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ANOTHER INYERTIBLE PIECEWISE GREULING SOLUTION TO THE 
STRAIGHT AHEAD TRANSPORT EQUATION 

by 

J. Ernest Wilkins, Jr., Alan Oppenheim 

1° Introduction 

We consider the straight ahead transport equation j_lj 

/"Eo 
Ä^El + (E)F _ /   K(t,E)F(x,t)dt + K(E .E)e ^ °     (1.1) 

Ox ° 
E 

F(0,E) = 0, 

under the hypothesis of separability, i.e. 

K(t,E) = G(t)H(E). 

We assume in addition that the interval (0,E ) can be partitioned 

into a finite number of subintervals (E ., < E < E ) (n = 0,1, ...,N) 

such that on each of these intervals K(E,E) may be closely approxi- 

mated by some constant multiple of ctyti/dE, i.e. 

K(E,E) = a #        (E < E ^ E„ -,). 

In an earlier report \11 we discussed the solution of Eq. (1.1) 

under the following circumstances: 

(i) a^ is a finite integer (n = l,..t,N+l). 

(ii) ap is a  finite integer (n = 1P.. . ,N+l,nj^p), a = oo, 

0 <ax < ... <ap-1, ap+1 <... < aN+1 < 0. 

(iii) N = 1, a^ = I, a2 arbitrary* 
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(iv) N = 1* a« = -1, cu arbitrary. 

1 
(v) a is a finite integer (n=lj,-»..,N), <%+n = - TJ" , 

US CC-i  <, o • » C^  ttfj e 

The solutions in all these cases are expressible in terms of 

polynomials, exponentials, Bessel functions and confluent hyper- 

geometric functions with second argument 2. 

We shall discuss here the following case, which generalizes 

case (v): 

(vi) a is a finite integer (n=l, ...,N), cur+-, = - jjr > 

0 < 0^ < «.. < a , a 1 < ... ^.djj CO» 

When p ^ N, the solution will involve the function 

r 
G(k,v) =   e"u Io(ku)du (1.2) 

0 

used and tabulated by Rice [2 L 

2. Properties of the Function G(k,v) 

Since the function G(k,v) is relatively new in analysis, it 

is advisable to record some of its properties. Some of these pro- 

perties will be useful in the next section where we actually solve 

Eq. (LI). 

Let us define 

H(k,v) = k G(k,v), £ = k2 ^ . 

Then it is true that 

,v 
ume"u I (ku)du = -^ 

0 
0       k^1 

m-1 

<Pm H(k,v)-ve~v Y_   «P(^1+1"P IoCkv)/^"1-^ 
5=0 (2.1) 



The proof of this identity can be made quite simply by a mathe- 

matical induction on m if one replaces u by t/k and multiplies by 

k01  before applying the operator <&» 

If we differentiate Eq. (1.2) with respect to k and integrate 

by parts twice we can show that G(k,v) satisfies the differential 

equation . * 

(k2-l) H = »kG + ve~Yjk IQ(kv) + I^kv) | . (2.2) 

In particulars when k = 1 we have that 

G(l,v) = ve~v IQ(v) + I-,(v)| , (2.3) 

a result first noticed by Bennett [3 L Since it is obvious that 

CJ(0,v) = 1 - e"v, (2.I4-) 

it follows from Eq. (2.2) that 
k 

/ »5- ,,       -r     f      t   MtV> + IlCtv) 
|/l~k2 G = 1 - e"v - ve"* /  -—2 —-i— dt (2.5) 

0 v4-t2 

-V I   t IQ(tv) + I-^tv) 

If we let v approach +00, we see that [k,  p. 38U-J 

G(k, 00) = l//l-k2 (2.6) 
2 when kr < lo 

It follows from repeated differentiations of Eq. (2.2) that 

the integral on the left of Eqe (2,1) can be expressed in terms of 
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G, polynomials In v and k, e~v and Bessei functions of kv when 

k< 1. In particular, 
v 

f 
(l»k2) ne"u Io(ku)du = G(k,v) - ve**

v|l0(kv) + kl-^kvV     (2.7) 

0 

(1-k2)2 [ uVu IQ(ku)du = (2+k
2)G(k,v) - ve"v|(2+ls?+(l^k?)vjl0(lnr) 

+ J3k + (l-k2)kv| I1(kv) .       (2.8) 

The computation of G(k,v) for small values of k can be per- 

formed by expanding I (ku) into a power series and integrating 

term by term* In this manner we find that |_2, p. 44J 

G(k>v). £   x   (|f (V.-*, „ £ ^ (|f VT),   (2.9> 

in which 

A„(v) = 1 n 
/2n 

1 + v + 21 + ••• + X2nTT 
.-v 

Since 0 < A (v) < 1 when 0 = v < oo, the convergence of this series 

is dominated, uniformly in v, by the convergence of the power series 

for (l-k2r1//2* 

When i-k2 « 1, it is more convenient to expand IQ(ku) into 

a power series in 1-k \_k-,  p«142J 

a. (-i)m(i-k2)rac^u)myu) 
IoCka) = H 

m=o mi 
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and integrate term by term« If we observe that 

f -u               m           e"Tvm+1lIm+l
(v^   + Vv4 eU I/u^du = —LffiÜ m—JL 

J0 2m+1 

(this can be proved, by differentiating both sides with respect to 

v), we then see that 

If we make use of the inequalities I k-,  p° ^-9 I 

Im(v) i ^f£ e\ vVv £ mme-m 

.Tf-  i(^-l)v/2     (l+1(v)  + I(v) 
G(k,v) = ve~v )     -i———i-LS+i Si i. . (2oio) 

and the asymptotic behavior of the gamma function, we can show 

that the series for e~vG(k,v) converges uniformly in v and k when 

|k~-l| = I - 5 < 1, the convergence being dominated by that of the 

series 

It2- Y. m 
n=o 

Although the series (2»9) and (2.10) both converge uniformly 

in v, neither is entirely satisfactory for calculating values of G 

when v is large and k is near one« To derive an approximate for- 

mula for these conditions we notice that as a consequence of the 

asymptotic expansion for I and Eq* (2.6) we have that 
oo 

<Xk.v)~ -=?= - f ^^ f" i^Ä^Sl du 
/T-k2     I   CaTrku)1/2 £5      (2ta)m 

' .00 

1 J "" r^/ 

^?       f^^    J. fe       (2kt2)m      dt- 
tI -7- 



In which 

mi if(4 - m) 
2 

The integral with integrand e"t t~ ra can be reduced after m inte- 

grations by parts to the error function integral« It turns out that 

sufficient accuracy for most purposes can be obtained by retaining 

only two terms in the sum and so we shall not carry out this reduc- 

tion In detail» For the first two terms we  have that 

oo 2 

GCk.v>~^ -./rosy {  /   ^«'ft?) 

~ ±        -    ^(5k"1)t1~H(tiii + £
ti: >        (an) 

in which H(t-) is the error function extensively tabulated else- 

where [ 51 

JL 

.2 
H(t,) = ~  /   e~u dt. x   Vv. 

3• Solution ^of thei .Transport Equation. 

It is known [i] that if f(s,E) is the Laplace transform of 

F(x,E), then under the hypothesis of separabilityp 

E o 

Cp0+s5"cpsyexp |    ss*pffii+T 
E 

f(s E)  s _E5adL. «™   / K&^jdEl 
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If it is  true that 

K(E,E) = anf <En<E<En-l>< 

then it is true that 

«„,„ = g^y"1"1 ff (     j-m-lc      (En< E <En_1). 

Let us now  suppose that the constants an are integers (n=l,...,N), 

that otjjif^ = - ^ , that 0 < cu < a2 <...<' a , and that 

ap+l ^ ap+2 < °°° < ajj < Oo Then if E > EJJ, f(s,E) is a rational 

function of s, and so its inverse Laplace transform can be readily 

computed in terms of exponentials and polynomials. If E < E„, then 

a    1      N~1 

K(EO,E)(FG+S)  1"      7~y (^s)ak+1"ak (flj+sf ^ 

f(s,E) = —— ■ —~-feltisk 
(/i+s)^2(^+s)^2(jys) P" P+1 

K(Eo,E)P(s) 

(ps) ^ (^T+S ) X/2 (     +s } Wl 
(3-D 

in which P(s)  is a polynomial in s of degree a -a +1-1 since 

al~l*  ak+r~ak and "~aE are non-neSai:;ive integers.    The inverse La- 

place transform of f can therefore be expressed in terms of the 

inverse Laplace transform of 
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^727~ö72T (3o2) 

and its derivatives with respect to ii • The inverse Laplace 

transform of (3»2) is [6, No. 219, No« 555J 

-n x / ii v -l/2(p.+Uw)y  (T      ) 

n 

■h x 

It follows that the solution F(x,E) can be expressed in terms of 

the function G and its derivatives with respect to k,' together 

with exponentials, Bessel functions and polynomials. In view of 

Eq. (2.2), it is not necessary to use derivatives of G with respect 

to ko 

If p = 0, ice. if a1< otg < ... < OJJ < aN+1 = - \  , the above 

analysis needs to be modified slightly. In this case we have, 

when E < EL., that 

K(E0,E)P(s) 
Sp  ~ (p0+Tr

L<"ai(/a+sTI7^(^+s )1/2 

in which P(s) Is a polynomial in s of degree -a-^ The formal mani- 

pulations to invert f(s,E) are thus identical with those to invert 

(3«D If we set p = 0, a = 1. 

We, shall now apply this general analysis to a particular case 

in which the details are relatively simple» 
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Let us suppose that 1=1, p = 0, Then 

-a-, 

K(EÄflE) ~      1-a [(E;7E7 
0     (uQ+s)  •L(p+s)x/"(p1+s)- ^^^rn.+s^2 

i ^    /-ai>1  /£r£oV 

(-a1)i(p0-fi1)1'    ar 

~ (rl)2(~arr)l      huT
Q    (po+s)(p+s)1/2(jLi:3L+s):L/2 

Therefore 

-an 

X.E) _ r" ("ai)l»o^i}  _3i . 
o'S'      fc- (rl)2(-a-,-r)l      du* n' 

r=o 

'0 

-a- 

f° e    ^    X    lolCp^yMy 

K(Eo'Tr     ^ (rl)2(-arr)l 

(^'•-^^^^fj^^l-y. 
o 

There is little to be gained by using Eqs. (2.1) and (2.2) 

to reduce this expression in general. The method, can be illustrated 
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in case ou = -1«    Then 

11 x 
e ° F(x.E) 

K(E0;ET 

x >^\U" 
0 

l-(p1-jüio)(y-x) dy 

-X 

cWo) I ye 2h  x   °  i0 ^-/Oy py. 

If we now use Eq0 (2«7) we find after a little manipulation that 

/ 

2h 

V 

2hve"v [l (kv)+kln Ckv)]| 
(1 - -^ + 2hv)G(k,v) +  ^ p ± -] 

1-lT 1-ir 

in which 

h 

1 

k = 
/u.-p1 _ 1 

J^Z2JTo .   v = 2 ^+Pr2Po)x> 

kv - TJ (/1-/U-, )x. 

This result has already been applied to calculate the transmission 

of 2 Mev Y-rays in tungsten 17 J» 
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