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ABSTRACT 

This report constitutes an introduction to the investigation of 
the response of geometrically simple structural shells. The simplicity 
stems not only with respect to the mechanical description of the shell 
but also with respect to the inclusion of fluid loading. The report 
further deals with the influence of attaching ribs to the shells. The 
attachments are also confined to specific geometries; namely, those in 
which the ribs are set parallel and in conformity with the geometrical 
scheme of the shell. Again, this is devised to keep the formalism 
simple. Moreover, the formalism is largely developed on the basis that 
the ribs are identical and are regularly attached. Although this 
assumption is restrictive, the formalism developed harbors a number of 
characteristics and phenomena that are often encountered in practice 
and, therefore, the restrictions do not demerit the formalism, but rather, 
help decipher a number of significant footprints in field-data. Thus, 
the formalism reveals that in the drive in lieu of the ribs characteristics 
of aliasing and the phenomenon of pass and stop bands is present. 
Moreover, the phenomenon of pass and stop bands is complementally 
exhibited in both the spectral and the spatial domains. This dual 
format is found to benefit the understanding and the interpretation of 
this phenomenon. 

Moreover, this report, apart from its intrinsic value, serves as an 
introduction to a thesis presented by one of the authors. The thesis 
carries the investigation in this report a step further by attempting to 
answer the question: Since the strict aliasing in the drive in lieu of the 
ribs is impaired in the response, does the high quality of the 
phenomenon of pass and stop bands in this drive also deteriorate in 
the response? 

The formalism in this report is cast in terms of the impulse 
response function so that the external drive needs not be specified 
a priori; the furnishing of a compatible external drive is an 
independent task. Simple partial and circumference modal 
components in the external drive are used in this report as test 
external drives; a compatible external drive can then be composed of 
appropriately weighted components of this type. The casting of the 
formalism in terms of the impulse response function suitably serves 
also as an introduction to the investigation of scattering of incident 
sound fields from regularly ribbed shells. The external drives 
generated by the incident sound fields need merely be expressed in 
terms of components that are compatible with the impulse response 
functions developed and investigated in the report. These external 
drives are commensurate with the drives generated on the shell when 
the shell is blocked. [The response of the ribbed shell to this type of 
an external drive yields the scattered field due to this response. The 
other portion of the scattered field, in this instance, is given by the 
blocked scattered field.] 
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I.  PROLOGUE 

The intention of this investigation is to increase understanding of 

structural acoustics by focusing on the vibrational and to a lesser extent on the 

radiative characteristics of shell structures (shells) that are subjected to external 

drives. In particular, interest is focused on the acoustic behavior of ribbed thin 

elastic panels and cylinders. For these types of shells (shell structures), the 

interactions of supporting ribs are often the controlling mechanism of the 

vibrational and radiative responses; not only are the interactions of the ribs with 

the shell significant, but also significant are the interactions among the various 

ribs via the shell. To emphasize the latter kind of interactions, largely two models 

are investigated. One is a proper model in which the natural interactions among 

the ribs are preserved. In the other model, which is artificially contrived, the 

interactions among the ribs are discounted. Comparison between results issued 

by the models exposes the role that is played by these interactions. However, the 

study transcends just those particular comparisons. Specifically, the goal is to 

examine the influence of ribs (localized stiffeners) and fluid loading on the 

acoustic behavior of shells. The unribbed shells involved in the analysis herein 

performed are plane and cylindrical; namely, panels and cylinders, respectively. 

A panel is a uniform plane shell structure and a cylinder is a uniform cylindrical 

shell structure. The axial-direction in the cylinder and a corresponding direction 

in the panel is uniform in this investigation and is assigned the JC-direction. In 

the corresponding normal direction to this common uniformity, the panel is 

uniform but the cylinder is repetitively finite or circumferentially uniform. A 

component in the normal direction, assigned the v-direction, in the panel is 

designated "partial" and is one component in a continuous set. A component in 

the normal direction, assigned the y-direction, in the cylinder is designated 



"circumferential mode" or "ring mode" and is one component in a discrete set. 

The investigations in this report are, therefore, based largely on a continuous and 

a circumferential modal analysis as manifested in the vibration and radiation 

responses when unribbed and ribbed panels and cylinders are driven by an 

external partial line and modal ring drive, respectively. ("Partial" is a continuous 

modal designation.) The external partial line and modal ring drives are devised to 

excite a partial and a single circumferential mode in the panel and the cylinder, 

respectively. The influences of parameters that define the mechanical surface 

impedance of a panel and a cylinder, the partial line and modal ring impedance of 

the ribs, and the fluid loading are examined. The influence of these quantities on 

wave phenomena associated with aliasing and pass and stop bands are of 

particular concern. The emphasis is on understanding and explaining the 

fundamental characteristics on a mode by mode basis so that the simultaneous 

presence of other modes will not make interpretation more difficult. Indeed, this is 

the universal purpose for using modal distributions. Again, the modal reference 

here is the partial line designation for the panel and the circumferential mode for 

the cylinder. The vibrational and radiative properties of the panel and cylinder, 

when externally driven by a more compounded external drive, are derived by an 

appropriately weighted integration of the partial contributions and by an 

appropriately weighted summation of the modal contributions, respectively; the 

validity of partial and modal superposition is then assumed. The weights are a 

constant with respect to both, the partial designation and the modal designation, 

when the external drive is a point drive. 

The approach begins with an examination of the vibrational behavior of a 

regularly ribbed idealized uniform shell (a panel or a cylinder). The commonality 

of shells that are panel-like and those that are cylinder-like are discussed and 



formulated. The formalisms of shells that are panel-like and those that are 

cylinder-like are laid side by side so that the commonality and disparity between 

these two classes of shells can be readily deciphered. In the first class, the models 

are described by continuous eigenfunctions (partial designations) and in the 

second, by discrete eigenfunctions (circumferential modes); both eigenfunctions 

fall into sets of functions that are complete and orthogonal. The environmental 

loading; e.g., fluid loading, is considered to be uniform and is lumped into the 

mechanical surface impedance of the uniform shell. In both chosen shells; the 

panel and the cylinder, the lumping of fluid loading into the mechanical surface 

impedance is straightforward. Indeed, in large part this straightforwardness is 

responsible for the usual modeling of structures in terms of these shells. The 

influence of attached ribs is described by a set of drives; the presence of the ribs is 

accounted for by a drive composed of a set of drives that are located at the 

positions occupied by the ribs. This set of drives constitutes the drive in lieu of 

the ribs, the presence of the ribs is completely accounted for by this drive. The 

response of the ribbed shell is then determined by applying this drive in lieu of 

the ribs, in addition to the external drive, to the uniform shell. 

The regularity of the attached ribs simplify the formalism and is, therefore, 

imposed on the models of the ribbed shell structures considered in this work. The 

simplification so attained renders the commonality and disparity between the 

formalisms for the vibrational behavior of the panel-like and the cylinder-like 

structures easy to decipher and understand. Further, this simplicity is used to 

advantage in introducing the format by which computations are displayed and in 

illustrating the kind of results that can be expected as the more rigorous and 

extensive investigation proceeds in subsequent works. Of course, the 

simplification just discussed is not derived without penalties. For example, having 



imposed regularity on the ribs, the influence of varying the spacing between 

adjacent ribs and the line and ring impedance identities among the ribs is not 

available under this simplification. Thus, the investigation may so begin but by 

no means may it so end. Many extensions to the analysis presented herein await 

attention in subsequent investigations. The elements of such extensions lie, 

however, outside the immediate interest of this report. These extensions are 

issued under separate covers in subsequent reports. 

With respect to the vibrational response of a shell, only a hybrid and a 

natural cylinder, unribbed and ribbed, are treated in detail. [A hybrid cylinder is 

one from which certain parts of the mechanical surface impedance are artificially 

removed; namely, those describing the longitudinal and shear responses and 

those pertaining to curvature effects. Structural acoustics of a hybrid cylinder 

relates closely to the acoustics of a panel and the differences are readily 

deciphered. Thus the hybrid cylinder bridges the relationship between the 

structural acoustics of panels and natural cylinders.] The influence of ribs is 

investigated by computations that are displayed in manners that tend to 

accentuate features of general interest and significance. For the most part the 

computations are displayed in a waterfall format. The waterfall lies in the 

frequency domain. Such displays can dispense, at a glance, a large volume of 

information. The intended purpose of using displays in this format is to present 

this large volume of information in order to accentuate a phenomenon of concern 

by a visual scan of a few such displays. Changes in a phenomenon due to 

parametric variations can then be revealed by merely comparing displays. Extra 

details can be revealed by zooming in on special regions. In this report, however, 

these regions are chosen to be large so that in comparing displays only gross 

features that are commensurate with the intended purpose of the report are 



significantly investigated. Also, to accentuate significant and insignificant 

differences in specific displays, one may isolate and contrast one or two curves in 

one display with another. In these kinds of displays trees are compared with trees 

rather than forests with forests. These trees-to-trees comparisons can be readily 

and quickly implemented and yet be compatible with the major aims to be 

achieved in this report. 

Both, the spectral domain and the spatial domain with respect to the 

x- direction, are examined in this report. The spectral domain is the £-domain 

and the spatial domain is the x -domain; these two domains are related Fourier 

conjugate domains ~ Fourier pair. For certain purposes one domain may be the 

more suitable to either exhibit a phenomenon or interpret data. In certain 

situations, however, the complementarity of the two domains advantageously 

assist in the recognition and interpretation of a phenomenon. Thus, in this report 

the phenomenon of pass and stop bands is extensively investigated in both 

domains to exemplify the advantages of complementarity in the investigation of 

the drive in lieu of the ribs and whence in the determination of the response 

behavior of ribbed shells. 



H.    INTRODUCTION 

Often the response of a shell structure (a shell) and the consequent 

response of the fluid in which the shell is immersed are treated analytically in a 

manner that is highly dependent on the geometrical form of the shell. Initially an 

attempt is made to try and divorce the explicit geometrical form of the shell from 

the formalism. In this way some of the salient assumptions that are made with 

respect to the geometrical form of the shell can be more generally made and 

assessed. An observation is made that the analytical procedures used in deriving 

the formalism fall primarily into two categories; one relating to an infinitely 

extended shell in both the spatial coordinates that describe the shell, and the 

other relating to a finitely extended shell in one of the coordinates. The first 

category is exemplified by an infinite plane shell — a panel — and the second 

category by an axially infinite cylindrical shell - a cylinder. In the next section 

the two procedures are cast side by side in order to emphasize and decipher their 

commonalities and idiosyncrasies. Indeed, in many cases one procedure can be 

derived from the other by a simple manipulation of the notations. 

For the most part the development of the formalism, cast herein, engaged 

the impulse response methodology. There are several advantages to this 

methodology. Firstly, the propriety of the impulse response operator function is 

a cornerstone that can be used to advantage; i.e., the impulse response function is 

specified by quantities and parameters that describe the structure and the fluid 

only; it is independent of the response and the external drive. Secondly, 

although the external drive must be rendered compatible with the impulse 

response operator, the character of the external drive does not need a prior 



specification except for the fact that it needs to be external; namely, it needs to be 

independent of the response that it may generate. 

In this development, the ribs are attached along a single coordinate and are 

assumed to be simple in the sense that they cannot exert higher moments than the 

zeroth. The introduction of moments can be handled by extending the formalism 

to accommodate a more compounded description for the ribs and for the 

mechanical surface impedance of the shell. For example; if a first moment is 

allowed in the rib motion, then the mechanical surface impedance of the shell 

needs to diminish at high wavenumbers at least to the inverse fourth power in 

these wavenumbers so that convergence can be ensured. Moreover, when the 

first moment is introduced, the number of equations in the formalism doubles 

[1-4]. This kind of extension to the formalism is considered to be, however, 

outside the scope of this investigation. 

In Section III the response of a general shell to a general, but compatible, 

external drive is considered and is formulated in dual forms. One form is 

applicable to an infinite and the other to a finite general shell. The response of 

the unribbed shell is derived and is then assumed to be known. In this derivation 

fluid loading on the shell is taken into account [1-9]. A regular set of ribs is then 

attached to the shell along one of the orthogonal coordinates on the surface of 

the shell. The modifications to the response of the shell due to the attachment of 

the ribs is then considered. This modification is derived as a separate term which 

vanishes when the ribs are removed [1-4,10-16]. 

In Section IV a finite set of ribs, instead of a regular set, is attached to the 

shell, again, along one of the orthogonal coordinates on the surface of the shell. 

8 



Again, the modifications to the response of the shell due to the attachment of this 

set of ribs is considered [10, 17]. The analogies and differences in this response 

and that of a regularly ribbed shell are briefly discussed. 

In Section V the external point and line drives are cast in a compatible 

manner that fits the formalism developed in Section HI. These external drives are 

test drives from which many more compounded external mechanical drives can be 

constructed by superposition [1-3, 10]. 

In Section VI the mechanical surface impedances of shells, specifically 

those of a panel and a cylinder, are stated and cast in a form that is suitable for the 

purposes of the investigations in this report [1-3, 8,13]. Although in the literature 

many forms for the surface impedances are proposed, especially those pertaining 

to a cylinder, the exact expression to be used in this report is selected. In this 

selection a hybrid cylinder is defined and its commonality with a panel is 

established. The nature of the selected surface impedances in the spectral domain 

are depicted by waterfall displays [15]. The displays effectively span the 

normalized frequency domain from about one octave above the ring frequency to 

about sixteen times the ring frequency which is about half an octave below the 

critical frequency; this is the range of frequency in which investigations are 

carried out in this report. A specific model of a cylindrical shell is chosen for 

exemplifying the formalism developed in this report; in this model the ring 

frequency is more than an order of magnitude below the critical frequency. This 

range of frequency avoids consideration of curvature free waves at the lower 

frequency range and consideration of supersonic flexural free waves at the higher 

frequency range; a safe and convenient frequency range indeed! The displays 

effectively span the normalized wavenumber domain from zero to seventy-five, 



the normalization factor being the radius of the cylinder. The meaning of 

standard parametric values to generate the displays are also defined in this 

section. The flexural free waves dominate the patterns in a panel and in its 

analog, the hybrid cylinder. Although the flexural free waves are dominant in the 

patterns of a natural cylinder, the membrane free waves are also present in the 

patterns. The nature of the membrane free waves is investigated in these displays. 

The dependence of these free waves on the mode index n is investigated. The 

absence of the shear free waves when this index is zero is of particular interest. 

In Section VII the explicit form for the fluid loading is defined for both the 

panel and the cylinder. The nature of the surface fluid impedance is illustrated in 

this section. For the panel, the surface fluid impedance is found to be real 

(resistance controlled) for supersonic components and imaginary (mass 

controlled) for subsonic components [1-3, 8, 9]. For the cylinder the surface fluid 

impedance is real (resistance controlled) for supersonic components and is 

imaginary (mass controlled) for all components [1-3, 8, 9]. A sonic ridge in the 

surface impedance of the fluid is observed and the fluid loading parameter and 

the fluid wavenumber at the critical frequency are defined. The critical frequency 

is the frequency at which the speed of the flexural free waves is equal to the 

speed of sound in the fluid. 

In Section Vm the fluid loaded surface impedance of the panel and 

cylinder are derived using the material in Sections VI and VIL The difference 

between the fluid loading on a panel and on a hybrid cylinder is highlighted. The 

use of a hybrid cylinder as an investigative companion to a natural cylinder is 

thus justified and its use is explained. 

10 



In Section IX the analytical description of the ribs is presented. This 

description comprises a line impedance and provisions are made to allow for a 

resonance. This resonance is defined in terms of a resonance frequency and a loss 

factor. In this report only a minimal use is made of this versatility in the ribs 

leaving the more thorough investigations for subsequent work. Nonetheless, a 

provision for such an extended research work is made herein and the deployment 

of this provision is exemplified. 

In Section X the phenomenon of aliasing is investigated and displayed. In 

a regularly ribbed shell the aliasing is shown to reside in the drive in lieu of the 

ribs. The aliasing patterns in this drive are displayed and investigated. A first and 

a proper order model are discussed and contrasted. 

In Section XI the aliasing phenomenon is related to the pass and stop 

bands in the drive in lieu of the ribs. The relationship between the dispersive loci 

and false dispersive loci is discussed. The cancellations at the spectral regions 

where false dispersive loci cross (intersect) and the manifestation of stop bands 

are established. 

In Section XII the spatial domain is introduced and is used to investigate 

the phenomenon of pass and stop bands in the drive in lieu of the ribs. The 

usefulness of the complementarity of the spectral and spatial domains is made 

clearer in this section. The drive in lieu of the ribs in the domain is derived from 

that in the domain by a novel computational technique designed to perform a 

Fourier transformation [16, 18]. The phenomenon of pass and stop bands in this 

drive is given some quantitative manifestation in the displays of this phenomenon 

in the spatial domain. 

11 



In the final section; i.e., Section XIII, Sections X and XI and Section XII are 

complemented and the enhancement that results from this procedure, to the 

understanding of the phenomenon of pass and stop bands, is discussed and 

highlighted. 

12 



ffl.   AN IMPULSE RESPONSE FUNCTION OF A SHELL 

Consider a general shell (e.g., a panel or a cylinder) such as shown in 

Fig. 3-1; having a surface defined by two spatial coordinates; namely, the surface 

is defined by the spatial vector variable {x,y}. The surface is in contact with a 

surrounding acoustic fluid defined by the density (p) and the speed of sound 

(c) which comprise the characteristic impedance (pc) of the fluid. In the interior 

of the shell a vacuum prevails. The surface of the shell is driven by an external 

drive pe(x,y,(o), where (co) is the Fourier conjugate of the temporal variable (t) 

as expressed below 

pe(x,y,oo) = (2x)-m J dt pe(x,y,t) exp(-icot) , (3-la) 

pe(x,y,t) = (IK)'
112

 J dco pe(x,y,co) exp(i(Ot) . (3-lb) 

The response of the shell in the absence of the fluid; namely, when (pc) = 0, is 

governed by the equation of motion 

z,(x,y,co) v(x,y,co) = pe(x,y,Q)) , (3-2) 

where zt(x,y,co) is the mechanical surface impedance operator of the shell and 

v(x,y,co) is the response, in terms of the normal velocity, of the shell in the 

absence of fluid. In Eq. (3-2) a fundamental assumption is made that the 

structural system is stationary in time so that the equation with respect to the 

frequency variable (a>) is algebraic, [cf. Appendix A.] 

13 



"Fluid loading" is a term used to describe the drive generated by the shell 

reacting to the presence of the fluid on its surface. Here this fluid loading is 

designated by the pressure -pf(x,y,co). Introducing this pressure in the 

equation of motion modifies Eq. (3-2) in the linearly superposed form 

zt(x,y,(o) v(x,y,co) = pe(x,y,co) - pf{x,y,co) . (3-3) 

The general shell is now restricted to geometries in which the fluid loading can be 

expressed in the separable form 

pf(x,y,co) = zf{x,y,(ü) v(x,y,co) , (3-4) 

where zf(x,y,co) is a uniform surface impedance. That surface impedance is the 

fluid surface impedance on the shell boundaries that are in contact with the fluid. 

Geometries in which the separability stated in Eq. (3-4) is valid are exemplified by 

a uniform panel and a uniform cylindrical shell. Shells of these descriptions and 

the appropriate coordinate systems are sketched in Figs. 3-2 and 3, respectively. 

From Eqs. (3-3) and (3-4) one obtains 

ztf{x,y,co) v(x,y,co) = pe(x,y,co) , (3-5) 

where 

ztf(x,y,co) = z,(x,y,co) + zf(x,y,(0) . (3-6) 

Thus, the linear superposition in pressures, stated in Eq. (3-3), is elevated to the 

linear superposition in the surface impedances in Eq. (3-5), a major step indeed. 

14 



Situations occur which are conducive to separating the mechanical surface 

impedance zt(x,y,co) of the shell into two terms. The first, designated zp(x,y,(o), 

describes the mechanical surface impedance of a uniform shell, uniform in the 

{x,y}-domain. The second, designated zs(x,y,co), accounts for the 

nonuniformities in the surface impedance of the shell.   Thus 

zt(x,y,(o) = zp(x,y,(ü) + zs(x,y,co) , (3-7) 

and from Eqs. (3-5), (3-6) and (3-7) one derives 

zM,y,co) v(x,y,co) = pe(x,y,co) - ps(x,y,co) , (3-8) 

where 

ps(x,y,co) = zs(x,y,(o) v(x,y,a) , (3-9) 

and 

zM,y,co) = zp(x,y,(o) + zf(x,y,co) . (3-10) 

The surface impedance z„(x,y,co) is, by definition, uniform in the x- and 

y-domains. The nonuniformities that are defined in zs(x,y,co) are assumed in 

this investigation to be confined to the x -domain only so that zs(x,y,co) is 

uniform with respect to the y -domain as is, of course, z„(x,y,G>). The choice of 

the spatial coordinates and their orientation depends on the disposition of the 

geometrical form of the shell. The uniformity of the surface impedances 

zx(x,y,(ü) and zs(x,y,co) in the y-domain makes it convenient to transform 
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Eq. (3-8) into the continuous (partial) ^-domain or the discrete (modal) 

n-domain. The continuous ky -domain is the Fourier conjugate domain of the 

y -domain. The Fourier transformation is appropriate when the uniformity in this 

domain is extended infinitely. The discrete (modal) n -domain is appropriately 

employed when the uniformity in this domain is extended finitely. Subsequently 

the two transformations are presented side by side. This presentation helps 

exhibit the commonality and the disparity in the two transformations. Moreover, 

comparisons of this kind often facilitate understanding of either and both. The 

response v(x,y,(o) in terms of these two transformations is 

v(x, y, co) = (2 7c)~1'2 J dky   V(x, co2) exp(-iyky) 

co2 = {kyM , (3-lla) 

v(x,y,co) =S Vn(x,co) Yn(y) • (3"llb) 

n 

Similarly, for the external drive pe(x,y,a>) the corresponding transformations are 

pe(x,y,(0) = OKT
111

 J   dk Pe(x,cg2) exp(-iyky) , (3-12a) 

pe(x,y,co) = X Pen(x,co) yfn(y) . (3-12b) 
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In Eqs. (3-11) and (3-12), (2;r)"1/2 exp(-iyky) and \l/n(y) are chosen to be the 

eigenfunctions in the y -domain with respect to the surface impedance 

eigenoperator z„(x,y,co). This choice is expressed 

{z„(x,y,co) = Z„(X,CQ2)} (2TC)-
UZ
 expi-iyky) , (3-13a) 

{z„(x,y,co) = Z„n(x,co)} y/n(y), (3-13b) 

and each of these eigenfunction sets are assumed to form a complete and 

orthogonal set. Completeness is expressed 

r'J (27T)-1  J   dk exp[-i(y-y')ky] =  8(y-y') , (3-14a) 

^ ¥n(y) V*n(y') = S(y-y') , (3-14b) 

and orthogonality is expressed 

(lit)-1  j dy exp[-iy(ky-k'y)] = 8{ky-k'y) , (3-15a) 

J dy v„(y) v*n(y) = 8^. (3-l5b) 

The quantities Z^{x,(02) and Z^Cx.O)), defined in Eq. (3-13), are the 

eigenvalues of the (ky)\h and (n)th eigenfunctions in the v-domain, respectively. 

Utilization of these transformations and conditions, as expressed in Eqs. (3-11) 
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through (3-15), yields, for the partial and modal designations of Eqs. (3-8) and 

(3-9), the forms 

Z„(*,fl>2) V(x,co2) = Pe(x,co2) - Ps(x,co2) , (3-16a) 

Z^Ocfl» Vn(x,(D) = Pen(x,a>) - Psn(x,(0) , (3-16b) 

respectively, where 

Ps(x,co2) = Zs(x,co2) V(x,co2) , (3-17a) 

Psn{x,(0) = Zsn(x,co) Vn(x,co) . (3-17b) 

The drive (pressure) components Ps(x,co2) and Pm(x,co) are of particular 

interest; they are associated with the nonuniformities described by the portion 

zs(x,y,co) in the mechanical surface impedance zt(x,y,co) stated in Eq. (3-7). 

The fluid loading pressure -pf(x,y,co) is conveniently expressed in terms of a 

uniform surface impedance zf(x,y,co) so that it can be transferred from the right 

to the left side of the equation and incorporated with the uniform component 

described by the portion zp(x,y,co) in the mechanical surface impedance 

z,(x,y,t) of the shell. Fluid loading is indeed a spatially extended phenomenon 

and, therefore, the uniformity of zf(x,y,co) can be partially justified. This 

incorporation results in the definition of the uniform surface impedance 

^(jcy,©). The nonuniformities in zt(x,y,(0), on the other hand, are induced by 

spatially localized impedances and, therefore, it is natural to remove zs(x,y,oo) 

from the left to the right side of the equation and treat the influence of these 

nonuniformities in the surface impedance of the shell in terms of the drives 
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(pressures) that they generate. This is why Zf(x,y,co) and zs(x,y,a>) find 

themselves on opposite sides of the equation, having exchanged their original 

places. This manipulation advantageously leaves the surface impedance operator 

zx{x,y, (a) on the left side of the equation uniform in (x); this operator can thus 

potentially be rendered algebraic by a Fourier transformation with respect to (x). 

Indeed, this potential procedure has been implicitly employed in the Fourier 

transformation from the t-domain into the ©-domain. In this investigation the 

t -domain is uniform and is assumed to be infinitely extended, [cf. Appendix A.] 

Formally, Eq. (3-16) can be expressed in terms of the surface impulse 

response functions Goa(x\x',(02) and Goon(x\x',(o); which are simply the 

inverse surface impedance operator of Zaa(x,(02) and Z^Oc,©), respectively. In 

the format of the impulse response function, Eq. (3-16) becomes 

V(x,(p2)=  J   GBO(x\x,,(o2) dx' [Pe(x',(D2)- Ps(x',(o2)],     (3-18a) 

Vn(x,co)   =  J Gaon(x\xf,m) dx' [Pen(x',(D) - Psn(x',co)].      (3-18b) 

Ostensibly, Eq. (3-18) is an acceptable description for the partial and modal 

response of the shell to an external drive. Whether this description is useful and 

proper remains to be substantiated. If the nonuniformities are removed; i.e., when 

Ps and  pm are set equal to zero, one obtains and defines 
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vL(Jt,©2) = J GM\x\co2) dx' Pe(x',a>2) , (3-19a) 

£,(*,<») = J  G„n{x\x\(0) dx' Pen(x',co) . (3-19b) 

The impulse response functions Gx and G^ are proper in the sense that they 

are dependent only on quantities and parameters that describe the uniform shell; 

they are independent of the response V„ and VLn, and the external drive Pe and 

Pen, to which the shells may be subjected, respectively. Equation (3-19) is then, 

by definition, proper. On the other hand, except in the limits in which Eq. (3-18) 

becomes Eq. (3-19), the former equation is improper. The impropriety of 

Eq. (3-18) arises in the sense that the desired surface response (velocity) is 

implicitly present on the right side of the equation through the dependence 

expressed in Eq. (3-17). In order to remedy this impropriety certain assumptions 

and restrictions need to be imposed. One needs to do this without jeopardizing 

the description of the phenomena of interest in this investigation. The solution 

being sought can be expressed formally as 

V(x,(02) = J  G(x\x',a>2) dx' Pe(x',<p2) , (3-20a) 

Vn(x,co) = J Gn(x\x',co) dx' Pen(x',co) , (3-20b) 

and G and Gn in Eq. (3-20) are required to be functions only of the properties of 

the structure and the fluid and to be independent of the response V(x,(02) and 

Vn(x,co) and the external drive pe{x,(02) and pen (x,ö)2)>resPectively. Thus the 

goals of the  assumptions and restrictions  must be  compatible  with  these 

20 



requirements. The derivation of G and Gn that satisfy these requirements renders 

Eq. (3-20) proper. 

There are a number of methodologies by which one may convert 

Eqs. (3-18) toward Eq. (3-20), notably various iteration techniques. Examples 

would include the Born and other similar approximation schemes, variational 

approximations, and finite element techniques and their offspring. Here, however, 

a specific methodology is employed in which the structure is idealized in a 

manner that permits an easy conversion from Eq. (3-18) toward Eq. (3-20), 

notwithstanding that less restrictive conversions than the one here described can 

be analogously performed with reasonable payment in complications. However, 

pursuit of such extensions are deemed to be beyond the scope of the present 

investigation and are not, therefore, discussed herein. 

Returning to Eq. (3-18) and remembering that Zoo(x,C02) and Z„n(x,ca) 

are by definition uniform in the x -domain, it follows that 

GM\x',co2) -» (2KT
1/2

  GM-X',(ü2) , (3-21a) 

GU,(JCIJC» -» (2TT)-
1/2

  G^(X-JC» , (3-21b) 

and hence by Fourier transformations with respect to (x) and (x') one obtains 

G„(k\k',co2) -> G„(fc,ffl2) S(k-k') , (3-22a) 

G^Oklt» -> G^dcto) 8(k-k') . (3-22b) 
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[cf. Appendix A in which the analogous Fourier transformation from the 

t -domain to the co -domain is discussed.] The uniformity of the shell in the 

x-domain renders Zao{x,co1) and Z^ix,®) eigenoperators with respect to the 

Fourier eigenfunction (2K)~
111

 exp(-ixk) in that domain; namely 

v-l/2 {ZM,g2) = Z-{k,g2)} (2TZ)-
UZ

 exp(-ixk) , (3-23a) 

{ZM„U,ö))  =  Z„n(k,co)} (27trl" exp(-ixk) . (3-23b) 

[cf. Eq. (3-13a).] FromEqs. (3-16), (3-18), (3-22) and (3-23) one may identify 

G„(*,ffl2) = [Z„(k,co2)]-1 , (3-24a) 

G„n(k,co) = [Z„n(k,co)]-x . (3-24b) 

Using Eqs. (3-21)   and   (3-23)   and   performing  a Fourier transformation  of 

Eq. (3-18) with respect to the x -domain yields 

V(k,a2) = G„(k,(o2) [Pe(k,co2) - Ps(k,co2)] , (3-25a) 

Vn(k,co) = G„n(k,(0) [Pen{k,co) - Psn(k,co)] , (3-25b) 
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where typically the conversion of Eq. (3-18) to Eq. (3-25) involves the Fourier 

transformation convention 

V(x,cg2) = (27t)~112   J dk V{k,(02) exp(-ixk); 

Goo{x\x',(02) = 

(2;r)_1   i\ dk dk' Gao(k\k',co2) exp[-i(xk - x'k')] , (3-26a) 

Vn(x,co) = (2K)-
1
'
2
 j dk Vn{k,co) exp(-ixk) ; 

G„n(x\x\(ö) = 

(2TU)-
1
J dk dk' G^iklk',®) exp[-i(xk - x'k')] . (3-26b) 

To proceed further it is necessary to define more explicitly the drives 

Ps(k,co2) and Psn(k,co) in lieu of the nonuniformities. To this end one assumes 

that the ribs can be described by nonuniformities in the surface impedance of the 

shell that are highly localized in the x -domain. This assumption is expressed in 

the form 

Zs(x,co2) = X ZsJ(co2) ö(x-xj) , (3-27a) 
j 

Zsn(x,co) = X Zsnj(co) S(x-xj) , (3-27b) 
j 

where (x;-) is the position, in the x -domain, of the (j)th rib and it is assumed that 

a nonuniformity represents  a simple line and ring impedance to the  shell, 
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respectively. A physical entity that befits such a localized nonuniformity is an 

attached rib. The rib exerts a line and a ring drive on the shell in reaction to the 

motion of the shell. Such loading of the shell by the ribs is stated in terms of a 

simple drive; remembering, of course, that in this investigation a priori no higher 

moments in the drive are to be allowed. A gross simplification is attained by 

assuming the ribs to be identical, infinite in number, and regularly spaced; namely 

and respectively 

Zsj(co2) = Zs(co2) , (3-28a) 

Zsnj(co) = Zsn(a» , (3-28b) 

and 

< j < °o ;        | Xj+l - Xj I  = bj ;        bj =b , (3-29) 

where (b) is the separation distance between adjacent ribs. In this report only 

regularly ribbed shells, defined by Eqs. (3-28) and (3-29), are investigated. 

Although this restriction severely limits phenomena that can be investigated, 

many of interest remain. This report is directed toward investigations relating to 

these remaining phenomena. Substituting Eqs. (3-27) and (3-28) in Eq. (3-17) 

yields 

Ps(Xj(D2) = Zs((02) X V(Xj,co2) S(x-xj) , (3-30a) 

Psn(x,co) = Zsn(co)   J Vn(Xj,CD)S(x-Xj) . (3-30b) 
j 
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Casting the responses V(xj,co2) and Vn(Xj,co) in terms of their Fourier 

transforms V(k,0)2) and Vn(k,co),respectively, and simultaneously transforming 

Eq. (3-30) into the k -domain, one obtains 

Ps(k,co2) = 

Z(co2) j dk' V(k',co2) (K^-
1
   Ti exp[-xj(k-k')] , (3-31a) 

Psn(k,co) = 

Zn(co)  f dk' Vn(k\co) (K{)-
1
   E exp[-üj(k-k')] , (3-31b) 

• j 

where (KX) is the wavenumber associated with the separation between adjacent 

ribs 

KX  = (2K/b) , (3-32a) 

and (xj) is stated in the form 

Xj = jb ; x0  = 0 . (3-32b) 

The imposition that (x0) is zero is universally assumed in this report. In 

Eq. (3-31) the quantities Z(co2) and Zn(ü)) are defined as 

Z(©2) = Zs((o2)lb , (3-33a) 

Zw(ö)) = Z„ (!»)/* . (3-33b) 
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[cf. Eqs. (3-28) and (3-30).] These quantities are the equivalent mechanical 

surface impedances of a rib; i.e., the line impedances, Zs(co2) and Zsn(co), 

respectively, of a rib divided by the separation (b) between adjacent ribs. Making 

use of Poisson's summation formula; namely 

2 exp[iXj(k-k')]  =  *! 2 8(k + Kj-k') , (3-34) 

Eq. (3-31) yields 

Ps(k,co2) = Z(co2)  f dk' V(k',co2) Höik+Kj-k') , (3-35a) 

Pm(k,co) = Z„(fi>)  f dk' Vn(k',(Q) T,S(k+Kj-k') . (3-35b) 
J j 

Assuming that the convergence of Eq. (3-35) is unconditional, the summation and 

integration may be interchanged to yield 

Ps(k,(D2) = [Z(co2)] Sb(k) V(k,co2) , (3-36a) 

Psn(k,co) = [Zn((o)] Sb(k) Vn(k,co) , (3-36b) 
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where Sb(k) is the "separation wavenumber operator" defined by 

Sb(k) [tf(*)] = 2 N(k + Kj); Kj = JKX ; 
j 

Sb(k) [M(k) N(k)]  =  2  Wk + Kj) N(k + Kj)}. (3-37a) 
j 

The separation wavenumber operator Sb(k) is a "self-aliased" operator in the 

sense that 

Sb(k) [M(k) Sb(k) [N(k)]] = Sb(k) [N(k)] Sb(k) [M(k)] ; 

=   X W(k + Kj)} X {M(^ + »cr)}, (3-37b) 

where (r) and 0) are integers, and M(k) and A^(Jt) are well behaved functions of 

(k). The desired derivation of G(x I x',(02) and G„(^ I x',co) as stated in Eq. (3- 

20) is approaching. However, it may be convenient to first transform this 

equation from the x- domain into the fc-domain, now that the procedures of 

such a transformation are defined and, indeed, the equations to be used are 

already so transformed. 
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Performing a Fourier transformation of Eq. (3-20) yields 

V(k,a2) = J G(k\k',co2) dk' Pe(k,co2) , (3-38a) 

Vn(k,co) = j Gn(k\k\co) dk' Pen(k',co) . (3-38b) 

Here the desired derivation of G(x\x',(ö2) and Gn(x\x',co) in Eq. (3-20) is 

understood to be equivalent, in every respect, to the derivation of G(k\k',cü2) 

and Gn (k I k', cd) in Eq. (3-38) and vice versa. In particular, the requirements that 

G and Gn need to satisfy with regard to propriety are equivalently imposed on G 

and Gn, respectively. 

Two models are considered. In the first the interactions among the ribs, via 

the uniform shell, are artificially removed. This model may be dubbed a first order 

model of a ribbed shell. The formalism of this first order model is introduced 

briefly, herein, merely to contrast it with the second model in which the ribs are 

allowed to naturally interact. This second model is dubbed a proper model. In 

the investigation of the influence on the response of the shell of the interactions 

of a rib with its neighbors, via the shell, this contrast is a valuable analytical tool. 

Using Eqs. (3-18) and (3-30), substituting Eq. (3-35) in Eq. (3-25) and multiplying 

the resulting equations by Zs(co2) G„(k,Q)2) and Zsn(co) G^iKco), 

respectively, and performing straightforward algebraic manipulations, one obtains 
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G(k\k',co2) = 

f T(cg2) 1 
G-<*^2>H/,(*,fi,2) - v*) [ß-(^.fi»2)} s(*-*o, 

p-39a> 

J3-40a, 

GB(JUfc',ü)) = 

f TIO») 1 «. (3-391A 
G~(/:,<ö) H/J». J 5>w [QM) **-* > •  [3-4». 

where 

1-1 T{co2)  = {1+Z,(©2) CUIJC, <»2)}     ; 

/*(*,ffl2)  = {l + Sb(k)   [Q„(k,co2))}-1 , (3-41a) 

r„(6)) = {l+Z,„(ö)) G^OCIJC, co)}-1 

Ibn(k,co) = {l + Sb(k) [ß«,,(fc.fi!)]}-1 (3-41b) 

and the incomplete square brackets preceded by the wavenumber operator Sb (k) 

merely indicates that the operation to be performed by Sb(k) is yet to be 

completed. The quantities Q„(k,co2) and Q^ik^co) are the ratios of the 

equivalent mechanical surface impedances Z(co2) and Z„(ft)) of the ribs, stated in 

Eq. (3-33),  and   the   surface  impedances   Z„(k,co2)   and   Zoon(fc,ft))   of the 
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uniform shell, stated in Eq. (3-24), respectively; namely 

0.(*,ffl2) = Z(©2) G„(k,co2) , (3-42a) 

OL»(*,ffl) = Zn(co) G„n(k,co) . (3-42b) 

[cf.Eq. (3-24).] The quantities T(a>2) and Tn{(0) are the transmission coefficients 

of free waves across a single rib on the shell in the absence of the other ribs. 

Again, the first order model which is based on noninteracting ribs, is contrived, 

notwithstanding that real situations exist in which ribs negligibly interact with 

each other; e.g., when the uniform shell is highly damped and the distance 

between adjacent ribs is large. The simplicity of Eqs. (3-39) and (3-40) is striking. 

Moreover, G(k\ k',(02) and Gn(k\ k',co) in this equation are proper in the sense 

that they are neither dependent on V(k,co2) and Vn{k,co) nor on Pe(k,co2) and 

Pen(k,co), respectively. Indeed, these impulse response functions (operators if 

strictly worded) are merely functional of the quantities and parameters that 

describe and specify the uniform shell, the fluid, and the ribs. Consequently, the 

impulse response functions G(x\x',co2) and Gn(x\x',co) as expressed in 

Eq. (3-20) are also correspondingly proper if derived by an appropriate Fourier 

transformation with respect to (k) and (k') of G(k\k',(02) and Gn(k\k',co), as 

expressed in Eq. (3-26). 

In order to establish an interpretive baseline for comparison purposes, the 

responses of the shell in the absence of nonuniformities are sometimes established 

as basic quantities.  Often these quantities are stored as such in a computer and 
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are assumed known.   These quantities are readily specified in the k -domain in 

the form 

K.(*,ffl2) = GL(*,fi>2) 
pe^,(02) , (3-43a) 

V«,(*,<») = G„n(k,co) Pen(k,(ü) , (3-43b) 

as can be verified by setting identically zero the drives Ps(k,(02) and Psn(k,co) in 

lieu of the nonuniformities in Eq. (3-25). [cf. Eq. (3-19).] The utilization of these 

responses as basic quantities can be illustrated by substituting Eqs. (3-25) and 

(3-43) in Eqs.(3-39) and (3-40) to yield 

V(k,cg2) = V_(*,ffl2) - Vf(*,ffl2); 

Vs(k,(o2)= G..(k,co2) Ps(k,a2); 

V(k,cg2) =  GM(/:,ö)2)[^(ä:,ö)2) - Ps(k,cg2)} , (3-44a) 

f T(co2) ' 
Ps{k,co2) =       ( ► Pos{k,(02), 

'3-45a" 

,3-46a, 
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where 

Pos(k,cg2) =  Sb(k) [Q„(k,co2) Pe(k,co2)], (3-47a) 

Vn(k,co) = V„n{k,ca) - Vsn(k,co) ; 

Vsn(k,co) = G„n(k,co) Psn(k,co) ; 

Vn(k,co) = G„n(k,(D) [Pen(k,co) - Psn(k,co)] , (3-44b) 

f Tn(co) ) f3-45b>| 

where 

Posn(k,co)  =  S,(*) [ß^ (*.<») P„(*,fl»] • (3-47b) 

Since T(ö)2) and Tn(co) are independent of (fc), and Ib{k,(ü2) and 

Ibn(k,(o) are aliased in the it-domain with respect to the separation wavenumber 

Oq), it follows that Ps(k,co2) 
md POT(*,fi>), respectively, are aliased quantities in 

that domain; both in the first and proper order models; namely 

Ps{k,(02) = Ps(k + Kj,(02) , (3-48a) 

Pm(k,co) = Psn(k+Kj,co) . (3-48b) 
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The "phenomenon of aliasing" in the response of a regularly ribbed shell is 

directly related to the aliasing in Ps (k, co2) and Psn(k, co). However, before the 

phenomenon of aliasing can be deciphered in these quantities, or for that matter, 

in the response V(k,co2) and Vn(k,co) of the shell, it is necessary to define more 

explicitly the external drive Pe(k, co2) and Pen(k,co), the mechanical surface 

impedance Zp(k, (02) and Zpn(k, co) of the uniform shell, the fluid surface 

impedance Zf(k,co2) and Z^ik, co) [or Z{{k, co)], and hence the surface 

impedance ZM (k,co2) and Z^ik, co) of the fluid loaded uniform shell, and finally 

the line and ring impedance Z(co2) and ZD(co) of the ribs. Then one can derive 

the explicit form of the drive Ps(k,co2) and Psn(k,co) in lieu of the ribs, as 

expressed in Eqs. (3-45) and (3-46), and hence the response 

V(k,co2) and Vn(k,co) as expressed inEq. (3-44). 
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Fluid (p,c) 
p (external drive) 

v (response) 
•     p, (fluid reactive drive) 

(JC, y)    J 
z{ (surface impedance) 

Fig. 3-1. Sketch of a Generalized Shell and some of the quantities involved 
in its equation of motion. 

Fluid (p, c) 

(x, y, z) 

x--b x--b x = 0 x = b 

Fig. 3-2. Sketch of a ribbed panel and coordinate system. 

Fluid (p,c) (r,0,<|>) 

Ribs- 

(r, x, ())) 

x = -2b x--b 

(r, xa, (()) 

Fig. 3-3. Sketch of a ribbed cylinder and coordinate system. 

34 



IV. A SHELL WITH A FINITE NUMBER OF RffiS 

Situations arise in which the assumption of regularly ribbed shells may be 

too drastic an assumption. Moreover, the assumption of regularity may deprive 

the formalism of some of its versatility. For example, if the shell is regularly ribbed, 

the influence of changing the regularity of the spacings between adjacent ribs 

and/or the identity of the line impedances of the ribs can no longer be examined. 

Such examination may, however, be desirable. Also, it may be desirable to 

investigate the influence of bulkheads on the behavior of the response. In this 

situation the bulkheads are ribs of line impedances that are substantially different 

from those of the "ordinary" ribs and the distances between adjacent bulkheads 

may not only be different from those between ordinary ribs but may be different 

for different pairs of adjacent bulkheads. Many other variations on those themes 

are possible in which the regularity of the ribs is not befitting. Again, the a priori 

imposition that the shell is regularly ribbed scuttles the possibility of accounting 

for these and similar kinds of variations. Under certain conditions a formalism for 

a finite number of ribs with regular or non-regular spacings can be made. In this 

formalism the line impedance and the position of each rib is individually 

accounted for. The finiteness is a prequisite, otherwise the formalism becomes 

unwieldy and cumbersome. Although in this report only the regularly ribbed 

shell is computationally considered, for the sake of completeness and for future 

reference, the formalism for a finite number of ribs, in which each rib is 

individually accounted for, is briefly stated below. 

The formalism in this section relies on steps developed in the preceding 

section up to the imposition of regularity in Eqs. (3-28) and (3-29). In the 

absence of regularity instead of Eq. (3-30) one derives 
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Ps{x,co2) =  X ZÄ) V(xj,co2) Ö(x-Xj) , (4-la) 
j 

Psn(^CO)   =   X   Z,«/(ffl)   K^)   ^-^) • (4"lb) 
j 

for the drive in lieu of the ribs. Substituting Eq. (4-1) in Eq. (3-18) and making 

use of Eq. (3-19) one derives 

V{x,co2) = 

V„(x,co2) - X G„{X\XJ,CU2) ZsJ(co2) V(xj,co2) ,       (4-2a) 
j 

Vn(x,co) = 

vU(x,ffl) - X G^(x\xj,io) Zsnj((0) VH(xj,at) . (4-2b) 
j 

The dependence of Eqs. (4-2a) and (4-2b) on the spectral variables (co2) and (co) 

respectively, is obvious and, therefore, without loss in meaning they can be 

suppressed for convenience; namely, Eqs. (4-2a) and (4-2b) can be abbreviated in 

the form 

V(x) =  VM) -X GM\Xj) Zsj V(xj) , (4-2c) 
j 

Vn(x)  =   ^„W-X G„n{x\Xj) Zsnj   Vn(xj). (4-2d) 
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From Eqs. (4-2c) and (4-2d) one may construct the following matrix equation: 

\-i B(£Tl  V = V„ ; V = {V(xj)} ; V„ = {^(x,)} ; 

B = (öji+GMjlXi) Z^a-Sji)) ; T = (7} Sß) ; 

Tj  = [l+GMj\Xj) ZsjY
l , (4-3a) 

5»(&)"1  ?» = ?~„ ;      V- = ftty» i      Y~n = {V„n(xj)} ; 

Bn = (Sji + G^ixjlx;) Zsni  rm-(l-5;,.));       Tn = (rny fy) ; 

Tnj  = [1 +G00„(x,l;c;) Z^r1  . (4-3b) 

Inverting the first expression in Eqs. (4-3a) and (4-3b) one derives 

V =  T C vL , (4-4a) 

Vn   =   Tn  Cn V„n , (4-4b) 

where the matrices C and Cn are defined 

C = (c,,) = (ß)"1 ; Cn = (c„,,) = (Bnr
l . (4-5) 
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From Eqs. (4-2) and (4-4) one obtains 

V(x) = Vm(x) - S E G„(JC I Xj) Zsj T} C,, VM, (4-6a) 
;       ' 

Vn(x) = V„n(x) -XX G„n(x\Xj) Zsnj Tnj Cnji V„n(Xi).        (4-6b) 
j      ' 

From Eq. (4-6), and using Eq. (3-19), one obtains by inspection 

G(x\x') = CL(*l*') - 

E E G..(JC I *,) Z„- Tj Cjt GMi I *') , (4-7a) 

G.(JCIJC') =  G^UIx')- 

E E G^(x I *,) Zsnj Tnj Cnji G^ixi \x') . (4-7b) 

In the non-abbreviated form, Eq. (4-7) assumes the form 

G{x\x',(o2) = G„(x\x',(D2) - 

E E GM\xj, co2) Zsj((o2) Tj(co2) Cß(co2) G„(Xi\x\co2) ,   (4-7c) 
j    • 

Gn(x\x',co) = G^UIx'.ffl) - 

E E G^Oclxy.o» Z^(fl)) Tnj((o) Cnji(co) G^iXi \x\ca) , (4-7d) 
j    > 
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and by definition 

V(x,co2) = j G(x\x',co2) dx' Pe(x',co2) , (4-8a) 

Vn(x, co) = J Gn{x\x\ co) dx' Pen(x',co) . (4-8b) 

[cf. Eq. (3-20).] Making use of Eq. (3-26), and casting Eq. (4-8) in the format of 

Eq. (3-31), one finds that 

Ps{k,co2) = EZ^)"1  Tj(co2) Cß(co2) expiixjk) 
j       i j    - j    - j 

J   dk' Q„j(k',co2) exp(-iXik') Pe(k',co2),      (4-9a) 

Psn(k,co) = EZ Oq)"1  Tnj(co) Cnji(co) exp(iXjk) 

j dk' Q„j(k',co) expi-ix.k') Pen(k',co),      (4-9b) 

where 

&.j(k',co2) = [Zsj(co2)/b] G„(k,co2) , (4-10a) 

&.nj(k',co) = [Zsnj(co)/b] G^Vcco) . (4-10b) 

[cf. Eqs. (3-44) - (3-47) and (3-42).] Clearly, if the ribs are regularly spaced so 

that Xj = jb, the drive Ps(k,co2) and Psn(k,co) is "aliased in (k) with respect to 

(jq)," as defined in Eq. (3-48). Thus, the aliasing of the drive in lieu of the ribs is 

not predicated on the equality of the line impedances and/or the number of the 
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attached ribs. It is merely and solely dependent on the regularity of the spacing 

between the ribs. On the other hand, to reconcile Eq. (4-9) with Eq. (3-46) it 

must follow that 

XEoq)"1  7}(fi)2) CAco2) exp[i(Xjk-Xik')]  \1Z 
j    i 

->  Ib(k,co2) Sb(k) [S(k-k') , (4-1 la) 

EE(^)-1   TnAco) Cnji(co) expVixjk-Xik')] l!T 
j        i 

->  lbn(k,(0) Sb(k) [8(k-k') , (4-llb) 

where the infinities indicate that the shell is regularly ribbed as specified in 

Eqs. (3-28) and (3-29). Equations (4-9) and (4-11) enable one to define an 

artificial, but a useful, first order model in which the interactions among the ribs 

via the shell are suppressed. In this case the left side of Eq. (4-11) can be readily 

evaluated since the coupling matrix between ribs is rendered the unit matrix. 

Substituting the equalities 

Cß(co2) = Sß ; Cnji(co2) = Sß , (4-12) 
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in Eq. (4-11) one obtains 

Eoq)"1  T(co2) expVxAk-k')]   \1Z 
j ~ 

->  T(a2) Sb(k) 8(k-k')  if  Tj((p2)   =  T(cg2) , (4-13a) 

S(^)-1  Tn(co) exp[ixj(k-k')]   HZ 
j 

->  Tn(co) Sb(k) [8(k-k')  if  Tnj(co)  =  Tn{co) . (4-13b) 

Equations (4-12) and (4-13) define the first order model. Substitution of these 

equations in Eq. (4-9) derives Ps{k,co2) and Psn(k,co) that are commensurate 

with those of the first order model, as specified in Eq. (3-45). 

An observation is made: Whereas evaluations for the proper regularly 

ribbed shell require the functional form of the surface admittance Goo(k,C02) and 

Goon(fc,ü)), similar evaluations for the finite and the first order model require, in 

addition, the determination of {Cß(co2), Tj(co2)} and {Cnji(co), Tnj(co)}. In 

this latter determination the functional form of G00{x\x',co) and G^ixlx^co) is 

needed. The inclusion of fluid loading in G„(k,co2) and G^n{k,co) is 

straightforward; however, in G^ixlx^co) and G^ixlx',®) it is not. Therefore, 

often in the formalism of Eqs. (4-7) and (4-13), the fluid loading is neglected, at 

least initially. This neglect may contribute to subsequent interpretive difficulties 

unless the influence of these initial assumptions are understood in subsequent 

manipulations of the formalism. Another observation of note is that the 

summations involved in Eq. (4-7) are over ribs (and bulkheads) whereas in 

Eq. (3-34) or those involving the operator Sf,(k), the  summations are over 
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harmonics of the separation wavenumber (K^). The latter are infinite summations 

while the former, if the number of ribs is finite, are finite summations and the 

summations are over the ribs. 
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V. AN EXTERNAL DRIVE 

To investigate the response V{x, (02) and Ki(*> fö) or equivalently 

V(k, (02) and Vn(k, (0), and for that matter to investigate the drives in lieu of the 

ribs Ps(x, co2) andFOT(jc, (o) or equivalently Ps (k, a2) %a.&Psn(k, (o), it becomes 

necessary to specify the external drive pe(x,y,a>) and pe(x, <j>, (O) either in terms 

of Pe{x,co2) and Pen(x,co) or, equivalently, Pe{k,(02) and Pen{k,(o), 

respectively. This specification needs to be compatible with the form of the 

impulse response function just formulated. In this investigation the external drive 

is specified to be a point mechanical drive. For the panel this drive may be 

defined 

pe(x,y,co) = Fe(co) S(x-xa) S(y-ya) ;      xa = {xa,ya} ,        (5-la) 

Pe(k,co2) = Fe(co) (27T)-1  exp(ixak) ;       k = {k,ky} , (5-2a) 

and for the cylinder this drive may be defined 

pe(x,<p,co) = Fe{(0) 8{x-xa) S[(a(<j)-<l>a)] ;      O<0<(2;r) ,    (5-lb) 

Pe{k,<p,<o) = 

[Fe((0)l(2na)\ (2nTm exp(ixak) E exp[-in((j)-<j)a)] ,      (5-2b) 
n 

where xa = {xa, ya] and {xa,(a</)a)} are the position vector of application on 

the panel and the cylinder, respectively, and Fe((o) is the point force strength.  In 
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deriving Eqs. (5-lb) and (5-2b) use is made of Poisson's summation formula; 

namely 

8W-ja) = (27V)-1  2 exp(-in($-<!>a)} ; 0 < 0 < 2K . (5-3) 
n 

[cf. Eq. (3-34).] Situations arise in which it is convenient to cast the external 

drive on a panel in terms of a line drive. The point drive can be expanded in terms 

of line drives in the form 

pe(x,y,co) = (2x)~m J  dky Pe(x,co2) exp(-iyky) . (5-4) 

To relate the point and line drives one may identify 

Pe(x,co2) = Pea((Q2) S(x-xa) ; 

Peat®!) = F,{<») W1'2 exp(iyaky) , (5-5) 

so that 

Pe{k,co2) = Pea((o2){2K)-m exp(ixak) , (5-6) 

where Pea{(02) is a partial external line drive that lies in the v-domain and is 

applied at the position (xa) in the x -domain, [cf. Fig. 3-2.] When the influence 

of ribs is of concern, the external partial line drives are useful in the sense that 

they are more compatible with the drives that are generated by the ribs; these 

drives constitute the loading of the panel by the ribs.   This compatibility is of 
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considerable analytical significance.    With respect to  the  cylindrical  shell, 

identifying the modal function as a Fourier series function 

VnOO = (2n)~xl2 exp(-in(t)) and replacing   \dy   by   2J , (5-7) 
J n 

one may then cast the external drive on a cylinder in the modal ring form 

Pe(k,<t>,(0) =  £ Pen(k,(o) [{InY112  expiring ; 
n 

Pen(k,co)  = [Fe(<o)/(2na)] exp[i(xak + n<j)a)] . (5-8) 

In summary then, the partial and modal external mechanical drives on a 

panel and on a cylinder are defined in the form 

Pe(k,co2) = Pea(co2) (2nym exp(ixak) , (5-9a) 

Pen{k,m) = Pean{(0) {2nYm exp{ixak) , (5-9b) 

respectively, where 

Pea(k,co) = [Fe((o) (2K)-
112

] exp(iyaky) , (5-10a) 

Pean(^co) = [(Fe(co)/a) (2^)"1/2] exp(in0a) .                           (5-10b) 

The external mechanical drives stated in Eq. (5-9) are compatible with the forms 

of the impulse response function G(k\k',co2) and Gn(k\k',co) and the drive in 
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lieu of the ribs Ps (*, co2) and Psn(k, co) as stated in Eqs. (3-39), (3-40) and (3-44) 

through (3-47), respectively. 

46 



VI.   MECHANICAL SURFACE IMPEDANCES OF SHELLS 

A large number of publications exist to reflect the many attempts made to 

derive the expressions for the mechanical surface impedance zp(x,y,co) of shells, 

where {x,y} defines a generalized two-dimensional spatial vector and (co) is the 

frequency variable. The mechanical surface impedance of the shell is basic to the 

determination of its response. These attempts cover not only the analytical 

description of the mechanical surface impedance of plane shells, but also 

cylindrical, spherical, spheroidal, and shells involving others types of curved 

surfaces. Naturally many of the derived expressions for each type of a shell 

exhibit, on the one hand, strong commonalities and, on the other, many and varied 

differences. The commonalities and differences must be judged with respect to 

their influence on phenomena of interest; commonality in one phenomenon may 

turn into a difference in another. For example, in the absence of ribs two derived 

expressions for the mechanical surface impedance may predict the same far-field 

radiation from a shell. The commonality in the expressions stems, in this case, from 

the fact that in the range of large scale spatial components the two expressions 

yield the same response. The large scale spatial components in the response are 

those that contribute directly to the far-field radiation. When ribs are attached, 

the prediction of the far-field radiation by the use of the two expressions for the 

surface impedance of the shell may be substantially different. In the presence of 

ribs, conversions of small scale spatial components in the response, into large scale 

spatial components, take place. Thus, if the description in the range of small scale 

spatial components in the response does not match in the two expressions, 

different far-field radiation may result and the commonality of the two 

expressions no longer holds. Another major problem that arises in the derivation 

of the expressions for the mechanical surface impedance of shells is that often the 
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expressions are deficient in the description of the various types of propagating 

(free) waves that a shell may support. With each wave type is identified free 

waves; the flexural wave type is identified by the flexural free waves. Of 

particular concern in connection with the presence of several wave types on the 

surface of a shell is the coupling among these types and the manner by which 

they are externally driven. For example, in panels it is usual to describe the 

flexural wave type only and to ignore other wave types; e.g., longitudinal and 

shear wave types. Situations may arise in which such a neglect may prevent a 

proper accounting of several important phenomena. One only needs to remember 

that longitudinal and shear free waves are supersonic even below the critical 

frequency, whereas in that frequency range, the flexural free waves are subsonic. 

Thus, in the frequency range below the critical frequency the longitudinal and 

shear free waves are superior radiation components compared with the flexural 

free waves. Attempts to be more comprehensive, in the description of the 

mechanical surface impedance of a panel, are needed, so that longitudinal and 

shear effects can be included. Indeed, failure to do so has, at times, caused 

mishaps and led to wrong phenomenological conclusions. In the case of the 

cylinder it has been recognized that the expression for the mechanical surface 

impedance is invariably compounded in the sense that in addition to the flexural 

wave type it naturally involves terms and factors that describe membrane wave 

types. The membrane wave types comprise the longitudinal and shear wave 

types as well as the curvature wave type. The curvature wave type and the 

associated curvature free waves are found in the low frequency range only and 

they are associated with the speeding of flexural free waves by the curvature 

(flexural Bloch waves). Curvature free waves commence as the frequency 

decreases from an octave or so above the ring frequency. Interestingly, the 

largely accepted expression for the mechanical surface impedance of a cylinder 
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accommodates the flexural wave type as a term. A second term accounts, in 

unison, for the longitudinal and shear wave types and for the curvature (flexural 

Bloch) wave type. The scope of the investigation in this report does not include 

the goal of seeking and providing an ultimate expression for the mechanical 

surface admittance of a panel and a cylinder as such. Therefore, the most 

accepted expressions are readily adopted. At best, they are modified in form to 

suite more readily the purposes and goals of this report. 

The normalized mechanical surface impedance Zp(k,co2) of a panel that is 

plate like is expressed in spectral space as 

Zp(k,co2) = [Zp(k,cg2)/(icom)] = {l-[(k/kpx)
2 + (ky/kpy)

2]2} ,        (6-la) 

and further, if the plate is isotropic 

Zp(k,co2) = [Zp(k,co2)/(icom)] = {l-(\k\/kp)
4} ; 

Gp(k,cg2) = [Zp(k,co2)T
l ; k = {k,ky} , (6-lb) 

where the free wavenumbers (kpx) and (kpy) are defined as 

KpX ~ kpXoKl   —   lTlpx)       ', kpy = kpy^l   —   lTlpy)       ', 

k2
pxo  = (co co^lc2) ; k2

pyo = (co co^lc2) , (6-2) 
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and isotropy of the panel is defined in the form 

®c   =  ®cx   =  <°cy ;   kpo   = kpxo   =  kpyo ;   kpo   =  colcp ; 

cp   = c(col(oc)
xn ;   T]p   = r]px   = lpy , (6-3) 

where the parameter (m) is the surface mass of the thin plate, (co^) and (co^) are, 

respectively, the critical frequencies, with respect to a wavespeed (c), for 

propagations in the (x) and (y) principal axes and (77^) and (r[py) are, 

respectively, the loss factors associated with these propagations, [cf. Fig. 3-3.] In 

this report only isotropic panels are considered. The critical frequency, as 

Eqs. (6-2) and (6-3) state, is the frequency at which the wavespeed (c) is equal to 

the speed (cp) of the free waves in the panel. The response of a panel in flexure 

is the only type of motion considered herein. Again, consideration of other types 

of response in a panel lie outside the scope of this investigation. The magnitude 

of the normalized mechanical surface admittance Gp(k,co2) is displayed in 

Fig. 6-1 as a function of (ak) in a frequency waterfall format; this format is 

discussed in Appendix B. The standard parametric values are chosen to be 

(acoc/c) = (akc) = 97.35 ,   rjp  = 10-3    and    (aky) = 0,      (6-4a) 

where (a) is a spatial scale factor and (kc) is the wavenumber with respect to the 

critical frequency (fi)c) and the wavespeed (c); kc = (coc/c). Standard 

parametric values are defined so that in the captions of figures only the specific 

changes in these values need to be reported. In Fig. 6-la the surface admittance 

Gp(k,ü)2) is displayed as a function of (ak) under the standard parametric values 

stated in Eq. (6-4a). A standard spectral {(ak), ((ol(Oc)} range is conveniently 
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assigned to accommodate the standard parametric values within the investigative 

scope of the report. This standard spectral range is defined by 

{0, 1(T2} < {(ak), (coIcoc)} < {75, 0.6} . (6-4b) 

In Figs. 6-lb-e the value of (aky) is changed from its standard value of zero to 1, 

3, 9 and 21, respectively. The ridges and the associated dispersive peaks of the 

flexural free waves are clearly discernible; the peaks lie on the "dispersive locus" 

of the flexural free waves. The affects of changes in (aky) are as expected and 

they are noted: As the value of (aky) increases, the dispersive locus is 

swallowed at (ak) = 0 at the lower frequency range, where 

(colcoc) < (ky /kc)
2, and is thus suppressed. Otherwise, the dispersive locus is 

incrementally shifted to lower wavenumbers and the shift is less pronounced the 

more the inequality (colcoc) > (ky/kc)
2 is. To accentuate the parametric 

dependences, a curve or two among the waterfall graphs are compared in 

isolation. In this type of comparison two curves out of each of Figs. 6-la-e are 

collectively cast in Figs. 6-lel and 2. Only when (aky) > 9, does a significant 

difference exist between these curves and the difference is most significant in the 

lower frequency range. Figure 6-1 a is repeated in Figs. 6-2a and b except that 

the value of the loss factor (rjp) is increased from its standard value of 10"3 to 

5 x 10 and 2.5 x 10 , respectively. Compared with Fig. 6-1 the ridges are 

widened and the peaks are subdued by these changes. One curve out of each of 

Figs. 6-la, 2a and 2b are collectively cast in Fig. 6-2M. Figures 6-lel and 2 and 

6-2bl show that selecting a few trees for comparison, rather than a few forests, 

may be advantageous when details are sought. For the purpose of this report it 

suffices to indicate that such computational and graphical capabilities are 

available; these capabilities, however, are not extensively used herein. 
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The normalized mechanical surface impedance Zpn{k,(o) of a cylinder is 

also expressed in spectral space. It comprises a flexural term Z%(k,(ü) and a 

membrane term Z™(k,(ö) and is expressed in the form 

Zpn(k,co) = (torn)"1  Zpn(k,co) = ZP(k,(0) + Z"(*,fi>) , (6-5) 

Z,f(*,<») = (torn)-1 Z%(k,co) = Zp(k,(n/a),(D) , (6-6a) 

Z?(k,co) = (icomT1 Z"(k,co) 

= [{(l-v/2}2 (nak)2 a + i7]s) (l + ilbn) ~ *,*hJ K«*i)2 ^h.*«]-1 ,   (6-6b) 

where 

Äta   = (a*z)
2 - [(a*)2+n2](l + /7/ln); 

Kn   = (**/)2 ~ ta-v)/2] {(a*)2+n2} d + 117«) ; 

Ä, = W2 - [d-v)/2] (a*)2 a + iJj.); 

Rbn = (a*,)2 - [(1-v2) (ak)2 + {[(l-v)/2]n2}] (l + /%„) , (6-7a) 

and 

(afy)2  = (o)/cor)
2 ; <ür  = (q/a) ; 

cf   =  Yh [md-v2)]"1 ; c2 Ic]   = {(l-v)/2} . (6-7b) 
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The loss factors (rjy); 77 y = 77 ln, r\sn, r]s and r\bn, in Eq. (6-7a) are artificially 

introduced in the stiffness controlled terms; (7), (v), and (m) are, respectively, 

Young's modulus, Poisson's ratio, and surface mass of the plating of the cylinder 

while (cz) and (cs) are the speeds of the free waves of the longitudinal and shear 

response, respectively. From Eqs. (6-7b) it is noted that cz >c, ifO<v<l. 

Also, from Eqs. (6-6b) and (6-7b) one finds that these speeds are functional of the 

Poisson's ratio (v) of the plating of the shell. When dealing with a cylinder, (a) is 

defined to be the radius and (ak) and (n) are the normalized axial wavenumber 

and the circumferential mode index, respectively. The term Z?, in Eqs. (6-5a) and 

(6-6a), accounts for the normalized mechanical impedance that is flexural in 

nature. The term Z%, in Eqs. (6-5a) and (6-6b), accounts, in this vein, for the 

natures of the membrane wave types in the response. Were one to remove the 

membrane term in Eq. (6-5a) and use the identity expressed in Eq. (6-6a), one 

finds that 

G/(*,fl>) = [Zn
p(k,co)]~l  = [Gp(k,{n/a}, at)] . (6-8a) 

It follows from Eqs. (6-lb) and (6-8a) that Figs. 6-la-d and 6-2a and b directly 

depict the absolute values of G%(k,co) as a function of (ak) in a waterfall format; 

again, the spatial scale factor (a) being now identified with the radius of the 

cylinder. A cylinder from which the membrane response is removed, by setting 

Z™(k,(£>) identically to zero, is dubbed a hybrid cylinder. Clearly, this kind of a 

cylinder is mechanically akin to a panel. As such, the hybrid cylinder plays a 

major role in this report. Casting Eq. (6-5) in the format of Eq. (6-8a), one obtains 
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for the normalized mechanical surface admittance Gpn{k,co) of a cylinder in 

spectral space 

Gpn(k,co) = [Zpn(k,co)Tl = [Z?(k,co) + Z?(k,co)Tl . (6-8b) 

In Fig. 6-3 the magnitude of the normalized mechanical surface admittance 

Gpn(k,co), as stated in Eq. (6-8b), is displayed as a function of (ak) in a waterfall 

format In Fig. 6-3a the standard parametric values are used. The standard 

parametric values stated in Eq. (6-4a) are appropriately augmented by 

n = 0 ; r]y  = 10"3 ; v = (1/3) ; (Q/C) = 3.5 ; 

(fi)r/6)c)  =  3.6 x 10~2 ; ct   =  5338 m/sec . (6-4c) 

Comparing Fig. 6-3a with Fig. 6-la reveals that a longitudinal type of free waves 

are present in the former figure; this "longitudinal dispersive locus" is directly 

associated with the presence of the surface impedance Z™{k,co) in the 

mechanical impedance Zpn(k,co) of the cylinder. In Figs. 6-3b-e, the standard 

mode index of zero is changed to 1,3, 9 and 21, respectively. Except when the 

mode index is zero, the "shear dispersive locus" accompanies the longitudinal 

dispersive locus. It is observed that both, the longitudinal and shear free waves, 

are accompanied by "anti-dispersive loci" which lie closely adjacent and on the 

outside of each. These anti-dispersive loci are associated with the low values (the 

singularities, in the absence of damping) of Rin and Rsn in Z™(k,co), as stated in 

Eq. (6-6b). Figure 6-3a illustrates that for a mode index of zero, longitudinal free 

waves originate in the vicinity of the ring frequency (co/cor) ~ 1, and that the 

accompanied "anti-dispersive locus" (a locus of nadirs) extends without 

interruptions to the lower frequency range.   Otherwise, as already stated, this 
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anti-dispersive locus is adjacent and on the outside of the dispersive locus. 

Simultaneously, as the frequency decreases from an octave or so above the ring 

frequency (co/a)r) r 2, the flexural free waves become curvature free waves 

(flexural Bloch waves). The "curvature dispersive locus" possess speeds well in 

excess of the flexural dispersive locus that it replaces, [cf. Figs. 6-la and 6-3a.] 

Figure 6-3b illustrates that for a mode index of unity, in addition to the 

longitudinal and the curvature free waves, shear free waves join in. These shear 

free waves originate in the vicinity of an octave below the ring frequency 

(colcor) ~ (1/2); below this frequency there are no shear free waves. The shear 

dispersive locus is also accompanied by an anti-dispersive locus that, as already 

stated, is adjacent and on the outside of the dispersive locus. With increase in the 

mode index, as illustrated in Figs. 6-3a-e, the longitudinal, shear and curvature 

free waves are swallowed at (ak) = 0 and are thus suppressed in the lower 

frequency range, where (co/coc) <{ncorlco), (ncor/(Oc) (cs/ct) and 

(n / akc) , respectively. Otherwise, at the higher frequency range, the dispersive 

loci are incrementally shifted to lower wavenumbers and the shifts are less 

pronounced the more the inequalities (o)/coc) > (nO)r/coc) , 

(n(ürl(oc) (cslct) and (n/akc)
2, respectively, are. These shifts cause the 

longitudinal and shear speeds to be frequency dependent at the lower 

wavenumber ranges; this frequency dependence is clearly discernible in 

Figs. 6-3c and d. Also, once (n/akc)
2 < (2ü)r/coc), the curvature free waves 

are substantially absent; at these higher mode indices the curvature no longer 

influences the flexural free waves. Considerations of curvature free waves and 

the origins from which the membrane (the longitudinal and shear) free wave 

emerge at (ak) = 0, are not conducted in this report; the frequency range below 

(co/(Or) ~ 2 is to be considered under separate cover.   In this sense, although 
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the displays are assigned the standard range stated in Eq. (6-4b), considerations 

in this report are focused on the more restricted range defined by 

{0, (2fi>r/fi)c)} <{(ak), (CO/CDC)} < {75, 0.6} . (6-4d) 

To emphasize some of the previous statements two curves out of each of 

Fig. 6-3a-e are collectively cast in Fig. 6-3el and 2. Figure 6-3b is repeated in 

Fig. 6-4a except that the loss factor {f]p) is changed from its standard value of 

10"3 to 10"2. Observe that the membrane loci remain substantially unchanged; 

only the flexural locus is substantially subdued. Similarly, Fig. 6-3b is repeated in 

Figs. 6-4b and c except that the loss factors (J]ln) and (%„) and then the loss 

factors (t]sn) and (ris) are changed from the standard value of 10 to 10 , 

respectively. Again, observe that in Fig. 6-4b only the longitudinal locus is 

subdued and in Fig. 6-4c only the shear locus is subdued. It follows that the 

flexural, the longitudinal, and the shear free waves maintain substantially 

independent existences and, therefore, they can be individually subdued by 

damping each individually. This can be analytically used to advantage. One 

curve out of each of Figs. 6-3b and 6-4a-c are collectively displayed in Fig. 6-4cl. 

Again, Figs. 6-3el and 2 and 6-4cl are shown merely to indicate the availability 

of such figures; again, however, in this report only the potential usage of such 

figures is demonstrated. 
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Finally it may be usefully recognized, from Eq. (6-7a), that one may define 

Zto(*,fi>)  = (aki)-2   RlR 

= \V-{akiT2 {{ak)2+n2} Q + JTJJ] , (6-9a) 

Zsn(k,(0) = (a^r2  Rsn 

= [l-iakt)-2 {(l-v/2} {(ak)2+n2} (! + //]„,)] . (6-9b) 

The quantities Z^ik,^) and Zj„(jfc,ü)) can be identified as the normalized 

longitudinal and shear mechanical surface impedances, respectively. The 

relationship between these two impedances is established in that the speeds of 

the free waves bear the same ratio that is specified in Eq. (6-7b). Such surface 

impedances may be assigned, for example, to a panel, giving the panel more 

compounded mechanical properties. Again, an assignment of this kind lies, 

however, outside the scope of this report. 
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N-0, Plata Admittance, ETAp.1.E-3, EPSe.1.E-B 
-i 1 1 1 ! ! r 

N-1, Plat* Admittance, ETAp.1.E-3, EPSo-I.E-8 

Fig. 6-la Fig. 6-lb 

N.3, Plata Admittanea, ETAp-1.E-3. EPSe.I.E-B 

Fig. 6-1. Magnitude of the normalized 
mechanical surface admittance Q (k,co2) 
of a panel (or equivalently a hybrid 
cylinder) as a function of (ak) in a 
(ü)/Q)c) -waterfall format. [A fluid loading 
parameter (ec) of 10~8 is here considered 
to represent a negligible fluid loading.] 

a. Standard parametric values [(aky) = 0]; 
b. (aky)= 1; 
c. (aky) = 3; 
d. (a*,) = 9; 
e. (a*,) = 21. 

Fig.6-lc 
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N.9, Plat* Admittance, ETAp.1.E-3, EPSc.l.E-l N.21. Plata Admittance, ETAp-1 .E-3, EPSc.1 .E-» 

Fig. 6-ld Fig. 6-le 

Panal Admittance, N-0,1,3,9, and 21, ETAp.1.E-3, EPSc-1.E-8 
^ 10" 

' '  '*•* 5,0" 
ex 

|ioM ^ 
^^ 

|io" 
^_ iio" 
J^ s 

I«" 
O 

* 10° 
m 
s 

J^_ = io10 

o 

m 
m 

>             10 20 30 40 
Kl 

50 60 70 

Panal Admlttanea, N.0,1.3,0, and 21, ETAp-1 .E-3, EPSc.1 .E-3 

Fig. 6-lel. Single curve from 6-la-e 
all with {(o/coc) = 0.10. 

Fig. 6-le2. Single curve from 6-la-e 
all with (et>/G)c) = 0.35. 
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N-0. Plata Admittance, ETAp.1.E-3. EPSc.1.E-8 N-0. ETAp-5.E-3. ETAg-1 .E-3, EPSc.1 .E-8 

Fig. 6-la (Repeated) 

Fig. 6-2. As in Fig. 6-la except for a 
change in the loss factor (77  ) from the 
standard value of 10"3 to: 

a. 5xl0"3. 
b. 2.5xlCT2. 

N.O, ETAp.2.5E-2, ETAg-1 .E-3, EPSc.1 .E-8 

Panal Admlttanca. N-0, ETAp-1, S, 25E-3, EPSc.1.E-a 

JUT 
4 

[10* 

110« 

0 10 20 30 40 SO 80 70 
Ka 

Fig. 6-2bl. Single curves from 6-la, 2a 
and ball with {Q)/coc) = 0.20. 

Fig. 6-2b 
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Glnbar, N.O, ETAp.1 .E-3, ETAg-1 .E-3, EPSc.1 .E-8 GInbir, N>1, ETAp-1 .E-3, ETAg.1 .E-3. EPSc.1 .E-8 

Fig. 6-3a Fig. 6-3b 

Qlnbir, N-3, ETAp.1 .E-3, ETAg-1 .E-3, EPSe.1 .E-8 

Fig. 6-3. Magnitude of a normalized 
modal mechanical surface admittance 
Gp (k, (02) of a natural cylinder as a 
function of (ak) in a (o)/coc) -waterfall 
format. 

a. Standard parametric values [n = 0]; 
b. n= 1 
c. n = 3; 
d. n = 9; 
e. n = 21. 

Fig. 6-3c 
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Qlnbar, N-9, ETAp-1 .E-3, ETAg-1 .E-S, EPSc.1 .E-8 Qlnbar, N.21, ETAp-1 .E-3, ETAg-1 .E-3, EPSo-1 .E-8 

S10- 
S 

10" 

N10» 

r 10- 

0 10 20 30 40 SO tO 70 
Ka 

Fig.6-3d Fig. 6-3e 

2 Shall Admittance, N-0,1,3,9, and 21, ETAp-1 .E-3, EPSc-1 E-8 
^m". , , , , , , r— 

w-10 
20 30 40 SO SO 

Ka 

Fig. 6-3el. Single curves from 
6-3a-e all with (co/coc) = 0.10. 

1 Shall Admittance, N-0,1,3,9, and 21, ETAp-1 .E-3, EPSc-1 .E-8 
-i10" 

o 10 

i10' 

10 20 30 40 50 80 70 
Ka 

Fig. 6-3e2. Single curves from 
6-3a-e all with {co/coc) = 0.35. 
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N-1.ETAp-1.E-2, ETAg.1.E-3, EPSd.E-S N.I, ETAp.1.E-3, ETAIn-ETAbn.l.E-2. ETAa-1.E-S, EPSC-1.E-» 

Fig. 6-4a Fig. 6-4b 

Fig. 6-4. As in Fig. 6-3a except for a 
change in the loss factors (rjp), 

(risn^s), (%>Vbn). respectively, 
from the standard value of 103 to: 

a. rip   = 10-2; 
b. ri?.n   = Ihn   = 10"2; 
c. r\m   =  Vs   =  IQ"2- 

Shall Admittance, N.I, ETA varlat, EPScI .E-8 
S10 
a 
110' 

-.10' 

iio- 10 20 30 40 SO 60 70 
Ka 

Fig. 6-4cl. Single curves from 3b and 4a-c 

all with (CO/C0c) = 0.11. 

N.I, ETAp.1.E-3, ETAm.ETAa.1.E-2, ETAg.1.E-3, EPSc.I.E-l 

Fig. 6-4c 
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VE.   FLUID SURFACE IMPEDANCE ON SHELLS 

The compatibility of the geometry of a panel and a cylindrical shell with 

the surface impedance of the fluid on the boundary of each, renders the inclusion 

of fluid loading in the surface impedance simple in these two geometrical cases. 

The fluid surface impedance on the plane of the panel is expressed in the 

form 

Zf(k,(Q2)  = [Zf(k,a2)] (icom) l 

= (pco/k3) {icom)~l   = (ecakc) (iak3)~l , (7-la) 

where the wavenumber k3 is given by 

k3(k,co)  = (o)/c) « 
[l-(\k\c/co)2]in   U[l-(\k\c/co)2] 1 

-i[(\k\c/co)2-l]U2  U[(\k\c/co)2-l] 
(7-2) 

the function U is the unit step function, the fluid loading parameter (ec) and the 

critical acoustic wavenumber (fcc) are defined 

ec  = {pcl(ocm) ; kc  = (coc/c) , (7-3) 

respectively, the panel is assumed to be an isotropic thin-plate, (a), in Eq. (7-la), is 

merely a linear spatial scale factor, but (c) is now identified to be the speed of 

sound in the fluid atop the panel. The fluid loading parameter (ec) is the 

absolute value of the ratio of the fluid characteristic impedance (pc) and the 
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surface mass impedance (icocm) of that plate at the critical frequency. The 

wavenumber (fc3) is the wavenumber (kz) evaluated so that 

kl -» kl = {cole)1 - \k\2. [cf. Fig. 3-2.] The expression for (k3) is, therefore, 

a statement of the wave equation in the fluid, whereas (kz) is merely the Fourier 

conjugate variable of z. [cf. Fig. 3-2.] Equations (7-la) and (7-2) follow from 

consideration of the conservation of momentum across the interface between the 

panel and the fluid atop. In Figs. 7-la and b the real and imaginary parts of the 

normalized surface fluid impedance Zj(k,co2) are displayed, respectively, as a 

function of (ak) in a waterfall format. The real and imaginary parts of Zf(k,co2) 

are defined 

Zf(k,co2) = Re {Zf(k,co2)} + i Im {Zf(k,co2)} . (7-lb) 

The term Re{Z^(k,co2)} is found to be positive and non-zero only in the 

subsonic range, where (a\k\) > (aco/c), indicating that the fluid loading 

contributes only surface mass to the panel in this range of spectral space, as 

shown in Fig. 7-la. The standard fluid loading is designated by ec = 10~2. 

Appropriately, as the sonic locus is approached, this quantity increases and 

becomes infinite at this locus. The quantity Im [Zf(k,co2)} is also found to be 

positive indicating that the fluid loading causes loss of energy from the panel to 

the fluid by radiation to the far-field. The quantity Im {Zf(k,co2)} is, however, 

non-zero only in the supersonic range, where (a\k\) < (aco/c), as shown in 

Fig. 7-lb. Thus, only supersonic components in the response of the panel radiate 

to the far-field resulting in energy transport from the panel to the fluid. 

Figures 7-la and b and Fig. 7-lc, the latter depicting the absolute values of 

ZAk,co2), and the interpretations of these figures are fundamental in acoustics 

and are commonplace. For the record, Figs. 7-ld-f repeat Fig. 7-lc, except that 
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the value of (aky) is changed from the standard value of zero to 1, 3 and 9, 

respectively. Again, as the value of (aky) increases, the sonic locus, constituted 

by the peaks in these figures, is swallowed at (ak) = 0 in the lower frequency 

range, where (colcoc) < (ky Ikc), and is thus suppressed. Otherwise, the sonic 

locus is incrementally shifted to lower wavenumbers and the shift is less 

pronounced the more the inequality {colcoc) > (ky Ikc) is. The expected 

spectral shifts accompanying increases in (aky) are seen in these figures; 

Figs. 7-ld-f. 

The surface impedance for the fluid in which a cylinder is externally 

immersed is dependent on the circumferential mode. This surface impedance is 

expressed in the form 

Z'(k,(D)  =  Zfn{k,co)l{icom)  = -ec(akc) D{2){ak3) , (7-4a) 

where 

Dn
(2\ak3)  =   H™(ak3)/[(ak3)  H™' (ak3)], (7-5a) 

k3(k,co)  = (cole) ■ 
[\-(\k\c/co)2]l/2   U[l-(\k\c/co)2] 

-i[(\k\c/co)2 -1]1/2   U[(\ kIclco)2 -1] 
1 (7-5b) 

and in this equation k = {k, (n/a)}, H{2) is the Hankel function of the second 

kind and the (n)th order and H{2)' is the first derivative of H(2) with respect to its 

argument, [cf. Eqs. (7-1) - (7-3).] In Figs. 7-2a and b the real and imaginary parts, 
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respectively, of the normalized fluid surface impedance Z[(k,(o) are displayed as 

a function of (ak) in a waterfall format, where 

Z/(*,o>) = Re{Z/(*,fi>)} + i Im{Z/(*,<»)} . (7-4b) 

The term Re{Z/(fc,ö))} is found to be positive throughout the spectral range 

indicating that the fluid loading contributes surface mass to the cylinder 

throughout the spectral range. Appropriately, the contribution is level in the 

supersonic range, increases as the sonic locus is approached, becomes large at the 

sonic locus, and falls off steadily as the subsonic range is further penetrated; these 

features are exhibited in Fig. 7-2a. [cf. Fig. 7-la.] The quantity Im{Z^(k,co)} is 

also found to be positive indicating that the fluid loading causes loss of energy 

from the cylindrical shell to the fluid by radiation to the far-field. Jm{Z{ (k,co)} 

is, however, non-zero only in the supersonic range, where (ak) < (acolc), as 

shown in Fig. 7-2b. [cf. Fig. 7-lb.] Thus only supersonic components in the 

response of the cylinder radiate to the far-field; resulting in energy transport from 

the cylinder to the fluid. Figures 7-2a and b and Fig. 7-2c, the latter depicting the 

absolute values of Z^(k,co), and the interpretations of these figures are 

fundamental in the acoustics of cylinders and are commonplace. The influence of 

changing the circumferential mode index (n) on the fluid impedance is briefly 

illustrated in Figs. 7-2d-f. These figures repeat Fig. 7-2c except that the mode 

index (n) is changed from the standard value of 0 to 1, 3 and 9, respectively. 

Again, as the value of (n) increases, the sonic locus, constituted by the peaks in 

these figures, is swallowed at (ak) = 0 in the lower frequency range, where 

(6)/ü)c) < (n/akc), and is thus suppressed. Otherwise, the sonic locus is 

incrementally shifted to lower wavenumbers and the shift is less pronounced the 

more the  inequality   (co/(Oc) > (nlakc)  is.     The  expected   spectral  shifts 
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accompanying  increases in the  mode index  (n) are seen in these figures; 

Figs. 7-2d-f. 

Comparing Figs. 7-1 and 7-2 reveals that the fluid loading on panels and 

on cylinders do bear qualitative resemblance even if they differ quantitatively. A 

major difference is that the fluid loading on a cylinder possesses a mass term in the 

supersonic range, where (ak) < (acole). The fluid loading on a panel does not 

possess a reactive term in this spectral range. In addition, one finds that the fluid 

loading at and in the immediate vicinity of the sonic locus tends to be more 

pronounced for a panel than a cylinder. This difference becomes more 

pronounced as the normalized wavenumber (aky) and the mode index (n) are 

correspondingly   increased.     [cf.  Figs. 7-lc-f and   Figs. 7-2c-f,  respectively.] 
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Panal Fluid Impadanca, N.O, EPSc.1 .E-2 Panal Fluid Impadanca, N-0, EPSc.1.E-2 

Fig. 7-la Fig.7-lb 

Panal Fluid Impadane«, N.O, EPSc.1 .E-2 

Fig. 7-1. Normalized fluid 
surface impedance Z/ (k, (02 ) on a 
panel as a function of (ak) in a 
{(0/(0c) -waterfall format. 

a. Real part. 
b. Imaginary part. 
c. Magnitude. 
d. Magnitude with (aky) = 1. 
e. Magnitude with (aky) = 3. 
f. Magnitude with (ak) = 9. 

Fig. 7-lc 
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Panal Fluid Impadanca, N.O, EPSc.1 .E-2 Panal Fluid Impadanca, N-1, EPSc.1.E-2 

Fig. 7-lc (Repeated) Fig. 7-ld 

Panal Fluid Impadanca, N.3, EPSe-1.E-Z Panal Fluid Impadanca, N-». EPSc-1.E-2 

Fig. 7-le Fig. 7-lf 
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Cyllndar Fluid Impadinca. N.O, EPSc.1.E-2 Cyllndar Fluid Impadanca, N.O, EPSc.1.E-2 

Fig. 7-2a Fig. 7-2b 

Cyllndar Fluid Impadinca, N.O. EPSc.1 .E-2 

Fig. 7-2. Normalized modal fluid 
surface impedance Zf (k, CO) on a 
cylindrical surface as a function 
of (ak) in a (co/(Oc)-waterfall format. 

a. Real part. 
b. Imaginary part. 
c. Magnitude. 
d. Magnitude with n = 1. 
e. Magnitude with n = 3. 
f. Magnitude with n = 9. 

5 

£10 

10 20 30 40 50 SO 70 
Kt 

Fig. 7-2C 
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Cylinder Fluid Impadance, N-0, EPSc.l.E-2 Cylinder Fluid impedance, N.I, EPSd.E-2 
-i 1 1 r- 

10 20 30 40 50 BO 70 
Ka 

Fig. 7-2c (Repeated) Fig. 7-2d 

Cylinder Fluid Impedance, N.3, EP3e-1.E-2 Cylinder Fluid Impedance, N-», EPSc.1.6-2 

Fig. 7-2e Fig. 7-2f 
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Vni.   FLUID LOADED SURFACE IMPEDANCE OF SHELLS 

Sections VI and VII can now be combined to yield the surface impedance 

of a uniform panel and a uniform cylinder including fluid loading. 

From Eqs. (3-10), (3-13a), (3-23a), (3-24a), (6-1) and (7-1) one obtains for 

the normalized partial surface admittance G„(^,o)2) °f a uniform panel 

CL(*,fi>2)  = [Zp(k,G)2) + (pco/k^V1; 

G~(k,co2) = [(Zorn) G„{k,co2)\ 

= [l-(\k\/kp)* - i(scakc) (aks)-1]-1 , (8-1) 

where, again, the panel is assumed to be an isotropic thin plate. The magnitude of 

the normalized fluid loaded surface admittance GOB(k,ü}2) is displayed under the 

standard parametric values in Fig. 8-la. At the sonic locus the fluid loaded 

surface admittance GOB(k,co2) vanishes by virtue of the infinite peak values that 

the normalized fluid surface impedance assumes at these sonic locations. In the 

normalized fluid loaded surface admittance G00(/:,ö;2), the "sonic dispersive 

locus" of the fluid is characterized, therefore, by valleys and associated nadirs. 

[Strictly, the sonic dispersive locus is more commensurate with an anti-dispersive 

locus. Nonetheless, a sonic dispersive locus is assigned to this fluid loading 

feature.] Figure 8-la is repeated in Figs. 8-lb-d except that (aky) is changed 

from the standard value of zero to 1, 3, and 9, respectively. The effects of these 

changes are as expected and they are noted, [cf. Sections VI and VH.] The 

obvious difference, between Figs. 8-la-d and the fluid free Figs. 6-la-d, is the 

presence of the fluid dispersive locus — the sonic locus — in the former set and the 
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absence of this locus in the latter set. The presence of the sonic locus in these 

kinds of displays requires, however, at least a moderate fluid loading. The 

standard fluid loading parameter (sc) represents a moderate fluid loading. Figure 

8-lais repeated in Fig. 8-2a except tb:;i (ec) is changed from the standard value 

of 1CT2 to 10"4; a fluid loading characterized by ec = 10"4 is light. Indeed, in 

Fig. 8-2a the sonic locus is hardly discernible; Fig. 8-2a substantially overlays 

with Fig. 6-1 a in which fluid loading is absent. On the other hand, Fig. 8-la, is 

repeated in Fig. 8-2b except that (ec) is changed from the standard value of 10" 

to 10"1; a fluid loading characterized by ec = 10-1 is heavy. Clearly, the sonic 

locus is more pronounced in this new figure than in Fig. 8-la. However, not only 

is the sonic locus more pronounced in Fig. 8-2b than in Figs. 8-la and 2a, but the 

flexural dispersive locus is shifted to higher wavenumber regions signifying lower 

speeds for the flexural free waves. This is commensurate with the "added surface 

mass" influence of the fluid loading on a panel in the subsonic range of the 

spectral domain in which the flexural free waves reside. There is a shift of this 

kind also between Fig. 8-2a and Fig. 8-la, however, this shift is slight compared 

with that between Fig. 8-la and Fig. 8-2b, respectively. These shifts are made 

clearer in Fig. 8-2bl in which one curve from each of Figs. 8-la, 2a and b are 

collectively displayed. The three curves in Fig. 8-2M are in reference to the same 

normalized frequency. Note that in the spectral range covered in the displays 

represented in this report, the flexural dispersive locus is subsonic. 
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FromEqs. (3-10), (3-13b), (3-23b), (3-24b), (6-5), and (7-4) one obtains for 

the normalized modal surface admittance G^ (k, co) of a uniform cylinder 

G^iKco) = [(icom) G^iKco)} = [Zpn(k,co) + Z~{(k,co)rl ; 

G~n(k,co) = {Zn
p(k,co) + Z?(k,co) - (ecakc) D<2) (ak2)}-1 ,   (8-2) 

where (ec) and (kc) are defined in Eqs. (7-3) and D^\ak3) is defined in 

Eq. (7-5a). The magnitude of the normalized fluid loaded modal surface 

admittance G^ikyCO) is displayed under standard parametric values in Fig. 8-3a. 

Again, there are valleys and associated nadirs at the sonic locus. The influence of 

changing the circumferential mode index (n) from the standard value of zero to 1, 

3 and 9 is presented in Figs. 8-3b-d, respectively. The affects of these changes 

are as expected and they are noted, [cf. Sections VI and VII and Figs. 8-lb-d.] 

Figure 8-3a is repeated in Figs. 8-4a and b and Fig. 8-3b is repeated in Figs. 8-5a 

and b, except that the fluid loading parameter (ec) in the first figure of each set is 

changed from the standard value of 10~2 to 10~4 and in the second to 10-1. 

Again, there is hardly a difference between Figs. 8-3a and b and Figs. 8-4a and 

5a, respectively. However, in contrast, in Figs. 8-4b and 5b, the sonic locus is 

more pronounced and there is a shift in the dispersive loci to higher wavenumber 

regions; this shift is by far more pronounced for the flexural dispersive locus than 

for the membrane loci. The shift is illustrated in a more pronounced manner in 

Figs. 8-4bl and 5bl in which one curve out of Figs. 8-3a, 4a, and 4b and 8-3b, 5a, 

and 5b, respectively, are collectively displayed. [Note the amplification used in 

Fig. 8-5'bl as compared with Fig. 8-4bl. This amplification advantageously 

accentuates details in Fig. 8-5bl.] Moreover, one can discern in Figs. 8-4b and 

5b   a  suppression  in  the  membrane loci   when   compared   with   those   in 
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Figs. 8-4a and 5a. Since the mechanical damping remains unchanged, this 

suppression is likened to radiation damping of the membrane free waves. One 

remembers that, whereas the flexural dispersive locus lies in the subsonic region, 

the membrane dispersive loci lie in the supersonic region in the spectral range 

displayed. In this spectral range the influence of fluid loading on the subsonic 

flexural free waves is different from that on the supersonic membrane free waves. 

The influence on the first free waves is that of added surface mass. On the second 

free waves the influence is largely that of radiation damping. 

A fluid loaded hybrid cylinder is defined by  a fluid loaded  surface 

admittance Gin(k,,(0) which is normalized in the form 

G„n{k,co) =  G£n(k,co) = [(icon) Gln (*,©)] . (8-3) 

This surface admittance is derived from Eq. (8-2) by setting Z^(k,o)) identically 

equal to zero. The surface admittance so derived is expressed in the form 

G„n(k,co) a G£n(k,co) = 

{ZnP(k,(0) - (ecakc) D^iak,)}'1  . (8-4) 

[cf. Eqs. (8-1) and (8-2).] Thus, the (n)th circumferential mode in the hybrid 

cylindrical shell is described by a panel-like mechanical surface admittance, with 

(ak ) = n, and a cylinder-like fluid loading again with n = (aky ). The hybrid 

structure emphasizes more and more that the investigation performed in this 

report is meant to be generic and phenomenological rather than dealing with a 

specific structure under one-to-one correspondence. The salient features of the 

admittance G^ik,^) of the hybrid cylinder are displayed in Figs. 8-6 and 7. 
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[cf. Figs. 6-1-5.] By definition the longitudinal and shear (and the curvature) free 

waves are absent in these figures; the kinship of the hybrid cylinder and the panel 

stems from this absence. In Fig. 8-6a the standard parametric values are used. 

Figure 8-6a is repeated in Figs. 8-6b-d except that the standard circumferential 

mode index (n) is changed from the standard value of zero to 1, 3 and 9, 

respectively. Except for the milder fluid loading at the appropriate sonic loci, 

Figs. 8-6a-d are hardly distinguishable from Figs. 8-la-d, again emphasizing the 

close relationship between the mechanical behavior of the hybrid cylinder and 

the panel. Figures 8-7a and b repeat Fig. 8-6a except that the standard value of 

10~2 of the parameter (ec) of fluid loading is changed to 10~4 and 10_1, 

respectively. Again, except for a milder fluid loading on the sonic locus, 

Figs. 8-7a and b are hardly distinguished from Figs. 8-2a and b, indeed, even 

under heavy fluid loading, as is the case with respect to Figs. 8-7b and 8-2b. 

Thus, little is sacrificed with respect to understanding the response behavior of a 

panel if the hybrid cylinder is used to simulate it On the other hand, the hybrid 

cylinder, by definition, does not support membrane response. The investigation 

of the hybrid cylinder can, by contrasting the hybrid and the natural cylinder 

response behavior, be indirectly useful in the investigation of the role played by 

the membrane response in the natural cylinder. In this light, hereafter the 

reference to a panel as such is dropped and the hybrid cylinder is substituted for 

it. On the one hand, the preceding material should enable one to make inferences 

with respect to a panel through the investigation of the response behavior of the 

corresponding hybrid cylinder. On the other hand, by contrast, the hybrid 

cylinder can be useful in the investigation of the response behavior of a 

corresponding natural cylinder. Again, the hybrid cylinder formalism is derived 

by simply neglecting the membrane mechanical surface impedance Z™(k,co) in 

the formalism for the cylindrical shell.   Accepting, in subsequent consideration, 
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the inferential analysis between a panel and a hybrid cylinder to be adequate, the 

dual equations scheme representing the panel and the cylinder, respectively, 

becomes superfluous. The need for the dual equations is, thereby and hereafter, 

rescinded. Finally, and in this connection, the terms "a natural cylinder" and "a 

cylinder" are to be considered synonymous, the deviant is the hybrid cylinder. 
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Pllt» Admiline», N-0, ETAp-I.E-3, EPSe-1.E-2, 

Fig. 8-1. Normalized partial fluid loaded surface 

admittance GM (k, fi)2) of a panel as a function of (ak) 

in a frequency waterfall format. 

a. Under standard parametric values [(aky) = 0]. 

b. (aJfc>.) = l. 

c. (aky) = 3. 

d. (aky) = 9. 

Fig. 8-la 

Plata Admltanc, N.1, ETAp.l.E-3, EPSc.1 .E-2, Pitta Admltanc«, N-3. ETAp.1.E-3, EPSc.1.E-2, 

Fig. 8-lb Fig. 8-lc 
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Plata AdmiUnc«, N-ö, ETAp-1.E-3, EPSc-I.E-2. 
i      i1" 

Fig. 8-2. As in Fig. 8-la except that the fluid loading 

parameter is changed from the standard value of 10     to: 

a. ec = KT4. 

b. £c = 10-1. 
b.l. Single curves from Figs. 8-la, 2a and b. 

Fig. 8-ld 

Plata Admttanc«, N-O, ETAp.1.E-3, EPSd.E-4, Plata Admluno». N.O, ETAp-I.E-3, EPSC.1.E-1, 

10" 

0 10 20 30 40 50 60 70 

Fig.8-2a Fig. 8-2b 
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Fig. 8-3. Normalized modal fluid loaded surface admittance 

Gcon (k,co) of a natural cylinder as a function of (ak) 

in a frequency waterfall format. 

a. Under standard parametric values [n = 0]. 

b. n = l. 

c. n = 3. 

d. « = 9. 

ShaH Admltunc«, N.0, ETAp.1 .E-3. ETAg-l .E-S, EPSc.1 .E-2 

Fig. 8-3a 
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Sh«l Admlttinc, N.9, ETAp.1.E-3, ETAg.I.E-S, EPScl.E-2 

Fig. 8-4. As in Fig. 8-3a. except that the fluid loading 

parameter (ec) is changed from the standard value of 

10-2 to: 

a.     er = 10 -4 

-1 b.     ec = 10 
b.l. Single curves from Figs. 8-3a, 4a and b. 

Fig. 8-3d 
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Shed Admlttane*. N.I, ETAp-1 .E-3. ETAg.1 .E-3, EPSc-1 .E-2 

Fig. 8-5. As in Fig. 8-3b except that the fluid loading 

parameter (ec) is changed from the standard value of 

10"2 to: 

a.     er = 10 -4 

-1 b.   ec=10_1. 

bl. Single curves from Figs. 8-3b, 5a and b. 

Fig. 8-3b (Repeated) 

Sh.U Admlttinn. N-1, ETAp.1.E-3, ETAg.l.E-3, EPScl.E-4 Shall Admlnanc». N-1, ETAp-1 .E-3, ETAg-1.E-3, EPSc.1 .E-1 

Fig. 8-5a Fig. 8-5b 
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Shall Admittance N.O. ETAp-1.E-3, ETAg-1.E-3, EPSc.1.E-2 

Fig. 8-6. As in Fig. 8-3 except that the natural cylinder 

is replaced by a corresponding hybrid cylinder. 

a. Under standard parametric values [n - 0]. 

b. n=\. 

c. « = 3. 

d. n = 9. 

Fig. 8-6a 
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Sholl Admittance, N-0, ETAp.1 .E-3, ETAg-1 .E-3, EPSc-1 .E-2 

Fig. 8-7. As in Fig. 8-6a except that the fluid loading 

parameter (ec) is changed from the standard value of 

10~2 to: 

a. fic-KT4. 

b. er = 10_1. 

Fig. 8-6a (Repeated) 

Shall Admittance, N-0, ETAp.1.E-3, ETAg.t.E-3, EPSc-1.E-4 Shell Admittance, N-0, ETAp.1.E-3, ETAg.1.E-3, EPSe>1.E-1 

Fig. 8-7a Fig. 8-7b 
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IX.  ANALYTICAL DEFINITION OF THE RIBS 

In this investigation an attempt is made to employ ribs of such 

characteristics and structure that allow the mathematical description to be of a 

simple form. The purpose is to investigate phenomena without paying heed to 

one-to-one correspondence and without trying to address all possible 

phenomena. Often the presence of too many phenomena tend to obscure the 

interpretation of data. Understanding the kind of phenomena that may be 

present and the quantities and parameters that control each may be an essential 

tool to deciphering measured data. Here a phenomenological correspondence is 

addressed in the simplest of terms. 

In this vein, the ring impedance Zsn(co) of a rib on the cylinder is assumed 

to be point reacting so the Eqs. (3-28b) and (3-33b) may be stated in the "mode 

index independent" form 

Zm(co) = Zs(co) ; [Z(6))] = [Zs((o)/b] . (9-1) 

Since the investigations in this report are on a mode by mode basis, the 

assumption that Zsn(co) is independent of modal distinction aids in the 

comparison between modal responses. However, phenomena that are associated 

with modal variations in the ring impedance of ribs are, thereby, suppressed. This 

suppression is introduced for the sake of simplicity and not because it is believed 

that phenomena associated with this modal dependence may not be significant in 

certain situations. 
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To infuse some collective variety in the ribs, however, the ring impedance 

ZJco) is assumed to be of the form 

Zs(co)  =  icoMA(co/co0) ; co0   =(KJM)1/2 , (9-2) 

where A(co I(0o) may exhibit a resonance phenomenon of the form 

A((ol(00) = (MJM) + [e0(colco0) + a(co/co0)
2 (l-ty,)] • 

[e0(co/m0) - ((ol(o0f (\-ir\0)\
l , (9-3a) 

e0(o)/co0)  =  exp[l-(co/cooy] ;     a  = [l + (ßco/(oc)
2Yl ,     (9-3b) 

the quantities M and M0 are line masses, K0 is a line stiffness, (co0) is the 

resonance frequency and (r}0) is a loss factor of the rib and (ß) and (7) are 

adjustable constants; e.g., ß = 5 and 7 = 8. A physical realization of 

Eq. (9-3a) with ß = 103 and 7 = 0 is depicted in Fig. 9-1. The resonance 

characteristics of Zs(co) in Eq. (9-3) may be made clearer by considering the 

asymptotic forms: 

1.        For (co/co0) « 1, 

A(co/Q)0) -^ (MJM) + 1 , (9-4a) 

rendering Z5( co) mass controlled. 
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2. FOT(O)/CO0) = 1, 

A((0l(0o) -> (MJM) + [(l + a) {(/TjJ-1 - ad + ar1}]       (9-4b) 

rendering Zs((ü) with a strong resistance controlled term and is substantially 

resistance controlled if   \(M0/M) - a\   « (T]0Y
X
 (l + a) . 

3. For(ö)/o>0) » 1, 

A(co/co0) -^ (MJM) - a , (9-4c) 

rendering Zs(co) stiffness controlled if (M0/M) « a. The standard values of 

(M Imb), (co0 I(Oc), ri0, ß, and y are engaged by setting 

(Mlmb)  = 0.2 ;        (MJM)  = 0 ; (coJcoc)  =  10 ; 

7]0   =  3 xlO-1 ; ß  =  5  ; and 7  =  8. (9-5) 

The factor A(co/co0 ) is typically depicted in Figs. 9-2a-f as a function of (co/coc). 

In Figs. 9-2a-c, the factor A(co/co0 ) is commensurate with the physical realization 

of the rib which is depicted in Fig. 9-1; in these figures (co0 /coc) = 10, 10"2 

and 2.5 x 10~\ respectively. In Fig. 9-2d, the standard values prevail. In 

Figs. 9-2e and f, (co0 I coc) is changed from the standard value of 10 to 10~2 and 

2.5 x 10-1, respectively. Figure 9-2g repeats Fig. 9-2f except that the loss 

factor (r\0) is changed from the standard value of 3 x 10"1 to 10_1. The 

influence of this change is as expected. The asymptotic cases stated in Eq. (9-4) 

are readily discernible in all these figures. These asymptotic forms dictate the 

choice of the generic construction for the ribs.   Again, the standard choice is 
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ß = 5,7 = 8 and r\0 = 0.3. These values facilitate the investigation of the 

influence that a particular ring impedance of the rib has on the response behavior 

of a ribbed cylinder. The facility is associated with the quicker transition with 

frequency from a mass controlled to stiffness controlled ring impedance, which is 

controlled by (7), and the avoidance of a sharp diminution of the ring impedance 

once it becomes stiffness controlled, which is controlled by (/?). These 

asymptotic forms may, in turn, answer questions regarding the worth of an effort 

to change this particular behavior by changing the construction of the ribs; e.g., is 

the introduction of resistance controlled line and ring impedance for the ribs 

advantageous in controlling the response behavior of panels and cylinders in the 

frequency band (co0ri0) centered about (co/co0) = 1? In part, to answer such 

a question the influence of a resistance controlled line impedance in the ribs may 

be worth special diagnostic examination. For this purpose it may be useful to 

define A \(o I co0) in the form 

A\(ol(o0)  =  R&{A(co/o)0)} + (2)"1/2    \m{A{(ol(o0)} • 

{U[(co0 l(oc) - (co/coc)]- U[(co/o)c) - (co0 l(oc)}} .      (9-6) 

The substitution of A'(co/co0) for A(co/co0) maintains the magnitude of the line 

impedance of the rib but eliminates its resistance controlled character; this 

elimination is of significance at and in the vicinity of the resonance frequency 

when {col(00) ~ 1. At frequencies outside of this narrow frequency band, 

A\(olco0) is substantially identical to A(co/co0). Figure 9-2f is repeated in 

Fig. 9-2h except that A'(co/co0) is substituted for A(co/co0). The absence of 

damping in the rib is demonstrated by the imaginary part that is equal to zero; 

indeed, Im {A \(01 co0)}  =  0 as can be verified from Eq. (9-6). 
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To condense the volume of information contained within figures cast in 

the waterfall format relative to the nature of the ribs, (co0 /coc) is set equal largely 

to 10 and/or 10"2; with (co0/coc) equal to 10, A(co/co0) = 1 and the ring 

impedance is mass controlled. On the other hand, with (co0 I(öc) equal to 10~2, 

A(co/co0) = -a and the ring impedance is stiffness controlled. A few 

significant cases are, however, briefly depicted in which the resonance frequency 

falls inside the frequency range of consideration in this report; i.e., (co0 I coc) is 

selected equal to 2.5 x 10-1. [cf. Fig. 9-2c] A more elaborate investigation of 

the use of the ribs as effective damping agents awaits further investigation. In 

this report this investigation is merely initiated. 

Using the form stated in Eq. (9-2) for the ring impedance of a rib, the 

quantity Qoon(k,co), defined in Eq. (3-42b) can be stated in the more explicit form 

<Ln(k,a>) = Zn((o2) G^iKco) = 

(Mlmb) A(co/co0) Gmn(k,co) , (9-7) 

where G^ik.,®) is the normalized fluid loaded surface admittance of the uniform 

cylinder, which is defined in Eqs. (8-2) and (8-4). The entrance of the functional 

form of the rib is completely accounted for in Eq. (9-7). Indeed, the function 

<2oon(£,ö)) contains all the information that the formalism requires of the 

description of the rib in a regularly ribbed cylinder. In particular, Eq. (9-7) 

clarifies that Q^^k,®) duplicate the wavenumber (k) dependence of Goon(k,co); 

it is modulated by the frequency dependent factor A(co/ co0), and it admits to a 

scale factor (MI mb) that is independent of both the wavenumber (k) and the 

frequency (ft>). Thus, except for these frequency modulations, the patterns, in the 

waterfall representation of CLn{k,(ö), are similar to those of Gxn(k, CO), e.g., those 
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shown in Figs. 8-3 through 7. Figures 9-3 and 4 depict the absolute values of 

<2LoM(£,ü)), as a function of (ak) in a waterfall format, for the hybrid and natural 

cylinders, respectively. The standard parametric values, stated in Eqs. (6-4) and 

(9-5), are used in Figs. 9-3a and 4a. Figure 9-5a duplicates Fig. 9-4a except that 

the standard value of zero for (n) is changed to unity. The emergence of the 

shear free waves is the only substantial difference between these two figures, 

[cf. Figs. 8-1 and 2.] In addition, in Figs. 9-3b and c, 9-4b and c and 9-5b and c 

the normalized resonance frequency (coo / coc) is changed from its standard value 

of 10 to 10"2 and 2.5 x 10"1, respectively. The influence of the resonance on 

the line impedance of the ribs is discernible in Figs. 9-3c, 4c and 5c. In particular, 

in the frequency range below the resonance; i.e., when (co/coc) < 2.5 x 10-1, 

the patterns in these figures duplicate those in Figs. 9-3a, 4a and 5a and above 

the resonance; i.e., when (o)/a>c) > 2.5 x 10_1, the patterns duplicate those in 

Figs. 9-3c, 4b and 5b, respectively. At resonance Figs. 9-3c, 4c and 5c neither 

duplicate Figs. 9-3a, 4a and 5a nor Figs. 9-3b, 4b and 5b; the line impedance at 

and in the vicinity of resonance is largely resistance controlled and its absolute 

value is high. Figure 9-5d repeats Fig. 9-5c, except that A(co/co0) is replaced by 

a corresponding A\colco0); where A'(<D/(00) is defined in Eq. (9-6). 

Figures 9-5c and d are substantially the same. Figure 9-5e repeats Fig. 9-5c 

except that the conditions depicted in Fig. 9-2c replace those depicted in 

Fig. 9-2f. Observe that the transition through resonance from mass to stiffness 

controlled is more gradual in Figs. 9-2c and 5e than in Figs. 9-2f and 5c. Again, it 

is emphasized that these curves differ only by modulation with respect to the 

frequency variable, and, of course, with respect to sign and quadrature. However, 

the  differences with respect  to  sign  and   quadrature   are  not   depicted   in 
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Figs. 9-3,4 and 5. The significance of the sign and quadrature of A(co/co0) on 

the response of a regularly ribbed cylinder is yet to be deciphered. 
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K0(l-iV 

Plating 

Fig. 9-1. A Simple Mass-Spring System Used to Provide Frequency 
Resonance in the Line or Ring Impedance of a Rib. 

Fig. 9-2. Real and imaginary parts of the factor A(ffl / oa0) in the ring impedance of a 

rib as functions of the normalized frequency (col(Oc) and for (M01M) = 0. 

[cf.Eqs.(9-2)-(9-5).] 

a. Mass controlled rib [(a0/coc) = 10, ?70 = 0.3], J3 = 103 and y = 0. 

b. Stiffness controlled rib [(co0/(oc) = 10"~2, 7/o=0.3], 0 = 1O3 and y = 0. 

c. Resonating rib [((00/coc) = 2.5 x 10"1, JJo=0.3], /? = 103 and y = 0. 

d. Standard mass controlled rib [(ö)0/öC) = 10, ß = 5, y = 8, andJ]o = 0.3]. 

e. Stiffness controlled rib [(co0/coc) = 10" ]. 

f. (o>0/o)c) = 2.5 xlO-1 [7]o=0.3] 

g. (ö0 / öc) = 2.5 x 10_1 T]0 = 10_1 

h. As in f. except that the factor A(o / co0) is replaced by the modified factor 

A'(t»l(00). [cf. Eqs. (9-3 and 6).] 
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N.O, ETAg-' .E-3. ETAo-.S, Wo_We.10, BETTAm.S, ZmnBar-N, EPSo.l.E-2 

Fig. 9-3. Absolute value of the ratio Qoon(k,a>) for a 

hybrid cylinder as a function of (ak) displayed in a 

frequency waterfall format, [cf. Eq. (9-7).] 

-2n 
a. Mass controlled rib [((001 (Oc) = 10]. 

b. Stiffness controlled rib [(o)0/coc) = 10"'']. 

c. (co0/<oc) = 2.5 x 10~l. 

Fig. 9-3a 

N.O, ETAg-LE-3, ETAo.,3, Wo_Wc.1.E-2, BETTAm.S, ZmnBir.N, EPSe-LE-2 N.O, ETAg.1.E-3, ETAo.,3, Wo_We.2.SE-1, BETTAm.S, ZmnB»r.N, EPSe-LE-J 

Fig. 9-3b Fig. 9-3c 
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N.O, ETAg.l.E-3, ETAo.,3, WoJNc.lO, BETTAm.S, ZmnBar-Y, EP8e.1.E-2 

Fig. 9-4.  As in Fig. 9-3 except that a natural cylinder is 

substituted. 

A-2n 

a. Mass controlled rib [(0)01coc) = 10]. 

b. Stiffness controlled rib [(co0/coc)  -  IGT'']. 

c. ((D0l(oc) =  2.5 x 10_1. 

Fig. 9-4a 

N«0,ETAg.1.E-3, ETAO-.3, Wo_We.1.E-2, BETTAm.S, ZmnB.r.Y, EP8c-1.E-2 N.O, ETAg-1.E-3, ETAo.,3, Wo_Wc.2.5E-1. BETTAm.S, ZmnB»r.Y, EPBe.l.E-2 
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N.I, ETAg.l.E-3, ET Ac.3, Wo_Wc-10, BETTAm.S, ZmnBir.Y, EPSd.E-S 

Fig. 9-5. As in Fig. 9-4 except that the mode index in) 

is changed from the standard value of zero to unity. 

a. Mass controlled rib [(a>0 I a>c) = 10]. 

b. Stiffness controlled rib [(O)0/coc)  =  10    ]. 

c. (co0/coc) =  2.5 x 10"1. 

d. (CO0/OJC)  =  2.5 x 10~   and A(coIco0) is replaced 

by A'(co/co0) [cf. Eqs. (9-3 and 6).] 

e. (co0/coc) =  2.5 x 10"1, ß = 103  and y = 0 

[cf. Fig.9-2c versus Fig. 9-2f.] 

10" 

to'" 

10" ■                       '   ■                                                              -g=^S£gTT^ 

w" 

,i                             syCr~~~^         _; , 
10™ 

; j ^3*C     —                               ; 

-4— : —-!*■;•--—= —: 
J ,                   .——jA ■         ~            —            ' 

1o'° "fr—-— '  —5^—~=rr- '" - 
Hi—■ p?v^-———      ■ • —. 
■ J it1-   — ■              i.                                          "—' ' 

w-k——-"<._ir~-—^m_^-      - 
<n° MC                    ~                  "■'                               ~— 

R                           ■  _—,— 

I           ,          ,      —;—■ r ,           ,         ~— 
30 40 50 SO 70 

Ka 

Fig. 9-5a 

N-1. ETAg.l.E-3, ETAo.,3. Wo_Wc.1.E-2. BETTAm.S, ZmnBar.Y, EPSe.1.E-2        N.I, ETAg.1.E-3. ETAo.,3, Wo_Wc.2.5E-1. BETTAm.S, ZmnBar.Y, EPSe.l.E-2 

Fig. 9-5b Fig. 9-5c 
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Cylinder. Modal Ring Drlv«, N.I, EPSe.1.E-2. WoWc..25 N-1. ETAo.3, Wo.Wc-2.SE-1, BETTAm.1 .ES, G»mm«.0. ZmnB«r-Y, EP8e-1i-2 

10    - 

Fig. 9-5d Fig. 9-5e 
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X. ALIASING IN THE DRIVE Psn (k, (o) IN LIEU OF THE RIBS 

The requirements stated at the end of Section III are satisfied in 

Sections IV-IX and the phenomenon of aliasing stated in Eq. (3-48) can then be 

dealt with. Again it is emphasized that hereafter only the regularly ribbed hybrid 

cylinder and the regularly ribbed natural cylinder are considered so that the dual 

representations of the formalism can be condensed under a single mantle. One is 

reminded that the hybrid cylinder is a natural cylinder from which the membrane 

response is removed. 

In this vein Eq. (3-48b) is repeated in this new format in the form 

Psn(k,co) = Psn(k+Kj,(o) ; Kj  = jK! , (10-1) 

which states that the drive Psn(k,co) is aliased in the wavenumber (k) with 

respect to the separation wavenumber (jq), where KX- (2n I b) with (b) the 

separation between adjacent ribs in the (axial) x- domain on a regularly ribbed 

cylindrical shell. This regularity is defined in Eqs. (3-28) and (3-29). From 

Eqs. (3-41b), (3-45b), (3-46b) and (5-9b) one obtains 

Pm(k,co) = Psn(k,co) [Tn(co) Pean{(o)Yl , (10-2a) 

Psn{k,(0) = Psn(k,0)) [Pean(co)Yl , (10-2b) 
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Pm(k,co) = Posn{k,(o) ■ 

Posn(k,co)  =  Sb(k) [Q^(k,a>) (2TT)-
1/2

   exp(ixak)) , (10-3a) 

Psn(k,(o)  =Ibn{k,co) Posn(k,co) ; 

Ibn(k,co)  = {l + Sb(k) [Q„n(k,co)]} , U0-3b) 

where P~osn(k,co) relates directly to the first order case and Psn(k,co) is the 

normalized modal drive in lieu of the ribs when ribs are allowed to interact 

naturally via the shell. The self-aliased operator Sb(k) receives its name from the 

patterns that Posn{k,(o) exhibits; these patterns are depicted in Figs. 10-la-c, 2a-c 

and 3a-d. The patterns in [Q=o„ (£,<») (2n)~112 exp(ixak)] that are substantially 

depicted in Figs. 9-3a-c, 4a-c and 5a-d, are aliased in Figs. 10-la-c, 2a-c and 3a-d, 

respectively; the working of Sb(k) is clearly deciphered in these figures. An 

aliased quantity obeys the rule that patterns in one segment in (k) that is (jq) 

wide; e.g., 0 < k < KX , is repetitively duplicated in every segment that is 

removed by {JK1 ), where (_/) may assume any positive or negative integer, 

including zero. [cf. Eq. (10-1).] Since the [ß^(£,&)) (27r)~1/2 exp{ix :)} are 

distinguished by the dispersive loci in G^k,^), the patterns in Figs. 10-la-c, 

2a-c and 3a-d are distinguished by the repetitive duplications of these loci and, at 

most, their possible modulation in the frequency domain by A(co/co0). 

Figures 10-2a-c and 3a-d show that not only the flexural and fluid loading 

dispersive loci are duplicated, but so are the membrane dispersive loci. Since the 

aliasing is due to scattering by the regularly spaced ribs, it is concluded that the 

simple rib structure can support phenomena that are associated with scattering 

not only of flexural free waves, but also of membrane free waves. It follows that 

it is not essential to upgrade the structure of the ribs on account of a few of the 
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phenomena that may be associated with the membrane free waves. At this initial 

stage, it is emphasized that aliasing is not to be confused with symmetry. Aliasing 

patterns can, but need not, be symmetric. Thus, since the standard position of the 

external ring drive is chosen at (xa lb) = (0.5), the patterns in Figs. 10-la-c, 

2a-c and 10-3a-d are not only aliased, but are also symmetric. Indeed, this 

symmetry requires that in spectral space the drive in lieu of the ribs vanish 

whenever (ak) = (aKx) [(1 + 2;)/2], where (j) assumes any positive or 

negative integer, including zero. Figures 10-4a-c and 5a-c repeat Figs. 10-la-c 

and 2a-c, respectively, except that the position (xa/b) of the external drive is 

changed from the standard value of (0.5) to (0.3). Not only is the drive in lieu of 

the ribs non-vanishing whenever (ak) = (aKx) [(1 + 2j)/2], but the strict 

symmetry in the latter figures is no longer found in the former figures, 

notwithstanding that some of the asymmetry comes from the finiteness of the 

plotted points; i.e. as a result of graphical Umitations. The influence of decreasing 

and increasing the value of the fluid loading parameter (ec) from the standard 

value of 10~2 to 10-4 and 10~\ respectively, are investigated in Figs. 10-6a and b 

and 10-7a and b, respectively. These two sets of figures repeat Figs. 10-4a and 

5a, respectively, except for the specified change in the fluid loading parameter. 

There is a discernible influence, especially in the change to 10_1, but there are no 

surprises that transcend those already discussed with respect to Fig. 8. Again, 

Figs. 10-1 through 5 are derived by applying the aliasing operator directly to the 

corresponding figures in Sections VIE and IX. The direct application of the self- 

aliased operator to [Q^n(k,co) (IK)"
112
 exp(ikxa)] yields results that are 

commensurate, by definition, with the first order model. A question may then 

arise: is the aliasing in the first order model, as illustrated in Figs. 10-1 through 7, 

preserved in the proper order model? The proper order model is the model in 

which a full account is made for the interactions among the ribs via the shell. 
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From Eq. (10-3) it is clear that this accounting is implemented by the factor 

Ibn(k,co). This factor, it is recalled, is aliased in (k) with respect to (K^), as is 

Posn(k,(O), and, therefore, Pm(k,co) is also aliased in (k) with respect to Oq). 

Two aliased factors; if they are identically aliased, render the quantity aliased in 

the manner of each; if they are not identically aliased, the quantity is not aliased in 

the manner of either, [cf. Eq. (3-37).] However, the factor Ibn(k, coi) is a function 

of both the wavenumber (k) and the frequency (co), and, therefore, it may be 

influential enough to modify the dispersive patterns in Figs. 10-1 through 3 even 

if the aliased properties are to be preserved. The patterns in Ibn(k,co) are 

depicted, correspondingly to Figs. 10-la-c, 2a-c, 3a-d, 4a and 5a, 6a and b and 7a 

and b in Figs. 10-8a-c, 9a-c, lOa-d, 8d and 9d, 11a and b and 12a and b, 

respectively. Comparison between these two sets of figures reveals, among 

others, four significant features. The first, and an obvious one, is that Ibn(k,co) is 

aliased in (k) with respect to (KX), as is Posn(k,a>). The second, and again an 

obvious one, is that Figs. 10-8a and 9a are identical to Figs. 10-8d and 9d, 

respectively, since unlike Posn{k,co), Ibn(k,co) is independent of the position 

(xalb) of the external ring drive. Therefore, Figs. 10-8a and 9a are also 

designated Figs. 10-8d and 9d, respectively. The third indicates that at the 

dispersive loci in Fig. 10-1 through 7, anti-dispersive loci are correspondingly 

found in Figs. 10-8 through 12. Anti-dispersive loci are those pertaining to 

valleys and the associated nadirs. Since Ibn(k,co) is a companion factor to 

Posn(k,co) in Psn(k,co),as stated in Eq. (10-3b), Ibn(k,co) is expected to suppress 

the prominent patterns in the factor Posn(k,co) so that Psn(k,co) tends not to 

exhibit these prominent patterns at the dispersive loci. In the absence of damping 

in the shell, the aliased dispersive loci are defined by the singularities (and zeros) 

in {Sb(k) [<2oo„(k,(O)]}. These same singularities (but not the zeros), are to be 

found in {1 +[Sb(k) Qoan(k,co)]} . The way that this factor features in Ibn{k,coi), 
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explains how Ibn(k,co) abolishes the singularities in {Sb(k) [(2^^,(0)]} so that 

Psn(k,co) is devoid of prominent patterns at the dispersive loci. The zeros defined 

by the fluid dispersive locus remain intact and, therefore, the sonic locus in 

Posn(k,co) is preserved in Psn(k,co). The fourth feature follows: The quantity 

Ibn(k,co) is singular whenever [Sb(k) Q^^CD) ] = -1. The singularities in 

lbn(k,co) are shown in Figs. 10-8 through 12 as ridges and associated peaks. 

They he closely adjacent to, but not on, the valleys and associated nadirs. The 

former dispersive loci in Ibn(k,co) are designated "false dispersive loci". The false 

dispersive loci lie just below the dispersive loci if A(co/ co0) is real and positive 

and just above if A(co/ co0) is real and negative. This feature is made clearer in 

Figs. 10-8al, bl, andcl, 10-9al, bl, and cl, and 10-10al, bl, and cl; these figures 

are identical to Figs. 10-8 through 10, respectively, except that the waterfall is less 

densely populated, [cf. Appendix B.] When the ribs are endowed with a 

resonance, as in Figs. 10-8c, 9c and 10c, the false dispersive loci transit from those 

in Figs. 10-8a, 9a and 10a to those in Figs. 10-8b, 9b, and 10b, respectively, as 

(co/coc) transit from being less than ((Oo / C0C) to being more than (co0/coc). The 

two regions, so defined, are smoothly bridged when a standard value for the loss 

factor (T]0) is introduced; see Figs. 10-8a-c, 9a-c and 10-lOa-c. Again, since 

Ibn{k,(o) is a companion factor to Posn(k,co) in Psn(k,co) and since Posn(k,co) does 

not exhibit valleys and associated nadirs at the false dispersive loci, these false 

dispersive loci become the prominent patterns in Psn(k,co). The false dispersive 

loci yield patterns in the drive Fsn(k,co) in lieu of the ribs that are exhibited in 

Figs. 10-13 through 20. These figures are reminiscent, but not quite overlapping 

with those shown in Figs. 10-1 through 7, for the first order model. In Figs. 10-13 

through 20 the absolute value of Fsn(k,co) are displayed as a function of (ak) in a 

waterfall format under those conditions and parametric values that are used in 

Figs. 10-1 through 7, respectively.  As just argued, although the false dispersive 
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loci are in appearance similar to the corresponding dispersive loci, they are 

displaced by a small fraction of the normalized frequency from the latter; to a 

lower frequency if A{(ol co0) is real and positive (mass controlled) and to a higher 

frequency if A(co/ (00) is real and negative (stiffness controlled). Indeed, the 

displacements are such that the aliasing knots are displaced from those of the first 

order model. An aliasing knot is a spectral region on the 

{(ak), (co/coc)}-domain where two aliasing orders converge, cross, and 

diverge. It follows that the displacement of a knot is to a lower frequency if the 

line impedance of the ribs is mass controlled; i.e., when A(co/ (o0) is real and 

positive. This feature is illustrated in the comparison between Figs. 10-la, 2a and 

3a and Figs. 10-13a, 14a and 15a, respectively. The displacement of a knot is to a 

higher frequency if the line impedance of the ribs is stiffness controlled; i.e., when 

A{col C0o) is real and negative. This feature is illustrated in the comparison 

between Figs. 10-lb, 2b and 3b and Figs. 10-13b, 14b and 15b, respectively. The 

transition between these two cases is depicted in Figs. 10-13c, 14c and 15c. 

Although obvious, it is noted, in Figs. 10-14a-c and 15a-c that knots of the 

longitudinal, the shear, and flexural free waves do not, in general, occupy the 

same regions on the {(ak), (colcoc)}-domain. Furthermore, unlike the 

dispersive loci in the first order model, at an aliasing knot the false dispersive loci 

of the two crossing aliasing orders possess opposite signs, and a substantial 

cancellation occurs between them in the spectral region of overlap. The effective 

cancellation, at an aliasing knot, by the crossing of a pair of aliasing orders of 

opposite sign, is a significant feature in the phenomenon that manifests pass and 

stop bands. This phenomenon is dealt with in the next two sections. 

Figures 10-16a-c, 10-17a-c, 10-18a-c, 10-19a-band 10-20a-b are the proper 

order counterparts of the first order model computations depicted in Figs. 10-4a-c, 
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10-5a-c, 10-6a-c, 10-7a-b and 10-8a-b, respectively. As in the latter set, in the 

former set the vanishing of the drive in lieu of the ribs, whenever 

(ak) = (aKi) [(1 + 2j)/2], and the strict symmetry in the aliasing are removed 

by the asymmetric position of the external drive. However, the manifestation of 

the influence of the interactions among the ribs via the shell sustain a difference 

between these two sets of figures that is substantially similar to that sustained 

between Figs. 10-13a-c, 10-14a-c and 10-15a-c and Figs. 10-la-c, 10-2a-c and 

10-3a-c, respectively. The explanation for this difference was just discussed. 

Comparing Figs. 10-lc, 2c, 3c and d, 4c and 5c with Figs. 10-13c, 14c, 15c 

and d, 16c and 17c, respectively, indicates that in the vicinity of the resonance 

frequency at (co I (00) ~ 1, the ribs substantially subdue the presence of the free 

waves in the modal drive in lieu of the ribs in the second set of figures, but little in 

the first set. Indeed, the influence of the resonance in the ribs on Ibn(k,(o) is 

substantially greater than on the first order drive Posn(k,co). That the influence of 

the resonance in the ribs on the peaks in Ibn(k,co) is substantial is clearly 

discernible by judiciously comparing various figures in Figs. 10-8 through 12. A 

question may arise: Is it merely the high line impedance of the ribs at resonance 

that is causing this influence or is it the resistance controlled character of the line 

impedance of the ribs at resonance that is the culprit? In partial answer to this 

question Figs. 10-21 a-c are offered. In these figures A'(co/coc), stated in 

Eq. (9-6), replaces A(co/ (00) and Figs. 15a-c are then repeated, respectively. 

Comparing these two sets of figures indicates that the replacement can be hardly 

discernible, notwithstanding that a slight difference exists between Figs. 10-15c 

and 21c in the frequency range at and in the vicinity of the normalized resonance 

frequency, where (co/coc) ~ (co0 /coc). The overlap between Figs. 10-15a and b 

and Figs. 10-21a and b is expected  and is understood.    However, that the 
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difference between Fig. 10-15c and Fig. 10-21c in the region of resonance is only 

in details, suggests that the increase in the line impedance, in this frequency 

region, may be more significant than its character. What are these details and 

how significant are they, may be explored by extending the sets of figures in both 

Figs. 10-15 and 10-21. The details under consideration are those associated with 

the damping that is provided by the resonating ribs in Fig. 10-15c, and the lack of 

a corresponding damping in the ribs in Fig. 10-21c. To show that at and in the 

vicinity of the frequency of resonance the damping in Fig. 10-15c is attributable 

to the damping in the resonating ribs and is not dominated by radiation damping, 

this figure is repeated in Fig. 10-15d; in Fig. 10-15d the fluid loading parameter is 

changed from the standard value of 10~2 to 10-4. Figures 10-15c and d are 

substantially identical in this resonance frequency region, indicating that the 

mechanical damping provided by the resonating ribs is significant. This statement 

is indirectly confirmed by Fig. 10-21d; this figure repeats Fig. 10-21c except that 

the fluid loading parameter is changed from the standard value of 10~2 to 10~4. 

In the absence of damping by the resonating ribs, the radiation damping in the 

resonance frequency region is clearly diminished in Fig. 10-21d from that in 

Fig. 10-21c. Thus, in the absence of damping by the ribs radiation damping 

becomes significant in this region even when the fluid loading is at the standard 

value of 10~2. On the other hand, in Figs. 10-15e and 21e, which repeat 

Fig. 10-15c and 21c, respectively, except that the fluid loading parameter is 

changed from the standard value of 10 to 10 , the fluid loading mollifies the 

resonance effects of the ribs so that these two figures are substantially identical; 

the dominance of fluid loading subdues any phenomenological differences 

between the two cases. The difference between the two cases, one is reminded, is 

that in the first the ribs contribute mechanical damping at and in the vicinity of 

the frequency of resonance, in the second this contribution is artificially removed. 
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How significant is the damping in the ribs versus the mechanical damping in the 

shell? Figures 10-15f and g and 2If and g are presented to assist with the answer 

to this question. These figures repeat Figs. 10-15d and 2Id, respectively, except 

that the loss factor (rjp) of the flexural free waves is increased from the standard 

value of 10~3 to 5 x 10-3 and 2.5 x 10-2, respectively. Clearly and obviously, 

the increased mechanical damping of the flexural free waves subdues the 

normalized modal drive Psn(k,co) in lieu of the ribs; the subduing is most 

pronounced at the flexural ridges and the associated peaks in the aliased patterns 

of this drive. Indeed, at and in the vicinity of the frequency of resonance of the 

ribs, Figs. 10-21f resembles Fig. 10-15d better than does Fig. 10-21d; indicating, 

thereby, that in this frequency region a loss factor r\0 ~ 3 x 10-1 in the ribs is 

equivalent to a moderate increase in the loss factor (j]p) in the shell. Moreover, 

that a moderate increase in {r\p) is more extensively useful than is the damping in 

the ribs, can be readily verified by comparing Fig. 10-15d and Fig. 10-21f. A 

drastic increase in the loss factor (r]p) in the shell, as depicted in Figs. 10-15g and 

21 g, renders these two figures substantially identical; the damping contributed by 

the ribs at and in the vicinity of the frequency of resonance is substantially 

overwhelmed by the damping in the shell and whence the identity between these 

two figures. One remembers that in Fig. 10-21 the damping that is provided by 

the ribs at resonance is artificially removed, whereas in Fig. 10-15 this type of 

damping is naturally included. 
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UmO. ETAB-1.E-3,ETAO..3, WO_WC.10. BETTAm.S, ZmnB»r.N, EPSc.l.E-2 
i i 

Fig. 10-1. Normalized modal drive P0sn(k,co) in lieu of 

a first order model for the ribs on a hybrid cylinder as 

a function of (ak) in a (co0 I(Oc) - waterfall format. 

^-2-, 
a. Under standard values [{co0/coc) =  10]. 

b. Stiffness controlled ribs[(co0/mc) =  10-"4]. 

c. (0)o/coc) = 2.5 x 10_1. 

Fig. 10-la 

N.O. ETAg-1.E-3, ETA0..3, Wo_Wc.l.E-Z. BETTAm.S, ZmnB«r.N, EPSc.l.E-2 N-0. ETAfl.1.E-3. ETAo.,3. Wo.We.2.5E-1. BETTAm.S. ZmnBir-N, EP8C.1.E-» 

Fig. 10-lb Fig. 10-lc 
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N.O, ETAg-1 .E-3. ETAo.,3, Wo_We-10, BETTAm.5, ZmnBir.Y, EPSe.l.E-2 

Fig. 10-2. As in Fig 10-1 except for the change to a 

natural cylinder. 

a. Under standard values [o)0/cac  =  10]. 

b. Stiffness controlled ribs [((00 10)c)  =   10 

c. (ü)0/coc)  =  2.5 x 10_1 

-2n 

Fig. 10-2a 
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Fig. 10-2b Fig. 10-2c 

113 



N.1, ETAg-1.E-3, ETAo.,3, Wo_Wc.10, BETTAm.*, ZmnBlr.Y, EP8e.1.E-2 

Fig. 10-3. As in Fig. 10-2 except for the change from the 

standard mode index (n) of zero to unity. 

a. Mass controlled ribs [(co0 /coc) =  10]. 

b. Stiffness controlled ribs [(co0/coc) =  10    ]. 

c. (0)o/0)c) = 2.5 JC 10_1. 

d. Change in the parameter (7) [Eq. 9-5)] from the 

standard value of 8 to 0. 

Fig. 10-3a 

N.1, Wo/We-1E-2. ETAp-1 E-3, ZmnBar.Y, EPSc-1 E-2, b/«..S N.I, ETAg.l.E-3. ETAo.,3. Wo_Wc.2.5E-1, BETTAm.6, ZmnBir.V, EPSe.1.E-2 

Fig. 10-3b Fig. 10-3c 

114 



N.I, ETA0..3, Wo_Wc-2.5E-1, BETTAm.1 .E3, Qimma.O, ZmnBir.Y, EPSe.1 .E-2 

Fig. 10-4. As in Fig. 10-1 except that the axial positions 

(xa I b)oi application of the external drive is changed 

from the standard value of 0.5 to 0.3. 

a. Mass controlled ribs [(ß0lcoc) = 10]. 

b. Stiffness controlled ribs [(co0l(oc) = 10~2]. 

c. (0iol(oc) = 2.5 JC 10_1. 

Fig. 10-3d 

N.O, ETAg-1.E-3. ETAo«.3, Wo_We>10, BETTAm.S, ZmnBmr.N, EPSc-I.E-2 N.O, ETAg-I.E-3, ETA0..3, Wo_Wc.1.E-2. BETTAm.S. ZmnBar>N. EPSe.l.E-2 

Fl2. 10-4b 

115 



N.0, ETAg-1.E-3, ETA0-.3, Wo_Wc-2.5E-1, BETTAm.S, ZmnBar-N, EPSd.E-2 

Fig. 10-5. As in Fig. 10-2 except that the axial position 

(xa I b) of application of the external drive is changed 

from the standard value of 0.5 to 0.3. 

i-2. 
a. Mass controlled ribs [(co0/a>c) = 10]. 

b. Stiffness controlled ribs [(co0lac) = 10-'4]. 

c. (co0/(oc) = 2.5 x 10_1. 

Fig. 10-4c 

N.0, ETAB-1.E-3. ETAO-.3, Wo.Wc.10, BETTAm.S. ZmnB.r.Y, EPSe-I.E-Z N-0, ETAg-I.E-3, ETAo.,3. Wo_Wc.1.E-2. BETTAm.S, Zn.nB.r-Y. EP8-1.E* 
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Fig. 10-5a Fig. 10-5b 
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N.O. ETAo>1.E-3, ETAo.,3, Wo.Wc-2.SE-1, BETTAm.S, ZmnBir.Y, EP8C-1.E-2 

Fig. 10-6. As in Fig. 10-4a except that the fluid loading 

parameter (ec) is changed from the standard value of 

10"2to: 

a. ec  = NT4. 

b. ec  = 10"1. 

Fig. 10-5c 

N.O, ETAg.l.E-3, ETA0..3, Wo_We.10, BETTAm.5, ZmnBir-N, EP8e.1.E-4, N.O, ETAg-I.E-3. ETAo.,3, Wo_Wc.10, BETTAm.S, ZmnBir.N, EP80.1.E-1, 

Fig. 10-6a Fig. 10-6b 
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N.O, ETAa-I.E-3, ETAo.,3, Wa.Wo.10. BETTAm.5, ZmnBar-Y, EP80-1.E-«, 

Fig. 10-7. As in Fig. 10-5a except that the fluid loading 

parameter (ec) is changed from the standard value of 

10"2 to: 

a. ec  = 10" 

b. Er   =   10 -1 

Fig. 10-7a 

N.O. ETA0-1.E-3, ETA0..3, Wo_We»10. BETTAm.5, ZmnBir.Y, EPSc-I.E-1, 

Fig. 10-7b 
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N-0, ETA0-.3, Wo_Wc.10, BETTAm.S, Q»mm«.«, ZmnB«r.N, EPSol.E-2 

Fig. 10-8. Modal factor Ibn (k,a>) [Eq. (10-3b)] for a 

hybrid cylinder as a function of (ak) in a (co/ac) - 

waterfall format. 

a. and d. Mass controlled ribs [(co0 lcoc) = 10]. 

a. 1 and d.i. Sparsely populated waterfall of a and d. 

b. Stiffness controlled ribs [(co0/o)c) = 10~2]. 

b.l. Sparsely populated waterfall of b. 

c. (o)0/coc) = 2.5 x MT1. 

c. 1. Sparsely populated waterfall of c. 

Fig. 10-8a and d 

N-0, ETA0..3, Wo_Wc.10, BETTAm.5, Gamma.i, ZmnBar.N, EPSd.E-2 
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Fig. 10-8al and dl 
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N.0, ETAO-.S, Wo_We.1.E-2, BETTAm.S, Gimm».«, ZmnBir.N, EPSe.l.E-2 N.O, ETAo-.S, Wo.We.l.E-2, BETTAm.S, Q«mm»-». ZmnBir^, EP8C.1.E-2 
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Fig. 10-8b Fig. 10-8M 

N.O, ETAO-.3, Wo.We>2.SE-1, BETTAm-S, Gimmi.8, ZmnBir.N, EPSc.l .E-2 N.O, ETAo.,3, Wo_We..2S, BETTAm.S, Gimmi-8, ZmnBtr.N, EPSo.l.E-2 
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K« 
50 SO 70 

Fig. 10-8c Fig. 10-8cl 
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Fig. 10-9. As in Fig. 10-8 except for the change to a 

natural cylinder. 

a. and d. Mass controlled ribs [((a0/wc) = 10]. 

a. 1 and d.i. Sparsely populated waterfall of a and d. 

b. Stiffness controlled ribs [((00/<oc) = 10"2]. 

b.l. Sparsely populated waterfall of b. 

c. ((o0lcoc) = 2.5 JC 10"1. 

c. 1. Sparsely populated waterfall of c. 

N.O, ETAo.,3, Wo_We-10, 8ETTAm.S. Gammt.l, ZmnB»r.Y. EPSeal.E-2 

Fig. 10-9a and d 
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N.O, ETA0..3, Wo_Wc.1.E-2, BETTAm-S, Qimmi.l, ZmnBtfY, EPSe.1.E-2 N.O, ETAo-,3, Wo.Wc.1 .E-2. BETTAm-5, Simmi.8, ZmnB»r.Y, EPSeat.E-2 

4l0 
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Fig. 10-9b Fig. 10-9bl 

N.O, ETA0..3. Wo_Wc-2.SE-1. BETTAm.S, Siinmi.8, ZmnB«.Y, EPSc.l.E-2 N.O, ETA0..3, Wo_Wc..25, BETTAm-S, Gammi-8. ZmnB»r-Y, EPSo.l.E-2 

;^—K=K^^ 

Fig. 10-9c Fig. 10-9cl 
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Fig. 10-10. As in Fig. 10-9 except for the change from 

the standard mode index (n) of zero to unity. 

a. Mass controlled ribs [(co0/coc) = 10]. 

a. 1. Sparsely populated waterfall of a 

b. Stiffness controlled ribs [(co0l(oc) = 10~2]. 

b.l. Sparsely populated waterfall of b. 

c. (co0lo)c) = 2.5 x 10"1. 

c.l. Sparsely populated waterfall of c. 

d. Change in the parameter y [Eq. (9-5)] from the 

standard value of 8 to 0. 

N.I, ETAO-.3, Wo_Wc.10, BETTAm.S. Gimmi.l, ZmnB«r.Y, EPSo.l.E-2 

Fig. 10-10a 

N.I. ETAo.,3. Wo_Wc.10, BETTAm.S, Gamnu-8, ZmnBir.Y, EP8C.1.E-2 

Fig. 10-10al 

123 



N.I, ETA0-.3, Wo_Wc.1.E-2, BETTAm.S, Gimma.S, ZmnBtr.Y, EPSc.l.E-2 N.1, ETA0..3. Wo.We-t.E-2, BETTAm.S. Gammi.l, ZmnBar-Y, EPSo.l.E-2 
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N.I, ETA0-.3, Wo_We.2.SE-1. Battam.1.E3, Gammi.O, ZmnB»r.Y. EPSc.l.E-2 

Fig. 10-11. As in Fig. 10-8a except that the fluid loading 

parameter (ec) is changed from the standard value of 

10~2 to: 

a. ec  =  10" 

b. ec  =  10" 

Fig. 10-10d 

N.O. ETAg.1.E-3, Wo_Wc.10, 8«tt«m-6, ZmnBar.N, EPSd.E-4, Xa/b..S N-°. ETAg-1.E-3, Wo_Wc.10, B*tUm-5. ZmnBar.N, EPSo-I.E-1, XaJbaJ 
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Fig. 10-llb 
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N.0, ETAg«1.E-3, Wo_Wc»10, B«tttm.S, Zmn8»r-Y, EPSo.1 .E-4, Xt/b.J 

Fig. 10-12. As in Fig. 10-9a except that the fluid loading 

parameter (ec) is changed from the standard value of 

10~2 to: 

-4 a. ec  - 10 

b. ec  = 10_1. 

-i 1 r- 

Fig. 10-12a 

N-0, ETAg.1.E-3, Wo_Wc»10, BMMm.5, ZmnBir.Y, EPSc.1.E-1, Xa/b«J 

'sK^^=Q\^rt- 
^^^^ 

0 10 20 30 40 50 60 70 

Fig. 10-12b 
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N.0, ETAo.,3. Wo_Wc-10, BETTAm-5, Gamma.«, ZmnBar-N, EP8e-1.E-2 

Fig. 10-13. Normalized modal drive PSn(k,(o) in lieu of 

a proper order model for the ribs on a hybrid cylinder as a 

function of (ak) in a (a)lcoc) - waterfall format. 

-2i 

a. Under standard values [(<a0/oc) = 10]. 

b. Stiffness controlled ribs [(co0/coc) = lO-'4] 

c. {(o0lac) = 2.5 x 10~l. 

Fig. 10-13a 

N-0, ETAo.,3, Wo_Wc«1 .E-2, BETTAm-S, Gamma.», ZmnBar.N, EPSo.1 .E-2 N-O, ETAo.,3, Wo JN»2.5E-1, BETT Am.5, Qamma-S, ZmnBar-N, EP80.1 .E-2 

Fig. 10-13b 
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N-0, ETA0..3, Wo_Wo-10. BETTAm.S, Gamma-*, ZmnBar-Y, EPS0.1.E-2 

Fig. 10-14. As in Fig. 10-13 except for the change to a 

natural cylinder. 

a. Under standard values [(ao/0)c) = 10]. 

b. Stiffness controlled ribs [(co0/(oc) = 1QT']. 

c. (<o0t(oc) = 2.5 x 10~l. 

i-21 

Fig. 10-14a 

N-0. ETAo-.a. Wo_We»1.E-2. BETTAm.S, Gamma««, ZmnBar-Y, EPSe-1.E-2 N.0, ETAO-.3, Wo_Wc.2.5E-1, BETTAm-S, Qimmi.l, ZmnBar.Y, EPSo.LE-2 

Fig. 10-14c 
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Fig. 10-15. As in Fig. 10-14 except for the change from 

the standard mode index (n) of zero to unity. 

a. Mass controlled ribs [(co0/o)c) = 10]. 

b. Stiffness controlled ribs [{(O0lac) = 10    ]. 

c. (co0/coc) = 2.5 JC 10"1. 

d. As in c. except that (ec) is decreased from 10     to 

N.I, ETAo.,3, Wo.Wc.10. 8ETTAm.S, Gimmi.S, ZmnBir.Y, EPStal.E-2 

IQ"4. 
:~2 e. As in c. except that (ec) is increased from 10     to 

lo-1. 

f. As in c. except that (ec) and (r\p) are changed from 

10~2 and 10-3 to 10"4 and 5 a: 10"3, respectively. 

g. As in c. except that (ec) and (i)p) are changed from 

10"2 and 10"3 to 10"4 and 2.5 x 10"2, 

respectively. 

Fig. 10-15a 

N.I, ETAO-.3, Wo_Wc.1.E-2, BETTAm-5, Q*mm».8, ZmnBir.Y, EP8e-1.E-2 N.I, ETAo.,3. Wo_Wc.2.5E-1. BETTAm.S, Qammi.e, ZmnBir.Y, EP80.1.E-2 

Fig. 10-15b Fig. 10-15c 
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N.I.WortYc.25, ETAp.1E-3,ZmnBtr-Y, EPSe.16-4, b/a-.S 
N.I, Wo/Wc.25, ETAp-1E-3, ZmnBir.Y. EPSc.1 E-1, b/1. J 

Fig. 10-15d Fig. 10-15e 

N>1, Wo/Wo.25, ETAp«SE-3, ZmnBar.Y, EPSc>1E-4, b/»-.5 N.I, Wo/Wc.25, ETAp.2.SE-2. ZmnBtr-Y, EP30.1E-4, Wa-J 

Fig. 10-15f Fig. 10-15g 
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N.0, ETA0..3, Wo_We.10, B»tt«m-S, Q»mm«.8, ZmnB«r.N, EPSc.l.E-2 

Fig. 10-16. As in 10-13 except that the axial position 

{xa I b) of application of the external drive is changed 

from the standard value of 0.5 to 0.3. 

,-2n 
a. Mass controlled ribs [(co0lac) = 10]. 

b. Stiffness controlled ribs [(a0/coc) = lO--4] 

c. (o)0/a)c) = 2.5 x 10"1. 

Fig. 10-16a 

N»0. ETAO-.3, Wo_Wc.1.E-2, B»tum.5, Gimmi.l, ZmnBir-N, EPSe-1.E-2 N.0, ETA0..3, Wo_We-.ZS, B*IUm>5, G»mm».8, ZmnB»r.N, EP8e>1.E-Z 

Fig. 10-16b Fig. 10-16c 
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N.O, ETA0-.3, Wo J»c-10, B»tt«m.S, Gammel. ZmnBir-Y, EP8ea1.E-2 

Fig. 10-17. As Fig. 10-16 except for the change to a 

natural cylinder. 

a. Mass controlled ribs [(co0/coc) -  10]. 

b. Stiffness controlled ribs [(co0/coc) =  10 "]. 

c. (0)olcoc) = 2.5 x 10 -1 

Fig. 10-17a 

N-0, ETAO-.3, Wo.We»1.E-2. Bttttm.5, Gamma-«, ZmnBar.Y, EPSc»1.E-2 
-i 1 1 1 1 r- 

N.O, ETAo-,3, Wo_Wc-.2S, BattamaS, Qamma-8, ZmnBir.Y, EP80.1.6-2 
 1 1 1 ! 1 I I 

10"- 

'^^=====^====^^===^ 

Fig. 10-17b Fig. 10-17c 
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N.I, W_Wo-10. ETAp-I.E-3, B.tt«m.6. Qimma.g, ZmnB«r.Y. EPt«.1.E-2 
i I I 

Fig. 10-18. As in Fig. 10-17 except for the change from 

the standard mode index (n) of zero to unity. 

a. Mass controlled ribs [(co0/coc)  =  10], 

b. Stiffness controlled ribs [((0o I(Oc)  =   10 

c. (o)0/coc) = 2.5 x 10"1. 

~2, 

Fig. 10-18a 

N-1.W_Wo-1.E-2. ETAp-LE-3, Batta-i-5. Gammi-8, ZmnBir.Y, EPSe.1.E-2 N.I, W_Wo..25, ETAp.1.E-S, BMtam.S, Simmi.e, ZmnB.r.Y, EPBe-1^-2 

Fig. 10-18b Fig. 10-18c 
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Fig. 10-19. As in Fig. 10-16 except that the fluid loading 

parameter (ec) is changed from the standard value of 

10-2 to: 

a. ec = 10" 

b. ec = 10 -l 

N«0, ETAo.S, Wo_We.10. B«tt»m.S. Gimimal, ZmnBvaN, IP8«»1.6-4 

'^^==^M^====^^===^B 

-1 ! I 

S^ 
-i ' ' 

0 10 20 30 40 50 SO 70 
K* 

Fig. 10-19a 

N.0, ETAo-,3, Wo_Wc.10, B«ttmm.5, Gjmmt.8, ZmnBtr.N, EPSt-t.E-1 

Fig. 10-19b 
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Fig. 10-20. As in Fig. 10-17 except that the fluid loading 

parameter (ec) is changed from the standard value of 

10~2 to: 

N-0, ETAo.3, Wo_Wc.10, Banam-S, Gunmul, ZmnB«r.Y, EP8o»«.E-4 
i i 

a.  er = 10 

b.  er = 10"1. -1 

50 60 70 

Fig. 10-20a 

N-O, ETAo.,3, Wo_We.10, B*ttmm-S, Gimmul, ZmnB»r.V, EPSo-1 Jt-1 

Fig. 10-20b 
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Fig. 10-21. As in Fig. 10-15 except that A(a/a0) [Eq. 

(9-3)] is replaced by A'{(ol(00) [Eq. (9-6)]. 

a. Mass controlled ribs [{(00loc) = 10]. 

b. Stiffness controlled ribs [((o0/coc) = 10~2]. 

c. (fi)0/<uc) = 2.5 x 10-1. 

d. As in c. except that (ec) is decreased from 10     to 

lo-4. 

e. As in c. except that (ec) is increased from 10     to 

lo-1. 
f. As in c. except that (ec) and (7jp) are changed from 

10~2 and 10~3 to 10"4 and 5 x 10~3, respectively. 

g. As in c. except that (ec) and (77^) are changed from 

10~2 and 10*3 to 10"4 and 2.5 x 10"2, 

respectively. 

N.I, Wo.Wo.10. ETAp.LE-3, ETAa-1.E-3, ZmnBar-V, EP8<»1.C-1 
1 1 

Fig. 10-21a 

N.I, Wo.Wcl E-2. ETAp.t.E-3, ETAg.1.E-3. ZmnBmr.V. EPSd.E-2 N.I, Wo.Wc.iS, ETAp.1.E-3. ETAg.l.E-3, ZmnB»r.V, EPSe.1.E-t 

Fig. 10-21Ö Fig. 10-21C 
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N.I, Wo.Wc.25, ETAp.t.E-3. ETAg.l.E-3. ZmnBtr.Y, EPSe.1.E-4 N-1, Wo_Wc..25. ETAp.1.E-3. ETAg.I.E-S. ZmnBwY, EPSo-I.E-1 

Fig. 10-21d Fig. 10-21e 

N.I, Wo.Wc.25, ETAp.S.E-3, ETAg.l.E-3, ZmnBtr-Y, EP8e-1.E-4 N.I, Wo.Wc.25, ETAp.2.5E-2, ETAg.l.E-3. ZmnB«r.Y, EPScl.E-4 

Fig. 10-2 If Fig. 10-21g 
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XL     PASS AND STOP BANDS IN THE DRIVE Psn (k, on) 

IN LIEU OF THE RIBS 

It may be useful to recount some aspects of the material covered in 

Section X. The quantity Posn(k,co), which describes the normalized modal drive 

in lieu of the ribs in the first order model of a regularly ribbed cylinder, is depicted 

in Figs. 10-1 through 7. The phenomenon of aliasing is clearly visible in the 

patterns of these figures. The patterns are largely governed by the dispersive 

ridges and associated peaks and their duplications by the action of the self- 

aliased wavenumber operator Sb(k). At aliasing knots, which are regions in 

which pairs of aliasing orders cross, the contribution of each order at the knot 

substantially add. There is hardly a phase matching or mismatching of the 

contributions at a knot. In a first order model the interactions among the ribs via 

the shell are neglected. [A first order Born approximation of a sort?] 

Significantly, in the regularly ribbed shell the interactions among the ribs are 

accounted for by a factor. This factor is designated Ibn(k, (o); the drive Psn(k,cd), 

which describes the normalized modal drive in lieu of the ribs in a proper order 

model of a regularly ribbed shell, accommodates this factor in the form 

Psn{k,(0)  =  Ibn(k,co) Posn(k,co) . (11-1) 

[cf. Eq. (10-3b).] For ribs of some influence; e.g., (M / mb) ~ 0.2, the influence 

of lbn{k,(0) on the behavior of Psn(k,(o) is a major one. [So much so that any 

notion to use a Born approximation of higher orders to account for lbn(k,(0) 

need not be contemplated!] The behavior of lbn(k,0)) is depicted in Figs. 10-8 

through 12. These figures show that Ibn(k,co) is aliased in (k) with respect to 

OqXas is Posn(k,co). The ridges and associated peaks in Figs. 10-8 through 12 
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are, however, displaced from those of the dispersive loci; these new loci are 

designated false to distinguish them from the bonafide dispersive loci which 

dominate the scenes in Figs. 10-1 through 7. Whether the displacement is on one 

side of the dispersive loci or the other depends on whether the line impedance of 

the ribs is mass or stiffness controlled. This characteristic in the line impedance of 

the ribs is assigned to the province of the factor A(coI(00). This factor is defined 

in Eqs. (9-2) and (9-3). Moreover, pairs of crossing aliasing orders possess 

opposite signs and, therefore, when they cross at an aliasing knot, they cancel 

each other out. Those curves in the waterfall displays of Ibn(k,co) that string 

aliasing knots are devoid of ridges and associated peaks; these ridges and peaks 

are suppressed by cancellations. These features are more easily read in 

Figs. 10-8.1 through 12.1 than in Figs. 10-8 and 12. The behavior of the modal 

drive Psn(k,0)) in lieu of the ribs is shown in Eq. (11-1) to be composed of both 

factors Posn(k,co) and Ibn(k,co); its behavior is depicted in Figs. 10-13 through 

20. From the foregoing descriptions, it is clear that the factor Ibn(k,co) 

systematically suppresses the ridges and associated peaks that characterize the 

prominences in the factor Posn(k,a>). Thus, in Psn(k,co) the dispersive patterns 

that dominate the patterns in Posn(k,co) are absent. On the other hand, the factor 

Ibn{k,(0) systematically introduces ridges and associated peaks that prominently 

show in the patterns of Psn(k,co); these new loci are false dispersive loci and are 

displaced on one side or the other of the dispersive loci. The side is determined 

by the sign of the real part of A{(01co0). Significantly, the false dispersive loci do 

not possess ridges and peaks at the aliasing knots where pairs of aliasing orders 

of false dispersive loci cross. Since the contributions of the crossing aliasing 

orders, of false dispersive loci, at the aliasing knots possess equal magnitudes but 

opposite phases, they cancel out. A string of knots at the same frequency band, 

establish a stop band; the absence of ridges and associated peaks renders, in this 
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frequency band, a fairly uniform set of components with respect to the 

wavenumber (k), implying thereby a lack of propagating free waves and a 

confinement in the spatial x -domain in that frequency band. The false 

dispersive loci and the cancellations at the aliasing knots are in direct 

consequence of the interactions among the ribs via the shell. In the first order 

model, in contrast, the aliasing is governed by the dispersive loci and the 

cancellations are absent. The stop bands are, therefore, a phenomenon that 

manifest these interactions. On the other hand, away from an aliasing knot, 

reinforcement may take place between aliasing orders as the opposite phases 

change when the false dispersive loci approach or recede an aliasing knot. These 

reinforcements give rise to pass bands in which propagation of free waves run 

substantially unimpeded, if not aided, by the presence of the ribs. Again, the pass 

and stop bands are, therefore, a phenomenon that manifest the interactions among 

the ribs via the shell; the pass and stop bands are a phenomenon that is absent in 

this first order model. Again, the first order model is used in this report to 

emphasize the role played by the interactions among the ribs via the shell. The 

notion of the false dispersive loci and the phenomenon of pass and stop bands 

are facilitated by the first order model in that this very notion and phenomenon 

are absent in this model. However, since the first order model is merely a device in 

this service, and the service is rendered; its use is terminated at this stage. 

The pass and the stop bands constitute respectively, frequency ranges 

(bands) of prominent and subdued wavenumber activities in the drive in lieu of 

the ribs. These are clearly discernible in Figs. 10-13 through 21. [The dominance 

of the flexural free waves in the spectral range of concern in this report is such 

that only flexural pass and stop bands are of real investigative relevance.] To 

accentuate the vision of the pass and stop bands, a clipped version of a few of 
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these figures is presented. The clipping is here achieved by suppressing the 

presence of information that lies below a specific value; only prominences are 

then shown in these figures [15]. In this manner Figs. 10-15a-c, 17a, and 20 are 

clipped and shown as such in Figs. 11-la-f and 2a-f; the clipping in the second set 

is higher. The pass bands are clearly defined by the ridges and associated peaks 

that the clipping accentuates in both sets of figures. An appropriately selected 

clipping features the stop bands as components that are substantially flat or even 

arid in the clipped figures. 

Another investigation of worth is the influence of damping on ribbed 

shells. In the uniform shell it is found that a selected mechanical damping 

subdues a type of free waves according to its assigned loss factor; this feature is 

depicted in Figs. 6-4a-c for the three types of free waves; flexural, longitudinal, 

and shear, respectively. These figures make clear that increasing the damping of 

one type of free waves does not substantially influence the response in the 

others. When ribs are attached, scatterings of free waves take place; the aliasing 

patterns in Figs. 10-15a-c are reliable indicators that scattering of free waves 

indeed take place under the parametric values that pertain to these figures. 

Apparently, all three types of free waves undergo scattering and, therefore, 

"reverberant fields" are established by all three types of free waves. A question 

arises: Do the three types of free waves interact with each other; in particular, do 

the membrane free waves interact with the flexural free waves and vice versa? If 

they do, one may speculate that increasing the loss factor of the flexural free 

waves will subdue, not only the flexural free waves in Fsn(k,co), but also the 

membrane free waves and vice versa. The answer to this question is illustrated in 

Figs. 11-3 through 5 in which Figs. 10-15a-c are repeated with changes in the 

standard   loss   factors    [T]p , r\y) of {10-3, 10-3}    to    (3 x 1CT3, 10~3}, 
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{10~2, 10~3} and {10~3, 10"2},respectively. These figures; Figs. ll-3a-c, 4a-c 

and 5a-c, indicate that the "cross-over" interactions induced by the ribs are weak 

among the flexural and membrane free waves; notwithstanding that there is a 

substantial subduing of the normalized modal drive Psn (k, co) in each type of free 

waves when the loss factor of this type is substantially increased. Noting that 

fluid loading is a mollifier of phenomena, Figs. 11-6 through 8 repeat 

Figs. 10-15a-c and 11-4 and 5, except that the fluid loading parameter (ec) is 

decreased by four orders of magnitude from the standard value; from 10 to 

10"6. Figures 11-6 through 8 indicate that the statement just made needs no 

modification because of fluid loading influences; the standard fluid loading does 

not appear to seriously inhibit the interactions induced by the ribs among these 

three types of free waves. 
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Fig. 11-1. A clipped [clipping index 0.7] version of: 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15c. 

4 Fig. 10-17a. 

e. Fig. 10-20a. 

f. Fig. 10-20b. 

N.1, Wo_Wc.1 .E-2, ZmnBar.Y, EPSc.1 .E-2, X«/b-.5, Floor..7 
-i r- 

Fig. 11-la 

N.I, A(Wo_Wc).1, ZmnBar.Y, EPSc.1 .E-2. Xa/b..5, Floor-.7 
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Fig. 11-lc 
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N.O, Wo_Wo10, ZmnBir.Y, EPSd.E-2, Xa/b..3, Ftoor-.7 N-O, Wo_Wc-10, ZmnBar.Y, EPSc.l.E-4, Xa/b>.3, Fh>er-.7 
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N.I, Wo_We.10, ZmnBir.Y. EPSc.l.E-2, Xa/b..5, Floor-1.4 

Fig. 11-2. A clipped [clipping index 1.4] version of: 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15c. 

d Fig. 10-17a. 

e. Fig. 10-20a. 

f. Fig. 10-20b. 

10' 

10" 

/°Y/\ /\i v V AA •  \   A ■■ *, 
A  A A  A 

\A   /^V    /^\    ,/£\, 
\^... :.A^A AA

A\
AA
 : AA

A« 

»A A A A A A  1 lA A   . .   A ' 
A A* AA A* AA A* AA : 

-A        X--A        X--A        A"A: 
—     I     I || !|     |     — 

30 40 70 

Fig. ll-2a 

N.I, Wo_Wc.1 .E-2. ZmnBar.Y, EPSe.1 .E-2, Xa/b..5, Floor. 1.4 

= 10 

L A,               .A A. .A      A, .A A,  : 

.    AA         A*          \ A.A AA AA          AA 

A A A      A I, A 
i                > i ii i i 

10 20 30 40 50 60 

N-1. Wo_Wc..2S. ZmnBw.Y, EPSd.E-2, Xa/b..S, Floor.1.4 

10" 

/ 

"10" 

*, * A A K A 

V      V      V ! 

/! 
AA      AA 

A   K 

, /s .■ /\ 

\        VÖV v6v ;      ÄJ 
"AA AX ' AA        AA AA        AX" 

AAA.A "-*. At 
A    KA AA    \ A*    ^A KA   < 

A  .:   .  AA AA  :     .  AAi        VA    4A* "A A A V   A A A  i    A A 

-A        A'-A        A — A:      A"A 
■I   — —   i   I   — —   i   i ;i   i 

10 20 30 40 50 60 70 
Kt 

Fig. ll-2b Fig. ll-2c 

145 
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N.I, Wo_Wc.10, ETAp.3.E-3, BlItUKS, Gimmi.8, ZmnB«r.Y. 6PS0.1.E-2 

Fig. 11-3. Figures 10-15a-c are repeated with changes in 

the standard loss factors {qp, Tfy} of {l0~3, 10~3} 

to {3 x 10"3, 10"3}. 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15C. 
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N.1, Wo_Wc.10, ETAp.1.E-2, BatUm-5, Gimmi.9, ZmnBar.Y, EP80.1.E-2 

Fig. 11-4. Figures 10-15a-c are repeated with changes in 

the standard loss factors {j]p, r]y] of (l0~ , 10" } to 

{l0~2, 10"3}. 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15C. 
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N.1, Wo_We-10, ETAp.1 .E-3, ETAg.1.E-2. ZmnB»r.V, EP80-1.E-2 

Fig. 11-5. Figures 10-15a-c are repeated with changes in 

the standard loss factors {rjp, T/7} of {lO-3, 10~3} to 

{l0~2, 10~3}. 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15C. 

Fig. ll-5a 
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Hg. 11-6. Figures 10-15a-c are repeated except that the 

standard fluid loading parameter (ec) is changed from the 

standard value of 10"2 to 10"6. 

a. Fig. 10-15a. 

b. Fig. 10-15b. 

c. Fig. 10-15C. 
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Fig. 11-7. Figures ll-4a-c are repeated except that the 

standard fluid loading parameter (ec) is changed from the 

standard value of 10"2 to 10""6. 

a. Fig. ll-4a. 

b. Fig. ll-4b. 

c. Fig. ll-4c. 
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N.I, W»_Wc10, ETAp-I.E-3, ETAQ.1 .E-2, ZmnBir.Y, EPS0.I.E-« 

Fig. 11-8. Figures ll-5a-c are repeated except that the 

standard fluid loading parameter (ec) is changed from the 

standard value of 10     to 10    . 

a. Fig. ll-5a. 

b. Fig. ll-5b. 

c. Fig. ll-5c. 
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XH.     PASS AND STOP BANDS IN THE DRIVE Pm (JC, CO) 

IN LIEU OF THE RIBS 

One familiar with spectral and modal descriptions may now rest and feel 

that the promise of this report is fulfilled. Many of the phenomena in the 

response of panels, hybrid cylinders and natural cylinders are investigated, in 

conjunction and separately, in the spectral and modal domains. This spectral and 

modal investigative agenda is itemized below: 

1. The surface admittances of uniform shells are formulated and numerically 

investigated. 

2. The role of fluid loading on these admittances are also formulated and 

numerically investigated. 

3. The relationship between the three forms of a shell are discussed and 

commonalities and differences are emphasized. 

4. The dispersive loci are exhibited and investigated. The membrane free 

waves in the natural cylinders are defined and their characteristics are 

contrasted with those of the flexural free waves which exist in all three 

forms of a shell here considered. 

5. The influence of damping, mechanical and indirectly radiative damping, is 

investigated. 

6. The ribs are defined in simple terms. However, in this definition ribs that 

are mass, stiffness, and resistance controlled are available. The transitions 

with frequency between these controlled stages are also considered. 

7. The phenomena of aliasing and pass and stop bands are formulated, 

discussed and displayed. It is argued that these phenomena are manifest in 

the drive in lieu of the ribs. The first phenomenon, that of aliasing, resides 
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completely in the modal drive in lieu of the ribs. This phenomenon is 

directly related to the equi-separations between adjacent ribs and is not 

predicated on the interactions among the ribs via the shell. On the other 

hand, the second phenomenon, that of pass and stop bands, arises in direct 

consequence of the interactions among the ribs via the shell; in the 

absence of these interactions this phenomenon is absent. When the 

aliasing phenomenon resides in the modal drive in lieu of the ribs and the 

interactions among the ribs via the shell are accounted for, the 

phenomenon of pass and stop bands is present in this drive. There are 

those among the readers of this report who may, at this stage, prefer 

displays and discussions that pertain, in part or in whole, to the Fourier and 

modal conjugate domains. To satisfy the least of this preference, the 

complementarity with respect to the Fourier conjugate axial domains is 

attempted to this report. These Fourier conjugate axial domains comprise 

the k -domain and the x- domain. Indeed, displays and discussions that 

pertain to the c nnplementarities with respect to the other Fourier and 

modal conjugate domains, are deferred to subsequent presentations. Were 

the complementarity in the Fourier conjugate axial domains to prove 

advantageous, the incentive, to subsequently duplicate it in the other 

Fourier and modal conjugate domains, may be strengthened. 

The computations and displays to this point are performed and depicted on 

the spectral domain; the {(ak), {colcoc)}-domain. None of these computations 

and displays pertain to the {{x I a), (co/coc)} -domain, where (x/a) is the 

Fourier conjugate domain to (ak), notwithstanding that there are situations in 

which the interpretation of data is more readily conducted in one domain than in 

another even though the two domains may be Fourier conjugate domains. This is 
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particularly relevant to the interpretation of pass and stop bands. In the 

x-domain a pass band is merely a frequency band in which the transmission of 

vibration from a localized external drive position to a localized observation 

position that is removed a few bays away, hardly encounters more attenuation 

than is indicated by the distributed damping on an unribbed shell. On the other 

hand, a stop band in a similar geometrical situation, will indicate a more severe 

attenuation. A Fourier transformation of Psn(k,0)) into Psn(x,co) may thus be 

efficacious. There are a number of approximate techniques designed to perform 

this transformation. A first order Born approximation model and other similiar 

approximation models are devoid of the phenomenon of pass and stop bands. In 

these models the interactions among the ribs via the shell are discounted. It is 

shown in Section XI that the pass and stop bands occur in direct consequence of 

these interactions among the ribs. Therefore, it becomes necessary to perform a 

Fourier transformation that is sophisticated enough so that the phenomenon is 

not suppressed by the technique that handles the approximation; either a first 

order Born approximation or a similar approximation that reduces the modeling to 

a first order model is not acceptable. There are nonetheless several techniques 

that are adequate to the task, e.g., the Fast Fourier Transformation (FFT). 

However, in this report a somewhat new technique is used. The technique is 

particularly, but not exclusively, useful with respect to the phenomenon of pass 

and stop bands of regularly ribbed panels and/or cylinders. The exclusivity is with 

respect to the regularity of the spacings between adjacent ribs. The spectral 

formalism of this phenomenon in a regularly ribbed shell is expressed for a proper 

order model in the form 
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Psn(k,co) = Ibn(k,co) Posn(k,co) , (12-la) 

-1/2 Posn(k,co) = Sb(k) [Q^iKco) {2nyilL exp(ikxa)] , (12-lb) 

Ibn(k,co)  = {l + Sb(k) [Q„n(k,co)]}~1 , (12-lc) 

where Posn(k,co) is defined in Eq. (10-3) and Ibn(k,co) is defined in Eqs. (10-41b) 

and (10-3). FromEq. (3-26a) the Fourier transform of Psn(k,co) with respect to 

(k) is defined 

Psn(x,co)  = (2KY
111

   J dk   Pm(k,co) exp(-ikx)  , (12-2) 

where Psn(x, (o) is the normalized drive in lieu of the ribs. [cf. Eq. (3-17b).] 

Equation (12-2) may be cast in the form 

Psn(x,0)) = (2TT)-
1/2

   J       dk Sb(k)[Psn(k,co)exp(-ikx)] .        (12-3) 
o 

Since Psn(k, co) is an aliased quantity it follows that Eq. (12-3) can be simplified 

to read 

Psn(x,co) = (2n)-112 dk Psn(k,co) Sb(k) [exp(-ikx)] , (12-4a) 
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and hence 

f l 

Psn{x,co)  = StWlSWfKj)1 dk exp(-ikx) Psn(k,co)] ,    (12-4b) 

where 

Sb(k) [exp(-ikx)] = (In)'1'2 exp(-ikx) b £ S(x-jb) 

-1/2 
j 

= {2nyUL exp(-ikx) b sb(x) [8(x)] ; 

sb(x)[n(x)] =  ^n(x-jb). (12-5) 

Approximating the integral by a summation in the form 

J      dk M(k) =>  K^l + R)-1   £ M(kr); 
r = 0 

kr   = (l + R) !  Kr ; Kr   = r KX , (12-6) 

one derives from Eq. (12-4b) 

Psn(x,co) =  sb(x) [S(x) PRn(x,0))] , (12-7) 
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where 

R 

I 
r = 0 

PRn(x,co) = (l + R)-1     ]T  Pm(kr,co)exp(-ikrx). (12-8) 

The validation of Eq. (12-8) for a particular form of Psn{k,(o), as stated  in 

Eq. (12-1), requires that 

{T}y(l + R)Yl  « (*y/*i) « (*„/*!) « J = Joil + RV1 ,   (12-9) 

where (/) is the span of (j) in the summation that is dictated by the aliasing 

operator Sb(k) in the expression for Psn(k,co), (kM) is the wavenumber that 

renders G^k,^) small enough compared to unity so that the subsequent values 

of I G^nikjCO) I for k > kM can be neglected in the summations, (ky) and (77 y) are 

the free wavenumber and the loss factor for the free waves of concern. The value 

of (R) is clearly dependent on (/q) and the appropriate values of (ky) and (i]y). 

Indeed, the advantage of this technique of performing a Fourier transform is that 

it is geared to accommodate the particular separation wavenumber (TO,) that is 

basic to the aliasing and the pass and stop bands phenomena in regularly ribbed 

panels and/or cylinders. It is, therefore, adopted in the computations performed in 

this report. Returning to Eq. (12-7), it is clear that PRn(x,(o) is evaluated at the 

locations of the ribs only and that I PRn (Xj, co) I is the normalized strength of the 

drive in Heu of the rib at the position (JC; ) of the (j)th rib. In this drive the 

interactions among the ribs via the shell are accounted for. Clearly, in the pass 

bands the spatial decay in this normalized strength, away from the drive point at 

the normalized position {xa I b), is light. On the other hand, in the stop bands the 

spatial decay in this normalized strength, away from the external drive point at 
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the normalized position (xa /£), is heavy. One is reminded that the bands are in 

reference to the frequency (0 -domain. The presence of pass and stop bands is 

illustrated in Fig. 12-la. The strength PRn(Xj,co) is depicted as a function of the 

normalized frequency (co/coc) for three values of the rib-positions; (X: lb) = 5, 

10 and 15, and the application of the external drive is at the standard position of 

(xa/b) = 0.5. The kind of decays just discussed are clearly demonstrated in 

Fig. 12-la in which the standard parametric values are employed on a hybrid 

cylinder. The pass and stop bands in Fig. 12-la cannot be missed. In Fig. 12-2a 

the corresponding situation with respect to a natural cylinder is depicted. Except 

for a major difference at the frequency below an octave or so above the ring 

frequency and a kink or two at the higher frequency range, the two figures, 

Figs. 12-la and 2a, show substantial identity, notwithstanding that a few of the 

kinks are common to both figures. Thus, in the range of frequency of interest and 

in the format in which the displays are cast in this report, the differences are 

minor. In Figs. 12-lb and c and 12-2b and c, Figs. 12-la and 12-2a are repeated 

except that the fluid loading parameter (ec) is changed from the standard value 

of 10 to 10 and 10 »respectively. The influence of fluid loading is clearly 

discernible in these figures. In order to bring out this influence Figs. 12-la-c and 

12-2a-c are placed side by side; (a) in the middle, (b) above and (c) below. A 

major influence is the frequency shift in the prevailing flexural stop bands with 

increase in the fluid loading; the shift between Figs. 12-la and 2a and Figs. 12-lb 

and 2b, respectively, is minor, but between these two sets of figures and 

Figs. 12-lc and 2c, respectively, the shift is substantial. Also the shift is to lower 

frequency, which is commensurate with increase of surface mass. This surface 

mass is contributed by the fluid loading as explained in Section VII. On the one 

hand, kinks in the curves that disappear with decrease in fluid loading are fluid 

bearing.   On the other hand, those kinks in Fig. 12-2 that persist with such a 
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decrease are, by definition, associated with the membrane free waves. These 

figures further show that when fluid loading is high; ec > 10-2, the extremes 

between stop bands and pass bands is mollified. Is this mollification attributable 

to the radiation damping? This damping is increased by the presence of the ribs, 

in particular in the frequency range that lies below the critical frequency, but 

above the first flexural resonance frequency of a bay. [A bay is the strip of the 

shell between two adjacent ribs.] Figure 12-3a depict the drive PRn{x,(o) on a 

regularly ribbed hybrid cylinder in which the flexural loss factor (77 p) is increased 

from the standard value of 10~3 to 10~2. Figures 12-3b and c repeat Fig. 12-3a 

except that the fluid loading parameter (ec) is changed from the standard value 

of 1CT2 to 10^ and 1CT1, respectively. The increase in damping indeed mollifies 

the extremes between the stop bands and pass bands, [cf. Fig. 12-lc] It is noted 

that the way the mechanical damping is introduced in this report, it diminishes 

with a decrease in frequency; the mechanical damping is proportional to the 

wavenumber of the free waves of the wave type of concern and this 

wavenumber diminishes with frequency. This explains the decrease in the 

influence of a frequency independent loss factor (T]p) at the lower frequency 

range. Figures 12-4a-c and 5a-c repeat Figs. 12-la-c and 2a-c, respectively, 

except that the position (xa / b) of application of the external drive is changed 

from the standard value of 0.5 to 0.3. A comparison between these two sets of 

figures reveals the influence of a geometrical asymmetry in the external driving; 

the influence can be sparsely substantial. Again, Figs. 12-la-c and 2a-c are 

repeated in Figs. 12-6a-c and 7a-c, respectively, and in Figs. 12-8a-c and 12-9a-c, 

respectively, except that in the first repeated set the mode index («) is changed 

from the standard value of zero to unity and in the second to nine (9). In the 

second set, in addition, a change in (xa / b) from the standard value of 0.5 to 0.3 

is instituted.  Expectedly, at the very low frequency range in Figs. 12-8 and 9, a 
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gap is discernible in the data; this frequency range, however, lies outside the 

scope of this report. Note a prominent kink at (co / coc) ~ 0.36 in Fig. 12-9 and 

note the absence of this kink in Fig. 12-8; and, therefore one may conclude that 

this kink is a manifestation of membrane free waves. Finally in this series of 

figures, Figs. 12-10a-c repeat Figs. 12-la-c, respectively, except that the surface 

mass impedance ratio(M / mb) of a rib is increased from the standard value of 0.2 

to 1.0. A comparison between Figs. 12-la and 10a reveals that the stop bands are 

wider and they are more inclined to bottom with distance away from the external 

drive position at (xa lb). A stop band bottoming manifests in that the disparity, 

in a stop band, between the curves at (x15 lb) and (xl0 lb) is less pronounced 

than between the curves at (x10 / b) and (x5lb). A comparison between 

Figs. 12-10a and b indicates that the stop bands bottoming is substantially 

induced by the higher fluid loading in the former figure. Indeed, a glance at 

Fig. 12-10c confirms this indication. Moreover, this figure lends further support 

to the common rule that claims that fluid loading tends to mollify extremes in the 

response behavior of structures; Fig. 12-10 is an uncommon example of this rule. 

The bottoming phenomenon in these figures is associated with the flexural stop 

bands which dominate the pass and stop bands phenomenon in these figures. In 

Fig. 12-11 this bottoming phenomenon is examined more directly; this figure 

repeats Fig. 12-6 for a hybrid cylinder, except that the spatial positions (Xj lb) at 

which the drive PRn(Xj,o)) is assessed is at 7, 14, 21 and 35 instead of 5, 10 and 

15 which are the adopted positions in Figs. 12-1 through 10. Comparing 

Figs. 12-6a-c with Figs. 12-1 la-c, respectively, the bottoming phenomenon in the 

flexural stop bands is more clearly discernible in the latter set than in the former 

set, especially at the higher values of the fluid loading parameter. In a similar 

manner, Figs. 12-12a-c repeat Figs. 12-7a-c, respectively, for the natural cylinder. 

Comparing these two sets of figures clearly demonstrates the phenomenon of 
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bottoming in the (flexural) stop bands. Figures 12-1 through 12 pertain to ribs 

which have line (ring) impedances that are identical and are mass controlled. 

How are these figures modified by changes in the character of these impedances? 

To answer this question Figs. 12-13a-c and 14a-c are offered in which the 

normalized drive Psn(x,co) for a hybrid and a natural cylinder, respectively, is 

displayed as a function of (co/coc) for the four values of (Xj lb). In these 

figures the line impedance of the ribs is changed from that of mass controlled to 

stiffness controlled and on to a resonating rib with a resonance frequency at 

(co0/coc) = 0.25,respectively. In Figs. 12-13c and 12-14c the line impedance 

is mass controlled in the frequency range (co /co0) < 1, resistance controlled in 

the frequency range (coIC0o) ~ 1 and stiffness controlled in the frequency range 

(coI co0) > 1. [cf. Section EX.] In Fig. 12-13 and 14, as in the preceding figures, 

the three cases are cast side by side in a single figure. The bottoming feature in 

the (flexural) stop bands is clearly discernible in all three components of 

Figs. 12-13 and 14. Some exceptions are found in the higher frequency range 

when the line impedance of the ribs is stiffness controlled and its strength is 

subdued, which is, in that respect, the antonym of the situation depicted in 

Fig. 12-10. Also of note is the "additional stop band" established at 

(co/coc) ~(co0/coc) = 0.25 in Figs. 12-13c and 14c. This additional stop 

band is generated by the accentuated strength in the line impedance of the ribs 

and it is noted that this impedance is resistance controlled at the resonance 

frequency where this additional stop band is located. Further, Figs. 12-13 and 14 

indicate that the flexural stop bands are shifted to the higher frequency ranges 

when the line impedance of the ribs is changed from mass to stiffness controlled. 

This feature is, in part, discussed in Section X with respect to the false dispersive 

loci, their aliasing orders and the cancellations that occur at knots at which pairs 

162 



of these aliasing orders cross. Figures 12-14a-c are augmented by Figs. 12-15a-c, 

respectively, in which the only change is in the mode index («) from zero to 

unity. The two sets of figures are substantially similar, notwithstanding that for 

example, a kink at (co/coc) ~ 0.125 is apparently a membrane stop band for a 

mass controlled line impedance for the ribs. This is emphasized by the differences 

that contrast Fig. 12-13 from Figs. 12-14 and 15; the former figure pertaining to a 

hybrid cylinder and the latter figures to a natural cylinder. Other differences can 

be similarly interpreted in this comparison. 

Returning to the resistance controlled region of frequency, in which the 

ribs resonate and create an additional stop band in consequence, one may inquire 

as to whether it is either the high magnitude of the ring (line) impedance, the 

resistance controlled characteristics of that ring impedance or both that 

contribute to this phenomenon; the phenomenon being the additional stop band. 

To examine this phenomenon more intimately Figs. 12-15d and e repeat 

Figs. 12-15c except that in these figures the fluid loading parameter (ec) is 

changed from the standard value of 10~2 to 10-4 and 10"1, respectively. The 

removal of fluid loading in Fig. 12-15d renders the additional stop band narrower 

and sharper as is rendered onto all the other stop bands. On the other hand, the 

increase of fluid loading in Fig. 12-15e tends to mollify the additional stop band. 

Nonetheless, even with this high fluid loading; ec = 10_1, the additional stop 

band is clearly discernible in this figure. Figure 12-15f repeats Fig. 12-15d except 

that the loss factor {r\p) of the flexural free waves is increased from the standard 

value of 10_3 to 5 x 10~3. The increase in damping tends to subdue the stop 

bands and simultaneously increase the decay in the pass bands. At and in the 

vicinity of the additional stop band, the influence of this increase in damping is 

similar to that of other stop bands. Indeed, when the damping is increased further, 
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as depicted in Figs. 12-15g, in which r\p = 2.5 x 10 , the stop bands are 

substantially subdued. Indeed, except for the saturation at the higher distances 

away from the position of application of the external drive, there is a simultaneous 

increase in the decay in the pass bands. Noticeably, the additional stop band is 

the only one that remains substantial before saturation is attained. As in 

Section X one may be asked: How significant to the existence and behavior of 

the additional stop band is the resistance controlled character of the ribs at 

resonance, or is this existence and behavior merely controlled by the high 

magnitude of the line (ring) impedance of the ribs at resonance? To answer the 

question Figs. 12-16a-g are offered. These figures repeat Figs. 12-15a-g except 

that the standard quantity A(CD/CO0) is changed to A\coI(0o). The former 

quantity is defined in Eq. (9-3), the latter, in Eq. (9-6). This change removes the 

resistance character of the ribs at resonance while retaining the high line (ring) 

impedance of the ribs at resonance, [cf. Fig. 10-15 versus Fig. 10-21, respectively.] 

Again, as in Section X the overlap between Figs. 12-15 and 12-16 in the region of 

resonance is only in details, suggesting, thereby, that the increase in the line 

impedance may be more significant than its character. Nonetheless, the resistance 

character of the ribs at resonance, except at the highest of fluid loading; 

ec = 10_1 and the highest of damping; r\p = 2.5 x 10~2, the differences 

between the two sets of figures are diminished, even in details. It is clear from 

Figs 10-15 and 21 and Figs. 12-15 and 16, respectively, that these two sets of 

figures address similar commonalities and differences, except that the first set 

depicts the computational data in the &-domain and the second in the 

x -domain.  It emerges that some details are more prominently displayed in the 
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first domain and others in the second domain.  Can the two domains be jointly 

displayed to advantageously decipher and interpret phenomena of interest? 
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Xm. COMPLEMENTAL DISPLAYS OF THE DRIVE IN LIEU OF THE RIBS 

From Sections X and XI and from Section XII it emerges that a 

phenomenon described in the two Fourier conjugate domains, the (axial) 

k -domain and the (axial) x -domain, exhibit common characteristics with 

possibly different emphasis. In these sections the drive in lieu of the ribs is 

computed complementally in this pair of Fourier conjugate domains. Is it 

advantageous, to the discovering and interpreting of phenomena, to cast the pair 

of conjugate descriptions of this drive under a single cover? To facilitate this 

casting it is necessary to render compatible the displays in Section X and 

Section XII. The displays in Figs. 12-13 through 16 are accordingly replotted 

with a normalized frequency (co/coc) axis that appropriately befits the (co/coc) - 

waterfall format employed in Figs. 10-13 through 15 and 21. With this replotting 

scheme, corresponding figures in these two sets are paired and cast under single 

covers. These single covers are presented in Figs. 13-1 through 4. The 

phenomena of aliasing and pass and stop bands in the modal drive in Heu of the 

ribs are of particular manifestation in these figures. It is clear that the 

complemental displays in the figures of this section are useful analytical tools in 

the investigation of these phenomena. 
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APPENDIX A: THE EQUIVALENCE OF AN EIGENOPERATOR AND A 

STATIONARY IMPULSE RESPONSE FUNCTION 

The equation of motion in terms of the impedance operator is 

z(x,y,t) v(x,y,t) = pe(x,y,t), (Al) 

where z(x,y,t) is the impedance operator, v(x,y,t) is the response, and 

pe(x,y,t) is the external drive, [cf. Eq. (3-2).] An assumption is made that 

z(x,y,t) is an eigenoperator with respect to the temporal variable (0: namely, 

z(x,y,t) {IKT
111
 expiicot) = z(x,y,co) (2^)_1/2 exp(icot), (A2a) 

or more concisely, but equivalently, 

{z(x,y,t)  = z(x,y,co)} (2^)_1/2   expiicot) , (A2b) 

where typically 

v(x,y,co) = (2ny112 j  dt v(x,y,t) exp(icot) . (A3) 

From Eqs. (Al) through (A3) one obtains 

z(x,y,co) v(x,y,co)  =  pe(x,y,co) . (A4) 
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[cf. Eq. (3-2).]   The response in terms of the impulse response function is by 

definition 

v(x,y,t)  =  J |(.,,', y\y', t\t') dx' dy' dt' pe(x',y',t') .    (A5) 

An assumption is now made that g(x I JC\ y\y', t If') is stationary with respect 

to the temporal variable; namely, 

KJCIJC', y\y', t\f) ,  -> (2nY112   g(x\x', y\y\ t-t') , (A6) 

where typically and by convention 

g(x\x', y\y', co\co') 

= {IJiY112   \   dt   \ dt' KJCIJC', y\y', t-t') exp[i(cot-co't')] .     (A7) 

From Eqs. (A6) and (A7) one obtains 

g(x\x', y\y', co)  = (2n)~xl2   j   ds g(x\x', y\y', s) exp(icos) .  (A8) 

From Eqs. (A6) through (A8) one obtains 

g(x\x', y\y', co\co') =  g(x\x', y\y', co) 8{co-co') , (A9) 
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and whence from Eq. (A5) one derives 

v(x,y,co)  =  J   g(x\x', y\y', co) dx' dy' pe(x',y',co) , (A10) 

which is the impulse response form of Eq. (A4). 
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APPENDIX B: COMPUTATIONAL DISPLAYS 

A large number of quantities, typified by X, that are investigated in this 

report are dependent on the two-vector variable {k,(o} and usually on another or 

other dependent variables: e.g., X(k,ky,(o); X(k,n,co) = Xn(k,(ö); 

X(k,co, 01 <pa) etc. and also on a number of parameters; e.g., the fluid loading 

parameter (ec), the critical frequency (coc), etc. A convenient and yet a rich way 

of illustrating the computations performed on these quantities is to determine 

them in a normalized form; X -> X {k,a>}, and to display them on the normalized 

{(ak), (co/coc)} - plane, with other dependent variables, if present, and 

parameters that are properly normalized and then assigned fixed values; e.g., 

(aky) = 6, (<t>-(j)a) = 0, (akc) = (acoc/c) = 26.S, ec=10"2 etc., where (a) and 

{(Oc) are given normalizing length and frequency, respectively, and (c) is a speed. 

The quantity log10(X) is displayed as function of the normalized wavenumber 

(ak), usually in (co/coc) frequency waterfall format. In this format the origins of 

plots of log10[X(k,a>)] for specific normalized frequency (co/o)c) are discretely 

and successively shifted by equal increments in the normalized frequency 

(co/coc). The density of the increments and/or the levels in the plots are chosen 

and adjusted to suit particular needs and conveniences. The display of the 

computed and normalized quantities is cast conveniently by specifying standard 

values for the other normalized variables and normalized parameters. This 

procedure does not only help in the comparison between various displays but it 

also helps with the figure captions. Only changes from the standard fixed values 

of the other normalized variables and normalized parameters need to be 

specifically reported. 
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Often the normalized quantity, as typified byX, exhibits patterns when 

displayed in the manner just discussed. Significant contributions to the patterns 

are provided by the prominences and anti-prominence in the values of log10(X). 

Situations arise in which it is advantageous to accentuate the prominences in the 

displays. This may be accomplished by clipping out the values of log10(X) that 

are below an assigned threshold. The assigned threshold is designated by 

log10(X°). The     clipping      is      achieved      then      by      displaying 

{log10(X) U[(X IX°)-l]},where U is the unit step function. Also, often the 

normalized quantity, as typified by X, exhibits patterns in certain regions on the 

{(ak), (ü)/coc)} - plane, the details of which hold particular interest. One may 

then satisfy this interest by zooming onto the region so that details can be more 

readily examined by direct observation of the displays. Moreover, the zoomed on 

details in the region can be scaled to suite a particular requirement. Additionally, 

curves in different waterfall displays may be advantageously compared side by 

side. In such situations single curves at the same frequency, from each of the 

(co/coc) - waterfall displays, can be compared. In this display the origins of the 

single curves are discretely and successively shifted. Again, the scales of the 

curves may be amplified to suite a particular requirement. Some of these aids to 

displaying the computed quantities are employed in this report. 
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