2 
  J cosZ6deJirdR[ = '- ,  "       ]exp[-h2R2] 

n 0 0 [RZ +Y
z(i_p2)]2 

Writing the new variable t in the form of t=Rcos6, the above formula implies that E[t4] can be 
represented as follows: 

4 
E[t*] = 

(3.5) 

Y   (1-P   )2n      4       7   5       h   [R    +Y   (1-P   )1 + 1 2   2 
  / cos^Gde/R^dRl - l- V—^- ]exp[-h2R2] 

no 0 [Rz +y^(i_p2)]2 

Looking at the first integral in this equation, the following relationships must be true. 

2n      4 3        sin26     sin 40  2ir      3 3 
|   COS      ed0 = [-9 +   +  ]JK   =-(27c) = -7C   => (3.6) 
0 8 4 32 8 4 

^r 4       3   2 2   7   5       h2[R2 +y2(l-p2)] + l 2   2 
E[t   ] = -yZ(l-pZ)/Ri'dR[ \ V   '\      ]exp(-h2R2) (3.7) 

4 0 rR
2
+Y

2
(1_p

2
)]

2 

In performing this integral, another change of variables will now be made.  Let u=R2.  This 
means that du=2RdR and RdR=du/2. Substituting these values, 

4       3   2 2   7  2       n2[u + Y2U-p2)] + l 2 
E[t* ] = -YZ (1 - p2 ) Ju2du[ ^ V    "       ]exp(-h2u) (3.8) 

8 0 [u + Y2
(l-p2)]2 

3-2 
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Now let a=u+Y2(l-p2). This implies that da=du and u=a-y2(l-p2). Substituting these values, 

E[t4] = 

2 3   2           2         7           2           2    2        h  a + 1 2 11 i 
-Y   (1-p   )       J[a-y   (1-p   )]   da( r—)exp(-h   a)exP(h  Y   (1-p^)) 
8 Y2(l-P2) a 

3   2.,       2,  h2Y2d-p2)       7,          2           2    2        h2a + l    _h2a = -Y   (1-p   )e     '       V)       J[a-Y   (1 - p   )]   da( T—)e  n a = 
8 Y2d-P2) a 

-Y2 (1 - P2 )eh2Y2(1-P2)       Jta2 - 2aY
2 (1 - p2 ) + y4 (1 - p2 )2 ]da * (3-9) 

8 Y2d-P2) 

hV^l    _h2a 
( —)e 

a 

In order to further simplify formulas, let 

fe(3«>y2(l-p2)eXp(Il212(1.p2)) (3 10) 

Thus, 

2 

E[t4] = K{  ^  7(h2a + l)e-h'ada-2Y2(l-p2)  . 7   .  (^-^e^da 

(3.11) 

Y2(l-P2) Y2d-P2)        a 

4 22       7        ha + 1    _i,2 
+Y   (1-pV        1       ( — )e  h ada} 

Y2(l-p2)      a 

.-. E[t4 ] = K{      7h2a*-h2ada +       7e_h2ada - 2Y
2 (1 - p2 )h2       le^da 

Y2(l-p2) Y2(l-P2) Y2(l-P2) 

.2,,     .2,       T       ,K  -h2a 4,.       2.2       7       ,h\   -h2a 
2 

-2Y- (1 - p- )       J       (-)•- "da + Y* (1 - p* )*        J       (—)e-n"ada 
Y2(l-p2)   a Y2(l-p2)    a 

4„       2,2       7 *      -h2a 

(3.12) 

+Y   (1-P   ) J       (—)e  " uda} 
Y2(l-p2)  a 
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„„4.    v.      °?,2    -h2a, 7 -ha,      „2,,       2., 2       7 -ha. E[t   ] = K{       Jh   ae da+        je da-2y   (1-p   )h Je da 
y2(l-p2) Y2d-P2) Y2(l-P2) 

->   2,i       2^      7       ,1^ -^a.         4^       2,2       7         h       -h2
ttj -2y   (1-p   )       J       (-)e da + Y   d-p   ) J        ( )e da 

Y2(l-p2)   a 
Y2(l-p2)    a 

4 ,.       2.2       7       /  *   ^  -h2a,   . +Y   d-p   ) J        (—2~)e da} 
Y2(l-p2)  « 

-        °° u2 /» <*      ** °°    L2 

= K{h Ja   e      ada + [l-2Y   (1-p   )h   ]       Je      "da + 

Y2d-P2) Y2d-P2) 

(3.12) 

-h2a -h2a 
Y2d-P2)[Y2(1-P2)h2 -2]       J       (- )da + Y4 (1 - P2 )2       7      (C    ,    )da}, 

,.2M   „2-L        a „2,,   „2-,       -z 
y'd-p*)       a Y'(l-p")      a 

where 

-h*a 
f        -ha,       * ,   .2       ,. 
Ja   e da = -j—(-h  a-1) 

Y2d-P2) 

2   2 2 e 

= [h   Y   (1-p    )+l]- 

Y2d-P2) 

-h2Y2(l-p2) 

(3.13) 

00     i ii f ,        i  -h^a,       e 

and Je da = — 
-h2a 

Y2d-P2) -h 

-h2Y2(l-p2) 

Y2d-P2) 

(3.14) 

Now consider the integral term, 

-h2a 

J        (—2" 
Y2(l-p2)     « 

)da 

-h2a T  *  JJ "2J        J u2  ~h2a      , -1 Let u = e and dv = a    da =s> du = - h   e and v = -a 

(3.15) 
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Substituting and then integrating, 

oo 

I      ( 
-h2oc , 

f , . -1  -h2oc  T—)da = -a   e 
2/1   Jl- '       2 

Y*(l-p")      a 

-h2y2(l-p2) 
— - h2 

.2,,   „2 

-h2a 
2        7         e 

-h J        ( )da 
Y^d-p2) Y2d-P2)        a 

-h2a 

2/i       2, 
Y   (1-p   ) 

/        ( 
Y*d-P2) 2,-,  „2,       a 

)da 

(3.16) 

Now let w=h2a. Hence, dw=h2da, implying that da=dw/h2. Then note that 

e-h2y2(l-p2) »       e-h2a 
—j ^—-h J       ( )da = 

Y   (1-p   ) Y2d-P2)       a 

^hVa-p2) 

Y2d-P2) 

e_h2Y2(1_p2) _ 

J ( 2")dw = —2 2~~ ~h J ( >dw 

h2Y2(l-p2)   w/h Y   (1-P   ) h2Y2(l-p2)     w 

-h2Y2(l-p2) 
e 2 2   2'? 

= — 2~_h EjihVa-p )], 
Y   (1-P   ) 

(3.17) 

where Ei is a previously defined function. This derivation shows that 

1       ( 
-h2a -h2y2(l-p2) e e 2„    „ 2   2 „        2 )da = __ __ _h    Ei[h    y-d-p")] 

Y2(l-p2)     « Y"(l-P") 
(3.18) 

-h2a 
Now consider the integral term,       J      ( )da. Again letting w=h2a giving 

Y2d-P2)       a 
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dw=h2doc, implying that dcc=dw/h2. Using these terms, 

7         e-h2(X                      7              e"U      dw 
-,   J    ,   ( )dCC= j < 2")_T 

Y2a-p2)    a hVa-p2) w/h   h 

„     I     „  ( )dw = E1[h2Y2(l-p2)] 

hVa-p )   w 

-h2a 

(3.19) 

/   „ (" )da = E1[h2y2(l-p2)] (3.20) 

(3.21) 

Y2d-P2)      a 

Putting everything together, 

E[t4] = 

222       2       e-h2Y2a-P2) -hVa-P2) 
Kh   [h   Y    (l-pz) + l] +K[l-2h2

y    (1-p    )] = + 
h h 

Ky2 (1 - p2 )[h2Y2 (1 - p2 ) - 2]Ej [h2y2 (1 - p2 )] + 

e-h2Y2(l-p2) 

KY4d-p2)21-^ 2~-K[Y
4(l-p2)2]h2E1[h2Y2(l-p2)] 

Y   (1-P   ) 

2Kn       2,  -hVd-p2)      Ke-
h27:W>      Ke^Vo-P2) 

= Y   K(l-p   )e        '        F  ;+ + _ 
hZ h2 

2Y
2K(1 - p2 )e"h Y (1_P  } - 2y

2K(l - p2 )El [hV (1 - p2 )] + (3.22) 

2  2 e^W> 
y   K(l-p2)2 

Y   (1-P   ) 
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-h2y2(l -p2) 2 

= 2 *  Y
2K(l - p2 )e-hVd-P2) + 

h2 

e-h2y2(l-p2) 
Ky4 (1 - p2 )2 1-j 2— - 2Ky2 (1 - p2 )Ej [h2y2 (1 - p2 )] 

Y   U-P   ) 

e-h2y2(l-p2) 
= 2K{  y2 (1 - p2 )Ej [h2y2 (l - p2)]} (3.24) 

h 

Now recall K was previously defined to be K=(3/8)y2(l-p2)exp(h2Y2(l-p2)).  Substituting this 
expression for K, 

e-h2y2(i-p2) 
2K{ -y2(l-p2)E1[h2y2(l-p2)]} = 

h 

, 2  2        2        -h2y2(l-p2) 
VuV^A- -  (3.25) 
* h2 

Y2(l-p2)E1[h2r2(l-p2)]) 

= A J^if^ - < V o - P2 )2 .^A, u V o - P2 )i 
4 h 4 

•••E[t4]= (3.26) 

" Y2 (1 - P2 H~ - Y2 (1 - P2 )El [h
2y2 (1 - p2 )],-Vö-P2) , 

4 h 

Hence, the equation for the fourth moment about the mean of P has finally been derived. 

Here are some observations of this fourth moment formula. Notice that from definitions 
already given, 

oo 

E1[h2y2(l-p2)]= / du, y = —, 
h2y2(l-p2)   « ou 

2           2 
1       2ox(l-px) 

and =  

h R2 

(3.27) 
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The last two of the above three expressions implies that 

l      2Y
2(l-p2)   2 

T = 2 °u (3-28) 
h RJ 

Using the formula for the fourth moment about the mean, E[t4], the kurtosis of P can now 
be derived, based upon the definition of kurtosis and the variance of P. 

The variance of P is given in Equation (7.17) of Reference 1. However, there is a slight 
error in that formula since there should be no negative sign in the exponential expression. The 
corrected formula for the variance, using the t to represent P-E[P], as before, is 

E[t2 ]=T (1
2"P } exp(h2

Y
2 (1-p2 ))Ej [h2y2 (1-p2)] (3.29) 

See Appendix A for a derivation of this corrected result. Using the definition for kurtosis, 

E[(P-E[P])4] 
Kurtosis (P) =  

4 
a 

(3 / 4)y2 (1 - p2 ){\ - Y2 (1 - p2 )El [hV (1 - P
2 )].hV0-P2> (3.30) 

h2 

-2„2 
(l/4)r

4
(l-p2)2e2h^1-P%2

[hV(l-p2)] 

-2h2y2(l-p2) 

2 2    l   2   2     2   2 2 
Y    (1-p    )   hZEj[hZY    (1-P    )1 

2            2 
 Y   (1-P   )  

eh
2Y2(l-p2)Ei[h2y2(1_p2)]

} (3.31) 

-2h2Y2(l-P
2) h2y2(1_p2)e-h2Y2(l-p2) 

h2Y2(l-p2)   E2[h2y2(l-p2)] E1[h2Y2(l-p2)] 

3e-h2Y2(l-p2) e-h2Y2(l-P
2) h2Y2(1_p2) 

hV(l-p2)    Ej[h2Y2(l-p2)]     E1[h2Y2(l-p2)] 

-h2Y2(l-p2)_h2Y2(1_p2)Ei[h2y2(ip2)] 

I ^ y       T "I } 

(3.32) 

hV(l-p2)eh^2(1-P2) E2[h2Y2(l-p2)] 
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This implies that 

Kurtosis(P) = 

-h2y2(l-p2)     .2   2,,       2...   ri2   2,,       2,.        ,~ ~~  3    e v     -k  y   (1-p   )Et[h  y   (1-p   )]        (3.33) 

h V (1 " P2 )eh2y2(H52) { E2[hVd-p2)] 

This formula can be used to compare with the number, 3, the kurtosis of any normal 
distribution. What follows are some plots of the kurtosis of P versus different values for h,r, and 
g, respectively. Notice how they compare with the kurtosis of normality, namely 3. The kurtosis 
seems to come close to 3 for large values of h and g, while in the case of the r, correlation 
between X and U, the kurtosis is close but not equal to 3 for small values of r. The kurtosis 
grows large for small values of g and h, and it also grows large as r approaches 1. This shows 
that for large values of h and g and for small values of r, the kurtosis of the real part of the 
monopulse ratio has a kurtosis that is close to that of a normal distribution. 
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4 5 6 7 
gamma parameter 

8 10 

FIGURE 3-1. KURTOSIS OF P VS. THE y PARAMETER 
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FIGURE 3-2. KURTOSIS OF P VS. THE h PARAMETER 

3-11 



NSWCDD/TR-96/54 
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rho parameter 
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HGURE 3-3. KURTOSIS OF P VS. THE p PARAMETER 
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CHAPTER 4 

COMPARISON OF THE REAL PART OF THE MONOPULSE 
RATIO TO NORMALITY USING A STOCHASTIC DISTANCE MEASURE 

Another method of giving a measurement of the closeness between the real part of the 
monopulse ratio, P, and a Gaussian distribution uses a "stochastic distance measure" between the 
density of P and the Gaussian density. 

Given two probability density functions, say, f and g, the particular stochastic distance 
measure that will be used here is defined as a quantity, y, such that 

y= J[f(p)-g(p)]2dP (4.1) 
—oo 

For the case being considered, let f(p)=Pp(p), the probability density function of the real part of 
the monopulse ratio, whose formula has already been derived earlier in this paper. Furthermore, 

let g(p)=n(p;|i,a2) me normal distribution.   Recall from any statistics or probability theory 
textbook that 

2            1                 l(p-u)2 

n(p;n.,a   ) = ——exp(- - ) (4.2) 
oV2n 2      a' 

Also, recall that for the real part of the monopulse ratio, the mean, (i, is equal to py. 

Using all the formulas mentioned above and leaving the variance, c^, as an unknown 
quantity, one can evaluate the stochastic distance measure integral. Since the stochastic distance 
measure must be numerically approximated on the computer, the lower and upper limits of 
integration needs to be replaced by two large numbers, say L and U. Hence, the numerical 
approximation of the stochastic distance measure has the following formula: 

U 2 2 
y(c)=   J [N(p;py,o   )-Pp(p)]   dp; L,U»0 (4.3) 

With this construction in mind,   a numerical minimization algorithm can be used to 
approximate a a such that y(o) is minimized.  This was done by programming y(a) in the 
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MATLAB language, and a MATLAB routine known as FMIN was used to estimate c such that 
y(o) was minimized. The result was as follows: 

Given inputs: y = l., p = 0.5, h = 6., L = 10, and U = 12 

7 (4 4) 
Result: a = 0.1157 and y(o) = 3.6096x10 

Thus, for the a=0.1157, which was the approximate value that minimized the stochastic distance 
measure, the value of the distance measure is as shown. The smallness of this number leads one 
to intuitively believe that for o=0.1157 and the given parameters, Pp(p) can be approximated 
accurately with a Gaussian density function. 
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CHAPTER 5 

SOME COMMENTS CONCERNING FLUCTUATING TARGETS 

In the next three sections to follow, a comparison is made between some of the results 
found in Reference 1 and those of References 2 and 3. In Reference 2, two cases of the target 
were considered, namely a nonfluctuating target scenario and a target whose signal, other than 
disturbance noise, fluctuates in accordance to a Rayleigh probability distribution The 
comparative analysis to follow this section mainly deals with a Rayleigh fluctuating target A 
review of the characteristics of the Rayleigh distribution can be found in Appendix C. 

According to Reference 2 (page 626), for a Rayleigh fluctuating target, E[S]=E[D]=0 
This was one of the assumptions for the thresholding case in Reference 1. Also as will be 
shown in the next three sections to follow, the results for the variance and mean in the 
thresholding case in Reference 1 are equivalent to those found in References 2 and 3 for the real 
part of the monopulse ratio. Therefore, this implies that for the thresholding case with the 
covanance matrix as previously given, the real part of the target signal other than the noise 
disturbance of the monopulse radar in Reference 1 must implicitly also possess a Ravleieh 
distribution. J    b 

Note that in References 2 and 3, the monopulse ratio was defined only as the real part of 
the complex valued monopulse ratio as defined in Reference 1. Also, this real part is represented 
by R in References 2 and 3, while it is represented by P in both Reference 1 and this present 
report. Hence, the comparative study in the next three sections to follow shall onlv analvze 
properties of P, not Q. J        J 
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CHAPTER 6 

COMPARISON OF THE SIGNAL MEAN AND VARIANCE EQUATIONS 

In this section, the equations for the mean and variance of the real part of monopulse ratio 
with thresholding as given in Reference 1 will be compared to those given in References 2 and 3. 
These formulas will be shown to be the same as long as any assumptions given in the references 
are properly taken into consideration. 

As already stated, let D=X+iY be the difference channel, S=U+iV be the sum channel 
and P+iQ=D/S be the monopulse ratio. For simplicity in notation, let the expection symbol for 
any random variable, say A, be expressed as 

E[A]-X (6.1) 

Finally, let the symbol, A, represent the event that the signal's amplitude exceeds the threshold, 
represented by R(). 

In Reference 1 (near the top of page 7-3), the mean of the real part of the monopulse ratio 
conditioned upon the event, A, is given by the following equations: 

°real(D) "M(X - X)2 ] 
E[P|A] = —P=   / _=P (6.2) 

°real(S) yE[(V - U)   1 

According to Reference 2, Equation (40), 

E[PIA] = E[R] = p(a/b) 

where 2a    = E[ID - Dl2 ] and 2b2 = E[IS - SI2 ] (6.3) 

aD 
=>E[PIA] = E[R] = p—— 

°S 
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This implies that 

A/E[IX + iY-(X + iY)|2 ] 
E[PIA] = p 

VE[IU + iV-(U + iV)l2 ] 

(6.4) 
    2     2      1/2 

{E[(X-X)Z] + E[(Y-Y)^]}1/Z 

~ "     2     21/2* 
{E[(U-Ur] + E[(V-V)Z]}1/Z 

Keep in mind that in deriving this equation, an assumption was made that the amplitude of the 
signal from the target fluctuated randomly with a Rayleigh probability distribution function. 
Also, according to the analysis in the previous section, the thresholding part of Reference 1, 
which is the part of that report being analyzed here, must also have a Rayleigh fluctuating target. 

Note that in Reference 1, an assumption was made that the variances of the real and 
imaginary parts of the sum channel are equal. Similarly, the variances of the real and imaginary 
parts of the difference channels are also assumed to be equal. In this case the above results 
become 

{2E[(X-X)2]}1/2 

E[PIA] = p      2      1/2 
{2E[(U-Ur]}1/Z 

(6.5) 

°real(D) 
= P" 

areaI(S) 

This is exactly the same result as given in Reference 1. Hence, given the assumptions expressed 
in the two papers being compared, the equations for E[RIRo] as given by References 1 and 2 are 
identical. 

Now again assuming a fluctuating amplitude target signal with a threshold of Ro, the 
variances as reported in the two papers will be shown to be the same. The formula in Seifer's 
analysis will be given first and then manipulated and compared with the expression in 
Reference 1. Assumptions that are used in the derivation to follow will be applied. 
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In Equation (33b) of Reference 2, the expression for the signal variance conditioned on 
the threshold is given by 

2rD|A1     1    2            «0    _        »0    ,    u (E[IFI])2 

O   [PIA] = -H    exp( )Ej( ) where % ■    , > 
2 X + l X + l VEtlTll2] 

R0 
1Q = normalized threshold,   , r, t| = sum channel signal noise, 

VEflTil2 ] 

71 _t (6.6) 
E1(x)=/-e     dt, 

xt 

a   L       2     „2 
= - V1 - r \i = — \1 ~ P    - C    » P + »C s correlation (D, S) 

b 

% as defined above is interpreted as a "signal-to-noise ratio." 

Since a Rayleigh distributed fluctuating target is assumed, the sum channel signal can be 
considered to be the sum of the noise plus the randomly fluctuating actual sum channel signal 
Sinformation itself, F. Hence, S=F+r|, which is shown in Equation (28) of Reference 2. Note 
that must also be F+r) in Reference 1 for the thresholding case with the given covariance matrix 
due to the argument in the previous section. According to Equation (31) of Reference 2, the 
following relationship can be shown: 

2    Ro(x + i) 2 -2 
10 = 5 , recalling 2b    =E[IS-SI    ] (6.7) 

2b 

2b2 can be shown to be equivalent to the sum of the variances of the real and imaginary parts of 
the sum channel in the following way: 

E[IS - SI2 ] = E[l(u + iv) - (Ü + iv)l2 ] 

= E[l(u-ü) + i(v-v)l2 ] 

= E[(u - ü)2 + (v - v)2 ] => E[IS - SI2 ] = al+c* 
(6.8) 

•o Ro 
X + l     au +av 

2 1»2 »2 

2r„, 41      a      ,«       2     „2,       ,     R0      x„   ,     R0 

(6.9) 

a   [PIA] = —(1-p    -C   )exp(^ j^i   2        2) (6.10) 
2b o„ + ov a„ +o„ 
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2     «2 

«•     a D 

• sett,n8 T = — 
b Oc 

2 2 2 
2.,,...      °D   ,.        2      Y2.        .      K0       ^    ,      R0 

o    [PIA] = 2"(l-p    -C   )exp(— 2")E1(~2  
2as au +av au +a 

(6.11) 

V 

The variance formula, which has a slight error, is given in Equation (7.17) of Reference 1. The 
corrected version of this variance formula is derived in Appendix A and is as follows: 

1 2  2 2 
.•.Var(P) = a2[RIA] = -y2(l-p2)eh Y (1_p )E1 [h2y2 (1 - p2 )], 

2 

where h = 
R0 

(6.12) 

axV2"    ~2 yxV2(l-p    ) 

The h can be manipulated as follows: 

v2 »2   2 „2 
K2V

2/I     „2^                  ° 2 „        2,,       R0gx R0 h   Y    (1-p    ) = —2 2-[y    (1-p   )] = =—T> 
2cxdV) 2a2a2     2a2 

recalling that y = — 
o 

°x 

(6.13) 

2 2 2 

.-.a   [PIA] = -^2-(l-p
iS)exp(—Y>Ei(—^) 

2ou 2a^ 2a* 

Since X and U are the real parts of the difference and sum channels respectively, 

Ox=Oreal(D) and 0u=areal(S) (6.14) 

Now a comparison between the conditional variance formula from Reference 2 and the 
modified formula for the conditional variance from Reference 1 can be made. In order to make 
this comparison, one needs to recall from a previous derivation that 

as
2 =E[IS-SI2] = oJ+o2 (6.15) 

6-4 



NSWCDD/TR-96/54 

By an identical argument, 

op = E[ID-DI2] = a2 +Oy (6.16) 

In Reference 1, another assumption was that the real and imaginary parts of the variance of D are 
the same. Similarly, the real and imaginary parts of the variance of S are assumed to be the same 
in this report. This implies that 

2 2 2 2 
°D =2ax andoS =2ou (6.17) 

Furthermore, Equation (5.1) of Reference 1 indicates that correlations between parts of S and D 
do not contain any imaginary parts. Instead, the correlation between the real part of S and the 
real part of D as well as the correlation between the imaginary part of S and D are represented by 
the same number, a, and cross correlations between real and imaginary parts are assumed to be 
zero. These assumptions imply that £, which is the imaginary part of correlation (S, D), must 
be 0. Substituting all these results, the two equations for a2p.lA] show that the conditional 
variances given in Reference 2 is equivalent to the corrected form of the conditional variance in 
Reference 1 provided that the given assumptions are properly applied. 

This derivation is actually more general than necessary since E[S] and E[D] are known to 
be zero for a Rayleigh fluctuating target. However, this result was not substituted, which would 
only slightly simplify the derivation, in order to avoid confusion on the meaning of the variances. 

As a byproduct of this derivation, notice that given the above stated assumptions, 

,2 R2 2 

h2Y2(l-p2) = -^-si„cehV(l-p2) = —T = -iL- (6-18) 
Z+1 2a„     Z+l 

given that a\>=av. This result will be used in the analysis of the conditional variance with the 
presence of noise jamming. 
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CHAPTER 7 

COMPARISON OF THE SIGNAL MEAN AND VARIANCE 
EQUATIONS IN THE PRESENCE OF NOISE JAMMING 

Another scenario considered in Reference 2 was the case where noise jamming also 
disturbed the radar target signal. This noise represents an intentional attempt to deceive the radar 
from accurately tracking the target. 

Several assumptions were made for the analysis in reference to the jamming by Seifer in 
Reference 2 (page 633). These assumptions are as follows: 

• jamming comes from a single point source. 

• the single point source is within the principal lobe of the receiving antenna's 
sum pattern and also copolarized with the antenna response there. 

• jamming dominates thermal noise of the receiver. 

The analysis of the means of the two papers will now be given. As previously given, the 
formula from the conditional mean for a Rayleigh fluctuating target according to Equation (40) 
of Reference 2 is 

E[PIA]=E[P]=p- (7.1) 
b 

while the same expectation according to Reference 1 (near the top of page 7-3) is 

E[PIA]=greal(D)p (7.2) 
°reaI(S) 

such that, as before, p is the real part of correlation of D and S for both papers. 

Let Dj be the complex-valued quantity representing the contribution on the difference 
channel, and let Gj be the same on the sum channel. Let rj be Dj/Gj. According to 
Equation (72) of Reference 2, 
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a     X«- + r j 
E[PIA] = p- = -=* 

b       x + 1 

E[PIA]-f 

(7.3) 

rJ -f 

X + l 

where f is defined as the real part of the monopulse ratio without random disturbance. Since the 
meaning of a and b is the same as previously defined, and the equations for E[RIA] in the two 
reports are equivalent under the assumptions given, this equation for the jamming case must also 
apply to the model as given in Reference 1. 

The variance equations for the two reports under noise jamming will now be analyzed. 
Recall that, with the given assumptions, 

.,    r2 
b    v '        2b 

2     a    / f       2     Z2\2     2a    „       2-2, 

2 2 2 
ax+oy 2       2cx 2 2 2 
-2—Y <J - P  ) = —r a - P  ) = Y  (1 - P  ) =* 
au + av 2au (7.4) 

1 2      *    2 2 
-H    =-y   (1-p   ) 
2 2 

The result as shown in Equation (72) of Reference 2 implies that 

1 2     1__L_.        «,2 -U    = z-lrj-rl 
2 2(X + 1)2 

(7.5) 

1 2,t       2,     1        X .,2 
.\-Y   (1-P   ) = 5"lr T - rl 

2 2(z + l)2 

Substituting this result into the equation for the conditional variance according to Reference 1 
gives 

a2[PIA] = 

1 X .2 22 2 22 2 (7-6) 
 i-|rJ-rl    exP<h   y   (l-p^E^h^y^d-p')) 
2 (X + l)2 
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Substituting the formula for h2y2(l-p2) m Equation (6.18) into (7.6) implies that 

2 2 
2                    1          Y                           2               ^0                   'o 

a   [PIA] = r-lrj - rl    exp( )Ej ( ) => 

(7.7) 

a[PIA] 

Irj-fl 

2 2 
X ,    l0      MT      /     l0      X  2~exp( -)Ej ( -) 

2(X + 1) X + l X + l 

which is the same as the formula in Equation (76) of Reference 2. 

Thus, the conclusion of this derivation is the fact that the conditional variances equations 
of Reference 1 and Reference 2 are equivalent under the given hypotheses even in the presence 
of a single point noise jamming. 
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CHAPTER 8 

COMPARISON OF THE SIGNAL MEAN AND 
VARIANCE EQUATIONS FOR TRACKING IN NOISE 

In July, 1994, Arnold Seifer's correspondence, supplementing his work shown in 
Reference 2 appeared in Reference 3. Among other new assumptions, two of them are the 
hypotheses that no noise jamming is present and random disturbance noise between the sum 
channel and difference channel are uncorrelated. 

This lack of correlation between the random disturbance of the sum and difference 
channel signal does not necessarily mean that S and D are uncorrelated, but only that the random 
disturbance noise portions of S and D are uncorrelated. Hence, p is not necessarily 0 although, 
recalling one of the hypothesis of Reference 1, the imaginary part of the correlation between D 
and S (namely, Q is assumed to be 0. 

The derivations in Reference 3 for the conditional mean and the conditional variance are 
based upon the assumption of the lack of correlation between the random disturbance of the sum 
and difference channels. This assumption was used to obtain the following relation, which can 
be found in Equation (16) of Reference 3 

a % 
— (p + i£) = f; f real by assumption (8.1) 
b x + 1 

Also, as Seifer stated on the same page, the monopulse ratio without the disturbance noise is by 
definition real. Therefore, this fact along with the assumption in Reference 1 that £=0, each 
implies that 

a y 
-p = f (8.2) 
b       x + l 

which was also shown in Reference 3 on the same page. These two relations were the only ones 
that were used in Reference 3 for deriving new formulas for the conditional mean and variances 
for the Rayleigh fluctuating case conditioned upon the event, R(). 

Since the assumption of 0 correlation between the random disturbances of D and S, along 
with the above equations derived from this assumption, does not violate any relations given in 
Reference 1, these results in Reference 3 for the conditional mean and conditional variance of a 
Rayleigh fluctuating target are still equivalent to the formulas derived in Reference 1. As noted 
above, jamming was not considered in Reference 3. 
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CHAPTER9 

EQUIVALENCE OF A COMPLEX VALUED RANDOM 
VARIABLE TO A TWO-DIMENSIONAL RANDOM VECTOR 

This paper has dealt mainly with the real part of the monopulse ratio as a random 
variable. Combining the random variable, P, with the imaginary part, Q, the monopulse ratio 
becomes a complex valued random variable P+iQ. Another obvious way of representing this is 
by using the ordered pair (P,Q) or its corresponding random vector (the transpose of (P,Q)). 
Although, intuitively, complex and vector representations seem clearly statistically equivalent, 
complex numbers are mathematically treated differently from ordered pairs. This difference may 
cause some people to still question whether the two representations are equivalent. Since the 
difference in the mathematical treatment between complex numbers and ordered pair 
representations are not considered in determining whether the two entities are probabilistically 
the same, they are in fact equivalent. The explanation to follow gives a justification for this 
equivalence. This explanation will be in the form of a theorem. 

Theorem 1: Given a complex valued random variable, X+iY, there exists a two-dimensional 
random vector, namely (X, Y)T, (or bivariate distributed ordered pair, namely (X,Y)) that is 
statistically equivalent to the complex valued random variable. 

A proof of this theorem is given in Appendix D. With this theorem in mind, we can use the three 
forms of the bivariate random variable in X and Y as given in the statement of the theorem, 
interchangeably. 

For a precise measure-theoretic definition of a random variable, one is referred to any 
textbook on fundamental probability theory that is based upon a measure-theoretic approach. 

Due to this equivalence that is now justified, the random variable P+iQ and the ordered 
pair (P, Q) as well as (P, Q)T can be discussed interchangeably as a model of the real and 
imaginary portions of the radar monopulse ratio. This should help clarify any ambiguity. 
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CHAPTER 10 

SUMMARY 

Several results have been produced by the investigative project described here. A closed 
form formula of the probability density function of, P, the real part of the monopulse ratio of a 
monopulse radar was derived. Furthermore, two methods of comparing this probability density 
function with a Gaussian density were derived. One was based upon kurtosis, and the other one 
was based upon a stochastic distance measure. A third method that could be used to check 
closeness to normality is to compare the areas under the curve of the tail regions of the 
probability density function of P and a normal probability density function. This can be 
investigated in the future. We showed that the kurtosis came close to that of a normal 
distribution for large values of the normalized threshold, h, large values of y=cx/Ou, and small 
values of the correlation between X and U (namely p). We also showed that under certain 
assumptions, the stochastic distance measure of the normal distribution and the distribution of 
the real part of the monopulse ratio is small. A comparative analysis was performed in relation to 
some of the formulas for the mean and variance of P as presented in Reference 1 with those of 
References 2 and 3. We showed that given the correct hypothesis, the formulas were equivalent 
in spite of the fact that the equations had different forms and were derived from different 
approaches. 

In conclusion, a closed form formula for the distribution of P, is now derived and 
available for use in evaluating the accuracy of monopulse radars. We also have derived two tools 
in comparing the real part of the monopulse ratio distribution with the normal distribution. Also, 
using diese tools, we showed that given certain assumptions, P can be approximated as a 
normally distributed random variable. Finally, we showed that despite the different approaches 
of Reference 1 as compared to References 2 and 3, the formulas for the variance and mean of P 
with and without jamming are equivalent. 
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APPENDIX A 

DERIVATION OF THE VARIANCE OF THE REAL 
PART OF THE MONOPULSE RATIO WITH THRESHOLDING 
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In the section on kurtosis, the variance of the real part of the monopulse ratio was given 
in Equation (3.29) as 

2 2 
2 Y    (1 — P    ) 2    2 2 22 2 

E[t   ] = exp(h V (l-p^Ejfh   Y   (l-pZ)] (A.1) 
2 

Recall that t was defined to be P-E[P], and E[P]=py. Also recall that this formula differed 
slightly from the one shown in Reference 1 of the main text.* What follows is a derivation of the 
formula for the variance as given here. Recall from the section on kurtosis that according to 
Equation (7.16) of Reference 1, the variance can be obtained from the following integral. 

2 2 
2       Y    (1 - P    ) 

E[t
2
] = ±-2 \LJ.* 

K 

2?      2        7   3        h2[R2 +Y2d-p2)] + l 2    2 
i cos    0d9jR   dR[ r - —-z ]exp[-h   R    ] (A.2) 
0 0 [R* +y*(l-p'i)f 

2 2   7   3        »»2[R2 +Y2d-P2)]+1 2    2 
= Y   (1-P   )J»  dR[ = 5 z—T ]exp[-li   IT] 

0 [R* +y'(l-p^)]Z 

In performing this integration, we need to do a change of variable by letting u=R2. Then 
du=2RdR, and RdR=(l/2)du. Substituting, 

2*2 27 h2[u + y2(l-p2)]+l 2 Eir ] = -YZ (1 - p   ) Judut \ =5—5 ]exp[-h   u] (A.3) 
2 0 [u + y'd-p')]'4 

Now changing variables again, let a=u+g2(l-r2), implying that du=da and u=a-g2(l-r2). This 
gives 

E[t2] = 

(A.4) 
1 2           2    h2v (1-P )       7          2           2          h  a +1    _h2„ 
-Y   (1 - p   )en y  u P '        I [a - Y

Z
 (1 - p   )]da( — )e   h a = 

2 Y2d-P2) a 

vi      7       >2a + 1.  -h2a,         2„       2,      7       >2a + l,  -h2
ttj   , K{       J        ( )e da-Y   (1-P   )       I        ( 5—)e da} 

Y2(l-p2)        a Y2d-P2)       a 

for Km^Cl-p^expd^^d-p2)). (A.5) 

* Groves, G. W. and Blair, W. D., Statistical Studies of the Monopulse Ratio, 
NSWCDD/TR-94/97, Oct 1994, Naval Surface Warfare Center, Dahlgren Division, 
Dahlgren, VA. 
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Multiplying out the terms, 

.2,    „„2      7 -h'a,.  .       7      ,1. -h2a E[t"] = K{h*       Je  n ada+        j       (-)e~n ada 

Y2(l-p2) Y2(l-P2)   a 

Y2(l-p2)h2       7       (-)e-h2ada 

Y2(l-p2)   a 
(A.6) 

-Y2d-P2)       7       (-^-)e-h*ada} 
Y2(l-p2)  a 

E[t2] 

K{h2       7e-h2(Xda + [1 - Y2 (1 - p2 )h2 ]       7       (-)e-h2(Xda 

Y2d-P2) Y2d-P2)  a 
(A.7) 

-Y2d-P2)      J       (—)e-hada} 
Y2(l-p2)  « 

Now consider each integral term separately. 

f   -k«j        e 

Je da = - 
-h2a 

Y2(l-P2) 

-hV(l-p2) 

Y2d-P2) 

Now consider the integral, 

(A.8) 

f       1  '  \ -ha. 
J        (~2~)e da 

Y2d-p2)  a 
(A.9) 

Integration by parts will be used for this integration. 

2 2 
Letw = e"    aanddv = a" da.   .-. dw = -h2e~h "daandvs-a"1 

7      t x ^-b2aA„ -1 -h2a J        (—r-)e da = -a    e 
1 -y £ 

Y2(l-p2)  a 

.2       7 *     -h2a, -h J        (—)e da 
Y2d-p2) Y2d-P2)   a 

-h2Y2(l-p2) 

h2        J        (-)e"h ada 2 ,*       2, 
Y   (1-p   ) Y2(l-p2)   a 

(A. 10) 
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Now suppose s=h2oc. Then ds=h2doc and da=ds/h2. Substituting, 

e-^2'1^2'     2    -      i   _„2a      e-*VuV> 
2 2— ~ h '        (~^e da = —5 ?— 

Y   (1-P   ) Y2d-P2)  a YZ(l-p2) 

-s -h2y2(l-p2) _s 

<>  J      <*  ( 2")ds = 2 2~~ "h J ( >k 
hVd-p2)   s/h Y   (1-P    ) hVd-p2)     s 

e-h2y2(l-p2) 

= —2 2—-h2E1[h2Y2(l-p2)] 
Y   (1-P   ) 

1      K2 -hVd-p2) 
f —'h  OC 2 2    2 9 

, ' , T6       da = — — ~h Ei[h Y (i-p  )] 
Y2(l-p2)a Y   (1-P   ) 

Finally, consider the integral term, 

Lett=h2a. Then dt=h2da and da=dt/h2. This implies that 

J        —e da = J  e     — 
Y2(l-p2)a h2y2(l-p2)t/h h 

,     J     ,  dtsEl[h2Y2(l-p2)] 
h2Y2(l-p2)   * 

(A.11) 

(A. 12) 

7      4 h ada (A.13) 
Y2(l-p2)« 

(A.14) 
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Inserting the formulas for these three integrals into the equation for E[t2], 

e-h2y2(l-p2) 
E[t2 ] = K{h2 ( - ) + [i - Y2 (1 - p2 )h2 ] * 

h2 

e-h
2Y2(l-p2) 

E1[h
2Y2(l-p2)]-Y2(l-p2)[e 

^2^-P2> (A.15) 

h2Ej (h2Y2 (1 - p2 ))]} = K{Ej [h2Y
2 (1 - p2 )]} 

--Ta(l-pa).fcVa-pa)E1[kV(l-pa)] 
2 

.-.Var(P) = E[t2] = -Y2(l-p2)eh Y  (1_P  )E1 [h2
Y

2 (1 - p2 )] (A.16) 

This is the closed form formula for the variance of P. Keep in mind that this is a conditional 
variance, conditioned upon the event that the sum channel signal amplitude exceeds the 
threshold. 
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APPENDIX B 

A GENERAL JOINT DISTRIBUTION OF THE MONOPULSE RATIO 
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This document mainly dealt with the radar monopulse ratio with a specific type of 
covariance matrix between S and D and with the condition of thresholding. A generalized 
bivariate distribution of P and Q was given in Reference 1 of the main text* (page 6-3). The 
equations are 

Ke 
Pp,Q(p»q) = —2 

-M 

2TCA   V-I2IA 
, where 

A = B2 - 4AC; M - F + A*1 (AE2 - BDE + CD2 ); K - B2D2 + B2E2 

-4BCDE + 4C2D2 - 4ABDE + 4A2E2 + 8A2C - 2B2C + 8AC2 - 2AB2 

A     1 2 1 2 1 
A--allP    +a12M + a13P + -a22<51    +a23<l + ~a33 

2 2 2 

2        2 
B = -anpq + a12(p    -q   ) - a13q + aJ4p + a22pq + a23p + a24q + a34 

r     1 2 1 2 1 
C = -anq    -a12pq-a14q + -a22P    + a24p+-a44 

2 2 2 

D = -anxp - a12 (yp + xq) - a13 (up + x) - aJ4vp - a22yq - a23 (üq + y) 

-a24?q-a33"-a34? 

E = anxq - a12 (xp - yq) + a13üq - a14 (x - vq) - a22yp - a23up 

-»24 (vp + y) - a^ü - a^v 

1 

2 

i_2           x_2     
F = -anx    +a12xy + a13xu + a14xv + -a22y    + a23yu + a24yv 

1        -2 _     1        _2 
+ —a33u    +a34uv + —a^v 

Z"1^ 

all      a12      al3      a14 

a12      a22      a23      a 24 

a13     a23     a33     a34 

Va14     a24     a34     a 44 J 

(B.l) 

* Groves, G. W. and Blair, W. D., Statistical Studies of the Monopulse Ratio, 
NSWCDD/TR-94/97, Oct 1994, Naval Surface Warfare Center, Dahlgren Division, 
Dahlgren, VA. 
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This generalized bivariate probability density function was empirically tested by 
numerically doubly integrating the function with respect to p and q over the Euclidean plane to 
see whether the integration resulted in a value of 1. The input parameters were chosen to be as 
follows: 

I"1- 

^100      2      1,5      3  ^ 

2      100     -3    3.5 

1.5    -3    200    4.5 

V 3.5   4.5   200 

; x = 10, y = 5, u = 12, v = -6 (B.2) 

The programming for the numerical integration was performed in the MATLAB computer 
package language. This numerical double integration indeed produced a result of 1. In other 
words, 

Ke 
-M 

/    J   
-oo-oo2wA   V-IZIA 

dpdq = 1 (B.3) 

Since the input parameters were arbitrarily chosen, this further supports the correctness of the 
generalized probability density function as derived in Reference 1 of the main text. 
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APPENDIX C 

THE RAYLEIGH DISTRIBUTION 
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A Rayleigh probability function with a parameter of a on a random variable z is defined 
on the non-negative real line as follows: 

z2 

Pz(z;a) = < 

z       2o2 
-r-e   *u   Vze[0,») 

(C.l) 

0 Vz elsewhere 

This distribution is very useful in modeling physical phenomena since it represents the 
magnitude of the vector sum of two independent and zero mean normally distributed random 
variables with the same variance. This fact can be more clearly stated when written in a form of 
a mathematical theorem. 

Theorem 1 A: Let X and Y be independent, zero mean, normally distributed random variables 
with the same standard deviation, a. Then the transformation 

Z = Vx2 +Y2 (C.2) 

has a Rayleigh distribution with parameter or. 

Proof:  Since X and Y are independent normally distributed random variables with a common 
variance a, 

2     2 x  +y 

px,Y(x>y) = —2"e   2a   ; z = Vx2 +Y
2
 <z^ 

2rca 

/  2        2~ 
Fz(z) = Prob{(x,y):Vx    +y    < z}; Fz = cumulative 

distribution function, Prob s probability 

/  2        2~ 
Let x = rcosG, y = rsin9, r = ^x    + y 

2     2 2 _*z±y_ -rz 

1 -  2 1     z2^   _  2 
=>Fz(x) = 2~      /       Je     2a     dxdy= z-Jie2oidnie 

2jca    x
2+y2 <z 2JIO    0 0 

(C.3) 

(C.4) 

(C.5) 

Performing the double integration, the cumulative distribution function for the random variable Z 
is 

-z2 -z2 

Fz(z) = -e2a    +i^Pz(z)s-i[Fz(z)] = -l-e202 (C.6) 
dz a 

This is the formula for the Rayleigh probability density function, and therefore, the proof is 
complete. 
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APPENDIX D 

PROOF OF THE EQUIVALENCE OF A COMPLEX VALUED 
RANDOM VARIABLE TO A TWO-DIMENSIONAL RANDOM VECTOR 
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The following is the proof of theorem 1, given in this report. Recall that this is the 
theorem to claim that a complex valued random variable is statistically equivalent to its random 
vector and bivariate ordered pair counterparts. The theorem is stated again here. 

Theorem 1 (Repeat): Given a complex valued random variable, X+iY, there exists a two 
dimensional random vector, namely (X, Y)T, (or bivariate distributed ordered pair, namely 
(X,Y)) that is statistically equivalent to the complex valued random variable. 

Proof: Suppose X and Y are random variables. Let V be a random vector such that VT=(X,Y), 
where the superscript T refers to the transpose of a vector (matrix). Then by the mathematical 
definition of a random vector, V is a function that can be written in the following form: 

V:ß-»R    such that V(©) = 
S(ffi) 

Q(co) 
V CO e Q, a sample space (D.l) 

Notice that there exists a one to one and onto mapping, namely g(x,y)=x+iy, that maps 
from the R^ space to the complex plane, C.   Combining this map with the random vector 

2 
mapping gives the composition mapping,      Z = goV:Q-»R    -> C.       With this construction 
along with the mathematical definition of probability on a random variable, notice that 

P[x + iy e A c C] = P[Z 6 A Q C] = P{co € Q: Z(co) eAcC| 

= P{co e Q: V(co) e g"1 (A) c R2 } = P[(x,y) e g"1 (A) c R2 ] 

= P{(x,y):g(x,y)= x + iy} 

Pictorially, this can be seen in the following way: 

(D.2) 

imaginary 

O' 
.real 

o g(A) 

FIGURE D-l. ONE TO ONE ONTO TRANSFORMATION OF EVENT A 

These arguments shows that probabilistically, Z=X+iY and V=(X,Y) must be equivalent, or 
analogously, Z=X+iY and the vector VT=(X,Y)T must be equivalent. Therefore, the ordered 
pair notation and complex notation of a pair of random variables are statistically equivalent. This 
completes the proof of the theorem. 
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