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1 Summary 

This research program has focused on enhancing the understanding of jet atomization processes and their 
contribution to combustion instabilities in liquid rocket engines. During the past two years, progress has been 
made in understanding the role of the atomization process in tangential-mode instabilities in the F-l engine. 
Boundary element simulations developed in this research have been compared with experimental results, 
showing excellent agreement. Three new models have been developed during the effort. The first model 
involves a fully-coupled gas/liquid simulation of an injection process under unsteady chamber conditions. 
The second model involves a zonal approach to a fully viscous simulation, wherein boundary layers are 
treated via an integral formulation and boundary elements are used at the viscous/inviscid interface. The 
third model addresses the nonlinear response of a droplet to an imposed acoustic perturbation has been 
studied. Results from all models are described in this report. 

2 Research Objectives 

The understanding of the complex combustion phenomena present in liquid rocket engines begins with the 
fundamental process of fuel and oxidizer jet atomization. Since the atomization process can be greatly effected 
by acoustic disturbances1, it appears as a primary focus2 in studies involving combusiton stability. For this 
reason, a focused research effort has been conducted to develop models capable of providing quantitative 
information regarding atomization processes (in both steady and unsteady chamber environments). 

The objective of this research has been to develop a series of models, incorporating increasingly complex 
physics, to assess the role of atomization in the combustion instability process. The models have centered on 
the use of Boundary Element Methods (BEMs) as a means to provide accurate description of these complex, 
nonlinear processes under arbitrary unsteady conditions. The models have demonstrated a capability to 
have calculations proceed beyond atomization events. While the basic BEM techniques are inviscid, recent 
development of a zonal model using an integral method for boundary layer modeling, permits a full viscous 
capability. This model, described in Section 3.6 of this report, is the first primary atomization model to 
provide accurate, fully nonlinear treatment of atomization processes under full-scale Reynolds numbers con- 
sistent with actual engine conditions. While other viscous models exist3,4, they can only provide simulations 
for low Reynolds numbers (of the order of a few hundred), while real jets are typically in the Re as 105 — 106 

range. 
With these capabilities, we have sought to address the sizes of droplets produced under various steady 

and unsteady injection conditions. In addition, the response of droplets to acoustic processes is another 
objective of this work. The following section details the status of these developments. Section 4 provides a 
description of professional activities (including publications and student theses) associated with this project. 

3 Status of the Research 

Seven major tasks have been accomplished during the two year research program. Collaboration with 
Dr. Steven Collicott (also in the School of Aeronautics and Astronautics) has enabled the generation of 
high-quality experimental data with which to compare atomization models (See Section 3.1). The effect 
of unsteady injection processes on the atomization of a liquid jet is addressed in Section 3.2. Section 3.3 
provides a description of the role of the atomization process in tangential-mode combustion instabilities 
observed during the development of the F-l engine. In Section 3.4, the response of a droplet to an acoustic 
perturbation is quantified, while Section 3.5 describes the fully-viscous model discussed above. Finally, results 
from a fully-coupled gas/liquid model are described in Section 3.6 and the fully viscous model highlighted 
in Section 2 is described in Section 3.7. 

3.1    Comparison with Experimental Images of Jet Profiles 

Under the direction of Professor's Heister and Collicott, Mike Moses developed an experimental setup capable 
of providing high-resolution imaging of low-speed liquid jets during the atomization process. The imaging 
system magnifies and records a shadow image of the water jet. A pair of achromatic lenses of focal length 
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Figure 1: Jet Profile Comparison Near the Pinch Location, (a) Experiment of Moses, (b) BEM Result, 
We=17.6, Bo=0.0109, k = 0.447. 

20 cm and diameter 4 cm are used to form a 1:1 image of the jet in the intermediate image plane, which is 
then imaged onto the CCD detector at the desired magnification. A variable-diameter circular iris is located 
between the achromats and controls the effective F-number of the imaging system. The short-pulsed spark 
source assures an instantaneous sample of the jet and drop shapes. 

The edge detection scheme used in this project is an improvement of the method of Collicott, et al.5, 
which was applied to an anamorphic imaging system to measure growth rates of waves on liquid jets. The 
additional purpose of the improved method is to investigate droplet sizes. Therefore, the edge detection 
procedure is applied to the image in both directions. Programming effort is required to sort edges in droplets, 
and to assemble the data from horizontal and vertical scans. The fundamental operation performed in these 
methods is to convolve the image greyscale data with the theoretical edge-response of the imaging system. 
In the present work, the combined effects of diffraction and aberrations are approximated by assuming a 
circular Gaussian impulse response. More details regarding the experimental apparatus can be found in the 
paper attached in Appendix A. 

A simulation using our finite-length jet code6 was run to assess the accuracy of the BEM in reproducing 
experimental results. Figure 1 provides a comparison of the calculation with the observation. The agreement 
between the BEM simulation and the experimental measurements are excellent; "recoil" waves generated as 
a result of the pinching process are resolved within the calculation, as is the size and relative spacing of main 
and satellite droplets. This comparison confirms the high-accuracy of the BEM in problems of this nature. 

3.2    Effects of Unsteady Injection on Atomization 

One of the consequences of unsteadiness in the combustion chamber is the possibility of inducing unsteady 
massflow through injector orifice passages. To address this issue, our finite-length jet simulation6 was applied 
to a range of unsteady flows in which the frequency and amplitude of the unsteady component of injection 
velocity was varied. The effect of oscillation magnitude on the jet breakup is investigated by six simulations 
with unsteady velocity component (q1) varying between 2 and 7% of the mean. Figure 2 shows jet profiles 
for three of these disturbance magnitudes. Each pair of profiles shows the jet at times just before a main 
droplet and a satellite droplet are shed from the calculation. As this figure shows, increasing the size of the 



perturbation decreases the breakup length, and changes the shape of the droplets. 
At larger disturbance magnitudes, the main droplets take on a "squashed" shape as a result of the high 

velocity fluid encountering lower velocity fluid which has already exited the nozzle. This phenomena, known 
as the"Klystron" effect, has been documented qualitatively by numerous researchers'8 in the case where 
forcing perturbations are very large amplitude. 

Figure 3 shows the effect of dimensionless frequency (k) on the character of the jet for q' = 2%. Each 
of the first four pairs of profiles show the jet at times just before a main droplet and just before a satellite 
droplet are shed from the calculation. Increasing the frequency from k = 0.5 to k = 1.1 tends to decrease the 
breakup length even beyond the most unstable wave number, kmal = 0.7; a trend not predicted by linear 
theory. In addition, the size of satellite drops tends to decrease with increasing frequency in this range. At a 
wave number of k = 1.1, satellite drops have nearly vanished indicating that a wave number near this value 
can produce monodisperse atomization. 

Quantitative predictions of droplet sizes are shown in Fig. 4. Here, the solid lines are results for 
infinitesimal disturbances and experimental results are a composite of data from Lafrance9 and Rutland and 
Jameson10. The finite-amplitude results are for q' = 2%, and they show a tendency to drive conditions 
toward a monodisperse result by increasing satellite drop size and decreasing main drop size over the entire 
range of wave numbers investigated. Once again, the peak-sharpening and trough broadening which occur 
with increased disturbance magnitude provide an explanation for the observed results. At higher disturbance 
amplitudes, local curvature in the transition region between peaks and troughs can be driven to large enough 
values to promote nonlinear instability at wavelengths predicted to be stable using linear analysis. 

A complete description of these simulations is provided in the Physics of Fluids article attached in 
Appendix B. 
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Figure 2: Effect of Longitudinal Disturbance Amplitude on Behavior of Liquid Jet at We = 100, ug 

0.7. (a) q' = 2%, (b) q' = 4%, (c) q' = 6% 
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Figure 3: Effect of Longitudinal Disturbance Frequency on Behavior of Liquid Jet at We = 100, q' = 2%. 
(a) u/iüg = 0.71, (b) uj/iog = 1.0, (c) u/ug = 1.29, (d) w/w, = 1.57 

3.3    Simulation of F-l Engine Tangential-Mode Instability 

Through the recent development of a 2-D simulation of a liquid column responding to an imposed crossflow, 
we have been able to construct simulations pertinent to tangential-mode acoustic instabilities in liquid rocket 
engines. As a result, efforts have been focused to analyze both stable and unstable injector designs from the 
F-l engine test program11. As one might expect, the response of the column grows dramatically when the 
acoustic frequency (ujg) is near that of the column natural frequency (w). 

Using the model, a simulation was conducted of a highly-unstable F-l injector configuration (the Double 
Row Cluster, DRC), as well as the final, stable configuration demonstrated in Flight Rating Tests (FRT). 
The DRC design exhibited a IT instability at 454 Hz which led to chamber pressure oscillations of the order 
of 400% of the mean. The most prominent difference between these two injectors is the fuel orifice size (3.57 
mm radius on FRT vs. 1.4 mm radius on DRC). The combination of the acoustic frequency in the chamber 
and the natural frequency of the DRC fuel colum leads to conditions very near the resonant frequency. In 
fact, we calculate that ug/u = 1.7 for the DRC, while the FRT design has wff/w = 7.0, a value far from the 
high response region. 

To assess the impact of the fuel orifice design differences between the two injectors, we have completed a 
simulation for both designs at a fixed Weber number of 0.1. Results of the column shapes at various times 
are shown in Fig. 5 for both designs. This figure shows that the unstable DRC design undergoes violent 
oscillations, whereas the stable FRT design is relatively unaffected by the imposed oscillation. Clearly, the 
large deformations of the DRC design will have substantial effect on the jet impingement region - a critical 
design feature for this impinging element injector. For this reason, we believe that the sensitivity of 
the DRC design to transverse acoustic energy may be a major contributer to the instability 
of this injector design. 

Further description of this analysis can be found in the Journal of Propulsion and Power article attached 
as Appendix C. In addition, a new manuscript, which will explore this problem in more depth is currently 
in preparation. 
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Figure 4: Effect of Longitudinal Disturbance Frequency on Drop Size for Liquid Jet at We = 100, q' = 2%. 
Solid Lines are for q1 « 0. 

3.4    Nonlinear Droplet Response to Acoustic Excitation 

A model was developed to investigate the deformation (and possible breakup) of a droplet exposed to an 
acoustic wave. A series of simulations at a constant gas/liquid density ratio of 0.001, and at a Weber number 
(We) of 0.58. These conditions are roughly equivalent to a 100 micron water droplet excited by a 160 decibel 
sound wave. Figure 6 shows the nonlinear frequency response of the droplet under these conditions. Here, 
the overall level of response is inferred from the aspect ratio (in either prolate or oblate form) of the droplet 
under maximum deformation conditons. The droplet response is much more complex than that of the liquid 
column in that 4th-mode coupling is present in many cases. Sharp peaks are realized at several higher-order 
harmonics. The region 0.9 < wg/w < 1 is characterized by actual fragmentations of the droplet. 

Figure 7 highlights the droplet breakup modes identified using this model. At lower We values, small 
"nipples" are pinched from the main body of fluid. As We grows, dumbell-shaped structures are encountered, 
followed by "doughnut-shaped" structures. At the very high We values, the droplet flattens to a disk, and 
small rings are shed from the periphery. This behavior has been noted by several experimentalists by exposing 
droplets to shock waves, thereby causing a large dynamic pressure about the drop. Breakup times decrease 
dramatically as We is increased. 

A complete description of this model, which includes many more results, is provided in Appendix D. This 
manuscript is currently in review in International Journal for Multiphase Flows. 

3.5    Coupled Gas/Liquid BEM Simulations 

During the past year, we have developed a fully-coupled, nonlinear simulation of a liquid jet issuing into 
a quiescent gas. This model has been developed to assess unsteady chamber effects on the atomization 
process. Researchers have speculated that the unsteady chamber conditions existing during combustion 
instabilities could impact the atomization process, thereby amplifying (or damping) the instability. While 
several calculations have been made using our model, a single highlight will be discussed here. Figure 8 
illustrates the influence of chamber gas density on the behavior of the jet at fixed inflow (i.e. Weber number) 
conditions. The gas density effect is measured through the input gas/liquid density ratio, e. Mushroom- 
capped structures appear at high e values due to the substantial momentum required to displace the "heavy" 
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Figure 5: Simulation of Fuel-Jet Response in the Unstable Double-Row Cluster (DRC) and Stable Flight 
Rating Tests (FRT) F-l Engine Injectors (times are measured in seconds from start of disturbance) 
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Figure 7: Droplet Breakup Modes Encountered Under Acoustic Excitation at the Drop's Natural Frequency 
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Figure 8: Effect of Gas Density on Initial Liquid Jet Behavior, We = 17.6 

gas in the chamber. Such conditions exist in high pressure combustion devices such as LREs. 
Presently, we are investigating the injector frequency response (both amplitude and phase shift) under 

a variety of unsteady chamber pressure conditions. Appendix E provides some information in this regard, 
while additional results will be presented in an upcoming manuscript. 

3.6    BEM for Viscous Flows 

Substantial progress has also been made in the development of a model capable of addressing liquid-phase 
viscous contributions to the atomization process. Unfortunately, we were forced to abandon the Dual Reci- 
procity Method for which we presented some preliminary results last year12. This method gave fine solutions 
for steady flows, but for unsteady flows the resulting matrices turn out to be ill-conditioned, making numer- 
ical inversion processes inaccurate. For this reason, we have adopted a zonal scheme in which the viscous 
region is treated separately via an integral method formulation. Full unsteady simulations are possible using 
this methodology within the framework of the BEM code which is used to solve for properties within the 
inner, inviscid region. 

A schematic representation of the zonal approach is outlined in Fig. 9. Our original BEM is used to 
solve for conditions (nodal velocities q and of the boundary layer. Using 4th-order velocity profiles with 
appropriate solid wall or free surface conditions at the outer edge, the integral method provides an ordinary 
differential equation of the local thickness, 8. Continuity and conservation of momentum (applied at the 
outer boundary) provide relationships for the surface velocities, u, and q,. 

Results from a typical calculation are shown in Fig. 10. The evolution of the boundary layer and free 
surface is depicted for a case where We — 10,000, Re = 10,000 and the initial boundary layer thickness (one 
radii upstream of injection point) is 5% of the orifice radius. These are typical injection conditions for actual 
rocket injector elements. The calculations are initiated by "ramping up" viscosity to the desired level over 
a period of 2 time units. The growth of the boundary layer during this transient generates a surface wave 
which convects downstream. At long times, a steady solution exists even under these high-speed injection 
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Figure 9: Schematic Representation of Zonal BEM/Integral Method for Addressing High-Speed, Viscous Jet 
Atomization Processes 

conditions. Obviously, the presence of the gas and turbulence effects (which are not presently modeled) can 
be important in this case. Future efforts will be aimed at quantifying interactions due to these physical 
processes. 

4    Professional Activities 

The efforts outlined in the previous section of this report were made possible by two grants from AFOSR. A 
single student, Mr. James H. Hilbing, was supported under the base grant (F49620-94-1-0151). In addition, 
an AASERT grant (F49620-93-1-0363) was utilized to support Chris A. Spangler, Mark W. Rutz, Michael 
P. Moses, Ian F. Murray, and Kurt Rump (all U.S. citizens). The following theses were written as a result 
of these two grants: 

Ph.D. Dissertation 

Hilbing, J. H., "Nonlinear Modeling of Atomization Processes", August, 1996. 

M.S. Theses 

Spangler, C. A., "Nonlinear Modeling of Jet Breakup in the Wind-Induced Regime", August, 1994. 

Rutz, M. W., "Effect of Transverse Acoustic Oscillation on the Behavior of a Liquid Jet", December, 1995. 

Moses, M. P., "Visualization of Liquid Jet Breakup and Droplet Formation", May, 1995. 

Murray, I. F., "Nonlinear Modeling of the Acoustically-Induced Oscillations of Droplets", August, 1996. 

Rump, K. M., "Nonlinear Model for a Liquid Jet Injected into a Quiescient Gas", December, 1996. 

10 
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Figure 10: Unsteady Boundary Layer Development Near Orifice Exit Plane During Transient "Start-Up" 
Process, We = 10,000, Re = 10,000 
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A list of journal publications (and submissions) associated with these efforts are provided in the following 
list. Highlighted items (*) have been attached in the Appendices of this report. 

Refereed Journal Publications and Submissions 

1. Spangler, C. A., Hilbing, J. H., and Heister, S. D., "Nonlinear Modeling of Jet Atomization in 
the Wind-Induced Regime", Physics of Fluids, V 7, No. 5, pp 964-971, 1995. 

2. Hilbing, J. H., Heister, S. D., and Spangler, C. A., "A Boundary Element Method for Atomization 
of a Finite Liquid Jet", Atomization and Sprays, V 5, No. 6, pp 621-638, 1995. 

3. *Hilbing, J.H., and Heister,, S.D.,  "Droplet Size Control in Liquid Jet Breakup,"   Physics of 
Fluids, V 8, No. 6, pp. 1574-1581, 1996. 

4. *Heister, S. D., Rutz, M., and Hilbing, J., "Effect of Acoustic Perturbations on Liquid Jet Atom- 
ization", To Appear, Journal of Propulsion and Power, 1995. 

5. *Heister, S. D., "Boundary Element Methods for Two-Fluid Free Surface Flows", In Review, 
Engineering Analysis with Boundary Elements, 1996. 

6. *Murray, I. F., and Heister, S. D., "On the Response of a Droplet to Acoustic Excitation", In 
Review, International Journal of Multiphase Flow, 1996. 

7. Hilbing, J. H., and Heister, S. D., "Coupled Boundary Element/Integral Method for High-Speed 
Free-Surface Flows", In Preparation, Engineering Analysis with Boundary Elements, 1996. 

8. Rump, K. M., and Heister, S. D., "Transient Response of Liquid Jet under Unsteady Chamber 
Conditions", In Preparation, Atomization and Sprays, 1996. 

A list of the conference papers presented in association with work under these grants is provided in the 
list below. The starred item is included in Appendix A of this report. 

Conference Papers and Presentations 

1. Hilbing, J.H., and Heister,, S.D.,  "A Boundary Element Method for Liquid Jet Atomization 
Processes", ILASS-94 Conference Proceedings, 5 pages, June 1994. 

2. Spangler, C. A., and Heister, S. D., "Nonlinear Modeling of Jet Atomization in the Wind-Induced 
Regime", ILASS-94 Conference Proceedings, 5 pages, June, 1994. 

3. Heister, S. D., Rutz, M., and Hilbing, J., "Effect of Acoustic Perturbations on Liquid Jet Atom- 
ization", AIAA 95-2425, 31st AIAA Joint Propulsion Conference, San Diego, CA, 1995. 

4. Hilbing, J.H., and Heister,, S.D.,  "Developments in Nonlinear Modeling of Atomization Pro- 
cesses", ILASS-95 Conference Proceedings, 1995. 

5. *Moses, M. P., Collicott, S. H., and Heister, S. D., "Visualization of Liquid Jet Breakup and 
Droplet Formation", 7th International Symposium on Flow Visualization, Seattle, WA, 

6. Hilbing, J.H., Heister,, S.D., and Rump, K., "Recent Advances in Nonlinear Modeling of Atom- 
ization Processes", ILASS-96 Conference Proceedings, 1996. 

7. Murray, I. F., and Heister,, S.D.,  "Modeling Acoustically-Induced Oscillations of Droplets", 
ILASS-96 Conference Proceedings, 1996. 

4.1    Technology Transfer/Coupling Activities 

Numerous technology transfers have occurred during the period associated with these grants. These items are 
summarized the the table provided above. Models currently under development should be of great interest 
to the liquid rocket engine community, since we soon plan to have a fully 3-D capability for high-speed jets. 
Current models are also applicable to impinging element injectors and blanching problems associated with 
oxidizer deposition on chamber/injector surfaces. 

12 



Table 1: A.tomization Modeling: Technology Transfer and Transition 
Customer Result Application 
Lockheed/Martin 
J. Chrusciel 
(408) 756-3890 

Jet Model for Projectile 
Control Application 

High-Speed Interceptors 

Thiokol 
D. Hawkins/T. Boardman 
(801) 863-3177 

Provided Hybrid Rocket Ballistic 
Computer Code 

HYBAL1D Ballistics Code 
Hybrid Propulsion 
Demonstration Program 

Lockheed/Martin 
Jim Tegart 
(303) 977-9740 

Boundary Element 
Modeling of Fluid 
Slosh Dynamics 

Propellant Tank 
Slosh Analysis 

Hewlett Packard 
Dr. Graham Ross 
(619) 487-4100 

Modeling Liquid 
Jet under Excitation 

Ink Jet Printers 

Rockwell Space Systems 
Mark Ventura 
(310) 922-0075 

Boundary Element 
Modeling of Fluid 
Slosh Dynamics 

Propellant Tank 
Slosh Analysis 
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Visualization of Liquid Jet Breakup and Droplet Formation 
Michael P. Moses, Steven H. Collicott, and Stephen D. Heister 

School of Aeronautics and Astronautics 
Purdue University 

West Lafayette, IN 47907-1282 

Introduction 

Liquid atomization systems are commonplace in today's industry. Some of the many 
applications include fuel injection systems, paint application, and spray drying. Even for 
relatively low speed jets, numerous applications exist. Among these are ink jet printers, 
droplet generators, and manufacturing processes involving the formation of monodisperse 
droplets from a column of molten metal. Due to the large number of practical applications, 
the literature available on this subject is quite substantial. Theoretical treatments of this 
problem date back to the late 1800's and the fundamental linear analysis of the capillary 
instability due to Rayleigh1. Linear analyses have since increased in sophistication to in- 
clude the presence of the gas phase2, viscosity3, and three-dimensionality4. Unfortunately, 
these models can not address important physical processes which occur at finite surface 
deformations. 

Experiments5-8 have revealed that a given wave on the surface of the jet breaks into two 
droplets rather than a single drop as postulated by the linear theory. Rutland and Jameson6'7 

examined the size of "main" and "satellite" droplets formed during this nonlinear process. 
These data were collected by manually measuring the size of the drop images on photographic 
plates. Lafrance8 conducted similar experiments on drop size, using electrostatic separation 
of main and satellite droplets and subsequent monitoring of fluid volumes collected. While 
this process is more automated than that used by Rutland and Jameson, it does not permit 
the recombination of main and satellite drops (due to collisions subsequent to the pinch-off 
process) which may occur9. 

Theoretical efforts in recent history have also focused on the nonlinearities and the for- 
mation of main and satellite droplets from a single instability wave. Weak nonlinearities 
were considered by including higher-order corrections to the linear theory5'10. Recently, full 
nonlinear simulations of the entire breakup process have been developed through the use of 
Boundary Element Methods (BEMs). Complete nonlinear simulations have been developed 
for an infinite inviscid jet. Models have been developed which neglect11 and include12 the 
presence of the gas phase. Hilbing, et al.13 included the orifice geometry; a simulation for a 
finite liquid jet. 

At present, additional measurements of droplet sizes are required for comparison with 
the fully-nonlinear models. In the past, measurements of droplet sizes from images has been 
performed manually, limiting the data available on drop sizes. With digital image processing 
applied to the data collection process, a large amount of drop size data can be processed 
efficiently and accurately. Additionally, measurements on the influence of the gas-phase 
pressure, in the "first wind-induced regime" of break-up are sparse. Previous observations7'8 

did not attempt to address this effect, which is difficult to discern at low jet velocities. Only 
with accurate resolution of droplet sizes and wave shapes does the potential exist to assess 
aerodynamic effects in the low-speed region.   For these reasons, research was initiated to 
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expand the drop size database and to address aerodynamic effects within the low speed 
regime. 

Experimental Apparatus 

The experimental apparatus is a water tank with acoustic perturber, an orifice, and the 
optical system. The water tank is a low pressure thin-walled steel tank 56 cm long with 
a 12.5 cm inner diameter and spherical end caps. The head height of water is fixed to be 
30.2 cm. The tank is mounted on a vertical traverse with a range of approximately 115 cm, 
allowing the optical setup to remain at a fixed height on the table. The traverse is mounted 
to an optics table with vibration-isolation legs, isolating the experiment from vibrations in 
the floor. This is found to be important to the success of the experiment. The low pressure 
tank is used with an orifice of diameter 0.0566 cm and L/D = 5.11. The upper chamber of 
this orifice produces a contraction ratio of approximately 120:1. Distilled water is used for all 
experiments, with water temperature measured during each run (fairly constant near 20° C 
throughout). Perturbations are introduced into the liquid jet with a piezoelectric speaker 
mounted inside the top of the tank. 

The optical system is shown in Fig. 1 and consists of the illumination and imaging sys- 
tems. Collimated white light from a short-pulsed (20nsec) spark source is used to illuminate 
the water jet. The center post of the spark source casts a shadow in the center of the 
beam. Therefore, the centerline of the imaging system is offset from the centerline of the 
illumination system, as indicated in Fig. 1. 

The imaging system magnifies and records a shadow image of the water jet. Because 
of the magnification required, the object-to-camera distance is small, placing the lens too 
close to the jet and subjecting it to wetting. Therefore, a pair of achromatic lenses of focal 
length 20 cm and diameter 4 cm are used to form a 1:1 image of the jet in the intermediate 
image plane, which is then imaged onto the CCD detector at the desired magnification. A 
variable-diameter circular iris is located between the achromats and controls the effective 
F-number of the imaging system. 

A Super-VHS format CCD camera is used with the 35 mm lens and extension tubes to 
image the jet break-up process. The camera has a 0.64x0.48 cm chip with a resolution of 
768 streamwisex494 transverse pixels. The short-pulsed spark source assures an instanta- 
neous sample of the jet and drop shapes. A typical image is shown in Fig. 2a. 

The magnifications of the complete imaging system, i.e., from object space to pixels in 
computer memory, are determined for each test run by acquiring images of a target ruler 
marked in 0.5 mm increments. Magnifications parallel with and perpendicular to the jet axis 
must be measured separately for the CCD camera in use. Magnifications are determined from 
spectral analysis (1-D power spectra) of numerous lines within these calibration images. The 
standard deviation of the magnification measurements is found to be approximately 0.5% in 
all cases. Without the spectral method, magnification measurement was found to give 3-5% 
error, and was the largest error source in the experiment. 

Digital Image Processing 

The edge detection scheme used in this project is an improvement of the method of 
Collicott, et al.14, which was applied to an anamorphic imaging system to measure growth 
rates of waves on liquid jets. The additional purpose of the improved method is to investigate 

16 



Overhead View 

Dlumination Centerline 

Liquid 
Jet 

Intermediate 
Image Plane 

Imaging Centerline 

Image Transfer 
Lenses and Iris ] 

Figure 1: Optical Alignment Offset 

droplet sizes. Therefore, the edge detection procedure is applied to the image in both 
directions. Programming effort is required to sort edges in droplets, and to assemble the 
data from horizontal and vertical scans. 

The fundamental operation performed in these methods is to correlate the image greyscale 
data with the theoretical edge-response of the imaging system. In the present work, the 
combined effects of diffraction and aberrations are approximated by assuming a circular 
Gaussian impulse response. This impulse response is analytically integrated in one direction 
to determine the edge response. The width of the Gaussian is found empirically in the present 
work. With complete specifications of the lenses, the width could be computed. Empiricism 
is found to suffice for the present work, in that the basic functions of the correlation: peak 
formation, noise reduction, and process automation, are not highly sensitive to the choice 
of the width. For the present work, the speed of direct computation in the spatial domain 
is sufficient, and is simpler to implement in sub-regions of an image than an FFT-based 
computation. Each 1-D correlation is scanned for peaks caused by sharp greyscale ramps 
occurring at edges. The upper plot in Fig. 3 shows the raw intensity levels along the scan 
line. The black portions (I(x) = 0) are the drops while the white area (I(x) ~ 250) is the 
background. The lower plot in Fig. 3 is the result of the correlation of the scan line with the 
edge response. 

Only peaks with intensity greater than a threshold value are considered valid edge loca- 
tions. In this manner, gradual greyscale shifts (such as the dark region at the top of Fig. 2) 
are discarded. Edge detection at pixel resolution is obtained by noting the pixel location of 
the correlation peak. However, edges don't necessarily lie at integral pixel locations, so a 
"center of mass" calculation yields a sub-pixel edge location. The correlation method reduces 
the effects of image noise, as seen in Fig. 3 where the correlation is smoother than the image 
intensity. 

A trapezoidal integration is used to compute the area of the droplet image assuming 
that the calculated area represents the maximum cross-sectional area of an axisymmetric 
object. Note that multiple views would be required to resolve 3-D effects; assumption of 
axisymmetry is deemed to be adequate for this study. 

Data Reduction Validation 

Three validation tests assess the accuracy of the image processing and drop sizing techniques. 
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Figure 2: 
periment. 

(a) Greyscale Image of Typical Droplet Formation,  (b) BEM Simulation of Ex- 

The first work compared measured and theoretical wave growth rates in the Rayleigh break- 
up regime14, and showed that the concept of correlating the image with the theoretical 
edge response is an accurate method of edge location. That demonstration was actually an 
anamorphic imaging system, with a streamwise magnification equal to 1/40 of the transverse 
magnification. 

The error introduced into the digital image processing by the discretization of the edge 
of a circle into N points was also considered as a validation exercise. Results indicate that 
this error is rapidly reduced as the number of points is increased, and that for N > 75, the 
error is less than 0.1%. Therefore, to eliminate numerical integration error, images need to 
be magnified such that the small satellite drops will have at least 75 pixels on the perimeter. 

The third verification test examines the accuracy of the entire data acquisition and re- 
duction process in determining the size of droplets. A drill gauge plate is placed in the object 
plane, and images of the holes are acquired. Error analysis shows that there is a ±0.7% error 
in drop size. 

Results 
Experiments are performed at two Weber numbers in order to keep jet velocity, and hence, 

the aerodynamic effects, fixed for different perturbing frequencies. The Weber number, 
We = pU2a/a, is the dimensionless parameter characterizing this process. Here, U is the 
mean orifice exit velocity (from volume flowrate measurements), a is the orifice radius, and 
p and cr are liquid density and surface tension, respectively. All experiments are conducted 
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Figure 3: Intensity and Correlation Plots for Sample Droplet Image 

with water exhausting into ambient pressure air. The two Weber numbers are 17.6 and 76.6, 
corresponding to jet velocities of 2.13 and 4.44 m/s, respectively, for this orifice. 

By varying the frequency of the speaker at the top of the tank, various dimensionless 
wave numbers, k, are generated. Linear stability theories indicate that the jet should be 
unstable for 0 < k < 1, but in practice it is difficult to force instability for very long (small 
k) or very short waves due to the tendency of the jet to break up at the most destructive 
wavenumber, k « 0.7. Thus, experimental observations are limited to 0.3 < k < 0.85, 
similar to that achieved by others7'8. Frequencies in the range of 300-1800 Hz produce this 
wave number range for the two Weber numbers noted above. The measured wave numbers, 
based on a calculation of the volume of fluid within a single wave near the breakup point, 
differ noticeably from the expected wave numbers. Measured wave numbers were as much as 
10% smaller than the input wave number, attributed to jet (and wave) stretching by gravity 
and surface tension effects. 

A typical image, at k = 0.447, and We = 17.6, is compared with numerical simulation13 

in Fig. 2. The image shows the main and satellite droplets, plus a wavy surface on the 
core column of liquid. This wavy surface is another satellite droplet just prior to pinch. 
The waves are caused by the "recoil" of the surface after the main drop separates. Note 
that these features are predicted correctly by the inviscid boundary element method (BEM) 
simulation, as are the sizes of the main and satellite droplets. The BEM simulation predicts 
atomization of the satellite as well into two subsatellites whose trajectories merge (indicating 
possible coalescence). Viscosity may serve to inhibit this process, which is not observed in 
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Figure 4: Droplet Size Measurements and Theoretical Results 

this particular experiment (but can be observed at lower wave numbers where satellite drops 
are larger). 

A summary of the droplet size measurements from both the present and previous7'8 

studies is compared with BEM predictions12 in Fig. 4. Wave numbers are adjusted such 
that the total volume of fluid in main and satellite drops corresponds to the initial column 
(of radius a) of the same volume. Each of the data from this study represents the average 
of between two and thirteen independent measurements. At a given set of conditions, the 
standard deviation of main drop sizes is typically less than 2%, while satellite drops have a 
larger dispersion (< 9%) due to their lesser size. 

Agreement of the present experimental results with those of Rutland and Jameson is quite 
good, with the exception of four satellite drops in the 0.3 < k < 0.4 range. Discrepancies here 
could be caused by formation of subsatellites (which combine with main drops). Agreement 
of the present data with measurements of Lafrance indicates a systematic bias which may be 
attributable to the electrostatic data collection of Lafrance. In that technique, one cannot 
account for the wave stretching phenomena observed in this study and by Rutland and 
Jameson. 

Agreement of the present results with the theoretical BEM predictions also indicates a 
systematic bias. This is believed to the effect of the inviscid assumption in the BEM model. 
The BEM results do predict an increase in the size of satellite drops, albeit minor, with 
increasing Weber number. Comparison of present experimental results indicates a similar 
trend, but the effect appears to be more pronounced than that predicted with the inviscid 
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theory.   Nevertheless, the overall comparison between the current measurements and the 
inviscid theory is quite good. 

Numerous images of wave shapes in various stages of the pinch-off process are also ob- 
tained in this work. A sampling of these waves is shown in Fig. 5, where curves (a)-(c) 
were obtained at successive downstream locations. Note the nonlinear wave growth, and the 
preferential necking of the surface toward the downstream (right) half of a given wave. The 
preferential necking can not be predicted with an infinite jet analysis, so simulations of a 
finite-length jet are underway. Many other results of jet surface and droplet images in this 
experiment are published in Moses15. 

Conclusions 
Experiments measuring main and satellite drop sizes show the influence of aerodynamic 

forces as Weber number is increased, causing the satellite drops to become larger. This 
effect is also predicted by the BEM model13. This effect can not be seen in the previously 
available data, due to the large scatter in Weber number6,8. Investigation of wave shape 
profiles at We=17.6 and 76.6 compare very favorably with BEM models. This research (see 
also Moses15) has also expanded the database of experimental wave shape profiles available 
for comparisons. 

The benefits of the 1-D theoretical edge-response correlation are sizable: unambiguous 
and consistent edge location, a large reduction in the effect of image noise on edge location, 
automation, and the ease of error quantification. Wave shape determination is simple and 
droplet sizing requires only additional processing. Magnification measurement by spectral 
analysis of test images reduces the magnification error to a level comparable with other errors 
in the system. These improvements make possible the detailed investigations of drop sizes 
and wave shapes for a wide range of jet flows. 
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I. INTRODUCTION 

The breakup of a low speed liquid jet is one of the fun- 
damental problems in two-phase flow. The resultant drop 
sizes formed from the breakup process are of interest to a 
variety of industrial processes, such as the manufacture of 
metal powders via solidification of a stream of molten mate- 
rial. In addition, the performance of ink jet printers is closely 
tied to the atorruzation process in the stream of ink emanat- 
ing from an injection orifice. For these reasons, a wide vari- 
ety of both analytic and experimental treatments have been 
applied to this problem. 

Early analytic works were performed on linearized gov- 
erning equations; results led to a prediction that a single 
droplet is formed from a given wavelength instability on the 
surface of the jet. Experimental observations, and more re- 
cent nonlinear analytic treatments, have revealed that a given 
wave along the surface actually atomizes into two droplets 
(termed "main" and "satellite" drops in the literature). 
Many experiments have been conducted utilizing a small 
amplitude perturbation in order to create disturbances of a 
given wavelength1"4 and to measure the size of resulting 
main and satellite droplets. Nonlinear models have been de- 
veloped to analyze this situation by assuming a periodic dis- 
turbance    along   the    length   of   the   jet   (infinite   jet 
assumption). •  In addition, the effect of the presence of the 
orifice  has  been  included in recent  "finite  length" jet 
simulations.7 These models have been quite successful in 
replicating the droplet sizes obtained from the experiments 
using a small controlled disturbance. 

In spite of these advances, many applications would ben- 
efit from an ability to provide additional droplet size control 
via modulation of disturbance amplitude or frequency from a 
controlled perturbation. For example, wavelengths which 
would be predicted to be stable on a linear basis could be 
forced to instability through the use of high amplitude, non- 
linear perturbations. Monodisperse droplet trains have been 
produced in this fashion by Dressier.8'9 Another alternative is 
to utilize finite amplitude frequency modulation to affect 
nonlinear wave deformation processes and control drop size. 
These notions have been utilized by Orme and coworkers in 
recent experiments.10-'2 This technique relies on recombina- 

sions" between the two bodies. Through experimental, 
various manufacturing operations have made use of the 
ideas to optimize droplet production processes. 

While experimentalists and manufacturing discipline 
have made progress in controlling droplet sizes using ;N 

techniques described above, the approaches have receive 
very little analytic treatment. Models based on the infinite , 
treatment cannot be used to analyze these disturbances be 
cause of the assumption of periodicity, i.e. the effect of d, 
turbance magnitude increasing as one approaches the orirkr 
cannot be addressed. 

However, with the use of a finite-length jet model.7 the 
effect of large amplitude perturbations on the behavior of the 
jet (and resulting drop sizes) can be predicted. In this paper 
we discuss the model developed for this purpose and present 
results for a variety of different injection conditions. The 
model is described in Section II. Validation of the model i, 
presented in Section III, while results are described in Sec 
tion IV. 

II. MODEL DEVELOPMENT 

We assume an axisymmetric, incompressible, inviscid 
flow in which gas pressure variations are negligible. Under 
these assumptions, the unsteady liquid flow is described bv 
Laplace's equation V2<£ = 0, where <f> is the velocity poten- 
tial defined as the function whose gradient is simply the ve- 
locity, i.e. V0=v. 

Following Liggett and Liu,13 the BEM formulation of 
Laplace's equation becomes 

a<A(r,) + I dG 
<t> — -qG dr = 0: 

tion of main and satellite drops due to "microspeed disper-       from inside the domain.7 

where d>(r) is the value of the potential at a point r,, T 
denotes the boundary of the domain, G is the Green's func- 
tion corresponding to Laplace's equation, n is the outward 
normal of the boundary and q = dd>ldn is the velocity normal 
to the surface. The quantity a results from singular contri- 
butions due to an integration over the "base point" and is 
equal to tr for nodes along a smooth boundary. At a sharp 
comer, a is equal to the angle of the corner as measured 
i- .... . 1 
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The free space Green's function solution to the axisym- 
metric Laplacian is 

4rK(p) 
G= 7=-. 

\a 

with 

a = (r+r/)- + (z-;l-)- 

and 

(r-rf + U-Z,)2 

(2) 

(3) 

(4) y     (r + r,)2 + (z-Z,y' 

where K{p) is the complete elliptic integral of the first kind. 
The quantity SGIdn can be expressed:13 

dG -2 E(p) 
dn [MW    {r_ri)l + {z_Zi)l 

x[( r-rl-U-z^tr+lm.iz-z,)] (5) 

where E(p) is the complete elliptic integral of the second 
kind. 

Since Eq. (1) involves an integration only around the 
boundary, we need not discretize the entire domain. To per- 
form this integration, it is necessary to assume a behavior of 
4> and q over the length of an element, and we assume a 
linear variation between "nodes" in our model. By assum- 
ing a linear variation between nodes, the integration in Eq. 
(1) becomes a function of geometry alone, and the governing 
equation can be written in matrix form:7 

[D]{<p} = [S]{q}, (6) 

where the elements of S result from the integration of G, the 
elements of D result from the integration dGldn and the 
values of a have been incorporated into the D matrix. Pre- 
suming that <j> or q is specified at each node on the boundary, 
this equation can be solved for the remaining flow variable at 
each node. 

Figure 1 shows the computational domain for the liquid 
jet. Nodes are fixed in the orifice with a prescribed inflow 
velocity, so that the BEM solution returns the velocity po- 
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tential. The velocity potential is specified along the free sur- 
face of the jet, and q is returned by the BEM solver. The 
surface is tracked by allowing the nodes to move with their 
local velocity vectors. In this case, flow kinematics require 

Dz _ d<t>      Dr    d<j> 

~D~t~~dz'     ~D~t~~dr~' (7) 

Here. d<j>ldz and d<t>ldr can be written in terms of deriva- 
tives parallel and normal to the surface (d<t>lds and q) and 
the local wave slope through a standard coordinate transfor- 
mation. The derivative d<j>lds is obtained via a fourth-order 
centered difference approximation. The unsteady Bernoulli 
equation provides the boundary conditions along a free sur- 
face interface. Using the liquid density (p), orifice radius 
(a) and mean inflow velocity (U) as dimensions, the non- 
dimensional form of Bernoulli's equation can be written: 

dd> _     1 2     K      Bo 
— =-j(V*) -—+ — (8) 

where We = pU2a/(T is the Weber number, Bo = pgaz/a is 
the Bond number, or is the liquid surface tension and K is the 
local surface curvature. The Eulerian-Lagrangian transfor- 
mation for nodes on the interface moving with the liquid 
velocity is 

DO     <?() 
_-_ + V*.V(). (9) 

Using this transformation, the Bernoulli equation in the liq- 
uid becomes 

D<t>     1 K      Bo 
(10) 

Equations (7) and (10) are integrated in time using a 4th- 
order Runge-Kutta scheme to solve for the evolution of the 
liquid jet. To keep a roughly constant grid spacing, cubic 
splines are used to regrid the surface of the jet every time 
step. 

As the jet issues from the orifice, a droplet will be 
formed at the tip of the jet and the radial coordinate of the 
necking region will tend to zero. To extend calculations be- 
yond droplet pinching events, a "pinch criteria" is required 
to remove droplets from the main body of the jet at times 
when the radial coordinate in the necking region is still a 
finite positive value. In the following calculations, we pre- 
sume that droplet pinching occurs when the minimum radius 
in the necking region is less than 5% of the orifice radius. 
When this event occurs, the node at this location is moved to 
the symmetry axis, and the value of the velocity potential is 
estimated based on a zeroth-order extrapolation. Approaches 
similar to this have been verified by other researchers.616 In 
addition, numerical experiments utilizing differing values of 
the pinch criteria have verified that near the selected value, 
droplet sizes and velocities are insensitive to this parameter. 

III. MODEL VALIDATION 

The axisymmetric BEM solver and free surface modules 
have been validated with results for the oscillation of a liquid 
droplet in the absence of gravity.7 In the linear regime, os- 
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FIG. 2. Jet profile comparison near the pinch location, (a) experiment of 
Moses. Ibl BEM Result. We=\7.6. Bo=0.0I09. * = 0.447. 

dilation frequencies are within one tenth of one percent of 
the analytical frequency given by Lamb.14 For moderate os- 
cillations, the BEM solver calculates frequency shifts rela- 
tive to the linear frequency within 0.5% of the analytic result 
presented by Tsamopoulos and Brown.15 

Moses1 investigated the breakup of a liquid jet with an 
experimental setup using water in air. He incorporated digital 
image processing techniques to provide accurate data on 
droplet size and surface wave shapes. His setup consisted of 
a tank draining through an orifice with radius a = 0.0283 cm 
and length to orifice radius ratio L/a= 10.22. A speaker ex- 
ternally fitted to the tank with an input sine wave from a 
signal generator provided acoustic perturbations to the jet. 
The jet was illuminated with a spark source, and imaged by 
a CCD camera connected to a video tape recorder. Edge 
detection was by the convolution of a video image of the jet 
with a mask. Data were collected at fixed Weber numbers of 
17.6  and  76.6,  and  with  wave  numbers  in  the  range 
0.3=s£=s0.85. Figure 2(a) shows a typical jet image near the 
pinch location with satellite droplet formation. 

A BEM calculation was performed in order to match the 
experimental results of Moses. The numerical simulation 
used a grid spacing of 20% of the orifice radius, a time step 
Af = 0.0025 and separated droplets when the radial coordi- 
nate at the pinch point was within 5% of the orifice radius. 
Figure 2(b) shows a three-dimensional rendering of the jet 
profile at time r = 92.4 time units. Here, the BEM result was 
aligned axially with the experimental image such that the 
breakup point occurs at the same axial location; the inviscid 
simulation tends to underpredict jet breakup length due to the 
neglect of viscous effects. This figure shows the excellent 
qualitative agreement between the experimental and numeri- 
cal results. Note how the tip of the jet shows a series of three 

t = 90.0 

t = 96.4 

t = 99.2 

t = 105.6 

t= 108.0 

f 

FIG. 3. Typical jet evolution. We = 100. t = 0.70.<?' = 2%. 

or four ripples formed by the recoil of the surface after the 
pinching event. In our simulation, these disturbances lead to 
atomization of the jet tip into 3-4 sub-satellite droplets. Inte- 
gration of the motion of these sub-satellite droplets show 
their tendency toward recombination. That is, the satellite 
droplet shown in Figure 2(b) is actually the superposition of 
two sub-satellite droplets which were integrated in time 
separately, and therefore the size of droplet shown is less 
than the actual size due to this overlap. The model is cur- 
rently incapable of recombining droplets after pinch. 

IV. RESULTS 

To simulate experimental results of liquid jet breakup, 
the computational domain shown in Figure 1 was used with 
an inflow velocity along the entire orifice exit of the form 

q=U[l+q'sm(kt)], ([[) 

where q' is the amplitude of the oscillatory disturbance and 
k is the wave number of the perturbation. Calculations were 
run for various velocity perturbations, wave numbers, and 
Weber numbers. Gravity is neglected, so that Bo = 0. All 
calculations begin with a long column of fluid, usually about 
15 to 20 orifice radii, outside the orifice in order to ensure 
that perturbations from the assumed spherical end cap do not 
influence the development of waves due to the imposed per- 
turbation. The calculations presented here use a grid spacing 
of 20% of orifice radius, a time step of Af=0.0025 time 
units (unless noted otherwise), and separate droplets from the 
calculation when the radial coordinate at the pinch location is 
within 5% of the orifice radius. 

A standard case is chosen as We =100, £ = 0.7 and 
q' = 2%. Linear stability analysis shows that this wave num- 
ber is the most unstable for this Weber number.17 Figure 3 
shows jet profiles for five successive droplet shedding events 
for the standard case, beginning at t=90.0 time units. By this 
time, the calculated drop sizes and jet breakup length pre- 
dicted by the BEM solver have a repeating pattern with very 
little variation. Periodic bulges appear in the jets due to the 
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TABLE t. Jet breakup simulation results. 

We °maf *,« 
50 0.7 2% 1.845 0.713 

100 0.5 2% 1.946 1.250 
100 0.7 2% 1.818 0.867 
100 0.9 2% 1.719 0.443 
100 1.1 2% 1.616 0.183 
100 0.7 3* 1.793 0.986 
100 0.7 4^ 1.771 1.053 
100 0.7 5^ 1.762 1.091 
100 0.7 6<?c 1.750 1.136 
100 0.7 l"c 1.749 1.158 

unsteady inflow, as noted by Reba and Brosilow.18 The non- 
linear effects on the bulges lead to the formation of "main"' 
and "satellite" droplets, a behavior well known for low- 
speed jets. 

A moderate 2% disturbance magnitude was chosen over 
typical acoustically-generated perturbation magnitudes in or- 
der to keep the jet breakup length to a reasonable size, and 
therefore make calculation times acceptable. After the jet 
sheds the fluid from the initial assumed geometry, there were 
between 255 and 290 nodes on the jet surface during this 
calculation. The first 77 time units of the calculation required 
about 500,000 CPU seconds on an IBM RISC/6000 com- 
puter. Table I presents a summary of the droplet radii for the 
calculations in this report. 

A. Effect of oscillation magnitude 

The effect of the oscillation magnitude on the jet 
breakup is investigated by six simulations of q' = 2% 
through 7%. Figure 4 shows jet profiles for three of these 
disturbance magnitudes. Each pair of profiles shows the jet at 

(a) 

(b) 

(c) 
v^_ 
"\_/~ =0 

FIG.   4.   Effect  of  inflow  velocity  disturbance   magnitude,   W> = 100, 

t = 0.70, (a) q' = 2%, (b) <?' = 4%, (c) «j' = 6%. 
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FIG. 5.  Droplet radii vs. inflow velocity disturbance magnitude for 
= 100. k = 0.1 (o finite-length calculation; infinite jet calculation). 

We 

times just before a main droplet and a satellite droplet are 
shed from the calculation. As this figure shows, increasing 
the size of the perturbation decreases the breakup length and 
changes the shape of the droplets. At larger disturbance mag- 
nitudes, the main droplets take on a "squashed" shape as a 
result of the high velocity fluid (when -v/2+2nn 
< kt<Tr/2+2nir) encountering lower velocity fluid which 
has already exited the nozzle. This phenomena, known as the 
"Klystron" effect, has been documented qualitatively by nu- 
merous researchers19'20 in the case where forcing perturba- 
tions are very large amplitude. 

In the other half of the imposed oscillation (when 
TT/2+2mr<kt<3Tr/2+2nir), the jet is "stretched" since 
the fluid immediately outside the orifice is at a higher veloc- 
ity than the inflow. Therefore, the overall effect of increased 
disturbance amplitude is to narrow the peaks and broaden the 
troughs in the surface waves on the jet. Breakup times are 
reduced (as compared to the infinitesimal case) primarily due 
to the fact that the troughs begin at a lower height. 

Calculated droplet sizes are compared with an infinitesi- 
mal disturbance5 values in Figure 5. The satellite size is 
shown to increase with disturbance magnitude at the wave 
number ratio selected for these simulations. Necking and 
pinching of the jet under finite-amplitude disturbance occur 
at locations much closer to the peak of the wave. The broad, 
flat troughs created by these perturbations explain the in- 
crease in satellite droplet sizes with increasing disturbance 
magnitude. 

Extrapolation to higher q' values would presumably 
lead to a monodisperse case in which both drops are the 
same size. Through the use of piezoelectric drivers, droplet 
trains of this type have been created experimentally by 
Dressier and coworkers.8 Direct comparison with these ex- 
periments is not possible because pressures are not typically 
measured in the plenum upstream of the orifice in Dressler's 
device. 
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FIG.  6.   Effect  of disturbance  wave  number.   We = 100.  q' = 2%.   (a) 
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FIG. 7. Droplet radii vs. disturbance wave number. 
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B. Effect of oscillation wave number 

Since the jet radius and mean orifice exit velocity are 
chosen as characteristic dimensions, non-dimensional wave 
numbers are equivalent to disturbance frequency. Figure 6 
shows the effect of wave number on the character of the jet 
for We =100 and q'=2%. Each of the first four pairs of 
profiles show the jet at times just before a main droplet and 
just before a satellite droplet are shed from the calculation. 
Increasing the wave number from it = 0.5 to k = 1.1 tends to 
decrease the breakup length, even beyond the most unstable 
wave number, kmax = 0.1\ a trend not predicted by linear 
theory. In addition, the size of satellite drops tends to de- 
crease with increasing frequency in this range. At a wave 
number of k= 1.1, satellite drops have nearly vanished, in- 
dicating that a wave number near this value can produce 
monodisperse atomization. In fact, viscous effects would 
probably inhibit the formation of the very small satellite 
droplet in Figure 6(d). At *= 1.3, the breakup length of the 
liquid jet increases drastically from the previous calculation, 
and the model no longer predicts the formation of satellite 
droplets. Figure 6(e) shows the jet profile at time t= 107.0 
time units; the jet length length is still increasing at this point 
in the calculation. Note the damping of the waves along the 
jet surface. 

Quantitative predictions of droplet sizes are shown in 
Figure 7. As in Figure 5, the solid lines are results for infini- 
tesimal disturbances. Here, experimental results are a com- 
posite of data from Lafrance3 and Rutland and Jameson.2 

The finite-amplitude results are for q' = 2%, and they show 
a tendency to drive conditions toward a monodisperse result 
by increasing satellite drop size and decreasing main drop 
size over the entire range of wave numbers investigated. 
Once again, the peak-sharpening and trough-broadening 
which occur with increased disturbance magnitude provide 
an explanation for the observed results. At higher distur- 
bance amplitudes, local curvature in the transition region be- 
tween peaks and troughs can be driven to large enough val- 

ues to promote nonlinear instability at wavelengths predicted 
to be stable using linear analysis. 

C. Effect of Weber number 

For fixed orifice radius and liquid density, decreasing the 
Weber number corresponds to either increasing the surface 
tension or decreasing the inflow velocity. As the surface ten- 
sion is increased, the wave formed on the surface of the jet 
from the unsteady inflow should tend to grow more quickly, 
leading to shorter breakup lengths. This effect is shown in 
Figure 8 for We = 50 and 100, using * = 0.7 and q'=2%. 
Each pair of profiles shows the jet just before a main droplet 
and satellite droplet are shed from the calculation. Increasing 
the Weber number also tends to decrease the size of the 
satellite droplets for the chosen conditions. Note that the tip 
of the satellite droplet for the lower Weber number case 
takes on a more spherical shape before being shed from the 
calculation. In addition, at lower We values, the pinching 
event tends to form a series of waves on the parent surface 
due to the enhanced influence of surface tension. This effect 

(a) 

(b) 

FIG. 8. Effect of Weber number on jet profile, k = 0.1,q' = 2%, (a) We 
= 100, (b) We =50. 
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FIG. 9. Satellite droplet evolution just prior to shedding. 

can also be observed (both in calculations7 and experimental 
results') in the low We case shown in Fig. 2. 

D. Droplet velocities 

Infinite jet simulations lead to droplets with no velocity 
relative to each other due to the assumption of periodicity 
over a given wavelength of the jet.5 However, for finite- 
length liquid jets, droplets can be shed sequentially, so that 
the droplet velocities are not necessarily equal to each other 
or to the orifice velocity. The calculations presented here 
show that the satellite droplets are shed from the jet with 
velocities less than that of the main droplets. Figure 9 shows 
the jet profiles at three times near a droplet pinch. Each pro- 
file in this figure has been shifted axially so that the left-hand 
side of the jet remains in the same relative location. Just after 
a main droplet is shed from the jet, the surface of the satellite 
droplet is roughly conical at the tip. Surface tension acts to 
pull this liquid into a spherical shape, and tends to slow the 
velocity of the satellite droplet. Note in Figure 9 at r = 69.6 
time units the distance that the surface has rebounded to- 
wards the orifice before the satellite droplet is separated from 
the calculation. This phenomenon is also present for the 
main droplets, so that a monodisperse droplet train should 
have droplets of constant axial velocity slightly less than the 
mean orifice velocity. 

The droplet velocity difference is defined as the percent 
difference in satellite and main droplet velocities relative to 
the main droplet velocity. This difference is calculated by 
integrating the motion of the droplet after being shed from 
the jet. The position of the droplet's calculated center of 
mass is differenced to determine the droplet velocity. Figure 
10 shows a typical plot of the position and velocity of the 
center of mass for a main droplet and a satellite droplet. 
Table II presents velocity differences for selected calcula- 
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FIG.   10.   Droplet center of mass  position  and velocity  {We   -   100. 
k = 0.7.q' = 2%). 

tions. As this table shows, the velocity difference increases 
when the Weber number decreases, the wave number in- 
creases or the disturbance magnitude decreases. This in- 
crease in velocity difference can be attributed to increasing 
surface tension or decreasing satellite droplet size. 

Pimbley and Lee12 investigated satellite droplet forma- 
tion experimentally, noting the velocity difference between 
the main and satellite droplets. They found appropriate exci- 
tation conditions to separate satellite droplets from either 
side of a main drop, as well as forming both droplets simul- 
taneously, the so-called "infinite" satellite condition. Satel- 
lite droplets not at the infinite condition were found to merge 
with main droplets a few wavelengths downstream. At the 
lowest excitation amplitudes, rear-merging satellites were 
observed in the experiment. These satellite droplets merged 
backwards with next main droplet. As the amplitude was 
increased, the velocity difference decreased until the infinite 
condition was reached. Increasing the amplitude farther re- 
sulted in forward-merging satellites, which merged with the 
parent main droplet. The BEM calculations presented here 
agree with the low-amplitude experimental results which 
produced backward-merging satellite droplets. 

E. Amplitude modulated disturbances 

Orme and Muntz10 studied the breakup of a liquid jet 
using amplitude-modulated sinusoidal disturbances. They 

TABLE II. Droplet velocity differences. 

We k l' Velocity difference 

50 0.7 2% -12.0 ±1.4% 
100 0.5 2% -1.4 ±0.9% 
100 0.7 2% -3.4 ±0.9% 
100 0.9 2% -3.9 ±0.9% 
100 1.1 2% -9.8±4.7% 
100 0.7 4% -1.9 ±0.6% 
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FIG. 11. Jet breakup with an amplitude-modulated inflow velocity, (a) in- 
flow disturbance waveform, (b) jet profiles at four successive pinch events. 
(c) relative droplet velocities. 

found that the droplets coalesced downstream due to varia- 
tions in their velocities. For this type of disturbance, the 
inflow velocity can be written in the form 

q = U\\ + q,+q'Mkii) %\n{kt) (12) 

where q'm is the magnitude of the modulated disturbance and 
N is the modulation frequency ratio. 

A BEM calculation was performed in order to simulate 
these experiments. We chose disturbance magnitudes of 
q' = 0.015 and <?^ = 0.0074, which correspond to a 5% fluc- 
tuation in the reservoir pressure, a wave number of £ = 0.7 
and a frequency ratio of N=4. Figure 11(a) shows the inflow 
disturbance waveform corresponding the these values. A 
Weber number of We = 200 is chosen for this simulation in 
order to limit the CPU time required; gravity is neglected. 
The jet begins with length 15a outside the orifice, and is 
marched with a time step of At = 0.01 through a number of 
droplet shedding events. 

Orme and Muntz predict the shedding of a fluid packet 
containing N pairs of main and satellite droplets, the subse- 
quent breakup of this packet into IN droplets, followed by 
the recombination of these droplets into one large droplet. 
Figure 11 (b) shows the jet profiles at four times just prior to 
four successive pinch events. These four pinch events in- 
clude the eight droplets for one complete cycle of the modu- 
lation frequency. Instead of a single packet with eight drop- 
lets, we find that three packets of one droplet, plus one 

packet, at / = 131.0 time units, of two main and three satellite 
droplets. When this multiple droplet packet is integrated after 
pinch, the two droplets on the orifice-side of the packet pinch 
off. The velocity of each droplet's center of mass is calcu- 
lated, and the arrows in Figure 11(c) show their direction of 
motion relative to the fluid packet consisting of one main and 
two satellite droplets. Our results of Fig. 11(c) compare well 
with Fig. 2 from Orme and Muntz.10 predicting the formation 
of a single droplet. 

V. CONCLUSIONS 

A numerical model has been developed to investigate the 
influence of unsteady inflow conditions on the nonlinear evo- 
lution and droplet formation processes within a low speed, 
finite-length liquid jet. The size of both main and satellite 
droplets is predicted under the assumption of a sinusoidal 
perturbation to the orifice exit velocity. Results indicate that 
modulation of either the amplitude or the frequency (wave 
number) of the perturbation can affect droplet sizes so as to 
create a monodisperse droplet train. In addition, velocity dis- 
persions (between main and satellite droplets) are predicted 
with the model; therefore, the tendency of droplets to recom- 
bine after pinch off can also be addressed. 
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EFFECT OF ACOUSTIC PERTURBATIONS ON 
LIQUID JET ATOMIZATION 
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Nomenclature 

a — orifice radius 
Im = modified Bessel fct. of 1st kind, order m 
Km = modified Bessel fct. of 2nd kind, order m 
k — wave number 
n — mode number for column excitation (Eq. 5) 
P = pressure 
q = velocity normal to local surface 
r — radial coordinate 
t = time 
U = velocity 
We = Weber number, We = pgU

2a/cr — pU2a/a in Figs. 8-12 
x = horizontal coordinate 
y = vertical coordinate 
z = axial coordinate 
K = surface curvature 
p = density 
e = density ratio, pgjp 
a = surface tension 
u) = oscillation frequency 
(f> = velocity potential 

Subscripts 
()g = gas phase 

Superscripts 
() = perturbation quantity 
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Abstract 

The effect of unsteady chamber characteristics on the atomization process is investigated using non- 
linear free-surface models based on Boundary Element Methods (BEMs). Two separate scenarios 
are considered. In the first case, a liquid column is subjected to transverse oscillations from the gas 
phase. The second calculation addresses "dynamic orifice massflow" due to the presence of longitu- 
dinal acoustic perturbations. Results indicate that the atomization process can be strongly affected 
by these perturbations. As expected, the most prominent coupling occurs at driving frequencies 
which are at (or near) the natural frequency of oscillation of the liquid. 

Introduction 

In a liquid rocket engine (LRE) combustion chamber, the atomization process serves as a precursor 
to complex vaporization, mixing, and reaction processes. Not only is the atomization process im- 
portant to characterizing the steady-state performance of a LRE, but it also can play an important 
role in unsteady processes within the combustion chamber. In fact, numerous authors1-5 have 
implicated the atomization process as a mechanism to (at least partially) explain high-frequency 
LRE combustion instabilities. 

Even under steady conditions, our knowledge of the detailed processes leading to atomization of 
a liquid jet is quite modest. For this reason, there have been relatively few efforts aimed at improving 
our understanding of injection processes under dynamic conditions. Most previous efforts have been 
experimental in nature and have been motivated by LRE combustion stability concerns. 

One group of experiments have focused on longitudinal acoustic fields6-9 investigating both 
low injection velocities6,7 and high injection velocities8,9 characteristic of actual LRE injectors. 
These authors concluded that the presence of a time-dependent pressure field at the injection point 
leads to a dynamic orifice massflowT, even in the event that the injector manifold pressure remains 
constant. At low injection velocities, this effect leads to periodic "bulges" in the jet diameter; this 
character also persists into the higher jet velocity regime6. In addition, droplet coalescence was 
effected by the time-dependent injection flowrate. Similar effects have been observed10,11 when the 
chamber pressure is held fixed, but the flowrate is varied using piezoelectric drivers upstream of 
the orifice inlet. At high injection velocities, Ingebo9 showed a dramatic decrease in mean droplet 
size with the amplitude of the disturbance. This compelling evidence indicates the importance of 
the acoustic interaction with the atomization process. 

A second group of researchers5'12-14 have focused on interactions of a liquid jet with a transverse 
acoustic perturbation. Here, experiments have revealed a broadening of the jet cross-section14, and 
a physical deflection of the jet due to the "crosswind" from the acoustic field13. Here, the variable 
massflow effect can also be present due to the fact that the injector manifold reacts to the average 
pressure at the injector face and distributes fluid spatially in accordance with the local injector face 
pressure12. 

Analytic models aimed at quantifying the phenomena described above have made heavy use of 
experimental results. Early efforts5-7 made use of one-dimensional mass and momentum balances 
in which liquid and gas phases were decoupled. Other researchers have simply sought to correlate 
their experimental results with injection and acoustic wave conditions. More recently, the jet 
broadening phenomena present under some transverse acoustic interactions was quantified using a 
static equilibrium analysis14. 

While these efforts have advanced our understanding of these processes, the effect of coupling of 
gas and liquid flowfields in a dynamic environment has yet to be considered. Recent developments 
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of numerical models based on the use of Boundary Element Methods (BEMs)15,16 permit us to 
analyze the acoustically-driven interactions described above. The use of the BEM approach provides 
high resolution of the interface (under very large distortions), as well as the capability to extend 
simulations beyond atomization events. This paper will present simulations of both longitudinal 
and transverse acoustic wave interactions with an initially-cylindrical column of fluid. Transverse 
simulations will include coupling of gas and liquid velocity fields and longitudinal simulations will 
include the effect of dynamic orifice massflow in time-accurate calculations valid for nonlinear 
deformations of the liquid. 

Classification of Acoustically-Driven Instabilities 

Before performing the numerical simulations described above, it is prudent to determine the applica- 
ble flow regimes in LREs, as well as those studied by other researchers. One important consideration 
involves the "frequency response" of the liquid to the imposed oscillation. Consider the cylindrical 
column of liquid subject to either longitudinal or transverse acoustic perturbations as shown in Fig. 
1. Variables shown in this figure are defined in the Nomenclature. 

For the transverse oscillation in Fig. 1, fundamental frequencies are obtained from a linearized, 
inviscid, 2-D analysis similar to the classic axisymmetric analysis used by Lamb17 in the case of a 
droplet. In the 2-D case, it is straightforward to show that velocity potentials satisfying Laplace's 
equation in the liquid and gas phases can be represented: 

6 = —{r/a)n cos(n<?) cos(wt) (1) 

<t>g = -{a/r)n cos(n(9) cos(ut) (2) 

assuming a surface shape r = a + a cos(n(?) sin(w<). Here, n is the order of the oscillation and we 
will assume that ä is a perturbation (ä « a). Since the column is initially at rest, the linearized 
result from Bernoulli's equation can be expressed: 

„     „       <T       36 dd>a 

where K is the linearized curvature of the distorted surface: 

K = -[1 - -(1 - n2) cos(n9)sin(ut)] (4) 

Combining Eqs. 1-4, we obtain the fundamental frequencies of oscillation of the column: 

2      n(n2 - 1), 

As in the case of a droplet17, we see that the lowest order mode is for n = 2. In this case, the 
fundamental frequency is given by u2 = 6a/((p + pg)a

3) which gives a result 13% lower than that 
of a droplet in a low density gas. 

For the case of a longitudinal excitation, the fundamental frequency of the liquid column can be 
determined by analysis of a dispersion relation18 which describes the variation of u with changes 
in wave number, k: 
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Table 1: Frequency Characterization, Acoustic Interactions 

Frequencies in Hz 
Researcher(s) AP/P eilO3 We W3 u> 

Reba & Brosilow6 (L) 0.03-0.49 1.2-4.2 0.38-21 250-500 4-2700 
Ingebo9 (L) 0.11-0.22 0.5-4.4 47-1700 1190 600-373,000 
Miesse4 (T) — 1.2 — 1100-8800 100-400 

Hoover, et. al.14 (T) 0.0046-0.055 1.2-14 0.03-80 500-2500 470-920 
Oefelein & Yang19 (T) 0.65-4.0 17.8   454-538 80 - 270* 

Note: (T), (L) denote tangential and longitudinal modes, respectively. 
* - Fuel and oxid. orifices for 5U and Double-Row Cluster injectors. 

Here, we assume that variables have been nondimensionalized using the jet radius, jet velocity, 
and liquid density as dimensions. Under this assumption, the density ratio, e = pg/p, and the 
Weber number, We = pgU

2a/cr, are the relevant dimensionless groups. Equation 6 is developed 
assuming a jet deformation of the form: 

r = 1 H—e 
a 

uit+ikz (7) 

such that the real part of w corresponds to the "growth rate" of disturbances with wave number k 
and the imaginary part of u represents the characteristic frequency of disturbances traveling along 
the surface. Following Sterling and Sleicher18, we presume that after some finite time, only the 
disturbance with maximum growth rate will be present. By iterating on various k values, we can 
find the wave number of the disturbance satisfying this criteria and determine the fundamental 
frequency response (imaginary part of w) corresponding to this condition. 

Using these notions, we can characterize the frequency and flow regimes investigated by various 
researchers, as well as those present in engines which have experienced combustion instabilities. 
Data resulting from this procedure are summarized in Table 1. This table summarizes experimental 
results from cold flow4,6'14 and combusting9,19 flows with imposed oscillations. Ingebo9 ran a series 
of combusting experiments under oscillating chamber pressure conditions (created using a siren at 
the chamber exit), while Oefelein and Yang19 report on the extensive data available from stability 
testing of the F-l engine. This engine exhibited tangential-mode instabilities in many of the early 
injector designs. In the case of transverse oscillations, Weber numbers in Table 1 are based on 
estimated peak crossflow velocities and liquid frequencies are calculated using the primary (n = 2) 
mode in Eq. 5. For longitudinal oscillations, Weber numbers are based on jet velocity, and u values 
are calculated from Eq. 6. 

Results indicate that frequencies observed in firings (or utilized in tests) are within (or near) the 
natural frequency range of the liquid columns. In particular, the observed instability frequencies in 
the F-l engine are very near the natural frequency of oscillation for fuel jets used in early (unstable) 
injector designs for this engine. Since u oc a-1-5, the natural frequency of the column doubles with 
a 37% reduction in jet radius (presumed to occur with the shedding of drops from the periphery). 
Therefore, it will be fruitful to investigate jet response near the condition w « u} to investigate 
coupling between the atomization process and the acoustic modes from the chamber. 
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Modeling Approach 

Liquid jet atomization problems represent significant challenges to modelers due to the nonlinear 
nature of the free surface, and viscous and turbulence effects. Current models are unable to address 
all these physical processes. The present analysis is intended to shed some light on the gross response 
of liquid jets to both longitudinal and transverse acoustic oscillations. In particular, we will presume 
that both liquid and gas phases are incompressible and inviscid with negligible turbulence in the 
flow. The lack of viscosity in the gas implies that pressure distributions in separated regions will 
not be resolved. In the liquid, viscosity does not alter the basic surface shape unless droplet sizes 
are of the same order as the boundary layer thickness. 

Many authors have proposed that the gas field can be treated as locally incompressible in 
analyzing the flow of the gas around the liquid jet. This assumption is valid when the wavelength 
of the acoustic disturbance is much larger than that which is applicable to the liquid. In our case, 
wavelengths in the gas phase are proportional to combustion chamber dimensions, whereas, the 
wavelength in the liquid jet is proportional to the orifice size. Since the orifice is typically 2-3 
orders of magnitude smaller than the applicable chamber dimension, the incompressible gas phase 
assumption is prudent. 

In this section, we will choose the jet radius (a), liquid density (p), and a characteristic velocity 
(U) as dimensions. Under this nondimensionalization, the Weber number, We = pgU

2a/<j and the 
gas/liquid density ratio, e = pg/p are the two dimensionless variables characterizing these flows. For 
an inviscid gas or liquid domain, velocity potentials <f>g, <j> exist and must satisfy Laplace's equation: 

V20 = V% = 0 .     (8) 

The unsteady Bernoulli equation provides conditions relating velocity potentials at the gas/liquid 
interface: 

d<j>     1 K 
_ + -(V«' + i>, + _ = 0 (9) 

where Pg is the dimensionless gas pressure at the interface, and K is the local surface curvature. 
On the gas side of the interface, Bernoulli's equation is: 

^ + f(W,)a + P, = 0 (10) 

Mathematically, Eqs. 8-10 provide a well-posed set of equations for velocity potentials, the gas 
pressure at the interface, and the shape of the interface (implicit in the surface curvature, «). This 
set of equations is solved using a Boundary Element Method (BEM) which begins with an integral 
representation of Laplace's equation: 

,dG r   f)G 
<**(?$ +     [</,—- qG\dT = 0 (11) 

Jr    on 

where 4>(fl) is the value of the potential at a point rj, T denotes the boundary of the domain, and G 
is the free-space Green's function corresponding to Laplace's equation. An analogous form of Eq. 
11 can also be derived for the gas phase potential. For a well-posed problem, either (j> or q = d<j)/dn 
must be specified at each "node" on the boundary. Here n is the outward normal to the boundary 
so that q represents the velocity normal to the boundary. The quantity a in Eq. 11 results from 
singularities introduced as the integration passes over the boundary point, r;. 

Using this methodology, models have been developed for both two-dimensional20 and axisymmetric15 

flowfields. If we let r and z denote radial and axial coordinates, respectively, and denote the base 
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point with subscript "i", the Green's function solution to the axisymmetric Laplacian can be writ 
ten: 

4rA'e(p) 

where 
(r-rt)

2 + 

o = „.,.,;•,":'■ ..,» (i2) 

P"(r +Pi)2+ (.--.-,■)* (13) 

and A"e(p) is the complete elliptic integral of the first kind.   For computational efficiency, this 
quantity is calculated using a curve fit15 which has an accuracy to 10-8. 

In the case of a 2-D flow (letting x and y represent the coordinates), we have: 

G = ^\n\f-n\ = ~\n[(x-Xl)
2 + (y-y^} (14) 

In both cases, we presume that both <j> and q vary linearly along the length of a given element. 
This assumption permits the construction of a set of matrices involving the nodal values of <j> 
and q and the integrals (over a given element) given in Eq. 11. For the 2-D flows, integration 
across a segment can be carried out analytically. Singularities resulting from integration across 
a segment containing the base point are also integrable20. In the case of axisymmetric flow, the 
integrations must be carried out numerically15. In this case, we choose a four-point Gaussian 
quadrature for evaluation of integrals. Logarithmic singularities which arise in the elliptic integral 
when the segment contains the base point are treated with a special Gaussian integration designed 
to accurately treat this condition. 

Nodes on the interface are assumed to travel with the local liquid surface velocity, so a trans- 
formation from the Eulerian to Lagrangian reference frame is required. After this transformation, 
Eqs. 9 and 10 become: 

% = >?-'•-& <15> 
P3 = - J( W,)2 - e^f- + eV0 • V^5 (16) 

In these expressions, the notation D /'Dt denotes changes in time for nodes moving with the liquid 
interfacial velocity. 

Surface slope and curvature are obtained from a 4th-order treatment to insure accurate resolu- 
tion of the surface. Cubic splines are used to fit current locations of surface nodes for the purpose 
of regridding as the calculation proceeds. Regridding is necessary in many calculations because of 
the tendency of nodes to "bunch" in regions of highest curvature. Models have been validated (for 
nonlinear calculations) to insure that solutions are insensitive to the grid which has been selected. 
Droplets are assumed to be "pinched" from the main body of fluid if a node lies within 5% of the 
orifice radius of the centerline (or another node). Numerous validations have proven that solutions 
are insensitive to this "pinch criterion". Using this methodology, the BEM formulation permits 
accurate solution of highly-distorted interfaces in an unsteady flow. 

Computational Grids and Boundary Conditions 

Transverse Mode Simulations 

Figure 2 highlights the computational grid and boundary conditions employed for coupled, 2-D 
simulations of a liquid column subjected to an acoustic oscillation. For this problem, the Weber 
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number (We), gas/liquid density ratio (e), and gas/liquid frequency ratio (ws/w) are input param- 
eters for a given simulation. Assuming quantities are nondimensionalized using the liquid density, 
column radius, and peak acoustic velocity, the dimensionless liquid column natural frequencies (Eq. 
5) can be written: 

2      en(n2 — 1) 

"=üWi (17) 

We presume that the acoustic oscillation can be represented by a simple sine wave, so that the 
gas-phase velocity potential far from the column may be written: 

<j)g = xsm(u>gt/2) (18) 

The factor of 1/2 is included inside the sine function to account for the fact that the inviscid solution 
is insensitive to the direction of gas flow. Numerical experiments indicate that farfield conditions 
may be accurately assumed if the outer gas boundary is placed 15 jet radii from the origin. 

For nodes along the symmetry axis in Fig. 2, the normal velocity, q, is assumed to be zero, 
while the Bernoulli conditions (Eqs. 15 and 16) provide the necessary boundary information for 
liquid and gas nodes lying on the free surface boundary. A stable, accurate, treatment of the 
coupling of the two flows through the gas pressure (which appears in both Eqs. 15 and 16) has 
been developed15'20. The treatment begins by solving for liquid surface velocities from Eq. 11 
and noting that qg = —q on the surface since we are tracking nodes with respect to the motion of 
the liquid. Given the qg value on the surface, solution of the analagous form of Eq. 11 provides 
current values for <j>g on the interface. The current gas pressure is then computed from Eq. 16 
by approximating the D<f>g/Dt term using a first-order backward difference. Finally, new values 
of <f) on the interface (for the next timestep) are obtained via integration of Eq. 15. Simulations 
presented in the following section employ 17-33 nodes along the interface and typically run in a few 
hours on a Sun Sparestation 5 using a dimensionless time step of 0.005. 

Longitudinal-Mode Simulations 

Longitudinal-mode simulations are performed by assuming that an oscillation in chamber pressure 
at the injector face will lead to a dynamic massflow through the orifice. Under this assumption, 
we employ the axisymmetric model of Hilbing, et al.15 with an unsteady inflow as indicated in Fig. 
3. For this calculation, the presence of the gas is neglected, and nodes placed along the orifice exit 
plane are held fixed. Along this inflow boundary, the velocity is assumed to be: 

q = l + g'sin(w^) (19) 

where q' is the fractional change (in magnitude) of the velocity due to pressure oscillations at the 
injector face. The oscillation is assumed to be at a frequency identical to that of the acoustic 
disturbance, and velocities are nondimensionalized against the mean velocity exiting the orifice. 

For nodes lying on the free surface, Eq. 11 (with Pg = 0) is integrated in time to give <j> values 
along the interface which serve as boundary conditions. Gravity is neglected in the simulations since 
its influence is very small for high-speed jets. Typical solutions employ a grid spacing corresponding 
to 20% of the orifice radius. Run times can vary substantially (from a few hours, to several days) 
depending on the length of the jet, i.e., long jets have a large number of nodes and require more 
calculations per timestep. 
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Results 

Transverse Mode Simulations 

For all simulations presented here, a gas/liquid density ratio of e = 0.01 has been assumed. This 
value is typical of high pressure combustion conditions as can be noted in Table 1. Parametric 
studies involving this parameter20 indicate that jet behavior is not terribly sensitive to e for low 
density ratios. 

Under this assumption, the response of a column to an acoustic oscillation at the lowest-order 
natural frequency of the jet (cog = w|„=2) is shown in Fig. 4 for a Weber number of 0.1. As 
expected, we see a strong response under these conditions, with the distortion increasing with each 
successive period of the oscillation. However, for long times (several periods), a very interesting 
behavior results. This behavior is best observed by plotting the time history of the position of a 
node on the top of the column, as shown in Fig. 5. Here we note that the overall magnitude of the 
distortion is bounded even though there is no dissipation in this inviscid simulation. 

The explanation for this phenomena lies in the nonlinear behavior of the column itself. For finite 
deformations, the natural frequency of oscillation is reduced from that predicted by linear theory. 
This effect is well documented for oscillations of liquid droplets, but has not been investigated 
substantially for liquid columns. Figure 6 shows the nonlinear frequency shift as a function of 
initial surface deflection for both droplets and columns. As the jet distorts due to excitation at its 
linear natural frequency, further excitation at this frequency will actually become destructive for 
some level of column deformation. Beyond this point, the oscillation will decay (as shown in Fig. 
5) until the cycle repeats. 

The overall frequency response of the column is shown in Fig. 7. As expected, we see a strong 
peak at excitation frequencies near the natural harmonic (n = 2) frequency of the column. However, 
it is quite interesting to note that very little response is obtained for all other frequencies in the 
domain. There is a small peak at the subharmonic u>g = u)Nat/2, but there is very little activity at 
the higher order (4th, 6th, etc.). We expect very little response if ujg >> w since the jet inertia does 
not permit reactions on this short time scale. In the other limit u>g « u, the column response is 
nearly quasi-steady and peak deflections are simply a function of We. Note that at this condition 
(We — 0.1) very little jet broadening would be predicted for a steady crossflow as indicated in the 
far left half of the curves in Fig. 7. 

These results have obvious implications to LRE combustion instability. A design which has 
transverse acoustic modes near the jet natural frequency (n=2 in Eq. 6) will be subject to coupling 
from wave structures present in the gas domain. If the jet broadens substantially, its drag will 
increase and it will be more subject to deflection by the transverse flow. For impinging element de- 
signs, the broadening will have direct consequences on the atomization/mixing in the impingement 
region. As indicated in Table 1, the F-l injector natural frequencies do lie near the range of tan- 
gential acoustic frequencies experienced during testing of this engine. Therefore, this phenomenom 
could explain (at least in part) the tangential stability problems encountered by this engine. The 
"good news" is that this phenomenom appears to be limited to the lowest-order natural frequency 
of the column; subharmonics and higher harmonics do not play a substantial role as indicated in 
Fig. 7. 

Longitudinal Mode Simulations 

Currently, simulation of a three-dimensional, viscous, turbulent, two-phase flow which corresponds 
to "real world" conditions is well beyond current modeling capabilities. For this reason, the longi- 
tudinal simulations have been limited to a relatively low velocity regime in which the assumptions 
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of axisymmetry and inviscid flow are most appropriate. The main focus of these simulations is to 
address the effects of unsteady perturbations on the character of breakup under these assumptions. 
Since the simulations in this section do not include the influence of gas-phase pressure variations 
about the jet, the Weber number is defined in terms of the liquid density. A Weber number of 100 
is assumed for results presented herein. 

Figures 8 and 9 address the effect of the effect of disturbance magnitude on the atomization 
process for a disturbance at the jet natural frequency. In this case, analysis of Eq. 6 indicates that 
a dimensionless frequency of w s» 0.7 generates waves of the most unstable length. In Fig. 8, one 
can note that nonlinear effects lead to the formation of a "main" and "satellite" droplet from a 
single wavelength of the instability. This behavior is well known for low-speed jets. Periodic bulges 
appear in the jet due to the unsteady inflow, as noted experimentally by Reba and Brosilow6. 

Increasing the size of the perturbation not only decreases jet breakup length, but also effects 
the shape and size of both main and satellite drops. As q' is increased, main droplets take on a 
"squashed" shape as a result of high velocity fluid (when sin(w<) > 0) encountering lower velocity 
fluid which has already exited the nozzle. This phenomena, known as the Klystron effect, has been 
documented qualitatively by numerous researchers1,8,19. Quantitative comparisons of droplet sizes 
are compared with an infinitessimal disturbance16 in Fig. 9. Note that the inviscid predictions 
match experiments quite well in this regime. Viscosity tends to slow down the breakup process, 
but does not fundamentally change droplet sizes in this flow regime. The satellite size is shown 
to increase with perturbation amplitude at the frequency ratio selected for these simulations. Ex- 
trapolation to higher q' values would presumably lead to a monodisperse case in which both drops 
are the same size. Through the use of piezoelectric drivers, droplet trains of this type have been 
created experimentally10. 

Figures 10 and 11 address the effect of disturbance frequency on the character of the jet. As in 
the case of amplitude dependence (Figs. 8,9), the jet behavior is also frequency dependent. In this 
case, increasing disturbance frequency tends to decrease breakup length even beyond ws/w > 1; 
a trend not predicted by linear theory. In addition, the size of satellite drops tends to decrease 
with increasing frequency as shown in Fig. 10. At a frequency ratio of 1.57, satellite drops have 
nearly vanished indicating that a frequency near this value can produce monodisperse atomization. 
In fact, viscous effects would probably preclude the formation of this very small structure. Quan- 
titative predictions of droplet sizes are shown in Fig. 11. Here, the solid lines reflect results for 
an infinitessimal perturbation, as in Fig. 9 and the datapoints are measurements of Rutland and 
Jameson21 and Lafrance22. 

A final simulation was conducted for the case of a high Weber number {We = 1000), large 
amplitude (q' = 10%), perturbation. A time sequence for this case is shown in Fig. 12. In this 
case, the Klystron effect leads to a large radial broadening of the jet, as observed in numerous 
experiments1,8'23. Large perturbations of this nature have obvious repercussions to jet behavior, 
causing clustered "clumps" of fluid at locations corresponding to peak flowrates during the unsteady 
process. In addition, the droplets formed from the annular rings of fluid shown in Fig. 12 will be 
much smaller than drops formed from a "steady" atomization process; an effect observed by Ingebo9. 
Additional modeling efforts will be required to obtain a more quantitative evaluation of this effect. 

Conclusions 

Nonlinear two-dimensional and axisymmetric numerical simulations have been applied to simulate 
the effect of acoustic perturbations on liquid jet atomization processes. A liquid column is shown to 

react very strongly to perturbations at its lowest-order natural frequency u = J(Qcr)/((p + pg)a
3), 
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but has minimal unsteady response for frequencies not near this value. Early (unstable) fuel 
injector designs used in the F-l engine program were shown to be near this natural frequency. In 
addition, nonlinear natural frequencies for columns under finite deformation have been quantified. 
The frequency shift associated with a finite amplitude deformation is shown to cause a limiting 
amplitude of column distortion. 

The response of a liquid jet to longitudinal excitation (as modeled through the use of a dynamic 
orifice massflow) has also been quantified. Periodic bulges in the jet's surface, typically referred to as 
the "Klystron effect", are described quantitatively using this model. For low speed jets, increasing 
both amplitude and frequency of the disturbance is shown to increase the size of "satellite" drops 
formed by nonlinear deformation of the column. At large excitation amplitude, distinct "mushroom- 
shaped" structures appear, as described by several researchers. It is obvious that the formation of 
these structures will decrease mean drop size, but more effort is required to quantify the extent of 
the size change. 
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Figure Captions 

1. Liquid Jets Subjected to Transverse and Longitudinal Acoustic Oscillations 

2. Computational Domain and Boundary Conditions for Transverse Mode Simulations 

3. Computational Domain and Boundary Conditions for Longitudinal Mode Simulations 

4. Column Shapes at Various Times of an Acoustic Perturbation, usg — u, We = 0.1, e = 
0.01 

5. Motion of a Node on the Top of the Column During Acoustic Perturbation, u>g = w, We = 
0.1, 6 = 0.01 

6. Nonlinear Frequency Shift for Liquid Drops and Columns under Vaccuum (or Low Gas 
Density) Conditions 

7. Nonlinear Frequency Response of Liquid Column; Maximum (Prolate) and Minimum 
(Oblate) Aspect Ratios Obtained During Oscillation 

8. Effect of Longitudinal Disturbance Amplitude on Behavior of Liquid Jet at We = 100, ug = 
u> = 0.7. (a) q' = 2%, (b) q' = 4%, (c) q' = 6% 

9. Effect of Longitudinal Disturbance Amplitude on Drop Size for We = 100, u>g = u = 0.7. 
Solid Lines are for Infinitessimal (q' ss 0) Disturbance. 

10. Effect of Longitudinal Disturbance Frequency on Behavior of Liquid Jet at We = 100, q' = 
2%. (a) u/ujg = 0.71, (b) w/w5 = 1.0, (c) u/ug = 1.29, (d) u/ojg = 1.57 

11. Effect of Longitudinal Disturbance Frequency on Drop Size for Liquid Jet at We = 
100, q' = 2%. Solid Lines are for q' « 0. 

12. Jet Behavior Under Violent Oscillation, We = 1000, Jfe = 1, q' =10%. 
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Figure 1: Liquid Jets Subjected to Transverse and Longitudinal Acoustic Oscillations 
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Figure 2: Computational Domain and Boundary Conditions for Transverse Mode Simulations 
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Figure 3: Computational Domain and Boundary Conditions for Longitudinal Mode Simulations 
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Figure 4: Column Shapes at Various Times of an Acoustic Perturbation, u>g = w, We = 0.1, e 
0.01 
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Figure 5: Motion of a Node on the Top of the Column During Acoustic Perturbation, u>g = u, We 
0.1, e = 0.01 
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(a) 

(b) 

(c) 

Figure 8:   Effect of Longitudinal Disturbance Amplitude on Behavior of Liquid Jet at We 
100, ug = u = 0.7. (a) q' = 2%, (b) q' = 4%, (c) q' = 6% 

53 



2 

i 

- Main Droplet 

i i 1 1 1 

1.8 o o o o o o 

1.6 - - 

w 1.4 
-a 
CO 

EL2 
<u 
Q. 
O o 

o 
o o 

Q       1 

o 

o 

0.8 - 

0.6 

0.4 
Satellite Droplet 

i 1 1 1 1 

12 3 4 5 6 7 8 
Disturbance Magnitude (%) 

Figure 9: Effect of Longitudinal Disturbance Amplitude on Drop Size for We = 100, u/g — ui = 0.7. 
Solid Lines are for Infinitessimal (q' as 0) Disturbance. 

54 



(a) 

(b) 

(c) 

(d) 

Figure 10:   Effect of Longitudinal Disturbance Frequency on Behavior of Liquid Jet at We 
100, q' = 2%. (a) ui/ujg = 0.71, (b) w/w5 = 1.0, (c) u/ug = 1.29, (d) uj/ug = 1.57 
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Figure 11:  Effect of Longitudinal Disturbance Frequency on Drop Size for Liquid Jet at We = 
100, q' = 2%. Solid Lines are for q' « 0. 
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Ligaments 

Figure 12: Jet Behavior Under Violent Oscillation, We = 1000, ifc = 1, q' =10%. 
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9    Appendix D - Acoustic Interaction with a Droplet 

Murray, I. F., and Heister, S. D., "On the Response of a Droplet to Acoustic Excitation", 
In Review, International Journal of Multiphase Flow, 1996. 
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On a Droplet's Response to Acoustic Excitation 
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Abstract-The unsteady, nonlinear response of a liquid droplet to an imposed acoustic perturbation has 
been simulated using a model based on Boundary Element Methods (BEMs). The model was used to study 
the influence of the acoustic frequency, intensity, and gas/liquid density ratio upon the droplet behavior. 
Heightened droplet responses were observed for frequencies near the harmonics of the second and fourth mode 
frequencies. Several types of droplet atomization have been observed as the acoustic intensity is increased. 
Increasing gas density (at fixed excitation conditions) also heightens droplet response. 

Key Words: drop break up, atomization, drop dynamics, acoustics, drop oscillations 

1    Introduction 
The behavior of liquid droplets in the presence of an acoustic field is a phenomena of fundamental importance. 
There are a variety of applications in which droplets are excited by acoustic energy, such as meteorological 
physics, containerless processing, and atomization. Droplet oscillations in the absence of external excitation 
will ultimately dissipate, and the drop will return to its equilibrium state. However, a strong acoustic field 
may be present, such is the case in airborne combustors and acoustic levitators. In such a situation, the 
droplet will experience forced oscillations. This oscillatory behavior of drops may greatly affect the process 
of secondary atomization. 

A large number of researchers have studied "free oscillations" of droplets under conditions where forces 
from the gaseous phase are neglected. The initial linear analyses of this problem are due to Rayleigh (1879) 
and Lamb (1932) for the inviscid and weak-viscous cases. These results provide the droplet's frequency of 
oscillation under various modes under the presumption that the shape perturbation is infinitessimal. Lamb's 
result indicates that weak viscous effects have a negligible effect on the frequency predicted by Rayleigh. 
Prosperetti (1980) furthered the linear analysis for arbitrary viscous effects. Despite his improvements to 
the linear analysis, there was considerable disparity between his predicted decay rate of oscillations and the 
experimentally observed rate. 

More recently, theoretical/numerical efforts have focused on nonlinear effects. Tsamopoulos and Brown 
(1983) developed a theoretical series solution for moderate amplitude, inviscid droplet oscillations. They 
determined that the droplet resonant frequency decreases with the square of the oscillation amplitude. 
Lundgren and Mansour (1988) used a boundary integral method to develop a model for large amplitude 
oscillations of droplets in zero-gravity including weak viscous effects. They discovered that relatively small 
viscosities can significantly affect the coupling of oscillatory modes. However, their method was limited to 
only weak viscous problems. More recently, Basaran (1991) used the Galerkin/finite element technique to 
model nonlinear oscillations of viscous droplets. From these simulations he observed that a finite viscosity 
has a much larger effect on mode coupling than what is predicted by the calculations including weak viscous 
effects. 

Some notable experimental work in droplet oscillations has been conducted by Trinh and Wang (1981), 
in which large amplitude, nonlinear oscillations of drops were studied. In their work, a neutrally-buoyant 
droplet was suspended in an immiscible liquid and excited by acoustic-radiation pressure forces generated 
by an acoustic levitator. More recently, Wang, Anilkumar, and Lee (1996) studied the oscillations of low- 
viscosity drops in a microgravity environment on board the space shuttle using a similar acoustic chamber 
to induce droplet deformation. In these experiments, droplets were deformed and then allowed to oscillate 
freely. From a controlled break up of a liquid jet, Becker, Hiller, and Kowalewski (1990) generated virtually 
monodispersed droplets that oscillated in a damped, axisymmetric fashion. These experiments verified the 
reduction in natural frequency at finite amplitudes as predicted by Tsamopolous and Brown. 

Despite these advancements in the area of free-oscillations of droplets, there have been relatively few works 
aimed at increasing the understanding of droplet response to forced oscillations. Here, the experimental work 
of Daidzic (1995) is a notable exception. Using an acoustic levitator, Daidzic examined nonlinear forced 
oscillations of droplets. In his experiments the droplets exhibited "chaotic behavior", presumably because 
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the forcing function was three-dimensional and time-dependent. He concluded that prediction of droplet 
behavior over a long period of time is difficult at best, and warrants further investigation. 

The works of the aforementioned researchers have considerably improved the understanding of droplet 
behavior. However, the forced oscillation problem still warrants additional consideration. The focus of 
this work is to examine forced, nonlinear, inviscid droplet oscillations by computational analysis. The 
Boundary Element Method (BEM) will be used to conduct these studies. This technique offers a savings in 
computational power as compared to other methods, such as computational fluid dynamics, while maintaining 
a high degree of accuracy. As the name implies, BEMs require the discretization of only the boundary of the 
domain, providing a drastic reduction in the total number of nodes (as compared to a mesh based schemes) 
needed for an accurate solution. Hilbing, Heister, and Spangler (1995) and Mansour and Lundgren (1990) 
have also demonstrated a capability of running BEM simulations beyond atomization events. The following 
sections of this paper describe the development, validation, and results generated using this computational 
tool. 

2    Model Development 

Under many situations, the wavelength of the acoustic perturbation is much greater than the droplet radius, 
which implies that spatial variations within the acoustic wave are negligible and that the disturbance can 
be modeled as an unsteady, incompressible flow. Further, we assume an axisymmetric domain and neglect 
viscosity in both gas and liquid phases. Under these conditions, the dynamics of both liquid and gas phases 
are described by Laplace's equation: 

V20 = V2^ = O (1) 

where 4> and <pg are velocity potentials for liquid and gaseous phases, respectively. 
If we choose the droplet radius (a), peak speed in the acoustic disturbance ([/), and liquid density (p) 

as dimensions, the interaction between the droplet and the acoustic disturbance is characterized by the 
gas/liquid density ratio, 

,_ Pa 

the Weber number based on gas density, 

and the frequency ratio, 

m 

we = eiEli ,3) 

— (4) 
wn 

Changes in the magnitude of the acoustic disturbance are introduced through the Weber number, which is 
the ratio of the aerodynamic forces to surface tension (<r) forces. The frequency ratio is the ratio of the 
acoustic frequency of the gas, w, to the linear natural frequency of the second mode for a liquid drop, w„. In 
the following development, we presume that the nondimensionalization described above has been applied. 

The droplet's fundamental frequencies are obtained from the classic analysis by Lamb. The nondimen- 
sional form for the frequency of mode "m" is: 

2  _ ro(m + l)(m - l)(m + 2) 
Um ~ (m + 1 + me)We (  ' 

For this case, the lowest-order (m = 2), or natural frequency of a droplet reduces to: 

"2 = (3 + 2e)We (6) 

We expect strong droplet response when the acoustic excitation frequency w lies near harmonics of ui„. 
At any instant in time, Eqn.    1 provides a connection between values of the velocity potentials and 

velocities measured normal to the local surface (q and qg) for liquid and gaseous phases, respectively. This 
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equation is solved using the BEM by beginning with its integral representation.   For the liquid phase, the 
resulting integral representation of Eqn.  1 becomes: 

a<t>(fl) + Ü 
dG 

>— -qG 
On 

d? = 0 (7) 

ArK{p) 

s/{r + r,-)2 + (r - ~~i)2 

{r- -r,-)2 + (-'- :>? 

where 6{fi) is the velocity potential at a point rj, T is the boundary of the domain, and G denotes the 
free space Green's function corresponding to Laplace's equation. In addition, h is taken to be the outward 
normal to the domain boundary, and a results from singularities introduced as the integration passes over 
the boundary point, r,. By using Eqn. 7, it is possible to solve for <p or q provided that one of them is 
known at each point on the boundary. If we let r and z represent radial and axial coordinates and use the 
subscript i to denote the "base point" where the integration takes place, the free space Green's function for 
the axisymmetric Laplacian can be expressed (Liggett and Liu 1983): 

4rA'(p) 

where 
(r-r,)2 + (,-,,)2 

P~(r+ ,,)* + (.-.-.■)' (9) 
and, K(p) is the complete elliptic integral of the first kind. For computational efficiency, this parameter is 
curvefit (to an accuracy of 10-8) using results from Abramowitz and Stegun (1970). 

The integration in Eqn. 7 is performed by discretizing the boundary into a finite number of segments. 
Along each segment, both <j> and q are assumed to vary linearly. Integrations are carried out by letting each 
node on the boundary represent a base point, yielding a set of linear equations relating <j> and q involving 
all boundary nodes. The fully-populated matrices used to store coefficients of these equations are inverted 
using the Crout Method LU Decomposition from Numerical Recipes in Fortran (Beyer 1991). Additional 
details regarding the BEM solution procedure are provided in Hilbing, Heister, and Spangler (1995). 

2.1     Free Surface Treatment 

A procedure similar to that of Longuet-Higgins and Cokelet (1976) is used to update the position of nodes 
on the interface. Free surface nodes are "tracked" along lines parallel with the local velocity vector in the 
liquid. Under this assumption, flow kinematics require: 

Dr_d$ Dz _d<j> 

~Dt ~ dr ~Dt~dz ^°' 
The velocities calculated by solving Laplace's equation are normal and tangential to the surface. While 

the normal velocity is generated via the solution of Laplace's equation, the tangential velocity (d<j>/ds) is 
calculated using a 4th-order (five point) centered difference method. Radial and axial velocities required in 
Eqn. 10 are determined via the coordinate transformation: 

dd>      dd> 
-^- = ^-smß + qcosß (11) 
or      os 

and 
dd>      dS 

Tz=TsC°Sß-qSmß (12) 

where ß is the local wave slope. 
The unsteady Bernoulli equation provides the dynamic boundary condition for nodes on the interface. In 

an Eulerian system where time derivatives are assumed to occur at a fixed spatial location, the dimensionless 
form of this relation valid in the liquid domain is: 

and the gas domain analog is: 

^ + |(V^)2 + PS = 0 (14) 
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Since the nodes on the interface are assumed to travel with the local liquid surface velocity, a transfor- 
mation from the Eulerian to Lagrangian reference frame is required. Under this assumption, the following 
equation can be used to perform the Eulerian - Lagrangian transformation [23]: 

D() _d() 

By applying this transformation, the Bernoulli's equations (13,14) become: 

Dd>      1 ,_ ,,o     _,        K 
= o(V0)--P3-— (16) 

^ = -f(V^)2-e^+eV0-V^ (17) 

where D( )/Dt denotes changes in time for nodes moving with the liquid interface velocity. 
In the case of the liquid domain, the substantial derivative, D<j>/Dt, is calculated using Eqn. 16. A first 

order backward difference method was used to calculate the gas based substantial derivative appearing in 
Eqn. 17: 

*b. = *?l-+n' (18) 
Dt At v 

where n indicates the time level. 
A stable, time-accurate procedure has been developed to advance the solutions of (16, 17) for all free- 

surface nodes. The following steps are taken: 
1. An initial value of <f) and <j>g are given at each node on the interface. 

2. Solution of Laplace's equation (described in previous section) provides the liquid domain velocities, q, 
at each node on the interface. 

3. Set qg — —q since the gas nodes are fixed to move with the liquid nodes and the outward normals are 
in opposite directions. 

4. Solve Laplace's equations for the gas domain to calculate <j>g at each node in the gas. 

5. Calculate D<j>g/Dt using Eqn. 18. 

6. Calculate the gas pressure distribution along the interface using Eqn. 17. 

7. This value of gas pressure is used to solve for <j) at the new time step via integration of Eqn 16. 

8. The interface is "regridded" using cubic splines of r, z, Pg, and <f> to preserve the even spacing between 
nodes (Hilbing et al. 1995). 

9. Steps 2-4 are repeated with the "regridded" properties, in order to determine the boundary conditions 
at the next time step for the new grid. 

A 4th-order Runge-Kutta scheme is employed in the time integrations. Using this scheme, it is necessary 
to solve the Laplace equation eight times, four for the liquid and four for the gas. However, at the end of 
each time step it is necessary to solve the Laplace equation for both domains again (due to the regridding), 
therefore Laplace's equation is solved a total of ten times per time step using this procedure. 

2.2    Domain Discretization and Boundary Conditions 

The computational domain and the boundary conditions used in this analysis are displayed in Figure 1. 
In this figure, cf> and <f>g represent the velocity potentials in the liquid and gas domains respectively, and 
q = d<f>/dh stands for the velocity in the normal direction. The radial and axial directions are denoted by 
r and z. The flow is considered axisymmetric with respect to the z-direction, so that only a half section is 
needed for the model. However, another axis of symmetry exists along the radial axis due to the assumption 
of inviscid, incompressible flow. As a result, only a quarter section is required for this analysis. Nodes have 
been placed on the interface between the domains, along the radial axis in both domains, and the outer 
boundary of the gas. The gas nodes are denoted with a "x", while the liquid nodes are labeled with an "o". 
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Along the radial line of symmetry for both domains, q = 0 in the liquid and d<t>g/dr = 0 in the gas. 
Equations 16 and 17 were used to set the boundary condition along the interface. Along the outer boundary 
of the gas domain, a sinusoidal velocity history is used to model the acoustic disturbance: 

<i>g = :gcos(ujt) (19) 

Boundary conditions are not specified along the axis of axisymmetry, since the Green's functions vanish as 
r —*■ 0. For this reason, nodes are not required along this boundary. 

3    Model Implementation and Validation 
Once the model had been fully developed, its accuracy was checked by comparing its results to results from 
analytic and other numerical methods. Three separate validation cases were considered: steady flow over a 
sphere, non-linear oscillations of a liquid droplet, and droplet profiles for a steady crossflow. 

The accuracy of the gas domain solution was tested by comparing the distribution of the velocity potential 
over a sphere with the analytic solution of the same problem. The analytic solution was compared to the 
numerical solutions for grids using, 45, 35, 25, and 15 nodes along the interface. The numerical results 
agree well with the analytic solution, and the magnitude of the error is well below 0.5% for all cases. For 
computational efficiency, it was decided to employ only 15 nodes to model the surface of the droplet. For 
cases when the drop becomes highly deformed, as many as 45 nodes were employed in order adequately 
resolve the surface. 

As explained previously, an expression for the fundamental oscillatory mode was developed by Lamb 
using linear analysis. This analysis assumed a linearized surface shape of the form: 

r= l + T)cos{n9) sm(uint) (20) 

where rj is the measure of the initial disturbance amplitude. Tsamopoulos and Brown (1983) later expanded 
upon this analysis by including second order effects. They observed that the frequency of oscillation decayed 
with the square of the initial deformation. The accuracy of the liquid domain solution was determined 
by making comparisons between the oscillatory frequencies from the numerical model and the results of 
Tsamopoulos and Brown. The numerical model was run for an array of initial surface distortions with 23 
nodes along the boundary. Figure 2 shows the comparison of the results from the two models. Excellent 
agreement exists between the two results. It was concluded that the liquid domain solution is accurate. 

The last section of the validation process was to check the accuracy of the model when there is a strong 
coupling effect between the gas and liquid domains. This was accomplished by comparing droplet profiles 
calculated by the numerical model and the profiles predicted by Miksis, Vanden-Broeck, and Keller (1981). 
They developed a model to predict the equilibrium shape of a droplet subjected to a uniform flow. The 
equilibrium drop profile was determined by balancing the pressure of the gas on the surface with the surface 
tension and internal pressure at the same point. 

In order to achieve a steady state solution with the model, it was necessary to introduce a dissipative 
mechanism, which ultimately yielded a steady state solution. Numerical smoothing was applied to <f> until 
surface velocities vanished. Figure 3 shows a comparison between the predicted profiles of the numerical 
model and the method used by Miksis et al. These comparisons clearly show excellent agreement between 
the two models. Hence, it was concluded that the coupled solution is accurate. 

4    Results 

The model was utilized to assess the influence of perturbation frequency (u/u„), Weber number (We), 
and density ratio (e) on the nonlinear response of a droplet to an imposed acoustic oscillation. The results 
presented here represent over 200 runs of the model. Calculations typically used 15 nodes along the interface, 
15 along the radial axis in the gas, and 10 nodes along the outer boundary of the gas domain. However, 
larger grids (as many as 45 nodes along the interface) were utilized to resolve more complex droplet shapes, 
such as those in Figure 14 described below. 

During these simulations, the level of the droplet response is characterized by two parameters, the aspect 
ratio and the oscillatory mode coefficients.   The aspect ratio provides a gross measure of overall droplet 
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deformation and is defined as being the ratio of the major axis over the minor axis of the droplet at peak 
deformation. The mode coefficients, are determined by expressing the current droplet shape as a sum of 
Legendre Polynomials: 

CO 

r=l+2^Cm(t)cos(m6) (21) 
m=l 

where 8 is the angle measured from the positive : axis and Cn are the time varying coefficients. Because 
Cosine functions are orthogonal, it is possible to calculate the coefficients using (Lundgren and Mansour 
1988): 

Cm = -f   {r-l)cos(mO)de (22) 
*" J-n 

Due to the fact that both incompressible and inviscid assumptions are employed in the gas phase, there 
is no mechanism to generate a surface pressure distribution which is asymmetric about the r axis in Fig. 1. 
For this reason, the model cannot excite odd modes of oscillation. This fact was verified by demonstrating 
that mode coefficients for the odd modes were all zero to within machine accuracy (10-14). 

4.1    Frequency Response Spectrum 

The effect of the acoustic perturbation frequency was investigated by performing approximately 100 simu- 
lations. While the frequency was varied, the Weber number was held at 0.5779 and the density ratio was 
0.00123. These conditions correspond to acoustic excitation of a 100 micron water droplet with a 160 db 
disturbance in ambient air. A time step of 0.05 seconds was employed for these computations. Results are 
displayed on Figure 4, which charts the aspect ratio for a range of frequency ratios. Readers are cautioned 
that the purpose of this investigation is to determine regions of high response; actual aspect ratios do depend 
on the assumed initial conditions (spherical vs. deformed drop, sine wave vs. cosine wave disturbance). 

Figure 4 displays a series of peaks that occur near the harmonics of the natural frequency of the droplet. 
A noteworthy area is the break up region that exists for frequency ratios between 0.80 and 0.90. In this band, 
the disturbance is tuned to the natural frequency of the droplet to an extent such that atomization occurs. 
All peaks are shifted to frequencies slightly less than the linear result due to the nonlinear frequency shift 
as shown in Figure 2. The continual shifting of droplet natural frequency with deformation level leads to a 
bounded response over much of the frequency range (for this Weber number). In these regions, the acoustic 
perturbation continues to excite the droplet until the oscillations of the drop become out of phase with the 
disturbance, thereby tending to reduce the amplitude of the oscillation. This process repeats indefinitely or 
until the drop breaks up. 

Areas of significant response occur for ui/un = near 0.5, 1.0, 2.0, 3.0, 4.0, and 6.0. The peaks near 
u)/wn = 0.5, 1.0, and 2.0 are primarily driven by second mode oscillations, while the peaks near ui/uin = 3.0, 
4.0, and 6.0 contain significant fourth-mode effects. It is important to note that the fundamental frequency 
of the fourth mode is three times that of the fundamental frequency of the second mode, w^ = 3wn, for a 
drop in a low density gas (e <?C 1). It is worth mentioning that a frequency ratio near 5.0 does not produce 
a notable response. 

For relatively low disturbance frequencies (w << un), a quasi steady-state response is observed whereby 
the droplet closely tracks the imposed perturbation with a very small phase lag. The amplitude (aspect ratio) 
in this region is greater than the response for higher off-harmonic frequency ratios due to the negligible phase 
lag in this region. At the other extreme (w >> u>„) the oscillations of the gas are so fast that the droplet is 
unable to respond appreciably to the changes in the gas flow. Here, the droplet responds to a mean dynamic 
pressure generated by the acoustic wave. 

As the frequency ratio approaches a value of 0.5, the droplet begins to experience a sub-harmonic ex- 
citation. The frequency of its oscillation is 0.0604, which is approximately half of the natural frequency, 
0.1304. The droplet behavior is characterized by a large deformation followed by a smaller one. The larger 
response is attributed to the peaks in the acoustic wave, whereas the secondary response is due to the droplet 
attempting to maintain its natural frequency. It has been observed that the second mode is solely respon- 
sible for the activity. There is a negligible amount of fourth mode activity, and the higher order modes are 
virtually non-existent (Murray 1996). 

For frequency ratios near the drop natural frequency, the level of droplet activity is high, such is the 
case for w/w„ = 0.79. Figure 5 displays the radial position of the top node for this frequency ratio. As the 
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droplet begins to deform, it becomes increasingly excited as its natural frequency decreases and becomes in 
tune with the disturbance frequency. At this point the droplet repsonse peaks, and the natural frequency 
continues to decrease and becomes out of phase with the disturbance. The response begins to attenuate, 
which results in the natural frequency becoming in tune with the disturbance again. The period of this 
envelope of oscillations is 398 seconds (approximately 6 1/2 oscillations of the imposed gas disturbance). 
The droplet shapes at various times in this process are summarized in Figure 6. Here, T is the overall period 
associated with the process (T = 398) and the shapes are shown for various peaks and troughs in Fig. 5. 

The activity of the droplet is initially controlled by second mode effects. The time history of the mode 
coefficients for the UJ/*J„ — 0.79 case is shown in Figure 7. As the oscillatory amplitude increases, fourth 
mode coupling appears. As in all results investigated in this study, 6th, 8th, and higher even modes gave 
negligible contributions to the instantaneous droplet shapes. In conjunction with the nonlinear frequency 
shift, the fourth mode effects have a stabilizing influence upon the droplet. Figure 8 indicates that the 
second and fourth modes become coupled and destructively interfere, which causes the magnitude of the 
oscillations to dampen and the fourth mode effects to vanish. A similar envelope response is observed for the 
ui/u)n = 0.925 case, however the interference that occurs is somewhat constructive, which serves to amplify 
the response. 

For frequency ratios between 0.79 and 0.925, the second mode effects become overwhelming and the 
droplet breaks up. As the frequency ratio increases past 0.925, the droplet activity drops off since the 
excitation is above the resonant condition. A region of moderate droplet response lies in the frequency range 
of 1.2 to 1.4, which corresponds to the subharmonic of the fourth mode. Significant response is also noted 
at the second-harmonic of the fundamental mode, as one would expect. 

For a frequency ratio near 3.0, the droplet experiences the third harmonic of the second mode of oscillation 
as well as the fundamental frequency of the fourth mode of oscillation. The time histories of the position of 
the top node and the mode coefficients are presented in Figures 9 and 10. The overall period for the process 
is over 2500 seconds, during which over 150 gas oscillations occur. Throughout this process, the magnitude 
of the second mode remains reasonably constant, whereas the fourth mode grows and decays over the period. 
Initially, the droplet oscillates in the second mode. As the fourth mode grows, it dominates the behavior 
of the droplet. The fourth mode then decays to roughly the same order of magnitude as the second mode. 
Similar behavior is observed for u/uin = 3.975-. 

Probably the most surprising result from the frequency spectrum is that more response is noted near 
the second harmonic of the fourth mode (w/w„ « 6) than at the primary fourth mode excitation frequency. 
These two peaks were the subject of substantial scrutiny; model results were replicated for several different 
timesteps and mesh sizes. The top node position history for this case is shown in Figure 11. Here, the overall 
process takes about 780 dimensionless seconds, corresponding to about 95 periods of acoustic excitation. To 
seek an explanation for the heightened response (as compared to the w/wn = 2.97 case), the second and 
fourth mode coefficients are compared in Figure 12. As seen in the upper plot, the second mode response is 
similar in both cases. However, the lower plot reveals a heightened fourth mode response near t = 400 for the 
w/ujn = 5.89 case. Apparently, there is a constructive nonlinear interaction in the w/wn = 5.89 case leading 
to stronger fourth mode effects and increased overall excitation. Since viscous effects are more prevalent in 
damping higher modes, this curious response may not be replicated in actual experiments. 

4.2    Effect of Acoustic Disturbance Intensity 

The influence of the intensity of the acoustic wave was investigated by conducting a series of simulations at 
fixed density and frequency ratios, but with varying Weber number. For these simulations, the time step 
was set to be approximately 1/1000 of the period of a droplet oscillation for the m = 2 mode. Once again, 
the aspect ratio was used as an overall measure of droplet response; Figure 13 provides results for the case 
e = 0.00123, ijj/ijJn — 10. During these simulations, it was observed that droplet atomization occurred at 
Weber numbers above 1.10. Here it is important to note that this "critical Weber number" is dependent 
on both density and frequency ratios; the 1.10 value is for harmonic excitation of a water droplet in air 
(e = 0.00123). 

Droplet break up was studied by conducting trials using Weber numbers greater than the critical value. 
From this analysis, three regimes of break up were identified. Examples of these modes are shown in Figure 
14. In the "nipple" breakup regime (1.1 < We < 2.5), two small satellite droplets are formed as a result of 
the nonlinear motion of the drop. Since the acoustic intensity is barely above the threshold value, breakup 
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in this region takes a substantial amount of time. The nipple regime is similar to the mode of break up 
experienced in the break up band of frequencies, as discussed in the beginning of Section 4.1. As Weber 
number is increased to 2.5, atomization occurs with the formation of two satellite droplets which are larger 
than the central drop. This "kidney" regime occurs The kidney regime exists for 2.5 < We < 3.0. Kidney 
regime breakups are generated in 1-2 oscillations of the acoustic wave. 

As the response amplifies, the drop flattens out in the direction perpendicular to the gas flow, and the 
center continues to flatten which results in the pushing out of a toroid of fluid. Break up occurs when 
the center of the drop pinches, and the cross-section resembles a torus. Atomization in this ''toroidal" 
mode occurs in less than one acoustic period for We > 3.0. Here, the droplet rapidly flattens in a plane 
perpendicular to the acoustic wave. With increasing Weber number, the overall diameter of the droplet (at 
the atomization point) increases, while the inner diameter of the torus decreases as shown in Fig. 14. In 
this figure, the We = 5.78 case is at a reduced scale for display purposes. The droplet shapes at high We 
values are consistent with "aerodynamic shattering" which has been documented by observing the response 
of a droplet to a shock wave (see Hsiang and Faeth (1992) for background). 

A summary of the breakup times (nondimensionalized by the period of the acoustic oscillation, r) are 
provided in Figure 15. The curve is somewhat discontinuous in places due to the fact that breakups occur 
within discrete parts of a given cycle. Once again, for the conditions noted, no breakups occurred for 
We< 1.1. 

4.3    Density Ratio Effects 

The effect of the gas/liquid density ratio upon the droplet behavior was studied by varying this parameter 
while setting We = 0.5779 and u>/uin — 1.0. At a fixed Weber number, the gas-phase dynamic pressure can 
be thought to be fixed, so that an increase in density ratio under this constraint can be viewed as a decrease 
in density of the droplet. In effect, this approach holds the dynamic pressure constant, while decreasing the 
liquid inertia. The level of droplet response for a range of density ratios is shown in Figure 16. As expected, 
droplet response increases with density ratio. The results are somewhat discontinuous as droplet response 
enters the highly nonlinear region, primarily because inflections in the surface can start to occur in this area. 
For these flow conditions, droplets began to atomize for density ratios greater than 0.1. 

5    Conclusions 

The model presented in this paper has been used to study the nonlinear evolution of an acoustically excited 
droplet. While the maximum response of the droplet occurs at the harmonic condition (w =wn), significant 
responses also occur for w/w„ near values of 0.5, 2, 3, 4, and 6. The actual peak responses are also slightly 
less than these values as a result of the reduction in the droplet's natural frequency at finite deformation 
amplitude (nonlinear frequency shift). Droplet responses for the frequency ratios near 0.5 and 2.0 are 
dominated by the second mode, whereas the coupling of the second and fourth modes are responsible for 
the responses to the frequency ratios near 3.0 and 4.0. The droplet response for w/w„ «s 6, which represents 
the second harmonic of the fourth mode, is dominated by fourth mode activity and the amplitude of the 
response actually exceeds that of some of the lower-order harmonics. 

As the magnitude of the acoustic disturbance increases, droplet atomization is predicted to occur. For 
harmonic forcing of a liquid droplet in air, a critical Weber number of 1.10 divides the oscillatory and 
atomization regimes. Droplet breakups occurred in "nipple", "kidney", and "toroidal" modes as Weber 
number was increased above this threshold value. Break up times were roughly inversely proportional to 
Weber number under these conditions. Finally, increasing gas/liquid density ratio under fixed Weber number 
and frequency ratio conditions was also shown to heighten droplet response. 
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of Scientific Research under contract number F49620-93-1-0363 monitored by Dr. Mitat Birkan. 

Nomenclature 

a = undisturbed droplet radius 
G = free space Green's function 
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h = unit normal vector 
P = pressure 
q = velocity normal to local surface 
t = time 
U — maximum velocity in acoustic perturbation 
We = Weber number, We= pgU

2a/a 
z = axial location 
r = radial location 
a = boundary point singularity contribution 
ß = surface slope 
T = domain boundary 
f = ratio of gas to liquid density 
K = surface curvature 
p = density 
cr = surface tension 
0 = velocity potential 
u„ = undisturbed droplet second mode natural frequency 
u> = acoustic frequency (gas phase) 
Subscripts 
g = gas phase properties 
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Figure 1. Schematic of Computational Domain and Boundary Conditions. 
Figure 2. Comparisons of Predicted Frequency Shifts for Nonlinear Oscillations of a Droplet. 
Figure 3. Comparisons of Steady State Droplet Profiles. 
Figure 4. Frequency Response Spectrum. 
Figure 5. Time History of Top Node Position. 
Figure 6. Time History of Droplet Profiles. 
Figure 7. Time History of Mode Coefficients. 
Figure 8. Oscillatory Mode Interference. 
Figure 9. Time History of Top Node Position. 
Figure 10. Time History of Mode Coefficients. 
Figure 11. Time History of Top Node Position. 
Figure 12. Second and Fourth Mode Coefficients. 
Figure 13. Effects of the Weber Number upon Droplet Behavior (e = 0.00123,uj = uin). 
Figure 14. Weber Number Induced Droplet Break Up Profiles (e = 0.00123,u> = ujn). 
Figure 15. Time Required for Droplet Break Up for Various Weber Numbers (e = 0.00123, u; = wn) 
Figure 16. Influence of Liquid Density upon Droplet Behavior. (We = 0.5779, u; = ui„). 
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Figure 2: Comparisons of Predicted Frequency Shifts for Nonlinear Oscillations of a Droplet 
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Figure 4: Frequency Response Spectrum 
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Figure 8: Oscillatory Mode Interference 
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Figure 10: Time History of Mode Coefficients 
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Figure 11: Time History of Top Node Position 
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Figure 12: Second and Fourth Mode Coefficients 
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Figure 13: Effects of the Weber Number upon Droplet Behavior (e = 0.00123,ui = un) 
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Figure 14: Droplet Atomization Shapes at Various Weber Numbers (e = 0.00123, w = wn) 
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Abstract 

Flows in which a low density (gaseous) phase contributes to the motion of a free surface have been studied 
numerically using boundary element methods. A stable, time-accurate integration scheme for the coupled, 
nonlinear free surface boundary conditions is described for the case where both phases are incompressible and 
inviscid. The effect of increasing gas/liquid density ratio on stability of the methodology is briefly discussed. 
The technique is illustrated through a series of examples involving: an infinite-length (periodic) liquid jet 
in a "wind-induced" flow regime; a two-dimensional liquid column subjected to acoustic excitation; and a 
finite-length liquid jet injected into a quiescent gas. 

Introduction 
Within the past two decades, researchers have adopted boundary element solutions to problems involving 
nonlinear deformations of a free surface. In these problems, the boundary element approach is attractive 
because the "grid" is simplified by one dimension over that of a more traditional computational fluid dynamic 
calculation. For two-dimensional geometries, the grid in the BEM formulation is simply a curved line. In 
problems where surface topology changes occur (such as atomization), this simplification becomes quite 
valuable. In fact, recent BEM simulations1 have been conducted in which calculations proceed beyond 
atomization events. 

Numerical approaches utilizing Finite Element Methods (FEM) and the Volume of Fluid (VOF) method 
have also been applied to problems of this type. The VOF technique relies on the interpolation of the surface 
location from a fixed computational mesh. In capillary flows, this interpolation procedure can introduce 
substantial inaccuracy in determining surface curvature (and hence the capillary force). As an example, a 
typical VOF calculation involving sloshing of a fluid in a tank2 exhibits a 1% error in preserving the liquid 
volume, while a BEM calculation exhibits a 0.01% volume error3. A typical BEM calculation1 involving 
nonlinear oscillations of a droplet utilizing 45 nodes achieves a maximum volume error of 0.04 %, while a 
comparable FEM calculation4 would use over 1600 nodes and produce a volume error of 0.8%. 

For these reasons, we have seen a variety of applications of BEMs to problems involving large deformations 
of a free surface. Several solutions have been developed for nonlinear evolution of water waves5-7, and for 
nonlinear deformations of both viscous and inviscid drops1,8. A variety of solutions have been obtained for 
creeping (Stokes) flows in liquid columns9-11, and in annular layers11. Inviscid solutions have also been 
obtained for both infinite12 and finite-length1 liquid jets, as well as for dripping flows1, fountains1, and fluid 
sloshing problems13. 

These simulations have all had to treat the primary nonlinearity associated with free surface flows involv- 
ing the fact that the current surface location cannot be decoupled from the pressure/velocity field. In other 
words, the surface pressure is dependent on the shape of the interface, which in turn depends on the local 
pressure distribution. Most researchers have treated this nonlinearity by utilizing small time steps such that 
the surface pressure/velocity is invariant over a given step. More elaborate treatments have been suggested 
and validated by Liggett and coworkers14,15. 

Recently, a variety of models have been developed in order to include the influence of gas-phase pressure 
distribution on the nonlinear evolution of the interface16-18. Developing a capability to address these flows 
permits the consideration of problems in which wind-induced, or acoustic interactions from the gas phase 
can be included as physical factors affecting distortion of the interface. In this case, the nonlinear free 
surface boundary condition is coupled between the two fluids bordering the interface. This complication 
introduces some unique computational issues for those interested in modeling these flows. In this paper, we 
address these issues as applied to several problems of engineering interest.   The following section provides 
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a detailed description of the BEM, while subsequent sections highlight boundary condition treatments for 
three example problems. 

Model Development 

Our interest lies in developing models which can address capillary (surface tension) forces at the interface. 
By choosing the liquid density (/?), the size/height of the liquid body (a), and a farfield velocity (U) as 
dimensions, the gas/liquid density ratio: 

c = Pg/P (1) 

and the Weber number based on gas density: 

Ttr       pgU
2a 

We = ^  (2 

become the two dimensionless parameters characterizing the flowfield. Here, the Weber number measures the 
ratio of inertial forces imposed by the gas phase to surface tension (a) forces. In the following development, 
we presume that the nondimensionalization described above has been applied. 

We assume that both phases can be represented as incompressible, inviscid fluids. In this case, a velocity 
potential (whose gradient is simply the velocity) exists. Let 0 and <j>g represent the velocity potential in 
liquid and gaseous phases, respectively. Continuity requires that both velocity potentials satisfy Laplace's 
equation: 

V24> = V2^ = 0 (3) 

Proceeding with a standard BEM formulation, the integral form of eqn 3 for the liquid domain becomes: 

f    dG 
<*<!>(*) + / fo-ö- " iGjdT = 0 (4) Jr    on 

where <j>(f{) is the value of the potential at a point rj, V denotes the boundary of the domain, and G is the 
free-space Green's function corresponding to Laplace's equation. An analogous form of eqn 4 can also be 
derived for the gas phase potential. For a well-posed problem, either (j> or q = d<j>/dn must be specified at 
each "node" on the boundary. Here n is the outward normal to the boundary so that q represents the velocity 
normal to the boundary. The quantity a in eqn 4 results from singularities introduced as the integration 
passes over the boundary point, rj- 

Models have been developed for both two-dimensional and axisymmetric flowfields. If we let r and z 
denote radial and axial coordinates, respectively, and denote the base point with subscript "i", the Green's 
function solution to the axisymmetric Laplacian can be written: 

C=    „.."iff? „ (5) 

where 
(r-r,-)2 + (z-z,)2 

P      (r + r,-)2 + (r-z,-)2 W 

and K(p) is the complete elliptic integral of the first kind. For computational efficiency, this quantity is 
calculated using a curve fit19 which has an accuracy to 10-8. 

In the case of a 2-D flow (letting x and y represent the coordinates), we have: 

G = ^W- fi\ = 4^n[(* - *i)2 + (y- m)2] (7) 

In both cases, we have utilized linear elements in the formulation of a set of integral equations over 
a discretized boundary. Linear elements are desirable for problems with moving surfaces since the BEM 
solution in this case will return velocities at the ends of each segment corresponding to the nodal locations. 
In the case of constant elements (for example), a nodal velocity would be calculated at the center of each 
segment, but the end points of the segment would require a separate treatment (based on interpolation of 
nodal velocities) to update the mesh at subsequent times. 

4rK(p) 

V(r + ri)2 + {z ~'i? 

(r- - r;)2 + (* - «? 



For the 2-D flows, integration across a segment can be carried out analytically. Singularities resulting from 
integration across a segment containing the base point are also integrable. In the case of axisymmetric flow, 
the integrations must be carried out numerically. In this case, we choose a four-point Gaussian quadrature 
for evaluation of integrals. Logarithmic singularities which arise in the elliptic integral when the segment 
contains the base point are treated with a special Gaussian integration designed to accurately treat this 
condition. Additional details regarding the numerical implementation can be found in Refs. 1 and 17 for 
the axisymmetric and 2-D cases, respectively. 

Free Surface Treatment 

Governing Equations 

The main challenge in developing models capable of tracking large deformations of an interface lies in the 
treatment of the free surface itself. Since capillary forces are important, it is crucial to develop a treatment 
capable of accurately determining surface curvature at all times during the simulation. For this reason, all 
models employ fourth-order centered differencing (on a generalized, variable spacing mesh) to determine 
surface curvature. Curvature is calculated based on coordinate derivatives as a function of distance along 
the surface using the parametric representation due to Smirnov20. 

The modeler has the choice of tracking the motion of free surface nodes in a variety of directions6. In 
current models, we have opted to track surface nodes along the local liquid velocity vector. Under this 
assumption, for an axisymmetric situation, flow kinematics require: 

Dt      dz Dt      dr [ ' 

where the notation D()/Dt implies a Lagrangian derivative for points on the surface moving with the local 
liquid velocity. 

Recognizing that our BEM solver will return velocities normal to the surface, we employ the velocity 
transformations: 

^ = ^sin(ß) + qcos(ß) ^ = %os(ß) - qsin(ß) (9) 
Or       os oz       as 

where ß is the local wave slope and d<j>/ds is the velocity tangential to the local surface. This tangential 
velocity is calculated using 5-point centered differences on <f>, except for nodes adjacent to ends of the free 
surface, where a 3-point formula is employed. The local wave slope, ß, is calculated following the formulation 
of Medina21. For each node, a parabola is defined such that it passes through the previous node, the node 
in question, and the following node. The slope of the surface is given by the tangent to the parabola at the 
central node. A completely analagous treatment can be employed for 2-D flows by replacing r with y and z 
with x in eqns 8 and 9. 

Dynamics of the interface are addressed through the unsteady Bernoulli equation. In an Eulerian system 
where time derivatives are assumed to occur at a fixed spatial location, the dimensionless form of this relation 
for the liquid surface is: 

f + W + ^ = o (.0) 
where Pg is the gas pressure at the interface, and K is the surface curvature. The Eulerian - Lagrangian 
transformation for nodes on the interface moving with the liquid velocity is: 

Using this transformation, the Bernoulli equation in the liquid becomes: 

^ = I(V0)2-R--^ (12) 
Dt      2y   V) 9     We y    ' 

while an analagous treatment for the gas phase gives: 

eV<j> ■ V<f>g - ^(V^)2 - Pg (13) A = eV0-V^-i(V0,)2-,, 
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Time Integration Scheme 

Mathematically, eqns 8, 12, and 13 provide a system of relations to describe the evolution of the surface shape 
(r, z or y,z) and velocity potentials for unsteady motion of the interface. These equations are integrated 
in time using a fourth-order Runge-Kutta scheme1. This scheme has the advantage of full fourth-order 
accuracy without the requirement of a knowledge of the "history" for a given nodal location; i.e. information 
at previous time levels is not required in the integration algorithm. This feature can be advantageous in 
calculations where a variable timestep is employed or where the number of nodes along the free surface is 
not constant (due to atomization events or surface regridding). 

As mentioned previously, the main challenge in this problem is the development of a stable, consistent 
procedure to handle the coupled, nonlinear boundary conditions at the interface (eqns 12 and 13). More 
specifically, if we regard eqn 13 as an expression for Pg, than an approximation for the derivative D<j>g/Dt 
is required. We have found, that for a wide array of problems it is adequate to approximate this derivative 
using a first-order backward difference scheme. 

ggl=4+1-4 (14) 
Dt At {    ' 

where "i" denotes time level. 

In problems where the gas flows tangential to the liquid surface over most of the time-dependent process, 
the major term influencing the gas pressure in eqn 13 turns out to be the term involving (V<t>g)

2. In this case, 
highly accurate approximation of D<bg/ Dt is obviously not required. However, we have found the first-order 
backward difference (eqn 14) to be adequate even in problems where stagnation points are present. In this 
case, inspection of eqn 13 indicates that the Dd>g/Dt term is the major component leading to changes in gas 
pressure. In the examples which follow, we show that the simple approximation in eqn 14 is adequate for a 
wide variety of flows. 

The following procedure is implemented for nodes on the free surface: 

• At the start of a given time step, the value of <j> is known. Using this value as a boundary condition 
on the interface, the liquid velocity q can be determined via solution of Laplace's equation (eqn 4). 

• Since the gas nodes on the interface are fixed to move with the liquid nodes, this liquid velocity is 
used as the gas phase boundary condition (qg = —q) to calculate the <f>g value on the gas side of the 
interface. 

• This value of the gas phase velocity potential is then used in eqn 13 to determine the gas pressure at 
this new time step using the approximation for Dcpg/Dt given in eqn 14. 

• The gas pressure at the new time is then used in eqn 12 to calculate the current Dcj>/Dt which is then 
integrated in time. 

Since the nodes on the interface are allowed to move with their local velocity, over time they tend to group 
themselves in regions of high curvature. This phenomena leaves regions of lower curvature poorly defined. To 
alleviate this problem, the surface mesh is regridded using a series of cubic splines (for surface coordinates, 
4>, and <j)g) at each time step to keep the spacing between the nodes constant along the surface. The use 
of the Runge-Kutta integration scheme is well suited to this type of remeshing, since it does not require 
information on node positions at previous time levels to predict the subsequent motion of the surface. Also, 
we note that regridding the surface can be accomplished in this case since the approximation for D<frg/Dt 
(eqn 14) involves only two time levels. If more accurate representations of this derivative are required, then 
regridding tends to destroy information about previous 4>g values on given nodal locations. 

Finally, we note that the regridding process does provide a natural "smoothing" of the surface. Many 
previous authors7,8'12,15 have been forced to implement smoothing procedures to alleviate "zig-zag" instabili- 
ties which develop on the surface after a large number of time steps. Because of the regridding procedure, we 
have not had to implement any formal smoothing of the surface (or any other functions associated with the 
surface). For these reasons, calculations using the methodology described above have very little numerical 
dissipation. In the following sections, we provide three examples to illustrate the results of the free surface 
treatment described above. 
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Example #1: Infinite Liquid Jet in Wind-Induced Flow Regime 

The distortion and atomization of a liquid jet is one of the most frequently studied free surface problems 
due to its wide array of applications (atomizers, ink-jet printers, fire hoses, etc.). To date, most analyses 
have presumed a periodic solution exists, whereby the study focuses on a single wavelength of fluid. Such 
conditions can be experimentally simulated in the case of low speed jets by providing low amplitude acoustic 
or mechanical excitation of the orifice22. Until recently, the nonlinear analyses applied to this problem 
have ignored the presence of the gas phase. Using the formulation described in the previous sections, we 
have developed a fully nonlinear simulation of the jet in the presence of a gas (typically referred to as the 
wind-induced flow regime). 

A schematic of the computational domain is shown in Fig. 1 in which liquid nodes are denoted "o", while 
the gas nodes are denoted "x". We presume that the coordinate system is attached to the liquid, so that 
U is the relative velocity between the two fluids at a location far from the interface. We place the upper 
boundary in the gas phase far enough away from the surface such that there is negligible flux of fluid through 
the interface. The assumed periodicity requires that on the vertical boundaries q = 0 in the liquid phase and 
d(pg/dr = 0 in the gas phase. No nodes are required along the centerline since both G and dG/dn vanish 
for the axisymmetric geometry assumed. 

The initial wave shape of the surface is assumed to be: 

r =l + Tjcos(kz) (15) 

where r] is the initial surface deflection and k is the wave number of the forcing disturbance on the jet. For 
T] << 1, results from a linear analysis23 can be employed to give the initial gas-phase pressure and velocity 
potential along the interface: 

.A'o(Arr) 

A'i(fc) 
Pg = -erjkcos(kz)    °\   ' (16) 

K0(kr) ' ■    /i-N ^ = J-',Sln(k)^ (1° 
where A'o and A'i are modified Bessel functions of the second kind. In the liquid phase, we presume that 
the interface is initially at rest to provide a starting condition for the integration. 

Typical calculations involve 60-100 nodes along the interface. Vertical surfaces in the gas phase employ 
exponential stretching to permit greater resolution near the interface. Near the interface, nodal spacings 
along vertical surfaces are kept at values near that of the interface itself. A dynamic time-step criteria is 
employed to insure that nodes move no more than 5% of the nodal spacing on a given time step. This 
criteria permits considerable acceleration of the code (as compared to the constant time step case) since the 
initial surface velocities are very small. Surface velocities grow to very large values as curvature increases 
dramatically near the pinching of the jet. Calculations are stopped when a node reaches a distance of 1% of 
the initial jet radius from the centerline. A typical calculation takes about 25,000 CPU seconds on an IBM 
RISC 6000 Model 580 machine. 

Results from sample calculations are included in Figs 2 and 3. In Fig. 2, the evolution of the jet is shown 
for We = 1, e — 0.00129 which would correspond to a 1 mm water jet issuing at 7.7 m/s into ambient pressure 
air (multiple waves are shown here for clarity). A dimensionless wave number of k = 1.027 is selected, since 
linear theory24 predicts this to be the most unstable value for this flow condition. This calculation employs 
65 nodes along the interface and a total of 87 and 259 nodes in liquid and gaseous domains, respectively. 
Under these conditions, aerodynamic and surface tension forces are comparable and the simulation predicts 
that the jet will break at the centerline leading to the formation of a "main" and "satellite" drop from 
each wave along the surface. Jets atomizing in this fashion are said to lie in the first wind-induced regime. 
Predictions of the size of main and satellite drops agree well with experimental measurements16 for low speed 
jets. 

Figure 3 shows the influence of increased gas velocity for the case: We = 5, e = 0.0013, k = 4.23. In 
this case, the increased influence of the gas-phase leads to the pinching of an annular ring of fluid at the 
periphery of the jet (characteristic of the second wind-induced regime). The increased complexity of the 
surface in this case necessitated a more refined grid which employs 89 nodes along the interface. While 
viscous effects would tend to cause the annular ring to be swept downstream, aerodynamic ripples of this 
nature have been observed experimentally25. 
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Spangler16 has investigated the influence of e on the performance of the code. The algorithm produces 
stable results for e values approaching unity, but diverges rapidly for values near or above this threshold. As 
e increases, the importance of the gas phase also increases. For i > 1 we presume it would be more logical to 
interchange the treatment of liquid and gas phases in the procedure described above. In addition, it is likely 
that more accurate and stable results would be obtained by tracking nodes along the "gas" phase velocity 
vector for these conditions. In practice, e values less than 0.01 characterize nearly all gas/liquid flows; even 
at high pressure conditions present in a rocket combustion chamber. 

Example #2: Liquid Column Subjected to Acoustic Perturba- 
tions 

Nonlinear interactions of various atomization processes with acoustic waves have been implicated as a possible 
source of combustion instabilities in liquid rocket engines26. For this reason, a 2-D model was developed 
to assess the distortion of a liquid column subjected to a transverse acoustic wave. Here, we presume that 
the wavelength of the acoustic disturbance is much greater than the diameter of the column such that the 
acoustic wave can be modeled as an unsteady incompressible flow. 

Under these assumptions, the computational domain for this analysis is shown in Fig. 4. Due to symme- 
try, only a 1/4 cylinder domain need be considered. In Fig. 4, liquid nodes are represented by "o" and gas 
nodes by '"X". For this 2-D problem (flow is into the page), nodes are required along both symmetry axes. 
The boundary condition q = qg = 0 is applied along the y = 0 symmetry plane. Along the x = 0 plane, we 
specify q = 0 and d0g/dy = 0 for the gas phase. Once again, exponential stretching is applied to gas nodes 
along the symmetry axis in order to increase resolution near the stagnation point at the junction with the 
column. 

The outer boundary in the gas domain is placed far enough (15 jet radii) from the liquid such that the 
velocity potential on this surface may be assumed to be a pure acoustic wave traveling in the horizontal 
direction: 

4>g = xcos(uigt/2) (18) 

where u>g is the frequency of the acoustic wave. The factor of 1/2 in the cosine wave results from the fact 
that the solution is insensitive to flow direction, i.e. a wave traveling to the right sets up the same pressure 
distribution as a wave traveling to the left. In this problem, we expect large column response when the 
frequency of the acoustic wave is near the natural frequency of the column. A linear analysis26 shows that 
the dimensionless column natural frequency can be expressed: 

(.9) (l + e)We 

Here we have chosen the column radius, liquid density, and the peak velocity from the acoustic wave as 
dimensions. 

A time step of 0.005 was used in all simulations. The model was validated using the analytic solution for 
flow over a cylinder. In addition, results compare very well with the steady-state solutions27 for the case of 
a uniform flow over a liquid cylinder. Typical grids employ 25 nodes on the interface, 21 nodes on the outer 
gas boundary, 15 gas nodes along the symmetry planes, and 8 liquid nodes along symmetry planes. Typical 
run times are 4-16 hours on a Sun Sparestation 1000 computer. 

Sample results from the model are provided in Figs. 5-7. In Fig. 5, the motion of a node at the top of 
the column is shown for the case: We = 0.1, e = 0.01, u>g = un which represents excitation of the column 
at its lowest-order natural frequency. Even though the energy input is unbounded, the column response 
is bounded. This phenomena is caused by a shift in the column natural frequency at larger deformations. 
At large amplitudes, the natural frequency is substantially lower than that predicted by the linear theory 
(eqn 19), which ultimately leads to a destructive interference from the constant frequency acoustic wave. 
Nonlinear frequency shifts have been characterized for both droplets1 and columns17 in the literature. The 
simulation fails at t ss 95 due to the development of a sawtooth appearance along the interface. Such 
occurances are common in long time integrations of this nature (note that we have taken almost 20,000 time 
steps prior to failure of the simulation). As mentioned previously, numerical smoothing would be required 
to extend the simulation to longer times. 
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The shapes of the column at various stages in the process are shown in Fig. 6. In contrast to oscillations of 
droplets, the column is fairly insensitive to fourth-mode activity so that a second (primary) mode oscillation 
occurs at all gas frequencies1'. The effects of gas density changes are assessed in Fig. 7 for the harmonic 
case (ug = un) by comparing the maximum aspect ratio of the column (AR(max)) at various« values. Since 
Weber number is fixed in these simulations, the effects of increasing e can be thought of as a decreased liquid 
density (and hence liquid inertia). For this reason, we expect a greater column response at higher e values. 
Figure 7 confirms this behavior, showing a greater sensitivity to e as e — 0.1. At e > 0.01, the treatment of 
the interface does not provide viable solutions and numerical zig-zag instabilities are generated early in the 
calculation. 

It is interesting to note that these solutions break down at a much lower value of e than those in the first 
example. While the breakdown point is clearly dependent on Weber number, another explanation for this 
behavior is the increased sensitivity of the solution to the approximation of D4>g/Dt near the stagnation 
point at the base of the column. In fact, Rutz17 has extended We = 0.1 solutions to higher e values by- 
removing the regrid procedure and implementing fourth-order time integrations of eq.  13. 

Example #3: Liquid Jet Injected into Quiescent Gas 

A final example providing unique boundary conditions for a fully-coupled gas/liquid flow is outlined in Fig.8. 
In this axisymmetric problem, a finite-length liquid jet is injected into a quiescent gas. Note that the orifice 
geometry can also be included in this simulation; a unique treatment as compared to most atomization 
models. The outer boundary in the gas domain is made large enough to encompass the entire liquid domain 
for the entire duration of the calculation. In addition, this boundary is placed far enough from the liquid 
so it can be assumed to be at constant pressure. Similarly, the hemispherical inflow boundary is placed far 
enough from the orifice entrance such that constant pressure can be assumed. 

Combustion instabilities have been attributed to the "dynamic orifice flow" created by a time-varying 
discharge pressure. Using the domain in Fig. 8, we can assess liquid behavior for both constant and time- 
varying orifice pressure drops. Even though a stagnation point lies at the tip of the jet, we have found that 
the free-surface treatment described in Example # 1 is adequate for this problem. Nodes are added along 
the free surface as the jet issues from the orifice so as to maintain a roughly constant nodal spacing. Surface 
nodes are regrid at each time step by fitting surface coordinates and velocity potentials with cubic splines, 
as described in Example # 1. 

The inflow and outer gas boundaries require a unique treatment in this example. On the inflow boundary, 
Bernoulli's equation can be written: 

where P\0 is the prescribed inflow pressure. On the outer gas boundary, Bernoulli's equation is: 

^ = i(V«'-P„ (21) 

where Pgo is the prescribed gas pressure. Equations 20 and 21 require no Eulerian/Lagrangian transformation 
since nodes on these boundaries remain fixed. 

In this example, we presume that all pressures are nondimensionalized using the liquid density and the 
ideal orifice exit velocity (assuming a discharge coefficient of unity). Under this assumption, P\0 and Pgo 

must be related by: 

^-"'•^('-«b» (22) 
inlet 

where Ri„iet is the radius of the hemispherical inlet at the entry to the orifice. If an oscillating Pgo is specified, 
then the mean value is used in eqn 22 to find the appropriate P\0 to support the desired nondimensionalization. 
Using this approach, the problem is characterized by a Weber number, density ratio, and the frequency and 
amplitude of any pressure perturbation applied at the outer gas boundary. 

On the liquid inflow boundary, we begin calculations by setting q = —\/{2Rfnlet) along the inflow 
boundary and assume a small column of liquid (with a hemispherical cap) is issuing from the orifice with 
constant axial velocity, <j> = z. We set q = 0 along solid boundaries representing walls of the orifice or of the 
chamber and solve Laplace's equation to provide initial values for <f> along the inflow boundary. The outer 
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gas boundary is placed far enough from the small liquid jet such that a stagnant condition [<t>g = 0) initially. 
With this information, we can begin the time-stepping procedure described in Example #1 to determine <j>g 

values and velocities along the interface. In this case, we integrate an additional two equations (eqn 20 and 
21) to update <b on the inflow boundary and 6g on the outer gas boundary. These expressions are integrated 
using the fourth-order Runge Kutta integration described previously. 

Typical calculations employ a grid spacing approximately equal to 20% of the orifice radius, with a time 
step of 0.005. Run times can be quite substantial (1-2 weeks) due to the fact that the size of the gas/liquid 
interface increases with time. It is not uncommon to have grids with several hundred nodes in both liquid 
and gas phases. 

Results of sample calculations using the model are presented in Figs. 9 and 10. Figure 9 summarizes 
a series of runs aimed at investigating the initial behavior of the jet for a variety of density ratios. As f 
is increased, the momentum required to displace the gas also increases, thereby yielding the "mushroom" 
shaped jet tips shown in Fig. 9. In Fig. 10, the effect of unsteadiness in gas pressure is investigated. In this 
case, We = 17.6, and e — 0.001 for both simulations presented in Fig. 10. The evolution of a jet under steady 
back pressure (a) is compared with a simulation in which the orifice pressure drop is varied sinusoidally about 
the mean (eqn 22) at a frequency of k = 2 (b). The unsteady response is not dramatically different than 
the steady case even under the large amplitude (75%) perturbation in gas pressure. In this case, the orifice 
channel provides substantial attenuation of the imposed oscillation in the downstream pressure. 

Conclusions 

A stable, time-accurate, integration scheme has been developed for the coupled, nonlinear dynamics of a 
free surface in a two-fluid flow. The proceedure is illustrated through a series of axisymmetric and 2-D flow 
examples involving liquid jets subjected to significant pressure disturbances from a surrounding gas. While 
the accuracy of the time integration becomes more critical in cases where stagnation points are present on 
the free surface the technique is shown to work well even in flows where stagnation points are present. As 
the gas/liquid density ratio approaches unity, the stability and accuracy of the schemes degrade. However, 
the methods described herein have been applied to physically-meaningful gas/liquid flows which generally 
exhibit density ratios less than 0.01 even under high pressure conditions. 
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Nomenclature 

a — orifice or column radius 
G = free space Greens function 
k = wave number 
K(p) = complete elliptic integral of the first kind 
A"o,i = modified Bessel functions (eqns 16 and 17) 
n = coordinate normal to local surface 
P — pressure 
q = velocity normal to local boundary 
r = radial coordinate (axisymmetric flow) 
s = coordinate aligned with local surface 
t = time 
We = Weber number, We = pgll

2a/cr 
x = axial coordinate (2-D flow) 
y = transverse coordinate (2-D flow) 
z = axial coordinate (axisymmetric flow) 
a = boundary point singularity contribution 
ß = surface slope 
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€ = gas/liquid density ratio 
T = domain boundary 
K = surface curvature 
<f> = velocity potential 
p = density 
a = surface tension 
w = frequency 

Subscript 
( )g = gas phase 

References 

1. Hilbing, J. H., k Heister, S. D. A Boundary Element Method for Atomization of a Finite Liquid 
Jet, To Appear, Atomization and Sprays, 1995. 

2. Hung, R. J., and Lee, C. C. Effect of a Baffle on Slosh Waves Excited by Gravity-Gradient 
Acceleration in Microgravity, Journal of Spacecraft and Rockets, 1994, 31, 1107-14. 

3. Class Project, A&AE 630, Stability of Free Surfaces, Purdue University School of Aeronautics 
and Astronautics, Professor Heister, 1994. 

4. Foote, G. B. A Numerical Method for Studying Simple Drop Behavior: Simple Oscillation, Journal 
of Computational Physics, 1973, 11, 507-30. 

5. Dold, J. W., and Peregrine, D. H. Steep unsteady water waves, an efficient computational scheme, 
Proc. 19th Coastal Engineering Conf, Vol. 1, Houston, ASCE, 1984, pp. 955-967. 

6. Liggett, J. A., and P. L.-F. Liu, The Boundary Integral Equation Method for Porous Media Flow, 
Allen and Unwin, London, 1983. 

7. Longuet-Higgins, M. S., and Cokelet, E. D. The deformation of steep surface waves on water. I. 
A numerical method of computation, Proc. R. Soc. Lond. A, 1976, 350, 1-26. 

8. Lundgren, T. S. k Mansour, N. N. Oscillations of Drops in Zero Gravity with Weak Viscous 
Effects, Journal of Fluid Mechanics, 1988, 194, 479-510. 

9. Kelmanson, M. A. Boundary Integral Equation Solution of Viscous Flows with Free Surfaces, 
Journal of Engineering Mathematics, 1983, 17, 329-43. 

10. Tjahjadi, M., Stone, H. A. k Ottino, J. M. Satellite and Subsatellite Formation in Capillary 
Breakup, Journal of Fluid Mechanics, 1992, 243, 297-317. 

11. Newhouse, L. A. and Pozrikidis, C. The Capillary Instability of Annular Layers and Liquid 
Threads, Journal of Fluid Mechanics, 1992, 242, 193-209. 

12. Mansour, N. N. k Lundgren, T. S. Satellite Formation in Capillary Jet Break-Up, Physics of 
Fluids A, 1990, 2, 1141-44. 

13. Nakayama, T., and Washizu, K. The boundary element method applied to the analysis of two- 
dimensional nonlinear sloshing problems, Int. J. Numer. Methods. Eng., 1982, 17, 1631-46. 

14. Liggett, J. A. Free-surface flow—exposing the hidden nonlinearity, Commun. Appl. Numer. 
Methods, 1988, 4, 509-16. 

15. Medina, D. E., Liggett, J. A., Birchwood, R. A., and Torrance, K. E. A Consistent Boundary El- 
ement Method for Free Surface Hydrodynamic Calculations, International Journal for Numerical 
Methods in Fluids, 1991, 12, 835-57. 

16. Spangler, C. A., Modeling of Jet Atomization in the Wind-Induced Flow Regime, Masters Thesis, 
Purdue University, 1994. 

17. Rutz, M. W., Boundary Element Model for the Semi-Infinite Liquid Jet, Masters Thesis, Purdue 
University, 1995. 



18. Spangler, C. A., Hilbing, J. H., k Heister, S. D. Nonlinear Modeling of Jet Atomization in the 
Wind-Induced Regime, Physics of Fluids, 1995, 7 964-71. 

19. Abramowitz, M. k Stegun, F. A. (eds.), Handbook of Mathematical Functions, Dover Publications, 
9th Ed., 1970. 

20. V. I. Smirnov, A Course of Higher Mathematics,  Volume II, Pergamon Press, New York, 1964. 

21. D. E. Medina, On Droplets and Boundary Elements, Cornell University, FDA-89-12, 1989. 

22. Moses, M. P., Collicott, S. H., k Heister, S. D. Visualization of Liquid Jet Breakup and Droplet 
Formation, 7th International Symposium on Flow Visualization, Seattle, VVA, 1995. 

23. W. R. Sears, Small Perturbation Theory, Princeton University Press, 1960. 

24. Sterling, A. M., k Sleicher, C. A. The Instability of Capillary Jets, Journal of Fluid Mechanics, 
1975, 68, 477-95. 

25. Lefebvre, A. H., Atomization and Sprays. Hemisphere Publishing Company, 1989. 

26. Heister, S. D., Rutz, M., k Hilbing, J. Effect of Acoustic Perturbations on Liquid Jet Atomization, 
AIAA 95-2425, 31st AIAA Joint Propulsion Conference, San Diego, CA, 1995. 

27. Hoover, D. V., Ryan, H. M., Pal, S., Merkle, C. L., Jacobs, H. R., k Santoro, R. J. Pressure 
Oscillation Effects on Jet Breakup, Heat and Mass Transfer in Spray Systems, HTD-Vol. 187, 
ASME, 1991, 27-36. 

89 



Figure 1. Schematic of Computational Domain for Liquid Jet in Wind-Induced Regime Denoting Bound- 
ary Conditions 

Figure 2. Nonlinear Jet Evolution in First Wind-Induced Regime 

Figure 3. Nonlinear Jet Evolution in the Second Wind-Induced Regime 

Figure 4.  Computational Domain and Boundary Conditions for Liquid Column Subjected to Acoustic 
Perturbations 

Figure 5. Time History for Top Node Position; We = 0.1, e = 0.01, uia = u>n 

Figure 6. Column Shape at Various Times During Excitation Process 

Figure 7. Density Ratio Influence on Maximum Aspect Ratio of the Column 

Figure 8. Schematic of Computational Domain for Liquid Jet Injected into Quiescent Gas 

Figure 9. Effect of Gas Density on Initial Liquid Jet Behavior, We — 17.6 

Figure 10. Effect of Unsteady Chamber Conditions on Jet Evolution, We = 17.6, e = 0.001, (a) - Steady 
Flow; (b) - 75% Pressure Oscillation About Mean Flow at k = 2 
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Figure 1: Schematic of Computational Domain for Liquid Jet in Wind-Induced Regime Denoting Boundary 
Conditions 
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Figure 2: Nonlinear Jet Evolution in First Wind-Induced Regime 
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Figure 3: Nonlinear Jet Evolution in the Second Wind-Induced Regime 
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Figure 4: Computational Domain and Boundary Conditions for Liquid Column Subjected to Acoustic Per- 
turbations 
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Figure 5: Time History for Top Node Position; We = 0.1, e = 0.01, u. = uin 

1.5 

0.5- 

1                     1           —1 1 1  

We = 0.1                                     1                                    ti = 61.1 
e   =0.01                           X^--"~^~-\\                           t2 = 78.4 
lüg = (fln                                   //           -i       ^V\                                t3 = 27.1 

// /^       ~~~\\\                            U = 31 -4 

//                                 \\                          t5 = 82J 
//                            \\                   te = 65.6 

/        4...        y 
I-'''          5         *"" l\ 

,<-" /I w 
'*' i \      '"" 

// /          / // /          / // /            I \ \\ 

/ (   t 
1 1   1 

1 1   1 
1 t   1 
1 1   1 
III          1 1                        1                        1 1      111 

-1.5 -0.5 0.5 1.5 

Figure 6: Column Shape at Various Times During Excitation Process 
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Figure 7: Density Ratio Influence on Maximum Aspect Ratio of the Column 
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Figure 8: Schematic of Computational Domain for Liquid Jet Injected into Quiescent Gas 
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Figure 9: Effect of Gas Density on Initial Liquid Jet Behavior, We = 17.6 
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Figure 10: Effect of Unsteady Chamber Conditions on Jet Evolution, We = 17.6, (a) - Steady Flow; (b) 
75% Pressure Oscillation About Mean Flow at k = 2 
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