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Introduction 

1.1 Description of the Wright-Patterson Air Force Base ATTAR Turbine Testing Facility 
The Wright-Patterson Air Force Base Advanced Turbine Aerothermal Research Rig 

(ATARR) is a short-duration, turbine stage testing facility similar in configuration to the 

blowdown turbine facility at MIT's Gas Turbine Lab. Both facilities have common design goals, 

to match the corrected mass flow and speed of a typical turbine, and to match the proper non- 
dimensional parameters which influence heat transfer and pressure distributions across the stage. 

Despite the similarities there are some distinct differences between the two facilities. The 
ATARR facility is designed for a nominal 2 second run time as compared to MIT's 0.5 second. 
This long run time created the requirement for fast-acting shut-off valves to avoid over-heating 
the eddy brake system and other potential emergency situations. In addition, the ATARR facility 
will be used to test a wide variety of turbines, necessitating frequent modification to the main test 
section. Finally, one of the main applications of the ATARR facility will be aero-performance 

measurements, versus the heat transfer focus of the MIT facility. 

1.2 The Different Roles of Short-Duration and Long-Duration Testing Facilities in Gas 

Turbine Research 
The ATARR facility is substantially different from long-duration facilities. Since there 

are approximately 10,000 events a second (a rotor blade passing a nozzle guide vane), the flow 
appears to be in a quasi-steady state condition from the rotor standpoint. However, due to the 
short duration of a test, the flowpath remains in a condition which is close to being isothermal 
rather than the near adiabatic condition found in most long-duration facilities. The differences 
between these two thermodynamic processes have been estimated to be on the order of 1%' in 
the ATARR facility.  The ATARR facility provides the ability to do controlled research on the 
complicated three-dimensional unsteady flow which occurs in turbines. But to use a short- 
duration facility only for verification of data taken in long-duration facilities is to under-utilize 
an impressive and valuable resource.   It's ability to provide time-resolved measurements 
accurately and inexpensively can be used to complement the data obtained in long-duration 

facilities. 
Since a turbine in the ATARR facility is dynamically similar to that component in its 

actual operating environment, the fluid flow and heat transfer results obtained in this facility are 

scaled versions of those in a real engine. The resulting measurements are much more 
representative of the heat transfer and fluid environment than data obtained in standard long- 

duration testing facilities where the proper non-dimensional fluid properties cannot all be 



matched. However, representative measurements in all types of facilities come at some cost. In 

a long-duration rig the costs are extensive and the test instrumentation limited by the testing 

environment. A short-duration facility requires the development of fast-response 

instrumentation and the modification of many personal perceptions concerning short-duration 

testing. 
In a long-duration rig, the efforts are aimed at developing average measurements which 

generally lead to a calculated efficiency. The use of efficiency as an evaluation criterion is not 
surprising since one of the standards by which engines are sold is overall efficiency. However, 

the fundamental fluid process which occurs in an engine is unsteady in nature. While the 

amalgamated number which represents the "efficiency" of an engine is one which could be used 

in fuel consumption calculations, it can not be traced backwards to tell how to improve the 

engine. Thus the difference between evaluation testing and development research on gas 

turbines. The single amalgamated efficiency is a measure of the present state of engine 
technology; it can not be used as a diagnostic tool. In a short-duration facility, (which can 
resolve the underlying unsteadiness associated with the turbine rotor), time-resolved 
measurements of the heat-flux and pressure can be made on the turbine components. These 
measurements when used in conjunction with computational codes have the potential of leading 

to significant improvements in engine performance. 

1.3 Efficiency and its Dependence on the Testing Process 
Efficiency is not the only topic of interest to manufactures and researchers, but this 

property, with others such as total thrust and specific fuel consumption, define the operation of 
the engine as a unit. Improved understanding of the heat flux and pressure distribution along 
engine components contributes to better understanding of component efficiency, which in turn 

improves the engine efficiency. 
While the ATARR facility allows the study of turbulence, pressure and temperature 

profiles, and cooling on different turbine stage configurations, the overall efficiency of the stage 
is still an important parameter. Being able to measure the stage efficiency accurately is of great 

importance to the facility, not so much for the direct information it provides, but rather for the 

skill and documentation this task generates. 
It is important to be able to efficiency accurately in the ATARR facility so that one can 

compare data obtained with those obtained in other test rigs. But tan associated benefit is that to 
obtain an efficiency measurement accurate to 0.25% requires measurements of temperature and 

pressure which are generally much more accurate. In addition, it requires a detailed knowledge 

of where the errors occurred in these measurements, and how they are propagated through the 
experiment to achieve the final result. To make any claim about efficiency measurements which 



are accurate to 0.25% believable requires that the reduction process be well documented. 

Measuring efficiency accurately in the ATARR facility becomes the test of the facility and data 

reduction process integrity. This paper is a documentation of the different components which 

needed to be addressed in order to produce an efficiency accuracy of 0.25% (the definition is 

listed below in table 1-1).  

Table 1-1 

Definition of Efficiency Accuracy Goal for the ATARR Facility 

The goal of the ATARR facility is to measure efficiency to ±0.25% of the true value 

within a 95% confidence limit. If TJ represents the turbine stage efficiency then the calculated 

efficiency is expected to reside within the range r)-AT| < r\ < r\ + Ar| 95% of the time, where 

At|/T| = 0.25%. Thus, Ar| =2c, where a represents the standard deviation of the measurements. 

All accuracies in this paper will be expressed as relative errors to the 95% confidence level. 

Before proceeding with this paper it is important to note that the 0.25% level of accuracy 

desired may be overwhelmed by the relative inaccuracy which comes from comparing data from 

different facilities.  As Guenette, Epstein and Ito2 have shown, the only proper way of 

comparing efficiencies taken from different facilities is to "correct" the indicated efficiency to 

account for losses and obtain an efficiency measure which is independent of the test process. In 

long-duration test facilities uncooled turbines operate at conditions which are very close to being 

adiabatic, while short-duration facilities operate at conditions very close to being isothermal3. 

To compare measurements taken in these two facilities one has to correct for the fundamental 

differences in the process. Using Guenette's notation, the efficiency measured in any facility 

(assuming constant mass flow) is given by: 
T._ hi -h2 

hl "h2,is (1-1) 

Where the subscripts 1 and 2 represent the conditions upstream and downstream of the stage, 

respectively and h2,iS represents the resulting enthalpy of the fluid if it were to be expanded 

isentropically through the actual measured pressure ratio. To calculate the adiabatic efficiency 

one would have to account for all possible sources of energy loss in the turbine stage. This 

would include heat transfer effects and possible mass flow leakage through seals. This 

accounting process has to be done since any energy lost in this manner is not available to do 

work on the turbine. If these losses are labeled as Q then the adiabatic efficiency is: 
hi-h2-Q 
ni "n2,is (1-2) 

which is related to the indicated efficiency by: 
Q 

Tlad^ - T—-r  hl "h2,is (1-3) 

TlacF 



In general, long-duration facilities are assumed to have no heat losses (although this 

assumption has to be verified for each facility) and negligible mass flow losses implying that 

Q=0. If one could be convinced that the losses in a long-duration facility were indeed very 

small, then Q could be neglected and h2 would become an adiabatic enthalpy downstream of the 

rotor h2,ad and the efficiency in a long-duration facility would be the same as the adiabatic 

efficiency4: 
hi -h2,ad 

^aä= hi -h2,is (1-4) 

In a short-duration facility, the indicated efficiency will be5 

hi -h2,is (1-5) 

However, in this case there will be heat transfer because of the isothermal nature of the facility 

and h2 would need to be corrected for these losses. Assuming that QSD represents the losses in 

the short duration facility, the stage efficiency would be: 
hi -h2 -QSD 

TISD= —r—r  
hi -h2,iS (1-6) 

and the efficiency measured in a short-duration facility is related to the efficiency measured in an 

adiabatic facility by6: 
h2,ad -h2 -QSD 

Tlad^SD r—r  hi -h2?is (1-7) 

Thus to convert an efficiency measurement in any testing facility to an adiabatic efficiency 

requires the knowledge of two of three variables: h2, h2,ad> of Q 

To avoid the problem of trying to determine Q accurately in a short-duration facility, a 

second method, using the work extracted by the turbine, can determine the actual change in 

enthalpy across the stage. 

W=hi-h2 -QSD tf"8) 
where QSD represents the available work lost due to labyrinth seal loss and heat transfer. Then W 

could replace the numerator in equation 1-6. These two methods are commonly referred to as the 

thermodynamic method and the mechanical method for measuring efficiency. While the 

conceptual relationship between the adiabatic and isothermal efficiencies is easy to understand, 

the adiabatic flow enthalpy downstream of the rotor is not an easy thing to calculate accurately. 

Guenette et al. have shown that the correction needed for efficiency measurements in short- 

duration facilities is approximately 1% for a two second test duration7.   Thus to make 

corrections for the different types of facilities requires an accurate knowledge of the adiabatic 

enthalpy. 



1.4 Required Accuracy on Instrumentation as a Function of Stage Configuration for an 

Uncooled Adiabatic Turbine 
To provide an idea of the instrumentation accuracy needed to achieve the efficiency 

accuracy listed in table 1-1, and how the stage configuration effects this accuracy, the simple 

case of an uncooled adiabatic (no losses) turbine will be examined. For this configuration the 

efficiency is given as: 

*      1-T 

i-n Y - (i-9) 

where TJ is the efficiency; y is Cp/Cv for the gas at the turbine inlet (assumed to be constant 
across the stage); T is the total temperature ratio across the turbine stage (defined as T^/Tti 
where location 1 is upstream of the stage and location 2 is downstream). II is the total pressure 

ratio defined in a similar manner Pß/Ptl- Assuming that the uncertainties in the measurements 

are random and normally distributed, they can be propagated through to achieve the resulting 

uncertainty in efficiency using equation 1-10. 

Ai1_rv /V^vXivAxi^-u 

(1-10) 
^4S «fx») I 

M   i=i   axi T
I    

i 

(the subscript i refers to the i* variable). Doing the partial derivatives one gets: 

^[(c|f))M^))McM 
1 n ' (Ml) 

where CT, Cn and Cycan be interpreted as the influence coefficients of that variable on the final 

efficiency uncertainty. 

1   i-n" l-m (1-12) 

A new variable (called the r factor in this paper) can be defined as: 

r=rrr (i-i3) 

and then equations 1-9 and 1-12 can be rewritten as: 

^   1-r (1-14) 



c,= (£);cnÄ£);cÄy 
(1-15) 

To see how the instrument accuracies vary with stage configurations we can imagine the test 
turbines ranging in pressure ratios from 0.5 to 0.2, y from 1.2 to 1.4, and efficiencies from 0.8 to 

0.95. Using these values we find that r varies from about .63 to .89. Thus for different 
efficiencies we can find x. If any one measurement was examined (consider x as an example), 

and the others were ignored (which is the same as suggesting that they are perfectly accurate) 

then the accuracy of the instrument under consideration is: 

Ax=r nj ^L 
X     C?      ^ (1-16) 

To achieve an efficiency accuracy of 0.25%, the instrument can be no more inaccurate than the 

results listed below. 
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Figure 1-1  Plot of Ax/x versus r for Different Efficiencies 
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Figure 1-2 PlotofÄ7c/7t and Ay/y versus r for Different Parameters 

As one can see in figure 1-1, the required accuracy of the temperature ratio measurement 
varies dramatically with r. The low end of r corresponds to a high pressure ratio (0.2) and a high 
y (1.4) test condition. For most modern turbines r is between .7 and .8. At this level there is not 

much of a dependency on the turbine efficiency, but to achieve a 0.25% accurate efficiency 
measurement x has to be better then .075%. Since x is really dependent on two measurements 
Ti, and T2, if the accuracies of each of these measurements were equal, then the overall accuracy 

of the individual temperature measurement would be about .053% (.075% / >J2 ). If one were to 
test a turbine at a higher value of r then each temperature measurement would need to be about 

.021% accurate, or at 550 °K, 0.1 °K accurate. 
Better news is that the pressure ratio is not as important as the temperature ratio. In fact 

the influence coefficient is less than one for the pressure ratio so that a higher inaccuracy can be 
tolerated on the pressure measurements (see the left hand axis, figure 1-2) and the influence 
coefficient varies around one for y (right hand axis, figure 1-2). 

From this model one can see that the instrumentation needs vary with the turbine test 

parameters, and that unless one is careful, it would be possible to design instrumentation 

appropriate to obtain the desired efficiency accuracy for one turbine, but not for another. 

1.5 The Purpose and Outline of the Paper 
This paper has several goals. Primarily it is to document the methods and techniques 

which will be used in the uncertainty analysis at the ATARR facility, and thus, ultimately the 



turbine stage efficiency accuracy. This paper can also be used as a basis for future work. One 
which uses the techniques suggested by Moffat8, to derive uncertainty milestones which the 

different components of the facility will have to meet as they are installed, thus simplifying the 

shakedown process of the facility. The second would be to develop an error budget for the 

specific turbine being studied. 
With these goals in mind the paper is divided into six main sections. The first section 

presents some of the analytical tools and definitions which are used in the analysis. The different 

roles of measurement errors, instrument calibration, statistical analysis, and error propagation. 

The second section derives the uncertainty in the efficiency analysis for two different ways of 

measuring the stage efficiency (either thermodynamically, or through work extraction) for 

cooled, partially cooled, and uncooled stage configurations as a function of measurement error. 

The next three sections use the techniques of section 1 to flesh out the results of section 2. 

In the third section, the questions about the assumptions of the facility are answered. Concerns 
such as real gas effects and the definition of the gas properties are defined. The fourth section 
discusses the error introduced in the gas properties through the supply tank filling process. The 
fifth section deals with the problems of measuring the mass flow. The final section provides a 
quick overview of the facility instrumentation and discusses the future work which needs to be 

done in order to shake-down the facility. 
References and Footnotes for the Introduction 
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Section 1: Definitions and Analytical Concepts 

Throughout this paper a variety of terms will be used in the evaluation of the efficiency 

uncertainty. Some of these are relatively basic, others are more subtle; some are highly context 

dependent, while others are quite general. There is always a trade-off between outlining all the 

"analytic tools" one will use at the beginning of a paper, and discussing them as they are needed 

in the course of the analysis. The former approach allows the development of the tools 

independently of the context creating a more concentrated approach to the real problems posed in 

the analysis without having to take repeated tangents to develop the analytic tools necessary. 
The latter approach provides both an appropriate context and a limit to how deeply the analytic 
tools need to be discussed. In the former approach there is always the possibility that topics 
which require volumes to do the appropriate detailed analysis will only be discussed lightly, 
resulting in a entirely unsatisfactory treatment of the subject. 

In this paper, we have decided to break this category of "auxiliary analysis" into two 
different groups, those which are highly context dependent and those which are more general. 
This section will discuss the more general components such as the definition of measurement 
error and its relationship to instrument calibration, the uses of statistical analysis in this facility, 
and the different techniques which are used in error propagation. Other topics such as real gas 
effects, gas property standards and instrumentation practices are more context dependent and are 
dealt with either in later sections as they become important, or in separate appendices. 

1.1 Measurement Error 
Throughout the uncertainty analysis, a major concern will be how measurements of the 

fundamental properties in the facility: total temperature, total pressure and static pressure, 
influence some derived property, whether it be efficiency or other parameters such as the mass 
flow. To understand how the uncertainty in the measurements is translated into uncertainty in 
the derived quantity, one has to understand the basic definition of measurement uncertainty. 

It is clear that the measurement uncertainty depends directly on the instrument 
calibration, but it also depends on the physical phenomenon being measured and the assumptions 
made about that phenomenon. If one was trying to measure a flow property (temperature for 
instance) at one specific location (radial, circumferential and axial), then the measurement error 
would depend only on the calibration error of the instrument. If the measurement at this one 
location was intended to represent the total flow field at this axial location, then the measurement 

error depends not only on the instrument calibration, but also on the homogeneity of the flow 

field at that location. 
Since it is generally impractical to measure the entire flow field, assumptions are made 

about the conditions of the flow field. These assumptions are generally verified during shake- 



down testing of the facility. Examining equation 1-16 one can see that if the influence coefficient 
for the temperature ratio and the desired accuracy of the efficiency are known then the total 

accuracy of the temperature ratio measurement can be determined (as shown in figure 1-1). But 

contained within this number is both an instrument accuracy and the accuracy of the assumptions 

of flow uniformity. The importance of this latter term depends on where one is in the test 

facility. Upstream of the rotor, the flow should be relatively uniform. But it is well known that 

downstream of the rotor the flow will be non-uniform because of the rotor wake structure.  One 

could imagine a situation where the flow non-uniformity was in fact the leading source of error 
and much larger than the instrument calibrations. There are of course several avenues available 

to solve this problem, but the primary idea here is to realize that instrument calibration is not the 

only source of uncertainty in a measurement of a flow property and the relative importance of the 

instrumentation calibration depends on the flow field in which the measurement is taken. 

1.2 Instrumentation Calibration 
While it is clear that our definition of measurement error depends on the instrument 

calibration and our assumptions about the flow field, only the latter is clearly outlined. 
Instrument calibration can quickly become a nebulous topic, especially when one starts to predict 
what the actual calibration will look like before the instruments are even built! Despite this 
problem, we must analyze the different components of the instrument calibration before 

construction begins. 
The definition in table 1-1 is helpful because it defines the confidence level to which all 

instrumentation calibrations must be done (95%). Abernethy1 has stated that all error in an 
instrument can be expressed as a function of bias and precision components. Bias components 
are those which are fixed during a set of calibration runs and are known to be constant. Precision 
terms are the random components that vary over the calibration tests. As one increases the 
number of controlled variables in the calibration, the number of bias errors are increased and the 
number of precision errors reduced to the point where the only precision error which remains is 
the resolution of the instrument. However, as the number of controlled variables increases and 

the number of bias errors become known, they can in fact be calibrated out of the instrument 

through a variety of techniques. Thus the actual influence of the bias errors drop to zero. This 

fact gives rise to another perspective on instrument calibration championed by Moffat2, who 

claims that most instrument calibrations only have precision error, which represents all the 
unknown variables, or the known variables which could not be controlled during the calibration. 

If they could be controlled, then they would have been calibrated out. 
The ultimate difference in these philosophies boils down to describing the overall 

uncertainty in an instrument. Abernethy has suggested that the best way to describe the overall 

10 



accuracy of an instrument is through precision and bias components. These can be combined in 

some fashion to provide a total uncertainty in the instrument, but it would be best to leave them 
as separate terms allowing the bias components to be propagated through from different 

instruments to obtain a bias component of the desired quantity. A similar procedure could be 

done with the precision component, and thus the total uncertainty of the final variable could be 

expressed as the combination of these two components. 
Moffat's suggestion that in practice there really are only precision errors makes the 

process simpler since the precision error is the total uncertainty of the instrument. This paper has 

adopted the position taken by Moffat for the simple "reason that any calibrations on instruments 

performed for this facility will have any known terms calibrated out. Thus, how to combine the 
different components becomes a non-problem, but reducing instrument accuracy with the 

required confidence level from the calibration data remains. 
Suppose the instrument under consideration is a pressure sensor which utilizes a strain 

gauge mounted on a diaphragm. We know from both experience and theory that the output of 
this type of device has some dependency on temperature. Also these devices have a tendency to 
drift with time even at constant temperature. The pressure measured by the sensor (Pm) is really 

composed of several parts 
Pm=P+Et+ET+R (1-1) 

where P is the true value, Et is the error due to drift, Ej is the error due to temperature changes, 

and R is a random variable which includes other variables which have yet to be identified. The 
object of the calibration is to obtain a continuous voltage versus pressure curve, with a 
corresponding uncertainty. In reality one has discrete data points as shown in figure 1-1 
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Figure 1-1   Components of Instrument Calibration 
where the dots represent the mean value and the the bars represent the range over which the 
different voltage measurements fell for a given calibration pressure. These variations are due to 
the variations in temperature, time and the random variable. If the calibrations have been done 
enough times over the temperature ranges that are expected in the test, then these bars should 
represent the total range of measurements, and the frequency of measurements should be 
normally distributed around the mean. If this is the case then the total range is equivalent (for all 
real purposes to 60, where Ö is the standard deviation of the curve). From the definition in table 
1-1 we need to specify the accuracy of the instruments to 95% confidence level which is a range 
of 40 (60 is 99.7% confidence limit). If the distribution is normal, to obtain the desired 
confidence level at any calibration point the actual range can be multiplied by 2/3 to obtain the 
range for the 95% confidence limit. Once this has been done for all the discrete data points then 
curves can be fit through the mean points to obtain a continuous distribution, and through the 

outer edges of the 95% confidence limit to obtain the continuous uncertainty distribution. 
This is of course not the only way to proceed, nor may it be possible to claim that the 

variations around the mean point are normally distributed. Another alternate way to derive the 

continuous uncertainty band is to draw two parallel lines which bound all the data points. In this 
fashion the uncertainty does not have to be symmetric, but there are probably areas where the 

actual data points lie far closer to the mean then at other calibration points. These points are 

where the instrument is most accurate, and is where one would want to take the primary 
measurements. Unfortunately, using this technique the uncertainty at these points would be over 

specified. It would be possible to use the first procedure, but not to have a symmetric 
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uncertainty. One would have to decide whether it was easier to overestimate the error on one 

side to retain symmetry or whether it would be necessary to propagate the different limits 

separately. None of these questions can be answered before the form of the calibration curves 

has been observed. These are problems which can only be answered after their impact on the 

rest of the analysis has been determined. 

13 Statistical Analysis 
Some time needs to be spent discussing the various implications and uses of statistical 

analysis in this research program. We have already hinted at some of the uses with regard to the 

instrument calibrations, but there could be some confusion because within this type of 

experiment there are generally two types of data which require different statistical treatment. 

When time resolved data are being taken (for instance in a total pressure rake) then each data 

point must be considered a single sample. No averaging (before the data reduction) takes place 

and thus the uncertainty associated with the measurements (which is a combination of the 

instrument calibrations and flow assumptions) becomes the overall uncertainty ofthat data point. 

There are other places in the experiment (during the supply-tank fill process) where many 

different measurements will be averaged together, either over time or space to obtain some final 

measurement. In this case statistical analysis can be used to reduce the uncertainty in the final 

measurement below the individual measurement errors. One question will always be how low 

can one reduce the total uncertainty. 
Ideally for these cases one could reduce the precision error to zero, through repeated 

sampling. If the uncertainty in the individual measurements is given by a then the total 

uncertainty in the average value (assuming that all the individual uncertainties are equal) is 

am=VF (1-2) 

where N is the number of measurements. There is a practical question of how the A-D 

discretation increments effect the level of uncertainty which can be reached. For single-sample 

data it is clear that one could never get better then 1/2 the A-D resolution and in fact the A-D 

resolution could be thought of as a bias error. But as the number of samples increase, the 

influence of the A-D diminishes which is equivalent of saying that it becomes more of a 

precision error. Where one is on the spectrum between single-sample and a statistically infinite 

number of measurements being used to create one final quantity, depends on the actual situation. 

This experiment covers the entire range. It is clear that if one sample was being used to create 

the measurement error, it would be greatly different from when 10 samples were averaged, 

which would be different from 50 samples being averaged for the final measurement. 
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1        i=l 

1.4 Error Propagation 
There are two basic forms of error propagation which could be used in this experiment. 

In most cases, the total measurement uncertainty will be a random variable. When different 

variables are independent and random then the actual propagation of errors from the measured 

quantities to efficiency is given by 

^L- [X r3f ttiWAui\2~|^ Ti   Lf^auiVU; J (i3) 

if efficiency is expressed as T| =f(ui, U2,...) 

The term in the first set of () 
c, = ft Ui 

1    3ui T| 

can be labeled as the influence coefficient since it determines what contribution to the overall 

error a particular measurement makes. Equation 1-3 can be rewritten in terms of the influence 

coefficients as: 
ATJ 

(1-4) 
which is how the equations were written in section I. In these equations the uncertainty in the 
measurements and the final value are expressed as relative uncertainties or the uncertainty over 
the mean value. If one were to have separate bias and precision uncertainties, then they should 
be propagated separately (as explained by Abernethy) using these formulas. 

However, there is another situation which requires a different form of error propagation. 
If the errors are not independent and are not random, but rather have a known sign, then if 
X=f(ui,U2,...) the relative error in X becomes: 

Ax=y riLa. ^Hll x -£ J-aUi x Ui J (15) 

A good example of this would be the ideal gas law PV=nRT. In any given tank with a set mass, 
if one knew that the temperature was reading low, then one would know that the pressure Would 

be reading low also. If one new the exact amount that the temperature was low by, then one 
would also know the exact amount the pressure was low by. The difference between equation 1- 

4 and 1-5 is that in previous situation, the errors are random and have an equal chance of being 
positive or negative, thus the requirement that they all be positive and added. In the latter 

situation, it is distinctly possible to get errors which cancel. Which situation is used depends 
upon the form of the uncertainty of the measure; but in most cases in this experiment, equation 1- 

4 will be used. 
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1.5 Conclusions 
The topics noted above are just some of the different analytical techniques and issues 

which confront the designers of the ATARR facility. This section was not meant as a complete 

theoretical discussion on each of these points, nor was it meant to outline all the possible ways 

these techniques will be used in the ATARR facility. The former task would require several 

books, and the latter would be torture for the reader who would have to wade through several 

variations on a single theme for different specific cases, which had yet to be discussed! The 
goals were much more limited; trying only to expose the reader to the different techniques which 

will be used so that during the course of the paper minimum time will be devoted to developing 
the basic technique or issue and more attention can be devoted to the application of the technique 

to the specific situation at hand. 
Having taken the time to outline this strategy, we are going to ignore it for the next 

section (to some degree) and develop the efficiency uncertainty analysis for different turbine 
configurations: uncooled, partially cooled, and fully cooled as a function of measurement 
uncertainty. Once that has been done, using the information in this section, we will begin to 
estimate the various sources of uncertainty for the variables derived in section 2. 

Footnotes and References for Section 1 

Which is taken to include errors in electronics and data processing. 
1 Abernethy, R. B. "ASME Measurement Uncertainty", Journal of Fluids Engineering. Vol 107, June 1985, p 161- 

164 and "Handbook on Uncertainty in Gas Turbine Measurements", USAF AEDC-TR-73-5, AD 755356, p 1-16. 
2 Moffat, R. J.   "Contributions to the Theory of Single-Sample Uncertainty Analysis", Transactions of ASME. Vol 

104, June 1982, p 250-260 and "Using Uncertainty analysis in the Planning of an Experiment", Journal of Fluids 

Engineering. Vol 107, June 1985, p 173-178. 
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Section 2 Efficiency Uncertainty Analysis 

2.1 Methods of Measuring Efficiency 
One of the primary requirements of the ATARR facility is to measure turbine stage 

efficiency over a variety of test parameters and stage configurations.  For a short duration 

facility such as ATARR there are two primary ways of measuring efficiency; either 
thermodynamically, or through work extraction. A thermodynamic measurement is: 

actual change in thermodynamic state of the gas across the stage ,__i\ 
^ ~ ideal change in thermodynamic state of the gas across the stage 

or written in terms of thermodynamic properties: 
n 

£ rhi hü - mo hto - L 
i=i   

(2-2) 
^ihiChti -hti, ideai) 
i=l 

where the numerator represents the summation of the total energy of all the inlet flows (the total 
enthalpies multiplied by their mass flows) minus the outlet energy of the flow minus any losses 
(L) due to either heat conduction or lost test gas through seals. The denominator represent the 
summation of the ideal change in thermodynamic properties across the stage. This is generally 
thought of as being unmixed and isentropically expanded from the pressure in the flow upstream 
of the turbine to the total average pressure downstream. A second approach would be to replace 
the numerator with the measured work extracted from the turbine. This is defined as the 

mechanical case and the efficiency is: 

Tq0 
Tl = - 9  

y rili (hti - h-ti, ideal) 
i=i (2-3) 

where Tq and 0 are the torque and the angular speed of the shaft. 

Both representations of the efficiency would require an accurate knowledge of the heat 

lost to the walls and the test gas lost through the seals in order to estimate the "adiabatic 

efficiency" of the turbine stage (as shown in the introduction). This section of the paper 
compares these two methods by analyzing how uncertainties in measured values contribute to the 

uncertainty in the calculated efficiency of the stage for three different configurations of the 

facility: uncooled rotor and nozzle guide vanes, cooled rotor and vanes, and either cooled vanes 

or a cooled rotor. 
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2.2 The Ideal Process 

The difference between the two methods of calculating the efficiency seem clear; one 

uses the actual change in the thermodynamic states of the gas, the other the mechanical power 

extraction. But in both cases the value of hti, ideal must be evaluated.  One way to determine the 

actual ideal enthalpy would be to use the entropy function and relative pressure data. For each 

gas entering the turbine stage (whether it is the core, or the coolant gases) the total temperature is 

known. This corresponds to a unique measure of the relative pressure. If this mapping is called 

G, then Pri = G(T) and since one knows the total pressure drop across the turbine Pr2 = 

Prl*(Pl/P2) which also has a unique temperature (this map is labeled J). Since the process being 

modeled is isentropic, the temperature which corresponds to J (Pr2) is the total temperature the 

gas would reach if it were isentropically expanded from Pi to P2. Thus the overall mapping in 

terms of the measured quantities is J((Pi/P2)*G(Ti)) (this procedure is discussed in more detail 

in a latter section). This procedure has specific advantages. First it does not require an accurate 

knowledge of the ratio of specific heats, nor does it assume that it remains constant. Secondly, 

the information which it uses has already been obtained, so no new measurements are needed. 

2.3 Stage Configurations 

Since the ATARR facility will have the capability to run with a cooled rotor and cooled 

nozzle guide vanes, it is important to be specific about the different notation used in evaluating 

the different definitions of efficiency. 

The quantities T, P, h are total temperature, pressure and enthalpy respectively (since 

only total qualities are used the subscript is dropped) and rh is a mass flow rate. The subscripts 
i, 2, n, r  correspond to the upstream, downstream flows and the nozzle, and rotor coolant flows, 

respectively. Using this nomenclature rhi hi represents the total mass flow multiplied by the 

specific total enthalpy of the flow upstream of the stage. The subscript i refers to the ideal 

thermodynamic condition of the gas. The temperature which corresponds to this ideal condition 

is labeled J, and L represents the losses that occur in the engine either via heat transfer to the 

skin or through bleeds. The term Cp is the specific heat of the gas, Cp is the mean value of a gas 

between two different axial locations, and Cp, aVg is the mass-averaged specific heat of all the 

gas streams mixed together, and evaluated downstream of the rotor at axial location 2 (described 

below). 
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c 
p 

C   T -C   T 
_    px   x       py   y 

T -T x      y 
n 

tc.m. 
*•*   pi   i 

c      =i=1 
p.avg          n 

i=i (2-4) 

23.1 Uncertainty in Efficiency for Uncooled Configuration 
For the uncooled configuration there are no coolant streams, thus m i= m 2 and the 

thermodynamic equation can be rewritten in terms of measurable quantities. 

mCpiTi - mCp2T2-L 
71"      mCp~(Ti-Ji) (2-5) 

which reduces to: 

CpiTi - CP2T2-L*        L* _ jL 

Cp"(Ti-Ji)        ' m (2.6) 

Assuming that the gas properties are known, then the uncertainty in the efficiency can be 

recombined as shown in the introduction to provide: 

T]       UW   VCplT1-Cp2T2-L*;-r  l Ti '     VlWi '   I Ji ' l CplT1-Cp2T2-L*;  l T2 J 

f ^ i2^}2^ lCpiTi-Cp2T2-L*J   l L* J J (2-7) 

The mechanical method (equation 2-2) can be written for the uncooled case as: 

Tg9 
11    rhiCpT(Ti-Ji) (2-8) 

which has an uncertainty of: 

(2-9) 

Ai- [ iff* if f+ m+&f w^ >T 
2.3.2 Uncertainty in Efficiency for Cooled Configuration 

For a cooled stage (both rotor and stator) the equations become much more complicated. 

Equation 2-2 becomes: 
ihiCpiTj + mnCpnTn + mrCprTr - m2Cp,avg T2 - L _ N 

T[~ miCp7(Ti-Ji) + mnCp7(Tn-Jn) + mrCp7(Tr-Jr)      D (2-10) 
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(where N represents the numerator and D the denominator). When the specific heats are known 

quantities there are 12 variables and the uncertainty in efficiency can be written as (in terms of N 

andD): andD): 
AT Arj__ I"   fTiriiiCpi-|2rfATl-.2     fAm, )2    rCpnTninn -|2 rATn| Am„ l2 [ rCprTrifir |2 fATr+Amr ]

2
+ 

I   \     D     HlT, J       U,J      lCPiTimiJ l Tn    ma 
;     lCpiTiriui l Tr     mr J 

fil2 fAJil2,    fCp„Jjilol2fAjn-,2      fCprJrAr ]2fAJrl
21 + 

{I^n{1^K{^}2+{^r)+{^ni^K{^}2+{t}2)+ 

(2-11) 

The reason for writing the efficiency in this form becomes apparent when looking at the 

efficiency equation using mechanical power in the cooled operation mode. 

_ jy        _       = M 
miCpi(Ti-Ji) + mnCpn(Tn-Jn)+m^pr(TrJr) D 

Where D is the denominator and is the same as the previous case and has an uncertainty 

expressed by: 

(2-13) 

expressed by: 
AH= Yl*Il\2

+ fA9i12     fTimiCpii2rrATl,2+  rAm,-»2 [ rCpnTnriin -|2 fATn+Aiiin |
2
+ 

X]       Ll Tq J        «■ e, J       «■     D      J   Ll Tl J       I riu J       lCpiTim1
/  X Tn     mn > 

rCprTrmr 12 fATL^Amr l2    fj, i2 rAJl-i2     rCpJnriin -j2 rAJn i2     rCprJrAr l2 rAjr ,2-i-lj- 

fe^' ti^rt ^' {
T*   H.Tun,' U ' + Wun, ' U ) J J 

2.3.3 Uncertainty in Efficiency for Cooled NGV's 
The third case which needs to be examined is the case where only the nozzle-guide vanes 

are cooled. The analysis would be the same if the rotor was the only part that was cooled, but 

because the first engine to be used in the ATARR facility has cooled NGV's we will look at this 

case in that context. This is a limiting case of the previous section where one of the two cooling 

flows goes to zero. Thus the thermodynamic definition of efficiency becomes: 
_ miCpiTi + mnCpnTn - rh2Cp,aVg T2 - L _ N 

71 ~      ihiC^"(Ti-Ji) + mnC^(Tn-Jn) D (2_14) 

and the accuracy in efficiency can be seen from equation 2-11. 
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AT[_ I"    fTimiCpi 12f fATi I2 ,   ("Ami I2 | fCpnTnriin i2 rATa.f.Amn I
2 , 

Tl        L    I     D      J   LI Ti J        U,J       ^CplTnfiiJ  lTn     riln » 

fK\2Iäh\2+   fCpnJnAn-|2rAJn-,2|    f CpJrAr I2 fAJr 121 , 

\Tl i   \hi Ic^Tnin J   l Jo   J lCplTimi '   l Jr   J   J 

{^}2[{1^}({tr+{^}2)+{^f{1^}({^}2+{^}> 

The definition for efficiency using the mechanical method can be taken from equation 2-12. 

Tq9 T„S Tq9    =   Tq6 

riiiCpi(Ti-Ji) + mnCpn(Tn-Jn) D (2-16) 

with accuracy: 

^L= r/AJl'l2
+ /Aii|2 + fIl™ÄLl

2r/ATIl
2
+ f Ami l2 , fCpnTnriin l2 fATn+Ariin I

2 , 
Tl       U Tq J        19^      I     D      J   LI T, J        I mi /      ^CpiTimi1  l T„     m„ ' 

rCprTrri^-12 rATV+AmLl
2
+rJLl

2rAJLl
2

+  f CpjA^ JAJnl2"!"!^ 

^!Tim, '  l Tr     mr J     *T, J   I Ji *      Vp^m, X  l Jn J  J J ^^ 

2.4 Evaluation of General Expressions 
There are two question which need to be answered: 1) which method is better for 

measuring efficiency? and 2) what is the error in the efficiency measurement? Concentrating on 

the first question; the relationship between the two methods can be simplified by subtracting 

common terms from both sides of the equations. For the uncooled case the relationship between 

equations 2-7 and 2-9 is reduced to: 

f/-2Tn 1        CpiTi        1 f       CpiTi        1 fATi I2 +   f      -Cp2T2      ]
2fAT21

2, 
lVT,V   CPiTi-Cp2T2-L*;iCpiT1-C?2T2-L*-flTi ' l CpiTi-OaTj-l/J  l T2 ' 

I il! }2{ALl}2 (?) f^Ii}2
+ {49 )2

+ f^Arn I2 

lCpiTi-Cp2T2-L*J   l L* J N"' lTqJ       l0J       L m   J (2-18) 

On the left hand side (the thermodynamic technique) are three uncertainties and their influence 

coefficients. Two of them (Ti and T2 ) are measured quantities while the third (L*) is a 

conglomerate term of all losses in the system and needs to be broken down into other measured 

parameters to be evaluated. On the right hand side (the mechanical method) there are also three 

variables, two of which are measured (the torque and the speed) with the third being the mass 

flow, which is not a directly measured quantity, (the <?> indicates that the relationship between 

the two methods is yet to be determined).   L* can be reduced one step further by recognizing 

that: 
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12i. 5 AL*- [/AL]2   i   f-Ariil2]- 
L*    LUJ   TU JJ (2-19) 

and equation 2-18 now takes the form: 
f("2Ti) ,        CpiTi        if      CpiTi        UATil2 +   r      -Cp2T2       ^fATal2, 

(2-20) CPiTi-Cp2T2- 

A similar procedure can be used for the cooled equations:   _ 

{^}2{l-^}({f}2
+{t}>{^}2({f}2+{t}2)]+{^}2 

<?> {*&}2+{*}2 
Tq
 '     v 6 ' (2-21) 

In equation 2-21, the first two lines correspond to the uncertainty in the efficiency as measured 

using the thermodynamic techniques and the last line to the mechanical method, when the 

common terms have been excluded. More simplification at this point may be counterproductive, 

since one does not know the particulars of the turbines that would fall into these cases. But for 

the turbine which will be studied initially in the ATARR facility, some greater simplification can 

be done since it will only have cooled vanes. 

2.5 Evaluation of Efficiency Expressions for a Partially Cooled Stage 

Thermodynamic Method: 

For this particular stage configuration, equation 2-14 can be non-dimensionalized by the 

core flow. It might seem that we would gain little since the loss term and the idealized 

temperatures, Ji and Jn would remain. But since the ultimate goal is to see how the mechanical 

method and the thermodynamic method of evaluating the efficiency compare some simplifying 

assumptions can be made. Assume that the loss terms are negligible1 and that the idealized 

temperature downstream can be given by the isentropic expansion of the gas across the stage at 

constant y. 

j=TÄy   orJ=Tr 
Pi (2-22) 

then equation 2-14 can be written as: 

1 On would naturally expect these to be small, and thus this assumption may be valid for this type of analysis. But 

for the actual efficiency calculation, the loss term would have to be measured. It is clear that this case of assuming 

the loss term= 0 is the best answer that this method could provide. 
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_ riiiCpiTi + mnCpnTn - (mi+mn)Cp>avg T2 
11" (ihiCpTTi+mnC^TnKl-r) (2-23) 

This can be normalized by the main core flow and if the following symbols are used: 
e_lhn    T„ _T2     T   _Tn     r   _Cp,avg 

m Ti Ti Cpi (2_24) 

converts equation 2-23 to: 

l+e^Tnr-Cl+eXVT* 
^ = ^PJ  

(^ C^Tnr)(l-r) 
cpi     cpi (2-25) 

This facility is designed to ran with either pure N2 or with a N2-CO2 mixture as the main gas 

flow and a pure N2 cooling flow. For a standard test (see appendix A for description) the ideal 

gas specific heats would be 1.039 (J/g-K) for the cooling gas entering at 216°K and 1.036 for the 

core mixture at 520 °K (see figures A-2 and A-5, as well as Table A-l in appendix A) Thus for 

this exercise the ratio of the specific heats can be ignored. However, the term Cpr will be 

retained for now because it represents a downstream measurement (which may be hard to 

acquire). Finally, equation 2-25 becomes: 
= 1 + eTnr - (l+e)CprT2r 

11 (l+eTnr)(l-r) (2-26) 

The uncertainty in the efficiency for the thermodynamic method is: 

An = r      (e+l)CprT2r       2f     (Tnr-l)e    )2(Ae>.2[(   Tni€   )2(ATnr)2| 

TI    l>rnr€+l-(e+l)CprT2r  LXe+l)<Tnre+ir   e      XTnrE+l)'   Tnr 

((Tn+!;(£nrCp;T2r)r)2(T)2 ^^nY (l-r)(e+l)CprT2r        
r Cpr        T2r   

JJ (2-27) 

The Mechanical Method: 
A similar methodology can be used for this method, resulting in a non-dimensional 

equation 

{Tq9} 

{miCp^^l-rJfl + eTnr} (2_28) 

with an uncertainty of: 

(2-29) 
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Comparing equations 2-27 and 2-29 can be done by using the adiabatic turbine equation 

to obtain an expression for T2r in terms of the efficiency and the r factor. 

11    1-r (2-30) 

While one could solve for both the stage efficiency and r, to avoid unnecessary complication, a 

stage efficiency of 90% is assumed which reduces T2r to: 

T2r=.l+.9r (2-31) 

If we assume a cooling flow of 20% of the main core flow and a cooling gas temperature to core 

temperature ratio of .42 (212°K/520°K) and specific heat ratio Cpr = 1 (as stated above), then 

substitution into equations 2-327 and 2-29 show that the thermodynamic method reduces to: 

A=       -l+9r  
0.9033-(.l+.9r) (2-32) 

Since all the other terms are much smaller. And the mechanical method reduces to 

^4(^)2(41)2^^)2^)2^)2^^1)2^^)21.5 
T|    L(l-r)     r Cpl T!        Tq        mi        e    -« (2.33) 

Both equations have the same contribution from the r factor, and thus it can be ignored. 

Equation 2-32 needs to be expanded so that it represents real measurements (since presently it is 

expressed in non-dimensional form). 

A-       -1+.9r 
0.9033-(.l+.9r) (2-34) 

To reduce this further we have to skip ahead to the next section of the paper which discusses how 

the gas properties are determined. As shown in appendix A, the uncertainty in the gas properties 

(the specific heat in this case) is ultimately a function of the uncertainty in the temperature and 

pressure measurements, and for any reasonable measurement accuracy, the uncertainty of the 

individual gas properties will be quite smaller then the levels of accuracy being investigated. As 

a result these variations can be neglected in this case (see appendix A for further'details) and 

equation 2-34 becomes: 
AT1     f.    r    ^2,Ar^2,/A^2^,AT2^2^AIl^2^1•5 

t<^^{A)1[(XMV^' 
A=       -l+-9r  

0.9033-(.l+.9r) (2-35) 

and equation 2-33 as: 
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AT, „   AT 

Tl    L(l-r)     r Tl        Tq        mj e    J (2.36) 

These equations can be compared by looking at how the influence coefficients behave. Shown in 

figure 2-1 are the values of r/(l-r) and A as a function of r. 
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Figure 2-1 Plot of r/(l-r) and A as a Function of r 

There are several points of interest. First when comparing the two different procedures, the 

dependance on the uncertainty in r is equivalent, leaving only those factors which have an 

influence coefficient of A in the thermodynamic case and those with an influence coefficient of 1 

in the mechanical case contributing to the difference in the methods for measuring efficiency. 

To determine which method is better requires an evaluation of the different uncertainties. If the 

temperatures were the only important variable (which is equivalent to claiming that all the other 

variables can be neglected), then at an r of .75 (which is close to the operating condition of the 

facility) the thermodynamic procedure would require two measurements which when combined 

would have to be 6 times the accuracy of the mechanical method to achieve the same results. 

But realistically what one is trading off is the number and location of the measurements. For the 

thermodynamic procedure, one needs only two uncertainties, upstream and downstream 

temperature. While the upstream temperature uncertainty will probably be dominated by the 

instrument accuracy, the same cannot be said about the downstream measurement, because the 

flow is not expected to be uniform (since the overall accuracy of the measurement is a function 
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both of the instrument and how well the instrument location represents the entire flow field). In 

the mechanical method, there are no measurements needed downstream and both the torque and 

speed of the shaft are easily measured. However, one requires the mass flow through the turbine 

which might be hard to derive. At this point we need to begin to look at how these uncertainties 

will be defined. 
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Section 3: Errors in Assumptions About The Flow Field 

3.1 Problem Definition: 
Throughout the last section, the overall uncertainty in the efficiency of the stage 

configuration has been found in terms of relative measurement errors such as AT/T, or AP/P. 

And as pointed out in the introduction, these uncertainties really have two distinct components; 

those which are due to instrument inaccuracies, and those which are due to assumptions about 

the flow field. This section will discuss the latter group. 

It is important to realize that inherent assumptions about the flow were made in section 2 

when different terms were considered to be variables and constants. For instance all the gas 

properties have been assumed to be accurately known, and the problems inherent in determining 

the isentropic temperature of the gas downstream of the turbine have been ignored. This section 

will limit its discussion of this topic to the problems inherent in determining the values of the gas 
constants and the isentropic temperature downstream of the turbine for the simple reason that the 
other issues need an experimental answer. Ideally the flow should be uniform from the supply 
tank to the NGV inlet. If this was the case then only one pressure or temperature measurement 
would be needed at any axial location to determine the entire flow field condition at that axial 
location. To determine how close the facility is operating to this ideal condition will require 
many tests with instrumentation at different locations. All of this will have to be determined 

experimentally. 
To create a proper system for addressing the gas properties problems requires answers to 

the following questions. What will the standards be for determining the gas constants? And how 
will errors in the independent property be transmitted through a table to the errors in the 
dependent property? As with the rest of the ATARR program, there is no "right" answer, only 

different ways of solving these problems. 

3.2 The Question of Gas Property Standards and Gas Behavior 
When air is at 517 °K what is the specific heat at constant pressure (Cp)? To answer this 

question one generally relies on tabular values of zero-pressure specific heats that may be given 
in 50°K increments. To obtain a reasonable answer, one might do a linear interpolation between 

the listed values at 500 °K and 550 °K. However the question becomes how good are these 
tabulated values, what happens if the gas is at 7 atm. instead of 1 atm.? Where did these 

tabulated values come from? Are they taken from experimental results, calculated from ideal gas 

equations, or an empirical curve fit through several different experiments? If one is just 
comparing different sets of experimental data all taken at one facility, then the answer might not 
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be that critical; but, when data are being compared among facilities it is important that the 

various research groups use consistent property data. 
In addition to the questions revolving around the physical properties of the gas, there are 

also questions about the modeling of the gas behavior. For the relatively low temperatures and 
pressures at which the ATARR facility operates, the gases are generally assumed to exhibit ideal 
behavior. Thus empirical laws such as the law of partial pressures (which is used in the filling 

process of the supply tank which will be discussed in the next section) are expected to be valid. 
But looking at Table 3-1 which contains the compressibility factor for Air, N2, and CO2 one can 

see that for all the test gases, the real gas effects are"the same order of magnitude as the total 

allowable error in efficiency. Thus using properties which are not based on real gas equations of 

state could lead to unacceptable errors. 

Temperature Air N2 C02 

z 550 1.00148 1.00172 .99825 

% Variation .148% .172% .175% 

The question of whether these real gas effects would influence the final results of any derived 
parameter will be dependent on that parameter. It is possible that there may be some properties 
which are not affected by the real gas effect, and others that are greatly affected. The main 
question becomes, "if the ideal gas model can not be used, then what type of model should be?" 
Before this question is answered, the easier problem of defining the actual gas properties should 

be dealt with. 
This facility needs five pieces of data: Cp, Cv (the specific heats at constant pressure and 

volume, respectively), R (the gas constant), Pr (the relative pressure data), and some measure of 
real gas effects. Both Cp and Cv are related to each other through the ratio of specific heats y, so 

only two of these three need to be known. It is clear from Table 1 that real gas effects are 
important at the level of accuracy that we are dealing with, thus the idealization of Cp, Cv and Pr 

being only functions of temperature can not be accepted. There are two readily available sources 

for tabulated data available. 
Gas Tables: Thermodynamic Properties of Air. Products of Combustion, and Component Gases, 

Compressible Flow Functions, by Keenan, Chao, and Kaye1 

This book contains detailed lists of the relative pressure tables and the specific heats as a 
function of temperature only (i.e they were calculated using the ideal gas law). Because real gas 

1 Keenan, Chao, and Kaye; Gas Tables: Thermodynamic Properties of Air. Products of Combustion, and 
Component Gases. Compressible Flow Functions.   Second edition (SI units), John Wiley and Sons, 1983. 
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effects could be a source of problems for achieving the ATARR efficiency accuracy goals and a 

better source would be: 
Tables of Thermodvnamic and Transport Properties of Air. Argon, Carbon Dioxide. Carbon 

Monoxide. Hydrogen. Nitrogen. Oxygen, and Steam by Hilsenrath, Beckett, 

Benedict, Fano, Hoge, Masi, Nuttall, Touloukian, and Woolley2 

This book does not contain the relative pressure data as a separate table, but the value of Cp/R is 

tabulated for different pressures. Relative pressures can be obtained from these data through the 

following transformation. 
0 

Ln(Pr)=- 

0(T)=|   ^dT 
Ao (3-1) 

Once a reference point is selected (say 150°K) then the table of Pr could be derived from the 

table of Cp/R using the trapezoidal rule 

TR 
+^ 

To^T       TR Ln(PrM — 2    -T°)AT (32) 

and each subsequent entry is devised by incrementing from the previous value. Since data for 
Cn/R are presented at different pressures, the relative pressure data can also be determined for 

those pressures. 
It is important to realize that the properties listed in reference 2 are all based on the 

equation of state used to calculate z (shown in Appendix A) which is a third order viral equation. 
Thus all the properties are based on a mutually consistent database. To answer the question 
posed in the previous paragraph, of which model to use, we would have to have alternative gas 
models and some method for comparing them. Other possible equations of state are the van der 
Walls and Redlich-Kwong. If we had P-V-T data over the range of pressures and temperatures 
of interest, then it would be a simple matter to evaluate each of the models and see how different 
they were from the "true" value. Since such a reference point is not available, we can only 
evaluate each model at the test conditions and show the variance among them (this is done in 

Appendix B). 

3.3 Accuracy of the Tables 

2Hilsenrath, Beckett, Benedict, Fano, Hoge, Masi, Nuttall, Touloukian, and Woolley; Tables of Thermodynamic 
and Transport Properties of Air. Argon. Carbon Dioxide. Carbon Monoxide. Hydrogen. Nitrogen, Oxygen, and 
Steam; Pergamon Press 1960 
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A similar question is faced when defining the accuracy of the table properties. As stated 

above, these are all based on the virial equation of state. Reference 2 provides some indication 

of the accuracy of the tables (which is derived from matching to some experimental data, and 

uncertainties in physical constants), but the main problem reduces to what one wishes to believe, 

the model or the experiment. It is our contention that averaging the model together with the 

experimental data does not produce any real insight into what the "Truth" is, and that in fact, the 

"actual" gas properties are not critical. As long as one reduces the data in a consistent frame of 

reference, then there should be no problem. This may seem equivalent to assuming away our 

problems, and to some degree it is, but there is little to be gained by creating more uncertainty 

which basically arises from how well the gas models represent reality. Data can still be 

compared among facilities, as long as the different gas models and properties are stated. Any 

inaccuracies in the model will be endemic to all the facilities. 

3.4 Interpolation in the Tables 

The variables of interest will require interpolation both in pressure and temperature and 

the question of "how does one propagate uncertainty in the independent variables (mainly 

temperature and pressure) to the dependant variable?" remains. There are two distinct error 

propagation problems. The first deals only with one independent variable (either temperature or 

pressure); the second with two independent variables. In the first case the error in temperature or 

pressure will be given as 
AT 
Tm 

where Tm is the measured temperature (or pressure). Using the mean temperature and the 

definition of error we find that ±AT is the 95% confidence range. Using interpolation on the 

tables we can find not only the dependent variable Xm but also Xm+ = F(Tm+AT) and Xm. = 

F(Tm-AT). In most cases Xm+ -Xm = Xm - Xm. but it will not always be so. In this case the 

question becomes whether to leave the error for the dependent variable as a non-symmetric bias, 

re-offset Xm so that it remains symmetric, or take the larger of the two differences and make that 

the range. Since we will ultimately be interested in the relative error 
AX 
Xm 

any differences between Xm+ -Xm and Xm - Xm. should be small. To keep the error propagation 

as simple as possible it is recommended taking the larger value of Xm+ -Xm or Xm - Xm. and 

making that the range. This should not overstate the error bounds in a manner which influences 

the final error in efficiency in an unreasonable manner. A similar method for two independent 

variables will leave a value of Xm with four outlining corners (T_,P_; T.,P+;T+,P.; T+JP+). There 

will generally be no great increase in the error band if the largest value of X-Xm (X is taken at 

any of the four corners) is taken as the AX. 
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Using these procedures we can now calculate the error propagation through the table or 

any temperature or pressure. And by considering that the data in reference 2 is the gas property 

standard for this facility, we can reduce the definitional error associated with the tables to zero, 

plus we have defined our basis, so that comparison with data obtained in other facilities will be 

easier to do. The gas properties and equations used are shown in appendix A. Figures A-lOa 
and A-l la show the variation in mixture compressibility and y from the initial conditions (as 

calculated in equation 3-2). 
(Y-Yr-s™ P-T«™)100 

%Ay= *-^r-/atm      similar expression for 2 
^T=520,P=7atm " (3-2) 

One can see that the variation is not large in an overall percentage range, but could be 

substantial when developing an overall accuracy of efficiency of 0.25%. 
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Section 4 Supply Tank Filling Procedure and Resulting Uncertainty in y and 

Other Initial Conditions 

4.1 Introduction 

Analyzing the supply tank fill procedure and the resulting uncertainty in the initial 

conditions at the end of the fill is a critical, yet a subjective task. There are many ways to 

approach this type of analysis and the selection of the final procedure for filling the tank will be 

based on experiment as well as the analysis presented below. However, there are some 

theoretical issues which need to be addressed. 

The procedure used to fill the supply tank is based on the law of partial pressures. This 

law, which is empirically based, has as a major assumption that the presence of each component 

does not influence the other. This is an idealization, and as demonstrated in the earlier section, 

the test gases exhibit real gas effects in the pressure and temperature ranges in which they are 

being used. In some operating regions the law of partial pressures can be modified by adding the 

individual compressibility of each component. The question then becomes, "how good is this 

approximation to the "truth"?". To determine this we would need either a definitive answer, 

upon which this model could be compared, or a variety of different models to determine the 

spread of results.   At this point, there are no clear alternatives, so we will resort to the technique 

of section 3 and declare that for the ATARR facility, the rule of partial pressures is valid (after 

being modified for compressibility factors). As long as the facility data are reduced in a manner 

which is consistent with this assumption, then there should not be a problem with this process. 

When comparing data to other facilities, the error introduced in this process might need to be 

accounted for. 

4.2 Tank Fill Procedure 

There are two distinct operating modes for the ATARR facility: when a single test gas is 

used, and when a mixture of gases is used to match the appropriate test conditions. In the former 

case there is relatively little uncertainty introduced in the fill process. Since both the gas and its 

properties are known and exact, the only uncertainty in the initial conditions comes from the 

uncertainty in pressure and temperature propagated through the gas property tables (as described 

in section 3). When a mixture is used, the problem of determining the relative uncertainty in the 

initial properties becomes more complicated. This sub-section of the report describes the fill 

process and the resulting uncertainty for the two gas mixture case. 

The tank is to be filled using partial pressures and as shown in section 3, the 

compressibility of the gas could cause some error in the measurements so the fill equations need 

to reflect these real gas effects. If y and T of the test gas in the tank are to match the desired 
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operating conditions in the field then the three equations used to specify the loading pressures 

and temperatures are: 
C  m +C   m px    x        py    y 

r    C  m +C  m vx    x        vy    y (4_J) 

m ==—1  ^ x    T z    R xiZx,iKx (4.2) 

z R m +z R m 1   = ^r~ «-xxx      y  y   yJh     T 2     l2 (4-3) 
where Cpx, Cvx are the specific heats of gas x (similar notation for gas y); 

mx and my are the masses of each gas; 

V is the volume of the tank; 

Rx and Ry are the gas constants of each gas; 

zx, and zy are the compressibility of the two gases 

1 and 2 are subscripts refer to two different measurement points. 

Nominally Ti, T2, are equal and are the same as the desired test temperature T. 

Equations 4-3 follows from the law of partial pressures corrected for compressibility effects, 

evaluated at the measurement conditions. Equation 4-2 is used to determine the partial pressure 

level which the calculated mass of gas x would generate. The tank is filled to that level, where a 

reading is taken (after equilibrium is established) which is labeled 1. The second gas is added 

until the desired test pressure is reached, where another measurement is taken labeled 2. One can 

see that the ratio of the two masses is the important variable and equations 4-1 to 4-3 can be 
rewritten in terms of only a single variable my/mx. 

m 
C    +C   -i px        pym 

y= HT 
C    +C   -Z. 
v      vymT (4_4) 

PiV 
m = „,        „ x    T, z , R 1  x.1   x (4_5) 

z R m   .,       p V 
[ZxRxmx(1+JTT-1)]     =T LXX    X ZxRxmxJ2        T2 (4.6) 

Combining equations 4-5 and 4-6 and making the following substitutions: 
Z -1     z  . z  , z ,,     Zx 

z     ja   JU=Z       il.il = 5i 
2     Zx,2      Zx,2 12      Zy>2Zx,2        Zr2 

we obtain: 
m     R    PT, Zxn     ,  y x. r    2    1        12        1    \ 
m     R   1

PT,   Zr, "Zr, ) x y      1   2 2 2 (4-7) 
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For any desired test gamma, a unique ratio of masses can be determined, and this ratio can be 

found from the two different measurements outlined earlier. Rewriting equation 4-4 in slightly 

different terms creates: 
C 

Y=T 
px 

x      C 
1+^M 

%x (4-8) 

where Mr is the mass ratio my/mx. The relative uncertainty in gamma written in these terms 

becomes: 

( 
AT = r^ cPx 

Y     L 

ACp   ,   ACp 

Cp, 
i)2    (■ 

CpT 

Cp Mr 
■+1 

ACv       ACv   , 
 L)2+( x.)2 
Cv„ '      Cv„        AY  . 

Cv 

Cv Mr 
y 

+ 1 

1 

Cv Yv   Cv 
(^L + Mr-f)(-^- + -L-) 
Cv yx   Cvx    Mr 

vMr; J 

(4-9) 

The uncertainty in Mr (=my/mx) can be developed as: 

2 

m 
vm y    r/ 

m 

m 1 

, X2 / AP- „     AP. -     AT. .     AT. .    AZx.. _x      AZr, O1I 
1—) (^+ ^+ (T^} + (y->+ (-zx"^))+ (^r} ]2 

*2 M X2 M ^12 ^2 T P x2rl 
P2T1ZX12 (4-10) 

During the actual filling process, the value of the test gas gamma can be determined by using 
equation 4-7 to determine my/mx and then using equation 4-4.   Its uncertainty can be calculated 

to the confidence level used in the calibration procedures through equation 4-8 and 4-9. 

The uncertainty in the test gas constant can be derived from the original equation: 
m 

R = 
R+R^ X      ymx 

m 

m (4-11) 

as: 

AR = f 
R      L 

r    R  i2 m 
A^ m 

m fcMl 
2-1.5 

iRm      J l    mx
/     mx y       y A A 

Since there are no errors in the gas constants. 

(4-12) 
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4.2 Influence of Real Gas Effects on Fill Conditions and Uncertainties 
At this point it is worthwhile to examine the influence of the gas compressibility on the 

fill conditions. To determine the influence of assuming ideal gas behavior on the values of 
my/mx and Amy/mx, equations 4-7 and 4-9 can be evaluated in the following form. 

Vl     -Vl 
teal "id Influence of Real gas =- ■ideal 

V 
ideal (4-13) 

Where V is the variable of interest which for equation 4-7 becomes: 
Zx 12 = [-X_] 

LX-1J Zr2 

P T 
where X= 2 * 

P T rlX2 

and for equation 4-10: 

LX-lJZr„ 
-1 

(4-14) 

L12J 
,    AP. ,   AP. .   AT. ,   AT. , where A2= (-rL)2+(-^.)2+(_L)2+(_^.)2 

l v2 li L2 (4-15) 
where X is the same as in equation 4-14. If the uncertainty in the compressibility is small 
compared to the total uncertainty (which it is from appendix A) then the variables 

AZr_ _ AZx, 
Zr, (- 

"12\2 

A2 
->0  and 

Zx y 
12 

A2 
->0 

which would result in an overall difference between the real and the ideal measurement of: 
1-Zx12 

Zx12X-l (4-16) 
It is clear in both equations 4-14 and 4-15 that how close the compressibility factors are to one is 

critical in determining whether real gas effects are important.   Assuming that the two 
temperature measurements during the filling process (numbers one and two) are the same (which 
they should be), then the different compressibility ratios Zr2 (=zy2/zX2) and Zxi2 (= zxi/zx2) can 

be evaluated as a function of test temperature and fill pressure ratio. 
Zxi2 is shown in figure 4-1 as a function of different fill pressure ratios (P1/P2) and test 

temperatures (based on a final test pressure of 105 psi (7 atm)) for nitrogen. A similar plot is 
shown in figure 4-2 for carbon dioxide. Figure 4-3 is a plot of how Zr2 varies for different final 

test conditions 
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Figure 4-1 Zxu as a Function of Test Temperature and Fill Pressure Ratio for Nitrogen 
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Figure 4-2 Zxu as a Function of Test Temperature and Fill Pressure Ratio for Carbon 

Dioxide 
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Figure 4-3 Zr2 (=ZC02/ZN2) as a Function of Test Temperature and Final Pressure Level 

For a standard fill, the pressure ratio P2/P1 will be 3.054 (creating a y of 1.268, see 

appendix A). To show how the ideal gas approximation effects the final results as a function of 

temperature, we can assume that the temperature of the fill process remains constant (at the final 

test temperature). Form figure A-9 in Appendix A, which show the variation of Zxi2 and 7xi as 

a function of the test temperature, the results of equation 4-14 and 4-16 can be plotted as a 

function of test temperature as shown in figure 4-4. 
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Figure 4-4 Relative Error in Ideal Gas Model 

It is clear from figure 4-4 that the difference between the ideal gas model and the real gas 

model can be significant, even when the individual compressibility factors are close to one. An 

interesting point is that the difference between the real gas model and the ideal gas model is an 

order of magnitude bigger for the mass ratios than it is in the for the uncertainty in the mass ratio. 

4.3 Subsequent Fills 

Subsequent fills add a third measurement since the final condition of the test tank has to 

be known before it can be resupplied. There was no need for this measurement during the first 

fill because the tank was initially evacuated. After the first run the tank is considered to hold the 

same ratio of gas masses as existed before the test, with the same uncertainty. The second fill is 

denoted by the subscript b, the first fill conditions by subscript a, and the new ideal testing 

pressure, temperature and gamma are given by Pt>, Tb, and %. If after the first test the supply 

tank is brought to the second test temperature a third measurement is taken (denoted by 3) which 

corresponds to the final state of the tank at the new test temperature. The total amount of either 

gas can be calculated knowing P3 and the ratio of masses in the tank, m2/mi la. At this point the 

total masses needed for the next test can be estimated. There are three possibilities: 

Case 1) The total amount of both gases has to be reduced. 

The tank is bled until it reaches the pressure which corresponds to the least amount of gas 

needed in the tank. If this happens the third measurement taken is discarded and a new one is 
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taken at this point and this becomes measurement 3. Once here, this case progresses the same as 

case 2. 

Case 2) One of the masses is correct but the other has to be increased. 

The partial pressure which would result from an increase in the mass ofthat gas is 

calculated using equation 4-2 where m is taken as the mass increment and the gas is bled in until 

the new pressure (which is the old pressure plus the just calculated increment) is reached (labeled 

as measurement 4). 

Case 3 Both masses need to be incremented. 

This case is essentially the same as case 2 except it is repeated for the second gas 

yielding yet another measurement called 5. 

The problem is similar to the earlier one, estimating the error in gamma, and equation 4-8 is 

still valid. The question is, "How does the new ratio of my/mx lb depend on the measurements 

just taken and on the initial mixture in the tank?" 

The fill conditions are complicated by the introduction of the compressibility factor. 

Examining the fill process discussed in case 3 (since it requires three new measurements) the 

equations which describe the different measurements are: 

m, 

m, 

m, 
m. 

P3V 

= (■ 

T3R1Z 

P.V 

) 

-flA 
T     "  R2Z2 x4 

m,. 
3     l'a 

'3 Ri4 
■) 

= (- 
P5V 

T5R1 Zl 

- DC 
1  zi 

m. R '2 Z, 

"4 =£H "4 mi 

(4-16) 

(4-17) 

(4-18) 

(4-19) 

These can be recombined to give just one equation in terms of the measured pressures 

and temperatures and the initial gas mixture: 

P.T.N4 rRI+ z. 5   4 

m. 
m 

1 =t llh    L 

P4T5Z 

^2.      "1 
m,     -I 

^1 \{h. 
m I   I 7. 

m, 
m 

P T 
3   4 

1     l^lfl 
JR. z, 

P T 
3       Ul3  2y 

5l 

•'3 (4-20) 

Equation 4-20 shows that the value of the mass ratios in the second fill is dependent on 

the pressure and temperature measurements taken between the last run and the present run, as 

38 



well as the initial mixture.  In the worst case (which is outlined above) the error in any fill 

subsequent to the first will depend on seven measurement variables (rather than the four 

described in equation 4-7: (three temperature measurements, three pressure measurements, and 

the error in the fill from the run before) in addition to the vast array of compressibility factors. 

The uncertainty in the mass ratios for subsequent fills (equation 4-20) can be found in a similar 

method to that of equation 4-9 (although the mathematics can become quite complicated). 

Before we proceed with this task we can simplify equation 4-20 by creating some new 

variables which are ratios of other variables. 

1    R 1     _       X 

Rr    R 
y 

1 _ 
^5~ 

Z 
X 

Z 
yi5 

M 
Mr =TT- a    M 

X a 

Zx45 = 
XI4 

zy« = 
I 
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1     L 

1      _       X 

Zr„ 

which reduces equation 4-20 to: 

RrZr. 
+ Mr  } a i 

^al1-^^}" 1 jRrZrc 

P T r4X3 RrZr„ (4-21) 

The uncertainty in the mass ratios for the second fill is given by: 
m 

x ,AZy, 
m 

m 
xlb 

= [02+p2 {(^>2+(^)2 M {(^)2
+(^)2

+(^-)2} 

+ FH(^)2
+(^)2

+(^)2}+^{^(^)2}]'5 
Zx ■4S 

Mr Zr„ (4-22) 
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F<- 

RrMra 

RrMr +1  a 

P 
RrMr 

RrMr+1A    P,    P, RrMr +1 a 5        5 a 

RrMr RrMr  a_}  ( a. 
RrMr +1 +1) 

(4-23) 

While equations 4-22 and 4-23 allow the calculation of the uncertainty from known components, 

in its present form it is not very insightful, because of its complexity. By looking at the specific 

case of repeated fills the behavior of equation 4-22 can be better understood. 
The following three graphs show two cycles in the filling procedure. 

Figure 4-5 Repeated Fills to Same Conditions 
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Figure 4-5 shows the path of the different components during the fill process. Since each test is 

assumed to have the same initial conditions it is not surprising that P2 = P5. However the 

intermediate pressure P4 depends on how much gas was lost during the first test (i.e. the pressure 

drop P2-P3)- If the fill and testing temperatures all remain the same (which is the theoretical 

goal) and the mass ratio from the first test is assumed to remain constant, then the partial 

pressure of component X after the first test will be given by: 
P.P. 

P   =    3    1 

*      P2 (4-24) 

since the pressure ratio P1/P2 remains constant. ToTegain the proper amount of component X to 

achieve the final test pressure (P2=Ps) component X has to be added until its pressure reaches Pi 

again. Thus the pressure increments translates into a P4 of: 
P-P, 

P.=P„+P     -3_L 

that 

4        3        1        P r2 (4-25) 

If the tank is assumed to always blow-down a specific fraction of its test pressure, such 

p* = F?7 (4-26) 

and the test mass ratio is given by the test pressure ratio: 

P2 (4-27) 

and the compressibility factors are all assumed to be very close to one (so that they can be 

neglected for this order of magnitude analysis) then the constants in equation 4-23 can be 

simplified greatly. After setting the temperatures equal, and the compressibility factors to one, 

the constants in equation 4-23 become: 
F =G + F(1-G) = p. F =_i_  F =F 

*       G(l-G) b    G     c    (1-G)     d (4_28) 

From their definitions, both F and G will range in value from 0 to 1 which points to some 

interesting behavior in equation 4-22. First, all the uncertainties in the compressibility factors 

can be translated into uncertainties in the measured pressure and temperature of the gas, since by 

definition any inaccuracy in the compressibility arises from inaccuracies in the temperatures and 

pressures. Secondly, Fd (which is the influence coefficient for the uncertainty of the mass ratio 

in the previous fill, AMra/Mra) will always be less then 1. Since the tank is expected to loose 

about 40% of its initial pressure in an average test, this makes the original mass ratio uncertainty 

a weak factor in the overall contribution to the uncertainty in the mass ratio of a subsequent fill. 

One can rearrange Fa to show that it will always be greater then one when: 

*%■»>* (4-29) 
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which is always true since both F and G are less then one and are positive numbers. Thus only 
Fb has the possibility of being less then one. To obtain a lower bound on the overall uncertainty 

in the mass ratio, we can assume that the uncertainty in the compressibilities are very small 

compared to the uncertainties in the pressure and temperatures, and that the uncertainty in the 

temperatures and pressures are equal for all measurements. Thus equation 4-22 becomes: 
m . m 
m 

xlb 
m 
m 

xlb 

a 

where the overall influence coefficient would become: 
F2       = {F

2
 + F

2
+F

2
} = -^—{(£)2(G-1)2+£<1-G)+1} 

Overall    la        b      c'     (\ r\2-    G G 

Making the substitution A=F/G and taking the square root of equation 4-31, we can plot this 

value as a function of A and G 

(4-30) 

(4-31) 

Figure 4-6 
Contour Plot of Overall Influence Coefficient (Foverall) as a Function of A and G 

To see how the error propagates to subsequent fills, equation 4-30 and 4-9 can be written 

in terms of the error in the initial mass ratio and the error in the pressure and temperature 

measurements. Using the same assumptions listed above on equation 4-9 the uncertainty in the 

original mass ratio becomes: 
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m, 
= [(i^)2((f>2+(f>2rf 

(4-32) 

and equation 4-30 becomes: 
m 

m 
X 

m 
_> 
m 

»[fLHiWl^1 

Expanding this process to other fills one finds that 
A m 

m 
X 

(4-33) 

m 

m 

^ [{^ (X F28-1') ^"^rfo)1} {(f)2+(f)2) Y 
xin 

which expands to: 

(4-34) 

m 
X 

m 
m 

^ [{*%«* («*+ - F2(n"2)) ^-^(T^G)
2
} { (f)2<f)2 }]5 

x>n (4-35) 

where n goes from 2 to infinity (b to infinity). Since F<1 the influence of the original error in the 

mass ratio quickly becomes unimportant. But the overall uncertainty in the mass ratio will 

increase greatly until it reaches the limit where: 
F2(n-2)F20veraI1<<1 (4-36) 

since all the terms added after this point rapidly approach zero. Equation 4-35 can be rewritten 

as: 
. m 
A^ m 

X l\2\ /rAP\2J/AT\2lT5 

m 

m 

*= [{pL„u ( K) +p"W)2(r?ö) 11 <f>2+<f)' U 

where   K=( 1+F2+... F2(n-2)) 

and ultimately as: 

(4-37) 
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A m 
m 

m 
m 

^[c2{(^)2
+(4f)2}]5 

where C2=F2verall(K) 
(4-38) 

Th factor {K} can be plotted as a function of the number of fills (n) and the blowdown 
fraction (F). 

Figure 4-7 K as a Function of Number of Fills (n) and Blowdown Fraction (F) 
Using figure 4-7 as a base, we can estimate the overall influence coefficient C as shown 

in figure 4-8.  

^Overall 
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Figure 4-8 
Limit in Mass Ratio Uncertainty as a Function of Foverall and K 

4.4 Conclusions 
This section of the paper has outlined the gas supply filling procedure for the ATARR 

facility in addition to showing how the uncertainties in the filling process are translated into 
uncertainties in the test gas properties. In addition, the differences between the real gas model 

and the ideal gas model have been shown to be significant in some cases. As discussed in the 

following section, most of the information contained in this section is important in deriving the 

uncertainty of the mass flow through the turbine stage. Which, in turn, is important in 

determining the overall efficiency accuracy when using the mechanical method of measurement 
(equations 2-9, 2-15, and 2-20). Until we have examined how the individual properties listed in 
this section contribute to the overall accuracy of the mass flow measurement, we will not know 
how important the real gas assumptions are. 
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Section 5   Estimation of Mass Flow 

Sections 2.4 and 2.5 have shown that the main difference between measuring the turbine 

stage efficiency using a thermodynamic technique and a mechanical method is the information 

required. The thermodynamic technique requires an accurate knowledge of the downstream 

temperature while the mechanical method requires knowledge of the mass flow through the stage. 

This section of the report will address the problem of detenriining the mass flow through the stage 

and its relative uncertainty. There are several possible ways of measuring the core mass flow. The 

two main ways are to measure the corrected mass flow, or to measure the blowdown time-constant 

and the change in density of the supply tank over the test time. In section 5.1 these two methods 

will be quickly outlined for ideal gases. Section 5.2 will examine the complications which arise 

from real gas effects. 

5.1   Potential Methods of Measuring Mass Flow Through the Turbine Stage for an 
Ideal Gas 

Figure 5-1 shows the mass flow diagram and the choke points in the main facility. 

Boundary Layer Bleeds 

Supply Tank 

Dump Tanks 

Throttle Valve 

Nozzle Cooling Rotor Cooling 

KI Represent Different Choke Points 

Figure 5-1   Mass Flow Diagram for ATARR 
It is important to realize that the mass flow through the stage is not the same as the mass flow out 

of the supply tank. Some mass from the supply tank will exit the system through the boundary 
layer bleeds, and mass will be added from the cooling lines. In the present configuration the mass 
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flow from the cooling lines will be metered, thus their value and uncertainty as a function of time 

will be known from direct measurements. 

5.1.1   Measurement of Mass Flow Based on Corrected Mass Flow 

If the flow expands adiabatically as it leaves the supply tank (which it does everywhere 

except in the thermal boundary layers) then the total enthalpy of the flow will be constant and the 

relationship between the enthalpy in the supply tank and the enthalpy of the flow at the choked 

NGV's is given by equation 5-1. 

Supply Tank 
Choked At NGV's 

Figure 5-2     Notation Used in Mass Flow Calculations 

hi = h3 + V^3 

If constant specific heats are assumed and the relationship 

r -W C
P-Y_1 

is used then equation 5-1 can be solved for the velocity and written as: 

Vi = ?M» 

(5-1) 

(5-2) 

(5-3) 

(5-4) 
The mass flow at the choke point is 

m3 = P3V3A3 

which if the perfect gas law is used converts to: 
ri,  =V3A3PifP3Tu 

3      RT}   W3
; (5-5) 

Since the gas is being isentropically expanded, the temperature ratio can be expressed as a function 

of the pressure ratio: 

l3=(Pl)T 
Ti      Pi 

Combining equations 5-3, 5-4, and 5-6 the mass flow can be written as: 

±3=Mi. IZKI^J 1- (Pi)T 3     VTT V R(y-l) Ti     V      V 

(5-6) 

(5-7) 
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Since the flow is choked, the pressure ratio is fixed at: 

Pi     Y+i T (5-8) 

The corrected mass flow can be defined as: 
m3fWh 

n^corr ' A3P1 (5-9) 

and as shown in equation 5-7, this value remains constant as long as the flow is choked (and the 

gas properties remain constant). Equation 5-7 can be rewritten using the value of the pressure ratio 
which corresponds to choke conditions to yield a relationship between mcorr and y. 

Y+l 

"c^ifiiw) (5.10) 

This shows that the mass flow at any point in time can be calculated from equation 5-9 if the 
instantaneous pressure and temperature in the supply tank as well as y are known. However, this 
would only work if the flow were inviscid since A3 would be the geometric choked area. But 

since the flow is viscous, there is a discharge coefficient associated with the inlet which reduces 
A3. Thus requiring a separate method for determining the effective choked area. 

5.1.2   Measurement of Mass Flow Based on Blowdown Time-Constant and the 
Change in Supply Tank Gas Density 

Epstein, et al1 developed the time dependent equations for the blowdown facility based on 

isentropic ideal gas assumptions as: 

Pi(t) = Pi(0)[l+^]TT 

Ti(t) = Ti(0)[l+i]-2 

Pi(t) = Pi(0)[i-4]tr {5luhc) 

were x is the blowdown time constant and is given in this case as: 
T _(Y-l)(l+a)A,VTRT7öym 

X y 2V corr (5_12) 

where V is the tank volume, A3 is the choke area, and a is the fraction of the main flow exhausted 

through the bleeds. In theory one could measure the blowdown time constant by taking repeated 

pressure (or temperature) measurements and fitting the resulting pressure decay in the supply tank 
to the above curve, which would yield x. This would provide the ratio of A3 to V, but neither 

independently. If the supply tank volume were known from some other method, then A3 could be 

determined using this method. 

1 Epstein, Alan, Gerald Guenette, and Robert Norton "The Design of the MIT Blowdown Turbine Facility", GTL 

Report no 183 April 1985, p. 123 
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In its most basic form, the mass flow out of the supply tank is given as: 

m = -VäT (5-13) 

Using the time dependent functions of pressure and temperature given by equations 5- ll(a-c), one 

can rewrite equation 5-13 in the form: 

P,(0)    ~ 
m=V _1 „ (-^ -)[i^]7T xRT^y-r-    i-- (5.14) 

Equation 5-14 shows that the mass flow can be directly measured using the supply tank initial 

conditions if the volume and the supply tank time constant are known and the gas properties remain 

the same. 
5.1.3   Uncertainty in Mass Flow and the Uncertainty in the Measurement of Tau 

for an Ideal Gas 
Using equation 5-14 we can examine how the mass flow uncertainty varies over the course 

of a test. Equation 5-14 provides the uncertainty in the mass flow out of the supply tank which 

must be combined with the uncertainty in the flow through the boundary layer bleeds to obtain the 

uncertainty in the mass flow entering the test section. The mass flow through the test section is 

given by 
m 

m, = —V 3    cc+1 

with a resulting uncertainty of 

Arh„ 

m„ 
=rr_a 

LLoc+ oc+U 
Aa 

L a J 
+ 

Am, 

m, 
1.5 

(5-15) 

(5-16) 

the uncertainty in the mass flow out of the supply tank is taken from equation 5-14: 

Am 

m. 
l _ Ax 

L X J 

2^-y+l 
T 

(!+£)( Y-D 

Ay y     21n(l+i) 

l-y   (Y-D
2
J 

+ 
APr 

LP0 

ATn 
2    r 

T L L0 

AR 
R 

AV 
. V. 

.5 

(5-17) 

or 

Arn, 

m. 
AT 

. x . 
cl+ AY 

Y 
C2+ 

T 

AP, 

LP0J 

ATr + AR 
R 

+ AV 

(5-18) 

In the situation under consideration, the uncertainty in the volume is a fixed number, independent 

of the test. The uncertainty in y and R are only functions of the mixing process. The uncertainty in 

R can be expressed as a function of the uncertainty in the initial temperature and pressure 

measurements (this assumes that the total uncertainty in the measurements taken during the fill 
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process are the same as the uncertainty in the measurements at the beginning of the test). From 

equations 4-11 and 4-9: 

AR 
RJ 

= [.2f 
AP, 

LLPO 

ATV 

(5-19) 

The uncertainty in y can be found using the ideal gas pressure ratios for a standard fill (equation 

A-13 in appendix A), coupled with equations A-28 and A-10. Since the dependency of the 

individual components on the measurement error is quite small these terms can be ignored (as 

shown in appendix A) resulting in a y uncertainty of: 

(5-20) 

"A    "P Ay \ 1 1 2 Hi 2 
-1- Kl 2" 

-Y. Ll7.7J lpoJ LT0 J 
which for a y of 1.268 reduces equation 5-17 to: 

Am Ax] 
- X - 

h .46*--lT 
X 

2 

+ -i-+1.571n(l-f£) 
L3.75                      X J 

2+1.04| 
Lpo. 

2 

+ M2 
T if] 

2 

ml (141) 

or 

Arn 
m, 

i _ Ax 
L X K2]4cLiaJ 

AP. 

0 

AT„ 
lo 

AV 
L V 

.5 

(5-21) 

(5-22) 

Figure 5-3 is a plot of Qnitial as a function of test time. 
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Figure 5-3   Cjnitial as a Function of Time 
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In a similar fashion CT can also be plotted as a function of test time. 
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Figure 5-4 Cx as a Function of Test Time 

One of the interesting things to note in figure 5-4 is that the influence of x drops to zero at a specific 

point in the test, where 

x   i_  2 (5-23) 

As a result, one would like to make efficiency measurements using the mechanical method as close 

to this time as possible. 
A value for x is needed to find the value of the mass flow. Equation 5-11 provides two 

direct ways of measuring x which do not require any knowledge about the choke area using either 

temperature measurements: 

or pressure measurements: 
-r- t 

(5-24) 

Y-l 

-21 

The uncertainty in x using pressure measurements can be calculated and is given by: 

(5-25) 
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Ax. 

x. 

and for temperature 

~ 

r 1   Y-i  ? 
2Y           Y"1 

Y 
1- i 2Y w 

AP. ,   AP„ .   La(pl) 

(-^)2+(-^)2+(- 
o Y-l 

o_)2(
AI)2 

0.5 

Ax _r/i K( l 

(5-26) 

2      T.   , 
1 -C^)5 

2 r AT. . 2r,   1)2+(. HO 
AT, 

->2}]' 

(5-27) 

Which method is better for measuring x depends not only on the influence coefficients, but also on 

the relative accuracy of the pressure and temperature measurements. In the supply tank during the 

test it will probably be much easier to obtain accurate pressure measurements than it will be to 

obtain accurate temperature measurements. Assuming that the relative accuracies in pressure and 

temperature are about the same (for the moment), then to see which method is better, the influence 

coefficient for Yin the pressure measurement technique, 
p. 

Ln(-») 
C =-^ 

Y     y-l (5-28) 

needs to be examined first. From equation A-35 (for the ideal gas case), the total contribution of y 

to the uncertainty in x is 

c Ay 

YYJ     L POJL'V    'VJ (5-29) 

p. 
.21 Ln(-9 

Po. 

i: ATn ,   APn . 
(-^JI)2+(-FTü')2 

For pressure ratios larger than .37 (which should always be the case during most tests, see 

appendix A) the log of the pressure ratio will be less then one implying that the total contribution 

in uncertainty due to Y will be small compared to the other pressure terms so it can be ignored in 

this analysis . Comparing the influence coefficients in equations 5-26 and 5-27 we find that the 

ratio 

where 

C 

c2 =■ cp 

<*={ 

(5-30) 

1 Y-l 
2y 

l - 
P.1 Y-l 

2Y 

1 1 
2       T.   . 

1 -(f
JL)5 

-}: 

(5-31) 

(5-32) 
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is equal to 

Cr = £i 

which has a behavior as outlined in figure 5-5 

(5-33) 

1.25 y 1.3 1.35 

Figure 5-5 Plot of Cr versus y 

In this scenario the pressure measurement system would be better. To avoid repetition, the rest of 
this section will assume that the pressure technique to measure x is used. If it happens that the 

temperature measurements are much better than the pressure measurements, then the results of this 

section can be scaled by 1/Cr to obtain the proper equations for the temperature measurement 

technique. 
It is clear from equation 5-31 and 5-32 that the closer one is to the initial condition, the 

worse is the uncertainty in t. To see how the influence coefficient for the pressure measurements 

behaves over the test time, we can substitute the definition of the pressure ratio from equation 5- 

11, labeling the term 
Tc=l+i 

(which will be examined in more depth latter) reducing equation 5-31 to: 

c2 

2y(l-£) 

(5-34) 

(5-35) 
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Figure 5-6 Cp for x Using Pressure Measurements 
Since x is a constant in the ideal gas case we can use repeated measurements to reduce the overall 
uncertainty in x. The uncertainties vary over the test time requiring the use of a weighted averaging 

system which would provide a prediction of x to be: 

i=l 

X = - 

Ax. 

1 J 

i=l Ax. 

(5-36) 

with an overall uncertainty of 
i 

1 Ax. 
x. 

L      1 
ii 

Ir1 
i=l Ax. 

X. 
L     1 (5-37) 

Substituting equation 5-26 into 5-37 creates a total uncertainty in x over the entire test of: 
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Ax. 
x. 

AP. ,   AP„ . 
(y-)2+(-p^) i ro 

I 
i=l 

27(1-^' 

Y-l (5-38) 

Equation 5-38 is a function both of the sample rate and on the time period being evaluated. To see 

how this behaves we can take the limit as this approaches a continuous problem, converting the 

summation to an integral resulting in 
AP. ,   APn , 

(-ET-^-Kir1)2 
ri       ro  Ax. 

i - 2y 
y-l 

'(Tc--L-21n(Tc)) 
Tc (5-39) 

which can be plotted as a function of final test time (for a y of 1.268, integration goes from 1 to 

final test time) 
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Figure 5-7   Ax/x as a Function of final Test Time 

Equation 5-38 can be combined with equation 5-22 to obtain: 
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Am 
m, 
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L   x   p J 

AP. 
i 

P. 
L     l - 

2 

+ AV' 
L v J 

2 

where C2, = - 1 
2y 

7-1 
(Tc--L-21n(Tc)) 

Tc (5-40) 

The function QCp- is shown below in figure 5-8 
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Figure 5-8   CxCp- as a Function of Final Test Time 

These last two graphs describe quite well the problem with using the mechanical method. 
One would like to measure the mass flow at the time where Q approaches zero, which is when 

equation 5-23 is satisfied. How close we need to be to this time is determined by how accurately 
the mass flow has to be known. If all the other variables in section two were ignored, then to 

achieve an uncertainty in the efficiency of 0.25% one would need the mass flow to be accurate to 
0.25%.   If one assumes that the uncertainty in the volume of the tank is small enough to be 

ignored, and that the uncertainty in the initial test measurements can be reduced far below the 
instrument accuracies because of repeated sampling and the uniform flow conditions, then the only 
single sample data is taken at Pi which if assumed to have an uncertainty of. 1 % (. 1 psi/105 psi 

range), would require that CxCp' be about 2.5 (a testing time of about 1.07). 

Clearly there are a lot of assumptions listed here and thus the accuracy estimated on the 
mass flow and ultimately on the measurement Pi is probably underestimated. Even with these 
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assumptions there is still the need to estimate the percentage of flow through the boundary layer 

bleeds and its accuracy (equation 5-16). There are several ways of doing this. One would be to 

drain the boundary layer bleeds into a separate tank of known volume and record its density change 

by using pressure measurements as suggest above. A second way to proceed is to ran two tests, 

one with the boundary layer bleeds on, the other with them off, and measure T. From equation 5- 

12, the ratio of these two measurements will be: 

no Bleeds _ i i« 
T Bleeds (5-41) 

and the uncertainty in the measurements will be the root sum square of the uncertainties in the 

individual time constants. Since the influence coefficient for the bleed ratio will always be less 

then 1 (generally about .23) a larger variance in the uncertainty of the bleed ratio can be tolerated. 

But it is clear that where one is in the testing time is important for the overall determination of the 

mass flow and thus we should spend a little more time examining the definition of the variable Tc 

and what influences it. 

5.1.4     The Definition of the ATARR N on-Dimensional Time 

The variable Tc (defined in equation 5-34) is probably the most important parameter in 

differentiating the performance of the facility from the test article. As shown in the introduction, 

the overall instrumentation requirements on an uncooled adiabatic turbine vary with the turbine 

being studied. Since that analysis used the thermodynamic method of measuring efficiency it is not 
surprising that the variation was dependent on the pressure ratio and the test y (the r factor). But 

for the mechanical method it depends on the uncertainty in the mass flow which is a function of the 

supply tank time constant. 

The name implies that this is a function of the supply tank alone, but a quick examination of 

equation 5-12 shows that to be erroneous. It is partially a function of the initial gas conditions, but 

far more importantly it is a function of the choke area and the percentage of flow passing through 

the boundary layer bleeds. In addition, where one is during the test (t) is also important. It is 

distinctly possible that in the ideal gas case one would measure t at a time much different from the 

efficiency, or measure the boundary layer bleed flow over a time which is much longer then an 

actual turbine test. Thus the combination of t and x is labeled the ATARR non-dimensional time, 

and it is only a function of the testing configuration. 

This is a particularly good parameter to characterize the blowdown because all turbine tests, 

no matter what their configuration of boundary layer bleeds and choke areas will always behave 

similarly for equivalent values of Tc. In addition it can help us to decipher how accurate the 

measurements in the mass flow rate can be made. 

This can be done by writing a mass balance on the entire testing facility: 
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MT-ms,t = mD,t (5-42) 

where MT is the initial starting mass in the supply tank, ms,t is the mass in the supply tank at time 

t, and mo,t is the mass in the dump tank at time t. Since the mass at any point in time is given by 

M=pV 

equation 5-42 can be written as: 

Ps,t (5-43) 

Now the the change in density in the supply tank is given by equation 5-11(c) so rearranging terms 

one finds: 

(-4, D = 
P   V T rD,tVD1S,t 

-^- V P   T 
TCY-1 VSrS,t1D,t (5-44) 

Assuming that the temperature ratio of the gas can be approximated by the adiabatic uncooled 

turbine equation: 

^~ i-r (From equation 1-14) 

where 

i-Zs 
*     TD (5-45) 

Since most turbines operate at a r factor of about .75 with an efficiency of 90%, 1/x is about 1.3. 

Defining a new variable 
V 

Vr = -£- V 
equation 5-44 reduces to: 

<-k-»-£ 
TCY-1 s 

(5-46) 

Vr 

(5-47) 

we can now ask the question, "At what value of Tc does the supply tank become unchoked?" 

Since the pressure ratio across the choked orifice is given by: 

D 
Y+l T-l 

(5-48) 

The time at which the supply tank becomes unchoked is only a function of gamma and the ratio of 

the volume of the dump tank to the supply tank. 

(- 
1 

y+l 
y-lVr+ 1 

-2 

■) = Tc 

(5-49) 

The results are plotted below in figure 5-9. 
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Figure 5-9   Contour Plot of Tc versus y and Vr 

For this configuration which has a value of 1/x =1.3, y of 1.268 and a tank volume ratio of about 

2.1 (including the test section volume); the value for Vr is 2.73 resulting in a value of Tc=1.13. 

Therefore, any value of Tc greater then this will not be achievable since the facility will no longer 

remained choked. This information can be used to evaluate the best level accuracy to which the 

mass flow could be obtained. Assuming that the uncertainty in the initial pressures and 

temperatures can be reduced though statistical processes to very low values, and that the 

uncertainty in the volume of the supply tank is negligible, then equation 5-40 reduces to: 

Am, 

m, 
C2C2, 

.  i   p 

AP. 
P. 

L       I 

.5 

(5-50) 
For a Tc of 1.13 and y of 1.268 the influence coefficient reduces to: 

CP'= 4.28, Ct = .0267 and CtCp-=.l 143 

Thus to achieve an accuracy of the mass flow out of the supply tank of 0.25% the uncertainty in 

the pressure measurements taken during the tests have to be good to 2.18% (which is quite 

achievable). However measuring the mass flow out of the supply tank is only half the challenge 

since we also need the uncertainty in the boundary layer bleed to obtain the uncertainty in the mass 

flow through the test section. The uncertainty in the boundary layer bleeds is equal to 
-rcl.5 

a 
2 

Ax. 
i 

T. 
L    l J 

2 

(5-51) 

Making the same assumptions that the initial pressure measurements are negligible compared to the 

transient pressure measurements, then equation 5-16 becomes: 
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(5-52) 

For a 30% bleed, the overall influence coefficient is about 1, implying that the accuracy of the 

pressure measurement can be no worse then .25%. 
It is clear from this analysis, and the many assumptions that have been made, that for an 

ideal gas the practicality of measuring the mass flow, and thus the efficiency to within 0.25% is an 

optimistic goal. But to further complicate matters, the results from the previous sections show that 

the gas properties do change, and that ideal gas behavior is not necessarily an appropriate model 

since compressibility effects have to be taken into accounted. To see whether or not a real gas 

model may alleviate some of the problems present here, the next section examines how the 

blowdown equations need to be modified to account for real gas effects. 

5.2   Evaluating the Blowdown Equations for a Real Gas 
As stated above, equations 5-11 and 5-12 may not be completely applicable to real gases 

unless some corrective action is taken. There are three primary concerns. The first is the real gas 
effects as exhibited by the compressibility of each gas, and its influence on the information derived 
from pressure and temperature measurements. The second is the change in the gas properties over 
the test time. It is clear that y changes and that the change is both a function of temperature and 
pressure, but it is not yet clear how important this drift in y really is. Finally, because the gas 

properties are changing, and they could be a component in the overall efficiency uncertainty, 
certain isentropic processes which assume constant gas properties need to be evaluated to see if 
they can still be used in this situation. To obtain a better insight into how varying gas properties 
effect the parameters being measured section 5.2.1 examines how the derived properties (such as 
mass flow and the supply tank time constant) are influenced by changes in the gas properties. 
Section 5.2.2 shows how the ratio of the specific heats varies during a test run. Finally in section 

5.2.3 equation 5-11 will be redeveloped accounting for real gas effects. 

5.2.1   Gas Property Variation Influences on Various Mass Flow Parameters 
Much of the variation in the gas properties comes from the uncertainty in y which is 

composed of two parts. One part arises from inaccuracies in the mixing process as described by 
equation 4-8. The other part comes from the natural variation in y because the temperature and 

pressure of the gas change during a test. This latter part is really not an uncertainty in the typical 

sense, rather it is a type of drift. But it is obvious that both components will contribute to the 
overall change in any parameter which is dependent on y. Since much of the ideal analysis is 

based on the assumption of constant gas properties throughout the testing time, it is appropriate to 

include both effects. 
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Examining the dependency of the corrected mass flow on y one finds that it varies by about 

0.85 of the variation in y. 

Am 
corr— 

m corr 

lY-2 «yfr 
2 y-1       (Y_i)2 

Ay 

Y (5-53) 

which is relatively indifferent to the value of y (going from about 0.86 at y = 1.2 to 0.845 at y= 

1.4). The uncertainty in the supply tank time constant (from equation 5-12) reduces to the 

following (after rricorr has been replaced by its equivalent expression for y). 

_j__ Au _ ff a 
1      x     LLa+1. 

Aa 
a J 

AV 
VJ 

+ 
AA. 2 . 

LA3J 4 
AR 

L R J 

AT,(0) 

[ TL(0) 

Ay 

L Y J 

2(ln(^-)+l-y) 

1-y 
-+y-l 1    VI -5 

2(7-1) ] (5-54) 

The influence coefficient for the variation in y is relatively large. Labeling this coefficient as K, 

K= 
2(ln(^-)+l-y) 

1-y 
-+y-l 

2(y-D (5-55) 

it's level of influence can be plotted as a function of y. 

1.25 y 1.3 1.35 

Figure 5-10   (K) Influence coefficient for y on Supply Tank Time Constant 

Examining how the various parameters influence the overall uncertainty in the mass flow 

out of the supply tank, we rewrite equation 5-17 in terms of the initial properties and Tc: 
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The influence coefficient for y in equation 5-56 is: 

[KJ2 = 
2yln(Tc) 

(Y-l)2     (-Y+D 

1.35 

(5-56) 

(5-57) 

1.05 Tc 1-1 1-15 
Figure 5-11   (Ki) Direct Influence of y on Supply Tank Mass Flow Uncertainty 

The influence coefficient for x can be plotted in a similar manner. 

H 2  _ 2Tc-l-Y I2 

l(Tc)(Y-l). (5-58) 
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Figure 5-12 (K2) Direct Influence of t on Supply Tank Mass Flow Uncertainty 

Rewriting equation 5-56 in terms of the influence coefficients listed above and using equation 5-54 

and 5-55 one obtains: 

Aril, 
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2
2K

2
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Ay 

while not readily reducible can be plotted as a function of y and Tc. 

(5-59) 

(5-60) 
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Figure 5-13   (Koverall)   Overall Influence Coefficient for y on Mass Flow 
Equation 5-59 is not much use to the experimentalist since it contains terms which are not 

measurable (i.e the uncertainty in the choke area). But it can be used to show, theoretically, how 
the uncertainty in y affects the uncertainty in the mass flow. Examining equations 2-9 and 2-40 

(the uncertainty in efficiency using the mechanical method for the uncooled and cooled NGV 
stages), it is clear that the influence coefficient for the mass flow on the efficiency is one. If all the 
other terms in these equations were ignored, then to achieve a .25% accuracy in efficiency would 
require at least a .25% accuracy in the mass flow. If we use the same process on equation 5-59 
and all the terms other then the change in y were ignored, then the overall contribution of y would 
need to be 0.25%. Figure 5-13 shows that the influence coefficient for y ranges from about 7 (at 

the beginning of the test) to about 3 at the end (this will be developed in the next section), creating 
a need for a stability in y of .035% to .08%. To see if this level of stability is realistic section 5.2.2 

will examine how y varies over the course of a test. 

5.2.2   Variation in y During a Test 

There are two fundamentally different processes through which the properties of the test 

gas change; (1) when it is going through the isentropic expansion as gas leaves the supply tank and 
(2) as energy is extracted from it by the turbine. The change in gas properties during an isentropic 

expansion is well documented for an ideal gas. By examining the isentropic expansion process 
first, one can see if the variation in y is important, and if it is, avoid delving into how the flow 

properties change as it passes through the turbine. Equations 5-11 show that one only needs to 
now the initial values of the property and the value of Tc to find the value of the property at any 
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point in time. Equation 5-12 can be used as an approximation to estimate x for different types of 

gas mixtures. 

The nominal dimensions of the ATARR facility are: 

V= 3100 ft3 

A3 = 72 in2 = .5 ft2 

these can be used to estimate x for two different cases; one with air at 520°K and one with a N2- 

CO2 mixture at 520°K. 

Air     y= 1.4 N2-CO2:   y= 1.268 

R= 287 J/[Kg-K] R=214J/[Kg-K] 

mcorr=-81 Mcon= .74 

x = 35.4 sec x = 63 sec 

These values do not include the amount taken off through the boundary layer bleed which could be 

30% or more of the flow. Incorporating a 30% bleed value reduces the supply tank time constants 

to 27 seconds for air and 48.5 seconds for N2-CO2. The design run time of the facility is 2 

seconds thus for the air the value of Tc becomes 1.075 and for N2-CO2 1.04. As the turbines 

become smaller, the testing time could increase, and the percentage of the flow exhausted by the 

boundary layer bleeds could increase. Thus it makes sense to use the ATARR non-dimensional 

time (Tc) to characterize the uncertainty in the gas properties. 

Equation 5-1 lb shows that the temperature decay is a direct function of the variable Tc and 

its generic plot is shown in figure A-22. A similar plot is shown in figure A-23 for equation 5- 
1 la, but the pressure variation depends on y, and in this graph the pressure drop is plotted as a 

function of both Tc and y. Figure A-21a is a plot of the standard mixture y as a function of 

pressure level and non-dimensional time (Tc) instead of temperature. One can see that even for 

small values of Tc, the change in y from its initial conditions becomes larger then the upper bound 

placed on the variation in y of 0.08% shown in the previous section. One last avenue of 

investigation is to note that as the non-dimensional time increases, the pressure drops dramatically 

(figure A-23) and one can see from figure A-21a that as the pressure drops the value of y becomes 

more constant. An interative method is needed to calculate the change in y only as a function of Tc 

since one has to find the pressure drop associated with that value of Tc, use the gas tables to 

interpolate a value of y and then use that value to re-estimate the pressure drop (explained in more 

detail in appendix A). The results are shown in figure A-24 and one can see that the effects of the 

pressure decay do not keep y varying past acceptable levels. 

At this point there are several conclusions which can be drawn. First, using the present 

process the mechanical method cannot be used to measure efficiency to within 0.25% during a 

standard test because the variation in y during the isentropic expansion (which is only part of the 

temperature and pressure drop which would occur during a test to the flow gas) greatly exceeds the 
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limits imposed on it by equation 5-59. How accurately one could measure the efficiency using this 

method is a direct function of Tc (as shown earlier).  One positive note comes from examining 

equation 4-8 (shown in Appendix A and resulting in equation A-21) and finding that the 

uncertainty in y which is due to the mixing process (the lowest value of the uncertainty in y that 

one could achieve used a mixed test gas) is only a weak function of the temperature and pressure 

uncertainty (the influence coefficient is 1/22). To achieve an uncertainty in y of 0.035%, the 

combined uncertainty in the temperature and pressure measurements during the filling process 

would only need to be 0.77%, which if the uncertainty in both measurements were equal, would 

require each measurement be accurate to 0.54%. Which are values much larger then the expected 

accuracies of these measurements and thus the mixing procedure is not necessarily doomed from 

the start. 

Using the thermodynamic technique avoids the problem of making mass flow 

measurements, which negates this entire problem of changing gas properties. The problem with 

this process is that the nonuniformity downstream of the rotor could create measurement errors 

which far exceed the instrumentation uncertainty, thus also limiting the efficiency accuracy (in 

addition there still remains that slight problem of defining the losses in the system). As one moves 

the measurement location further downstream, the flow becomes more uniform, but the measured 

efficiency of the stage now includes the mixing losses that occurred downstream of the rotor, thus 

lowering the measured stage efficiency. To avoid the experimental problem of measuring the 

energy state of the fluid downstream of the rotor, the next section will look at the derivation of 

equation 5-11 accounting for real gas effects, to see if it is possible to account for the variation 

which occurs in y. 

5.2.3   Derivation of Blowdown Equations with Real Gas Effects 

There are several ways to proceed. Since the mass flow out of the supply tank has to equal the 

mass flow through the boundary layer bleeds plus the mass flow into the test section inlet, this can 

be written as: 
ml =(l+a)m3 (5-61) 

which can be multiplied by 1 (in various forms) to achieve: 

"rh,VvRT. n"    r^   lL 

ihj =(l+cc) T3 
P    A rT3^3 

T3 Tl 
P    A 

Tl    3 
DTlLTT3J   ^YC

RTT1 (5-62) 

yc represents the instantaneous value of y at any point in the test. 

Outside of the boundary layer, the isentropic flow assumption is valid so that the total 

pressure and temperature do not change: 
"rh,VycRTT3

n    ~ 

VYCRTT1 (5-63) 
m, =(l+oc) 

"T3    3 
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and in the supply tank (station 1) the total quantities are the same as the static quantities creating: 
[riy/yRT.^ 

m1 =(l+a) P    A rT3'rt'3 

P1A3 

Using the real gas law Pi(t) can be substituted for 
P1(t)=z1(t)p1(t)RT1(t) 

and rearranging terms yields: 
'riVyRT-rc 

m1 =(l+a) 
PT3A3 

z^p/OA^yRyt) 

(5-64) 

(5-65) 

(5-66) 

Tt(t) 
TL(0) 

combing with equation 5-13 produces: 

m.=-Vär = (1+al   P^    J rc (5-67) 
The expansion process is isentropic outside of the boundary layer and the next step would 

be to relate T(t) to the initial temperature and the density ratio. However, the real gas effects keep 

us from applying the standard isentropic relationship: 

.PjtO)] (5-68) 

Appendix C develops the isentropic relationships among pressure, temperature and density and 

discusses in depth the problems inherent in the integration of equation 5-67. The results of 

appendix C show that one has to consider that the ideal gas law holds, but that the variables y-1 

needs to be replaced with Cl and y-l/y has to be replaced with C2 (as defined in appendix C). In 

addition, the value of x will no longer be considered a constant since both the corrected mass flow 

and the compressibility vary with time. Thus the final blowdown equations can be written as: 

p(0)      LT     J 
(£L)(l+a)z1(t)VycRT1(0)A3 i__ 

x 
T(t) 
T(0) 

P(t) 
P(0) 

1+1 
x 

y V 
'c 

-2 

rh,VyRT T3 

"T3   3 

1+t 
X 

-1-2 

C2 

(5-69) 

(5-70) 

(5-71) 

5.2.4   Uncertainty in Mass Flow and x  for a Real Gas 

Much of the analysis which was done in section 5.1.3 is still valid. Equation 5-16 

provides the uncertainty in the mass flow through the test section and equation 5-17 needs to be 

modified to use the variable Cl instead of y. 
P,(0)     9    r     fV2-Cl 

rh=V—i (7?r)[l+L] c2 
TRT,(0) Cl L    xJ (5-72) 
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and becomes 
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(5-73) 

As was done in section 5.1.3 , R is only a function of the mixing process and equation 5-19 can 

be used here. The uncertainty in Cl and the uncertainty in x is now (because of the way we are 

calculating both x and Cl and performing the mass flow integrations) only a function of the 

individual measurement (i.e only the uncertainty in the individual pressure and temperature 

measurement). 

To find the uncertainty in Cl the individual components of Cl (equation c-17) can be 

substituted to derive an expression for Cl in terms of the component gases 

Cl=- 
Mr(R2+Rj)Z' 

Cv^CVjMr (5-74) 

where 
M, 
Mi 

andZ'=T^+Z 

as shown in appendix A, the individual gas properties vary little as a function of instrument 

temperature and pressure uncertainty (this assumes that the instruments are accurate at least to a 

few degrees Kelvin, or a few psi, since we are attempting calibration accuracies of 0.1 °K and .1 

psi there should be no problem here). Thus they can be considered a constant. Then the 

uncertainty in the terms Cl reduces to uncertainties in the mass ratio and in Z' as shown below. 
Rr 

Cvr 
-1 

LLMr 
1 

where 

JLCvr 

m, Cv.       ,   ^     R, 
Mr = -2-,   Cvr = —-2-, and   Rr = F

2- 
mT Cv Rj 

+Mr 
AMr 
Mr. 

(5-75) 

From the information in appendix A, the uncertainty in Z' is negligible as a function both of 

temperature and pressure in the instrumental uncertainty range, so it can be ignored. Thus the final 

form of the uncertainty in Cl is:  

AC1 = 
Cl 

[    F -1 
Cvr 

2 

AMr 
LMr J 

LLMr        J 
[ l   +Mr 
LCvr       J. (5-76) 
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These component ratios have all been evaluated in appendix A and using the values for a standard 

fill, equation 5-76 reduces to: 
ACL 
Cl 

1 
9.29 

AMr 
Mr J (5-77) 

The uncertainty in the mass ratio is defined for a standard fill by equation A-29, and combining 

these values with equation 5-77 reduces the uncertainty in Cl to its final form: 

(5-78) 

The uncertainty in x can be found in a manner similar to that used in section 5.1.3 (using 

pressure measurements), 
t  
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r l i 
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2 
+ AT(0)12 

[ P(0) J L T(0) J 

X= 
C2l 
-2 1 

(5-79) 

The uncertainty in equation 5-79 is: 
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(5-80) 

The uncertainty in C2 can be derived in a similar manner to the uncertainty in Cl and results in 

AC2= 
C2 

[          Rr 
Cp 

-1 
r 

2 

AMrf 
LMT J 

_LMr        J 
\J   +Mrl 
Cpr 

which when combined with equation A-29 produces: 

AC2= 
C2 5.6J V L P(0) J 

AP(0) AT(0) 
T(0)J 

(5-81) 

(5-82) 

using equation 5-71 to substitute Tc for the pressure ratio, equation 5-80 becomes: 
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or in terms of influence coefficients (and combining with equation 5-82): 

Ax. 
[KJ2 

AP. 
+ 

AP, 
+ [KJ 

AT, AP, 

LP0 

.5 

(5-83) 

(5-84) 

Now since we are interested in specific property values at different times, it is not necessary to 

interpolate between pressure levels in C2 to obtain a history of C2 with respect to Tc only. Since 

at any point we will know the temperature and the pressure and can just interpolate in the tables to 

obtain the correct value of C2. However, to show that the difference is not significant in any case, 
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figure 5-14 show Ki and K2 evaluated using C2 at both 4 atm and 7 atm. Figure 5-15 show the 

differences in these values due to the variation in C2. 
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Figure 5-14 Ki and K2 as a Function of Tc and C2 
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Figure 5-15   Variation in Ki and K2 Due to Differences in C2 as a Function of Tc 

One of the interesting points to note from figure 5-15 is that the variation in C2 will actually get 

smaller as Tc approaches the value where the pressure becomes 1 atm and then it will grow again. 

And the functions Ki and K2 are such that there is no uncertainty at time Tc=l. Thus the actual 

uncertainty which arises from using Cl at 4 atm instead of the proper value of C2 calculated at 

every point in time will increase from zero at the beginning of a test, reach a peak at about Tc=1.03 

and then decay back towards zero where the pressure level reaches 4 atm (at Tc =1.06). After this 

point it will increase once again. But whatever the behavior, figure 5-15 shows that the total 

variation is small. 
Expanding equation 5-84 and setting K3=KiK2 then 
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3 - ^2 " (Je.!) 5.6 
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(5-85) 

(5-86) 

Substituting equation 5-19, 5-78, and 5-86 into equation 5-73 develops the uncertainty in the mass 

flow out of the supply tank as a function only of the measured variables: 
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where 

K20 = Km2(K5 + K2) + 
Km. 

(5-87) 

K2Q = Krn^K^ + 
Km, 

L4.44J 

L4.44J 

+1.04 

+1.04 

K|. = Km2 K2 
Pi 11 (5-88) 

Figure 5-16 shows the traces of Ki and K3 as a function of Tc 
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Figure 5-16   Ki and K3 as a Function of Tc 

Figure 5-17 shows the values for Kpo, KJO, and Kpi. 
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Figure 5-17   Kpo, KTO> and Kpj as a Function of Tc 
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As a final step, we need to determine the accuracy in the boundary layer bleed ratio in order to find 

the uncertainty in the mass flow through the test section. The information in section 5.1.3 as well 

as equation 5-41 is still valid and thus the uncertainty in the boundary layer bleed ratio will be the 

root sum square of the uncertainties in the two time constants 

Am 
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.5 

(5-89) 

If the uncertainties in the measurements are the same for both test then the overall uncertainty from 

the boundary layer bleeds are just a function of the influence coefficient in equation 5-86. For the 

standard fill conditions the dependency of the supply tank time constant on the boundary layer 

bleeds is shown in section 5.2.2. Without any boundary layer bleeds, the time constant is about 

63 seconds, with a 30% bleed it is about 48.5 sec This corresponds to Tc values (at 1.5 seconds) 

of 1.023 and 1.03 respectively. Thus testing the facility with or without the boundary layer bleeds 

should develop the same influence coefficients, just offset on the Tc axis. 

As an example assume that we wish to measure efficiency at 1.5 seconds, from figure 5- 

16, Ki will be about 5.5 in one test and 3.5 in the other (K2 remains constant at about .19). Thus 

equation 5-89 when combined with equation 5-86 (and assuming equal measurement uncertainties) 

produces: 
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For a 30% bleed this reduces to: 
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(5-91) 

From figure 5-17 at Tc=1.03 KPi = 1.1, and KTO=KPO at about 5.25. Thus equation 5-91 

becomes, for this example: 
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(5-92) 

If the initial measurement uncertainty can be reduced through statistical analysis, and the 

uncertainty in the volume of the tank ignored then it is possible (but not highly probable that the 

transient pressure measurement will be accurate to 0.13% and thus the mass flow will be accurate 

to 0.25%. 

5.3   Conclusions and the Mass Flow Uncertainty 

There are several interesting connotations to equation 5-92. First, as one lengthens the test 

time Tc, the overall influence coefficients get much smaller, since they are primarily influenced by 

Kpo and KJO-   The uncertainty in the initial conditions can be driven using statistical processes to 
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levels where they are no longer important and thus the transient measurement will become the 

dominant error (which is the best one can do). As a side benefit, the influence of the supply tank 

time constant measurement is not that great in the determination of the boundary layer bleed ratio, 

which means that it can be measured at the same value of Tc for which the actual efficiency is being 

measured. 

However, equation 5-92 has been developed at much cost. Appendix C has shown the 

importance of the real gas effects, both in the problems it causes in generating the isentropic 

relationships, and the effects it has on developing the constants Cl and C2. At the end ofthat 

appendix we were forced to assume that the ideal gas law is valid over small time increments. 

Figure C-14 showed that the difference between methods (all of which seemed legitimate) could be 

quite large. Thus the ultimate cost has come in the form of keeping track of the gas properties and 

the interpolation procedures used. Which, as stated earlier in the report, were arbitrarily selected. 
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Section 6 Results, Conclusions, and Future Work 

The goal of this study has been to develop the relationships needed for measuring 

efficiency accurately; determining those variables which need to be controlled during the 

construction and operation of the ATARR facility, and determining how the uncertainty in the 
measurements impact the accuracy of the derived efficiency.. This has been done in Section 2, 

which outlines the equations for efficiency accuracy and in the other sections which relate these 
sub-components to measured properties. 

There are two particular ways of measuring turbine efficiency. Using either a 

thermodynamic method, which evaluates the change in the energy of the test gas as it passes 
through the turbine stage; or a mechanical method which uses the actual work extracted by the 
turbine. One of the features of this study has been to see which method would provide a more 
accurate measurement, and for each method which parameters were important. As demonstrated 
in the introduction, for any set level of measurement accuracy, the calculated efficiency accuracy 
for an adiabatic uncooled turbine (simplest case) will depend on the turbine performance (the 
pressure ratio across the turbine, the test gas y, and the stage efficiency). Section 1 reviewed the 

definition of measurement accuracy and demonstrated that instrument accuracy is only one 
component of the overall measurement uncertainty. The other, more nebulous part being the 
assumptions which are made about how well the flow at the point of measurement represented 
the flow field. The question of flow uniformity is especially critical for the downstream 
measurement of total temperature and total pressure when the thermodynamic technique of 
measuring efficiency is used. For both methods, Section 4 demonstrated that to measure 
efficiency accurately would require a detailed knowledge of the initial conditions and how real 
gas effects influence the initial properties.  The influence of real gas effects on the test gas 
became clear as the work progressed and showed that great care needed to be exercised in the 
selection of gas properties. Section 3 discusses the choice of gas tables for use with this facility. 
Section 5 discusses the influence of real gas effects on the mass flow measurement, and 
appendices A and C show specific examples of how using real gas data varies from ideal gas 
behavior, even at these modest temperatures and pressures. It was known early in the program 
that to measure efficiency accurately requires that the supply tank volume be well known. As 
shown in equation 5-18 and 5-92, the uncertainty in the volume of the supply tank needs to be an 

order of magnitude better then 0.25% if the stage efficiency is to be measured to the desired 

accuracy. 
The results of Section 5 illustrate that the mass flow through the test section can be 

measured. Since both the torque and speed of the shaft are directly measured, the opportunity 
exists to use the mechanical method to determine the efficiency of the turbine as well as using 
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the thermodynamic technique. A second important result has been the development of the 
ATARR non-dimensional time Tc (defined in equation 5-34) in the mechanical measurement 

technique. All different testing configurations can be collapsed to be function only of Tc. 

Likewise the gas properties can also be expresses solely as a function of Tc which allows 

experiments to be designed to yield optimal efficiency measuring points. 
Thus, this study has developed the procedure by which efficiency measurements will be 

made on specific test turbines. The specific efficiency accuracy will be a function of 

measurement uncertainty, instrument uncertainty, the turbine configuration and which technique 

is ultimately used. In addition, this study has shown explicitly where assumptions are made in 

the effort to measure efficiency. It has been noted that key issues such as the differences 

between adiabatic and isothermal testing environments, how to measure the isothermal losses in 

this facility, or how other facilities measure how close they are to adiabatic, are critical in 
comparing data between facilities; but have been left out of this study because of the lack of data 

available on other facilities. Because of these problems it is suggested that the mechanical 
method be used for measuring efficiency since the problems of measuring the losses in this 
facility are irrelevant. But the trade-off includes several other assumptions, about the validity of 
the ideal gas law and the need to account for gas property variation during the test. 

This study is only the first part of the work which will need to be done to bring the 

ATARR into operation. The need for extremely accurate temperature and pressure 
measurements both during the fill process and during the test, has been shown.   Instrumentation 
and calibration procedures are being developed to provide this information. Secondly, this 
analysis is only the procedure for measuring efficiency, each test turbine must be evaluated using 
this procedure to determine how accurately efficiency may be measured. But before that can be 
done, the facility has to be up and running, with all of its instrumentation calibrated. In the 
attempt to make this process go smoother, the use of Moffat's1 technique to estimate the 
acceptable level of uncertainty at different stages in the shake-down process of the ATARR 

facility is recommended. 
With this, and the other work being performed, the ATARR facility should be capable of 

delivering state-of-the-art accuracies not only in efficiency, but also in types of data. The 
construction of the ATARR facility will allow detailed research and development of turbines, 
and in conjunction with other facilities should help to push the limits of understanding in turbine 

technology. 

1 Moffat, R. J. " Contributions to the Theory of Single-Sample Uncertainty Analysis"; Transactions of the ASME. 
Vol, 104, June 1982, pp. 250-260. 
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Appendix A 
Test Gas Properties 

The purpose of this section is threefold. The first is to list the tabulated values of the gas 

properties for nitrogen and carbon dioxide which will be used in the ATARR facility. The 

second is to show how different mixtures can be obtained and how the test gas properties depend 

on the individual gas properties. The third is to document the behavior of the test mixture 
during a standard test. Throughout this section particular focus will be directed to the 
propagation of uncertainty through the gas tables and the interpolation procedures and the 

differences which occur between using ideal gas properties and real gas properties. 

Individual Gas Properties: 
While the ATARR facility could use a wide range of test gas mixtures to simulate the 

turbine operating environment, the gases which are most likely to be used are a mixture of 
nitrogen and carbon dioxide for the main flow and a pure nitrogen cooling flow. The real gas 
properties of interest are the compressibility, specific heat at constant pressure and the ratio of 
specific heats. These properties are listed in tables A-l and A-2 for both carbon dioxide and 
nitrogen for common pressures and temperatures. And as suggested in section 3, other pressures 
and temperatures can be found in reference l1. Figures A-l to A-8 are plots of the variation in 
these properties as a function of temperature and pressure. All the figures in this group have two 
axis. The left side is the nominal value of the parameter and the right side is the maximum 
variation of the parameter at a set temperature as a function of pressure (maximum variation is 
defined as the (maximum value-minimum value) 100/minimum value). One can see that the 
variation between the ideal gas properties and the real tabulated properties can be significant and 
that even at the high temperatures, the variation in the properties could be of the same magnitude 

as the total uncertainty in the efficiency. 
Standard Fill Conditions: 

The next step is to examine how the individual gases combine in a standard fill and 
evaluate the behavior of the resulting mixture. As stated in section 5, the gas mixture is assumed 
to be a simple compressible mixture. Standard fill conditions will be assumed to include real gas 
effects and be a mixture of N2-CO2 supply tank gas at 105 psi (7 atm), 520°K with a desired y of 
1.268 and with N2 as the cooling gas at 216 °K (-70 °F) and 73 psia. Equation 4-4 can be 
inverted to find the desired mass ratio as a function of the desired test y and the gas properties 

1   Hilsenrath, Beckett, Benedict, Fano, Hoge, Masi, Nuttall, Touloukian, and Woolley; Tables of Thermodynamic 
and Transport Properties of Air. Argon. Carbon Dioxide. Carbon Monoxide. Hydrogen. Nitrogen, Oxygen, and 
Steam. Pergamon Press, New York, 1960 
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my_^vx 
m 

px 

C   -yC 
py   '   vy (A-l) 

thus the desired pressure ratio can be found from equation 4-7 
m R 

P T      m R     2 r2Xl -      *   x  
P T rlX2 Zx 12 (A-2) 

and since the supply tank temperature is designed to be held constant this reduces to: 
m R 
-V-Zr„+1 

P.     m.R 2_ 
Zx, (A-3) 1 ""12 

(ZT2 is the ratio Zy2/Zx2 and Zxj.2 = Zxi/Zx2) 

It is important to note that together, equations A-3 and A-l determine what the fill pressures 

should be; but to find out what the actual test conditions are, equation 4-7 and 4-4 will have to 

be used to account for variations in temperature and pressure from the design conditions. 

However the form of equation A-l is troublesome since it represents the division of two small 

numbers. A-l can be rewritten in terms of the individual component Ys. 
m     C   (y-y) 
in~ «Vy, -y) (A-4) 

Equation A-4 shows that the closer the individual component Ys are to the test y the more 

unstable this ratio is. The uncertainty in the mass ratio can be given as: 
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(A-5) 

Thus, small variations in the gas properties can have a large variation in the mass ratio. For the 

standard fill conditions listed above, from table A-l {in KJ/[Kg-K]} 
N2: Cp= 1.0623 Cv = .7626 y= 1.393 (Real): Cp = 1.0594 Cv = .7626 y= 1.389 (ideal) 

C02: Cp= 1.0357 Cv = .8400 y= 1.233 (Real): Cp= 1.0268 Cv = .8379 y = 1.225 (ideal) 

The parameters 

•1 

Y 

124 
or 

real 
1811 

1241 
or 

real 

Ideal 

1 
811 

Ideal 
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So even though the variation in the gas properties is small at these conditions (<0.8%) the 

difference between the two mass ratios predicted is large. Using real gas parameters, equation 

A-4 reduces to: 
Mr (=my/mx)=3.24 (real) or 2.59 (ideal) a 25% variation! (A-6) 

Fortunately, once we have measured the fill conditions, the actual testing value of yis relatively 

insensitive to the mass ratio in the tank. Rewriting equation 4-4 in terms of the mass ratio and 

the component ys 
C 

l+_py_Mr 

Y=Y 
px 

x      C 
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vx (A-7) 

with a resulting uncertainty of: 
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Disregarding the uncertainties in the individual gas properties (these will be analyzed latter, but 

it is clear that their influence coefficients can never be bigger then 1); the uncertainty in the test 
value of y becomes a function of the uncertainty in the mass ratio. For real gas properties this 

reduces to 
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and for ideal gas properties: 
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Using the difference in mass ratios between a real gas and an ideal gas (equation A-6), and the 

largest value for the influence coefficient, one finds that the difference in the test value of y is 

approximately 
Ay 

Y 
[0.25]: 

1600 
-».63% variation 

(A-ll) 
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which is larger then the overall uncertainty in the efficiency desired, but a much more reasonable 

variation then the difference in the mass ratios. 
At this point one might suspect that the calculation of the "fill targets" are quite 

susceptible to the differences between real gas properties and ideal gas properties, but that the 

actual testing properties which are obtained from pressure and temperature measurements are 

much less susceptible. This hypothesis can be checked by continuing through the fill process. 

Once the mass ratios are known, then the fill pressure ratios can be calculated from equation A-3. 

For both cases the ratio in gas constants 

Rrin.6366 
Ri (A-12) 

and for the situation using ideal gas values 

?2.= 2.649 
Pi (A-13) 

For the real gas values Txi is found from table to be .99292. Finding the value Zxi2 is clearly 

more difficult because we are not sure of the target state. From figure 4-1 we see that the 
variation in Z for nitrogen at 520 °K is about .05% between the values of Px/Py of 0.4 and 0.2. 

Therefore taking the mean produces a value of 
J-± = 3.054 
Pi (A-14) 

If we use the pressure ratio calculated in equation A-14 to interpolate in the tables, then we find 
that Zxi2 = .99802 (a .003% error, which is good enough). A summary of the standard fill 

properties is listed below: 
Table of Standard Gas Properties 

Property Real Ideal 
m 

Mr = -^ m 

P 
Pr = -^ p 

R 

3.24 2.59 

3.054 2.649 

.6366 .6366 

DX 

.9692 .8819 

c 
vx 

1.1015 1.0987 

Zr2 .99292 NA 
Zxi2 .99805 NA 
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The pressure ratios shown in equation A-13 (ideal gas) and A-14 (real gas) are vastly different, 

but these differences do not arise directly from the compressibility. In fact if one were to take 
the ideal mass ratio and use the compressibility ratios listed above one would obtain a pressure 

ratio difference of only about .25%. The rest of the difference is due to the difference in the 

mass ratios. Figure 4-4 shows the difference between the real gas model and the ideal gas model 
for these fill conditions. Figure A-9 shows a plot of the variation in Zr and Zx u as a function of 

the test temperature. 
At this point the behavior of the gas mixture can be defined. The first property of interest 

will be the compressibility of the mixture. Using the law of partial pressures 
Z   = Y Z +Y Z I 

m x   x       y   yiat mixture T and P 
N. 

Y= mole ratio     ' 
Ntotal (A-15) 

The mole fraction can be related to the mass fraction through the molecular weights of the 

components 
M.        m. 

Y. 1—~ ä- 
lMtotal    mtotal (A-16) 

(M is the molecular weight) 
Since the molecular weight is related to the gas constant by 

R =-S- 
1    Mi (A-17) 

these relations can be used to reduce equation A-11 to 
m R Z 

x      m R Z 
Z   = x  x  x 

m m R 

mx   x       at mixture T and P (A-18) 

Since the mixture values of R, Cp, and Cv are all functions of the mass ratio, these properties are 

given by: 
R 

(l+rS-Mr) 

R=R——Z-—=214.36 (Real) m     x   1+Mr (A-19) 
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The values for Cpm and Cvm are tabulated for the standard mixture and for the ideal gas 

case in Table A-4. Also included in this table are the variations between the real gas mixture and 

the ideal gas mixture as a function of pressure, and the variation in the real gas mixture from 1 

atm to 7 atm2. These variations are shown graphically in figures A-10 to A-13 (figures A-lOa 

and A-l la show the variation from initial conditions). The left axis is the scale for the difference 

between the real gas mixture and the ideal gas mixture (in %) as a function of pressure level. 

The right-hand side is a plot of the % variation between the pressure levels (1 atm, 4 atm and 7 

atm) for the real gas. It is apparent from the graphs that at low temperatures, the variations from 

ideal gas behavior (and between pressure levels becomes quite important (which is not surprising 

since one is approaching the freezing point of CO2). At higher temperatures, the variation 

between the methods is small, but cannot to be eliminated as a factor. 

Uncertainty in Gas Properties: 
Throughout the paper the uncertainty in a derived quantity often depends on the 

uncertainty in the gas properties to some extent. We are now in a position to analyze this 

uncertainty. Since we are assuming that the values listed in the tables for the components are 

correct then the only uncertainty in the components comes from uncertainty in either the 

temperature or the pressure measurements used as a basis for interpolation in the tables. As 

stated earlier in the paper, this uncertainty is a combination of the instrument uncertainty and any 

uncertainty about the flow. The uncertainty in the derived parameters (equations A-12 to A-15) 

can be found in terms of uncertainty in the individual components. 

For the mixture compressibility, the uncertainty in equation A-12 reduces to: 
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For the standard testing conditions A-22 reduces to: 

2 Variation in this case has two meanings. For the differences between the real gas and the ideal gas mixture it is 
defined as: 

(Real-Ideal)* IOC 

Ideal 

For the differences between pressure levels in the real gas it is defined as: 

(Max-Min)* 100 

Min 
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(this is not a parameter in an ideal gas case). One can see that the influence coefficients for the 

individual gas compressibilities are small and almost nonexistent for Mr. The uncertainty in the 

constant pressure specific heat is given by: 
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which reduces to: 
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when an ideal gas mixture is used. In both cases the influence coefficient for the component 

properties is less then 1, and that the influence coefficient for the mass ratio is very small. 

Finally, for the constant volume specific heat: 
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which for a real gas mixture is: 
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and for an ideal mixture is: 
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For all of these properties, the influence coefficient for the individual components are 

small (<1) Thus the only concern is how the individual properties vary with measurement 

uncertainty. These properties can be calculated from the data in tables A-l and A-2 and are 

shown in tables A-5 and A-6, and graphically in figures A-14 to A-21. The tables include 

information about the variation in properties as a function of temperature (at any set pressure) 
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and the variation in properties due to pressure differences (at any given temperature). The 

formulas used are listed at the bottom of each table. It is important to note that these percentages 

are calculated as (maximum value-minimum value)/minimum value, thus the variation will 

always be positive and it will always be a maximum variation. In addition this variation has 

been normalized to either a unit psi difference, or a degree Kelvin difference (depending on the 

information). Now it is the desired goal of this project to make measurements which are far 

more accurate then 1 °K or 1 psi, thus once the uncertainties are known in the measurements a 

better approximation can be made to the total uncertainty in the gas properties. 

Examining the graphical data in figures A-14 to A-21 it is clear that in the temperature 

range which the facility operates (400 to 520 °K) the property variations (note the different scales 

in the graphs) are an order of magnitude smaller then the variations of interest in the uncertainty 

analysis (even at this large scale of measurement uncertainty), and therefore can be considered 

independent of measurement accuracy in most cases. To determine if these property variations 

are important in the variation of the mixture parameters we need to use equation 4-9 (the 

uncertainty in the mass ratio as a function of measured properties, since equation A-5 is really an 

uncertainty in the prediction of the mass ratio, not the measured mass ratio). Equation 4-9 is: 
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The uncertainties in the compressibilities listed in equation A-30 are just the addition of the 

uncertainties of the individual components at each measurement. If one were able to achieve a 

measurement error of .1 psi and .1°K, (corresponding to a 0.1% pressure accuracy and a .03 % 

temperature,based on a 300 °K range, accuracy). It is clear from Figures A-20 and A-21 the 

uncertainties in the compressibilities would be much smaller then the measurement uncertainty, 

even at these optimistically accurate levels. As such the uncertainties in compressibility can be 

ignored and equation A-30 rewritten as: 
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Mr T,P 
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(A-31) 

Using the pressure ratio and compressibility of a real gas, assuming that the temperature during a 

fill is constant, and that the pressure and temperature uncertainty are the same at both 

measurement points, this equation reduces to 

AMl = 
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(Real) 
(A-32) 
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AMr_ 
Mr 

[2.272]2 AP AT 
TJ 

(Ideal) 
(A-33) 

At this point it is hard to proceed since we do not know the actual uncertainty in the 
pressure and temperature measurements and these are critical in determining the overall 

uncertainty in the mixture properties. However since the individual gas component properties 

seem to be invariant to the temperature and pressure measurements errors, they can be eh'rninated 

from equation A-22 to A-29. This assumption will have to be checked after the facility is 

constructed, but it seems reasonable since as the measurement uncertainty decreases, both the 

uncertainty in the components and the mass ratio decreases. But as it drops below this level the 
entire term can be ignored, likewise, as the measurement uncertainty increases, the uncertainty 
in the components also increase, but we have estimated a maximum value for a very high 
uncertainty and this level is still at the point where it can be neglected, so in this case the mass 
ratio will dominate. As result we can combine equation A-32 with the previous results to find 

for a real gas that: 
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(A-37) 

Examples of Mixture Behavior During an Isentropic Blowdown: 
As shown in section five, the ATARR non-dimensional time (Tc=l4t/t) is the primary 

parameter that should be used to characterize the mixture behavior because the accuracy in 
efficiency depends directly on it. In actuality as shown in this section, the mixture properties 
depend on the temperature and pressure. Using equations 5-11 (repeated below) the temperature 

and pressure at any point in an isentropic process can be related to the variable Tc by: 
T(t) 
T(0) 

= [Tc]- 

™. = rTcrä 
P(0)    L    J (A-38a,b) 

In the ideal case C2 becomes (y-l)/y (see appendix C for more details). Figure A-22 shows the 

relationship between the temperature ratio and the variable Tc and figure A-23 shows the ideal 
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gas isentropic pressure decay as a function of y and Tc. Using the data in table A-4 and the 
relationship between temperature and Tc in equation A-38(a), the the mixture yean be plotted as 

a function of pressure level and Tc (Figure A-24). This figure also shows the variation from the 
initial starting value of y on the right-hand axis (one can see that the variation is significant). An 

interesting observation of figure A-24 is that as Tc increases, y also increases. But as the 

pressure level decreases, y decreases at any given value of Tc. From figure A-23 we see that the 

pressure decay with Tc is dramatic, so their exists a possibility that if one could use equation A- 

38(b) to iteratively solve for the pressure decay as a function of Tc one could obtain the trace of 
the mixture y as only a function of Tc. 

This procedure was done in an iterative process for an ideal gas: 

1) Select a value for the temperature ratio 
2) Find the corresponding value in Tc from equation A-38(a) 
3) From table A-4 find the corresponding y at 7 atm 
4) Use this value of y to predict the pressure ratio for the selected value of Tc from 

equation A-38(b) 
5) Use the resulting pressure ratio to interpolate between the various pressure levels in 

table A-4 (either 7 atm and 4 atm or 4 atm and 1 atm (depending on the situation) to determine a 
new value of y. 

6) Repeat steps four and five until there is no significant variation in the answer for y. 
This is the value of y at this value of Tc (and also the pressure ratio) and a new value of Tc can 

be selected using step 1 and repeating the entire process. 
The results are shown in figure A-25 (data in table A-7). One can see that even taking into 
account the pressure decrease the variation in y can be significant. 
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Table A-l 
Nitroeen Gas ProDerties 

Real Gas Properties Ideal Gas 
Temperature Specific Heat Ratio CD fKJ/Ke K) Cv (KJ/KeK) Cp          Cv 

(KlfKeK) *K 1 atm 4 atm 7 atm 1 atm 4 atm 7 atm latm 4 atm 7 atm 
Bolds are interpolatioi 

150 1.409 1.437 1.468 1.0473 1.0744 1.1053 0.7433 0.7477 0.7530 
160 1.407 1.431 1.457 1.0460 1.0686 1.0934 0.7434 0.7468 0.7504          1.0390 0.7422 
170 1.406 1.427 1.451 1.0450 1.0642 1.0847 0.7432 0.7457 0.7476          1.0390 0.7422 
180 1.406 1.423 1.442 1.0442 1.0607 1.0781 0.7427 0.7454 0.7476          1.0390 0.7422 
190 1.405 1.420 1.436 1.0436 1.0579 1.0729 0.7428 0.7450 0.7471          1.0390 0.7422 
200 1.404 1.418 1.432 1.0430 1.0556 1.0687 0.7429 0.7444 0.7463          1.0390 0.7423 
210 1.404 1.416 1.429 1.0426 1.0537 1.0652 0.7426 0.7442 0.7454          1.0391 0.7423 
220 1.403 1.414 1.425 1.0423 1.0522 1.0624 0.7429 0.7441 0.7455          1.0391 0.7423 
230 1.403 1.413 1.423 1.0419 1.0508 1.0599 0.7426 0.7437 0.7448          1.0391 0.7423 
240 1.403 1.412 1.421 1.0417 1.0497 1.0579 0.7425 0.7434 0.7445          1.0391 0.7424 
250 1.402 1.410 1.419 1.0415 1.0488 1.0562 0.7429 0.7438 0.7443          1.0391 0.7424 
260 1.402 1.409 1.417 1.0414 1.0480 1.0547 0.7428 0.7438 0.7443          1.0393 0.7425 
270 1.402 1.409 1.415 1.0412 1.0473 1.0534 0.7427 0.7433 0.7445           1.0394 0.7426 
280 1.402 1.408 1.414 1.0412 1.0468 1.0524 0.7426 0.7434 0.7442          1.0395 0.7427 
290 1.401 1.407 1.413 1.0411 1.0463 1.0515 0.7431 0.7436 0.7441          1.0396 0.7428 
300 1.401 1.407 1.412 1.0412 1.0459 1.0507 0.7432 0.7434 0.7441           1.0397 0.7429 
310 1.401 1.406 1.411 1.0412 1.0457 1.0500 0.7432 0.7437 0.7442           1.0400 0.7432 
320 1.401 1.405 1.410 1.0414 1.0454 1.0495 0.7433 0.7441 0.7444          1.0403 0.7435 
330 1.401 1.405 1.409 1.0416 1.0454 1.0492 0.7437 0.7443 0.7446          1.0406 0.7438 
340 1.400 1.404 1.408 1.0418 1.0454 1.0489 0.7442 0.7446 0.7450          1.0409 0.7440 
350 1.400 1.404 1.407 1.0421 1.0454 1.0488 0.7444 0.7449 0.7454           1.0411 0.7443 
360 1.400 1.403 1.406 1.0425 1.0457 1.0488 0.7447 0.7453 0.7459           1.0430 0.7449 
370 1.400 1.403 1.406 1.0430 1.0459 1.0488 0.7453 0.7458 0.7462           1.0449 0.7455 
380 1.399 1.402 1.405 1.0435 1.0463 1.0490 0.7459 0.7463 0.7466           1.0468 0.7461 
390 1.399 1.402 1.404 1.0441 1.0468 1.0493 0.7466 0.7469 0.7474           1.0487 0.7467 
400 1.398 1.401 1.403 1.0449 1.0473 1.0497 0.7474 0.7475 0.7482           1.0505 0.7473 
410 1.398 1.400 1.403 1.0456 1.0479 1.0502 0.7482 0.7485 0.7488          1.0502 0.7483 
420 1.397 1.399 1.402 1.0465 1.0487 1.0508 0.7491 0.7496 0.7495           1.0499 0.7493 
430 1.397 1.399 1.401 1.0474 1.0495 1.0516 0.7500 0.7505 0.7506          1.0496 0.7503 
440 1.396 1.398 1.400 1.0484 1.0504 1.0524 0.7510 0.7514 0.7517          1.0493 0.7512 
450 1.396 1.397 1.399 1.0495 1.0514 1.0533 0.7521 0.7526 0.7529          1.0490 0.7522 
460 1.395 1.396 1.398 1.0508 1.0526 1.0543 0.7532 0.7540 0.7542           1.0504 0.7536 
470 1.394 1.396 1.398 1.0520 1.0538 1.0554 0.7547 0.7551 0.7552           1.0518 0.7550 
480 1.393 1.395 1.397 1.0534 1.0550 1.0566 0.7562 0.7563 0.7563          1.0532 0.7564 
490 1.392 1.394 1.396 1.0548 1.0564 1.0579 0.7578 0.7578 0.7578           1.0546 0.7578 
500 1.391 1.393 1.395 1.0564 1.0579 1.0593 0.7594 0.7594 0.7594          1.0560 0.7591 
510 1.391 1.392 1.394 1.0579 1.0594 1.0608 0.7608 0.7610 0.7609          1.0577 0.7609 
520 1.390 1.391 1.393 1.0596 1.0609 1.0623 0.7623 0.7627 0.7626          1.0594 0.7626 
530 1.389 1.390 1.392 1.0613 1.0626 1.0639 0.7641 0.7645 0.7646          1.0612 0.7644 
540 1.388 1.389 1.390 1.0631 1.0644 1.0656 0.7659 0.7663 0.7666          1.0629 0.7661 
550 1.387 1.388 1.389 1.0649 1.0662 1.0673 0.7678 0.7681 0.7684          1.0647 0.7679 
560 1.386 1.387 1.388 1.0669 1.0680 1.0692 0.7697 0.7700 0.7703          1.0667 0.7699 
570 1.385 1.386 1.387 1.0688 1.0700 1.0710 0.7717 0.7720 0.7722           1.0687 0.7720 
580 1.384 1.385 1.386 1.0709 1.0719 1.0730 0.7738 0.7740 0.7742           1.0708 0.7740 
590 1.383. 1.384 1.385 1.0730 1.0740 1.0750 0.7758 0.7760 0.7762          1.0728 0.7760 
600 1.382 1.383 1.384 1.0751 1.0760 1.0771 0.7779 0.7781 0.7782 1.0748 0.7781 
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Table A-KCon't) 
Carbon Dioxide Gas ProDerties 

Real Gas Properties                                    I Ideal Gas 
Temperature Soecifi c Heat Ratio CD (KJ/Ke K) Cv (KJ/KelO         1 Cp          Cv 

(KJ/KelO *K latm 4atm 7atm latm 4atm 7atm latm 4atm 7atm 
Bolds are inteipolatioi 

230 1.340 1.385 1.451 0.7889 0.9110 1.2695 0.5888 0.6577 0.8749 0.7689 0.5800 
240 1.332 1.367 1.403 0.7967 0.8705 1.0421 0.5981 0.6368 0.7428 0.7802 0.5913 
250 1.324 1.356 1.387 0.8052 0.8547 0.9395 0.6081 0.6303 0.6774 0.7914 0.6025 
260 1.317 1.345 1.374 0.8144 0.8518 0.8998 0.6184 0.6333 0.6549 0.8023 0.6133 
270 1.311 1.336 1.365 0.8239 0.8537 0.8836 0.6284 0.6390 0.6473 0.8131 0.6242 
280 1.304 1.327 1.352 0.8333 0.8600 0.8868 0.6391 0.6481 0.6559 0.8240 0.6350 
290 1.299 1.319 1.341 0.8430 0.8666 0.8908 0.6489 0.6570 0.6643 0.8348 0.6459 
300 1.293 1.311 1.331 0.8526 0.8736 0.8953 0.6594 0.6663 0.6726 0.8457 0.6567 
310 1.288 1.304 1.321 0.8620 0.8806 0.9002 0.6693 0.6753 0.6815 0.8555 0.6666 
320 1.284 1.298 1.313 0.8715 0.8883 0.9055 0.6787 0.6844 0.6896 0.8654 0.6765 
330 1.279 1.292 1.306 0.8807 0.8959 0.9112 0.6886 0.6934 0.6977 0.8752 0.6863 
340 1.275 1.287 1.299 0.8900 0.9036 0.9174 0.6980 0.7021 0.7062 0.8851 0.6962 
350 1.271 1.282 1.293 0.8989 0.9114 0.9240 0.7072 0.7109 0.7146 0.8949 0.7060 
360 1.267 1.277 1.287 0.9078 0.9191 0.9306 0.7165 0.7197 0.7231 0.9038 0.7148 
370 1.264 1.273 1.282 0.9165 0.9268 0.9374 0.7250 0.7281 0.7312 0.9126 0.7237 
380 1.260 1.269 1.277 0.9250 0.9346 0.9442 0.7341 0.7365 0.7394 0.9214 0.7325 
390 1.257 1.265 1.273 0.9335 0.9421 0.9510 0.7426 0.7448 0.7471 0.9302 0.7413 
400 1.254 1.261 1.268 0.9416 0.9497 0.9578 0.7509 0.7531 0.7554 0.9390 0.7501 
410 1.251 1.258 1.265 0.9497 0.9571 0.9648 0.7592 0.7608 0.7627 0.9469 0.7580 
420 1.248 1.254 1.261 0.9575 0.9644 0.9714 0.7672 0.7691 0.7704 0.9548 0.7659 
430 1.246 1.251 1.257 0.9652 0.9716 0.9782 0.7746 0.7767 0.7782 0.9627 0.7738 
440 1.243 1.248 1.254 0.9728 0.9788 0.9850 0.7826 0.7843 0.7855 0.9706 0.7817 
450 1.241 1.246 1.251 0.9803 0.9858 0.9916 0.7899 0.7912 0.7927 0.9785 0.7896 
460 1.239 1.243 1.248 0.9875 0.9928 0.9981 0.7970 0.7987 0.7997 0.9856 0.7966 
470 1.236 1.241 1.245 0.9947 0.9996 1.0045 0.8047 0.8055 0.8068 0.9927 0.8037 
480 1.234 1.238 1.242 1.0017 1.0062 1.0109 0.8117 0.8128 0.8139 0.9998 0.8108 
490 1.232 1.236 1.240 1.0085 1.0128 1.0173 0.8186 0.8194 0.8204 1.0069 0.8179 
500 1.230 1.234 1.237 1.0153 1.0194 1.0236 0.8254 0.8261 0.8275 1.0140 0.8250 
510 1.228 1.232 1.235 1.0219 1.0257 1.0296 0.8321 0.8325 0.8337 1.0204 0.8315 
520 1.226 1.230 1.233 1.0283 1.0321 1.0357 0.8387 0.8391 0.8400 1.0268 0.8379 
530 1.225 1.228 1.231 1.0347 1.0381 1.0417 0.8447 0.8454 0.8462 1.0332 0.8443 
540 1.223 1.226 1.229 1.0410 1.0442 1.0476 0.8511 0.8517 0.8524 1.0397 0.8507 
550 1.221 1.224 1.227 1.0470 1.0502 1.0532 0.8575 0.8580 0.8584 1.0461 0.8571 
560 1.220 1.222 1.225 1.0530 1.0561 1.0591 0.8632 0.8642 0.8646 1.0519 0.8630 
570 1.218 1.221 1.223 1.0589 1.0617 1.0646 0.8694 0.8696 0.8705 1.0577 0.8688 
580 1.217 1.219 1.221 1.0648 1.0674 1.0700 0.8749 0.8756 0.8764 1.0636 0.8747 
590 1.215 1.217 1.220 1.0704 1.0731 1.0755 0.8810 0.8817 0.8816 1.0694 0.8805 
600 1.214 1.216 1.218 1.0761 1.0784 1.0808 0.8864 0.8868 0.8874 1.0752 0.8863 

88 



Temperature 
•K 

Table A-2 
Compressibility Factors (Z) for 
Nitrogen and Carbon Dioxide 

latm 
N2 

4atm 7atm 1 atm 
C02 
4 atm 7 atm 

230 0.99881 0.99525 0.99174 0.98790 0.94950 0.90320 
240 0.99902 0.99613 0.99328 0.98950 0.95720 0.92190 
250 0.99921 0.99688 0.99459 0.99085 0.96290 0.93370 
260 0.99937 0.99751 0.99570 0.99197 0.96750 0.94230 
270 0.99951 0.99807 0.99666 0.99291 0.97130 0.94920 
280 0.99963 0.99854 0.99749 0.99372 0.97460 0.95500 
290 0.99973 0.99895 0.99820 0.99441 0.97740 0.96000 
300 0.99982 0.99930 0.99882 0.99501 0.97980 0.96440 
310 0.99990 0.99961 0.99936 0.99553 0.98190 0.96810 
320 0.99996 0.99988 0.99983 0.99598 0.98380 0.97140 
330 1.00002 1.00012 1.00024 0.99638 0.98540 0.97430 
340 1.00007 1.00032 1.00060 0.99673 0.98680 0.97680 
350 1.00012 1.00050 1.00092 0.99705 0.98812 0.97900 
360 1.00016 1.00066 1.00119 0.99732 0.98925 0.98100 
370 1.00020 1.00081 1.00144 0.99757 0.99025 0.98280 
380 1.00023 1.00093 1.00165 0.99779 0.99114 0.98440 
390 1.00026 1.00104 1.00184 0.99799 0.99194 0.98580 
400 1.00028 1.00113 1.00201 0.99817 0.99267 0.98714 
410 1.00030 1.00122 1.00216 0.99833 0.99333 0.98830 
420 1.00032 1.00130 1.00229 0.99848 0.99392 0.98934 
430 1.00034 1.00136 1.00240 0.99861 0.99446 0.99029 
440 1.00035 1.00142 1.00251 0.99873 0.99495 0.99115 
450 1.00036 1.00147 1.00259 0.99885 0.99539 0.99193 
460 1.00038 1.00151 1.00266 0.99895 0.99580 0.99265 
470 1.00039 1.00155 1.00273 0.99904 0.99617 0.99330 
480 1.00039 1.00159 1.00279 0.99912 0.99651 0.99390 
490 1.00040 1.00161 1.00284 0.99920 0.99682 0.99445 
500 1.00041 1.00164 1.00289 0.99927 0.99711 0.99496 
510 1.00041 1.00167 1.00293 0.99934 0.99737 0.99542 
520 1.00042 1.00168 1.00295 0.99940 0.99762 0.99585 
530 1.00042 1.00170 1.00298 0.99946 0.99784 0.99625 
540 1.00043 1.00171 1.00301 0.99951 0.99805 0.99661 
550 1.00043 1.00172 1.00303 0.99956 0.99825 0.99695 
560 1.00043 1.00173 1.00304 0.99960 0.99843 0.99727 
570 1.00043 1.00174 1.00305 0.99964 0.99859 0.99756 
580 1.00043 1.00174 1.00306 0.99968 0.99875 0.99783 
590 1.00044 1.00174 1.00306 0.99972 0.99889 0.99808 
600 1.00044 1.00174 1.00306 0.99975 0.99903 0.99832 
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°K 

Table A-3 R2/R1 =       0.6366 
ComDressibilitv Factor (Z) for 

lire 
M2/M1 (real)=         3.24 

M2/M1 (Ideal)=          2.59 Standard Nitrosen and Carbon Dioxide Mixt 
iture Real Ideal 

1 atm 4 atm 7 atm 1 atm 4 atm 7 atm 
230 0.99146 0.96444 0.93211 0.99202 0.96677 0.93663 
240 0.99261 0.96991 0.94521 0.99309 0.97190 0.94885 
250 0.99358 0.97400 0.95358 0.99401 0.97573 0.95669 
260 0.99439 0.97730 0.95974 0.99476 0.97883 0.96246 
270 0.99507 0.98004 0.96470 0.99540 0.98141 0.96712 
280 0.99565 0.98242 0.96887 0.99595 0.98364 0.97104 
290 0.99615 0.98444 0.97247 0.99642 0.98554 0.97442 
300 0.99658 0.98617 0.97564 0.99683 0.98716 0.97739 
310 0.99696 0.98768 0.97831 0.99718 0.98859 0.97990 
320 0.99728 0.98905 0.98068 0.99748 0.98987 0.98213 
330 0.99757 0.99021 0.98277 0.99775 0.99096 0.98409 
340 0.99782 0.99121 0.98457 0.99799 0.99190 0.98579 
350 0.99805 0.99216 0.98616 0.99821 0.99279 0.98728 
360 0.99825 0.99298 0.98759 0.99839 0.99356 0.98862 
370 0.99843 0.99370 0.98889 0.99856 0.99424 0.98984 
380 0.99859 0.99434 0.99003 0.99871 0.99484 0.99091 
390 0.99873 0.99491 0.99104 0.99885 0.99538 0.99186 
400 0.99886 0.99543 0.99200 0.99897 0.99586 0.99275 
410 0.99897 0.99591 0.99283 0.99907 0.99631 0.99353 
420 0.99908 0.99633 0.99357 0.99917 0.99671 0.99423 
430 0.99917 0.99671 0.99424 0.99926 0.99706 0.99486 
440 0.99926 0.99706 0.99486 0.99934 0.99739 0.99544 
450 0.99934 0.99738 0.99541 0.99942 0.99769 0.99595 
460 0.99942 0.99766 0.99592 0.99949 0.99796 0.99643 
470 0.99948 0.99793 0.99638 0.99955 0.99820 0.99686 
480 0.99953 0.99817 0.99680 0.99960 0.99843 0.99726 
490 0.99959 0.99838 0.99719 0.99965 0.99863 0.99762 
500 0.99964 0.99859 0.99755 0.99970 0.99882 0.99795 
510 0.99969 0.99877 0.99787 0.99974 0.99899 0.99826 
520 0.99973 0.99895 0.99817 0.99979 0.99915 0.99853 
530 0.99977 0.99910 0.99845 0.99982 0.99930 0.99879 
540 0.99981 0.99925 0.99870 0.99986 0.99943 0.99903 
550 0.99984 0.99938 0.99894 0.99989 0.99956 0.99925 
560 0.99987 0.99951 0.99915 0.99991 0.99968 0.99945 
570 0.99990 0.99962 0.99935 0.99994 0.99978 0.99963 
580 0.99992 0.99973 0.99954 0.99996 0.99988 0.99980 
590 0.99996 0.99982 0.99971 0.99999 0.99997 0.99996 
600 0.99998 0.99991 0.99987 1.00001 1.00005 1.00011 
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Table A-3 fCon'tt 
ComDressibilitv Factor (Z) Variation (in %) 

Standard Nitrosen and Carb on Dioxide Mixture 
Temperature Between Real and Ideal Due to Pressure 

°K 1 atm            4 atm           7 atm 1        Real        i 
230 0.05613        0.24197        0.48452 6.36750 
240 0.04892        0.20474        0.38521 5.01492 
250 0.04292        0.17796        0.32571 4.19448 
260 0.03796       0.15663       0.28381 3.61037 
270 0.03383       0.13933       0.25095 3.14797 
280 0.03028       0.12430       0.22370 2.76360 
290 0.02724       0.11166       0.20037 2.43441 
300 0.02462        0.10086        0.17996 2.14646 
310 0.02236       0.09146       0.16299 -     1.90634 
320 0.02036        0.08293        0.14787 1.69235 
330 0.01861        0.07583        0.13464 1.50580 
340 0.01707        0.06957        0.12330 1.34570 
350 0.01569        0.06365        0.11338 1.20620 
360 0.01451        0.05861        0.10428 1.07887 
370 0.01344        0.05421        0.09615 0.96496 
380 0.01246       0.05022       0.08888 0.86403 
390 0.01159       0.04666       0.08256 0.77634 
400 0.01078        0.04335        0.07646 0.69190 
410 0.01006        0.04041        0.07121 0.61921 
420 0.00939        0.03778        0.06648 0.55480 
430 0.00883        0.03531        0.06213 0.49592 
440 0.00827       0.03310       0.05825 0.44224 
450 0.00771        0.03109        0.05463 0.39505 
460 0.00730        0.02919        0.05127 0.35128 
470 0.00689        0.02750        0.04828 0.31130 
480 0.00648        0.02596        0.04549 0.27407 
490 0.00612        0.02447        0.04292 0.24091 
500 0.00582        0.02314        0.04055 0.20981 
510 0.00546        0.02196        0.03839 0.18211 
520 0.00520        0.02073        0.03628 0.15676 
530 0.00490        0.01971        0.03438 0.13280 
540 0.00469        0.01868        0.03269 0.11121 
550 0.00444        0.01771        0.03105 0.09098 
560 0.00423        0.01684        0.02946 0.07176 
570 0.00403        0.01607        0.02802 0.05457 
580 0.00383        0.01526        0.02669 0.03874 
590 0.00367        0.01454        0.02541 0.02491 
600 0.00352        0.01382        0.02418 0.01076 
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Table A-4 
Mixture Gas ProDerties Ideal Gas 

Real Gas Properties M2/M1= 3.24 M2/M1 = 2.59 
Temperature Specific Heat Ratio CD(KJ/K2K) Cv (KJ/KeK) Co Cv y 

°K 1 atm 

1.358 

4 atm 

1.392 

7 atm 

1.445 

1 atm 

0.8486 

4 atm 

0.9440 

7 atm 

1.2201 

latm 

0.6250 

4 atm 

0.6780 

7 atm 

0.8443 

(KJ/KeK) 

230 0.8442 0.6252 
t 

1.350 
240 1.352 1.379 1.407 0.8545 0.9128 1.0458 0.6322 0.6620 0.7432 0.8523 0.6334 1.346 
250 1.345 1.370 1.395 0.8609 0.9005 0.9670 0.6399 0.6571 0.6932 0.8604 0.6415 1.341 
260 1.340 1.362 1.385 0.8680 0.8981 0.9364 0.6477 0.6594 0.6760 0.8683 0.6493 1.337 
270 1.335 1.355 1.378 0.8751 0.8994 0.9236 0.6554 0.6636 0.6702 0.8761 0.6572 1.333 
280 1.330 1.348 1.368 0.8823 0.9040 0.9258 0.6635 0.6705 0.6767 0.8840 0.6650 1.329 
290 1.326 1.342 1.359 0.8897 0.9090 0.9287 0.6712 0.6774 0.6831 0.8919 0.6729 1.325 
300 1.321 1.336 1.352 0.8971 0.9142 0.9319 0.6792 0.6845 0.6895 0.8997 0.6807 1.322 
310 1.317 1.330 1.344 0.9043 0.9195 0.9355 0.6867 0.6914 0.6963 0.9069 0.6879 1.318 
320 1.314 1.325 1.337 0.9116 0.9254 0.9395 0.6940 0.6985 0.7025 0.9141 0.6951 1.315 
330 1.309 1.320 1.332 0.9187 0.9311 0.9437 0.7016 0.7054 0.7088 0.9213 0.7023 1.312 
340 1.306 1.316 1.326 0.9258 0.9370 0.9484 0.7089 0.7121 0.7154 0.9285 0.7095 1.309 
350 1.303 1.312 1.321 0.9327 0.9430 0.9534 0.7160 0.7189 0.7219 0.9357 0.7167 1.306 
360 1.299 1.308 1.316 0.9396 0.9489 0.9585 0.7231 0.7258 0.7285 0.9425 0.7232 1.303 
370 1.297 1.304 1.312 0.9463 0.9549 0.9637 0.7298 0.7322 0.7348 0.9494 0.7297 1.301 
380 1.293 1.301 1.307 0.9529 0.9609 0.9689 0.7369 0.7388 0.7411 0.9563 0.7363 1.299 
390 1.291 1.297 1.304 0.9596 0.9668 0.9742 0.7436 0.7453 0.7472 0.9632 0.7428 1.297 
400 1.288 1.294 1.300 0.9659 0.9727 0.9795 0.7500 0.7518 0.7537 0.9701 0.7493 1.295 
410 1.285 1.291 1.297 0.9723 0.9785 0.9850 0.7566 0.7579 0.7594 0.9757 0.7553 1.292 
420 1.283 1.288 1.294 0.9784 0.9843 0.9902 0.7629 0.7645 0.7655 0.9813 0.7613 1.289 
430 1.281 1.285 1.290 0.9846 0.9900 0.9955 0.7688 0.7705 0.7717 0.9869 0.7672 1.286 
440 1.278 1.282 1.287 0.9906 0.9957 1.0009 0.7751 0.7765 0.7775 0.9925 0.7732 1.284 
450 1.276 1.280 1.285 0.9966 1.0013 1.0062 0.7810 0.7821 0.7833 0.9981 0.7792 1.281 
460 1.274 1.278 1.282 1.0024 1.0069 1.0113 0.7867 0.7882 0.7890 1.0036 0.7847 1.279 
470 1.271 1.276 1.279 1.0082 1.0124 1.0165 0.7929 0.7936 0.7947 1.0091 0.7902 1.277 
480 1.270 1.273 1.277 1.0139 1.0177 1.0217 0.7986 0.7994 0.8004 1.0146 0.7957 1.275 
490 1.268 1.271 1.275 1.0194 1.0231 1.0269 0.8042 0.8049 0.8057 1.0201 0.8012 1.273 
500 1.266 1.269 1.272 1.0250 1.0285 1.0320 0.8099 0.8104 0.8114 1.0257 0.8067 1.271 
510 1.264 1.267 1.270 1.0304 1.0336 1.0370 0.8153 0.8157 0.8165 1.0308 0.8118 1.270 
520 1.262 1.265 1.268 1.0357 1.0389 1.0419 0.8207 0.8211 0.8217 1.0359 0.8169 1.268 
530 1.261 1.263 1.266 1.0410 1.0439 1.0469 0.8257 0.8263 0.8270 1.0410 0.8220 1.266 
540 1.259 1.261 1.264 1.0462 1.0489 1.0518 0.8310 0.8315 0.8321 1.0461 0.8272 1.265 
550 1.257 1.260 1.262 1.0512 1.0540 1.0566 0.8363 0.8368 0.8372 1.0513 0.8323 1.263 
560 1.256 1.258 1.260 1.0563 1.0589 1.0615 0.8411 0.8420 0.8423 1.0560 0.8371 1.262 
570 1.254 1.256 1.258 1.0612 1.0637 1.0661 0.8463 0.8465 0.8473 1.0608 0.8418 1.260 
580 1.253 1.255 1.256 1.0662 1.0685 1.0707 0.8510 0.8517 0.8523 1.0656 0.8466 1.259 
590 1.251 1.253 1.255 1.0710 1.0733 1.0754 0.8562 0.8568 0.8567 1.0704 0.8514 1.257 
600 1.250 1.252 1.253 1.0759 1.0778 1.0799 0.8608 0.8612 0.8616 1.0751 0.8562 1.256 
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Table A-4(con'rt 
Mixture Gas ProDertv Variation Variation Due to 

Pressure 
Real Gas 

Y          CD         CV 

% Variation Between Real Gas and Ideal Gas Prooerties 
Temp. Specific Heat Ratio CD (KJ/Kg K) Cv (KJ/KeK) 

°K 1 atm 

0.5510 

4 atm 

3.1128 

7 atm 

7.0329 

1 atm 

0.5216 

4 atm     7 atm 

11.8174 44.5284 

latm 

-0.0292 

4 atm 

8.4419 

7 atm 

35.0317 230 6.4464 43.7785 35.0712 
240 0.4415 2.4665 4.5720 0.2526 7.0978 22.7032 -0.1881 4.5198 17.3386 4.1123 22.3941 17.5597 
250 0.2984 2.1668 4.0072 0.0557 4.6517 12.3868 -0.2420 2.4322 8.0567 3.6978 12.3241 8.3188 
260 0.2065 1.8545 3.5850 -0.0388 3.4337 7.8390 -0.2448 1.5504 4.1067 3.3716 7.8809 4.3622 
270 0.1590 1.6565 3.3677 -0.1153 2.6519 5.4207 -0.2739 0.9792 1.9860 3.2036 5.5423 2.2661 
280 0.0453 1.4228 2.9199 -0.1872 2.2643 4.7329 -0.2324 0.8298 1.7616 2.8733 4.9293 1.9986 
290 0.0158 1.2339 2.5706 -0.2416 1.9175 4.1268 -0.2573 0.6753 1.5172 2.5544 4.3790 1.7791 
300 -0.0608 1.0526 12654 -0.2935 1.6120 3.5825 -0.2329 0.5535 1.2879 2.3276 3.8874 1.5243 
310 -0.1114 0.8772 1.9249 -0.2865 1.3885 3.1582 -0.1753 0.5069 1.2101 2.0386 3.4546 1.3878 
320 -0.1111 0.7504 1.6898 -0.2773 1.2332 2.7761 -0.1664 0.4792 1.0682 1.8029 3.0618 1.2366 
330 -0.1841 0.6256 1.5042 -0.2823 1.0677 2.4350 -0.0985 0.4394 0.9170 1.6914 2.7250 1.0164 
340 -0.2049 0.5520 1.3100 -0.2866 0.9226 2.1489 -0.0818 0.3686 0.8280 1.5181 2.4425 0.9106 
350 -0.2221 0.4720 1.1668 -0.3201 0.7820 1.8995 -0.0983 0.3086 0.7243 1.3919 2.2268 0.8234 
360 -0.3040 0.3263 0.9571 -0.3178 0.6791 1.6914 -0.0139 0.3517 0.7273 1.2649 2.0156 0.7413 
370 -0.3386 0.2357 0.8103 -0.3300 0.5793 1.5030 0.0086 0.3428 0.6871 1.1529 1.8391 0.6784 
380 -0.4365 0.1410 0.6590 -0.3549 0.4830 1.3210 0.0819 0.3415 0.6576 1.1003 1.6819 0.5752 
390 -0.4779 0.0428 0.5552 -0.3773 0.3761 1.1437 0.1011 0.3331 0.5853 1.0380 1.5268 0.4838 
400 -0.5218 -0.0592 0.3870 -0.4270 0.2721 0.9719 0.0953 0.3315 0.5826 0.9136 1.4049 0.4868 
410 -0.5133 -0.0561 0.4007 -0.3452 0.2878 0.9504 0.1690 0.3441 0.5475 0.9187 1.3001 0.3779 
420 -0.5075 -0.1175 0.3504 -0.2901 0.3070 0.9034 0.2185 0.4250 0.5510 0.8623 1.1970 0.3319 
430 -0.4438 -0.1129 0.2874 -0.2350 0.3127 0.8736 0.2097 0.4261 0.5845 0.7344 1.1112 0.3740 
440 -0.4443 -0.1118 0.2823 -0.1922 0.3205 0.8470 0.2533 0.4327 0.5632 0.7299 1.0412 0.3091 
450 -0.3863 -0.0597 0.2742 -0.1485 0.3158 0.8077 0.2387 0.3758 0.5320 0.6630 0.9576 0.2926 
460 -0.3782 -0.1208 0.2150 -0.1212 0.3241 0.7680 0.2580 0.4454 0.5518 0.5955 0.8903 0.2931 
470 -0.4427 -0.1134 0.1614 -0.0928 0.3194 0.7302 0.3515 0.4333 0.5678 0.6068 0.8237 0.2156 
480 -0.4466 -0.1705 0.1053 -0.0776 0.3018 0.6948 0.3707 0.4731 0.5888 0.5544 0.7730 0.2173 
490 -0.4519 -0.1749 0.1018 -0.0739 0.2879 0.6626 0.3798 0.4636 0.5602 0.5562 0.7370 0.1798 
500 -0.4591 -0.1812 0.0337 -0.0682 0.2755 0.6186 0.3927 0.4576 0.5847 0.4951 0.6873 0.1913 
510 -0.4703 -0.1989 0.0167 -0.0385 0.2742 0.6002 0.4338 0.4740 0.5834 0.4892 0.6390 0.1490 
520 -0.4827 -0.2187 -0.0020 -0.0217 0.2881 0.5833 0.4632 0.5079 0.5853 0.4830 0.6051 0.1216 
530 -0.4409 -0.2392 -0.0301 -0.0024 0.2768 0.5692 0.4405 0.5172 0.5994 0.4127 0.5716 0.1583 
540 -0.4638 -0.2613 -0.0593 0.0036 0.2663 0.5422 0.4696 0.5290 0.6018 0.4063 0.5385 0.1316 
550 -0.4878 -0.2850 -0.0819 -0.0028 0.2579 0.5036 0.4874 0.5445 0.5860 0.4079 0.5065 0.0981 
560 -0.4574 -0.3178 -0.1144 0.0257 0.2703 0.5142 0.4853 0.5900 0.6294 0.3445 0.4884 0.1433 
570 -0.4918 -0.2875 -0.1476 0.0411 0.2703 0.4982 0.5355 0.5595 0.6467 0.3459 0.4569 0.1106 
580 -0.4632 -0.3225 -0.1820 0.0583 0.2716 0.4843 0.5239 0.5961 0.6674 0.2825 0.4257 0.1428 
590 -0.4997 -0.3589 -0.1533 0.0625 0.2735 0.4718 0.5649 0.6347 0.6261 0.3480 0.4090 0.0694 
600 -0.4730 -0.3313 -0.1899 0.0673 0.2499 0.4466 0.5428 0.5831 0.6377 0.2844 0.3791 0.0944 
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Table A-5 
Variation in Nitrogen Gas Properties 

Specific Heat Ratio CoOU/K2 K) Cv (KJ/KffK) 
Variation in Temp. Var.In Variation in Temp. Var.In Variation in Temp. Var.In 

(%/TQ Press. (%/°K) Press. (%/*K) Press. 
Temp. %/psi %/psi %/psi 

1-7 atm *K 1 atm 4 atm 7 atm 1-7 atm 1 atm 4 atm 7 atm 1-7 atm 1 atm 4 atm 7 atm 
Coll Col 2 Col 3 Col 4 Col 5 Col 6    Col 7    Col 8 Col 9 Col 10 Coin Col 12 Col 13 

150 0.0142 0.0419 0.0755 0.0465 0.0122 0.0542  0.1091 0.0616 0.0020 0.0122 0.0334 0.0145 
160 0.0071 0.0280 0.0414 0.0395 0.0094 0.0418  0.0802 0.0504 0.0023 0.0138 0.0387 0.0105 
170 0.0000 0.0281 0.0624 0.0356 0.0077  0.0330  0.0614 0.0422 0.0077 0.0049 0.0010 0.0065 180 0.0071 0.0211 0.0418 0.0284 0.0060  0.0264  0.0484 0.0361 0.0011 0.0052 0.0066 0.0074 190 0.0071 0.0141 0.0279 0.0245 0.0051  0.0216  0.0397 0.0312 0.0020 0.0075 0.0117 0.0066 200 0.0000 0.0141 0.0210 0.0222 0.0040  0.0177   0.0323 0.0273 0.0040 0.0036 0.0113 0.0050 210 0.0071 0.0141 0.0281 0.0198 0.0034  0.0149  0.0268 0.0241 0.0037 0.0008 0.0012 0.0042 
220 0.0000 0.0071 0.0141 0.0174 0.0034 0.0127   0.0232 0.0214 0.0034 0.0056 0.0092 0.0039 
230 0.0000 0.0071 0.0141 0.0158 0.0020 0.0102  0.0188 0.0192 0.0020 0.0031 0.0047 0.0033 
240 0.0071 0.0142 0.0141 0.0143 0.0020 0.0091   0.0166 0.0173 0.0051 0.0051 0.0025 0.0030 
250 0.0000 0.0071 0.0141 0.0135 0.0014  0.0076  0.0138 0.0156 0.0014 0.0005 0.0003 0.0021 
260 0.0000 0.0000 0.0141 0.0119 0.0014  0.0068   0.0121 0.0142 0.0014 0.0068 0.0020 0.0023 
270 0.0000 0.0071 0.0071 0.0103 0.0003  0.0051   0.0102 0.0130 0.0003 0.0020 0.0031 0.0027 
280 0.0071 0.0071 0.0071 0.0095 0.0003  0.0045   0.0085 0.0119 0.0069 0.0026 0.0014 0.0024 
290 0.0000 0.0000 0.0071 0.0095 0.0003  0.0034  0.0073 0.0110 0.0003 0.0034 0.0003 0.0015 
300 0.0000 0.0071 0.0071 0.0087 0.0006  0.0026  0.0062 0.0102 0.0006 0.0046 0.0009 0.0014 
310 0.0000 0.0071 0.0071 0.0079 0.0014  0.0020  0.0048 0.0094 0.0014 0.0051 0.0023 0.0015 
320 0.0036 0.0036 0.0071 0.0071 0.0020  0.0009  0.0034 0.0087 0.0056 0.0027 0.0037 0.0016 
330 0.0036 0.0036 0.0071 0.0067 0.0023  0.0000  0.0023 0.0081 0.0059 0.0036 0.0048 0.0014 
340 0.0000 0.0036 0.0071 0.0063 0.0028  0.0009  0.0017 0.0076 0.0028 0.0044 0.0054 0.0012 
350 0.0000 0.0036 0.0071 0.0056 0.0040  0.0020  0.0000 0.0071 0.0040 0.0056 0.0071 0.0015 
360 0.0036 0.0036 0.0036 0.0048 0.0043  0.0026  0.0006 0.0066 0.0078 0.0061 0.0041 0.0019 
370 0.0036 0.0036 0.0036 0.0048 0.0051   0.0034  0.0020 0.0062 0.0087 0.0070 0.0055 0.0015 
380 0.0036 0.0036 0.0071 0.0048 0.0060  0.0045   0.0028 0.0059 0.0095 0.0081 0.0100 0.0011 
390 0.0036 0.0036 0.0071 0.0044 0.0068  0.0051   0.0040 0.0055 0.0104 0.0087 0.0111 0.0012 
400 0.0036 0.0071 0.0036 0.0040 0.0071   0.0060  0.0045 0.0052 0.0107 0.0131 0.0081 0.0012 
410 0.0036 0.0071 0.0036 0.0040 0.0085  0.0074  0.0059 0.0049 0.0121 0.0145 0.0095 0.0009 
420 0.0036 0.0036 0.0071 0.0040 0.0088  0.0079  0.0068 0.0046 0.0124 0.0115 0.0139 0.0007 
430 0.0036 0.0036 0.0071 0.0036 0.0099  0.0088   0.0079 0.0044 0.0135 0.0123 0.0151 0.0008 
440 0.0036 0.0072 0.0071 0.0032 0.0105  0.0096  0.0085 0.0042 0.0141 0.0168 0.0156 0.0010 
450 0.0036 0.0072 0.0072 0.0028 0.0116  0.0107  0.0099 0.0040 0.0152 0.0179 0.0170 0.0012 
460 0.0072 0.0036 0.0036 0.0024 0.0121   0.0113   0.0104 0.0038 0.0193 0.0149 0.0140 0.0014 
470 0.0072 0.0036 0.0036 0.0028 0.0127  0.0118   0.0112 0.0036 0.0199 0.0154 0.0148 0.0008 
480 0.0072 0.0072 0.0072 0.0032 0.0138   0.0132  0.0124 0.0034 0.0210 0.0204 0.0195 0.0002 
490 0.0072 0.0072 0.0072 0.0032 0.0146  0.0138   0.0132 0.0033 0.0218 0.0210 0.0204 0.0001 
500 0.0036 0.0072 0.0072 0.0032 0.0149  0.0143   0.0137 0.0031 0.0185 0.0215 0.0209 0.0001 
510 0.0036 0.0072 0.0072 0.0028 0.0154  0.0148   0.0143 0.0030 0.0190 0.0220 0.0215 0.0002 
520 0.0072 0.0072 0.0108 0.0024 0.0165  0.0159  0.0154 0.0028 0.0237 0.0232 0.0262 0.0004 
530 0.0072 0.0072 0.0108 0.0020 0.0168  0.0162  0.0156 0.0027 0.0240 0.0234 0.0264 0.0007 
540 0.0072 0.0072 0.0072 0.0016 0.0173  0.0170  0.0164 0.0026 0.0245 0.0242 0.0236 0.0010 
550 0.0072 0.0072 0.0072 0.0016 0.0181   0.0175   0.0172 0.0025 0.0253 0.0248 0.0245 0.0009 
560 0.0072 0.0072 0.0072 0.0016 0.0184  0.0181   0.0175 0.0024 0.0256 0.0253 0.0247 0.0008 
570 0.0072 0.0072 0.0072 0.0016 0.0192  0.0186  0.0183 0.0023 0.0264 0.0258 0.0255 0.0007 
580 0.0072 0.0072 0.0072 0.0016 0.0194  0.0188  0.0188 0.0022 0.0266 0.0261 0.0260 0.0006 
590 0.0072 0.0072 0.0072 0.0016 0.0196 0.0193  0.0190 0.0021 0.0269 0.0266 0.0263 0.0005 
600 0.0016 0.0021 0.0004 
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Temp. 
°K 

CaLi 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 

Table A-5 fcon't) 
Variation in Carbon Dioxide Gas Properties 

Specific Heat Ratio 
Variation in Temp. 

1 atm 4atm 
Col 2 
0.0601 
0.0604 
0.0532 
0.0458 
0.0537 
0.0385 
0.0464 
0.0388 
0.0312 
0.0391 
0.0314 
0.0315 
0.0316 
0.0237 
0.0317 
0.0239 
0.0239 
0.0240 
0.0240 
0.0161 
0.0241 
0.0161 
0.0161 
0.0243 
0.0162 
0.0162 
0.0163 
0.0163 
0.0163 
0.0082 
0.0164 
0.0164 
0.0082 
0.0164 
0.0082 
0.0165 
0.0082 

7 atm 

Van In 
Press. 
%/psi 
1-7 atm 

£QL2 
0.1317 
0.0811 
0.0818 
0.0674 
0.0678 
0.0607 
0.0610 
0.0537 
0.0462 
0.0464 
0.0389 
0.0390 
0.0392 
0.0314 
0.0315 
0.0316 
0.0317 
0.0238 
0.0319 
0.0240 
0.0240 
0.0161 
0.0241 
0.0161 
0.0242 
0.0162 
0.0162 
0.0162 
0.0163 
0.0163 
0.0163 
0.0163 
0.0164 
0.0082 
0.0164 
0.0164 
0.0082 

Col 4 
0.3421 
0.1154 
0.0946 
0.0659 
0.0962 
0.0820 
0.0751 
0.0757 
0.0609 
0.0536 
0.0539 
0.0464 
0.0466 
0.0390 
0.0392 
0.0314 
0.0394 
0.0237 
0.0317 
0.0318 
0.0239 
0.0240 
0.0240 
0.0241 
0.0242 
0.0161 
0.0243 
0.0162 
0.0162 
0.0162 
0.0163 
0.0163 
0.0163 
0.0164 
0.0164 
0.0082 
0.0164 

Cp(KJ/KgK) 
Variation in Temp. 

(%/*K) 

latm 4 atm 7 atm 
Q2L5. 
0.0920 
0.0592 
0.0529 
0.0481 
0.0458 
0.0409 
0.0359 
0.0327 
0.0285 
0.0251 
0.0235 
0.0209 
0.0192 
0.0175 
0.0158 
0.0150 
0.0141 
0.0124 
0.0124 
0.0116 
0.0098 
0.0098 
0.0090 
0.0081 
0.0081 
0.0072 
0.0072 
0.0063 
0.0063 
0.0063 
0.0054 
0.0055 
0.0055 
0.0046 
0.0046 
0.0037 
0.0046 
0.0037 

£o!6_ 
0.0982 
0.1067 
0.1150 
0.1160 
0.1147 
0.1156 
0.1143 
0.1108 
0.1096 
0.1062 
0.1051 
0.0998 
0.0988 
0.0957 
0.0928 
0.0919 
0.0870 
0.0863 
0.0816 
0.0809 
0.0783 
0.0777 
0.0732 
0.0727 
0.0703 
0.0679 
0.0674 
0.0651 
0.0629 
0.0625 
0.0603 
0.0581 
0.0577 
0.0556 
0.0553 
0.0532 
0.0529 

Var.In 
Press. 
%/psi 
1-7 atm 

Cv(KJ/KgK) 
Variation in Temp. 

(%no 

1 atm 
Coil 
0.4644 
0.1857 
0.0333 
0.0222 
0.0730 
0.0769 
0.0807 
0.0800 
0.0880 
0.0851 
0.0865 
0.0857 
0.0850 
0.0843 
0.0836 
0.0809 
0.0802 
0.0776 
0.0770 
0.0744 
0.0739 
0.0714 
0.0709 
0.0685 
0.0662 
0.0657 
0.0653 
0.0612 
0.0626 
0.0586 
0.0582 
0.0579 
0.0558 
0.0537 
0.0534 
0.0531 
0.0493 

4 atm 
Col 8 
2.1827 
1.0919 
0.4409 
0.1839 
0.0363 
0.0447 
0.0509 
0.0549 
0.0588 
0.0626 
0.0684 
0.0721 
0.0716 
0.0731 
0.0726 
0.0720 
0.0715 
0.0730 
0.0685 
0.0700 
0.0695 
0.0671 
0.0648 
0.0644 
0.0639 
0.0635 
0.0613 
0.0591 
0.0587 
0.0584 
0.0562 
0.0541 
0.0556 
0.0517 
0.0515 
0.0512 
0.0492 

£215 
0.6769 
0.3423 
0.1854 
0.1165 
0.0805 
0.0713 
0.0630 
0.0556 
0.0492 
0.0434 
0.0384 
0.0342 
0.0311 
0.0280 
0.0254 
0.0231 
0.0209 
0.0192 
0.0177 
0.0162 
0.0150 
0.0140 
0.0128 
0.0119 
0.0110 
0.0103 
0.0098 
0.0091 
0.0084 
0.0080 
0.0075 
0.0071 
0.0066 
0.0064 
0.0059 
0.0055 
0.0053 
0.0049 

7 atm 
Col 10 
0.1588 
0.1678 
0.1687 
0.1623 
0.1689 
0.1546 
0.1612 
0.1500 
0.1411 
0.1457 
0.1368 
0.1316 
0.1307 
0.1197 
0.1248 
0.1160 
0.1112 
0.1105 
0.1058 
0.0971 
0.1026 
0.0939 
0.0895 
0.0971 
0.0866 
0.0842 
0.0838 
0.0815 
0.0793 
0.0707 
0.0767 
0.0746 
0.0660 
0.0721 
0.0636 
0.0698 
0.0612 

Coin 
0.3284 
0.1037 
0.0484 
0.0897 
0.1413 
0.1380 
0.1422 
0.1341 
0.1346 
0.1319 
0.1256 
0.1251 
0.1245 
0.1160 
0.1154 
0.1127 
0.1122 
0.1016 
0.1091 
0.0986 
0.0981 
0.0876 
0.0952 
0.0847 
0.0905 
0.0820 
0.0816 
0.0775 
0.0790 
0.0750 
0.0746 
0.0743 
0.0722 
0.0619 
0.0699 
0.0696 
0.0576 

Var.In 
Press. 
%/psi 
1-7 atm 

Col 12 
1.7797 
0.9654 
0.3430 
0.1172 
0.1329 
0.1271 
0.1264 
0.1310 
0.1200 
0.1165 
0.1227 
0.1188 
0.1185 
0.1124 
0.1120 
0.1037 
0.1112 
0.0969 
0.1005 
0.1021 
0.0936 
0.0913 
0.0890 
0.0886 
0.0883 
0.0798 
0.0857 
0.0754 
0.0750 
0.0747 
0.0726 
0.0705 
0.0720 
0.0682 
0.0679 
0.0594 
0.0657 

Col 13, 
0.5401 
0.2687 
0.1265 
0.0656 
0.0334 
0.0293 
0.0262 
0.0223 
0.0202 
0.0179 
0.0146 
0.0130 
0.0116 
0.0103 
0.0095 
0.0080 
0.0067 
0.0067 
0.0052 
0.0046 
0.0052 
0.0042 
0.0039 
0.0038 
0.0029 
0.0030 
0.0026 
0.0028 
0.0021 
0.0016 
0.0021 
0.0016 
0.0012 
0.0018 
0.0014 
0.0019 
0.0007 
0.0012 

Notes: 
Col 2,3,4,6,7,8,10,11,12 are = (Max{X(i+l),X(i)}-Min)*100/(Min*10) 

Where X is the individual property in question and the 10 corresponds to the temperature difference 
between measurements i+1 and i 

Col 5, 9 ,and 13 are = High P-Low P)*100/(Low P *90) 
 The 90 converts the difference in atm (6) to psi ___  
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Table A-6 
Variation in Component Compressibility 

C02 N2 
Variation in 
Temperature 

(%/kK) 

Var.In 
Press. 

Variation in 
Temperature 

(%/kK) 

Var.In 
Press. 

(%/ psi) 
Temp. 

•K 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 

1 atm 4atm 7 atm 1-7 atm 1 atm 4 atm 7 atm 1- 7 atm 
Coll 

0.0162 
0.0136 
0.0113 
0.0095 
0.0082 
0.0069 
0.0060 
0.0052 
0.0045 
0.0040 
0.0035 
0.0032 
0.0027 
0.0025 
0.0022 
0.0020 
0.0018 
0.0016 
0.0015 
0.0013 
0.0012 
0.0012 
0.0010 
0.0009 
0.0008 
0.0008 
0.0007 
0.0007 
0.0006 
0.0006 
0.0005 
0.0005 
0.0004 
0.0004 
0.0004 
0.0004 
0.0003 

£212 
0.0811 
0.0595 
0.0478 
0.0393 
0.0340 
0.0287 
0.0246 
0.0214 
0.0194 
0.0163 
0.0142 
0.0134 
0.0114 
0.0101 
0.0090 
0.0081 
0.0074 
0.0066 
0.0059 
0.0054 
0.0049 
0.0044 
0.0041 
0.0037 
0.0034 
0.0031 
0.0029 
0.0026 
0.0025 
0.0022 
0.0021 
0.0020 
0.0018 
0.0016 
0.0016 
0.0014 
0.0014 

£o!2 
0.2070 
0.1280 
0.0921 
0.0732 
0.0611 
0.0524 
0.0458 
0.0384 
0.0341 
0.0299 
0.0257 
0.0225 
0.0204 
0.0183 
0.0163 
0.0142 
0.0136 
0.0118 
0.0105 
0.0096 
0.0087 
0.0079 
0.0073 
0.0065 
0.0060 
0.0055 
0.0051 
0.0046 
0.0043 
0.0040 
0.0036 
0.0034 
0.0032 
0.0029 
0.0027 
0.0025 
0.0024 

£oJ4 
0.1042 
0.0815 
0.0680 
0.0586 
0.0512 
0.0450 
0.0398 
0.0353 
0.0315 
0.0281 
0.0252 
0.0227 
0.0205 
0.0185 
0.0167 
0.0151 
0.0137 
0.0124 
0.0113 
0.0103 
0.0093 
0.0085 
0.0078 
0.0071 
0.0064 
0.0058 
0.0053 
0.0048 
0.0044 
0.0040 
0.0036 
0.0032 
0.0029 
0.0026 
0.0023 
0.0021 
0.0018 
0.0016 

Coii 
0.0021 
0.0019 
0.0016 
0.0014 
0.0012 
0.0010 
0.0009 
0.0008 
0.0006 
0.0006 
0.0005 
0.0005 
0.0004 
0.0004 
0.0003 
0.0003 
0.0002 
0.0002 
0.0002 
0.0002 
0.0001 
0.0001 
0.0002 
0.0001 
0.0000 
0.0001 
0.0001 
0.0000 
0.0001 
0.0000 
0.0001 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0000 

£piü 
0.0088 
0.0075 
0.0063 
0.0056 
0.0047 
0.0041 
0.0035 
0.0031 
0.0027 
0.0024 
0.0020 
0.0018 
0.0016 
0.0015 
0.0012 
0.0011 
0.0009 
0.0009 
0.0008 
0.0006 
0.0006 
0.0005 
0.0004 
0.0004 
0.0004 
0.0002 
0.0003 
0.0003 
0.0001 
0.0002 
0.0001 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 
0.0000 

Col 7 
0.0155 
0.0132 
0.0112 
0.0096 
0.0083 
0.0071 
0.0062 
0.0054 
0.0047 
0.0041 
0.0036 
0.0032 
0.0027 
0.0025 
0.0021 
0.0019 
0.0017 
0.0015 
0.0013 
0.0011 
0.0011 
0.0008 
0.0007 
0.0007 
0.0006 
0.0005 
0.0005 
0.0004 
0.0002 
0.0003 
0.0003 
0.0002 
0.0001 
0.0001 
0.0001 
0.0000 
0.0000 

CQLS 
0.0079 
0.0064 
0.0052 
0.0041 
0.0032 
0.0024 
0.0017 
0.0011 
0.0006 
0.0001 
0.0002 
0.0006 
0.0009 
0.0011 
0.0014 
0.0016 
0.0018 
0.0019 
0.0021 
0.0022 
0.0023 
0.0024 
0.0025 
0.0025 
0.0026 
0.0027 
0.0027 
0.0028 
0.0028 
0.0028 
0.0028 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 
0.0029 

Notes: 
Col 1, 2,3,5,6, and7 are KMax(X{i+l},X{i}>Min)*100/(Min*10) 

Where X is the compressibility and the 10 corresponds to the temp, difference 
between locations i+1 and i 

Col 4 and 8 are = (High P- Low P)*100/(Low P *90) 
 Where the 90 coverts the difference in atm (6) to psi  
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Temp. 
°K 

Tr 
=[T(t)/T(0)] 

yas 

Tc 

Table A-7 
a Function o 

Pr 
=  [P(t)/P(0)] 

f Tc 

Y 
% Var. 

from Initial 
Conditions 

520.00 1.0000 1.0000 1.0000 1.2680 0.0000 
510.00 0.98077 1.0098 0.91260 1.2694 0.11041 
500.00 0.96154 1.0198 0.83190 1.2708 0.22082 
490.00 0.94231 1.0302 0.75780 1.2726 0.36278 
480.00 0.92308 1.0408 0.68920 1.2740 0.47319 
470.00 0.90385 1.0518 0.62680 1.2762 0.64669 
460.00 0.88462 1.0632 0.56870 1.2775 0.74921 
450.00 0.86538 1.0750 0.51610 1.2797 0.92272 
440.00 0.84615 1.0871 0.46690 1.2810 1.0252 
430.00 0.82692 1.0997 0.42260 1.2831 1.1909 
420.00 0.80769 1.1127 0.38160 1.2848 1.3249 
410.00 0.78846 1.1262 0.34550 1.2880 1.5773 
400.00  j 0.76923 1.1402 0.31150 1.2903 1.7587 
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Variation in Cp (%) 
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Variation in Cp (%) 
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Absolute Value of % Variation in Z 
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% Variation due to Pressure Differences 
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% Variation Due to Pressure Differences 
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% Variation Due to Pressure Differences 
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% Variation Due to Pressure Differences 
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% Variation /psi 
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% Variation /psi 
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% Variation /psi 
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% Variation /psi 

SSE 
^*       4—»       •*-• 
C9        Ol        ?} 

*-* -3- r» 

■   -I   o 

(pA9q ajnss9jj puB sjnjBjaduiax 
jo uoipun^ B sy) 
X0/UOI;BUBA % 

118 



% Variation /psi 
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% Variation in y (at 7 atm) from 1.268 
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% Variation from 
y (at 520 °K, 7 atm) 
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Appendix B 
Variation in Compressibility Based on Equation of State 

As suggested in Section 3, the choice of reference data for determining the actual properties 

of the test mixture is critical if one wishes to compare data between facilities. The choice of 

reference data is not that critical for data being taken in only one facility, as long as all the data is 

from a mutually consistent data base. This means that the values for the specific heats need to be 

obtained from the same set of data that supplied the compressibility, the ratio of the specific heats, 

and the relative pressure data. However, when trying to measure efficiency to 0.25% it becomes 

critical when comparing data taken at different facilities that the source of the test gas data be 

documented. 

Because all this information was readily available in one document we chose as the 

standard for the ATARR facility the Tables of Thermodynamic and Transport Properties1. 

However it is important to realize that the equations of state used to calculate the compressibility 

and other gas properties in this volume are not the only possible real gas models. Since we do not 

have any data by which to judge the validity of the models, it makes sense to compare the results 

found in this volume with other potential models. 

Two which are easily used are the van der Waals model and the Redlich-Kwong model. 

These models are listed below 

van der Waals: 
(P + -a-)(v-b) = RT 

v2 (B-l) 

Redlich-Kwong: 
p_   RT a 

(v-b)   v(v+b)VT (B_2) 

The data obtained from the tables is described as 
Pv 
RT " Z (B-3) 

It is an easy task to how these models compare. Solving equations B-l and B-2 for RT 

and then dividing the result into Pv yields: 

van der Waals: 
 E^ = z (vdW) 
(P + ^Hv-b) 

vl (B-4) 

1 Hilsenrath, Beckett, Benedict, Fano, Hoge, Masi, Nuttall, Touloukian, and Woolley; Tables of Thermodynamic 
and Transport Properties of Air. Argon. Carbon Dioxide. Carbon Monoxide. Hydrogen. Nitrogen. Oxygen, and 
Steam. Pergamon Press, New York, 1960 
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Redlich-Kwong: 
-2v_ =z(RK) 

P + (v-b) 
(B-5) v (v+b)VT 

Equations B-4 and B-5 yield effective compressibilities that can be compared with equation B-3 

The constants used in the equations are2 

van der Waals: Nitrogen Carbon Dioxide 

a    [bar(M3/(Kg-mol))A2] 1.361 3.643 

b   [M3/(Kg-mol)] .0385 .0427 

Redlich-Kwong: 

a   [bar K5(M3/(Kg-mol))A2] 15.59 64.64 

b   [M3/(Kg-mol)] .02681 .02969 

Molec. Weight 28.008 44.01 

The densities were taken from tabular values in reference 1. Using this information the 

equivalent compressibilities were calculated for carbon dioxide and nitrogen. Shown in figures B- 

1 to B-4 are these compressibilities for each gas at 1 atm and 7 atm. Also plotted in each graph is 

the variation between the two extremes, defined as: 
[Maximum - Minimum] 100 

Average (B.6) 

For the temperature range of interest (between 400 °K and 550 °K) one can see in figure B- 

1 that for nitrogen at 1 atm there is less then a .04% difference between the methods, and none of 

the models is more then about .04% from ideal gas behavior. But when the pressure is increased 

to 7 atm (figure B-2), the variation among the models is about 0.25%. Both the Redlich-Kwong 

and the van der Waals models give compressibilities which are much closer to ideal then the tables 

(but are still off from ideal of by about 0.2%) The models agree much better for CO2 at both 

pressures (figures B-3 and B-4). It is interesting to note that for nitrogen all the models were 

spaced more or less equally apart. With CO2 however, the van der Waals model follows very 

closely the Redlich-Kwong model. 

What can be derived from this information? Well it is apparent that which real gas model 

one chooses could have a significant effect on the overall results of the experiment. Appendix A 

demonstrated the influence that the compressibility had on the mixing process and from these 

figures it seems as though the compressibilities might be overstated, however there is no real way 

to determine the truth. The constants used in these equations were computed from critical data, not 

fitted to experimental data, so they could be in error. The important thing to remember is that any 

2 Wark, Kenneth; Thermodynamics. McGraw-Hill Book Company, New York, 1983; Tables A-2M (p. 781), A- 
3M (p. 782), and Table A-21M (p 815). 
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system chosen for the reference data has to be self-consistent. And when comparing measured 

efficiencies between facilities with 0.25% accuracy, it will be important to make sure that each 

facility is using the same reference data. 
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Average Variation (%) 
(Max-Min)*100/Average 
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Average Variation (%) 
(Max-Min)*100/Average 
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Appendix C 
Derivation of Isentropic Relationships for a Simple Compressible Gas 

For an isentropic process, the temperature, density and pressure between any two points 

can normally be related to each other through expressions which, for an ideal gas, involve only 

the ratio of specific heats . 
l2 _ 

2 _ 

Pi 

Y-l 

Y-l 

1 

(C-l) 

(C-2) 

Consistent with the ideal gas assumption, the ratio of specific heats is assumed constant. In the 

case being discussed, real gas effects create a y which varies during the testing process, thus 

keeping us from applying equations C-l and C-2 directly. It is necessary to reexamine the 

derivations of these equations to determine the importance of the ideal gas assumptions to the 

engineering questions asked in the ATARR facility. Assuming that the gas mixture behaves as a 

simple compressible substance, then the entropy can be written as a function of two state 

variables, 

s=s(T,v) ands=s(T,P) (C-3) 

where v=l/p. 

Taking the full derivative of both equations yields 
,3s 3s 

T(ds)=T^ (dT)+T^ 
3T 

T(ds)=T^|(dT)+T 

3v 

3s_ 
9P 

(dv) 

(dP) 

From the definitions of Cv and Cp: 
9s 

C =T^r v      3T 

„     „, 3s C =T— 
P      3T 

and the Maxwell Relationships 
"     =3p 

3T 3v 

3s_ 
3P 

3v 
3T 

and using the real gas law 
p=zRT 

v 

(C-4) 

(C-5) 

(C-6) 

(C-7) 

(C-8) 

(C-9) 

(C-10) 
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equations C-4 and C-5 become: 

T(ds)=C (dT) +T% z +Ä(dv) 

T(ds)=CD(dT) -T-?-( z +Ä(flr) 

v 3T (C-ll) 

cp        dT   P (C-12) 

Since the process being examined is isentropic, these equations reduce to: 

T        C       dT   v (C-13) 
(f)=f(z+Ä(f) 

T       Cp dT   P (C.14) 

For an ideal gas the term 

C 3T        ' 
V (C-15) 

and 

C
P     

öT   y (c-16) 
Both of which are constant allowing equations C-13 and C-14 to be integrated, yielding 
equations C-l and C-2. Unfortunately, for a real gas Cv, Cp and z depend both on pressure and 

temperature, and doing this integral and incorporating the result into the blowdown equations 
becomes quite difficult, if not impossible. Since the compressibility factors for a standard mix 
are available (see appendix A) and can be calculated for any mixture, we can numerically 
approximate the derivative of z with respect to T for various pressures. These values are labeled 

as: 

^-(Z+T||-) = C1 
S dT (C-17) 

^Z+Ä = C2 
C

P dT (C-l 8) 

and are listed in table C-l for the standard fill conditions. 
It is clear from both figures C-l and C-2 that the variations in Cl and C2 from the ideal 

functions increases as the temperature decreases. And as shown in figure C-3 this variation can 
be significant (note the difference in values even at the beginning of the test). Since we are 
ultimately interested in seeing how these properties vary with non-dimensional time (Tc), we can 
use the ideal gas blowdown relationship between temperature ratio and Tc (equation 5-11) to 

obtain an approximate plot of Cl and C2 versus Tc (shown in figures C-4 and C-5, plotted only 
to values of Tc=1.2 since from figure 5-9 the facility will become unchoked for all 

configurations after this time). 
Section 5.2.2 shows that for the standard test gas with a boundary layer bleed of 30%, the 

final value of Tc is 1.04; which corresponds to a temperature of 480 °K. However to obtain an 
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accurate measure of the mass flow requires a Tc measurement as close to the unchoking point as 

possible (about Tc=1.13, from equation 5-49) which translates into a temperature of 405°K. One 

can immediately see the problem. To measure mass flow accurately, one wants to run to as large 

a value of Tc as possible. To keep the property variations small, one needs to keep Tc as close to 

one as possible. 
The problem that faces us has two distinct components. First we need to find a form for 

Cl and C2 such that the integrals 

f(-d3L)=  ( J T C2;    J 

(dv} 

(C-19) 

(dP) 
P (C-20) 

can be performed. The natural tendency would be to eliminate the dependency on pressure, and 

thus Cl and C2 would become only functions of temperature allowing equations C-19 and C-20 
to be integrated. However, even if an integration is possible one would then have to substitute 
the density ratio for the temperature dependance to allow the integration of equation C-21 

P(t) " m, = - Pl(0)v| = (l+a)p1(t) 
\ (C-21) 

—    I     I  -T-l Lllf      1  I   ■      

LPI<°>. 

The integration of this equation poses two specific problems. One is that the temperature has to 
be found explicitly as a function of the initial temperature and the density ratio (in some form 
which would allow integration). Secondly both the corrected mass flow and z vary, not directly 
as a function of time, but rather as a function of temperature and pressure. Thus before equation 
C-21 can be integrated all of these parameters have to be put in terms of some common variable 
(probably temperature) and then integrated with respect to time. In order to do this assumptions 
have to be made about how important the pressure dependency is, or measurements have to be 
taken. All of which introduces more variables and uncertainty. The fall-back position is to claim 
that the ideal gas law hold over very small increments in time. In this fashion one uses the 
"correct" values for Cl, z and mcorr at every point during the test to trace how the mass flow and 

the uncertainty in the mass flow vary over time. The catch to this process is that there is no way 
to verify how "accurate" the process is unless one can analytically solve equations C-19 and C- 

20 as a function of time. 
With this problem in mind, we can try to evaluate Cl in such a a manner which allows 

both the integration of equation C-19, and equation C-21. At the end of this process we may 

have several different ways of calculating the isentropic relationship between temperature and 
density and we can see how the different procedures vary as a function either of time or 

temperature. 
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To begin with, both figures C-4 and C-5 show that the variation between pressure levels 

is small when compared to the change which occurs as the temperature drops. To integrate 

equations C-19 and C-20, Cl and C2 have to be made independent of pressure. There are 
several ways to proceed. One could solve for the pressure ratio for any value of Tc and y, and 

then interpolate between the two known pressure levels to achieve a trace of either Cl or C2 as a 
function only of Tc. This however introduces a dependency on y which might not be 

appreciated. A second procedure would be to to fit data to any one pressure level and then see 

how much variation occurs between pressure levels at any value of Tc. The resulting 

information would be an approximation to the uncertainty which would be introduced by 
assuming a constant pressure value for either Cl or C2, and in the proper circumstances, be 
considered small. 

Since most measurements will occur at higher values of Tc, we can use the method 
described above with the 4 atm levels of Cl and C2 as a base line. To obtain an approximate 
ideal of how the error in this assumption varies with Tc, we can assume that y remains constant 

at 1.268 and we can solve for Tc when the pressure level in the supply tank would approach 1 
atm (this assumes that the supply tank is constantly dumping into a vacuum) which yields a Tc of 
1.23. At the beginning of the run the pressure is 7 atm and the pressure level is 4 atm at Tc = 
1.06. We can use these three points to see how the variation occurs which is shown in figures C- 
6 and C-7. 

Using this information we can now claim that the 4 atm data represents the actual Cl and 
C2 to the level of accuracy listed in figures C-6 and C-7 (note that this number approaches zero 
at the values of Tc where efficiency measurement may occur). The approximation of pressure 
independence is quite good since for most of the test time variation is less then 0.1%. At this 
point both Cl and C2 can be approximated by several different types of functions. One possible 
type would be a second order polynomial as listed below 

(C-22) C^ Z +T^) =C1 =ao + aiX + ^X2 

With the choice of X being arbitrary. One could use the absolute temperature, but then the 
constant a2 becomes small, and round-off errors could become significant. A better choice is the 
normalized temperature Tr=T/To (To =520 °K). However the integration becomes complicated 

and in fact takes the form: 
T(t)=[p(t)]ao 
T(0)-[p(0)J     i (C.23) 

where 
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Fl= 
C1(T) 
C1(0)J 

.5 
exp 

V4E 
rtan" 

i\ 

V4a2a0-a2(l T(t) 
T(0) ) 

2a0+a1+(2a2+a1)^ 
(C-24) 

One cannot explicitly solve for the temperature ratio (since it not only appears in the exponent 

but also in the values for Cl). Another function which has a little more promise is an inverse 

logarithm, or: 
Cl=- 

' (C-25) a0+ajLn(Tr) 

(similar function for C2). These functions fit the data quite well (variations less then 0.06%) as 

shown in figures C-8 to C-l 1. Putting this functional form into equations C-19 and C-20 results 

in the following expressions: 

and 

Tr3" expbl{ln(Tr)}2] =^ 
z Pj 

Trb° exp[^-{ln(Tr)}2] 3- 

(C-26) 

l (C-27) 
Equations C-26 and C-27 can not be used in equation C-21 as they stand (since one cannot not 
isolate the temperature ratios, nor if one could, would one be able to integrate the resulting 
mess). However these functions can be fit to another more manageable form. Labeling the 
function on the left side of equations C-26 and C-27 as Dl and D2 we can fit these to a power 

function. 
D1=%Trai (C-28) 

(similar expression for D2, the primes denote new variables). With these functions in place, then 
the integration of equation C-21 can take place. The fit for Dl and D2 is shown in figure C-12. 

this is not as good as fit as before, and at this point we have compounded the uncertainty in this 
result through three different data fits! All of which have different dependencies on the 

temperature (and thus Tc). 
Before we proceed it is worthwhile to see how these different methods predict the density 

ratio. Figure C-l3 and C-l3a (expanded view) show five different ways of calculating the 
density ratio based on the temperature ratio. The first assumes a constant value of y set at the 

initial value 1.268. The second uses the relationship: 

Trcr' = Pi 

where Cl is allowed to vary with the temperature. The third case is the power fit or: 

aoTr' 
_^2 

(C-29) 

(C-30) 
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(C-31) 

The last two cases use the form: 

j^Y-l)-1 = Ei 

Pi 

where yis either the value at 7 atm or 4 aim (varying with temperature). 

The results are rather interesting and are best seen in figure C-13a. The density ratio 

calculated from the power fit and from y = 1.268 lie close together at low values of Tr. The 

method which uses Cl is bounded on both sides, one by y evaluated at 7 atm and the other at 

y=l .268. Figure C-14 shows the difference in methods between using the power fit, y at 7 atm, 

and y at 1.268, and Cl. As one can see the variations can become quite large as Tr drops off. 

One other interesting piece of information is that if one uses the y calculated in Appendix A 

which is independent of pressure (it is only a function of temperature) in equation C-31 and plot 

this and values calculated using Cl, one finds variations which are quite small (when compared 

to these other methods, figures C-15 and C-15a). 

As predicted at the beginning we do not have nay real way to determine which method is 

providing the true answer. It is interesting to note that one would expect the density ratio 

evaluated with a y at 7 atm to give a high value (since y is increasing with decreasing 

temperature) and thus the density ratio calculated with y= 1.268 should give a low value, since 

this is the lowest value of y during the entire test. And using either Cl (which is evaluated at 4 

atm) or y independent of pressure provide answers which are close to each other and are in 

between these two extremes. We are still caught in the quandary of which method to use. Since 

the variable Cl takes into account compressibility it is probably the better variable to use. And 

since we will be evaluating the isentropic relationship at every point in time and substituting in 

the correct values for Cl we can also do this in equation C-21 for y and z allowing a full 

integration which implies that the blowdown equations are the same as equation 5-11 except the 
variable y-1 is replaced by Cl and that x takes into account compressibility factors. 

i+1 
x 

2 
■Cl P(t) 

P(0) 

i ja.)(i+ot)z1(t)VYcRT1(0)A, 

T" y~V 
hi^VyRT T3 

X    rpAilA (C-32) 

T(t) 
T(0) 

P(0 
P(0) 

i+1 

l+i 
X. 

^2_ 
C2 

(C-33) 

(C-34) 
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Table C-l 
Values For Cl and C2 

Standard Fill Conditions: P2/P1=3.054      M2/M1=3.24 

Temperature *K 

R2/R1= .6366 
T(dZ/dT) Mixture Z Mixture 

Z (1 atm) Z (4 atm) Z (7 atmHT(dZ/dT) (7 atm) T(dZ/dT) (4 atm) T(dZ/dT) (1 ami 

230 0.99146 0.96444 0.93211 
240 0.99261 0.96991 0.94521 
250 0.99358 0.97400 0.95358 
260 0.99439 0.97730 0.95974 
270 0.99507 0.98004 0.96470 
280 0.99565 0.98242 0.96887 
290 0.99615 0.98444 0.97247 
300 0.99658 0.98617 0.97564 
310 0.99696 0.98768 0.97831 
320 0.99728 0.98905 0.98068 
330 0.99757 0.99021 0.98277 
340 0.99782 0.99121 0.98457 
350 0.99805 0.99216 0.98616 
360 0.99825 0.99298 0.98759 
370 0.99843 0.99370 0.98889 
380 0.99859 0.99434 0.99003 
390 0.99873 0.99491 0.99104 
400 0.99886 0.99543 0.99200 
410 0.99897 0.99591 0.99283 
420 0.99908 0.99633 0.99357 
430 0.99917 0.99671 0.99424 
440 0.99926 0.99706 0.99486 
450 0.99934 0.99738 0.99541 
460 0.99942 0.99766 0.99592 
470 0.99948 0.99793 0.99638 
480 0.99953 0.99817 0.99680 
490 0.99959 0.99838 0.99719 
500 0.99964 0.99859 0.99755 
510 0.99969 0.99877 0.99787 
520 0.99973 0.99895 0.99817 
530 0.99977 0.99910 0.99845 
540 0.99981 0.99925 0.99870 
550 0.99984 0.99938 0.99894 
560 0.99987 0.99951 0.99915 
570 0.99990 0.99962 0.99935 
580 0.99992 0.99973 0.99954 
590 0.99996 0.99982 0.99971 
600 0.99998 0.99991 0.99987 

0.30778 
0.19681 
0.14463 
0.11657 
0.09816 
0.08458 
0.07440 
0.06270 
0.05583 
0.04904 
0.04233 
0.03727 
0.03373 
0.03041 
0.02693 
0.02362 
0.02251 
0.01951 
0.01746 
0.01588 
0.01446 
0.01296 
0.01193 
0.01082 
0.00996 
0.00909 
0.00846 
0.00759 
0.00696 
0.00656 
0.00593 
0.00553 
0.00514 
0.00467 
0.00435 
0.003% 
0.00380 

0.12862 
0.09597 
0.07764 
0.06444 
0.05583 
0.04746 
0.04067 
0.03561 
0.03214 
0.02716 
0.02369 
0.02227 
0.01911 
0.01698 
0.01501 
0.01351 
0.01224 
0.01114 
0.00995 
0.00901 
0.00822 
0.00735 
0.00680 
0.00616 
0.00569 
0.00506 
0.00482 
0.00435 
0.00403 
0.00364 
0.00340 
0.00324 
0.00293 
0.00261 
0.00253 
0.00222 
0.00222 

0.02693 
0.02282 
0.01895 
0.01595 
0.01374 
0.01169 
0.01019 
0.00884 
0.00758 
0.00679 
0.00592 
0.00545 
0.00458 
0.00426 
0.00371 
0.00340 
0.00300 
0.00269 
0.00253 
0.00221 
0.00198 
0.00198 
0.00174 
0.00150 
0.00127 
0.00134 
0.00118 
0.00111 
0.00103 
0.00095 
0.00087 
0.00079 
0.00063 
0.00063 
0.00063 
0.00071 
0.00047 
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Tafoie C-l (wn't) 
Values For Cl andG I 

Specific Heat 
Ratio (Mixture) Cv (Mixture) Cl (Mixture) C2 (Mixture) 

Temp. *K 1 atm  4 atm   7 atm 1 atm 4 atm   7 atm 1 atm 4 atm 7 atm 1 atm  4 atm 7 atm 

230 0.6250 0.6780 0.8443 0.3493 0.3456 0.3148 1.358 1.392 1.445 0.2573 0.2482 0.2178 
240 0.6322 0.6620 0.7432 0.3443 0.3452 0.3294 1.352 1.379 1.407 0.2547 0.2503 0.2341 
250 0.6399 0.6571 0.6932 0.3392 0.3431 0.3396 1.345 1.370 1.395 0.2521 0.2503 0.2434 
260 0.6477 0.6594 0.6760 0.3344 0.3387 0.3413 1.340 1.362 1.385 0.2495 0.2486 0.2464 
270 0.6554 0.6636 0.6702 0.3300 0.3346 0.3399 1.335 1.355 1.378 0.2471 0.2469 0.2467 
280 0.6635 0.6705 0.6767 0.3255 0.3292 0.3337 1.330 1.348 1.368 0.2447 0.2442 0.2439 
290 0.6712 0.6774 0.6831 0.3214 0.3244 0.3285 1.326 1.342 1.359 0.2425 0.2418 0.2416 
300 0.6792 0.6845 0.6895 0.3173 0.3200 0.3228 1.321 1.336 1.352 0.2403 0.2396 0.2388 
310 0.6867 0.6914 0.6963 0.3136 0.3162 0.3184 1.317 1.330 1.344 0.2381 0.2378 0.2370 
320 0.6940 0.6985 0.7025 0.3102 0.3119 0.3142 1.314 1.325 1.337 0.2361 0.2354 0.2350 
330 0.7016 0.7054 0.7088 0.3066 0.3081 0.3100 1.309 1.320 1.332 0.2342 0.2334 0.2328 
340 0.7089 0.7121 0.7154 0.3034 0.3051 0.3062 1.306 1.316 1.326 0.2323 0.2319 0.2310 
350 0.7160 0.7189 0.7219 0.3002 0.3015 0.3029 1.303 1.312 1.321 0.2304 0.2299 0.2293 
360 0.7231 0.7258 0.7285 0.2972 0.2983 0.2996 1.299 1.308 1.316 0.2287 0.2281 0.2277 
370 0.7298 0.7322 0.7348 0.2944 0.2953 0.2964 1.297 1.304 1.312 0.2270 0.2264 0.2260 
380 0.7369 0.7388 0.7411 0.2915 0.2924 0.2932 1.293 1.301 1.307 0.2254 0.2248 0.2243 
390 0.7436 0.7453 0.7472 0.2888 0.2897 0.2908 1.291 1.297 1.304 0.2238 0.2233 0.2230 
400 0.7500 0.7518 0.7537 0.2862 0.2870 0.2877 1.288 1.294 1.300 0.2223 0.2218 0.2214 
410 0.7566 0.7579 0.7594 0.2838 0.2845 0.2852 1.285 1.291 1.297 0.2208 0.2204 0.2199 
420 0.7629 0.7645 0.7655 0.2813 0.2819 0.2827 1.283 1.288 1.294 0.2194 0.2189 0.2185 
430 0.7688 0.7705 0.7717 0.2791 0.2796 0.2802 1.281 1.285 1.290 0.2180 0.2176 0.2172 
440 0.7751 0.7765 0.7775 0.2769 0.2773 0.2778 1.278 1.282 1.287 0.2167 0.2162 0.2158 
450 0.7810 0.7821 0.7833 0.2748 0.2752 0.2757 1.276 1.280 1.285 0.2153 0.2150 0.2146 
460 0.7867 0.7882 0.7890 0.2727 0.2730 0.2735 1.274 1.278 1.282 0.2140 0.2137 0.2134 
470 0.7929 0.7936 0.7947 0.2705 0.2711 0.2715 1.271 1.276 1.279 0.2128 0.2125 0.2122 
480 0.7986 0.7994 0.8004 0.2687 0.2690 0.2694 1.270 1.273 1.277 0.2116 0.2113 0.2110 
490 0.8042 0.8049 0.8057 0.2668 0.2672 0.2676 1.268 1.271 1.275 0.2104 0.2102 0.2099 
500 0.8099 0.8104 0.8114 0.2649 0.2653 0.2655 1.266 1.269 1.272 0.2093 0.2090 0.2088 
510 0.8153 0.8157 0.8165 0.2631 0.2635 0.2638 1.264 1.267 1.270 0.2082 0.2080 0.2077 
520 0.8207 0.8211 0.8217 0.2614 0.2617 0.2621 1.262 1.265 1.268 0.2071 0.2069 0.2067 
530 0.8257 0.8263 0.8270 0.2598 0.2601 0.2603 1.261 1.263 1.266 0.2061 0.2059 0.2056 
540 0.8310 0.8315 0.8321 0.2581 0.2584 0.2587 1.259 1.261 1.264 0.2050 0.2049 0.2047 
55C 0.8363 0.8368 0.8372 0.2564 0.2568 0.2571 1.257 1.260 1.262 0.2040 0.2039 0.2037 
56C 0.8411 0.8420 0.8423 0.2550 0.2551 0.2555 1.256 1.258 1.260 0.2030 0.2029 0.2027 
57C 0.8463 0.8465 0.8473 0.2534 0.2538 0.2539 1.254 1.256 1.258 0.2021 0.2020 0.2018 
58C 0.8510 0.8517 0.8523 0.2520 0.2522 0.2524 1.253 1.255 1.256 0.2012 0.2010 0.2009 
59C 1   0.8562 0.8568 0.8567 0.2505 0.2507 0.2511 1.251 1.253 1.255 0.2002 0.2001 0.2000 
60C I   0.8608 0.8612 0.8616 0.2490 0.2489 0.2488 1.250 1.252 1.253 0.1992 0.1989 0.1985 
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% Variation from Cl at 4 atm 
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% Variation from C2 at 4 atm 
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