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1. PROJECT SUMMARY 

The aim of this program was to systematically study the effect of volume percent and morphology of 
phases on the damping behavior of epoxy/aluminium composites. This has been successfully achieved 
by employing the finite element method (FEM) to predict the effect of volume fraction, morphology 
(including particle shape, size and orientation), and continuity of phases on the damping behavior 
using the ANSYS or NASTRAN computer programs. The technical progress during this investigation 
is divided into three parts and each part is self-contained in all respects. A sample input and output is 
also provided as an appendix in the end for an FEM calculation involving 50 volume percent of 
aluminium/ 50 volume percent of epoxy composite. This calculation was performed with the ANSYS 
computer program. 

Part I is a comprehensive review of the recent developments in modeling the damping behavior of 
composites in general. In this review it was concluded that in general analytical methods can be 
employed only to relatively simple geometries and composite configurations. Even for the simple 
cases, analytical methods developed are usually specific to geometry and configuration. Numerical 
methods like FEM, however, have the potential for application to arbitrary composite geometry and 
configuration and arbitrary loading conditions. The review includes analytical models for both passive 
and active damping. 

In Part II a brief account of the effect of morphology and volume fraction on the damping behavior of 
epoxy/aluminium composites is given. This also includes the author's earlier work. In this part it has 
been clearly shown that for a given volume percent of phases the damping capacity of the composites 
strongly depend on particle size of the component phases. It has been found that the loss factors do not 
decrease linearly with the volume percent of the second phase. For paniculate composites, the loss 
factors are much lower than what is expected from the law of mixtures. The actual size was found to 
depend on the particle size of the phases. 

The results of extensive FEM modeling to predict the effect of volume percent and morphology of 
phases on the damping behavior of epoxy/aluminium composites have been presented in Part III. It 
was shown that the loss factor of the composites with parallel and perpendicular fibers calculated by 
FEM were close to those obtained by analytical methods based on the constant strain and constant 
stress assumptions. For a given volume percent of aluminium or epoxy, the loss factor was found to 
increase with an increase in relative particle size. This was attributed to the ability of the high 
damping epoxy to damp/deform relatively freely when the particle size was increased. A 3-D plot with 
loss factor, relative particle size, and volume percent of aluminium as the parameters was constructed 
for the epoxy/aluminium composites, which clearly demonstrates the effect of particle size and 
volume percent of phases on the damping behavior. For a composite with 50 volume percent of each 
phase, the loss factor of the composite, when the Aluminium phase was embedded as a single particle 
in the epoxy matrix, was found to be much higher than when the particles were reversed. This has 
been attributed to the ability of the epoxy to damp/deform relatively independently when it is in the 
matrix phase. For various epoxy/aluminium composites, normal stress distributions were also studied. 
They show that in general the stresses are higher in the suffer aluminium phase whether aluminium is 
in the form of particles or matrix. The extent of stress gradients depend on the volume fraction and 
particle size. 



Two dimensional hydrostatic stress distributions were also calculated for various epoxy/aluminium 
composites. It was found that the magnitude of stress gradients increased with an increase in particle 
size for a given volume percent of phases. These results have suggested that the propensity for void or 
crack formation increased with an increase in particle size. 

# 



2A. TECHNICAL PROGRESS : PART I 



Proceedings of the Damping of Multiphase Inorganic Materials Symposium, ASM Materials Week, Chicago, Illinois, USA, 2-5 November 1992 

Recent Developments in Modeling the 
Damping Behaviour of Composites 

K.S. Kannan and S. Ankem 
University of Maryland 

College Park, Maryland 

Abstract 

Many investigators have attempted to model the damping behav- 

iour of composite materials using different analytical and numeri- 

cal techniques including FEM. The extensive review indicates 

that the analytical techniques are primarily suitable for specific and 

idealized composite structures, whereas FEM can be applied to 

the modeling of even complicated structures. This method can ef- 

fectively take a number of factors such as morphology (i.e., size, 
shape and distribution of phases), volume fraction and properties 

of the component phases into consideration simultaneously. The vi- 

ability of this method is illustrated with the recent work of the au- 

thors and of other investigators. In addition, the recent develop- 

ments relating to the modeling of the active damping of compos- 

ites structures using embedded, distributed sensors and actuators 

are presented. 

MULTIPHASE materials such as composites are used in several 

applications involving dynamic loading conditions. To reduce 

noise or unwanted vibrations, damping of the structure needs to be 

improved. This may be done in several ways - passively by en- 

hancing damping of a structure by using materials with better in- 

ternal damping and / or by optimizing the internal structural con- 

figuration , and / or actively by including actuators which op- 

pose and suppress undesired vibrations. To design new 

composite materials with high damping properties or to improve 

the damping of the existing materials, it is necessary to understand 

the damping behaviour in terms of the damping properties of the 

component phases and their volume fractions and morphologies. 

The aim of this paper is to review the models available for pre- 

dicting  the passive as well as active damping of composite mate- 

rials and structures. 

Modeling of Passive Damping 

To model or predict the dynamic response of a compos- 

ite structure, it is essential to consider the damping properties, 

volume fraction , morphology and the nature of the interfaces be- 

tween the component phases. Most of the analytical solutions 

available to date take into account only some of these factors and 

they are confined to specific and simple geometries. However, 

some of the numerical methods such as the finite element method 

can take most of these factors simultaneously into consideration. 

The analytical and numerical methods are dealt with in separate sec- 

tions. 
.Analytical Methods. Viscoelastic behaviour of a material is 

characterised by a response (displacement / strain in the appropri- 

ate deformation mode) that lags behind applied force / stress. A 

composite would exhibit viscoelastic behaviour even if one of 

the component phases is viscoelastic. Viscoelastic material behav- 

iour in a particular deformation mode is frequently represented 

through frequency dependent complex moduli - extensional, shear, 

bulk - and / or poisson's ratio. For example, the Youngs modulus 

is represented in complex form as : 

E = E0(l+iTl) =E0 + iE1  1 

E is complex modulus, EQ is the storage modulus representing 

strain energy,   E, ( = EQT|) is the loss modulus representing energy 

dissipated and T| is the loss factor (1). This representation is ob- 

tained from a hereditary integral type representation of the consti- 

tutive relationship in a viscoelastic material (2): 



-t 
<*ii   =        /C;nd(t-X)(d£.id/dt)dT 

where   C-,(t-X) are the relaxation constants, t is time, CT^ is the 

stress tensor and   Ey is the strain tensor.   For   a one dimensional 

state of stress, this reduces to 

oo 
CjCt)   =    /E'OrtXde^dOdt  3 

-e 

where E , the frequency dependent complex modulus, eq. 1, is relat- 

ed to E' through the inverse Fourier transform 

E'(t)   =   F1 [ E(Cü)/(iC0) ] --4 

The most frequently encountered analytical method for 

prediction of damping behaviour of composite structures uses mi- 

cromechanical analysis to derive the composite effective elastic 

moduli in terms of moduli of component phases, their volume frac- 

tions and morphology. These relations are then applied to the vis- 

coelastic case by invoking the correspondence principle. The cor- 

respondence principle states that the effective complex moduli of a 

viscoelastic heterogeneous structure are found by replacing the 

phase elastic moduli by phase complex moduli in the expressions 

for the effective elastic moduli of an associated heterogeneous 

elastic specimen of identical phase geometry (1). The complex rep- 

resentation given earlier, namely, E = EQ(1 +iT\), has at least 

two drawbacks. This representation has been found (3) to result in 

noncausal response if T\ were assumed independent of frequency. It 

has also been suggested (4) that the damping effect involves ener- 

gy transformation between closely spaced vibration modes of a 

structure besides energy dissipation. Therefore eq. 1 is incom- 

plete with respect to the total loss in energy because it involves 

only energy dissipation. The correspondence principle has been 

stated to be valid for relatively low frequencies of vibration of the 

structure (1). In spite of these drawbacks, the representation of 

eq. 1 has been used in conjunction with the correspondence prin- 

ciple widely to predict damping of composites . 

Hashin (14) made an attempt to model the damping be- 

haviour of composites, from a knowledge of the damping behav- 

iour of the component phases and their volume fractions. In this ap- 

proach it was assumed thai the correspondence principle stated 

above was valid, and that the relationships amongst elastic modu- 

li holds amongst complex moduli. The effective elastic moduli 

of a parriculaie composite were derived using the composite 

spheres assemblage model. The loss factors obtained by this mod- 

el were found to be in agreement with experimentally determined 

loss factors of a silica sand embedded epoxy composite. 

Hashin (5) derived the expression for complex modulus 

of composites with unidirectional fibers as shown in Figure la. 

The derivation was based on the composite cylinder assemblage 

model of Hashin and Rosen (6). It is to be noted that for the con- 

figuration Figure la, the longitudinal strain of fibers and of matrix 

will be the same. The assumptions in this analysis include: i. the 

matrix is transversely isotropic, and ii. the interfaces are perfect. 

To begin with Hashin (5) used the following expression for effec- 

tive axial elastic Young's modulus for a composite where the pois- 

son's ratios of the matrix and fiber are the same 

:E1V1   +E2V2 
....5 

where E    is  the effective elastic Young's modulus, v. and v, are 

the matrix and fiber volume fractions and E, and E2 are the matrix 

and fiber youngs moduli. Then the correspondence principle was 

invoked to obtain the expression for the effective complex 

Young's modulus, which is as follows : 

E   =E,v.   + E^v, 
2        11 2 2 

....6 

where the elastic Young's moduli in eq. 5 have been replaced by 

their complex counterparts in the form given in eq. 1.Recently 

Ankem and Kannan (7) have obtained an expression for the com- 

plex axial young's modulus of a composite beam with fibers ori- 

ented in the transverse direction as shown in Figure lb. The as- 

sumptions in their analysis included those stated for the case of 

longitudinal fibers with the additional assumption that end effects 

are negligible. They (7) started with the expression for effective 

young's modulus of a composite where constant stress condition 

is assumed to be valid: 

1/E;   =   v^ +VJ/E2 ..-7 

Then invoking the correspondence principle, they derived an ex- 

pression for the effective complex young's modulus. From this ex- 

pression, an expression for loss factor was obtained which is as 

follows : 

(11Y1E2 •"hy: Ei -1 i^:v 2 Et *i22n [»1 Gj )/ 

( v, E[ * vj Ei *n j -v2 Et *TI,-v ! E) 

....S 

It is realized that the constant stress assumption employed in the 

derivation of eq. 7 is not strictly valid because end constraints, 

are in general, not negligible . Nevertheless, eq. 8 can be used to 

get a rough estimate of the damping of composites with fibers in 

the transverse direction. The loss factors of various Al^poxy 

composites were calculated based upon the Hashin's theory, i.e., 

eq 1, and for the perpendicular fibers, i.e., from eq. 8. These loss 

factors are plotted as functions of volume fraction of aluminum in 
Figure 2. The two assumptions obviously give distinctly differ- 

ent loss factors for the composites. Constant strain predicts much 

lower damping than constant stress assumption. In a broad sense 

these two assumptions can be treated as lower and upper bounds 

for loss factors respectively. 
Based on elementary beam theory, Schultz and Tsai (8) 



have derived a two dimensional transformation relation to deter- 

mine the off-axis properties of a composite lamina or single ply in 

terms of the on axis properties. Subsequently, a micromechanics 

analysis was used to determine overall loss factors and moduli of 

a multi-ply laminate beam composed of unidirectional plies orient- 

ed in different directions. Comparison of composite moduli ob- 

tained from these analytical relationships with those obtained ex- 

perimentally indicated that these analyses predict storage moduli 

accurately but they under predict loss modulus. This difference 

was attributed to the existence of a more complex state of stress 

in the individual laminae, especially close, to ply faces, than is as- 
sumed in analysis leading to derivation of composite beam effec- 

tive moduli. 
Gibson and Plunkett (9) approached the analysis of com- 

plex modulus of multi-ply laminates slightly differently. To begin 

with they obtained the effective elastic transverse and longitudi- 

nal moduli of a unidirectional continuous fiber composite lamina us- 

ing the Hashin and Rosen model. Fibers were assumed nondissipa- 

tive. Further, the effective elastic flexural modulus E„   was ob- c 

tained from the engineering beam theory. In this theory , the 

following assumptions were made : 

i. the beam is in pure bending 
ii. loading of each ply is uniaxial along longitudinal axis 

iii. each ply has a linear constitutive relationship . • 

This theory leads to   an overall  constitutive  equation     given by: 

1/p =   M/(ECI) ....9 

where p is the    beam curvature and E   its flexural    modulus. 

From   this theory, the flexural modulus was derived to be   : 
(H-IJI/2 

Ec=  8/NJ[E</8 3rC,o+   £c„;2 Ej C3r - 3j + 1) ] 10 

where N = number of plies, EQ is the extensional modulus of the 

middle ply, E- are the transverse / extensional modulus of the jth 

ply. The complex form of Ec is established by invoking the corre- 

spondence principle. Experiments were done to validate the mi- 

cromechanical analysis for longitudinal and transverse complex 

Youngs modulus for one lamina and also for complex flexural modu- 

lus for a laminated composite. Micromechanics predicted flexural 
loss moduli that were lower than experimentally determined val- 

ues, probably due to not considering the dissipative properties 
of fibers. Flexural storage moduli predicted by the model were, 
however,    close to experimentally determined values. 

The general principles oudined above, involving the use 
of the correspondence principle, were used to study the effective 

damping properties of short fiber reinforced composites and com- 

posite laminates (10, 11). The influence of fiber aspect ratio and 

orientation of fiber axis of a lamina with respect to loading direc- 

tion are critically examined. It was concluded that (11) fiber orien- 

tation controls damping of a composite more effectively than fi- 
ber aspect ratio. 

Sun, Wu and Gibson (12) applied the classical lamina- 

tion theory, in conjunction with the force balance method and corre- 

spondence principle, to study damping of laminated composites as 

a function of fiber aspect ratio, fiber orientation , volume fraction 

and fiber and matrix damping properties. Force balance method 

was used to derive expressions for EL,Ep T1LT and GLT> the longi- 

tudinal young's modulus, transverse young's modulus, poisson's 

ratio and shear modulus respectively, for an elastic unidirectional- 

ly oriented shortfiber lamina. This study did not take interlaminar 

stresses into consideration. Also , the unidirectionally oriented 

short fibers were of rectangular shape and were arranged in a rect- 
angular array in the force balance derivation. 

Apart from the above methods which are based on mi- 

cromechanical analysis and the correspondence principle, a num- 

ber of investigators have also used the correspondence principle 

in conjunction with differential equations of motion for laminated , 

multi-layered or sandwich plates (13-15). These differential equa- 

tions were solved exactly or approximately for specific boundary 

conditions. Alam and Asnani (13) derive the governing differen- 

tial equations of motion for the vibration of a multilayered ortho- 
tropic plate laminated composite. The in-plane displacements and 

excitation force were assumed in series form in terms of product 

of sines and cosines. Substitution of these series solutions in the 

differential equations yielded simultaneous algebraic equations for 
calculating the series coefficients. Correspondence principle was 

used to substitute complex properties for alternate layers and the 

simultaneous equations were reduced to eigenvalue problem form. 
Resonating frequencies and associated loss factors were deter- 

mined. This procedure, which is a refined analysis that takes exten- 
sion, bending and shear in all layers into consideration, could be 
applied to laminated plates with composite plies. 

Ccderbaum and Aboudi (14)used differential equations 
based on three shear deformation theories to study frequency re- 

sponse of a laminated plate containing unidirectional fiber plies. 

The five composite effective material constitutive functions in the 

time domain necessary for solution of these equations were ob- 

tained by inverse Fourier transformation of the corresponding fre- 

quency dependent functions. These composite frequency depen- 
dent functions, in turn, were obtained from a micromechanical anal- 

ysis that starts from a Fourier transform of the time domain 

Boltzman representation of the viscoelastic behaviour of individu- 
al phases. The approach of Lifshitz and Leibowitz (15) was 
based on solving a sixth order differential equation of motion for 

a three layer sandwich beam where the midlayer is viscoelastic . 
The viscoelastic response of the midlayer in shear was accounted 

for by complex shear modulus . Composite damping loss factor 

corresponding to each natural mode of vibration is obtained from 

this (15) analysis which was then used in a computer program to 

optimize composite design. 
The application of the correspondence principle in con- 



junction with a two dimensional micromechanical analysis for de- 

termination of effective elastic properties is questionable since 

the state of stress at any interface with a viscoelastic layer is 

more complex than is accounted for in elastic analysis (16,17). 

This problem may be remedied to an extent by doing a far more 

complicated three dimensional analysis. Apart form this problem, 

which exists at perfectly bonded interfaces, imperfectly bonded in- 

terfaces may themselves be viscoelastic in their response. Hence 

their constitutive behaviour has to be characterised before their ef- 

fect can be incorporated in modeling. Another estimate of damp- 

ing is given by the quantity called damping capacity. Damping ca- 

pacity or specific damping capacity is the ratio between energy 

dissipated and the strain energy stored in a particular deformation 

mode. Energy stored or dissipated is calculated using the stress 

and strain fields in a composite structure and the damping charac- 

terestics of the component phases. Modal damping capacity for a 

particular vibration mode is obtained from the amplitudes of the 

stress and strain fields in the body vibrating in that mode and the 

damping characterestics of the component phases. Since damping 

capacity calculation is based on strain energy in the composite 

structure, this approach is referred to as the strain energy or modal 

strain energy approach. 
The strain energy approach was utilized in the determi- 

nation of damping capacity of composites by many investigators 

(1S-22). Adams and Bacon and Bacon (18,19) studied the damp- 

ing of composite laminates made of unidirectional piies. Energy 

dissipation was divided into three parts relating to shear, longitu- 

dinal and transverse stresses. Their analytical approach did not 

predict damping for beams which had a complex lay up. Adams 
and Ni (20) made an attempt to improve this by application of 

laminated plate theory of Tsai (23) which allowed calculation of 

the elements of the overall laminated composite flexural modulus 

matrix in terms of the elements of the stiffness matrix of a unidirec- 

tional fiber reinforced composite lamina. For vibration in first flex- 

ural mode, the stresses and strains' along global x and y axes and 

xy direction (see Figure 3 for schematic of laminated composite 

and the coordinate system used in the analysis) for the kth layer 

were determined in terms of the stiffness matrix elements of the 

kth layer and applied flexural moment. The stiffness matrix of the 

kth layer which was at an angle 9 to the longitudinal direction of 

the composite , was obtained from the on axis stiffness elements 

through  transformations. The experimentally determined  \j/,, Yj 

and YJJ , which are the longitudinal, transverse and shear damping 

capacities, respectively for a lamina with longitudinally oriented 

fibers, were also transformed to a direction rotated by angle 9 

from the longitudinal direction. From this analysis AZ . the ener- 

gy dissipated in the x direction due to damping, is given by 

AZX = 2/[2/l/2YLCTxexd-2]dx 11 

AZ and AZ are computed from similar formulae. The damping 

contribution  of the stresses and strains in the x direction, \|/ ,    to 

the total damping capacity  \tf is given by 

Yx = AZÄ ....12 

The quantities \j/   and W    can be got in a similar fashion.   The 

damping capacities of various laminated composites determined 

from these analyses were found to be in excellent agreement with 

those obtained experimentally. As described above, most of the 

analytical solutions are applicable in general for specific configura- 

tions and geometries of the composites. In addition, most of these 

analytical solutions cannot take such factors as the interface effects 

into consideration. Therefore the application of these models is 

limited. The numerical methods which are discussed in the next sec- 

tion do overcome many of the shortcomings of these analytical 

methods. 

Numerical Methods. The analytical methods described in the 

preeeeding section are limited in scope and in general they are ap- 

plicable only to specific and simple geometries. In this regard, nu- 

merical methods such as the finite element method (FEM) appear to 

be attractive because they can be applied to complicated geome- 

tries. 
The finite element form of the equation of motion   of a 

structure at a given instant of time can be written as (24): 

[M](u'} +  [C](u} + [K](u}    =    {Fext} ....13 

where [M], [C] and [K] are the mass, damping and stiffness matri- 

ces of the structure, {u}, (u) and (u) are the vectors of nodal accel- 

eration, velocity and displacement and (Fex[} is the vector of ex- 

ternal nodal loads, respectively. In general, the dynamics problems 

can be classified as shown in Figure 4. 

The methods    for    analysis of damping of structures 

based on eq. 13 can be grouped into four categories : 

1. Direct transient response analysis : This is a means of obtaining 

the time history of the nodal displacement vector {u}. A finite dif- 

ference time marching scheme (24) is used in conjunction with the 

spatial discretization given in eq. 13 to obtain the time history 

of (u). For a given composite structure, effective loss factor can 

be obtained from this time history by determining the time lag be- 

tween an applied nodal load and the displacement response of the 

structure at that node. The entire computation is done in the time 

domain for a particular frequency of the applied external load . The 

loss factor so determined is specific to that frequency. In this 

scheme , establishment of the [C] matrix poses the biggest prob- 

lem. Several approximations are used in order to reduce computa- 

tional effort in the analysis. 
2. Complex eigenvalue analysis (25) : Complex eigenvalue analy- 

sis is computationally much more expensive for the determination 

of loss factors than direct transient analysis. In this method, 

damped natural frequencies of vibration and corresponding mode 

shapes are determined and the effective   loss factors of the com- 



positc can be obtained for each nacural frequency. This analysis 

may be carried out in two ways : 
a. The analysis can be carried out using the homogeneous form 

of the eq. 13. In this approach . the establishment of the [C] matrix 

and the heavy computational cost involved are the main problems . 

and 
b. alternatively, if the properties of the component phases are 

known in complex form, eq. 1, the structural stiffness matrix can al- 

so be established in complex form, i.e., ([Kj] + i[K^}). The [C] 

matrix in the homogeneous form of eq. 13 may then be ignored in 

this eigenvalue analysis. This scheme is also computationally ex- 

pensive. Frequency dependent loss factors can be established 

from the damped natural frequencies . 
3. Direct Frequency response analysis (25) : For a harmonic exter- 

nal nodal load vector, for example {F^} = (UCD)} sinCOt, the 

displacement response, (u), is assumed to be harmonic, i.e., {u) = 

(X) sinCOt. If the stiffness matrix is derived for the structure from 

the complex form of the constitutive properties, as in the scheme 

2b., the eq. 13 can be transformed as : 

[-[M]ur +[^(00)] +i[K2(co)]] {X]   =    (UCD)}  ....14 

where, (X) is the vector of displacement amplitudes and (L(Cu)} 

the vector of nodal load amplitudes. 
The imaginary term in eq. 14 results from the complex 

modulus representation. Direct frequency response analysis, in- 

volving the solution of eq. 14, leads to the determination of vibra- 

tion response amplitude vector {X} as a function of frequency CO. 

This also involves extensive computer time and memory since 

the impedance matrix which is the coefficient matrix of the vector 

{X} in eq. 14 , has to be recomputed for each desired frequency. 

4. Modal strain energy method (25) : This method is normally 

used in conjunction with the modal superposition scheme (24) to 

determine structural response for structures assumed to be damped 

by a linear viscous damping mechanism, for example the Rayleigh 

mechanism. 
Complex eigenvalue analysis belonging to category 2a 

and complex frequency response analysis belonging to category 

3, use frequency dependent moduli in conjunction with a form of 

eq. 13 in which the [C] matrix is ignored. Damped natural frequen- 

cies and loss factors determined by these analyses are quite accu- 

rate . However, since the use of these methods entails great com- 

putational expense, alternate methods were sought and developed. 

Therefore no further consideration is given to categories 2a and 
3 further in this paper. Computation of the [C] matrix is central to 

the analysis of damping of a structure by the methods 1 and 2b. 
Determination of the [C] matrix that correctly represents damping 

of a structure is difficult and the different approaches available to 

do this are considered in this paper. In addition, analysis by cate- 

gory 4 is reviewed as they are attractive from a computational 

point of view. 

The    [C] matrix    in approximate form is    often   ex- 

pressed as a linear combination of [K] and [M] matrices. Such 

methods are called spectral damping methods. In spectral damp- 

ing, viscous damping is represented by ^ which is defined as the 

ratio between observed structural damping c and the critical damp- 

ing c     which corresponds to structural damping that would give a 

nonoscillatory response. The damping ratio is dependent upon 

material, geometry of the structure and vibration frequency. A 

commonly used viscous spectral damping scheme is the Raleigh 

form given by   : 

[C] = a [K] + ß [M] .... 15 

where a and ß are constants determined from the experimentally 

obtained damping ratio in the frequency range of interest. An illus- 

tration of the use of this form of [C] is given by Zabaras and Per- 

vez (26). 
When [C] is represented by Rayleigh viscous damping, 

the damping ratio ^. for the ith mode is given by : 

{cp}jT[C] {cp}i   =   2^. ...-16 

where {cp}- is the ith eigenvector corresponding to CO^ .   For the 

case of forced harmonic vibration of a structure damped by Ray- 

leigh viscous damping mechanism, the three damping measures, 

\y.,   TJ. and   <;., are interrelated as given below : 

y.   =  47tq;  =   2701; ....17 

For this case, damping capacity \|/. is defined as the ratio between 

the energy absorbed in a cycle and the strain energy corresponding 

to the maximum displacement during   the cycle at frequency CO;. 

Similarly, loss factor T^ is defined as the ratio of the energy ab- 

sorbed per radian to the strain energy at maximum displacement 

during the cycle. The above equation may be used even in the 

case of non-Rayleigh damping mechanisms to define an 

'equivalent' Rayleigh damping ratio. 
Here, Zabaras and Pervez (26) used free vibration tests 

to extract damping charactcrestics of laminated composites. Fre- 

quency response and time history tests were carried out Experi- 

mentally determined damping capacities of individual unidirection- 

al laminae were used to determine average loss factors for the ith 

damping mode of the laminated composite structure. The mode 

shapes for the structure were obtained by eigenvalue analysis. 

The modal damping ratios were determined from experimentally 

determined damping capacities. These damping ratios are used 

with the eigenvalues computed earlier to determine a and ß, eq. 
14, for the frequency range. The [C] matrix so determined, eq. 15, 

was used for transient response analysis of laminated plate com- 

posite. Specific damping capacity of the composite obtained for 

different modes as a function of angle of the ply outer most layer 

was compared with experimentally determined values. Reason- 

able agreement was observed for the case where material damp- 

ing was not high.   The Rayleigh approximation cannot be em- 



ployed in applications where the material damping is known to be 

large and for materials in which the viscous damping assumption is 

inappropriate. For the majority of structural materials, damping oc- 

curs by complicated internal friction mechanisms rather than by 

viscous means. 

Realistic damping' behaviour of composite structures ne- 

cessitates the representation of [C] as a nonproportional damping 

matrix. Several investigators (27-29) describe the determination 

of appropriate structural nonproportional damping matrices. The 

general form of the nonproportional damping matrix is : 

[C]   =    a[K]   +ß[M]     + YP] ....18 

The [C] matrix can be obtained if OC, ß and y can be determined . 

Liang and Lee (29) represented the damping matrix, [C], 

as a polynomial of [K] and [M] matrices. Such a representation 

is shown to overcome the disadvantage of Rayleigh damping rep- 

resentation, namely that Rayleigh damping can yield only the nor- 

mal modes of vibration of structure and not the complex modes. 

Some of the earlier attempts to represent nonproportional damp- 

ing are detailedin the references (30-34). 

Lee and Dobson (35) described a way for directly 

obtaining mass, stiffness and damping matrices of a structure 

based on experimental observations. They (35) have developed 

relationships to calculate the matrices from the results of frequency 

response and modal tests. The mass , stiffness and damping matri- 

ces obtained through finite element discretisation of a homoge- 

neous body or of a composite structure may be reduced to match 

the size of matrices calculated from experimental results. The ex- 

perimentally determined matrices (35) could serve two purposes - 

validation of finite element approximations of the damping ma- 

trix and establishment of a damping matrix for subsequent finite 
element analyses. 

Saravanos and Chamis (36) devised a general scheme for 

determination of a structural damping matrix and thereby the mod- 

al specific damping capacity which is applicable to laminated 

beams, plates and shells. They derived a relationship for the deter- 

mination of on-axis damping of a fiber reinforced composite lami- 

na in terms of the properties of fiber and matrix and their volume 

fracions. Off-axis damping was calculated from these on-axis 

composite properties by applying their earlier micromechanics 

derivation (21) which was based on a strain energy method ( total 

strain energy under a given deformation mode is the sum of contri- 

butions from constituent phases). These properties were used to 

formulate local laminate damping capacity. A special triangular mul- 

tilayered laminated composite finite element was developed 

whose element damping matrix is derived from off-axis proper- 

ties of individual laminae. The element damping matrix, [Cj, had 

extensional, bending and extensional-bending coupling contribu- 

tions and was fully populated. The dissipated energy per cycle of 

deformation , AWe, for a plate or shell element in harmonic vi- 

bration was given by 

AWe =   l/2/{ee)
T[g{ee)dA .... 19 

Using the strain displacement relationship, (£ ) = [B ]{u ), 

where [Be] is the strain displacement matrix for the element e and 

(ue) is the corresponding displacement vector, this was be writ- 

ten as : 

AWe  =    1/2 {ue}T[/[B/[g[Be]dA]{ue}    ....20 

Dissipated energy for the entire structure, AW, was obtained by 

assembling the element damping matrices [C, J to get the structural 

damping matrix [£]. The specific damping capacity Vf for the 
structure is given by 

V = AW/W .... 21 

where W is the structural strain energy. Thus, modal specific 

damping capacity was obtained by determining the dissipated 

and total strain energies for the structure from the mode shapes ob- 

tained from an eigenvalue analysis for the undamped natural vibra- 

tions. Finite element analysis was carried out to study variation 

of natural frequency and modal damping capacities as functions of 

laminated composite layup and fiber volume fraction. 

The damping capacities determined by methods similar 

to (36) can be used to determine the loss factor etc. by eq. 17 for 

the case where the Rayleigh damping mechanism is applicable. 

The loss factor so determined are used in conjunction with the 

modal superposition method to obtain the transient response of a 

structure. Details of this method are given by Cook et al (24). 

Johnson and Kienholz (25) applied this method to predict the 

damping behaviour of composites. Here, eq. 13 , which has nodal 

displacements as the degrees of freedom at the nodes, is trans- 

formed into one in terms of generalised coordinates, ex. This is 

done by a transformation whereby nodal displacements at any in- 

stant are given as a linear combination of undamped mode shapes 

{u) = [cp] {a} ....22 

where [cp] contains all the mode shapes {tp} ■ of the undamped struc- 

ture, and [a] thus represents a vector of "coefficients". This 

method thus involves the determination of the undamped mode 

shapes of a structure as a first step. When the transformation eq. 

22 is substituted into eq.(13), the transformed equations are un- 

coupled for each mode provided a lumped mass formulation is used 

and the damping matrix is proportional to mass and stiffness. The 

typical decoupled equation for the rth mode is : 

ctr  +T|(r)corar +wf
2ar   =    lf(t) ....23 

where T]"' is the loss factor of the structure in the rth mode . This 

loss factor  is calculated by the modal strain energy method from 



the loss factors of the component phases or by the procedure of 

(36) outlined earlier. If V^ is the strain energy in the structure cor- 

responding to the rth undamped mode , V ^' is the energy dissi- 

pated in all the viscoelastic phases of the structure and 1\v is the 

loss factor of the viscoelastic phases, then Ty-7' is given by : 

T1W=  Tlv[Vv
(r)/V«] ••■•24 

This method is computationally much less expensive than the com- 

plex eigenvalue analysis and the complex frequency response analy- 

sis described earlier as it entails the computation only of normal 

(undamped ) modes of the structure. However, the Rayleigh damp- 

ing approximation assumed for reducing computational cost al- 

lows it to be used only for lightly damped structures. Moreover, 

calculation of modal strain energy V^ from the undamped mode 

shapes involves the use of frequency independent moduli for all the 

component phases (25). While this frequency independence is a 

valid condition for elastic materials, the storage moduli of vis- 

coelastic materials are known to be functions of frequency. This 

problem was rectified (25) by empirical corrections to the com- 

puted loss factors depending on the geometry of the composite 

structure. Sandwich beams and rings and plate configurations for 

which analytical or other approximate solutions are readily avail- 

able were modeled by the strain energy approach using 

MSC/Nastran . Modification of modal loss factors (25) with ap- 

propriate empirical corrections yielded results that were found to 

be close to those obtained by more expensive methods such as 

eigenvalue analysis. Several investigators have applied the modal 

strain energy method to different composite modeling problems 

(37-39). 
Kubomura (40) reported another way of dealing with 

nonproportional damping. When damping is nonproportional, the 

second order equations of motion, eq. 13 , do not get uncoupled 

when transformed into modal coordinates. So, the second order 

equations are converted into first order equations for nodal veloci- 

ties. From the decoupled modal equations thus obtained , modal co- 

ordinates, and subsequently velocities, are solved for. These so- 

lutions were used to synthesize solutions for problems with three 

different boundary conditions (40). 

The various methods discussed so far arise from the con- 

text of eq. 13. Conventional methods, in dealing with eq. 13, 

need some simplifying assumptions like proportional damping be- 

haviour in order to reduce complexity of the problem and to en- 

hance computational efficiency. There have been attempts to 

model structural damping which were not based upon eq. 13 . 

Outside the context of eq. 13, special composite finite 

elements have been formulated that incorporate the overall vis- 

coelastic response of the composite. Lin and Hwang (41) started 

by expanding an existing functional for viscoelastic materials to 

include nonisothermal effects. They incorporated the integral 

form of the linear , time and temperature dependent viscoelastic 

constitutive equation in the functional and minimised it  to obtain 

the equilibrium equations for an element. The constitutive equa- 

tion was that of single fiber reinforced lamina. Based on the above 

equation for a single ply, a multi-ply finite element was developed 

whose stiffness matrix was defined in terms of the constitutive 

functions of the individual plies. The global finite element equa- 

tions assembled from element stiffnesses is of the form 

/[K]{u]dt        = {Fcxt} ....25 

The integration in the equation was done by approximate means. 

As can be seen from eq. 25, this method did not include material in- 

ertia effects and was used to obtain time dependent stress- strain 

fields in alminated composite. However, by appropriately expand- 

ing the functional , material inertia effects may also be included so 

that the equations developed can also be used to study dynamic 

problems. 

Douven et al (42) presented another constitutive equa- 

tion for unidirectional fiber composite plates where both fiber and 

matrix were considered viscoelastic. The viscoelastic relaxation 

function in the constitutive equations were obtained from those of 

the fiber and matrix using micromechanical analysis based on the 

Hashin and Rosen model. Dynamic finite element equations were 

derived for an element utilizing the above constitutive equations. 

This finite element formulation was used to obtain the effect of fi- 

ber orientaion on the evolution of stresses in a membrane structure. 

This formulation could also be used to determine loss factors for 

such membrane structures. 

The form/ structure of eq. 13 has been criticised as be- 

ing incapable of providing a macroscopic representation of the ac- 

tual microscopic material damping mechanisms over a broad fre- 
quency range (43). Lesieutre and Mingori (43) outlined a new ap- 

proach for modeling the internal dissipation in a material which is 

based on the augmenting thermodynamic field concept. This ap- 

proach is illustrated below for the case of longitudinal vibrations 

in a rod. Energy dissipation in the material of the rod was char- 

acterised by an internal field variable £(x). The coupling between 

the internal field £(x) and the displacement field u(x) in the material 

was given by 8, a material property. The £(x) was related linearly 

to an affinity factor A through a. The helmholtz free energy densi- 

ty in the body was defined as : 

f = 1/2E62 - 5eC + l/2a(;2   26 

where E is axial Young's modulus and e is strain . 

The material constitutive equations were given as 

a =Ee-5£ 
and 

A = 8e- a C, .... 27 a, b 

where <J is the stress field in the rod. 

The equations for evolution  of the field variables were 

p'u -E u"   = -5 C,' 

t  +BC,   = (Bd/a)u' .... 28 a. b 

where B is a relaxation constant. Under appropriate conditions. 
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the governing equations represent the dissipative nature and the 

solution is dependent on initial conditions. The approximate 

damping ratio was determined    to be    frequency dependent and 

given as 

c,   =   l/4(52/Ea)(2(co/B))/(l+(co/B)2) ....29 

The above frequency dependence was found to be closer to ob- 

served levels for several microstructural damping mechanisms. 

' From the governing evolution equations, a coupled finite element 

formulation was derived and the associated eigenvalue problem 

was solved for the natural vibration frequencies and modes of the 

rod. A coupled finite element formulation was derived using eqs. 

26, 27 and 28 with u and dCjdx as independent variables and the 

0 corresponding eigenvalue problem was solved . System equations 

were also derived for transverse vibration of a beam and for vibra- 

tion of a planar space truss and the eigenvalue analyses carried out. 

In a further relatively unconventional attempt to model 
damping of laminated plates, Ba and He (44) formulated a new 

finite element based on the asymptotic solution method for har- 

• monic flexural vibrations of viscoelastically damped sandwich 

plates. The formulation of the finite element equations was based 

on the discrete kirchoff thoery. This formulation was then appro- 

priately transformed for eigenvalue analysis. The finite element 

equation formulation assumed only elastic behaviour. Viscoelas- 

A tic behaviour was introduced into the equations for eigenvalue 

analysis through the correspondence principle. Complex frequen- 

cies and mode shapes were determined through the analysis. They 

(44) reported that these complex characteristics are more accurate 

than those obtained from the modal strain energy method. Even 

though this approach (44) improved accuracy it appears that it is 

4fr applicable only to simple plate geometries. Its application to lam- 

inated plate composite structures has not been studied. 

The relative advantages and disadvantages of the four 

common techniques of numerical analysis of damped structures may 

be summarised as follows . The direct transient response analysis 

scheme is most appropriate for determining composite structural 

response in the time domain and also to determine composite loss 

factor for different frequencies. Since this employs an approxi- 

mate time integration scheme based on finite difference method in 

the time domain, it is relatively inexpensive. However, character- 

ization of the damping of the composite structure through an ap- 

A propriate [C] matrix poses the greatest problem in this case since 

realistic material damping would have to be represented by a non- 

proportional damping matrix. Nanavaty and Ankem [45] used the 

direct transient response analysis method to study the damping be- 

haviour of paniculate composites and unidirectional fiber com- 

posites loaded in the transverse and longitudinal directions. Cos- 

™ mic/Nastran finite element analysis package was used for this 

study. This code approximates the damping matrix as the sum 

of linear functions of the element stiffness matrices, each of the ele- 

ment stiffness matrices   being expanded to global dimension prior 

to summation (46). Predicted loss factors were found to be con- 

sistent with the experimental trends obtained by various investi- 

gators for continuous fiber composites. A typical mesh used by 

Nanavaty and Ankcm (45) is shown in Figure 

5. 
The complex eigen value analysis (47) based on the 

complex moduli can predict loss factors and damped mode shapes 

accurately but is computationally expensive. This is also true of 

complex frequency response analysis. For both these schemes, es- 

tablishment of frequency dependent complex moduli is very im- 

portant. Experimental methods for the establishment of viscoelas- 

tic constitutive behaviour and frequency dependent moduli are 

well established (48-54). 
The modal strain energy method in conjunction with the 

modal superposition method is inexpensive but as outlined 

above, there are problems associated with this and may not be ap- 

plicable in its present form to determining the damping behav- 

iour of structures with high damping. 

Modeling of Active Damping 

Increasing the passive damping of composite structures 

through optimisation of the component phases may not be suffi- 

cient for instances involving large vibrational deformations. Such 

instances include vibration control in large space structures ( eg., 

satellite antennae), aircraft structures and helicopter rotor blades , 

buckling prevention in plates and fatigue damage reduction (55, 

56). In addition, enhancement of passive damping may require 

compromising in the stiffness and strength requirements of a 

structure. For these cases active damping has to be considered . 

In the active damping technique energy is infused into a structure 

only at the desired point of time for suppression of vibrational de- 

formation. The actively damped structure has to be part of an 

"intelligent" or "smart" system that integrates sensing of deforma- 

tion, actuation ( infusion of energy into the structure) and control 

of actuation. 
Sensing and actuations have to be done without altering 

structure properties significantly and adversely. Piezoelectric ma- 

terials, optical fibers and magnetostrictive materials are suitable 

for sensing applications. Actuation may be achieved by use of 

shape memory alloys , piezoelectric materials and magnetostric- 

tive materials. 
The application of piezoelectric materials for active vi- 

bration control has been widely studied experimentally (55, 57- 

59) and modeled analytically (57) and numerically using FEM (55, 

60-63). 
The finite element equations for the analysis of compos- 

ite structures containing piezoelectric actuators may be derived 

from variational principles (60-62) or by using Hamilton's princi- 

ple (63). Modeling studies have so far been done on simple config- 

urations such as plate, beam and simple truss structures. While the 

numerical models developed so far for simple applications    have 
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withstood the test of experiments, application of these models to 

complicated, highly integrated smart systems depends on the de- 

velopment of numerical techniques for coupling the control problem 

to the structural analysis problem and on the development of effi- 

cient control algorithms (56). 

Magnetostrictive materials of high force and actuation 

capability are of recent development Terfenol - D , a rare earth 

iron alloy containing terbium and dysprosium is the material that 

produces highest magnetostriction. However, it has not been as 

widely studied experimentally in active damping control applica- 

tions as piezoelectric materials have been. One reported example 

of the application of magnetostrictives to active damping is the 

use of Terfenol-D as the legs of an optical table (64). Vibrations of 

the table top are actively damped off by appropriate bending of 

the terfenol legs. Magnetostriction properties i.e., the actuation 

strain versus applied magnetic field, are nonlinear and sensitive to 

manufacturing conditions, applied bias magnetic field and pre- 

stress. It is probably due to this complexity that the coupled mag- 

netomechanical effect has not been modeled, by FEM or analytical 

methods, in the context of applications to damping of structural 

vibrations as much as the electromechanical effects. 

Shape memory alloys (SMA) provide high force large 

strain actuation but have poor frequency response. Their inherent 
hysteretic nature provides additional passive damping. SMAs 

have great potential for applications to damp low frequency vibra- 

tions in large structures. Special materials and analytical models are 

being developed with space applications in view (65). 

Active damping or vibration control of structures is a rel- 
atively new area of research with enormous scope for numerical 
and analytical model building. 

Future Developments 

In the view of the authors, great scope for future work ex- 
ists in four areas in regard to modeling of damping behaviour of 
composites. 

The first area relates to the modeling of the damping be- 
haviour of paniculate composites. Modeling of paniculate com- 

posites requires a three dimensional approach. Effect of particle 

morphology, distribution and volume fractions needs to be system- 
atically studied. 

The second area is related to interface effects. Interfaces 
or interphases between component phases in a composite are very 

important features that affect overall composite behaviour. Inter- 

phase may represent coatings on the fiber or particles, chemical in- 

terdiffusion zones, weak layers of imperfect bonding between 

phases or inelastic regions in metal matrix composite. Interphases 

usually behave in a viscoelastic manner even if parent phases are 

elastic. Interphases give rise to three dimensional stress states at 

the junction with matrix or fiber. Effect of interface on damping 

properties has been studied using simple analytical models for sim- 

ple geometries based on the force balance and energy balance ( for 

example, 66). Also, simple interface / interphase models are avail- 

able (67,68) . However, future developments in this area are ex- 

pected to include the nature of the interphases and interfaces in nu- 

merical and analytical models in three dimensional analysis. 

The third area of future interest is related to the estab- 

lishment of methods for identification of realistic nonproponional 

damping matrices for use in finite element structural models. 

The fourth area is related to the modeling of active damp- 

ing. While the finite element formulation for piezoelectric materi- 

als embedded in a composite structure have been established, its 

applicability has to be tested for large scale complicated struc- 

tures. The effect of interfaces also needs to be incorporated. For 

structures incorporating magnetostrictive materials or shape mem- 

ory alloys, deformation models need to be established that couple 

the magneto-mechanical and thermo-mechanical effects, respective- 

ly- 

Summary 

In regard to modeling of passive damping , in general, an- 

alytical methods can be applied only to relatively simple geome- 

tries and composite configurations. Even for simple cases, analyti- 

cal methods developed are usually specific to geometry and config- 

uration. However, numerical methods, especially FEM, have the 

potential for application to arbitrary composite geometry and 

configuration and arbitrary loading conditions. 

Active damping can enhance damping capability signifi- 
cantly without affecting the other properties of the structure. Mod- 

eling of active damping poses the challenge of coupling the mechan- 

ical field with the electrical, thermal and magnetic fields. 
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Abstract 

To design composite materials with high intrinsic damping, it is 
essential to understand the effect of volume percent and morphology 
(size, shape, orientation and distribution) of the component phases 
on the damping behavior. Available analytical solutions are primarily 
concerned with specific morphologies and thus cannot predict the 
result of a change in the morphology of the component phases even 
though they account for volume percent effects. In this 
investigation the Finite Element Method (FEM) has been used to 
predict the effect of both volume percent and morphology of phases 
on the damping behavior of Epoxy-Aluminum composites. It was 
found that the loss factors of composites with Al or Epoxy fibers 
perpendicular to the loading direction are much higher than those 
with fibers parallel to the loading direction. This was attributed to 
the constrained deformation in the latter case. Furthermore, the loss 
factors of composites with particles of Al or Epoxy depending on the 
volume fraction, were found to be in between those of parallel and 
perpendicular fibers. It was also found that the loss factors do not 
decrease linearly with the volume fraction of aluminum. In addition, 
for a given volume percent of phases, the loss factors were found 
to be higher for coarse particles. This was attributed to the ability of 
the high damping phase to deform relatively independendy. In 
addition to the loss factors, stress distributions were also determined 
and the stresses were found to be higher in Al which has higher 
Youngs modulus. 

Introduction 

Internal friction or damping is the ability of the material to 
absorb vibrational energy. In many applications, high damping is 
needed to reduce unwanted vibrations and acoustic noise. 
Composites are attractive for such applications because they can be 
designed suitably, by proper combination of phases. To optimize 
their damping behavior, it is necessary to understand the effects of 
various factors including volume fraction, size, shape, orientation 
and continuity of phases on overall damping of the composite. In 
this regard there is a lack of understanding. Analytical solutions 
available to date [1,2,3] are primarily concerned with specific 
morphologies and thus cannot predict the result of a change in the 
damping behavior with change in morphology of phases, even 
though they cannot account for volume percent changes. In this 
regard, the FEM seems to be a viable method for such studies [4-7]. 
Recendy FEM has been successfully used to study the stress-strain 
[5,6] and damping behavior(7] of composites. The aim of this 
investigation was to systematically study the damping behavior of 
Epoxy/ Al composites by varying the size, volume fraction and 
morphology of the constituent phases with FEM. 

When a harmonic stress is applied to a material, in the steady 
state, the corresponding strain lags behind the stress by an angle a. 

The stress-strain relationship can be expressed in complex form: 

where: 
O = EV 

a=aQexp[i(üX + a)] 

e*= eQ exp (icot) 

■d) 

(2) 

(3) 

with a   and e   being the amplitudes of the respective stress and 

strain cycles, and CO the angular frequency. The complex modulus 
is given by 

E* = E exp(ia), i.e., E* = E(cos a + isin a) (4) 
where E is the absolute modulus which is equal to <5<J E0. This can 

be written as 
E*=E'+iE" (5) 

where 
E* = E cos a (6) 

E"=E sin a 
i.e., E* = E'(l+iTl) (7) 
where r\ is the loss factor. The loss factor r\ is given by the ratio 
E"/E' which in turn is equal to tan a. Therefore, the phase lag 
between the stress and strain gives a measure of damping. 
Hashin[8] developed a theory to predict damping of reinforced 
composites from the properties of component phases. 

^^Vf^En^ + d-VfXE^En)^ (8) 

where Vf is the fiber volume fraction, Enis the axial elastic 

modulus of the composite and Ef.cpf, Em, cpm are the elastic moduli 
and damping of the fiber and matrix, respectively. From Hashin 
[8], the complex longitudinal Youngs modulus of the composite in 
the fiber direction can be written as: 

E*compo = VfEVVmE*m « 
where E^ropo is the complex moduli of the composite, Vf and Vm 

are the volume fractions of the fiber and matrix, respectively, given 
by E* f and E* m are the complex moduli of the fiber and matrix 

respectively and where 
E*f = Ef coscif + i Ef sinctf (10) 

and 
E*m = Emcosam + iEmsinam (11) 

Substituting equations 10 and 11 in equation 9, we get: 

E*compo = ^f % cosaf + Vm ^nfosam> + 

ifVfEfsinaf+VnjEnjSinOjn)       (12) 
From the above equation, the loss factor for the composite can be 
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written as: 
tan a = Imag (E*compo)/ Real (E*compo) (13) 

which  from equation 12 can be derived to be: 
tan a = (Vf Ef sinctf +Vm Em sina,^ + 

(Vf % costtf + Vm EjjjCosOn,) (14) 
Equation 14 is used to calculate loss factors for a composite with 
parallel fibers and these are compared with loss factors computed 
using FEM. 

Procedure 

The NASTRAN computer program [10] which is based on 
FEM principles was used in the present investigation. NASTRAN 
rigid format number 9, Direct Transient Response Analysis, was 
used to predict the damping behavior of the composites. This 
solution sequence of NASTRAN uses the following force balance 
equation: 
(Inertial Forces) + (Viscous Forces) + (Spring Forces) 

= (Applied Force) 
The inertial forces are given by mass times the acceleration, Mx, the 
viscous forces are given by Bx where B is the viscous damping 
coefficient and the spring forces are given by Kx where K is the 
stiffness. The above equation can be written as: 

Mx + Bx + Kx = F (15) 
This equation can be written as follows using the derivative operator 

[Mp2 + Bp + Kp] (x) = [F] (16) 
where [M] is the Mass matrix, [B] is the damping matrix, [K] is the 
stiffness, (x) is the vector of displacements, [F] is the vector of the 
applied forces, and p = d/dt. The load is applied in the form of: 

F = Asin(2icft) (17) 
where A = 0.75 lbs (0.341 Kgs)., f= 1 Hz. 

The FEM procedure employed in this land of investigation is 
similar to that used earlier [7]. To study the effect of morphology, 
i.e., to compare fibers with particles, several FEM meshes were 
prepared with 25, 50 and 75 % vol. of aluminum and load was 
applied in plane as shown in Figs. 1 and 2. A typical mesh with 50 
volume % fibers parallel to the loading direction is shown in Fig. 1 
and another mesh with perpendicular fibers is shown in Fig. 2. 
Meshes with fine particles (size corresponding to those shown in 
Fig. 3, but under in plane loading conditions) were also prepared but 
they are not shown here. In plane loading was used primarily to 
compare the FEM calculated results and Hashins theory for the 
parallel fibers where the agreement was found to be excellent. 

To predict particle size effects, FEM meshes with different 
volume % aluminum were made with three different particle sizes for 
each volume fraction. A typical mesh corresponding to fine particle 
sizes of aluminum (or epoxy) with 50 volume % of each phase is 
shown in Fig.3. The corresponding mesh with coarse particles is 
shown in Fig. 4. It is to be noted that for the particle size effect 
study, the load was applied perpendicular to the plate as shown in 
Figures 3 and 4. This loading was selected because this is how 
experimental work is normally carried out by various investigators to 
measure the damping of composites. In addition to calculating the 
loss factors of various composites, stress distributions and the 
corresponding displacements along a given section, such as that 
denoted as 1-1' in Fig. 3, were also calculated. 

Results and Discussion 

The loss factors calculated for the perpendicular and parallel 
fibers and for fine particles where the load was applied in the plane 
of the plate, as shown in Fig. 1, are shown in Fig. 5. It is to be 
noted that the loss factors obtained for parallel fibers are very close 
to those obtained by Hashin's theory [8,9]. This close 
correspondence appears to be related to the fact that the assumptions 
made in both the analyses are similar. This close correspondence 
also confirms the accuracy of the FEM method employed in this 
investigation. Observation of Fig. 5 indicates that the damping 
behavior of composite materials cannot be predicted by the simple 
law of mixtures.   For a given volume fraction of phases, the 
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Fig.  3 
composite, 

FEM  mesh  used   lo  determine  the  loss  factor of epoxy-50  vol.*   Al 
with fine aluminum particles 

damping of the composite with parallel fibers is much lower than 
that of perpendicular fibers. This appears to be related to the fact 
that in the former case the component phases are constrained to 
undergo the same amount of deformation in the direction of loading. 
This constraint comes from the way the composite is pulled or 
deformed. Because of the constraint, the phase with high damping 
is not free to damp to the extent it can under a given load. However, 
in the case of perpendicular fibers, i.e., when the fibers are 
perpendicular to the loading direction, the situation is different. 
Here, for a given loading condition, the component phases can 
deform relatively freely and hence can damp relatively freely 
resulting in higher overall damping of the composite. It is extremely 
important to note that this does not mean that the damping of 
composites may be calculated by the law of mixture rule using the 
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Fig.   4   :   FEM   mesh   used   to  determine   (he  loss  factor  of cpoxv-5ö   vul.%   Al 
composite, with coarse aluminum particles 

constant stress assumption [12,13]. As Fig. 5 clearly indicates, the 
loss factors calculated using the correspondence principle and 
constant stress assumption are much higher than those calculated 
using law of mixture. The loss factors of composites with fine 
particles are in between those of perpendicular and parallel fibers. 
This is due to the fact that the constraints for this condition are less 
severe than those for parallel fibers and more severe than those for 
perpendicular fibers. 

The loss factors corresponding to the study on particle size 
effects with perpendicular loading are shown in Fig.6. The relative 
particle sizes are indicated at the bottom of this figure. For a given 
volume fraction, as the particle size decreases, the interface area for 
unit volume increases and so also the constraints. This in turn 
results in lower damping because the high damping component 
phase cannot damp/deform relatively freely. As shown in Fig. 6, the 
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damping of the composite decreases with decrease in particle size. 
This trend is true for all of the volume fractions of aluminum 
considered in this investigation. 

As mentioned earlier, in addition to calculating the loss 
factors, the stress distributions and displacements were also studied. 
Stress distributions along section 1-1' of Fig. 3 are shown in Fig. 7. 
As expected, the stresses were found to be non-uniform. The 
stresses were higher in aluminum which has a higher modulus than 
in epoxy. It is to be noted that most of the analytical solutions 
cannot predict such stress distributions which are of importance in 
understanding the failure behavior of composites under dynamic 
loading conditions. 
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Conclusions 

1. A two dimensional FEM method was employed to determine the 
damping behavior of various Epoxy-Al composites, with different 
volume percents and morphologies of phases. The quantities 
determined included loss factors, stress distributions and 
displacements. 
2. The loss factors of composites with Al or Epoxy fibers 
perpendicular to the loading direction were found to be much higher 
than those for parallel fibers. This was attributed to the constrained 
deformation in the latter case. The loss factors of the composites 
with fine particles of Al or Epoxy were found to be in between those 
of parallel and perpendicular fibers. This was attributed to the fact 
that the particles are neither completely free nor completely 
constrained to undergo independent deformation. 
3. It was found that the loss factors do not decrease linearly with the 
volume percent of the second phase. For paniculate composites, the 
loss factors are much lower than what one would expect by the law 
of mixtures. The actual decrease depended on particle size of the 
phases. 
4. For a given volume percent of phases, the loss factors with 
coarse particles were found to be higher. This was attributed to the 
ability of the high damping phase to damp relatively independently at 
regions inside the phase. 
5. In general, at any given time, the stresses in the suffer Al phase 
were found to be higher. This was attributed to the constrained 
deformation of the commonly shared interfaces, resulting in higher 
stresses in Al. 

Fig. 6 : Efrect of volume percent of aluminum on the toss factors of the epoxr- 
atuminmum composites 
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The Effect of Volume Percent and Morphology of Phases jn 
the Damping Behavior of Epoxy/Aluminum Composites 

JYOTHI G. RAO and SREERAMAMURTHY ANKEM 

In this investigation, the finite element method (FEM) has been employed to predict the effects of 
volume percent and morphology, including size, shape, and continuity of phases, on damping be- 
havior of epoxy/Al composites. It is shown that for a given volume percent of phases, the loss factor 
of the composite increases with an increase in particle size. The effect of matricity was obtained by 
selecting a composite with 50 vol pet of each phase and arranging, in one case, aluminum as the 
particle phase and, in the other case, aluminum as the matrix phase. The loss factor obtained for the 
former was found to be much higher. This was attributed to the ability of the epoxy phase when it 
is in the form of matrix to damp/deform relatively freely. The normal stress distributions and two- 
dimensional (2-D) hydrostatic stress distributions were also predicted. In general, the stresses were 
found to be higher in the suffer aluminum phase and the stress gradients were found to increase 
with an increase in particle size for a given volume percent of phases. The 2-D hydrostatic stresses 
were also found to be higher in the stiffer aluminum phase and the stress gradients were found to 
increase with an increase in particle size as well. 

I.    INTRODUCTION 

THE damping capacity of a material is the ability of the 
material to dissipate vibrations by converting the vibra- 
tional energy into other forms of energy. In metallic sys- 
tems, this energy dissipation occurs by the release of heat, 
which is caused by internal friction across the specimen. 
Polymeric materials have high damping capacity, usually 
more than an order of magnitude greater than structural 
metallic materials, but in general, they have low stiffness. 

Composites are a class of materials whose properties can 
be tailored according to specific requirements by varying 
the component phases. For many applications, the goal is 
to obtain high damping with reasonable stiffness. In com- 
posite materials, there are numerous methods of energy dis- 
sipation, such as by viscoelastic response of the material 
constituents in polymer systems, thermoelastic conversion 
of mechanical energy into heat, friction at the fiber-matrix 
or particulate-matrix interface, and from the absorption of 
vibrational energy during microplastic deformation of the 
particle itself. The nonhomogeneous characteristics of the 
composite give rise to damping due to the resulting stress 
variations across the interfaces. The problem of low stiff- 
ness can be overcome by reinforcing polymers with rigid 
particulates or fibers resulting in optimal damping and stiff- 
ness. 

The present study involves the damping behavior of fiber 
and particulate epoxy/Al composites. The damping behav- 
ior of such a composite depends on complex interplay be- 
tween the properties of the individual constituent phases: 
the resin, the filler, and the interfacial phase. The loss factor 
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of a composite is affected by a number of parameters, such 
as size, shape, aspect ratio, distribution, adhesion between 
phases, and continuity of the phases. Most of the analytical 
solutions available are concerned with specific geometries 
and are not suitable to predict the damping behavior of 
composites as a function of these morphological factors. In 
this study, the finite element method (FEM) has been em- 
ployed to study the damping behavior of the epoxy/Al com- 
posites as a function of particle size, morphology, and 
volume percent of the phases. 

n.   TECHNICAL BACKGROUND 

Damping capacity of a material can be meas- 
ured/characterized in a number of ways. Damping is meas- 
ured either during free decay or during continuous driving 
force, at a given frequency and strain amplitude. The sim- 
plest experiment to measure damping involves a cantilever 
beam which is excited or loaded into its fundamental mode 
of vibration by an external force. The damping capacity can 
be measured in a number of ways, one of which is loss 
factor. This is described subsequently. 

The modulus of a viscoelastic material is expressed as a 
complex quantity. When a harmonic stress is applied to a 
material in steady state, the corresponding strain lags be- 
hind the applied stress by an angle <b. The loss factor is 
given by the tangent of the phase angle, <f>, between stress 
and strain. The stress-strain relationship can be expressed 
in a complex form as 

where 

and 

a* = £*£* 

a* = cr0 exp [i(cot + <f>)] 

[1] 

[2] 

s* = £o exp (iwt) [3] 

with a-o and &> being the amplitudes of the respective stress 

METALLURGICAL AND MATERIALS TRANSACTIONS A 
VOLUME 26A. MONTH 1995 



2.2- 

0.00 

•    CONSTANT STRESS 

O    CONSTANT STRAIN 

 1 ' I •——! ' I  
20 40 SO 80 

VOLUME PERCENT ALUMINUM 
100 

Fig. 1—Comparison of loss factors of epoxy/Al composites obtained by 
using the analytical equations based on the assumptions of constant strain, 
parallel fibers and constant stress, perpendicular fibers. 

and strain cycles and co the angular frequency. The complex 
modulus is 

or 

E* = E exp ((<£) 

E* = E + iET 

[4] 

[5] 

where E is the storage modulus representing strain energy 
and E" the loss modulus representing the energy dissipated 
in the material. The loss factor 77 can be derived from the 
preceding equation, is given by the ratio of E'/E, and is 
equal to tan<t>. Therefore, the phase lag between the stress 
and strain gives a measure of damping. 

There are a number of analytical solutions available for 
specific geometries, e.g., for the Voigt structures, where the 
continuous fibers are parallel to the loading direction. 
Hashin(U1 obtained the loss factor of the composite with 
Voigt structure in terms of the loss factors of the individual 
phases. The solution is as follows: 

VrErsm<i>r+ VF   sin*„ 
V = 

"/£>/• 

VfEf cos*/ + VmEm cos#m 
[6] 

where Vf2R& ^are the volume fraction and elastic modulus 
of fibers, respectively, and Vm and E„ are the volume frac- 
tion and elastic modulus of the matrix, respectively. Simi- 
larly, for the Reuss structure, where the continuous fibers 
are perpendicular to the loading direction, and with the cor- 
respondence principle, the loss factors of the composite 
have been obtained, and this relation is shown:13'41 

_ niVE2 + r^g, + V T^g, + vSvtVE, 
V VZE, + VXE, + TJ.^E, + tfVE, L J 

where rju Vx, and £", are loss factor, volume fraction, and 
elastic modulus of phase 1 and TJ2, V2, and£", are loss factor, 
volume fraction, and elastic modulus of phase 2. From 
these two equations, the loss factors of the epoxy/Al com- 
posites with continuous fibers have been calculated and are 
shown in Figure 1. It can be seen that for a given volume 
percent, the loss factor of the composite with Voigt struc- 
ture is much lower than the Reuss structure. To a first ap- 

proximation, these two curves can be treated as the lower 
bound, constant strain and upper bound, constant stress, re- 
spectively. In addition, a number of analytical solutions are 
available1*1 for very specific geometries. However, most of 
the solutions cannot predict the change in the loss factor of 
a given composite as a function of the morphology of the 
phases, such as particle size, distribution, and continuity of 
phases. In this regard, the FEM method appears to be very 
effective'3'61 and has been used in the present study. In ad- 
dition to predicting the loss factor of the composite, FEM 
can also predict the local stress distributions. The FEM pro- 
cedure employed in this investigation is described in Sec- 
tion III. 

III.   DESCRIPTION OF FEM PROCEDURE 

As mentioned previously, the FEM method has been 
used to predict the damping behavior of epoxy/Al compos- 
ites as a function of volume fraction and morphology of 
the phases. The ANSYS computer program,'71 which is 
based on FEM principles, has been employed. 

The direct harmonic response analysis was used to pre- 
dict the damping behavior of the composite. The time-de- 
pendent equations of motion for linear structures undergo- 
ing steady-state vibration are solved to obtain the damping 
matrix and subsequently the loss factor. The following as- 
sumptions and restrictions are imposed on the analyses: 

(1) the entire structure has constant stiffness, damping, and 
mass effects; and 

(2) all loads and displacements vary sinusoidally at the 
same known frequency but might not be necessarily in 
phase. 

The following force balance equation is used for the cal- 
culations: 

(inertial forces) + (viscous forces) + (spring forces) 
= (applied forces) 

The preceding equation can be written as 

[Afl{fi} + [q{u} + [K]{u} = {¥} [8] 

where [M], [C], and [K] are the mass, damping, and stiff- 
ness matrices of the structure, respectively; {ü}, {ü}, and 
{u} are the vectors of nodal acceleration, velocity, and dis- 
placement, respectively; and {F} is the vector of external 
loads. 

For FEM modeling, a plane stress cantilever type beam 
geometry has been assumed. Figure 2 is a representative 
FEM mesh used for the present study of epoxy/Al com- 
posites. The edge BC is clamped, and before the load is 
applied, the nodes at the edge BC have zero displacement. 
The entire beam is divided into a number of elements, and 
each element has four nodes. The force is applied to the 
right edge BC, and the nodes on the edge BC are con- 
strained in such a way that all of them are forced to deform 
to the same extent. The darker elements represent Al, and 
the lighter elements represent the epoxy. The material prop- 
erties for Al and epoxy are given in Table I. The length, 
breadth, and thickness of the beams were 0.19, 0.095, and 
0.0203 m, respectively. A load of 40.08 N was applied 
along the x direction for all of the meshes at a vibration 
frequency of 1 Hz. 
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(6) 
Fig. 2—FEM meshes with 50 vol pet of epoxy and 50 vol pet of aluminum 
composite: (a) parallel fibers and (£) perpendicular fibers. The lighter 
phase is epoxy, and the darker phase is aluminum. 

Table L Input Parameters of Aluminum and Epoxy 

Material 

Elastic 
Modulus                           Density 

(Pa)        Loss Factor    (Kg/m3) 
Poisson's 

Ratio 

Aluminum 
Epoxy 

6.9 X IO10       0.001           2700.0 
6.9 X 10»        0.100           1194.2 

0.34 
0.34 

The necessary constraints should be specified so that the 
program can recognize the nodes with the different degrees 
of freedom and accordingly arrange them into the master 
and slave nodes. In the ANSYS program, Eq. [8] is solved 
by means of Gaussian elimination and the Guyan method 
to obtain the damping matrix. Various meshes were pre- 
pared corresponding to the different volume percents of the 
phases, particle size, shape, and continuity of the phases. 
Some of the meshes used are shown in Figures 2 through 
5. 

The volume percent of the aluminum was varied from 
12.5 to 87.5, with an increment of 12.5 pet of aluminum. 
The meshes corresponding to 50 vol pet of aluminum in 
the form of continuous fibers are shown in Figure 2. Figure 
2(a) corresponds to the Voigt structure, and Figure 2(b) 
corresponds to the Reuss structure. The other meshes cor- 
responding to 25 and 75 of aluminum for both of these 
configurations were also carried out but are not shown here. 

The shape effect is studied by keeping the second phase 
in the form of particles, as shown in Figure 3. The meshes 
in Figure 3(a) through (c) correspond to 12.5, 50, and 87.5 
vol pet aluminum, respectively. Calculations were also per- 
formed with other volume percents of aluminum but are 

(«) 

Fig. 3—FEM meshes with different amounts of second-phase particles: 
(a) 12.5 vol pet of aluminum particles in the epoxy matrix. (6) 50 vol pet 
of aluminum and 50 vol pet of epoxy particles, and (c) 12.5 vol pet of 
epoxy particles in the aluminum matrix. Note each particle has four 
elements. 

Fig_ 4 FEM mesh consisting of medium-sized particles, SI elements per 
particle, with 50 vol pet of each phase. 
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Fig. 5—FEM meshes used to determine the effect of continuity of phases: 
(a) 50 vol pet aluminum panicle in the epoxy matrix and (£>) 50 vol pet 
epoxy panicle in the aluminum matrix. 
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Fig. 6—Comparison of loss factors of epoxy/Al composites with 
continuous fibers obtained by analytical solutions based on the constant 
strain and constant stress assumptions with those obtained by FEM. 

not shown here. It should be noted that when aluminum is 
less than 50 vol pet, it is in the form of particles, and when 
it is greater than 50 vol pet, it is in the form of the matrix. 

The particle size effect was studied by varying the rela- 
tive particle size to be 18 times that of the smallest size. 
The size of the particles is increased by increasing the num- 
ber of elements within a particle (note: element size is fixed 
for all particle sizes). The smallest particle contains one 

element per particle (not shown here), and the largest pai 
tide contains 324 elements per particle (also not show 
here). Figure 4 shows the mesh for a medium-sized panic! 
with 81 elements in each particle, where the aluminum cor. 
tent is 50 vol pet. The meshes corresponding to other in 
termediate sizes and volume percents are not shown her 
to minimize the number of figures. 

To study the effect of matricity for a given volume per 
cent of the phases, in one case, epoxy was made as th 
continuous phase and, in the other case, the aluminum wa 
made as the continuous phase. The meshes correspondin 
to 50 vol pet of aluminum particle and 50 vol pet of epox; 
particle are shown in Figures 5(a) and (b), respectively. 

Based on the material properties for epoxy and alumi 
num, including elastic constants, loss factors, and the con 
straints imposed, the ANSYS program calculates the overal 
loss factor of the composite and the longitudinal and trans 
verse stresses. In addition to studying the loss factors an< 
normai stress distributions, two-dimensional (2-D) hydro 
static stress distributions were calculated and studied. 

IV.   RESULTS AND DISCUSSION 

To check the accuracy and reproducibility of the FE\ 
procedure employed, meshes similar to Figure 2(a) wen 
made, except that all the elements were made up of onh 
aluminum in one case and only epoxy in the other case anc 
the loss factors were determined. The loss factors obtainei 
were found to be extremely close to the input loss factor 
of aluminum and epoxy, respectively. This suggested tha 
the FEM procedure employed is very accurate and repro 
ducible. Then, calculations were performed with variou 
meshes of epoxy/Al composites, and the effects of volumt 
percent, particle shape, size, and matricity were determined 
The results obtained include the loss factors of the com 
posite, displacements, normal and transverse stress distri- 
butions, and hydrostatic stress distributions (2-D). Los; 
factors, normal stress distributions, a„ and hydrostatic 
stress distributions, i.e., (<rx + ay)l2, are presented sepa- 
rately in the following sections. The transverse stress dis- 
tributions, cr„ are not presented here. 

A. Loss Factors 
1. Comparison of FEM results with analytical solution* 
The loss factors obtained by FEM for parallel and per 

pendicular fibers are compared with those obtained by an 
alytical solutions in Figure 6. It should be noted that the 
loss factors obtained by analytical solutions by constan 
strain assumption and those obtained by FEM for paralle 
fibers exactly coincide. This is expected because the con- 
stant strain assumption made in the analytical solution i: 
also followed in the FEM procedure by the way the com- 
posite is stressed (Figure 2(a)) and the way constraints are 
imposed on the edge BC. However, for perpendicular fiben 
(Figure 2(b)), the assumption made in the analytical solu- 
tions, i.e., constant stress, is not strictly correct because oi 
the end effects on edges AB and CD. Therefore, slight de- 
viations were found and the loss factors obtained by FEM 
are more accurate. Nevertheless, the loss factors obtainec 
by the analytical solutions based on constant strain and con- 
stant stress assumptions can be treated, to a first approxi- 
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mation, as the lower bound and the upper bound, 
respectively. It should be noted that this is in reverse to the 
bounds of the elastic moduli obtained on the basis of con- 
stant strain and constant stress assumptions. 

2. Effect of orientation of fibers 
Observation of Figure 6 shows that for a given volume 

percent of phases, the loss factor of the composite with 
continuous fibers, where the fibers are oriented parallel to 
the loading direction, is much lower than that where the 
fibers are oriented perpendicular to the loading direction. 
This difference is related to the constrained deformation in 
the case of the parallel fibers (Figure 2(a)). In this case, the 
composite is deformed in such a way that both the phases 
must deform to the same extent at any given stage of de- 
formation. This means that the high damping phase cannot 
damp/deform independently, and this results in lower 
damping of the composite. In the case of the perpendicular 
fibers (Figure 2(b)), the phases are relatively free to 
damp/deform giving rise to high damping. There is consid- 
erable experimental evidence in the literature to support 
these results. For example, Wren and Kinra181 and Crane 
and Gillespie<91 have shown that the damping of the com- 
posite with continuous fibers parallel to the loading direc- 
tion is much lower than that of the composite with 
perpendicular fibers. 

3. Effect of shape and size 
The loss factors obtained by FEM with various particle 

sizes of epoxy/Al composites are shown in Figure 7. It 
should be noted that the smallest particles have one element 
in each particle and the largest particles have 324 elements 
in each particle, as indicated in Figure 7. This figure shows 
that the loss factor of a given composite is greater when 
the second phase is in the form of particles as compared to 
parallel fibers. This is due to the fact that the continuous 
fiber-reinforced composites, when loaded in the longitudi- 
nal direction of fibers, must undergo constrained 
deformation. In the case of composites with particles, the 
constraints are primarily limited to the areas near the inter- 
phase interfaces. Therefore, the high damping phase in the 
case of the paniculate composite is relatively free to 
damp/deform independently. This gives rise to higher 
damping of the composite. These findings are consistent 
with the experimental results of Zhang et al.m and Rohatgi 
et a/.,1"1 who reported higher damping for particulate-re- 
inforced metal matrix composites as compared to the con- 
tinuous fiber-reinforced metal matrix composites. 

For a given volume percent of phases, Figures 7(a) and 
(b) indicate that the loss factor of epoxy/Al composites in- 
creases with the increase in particle size of the second 
phase. This is related to the interphase interface areas and 
the ability of the second phase to deform freely. As particle 
size increases, the interphase interface area per unit volume 
decreases {e.g., compare Figures 3(b) and 4). This means 
that the interfacial area at which the two phases must un- 
dergo the same extent of deformation decreases with an 
increase in particle size. The net effect is a decrease in 
constraints imposed on each other, i.e., the high damping 
phase can damp/deform relatively freely with increasing 
particle size, and this results in higher damping. There is 
considerable experimental evidence to support these results. 
For example, Adams and Fox'121 found that in the cast 

iron/graphite composite, the damping capacity of the com- 
posite increases with an increase in graphite flake size. 

4. Effect of volume fraction and matricity 
The three-dimensional (3-D) plot shown in Figure 7(c) 

shows the effect of particle size and volume fraction on the 
loss factor of various epoxy/Al composites. It should be 
noted that, here, particle size refers to the minor phase in 
the composite. When the aluminum is less than 50 vol pet, 
epoxy is the matrix phase. The addition of Al to epoxy 
decreases the loss factors, and the extent of decrease de- 
pends on the size of Al particles. The rate of decrease is 
lower for composites with larger sizes. This is due to the 
constraints outlined earlier. In the case of a composite with 
greater than 50 vol pet Al, the addition of epoxy increases 
the loss factor of Al. The increase depends on the epoxy 
particle size. Observation of Figures 7(a) and (c) indicates 
that a drastic change occurs when the addition of epoxy to 
Al is greater than 50 pet. Conversely, the decease in damp- 
ing with Al addition beyond 50 vol pet is much less. This 
is due to the change in matricity, the effect of which is 
described subsequently. 

As the amount of Al increases beyond 50 vol pet, the 
matrix changes from epoxy to Al; i.e., when Al is less than 
50 vol pet, epoxy is the matrix phase, and when epoxy is 
less than 50 vol pet, Al is the matrix phase. To study the 
effect of matricity, two meshes (Figures 5(a) and (b)) were 
prepared, and the loss factor predicted by FEM is shown 
in Figure 8. For comparison purposes, the loss factors ob- 
tained by constant stress and constant strain assumptions 
are also included. When the high damping but lower stiff- 
ness epoxy phase is the matrix, the loss factor is much 
higher. This is due to the fact that the epoxy phase can 
deform/damp relatively freely, giving rise to high damping. 
The damping so obtained is close to the damping obtained 
analytically by constant stress assumption. On the other 
hand, when epoxy is in the form of particles embedded 
inside the stiffer but low damping alumina phase, the epoxy 
cannot damp/deform relatively freely, thereby giving rise 
to lower clamping of the composite. This is the reason why 
sharp changes occur in the loss factor vs volume percent of 
Al plot (Figure 7(a)) around 50 vol pet, particularly for the 
composite with small particles. 

B. Normal Stress Distribution 

Normal stress distributions, cr„ are obtained correspond- 
ing to meshes shown in Figures 2(a) and (b). Those distri- 
butions are not shown here, but they reveal that the stresses 
corresponding to Figure 2(a) are much higher in the stiffer 
aluminum as compared to the epoxy. This is due to the fact 
that both phases must undergo the same amount of defor- 
mation because of constraints imposed on edge BC. On the 
other hand, stress distributions corresponding to Figure 2(b) 
were found to be quite uniform, i.e., similar stresses in both 
aluminum and epoxy except near the edges AB and CD. 
The uniform stress distributions for mesh, shown in Figure 
2(b), suggest that the constant stress assumption for such a 
configuration is quite reasonable. 

Normal stress distributions were also obtained for vari- 
ous meshes corresponding to different particle sizes and 
volume fractions. For illustration, the normal stress distri- 
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Fig 7-The effect of particle size and volume percent on the loss factor of the epoxy/Al composites: (a) oss factor vs volume percent of alwmnum for 
different partfcle sizes (loss factors obtained by analytical solutions are also included for comparison), (b) loss factor w pamcle size for different volume 
percents of aluminum, and (c) a 3-D plot with loss factor, panicle size, and volume percent of aluminum as the parameters. 

butions corresponding to Figures 3(a) and (c) are shown in 
Figures 9(a) and (b), respectively. These figures reveal that 
the stresses are nonuniform for both cases, whether alu- 
minum phase is in the form of particles (Figure 3(a)) or 
aluminum is in the form of the matrix (Figure 3(c)). In both 
cases, the stresses are higher in the stiffer aluminum phase 
and lower in the epoxy phase (Figures 9(a) and (b)). Similar 
observations were also made for other volume percents of 
phases and particle sizes. For a given volume percent, the 
stress distributions showed an increase in stress gradients 
with an increase in particle size. This is related to the ability 
of the component phases to deform relatively independently 
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at regions far away from the interphase interfaces in the 
case of coarse particles. 

C. Hydrostatic Stress Distributions 

To determine the probable sites for void or crack for- 
mation, 2-D hydrostatic stresses, (orz + o>)/2, are obtained 
for various volume percents and morphologies. For illus- 
tration, the hydrostatic stress distributions corresponding to 
meshes in Figures 3(b) and 4 are shown in Figure 10(a) 
and (b), respectively. The hydrostatic stress distribution m 
Figure 10(a) shows larger stresses in aluminum than in ep- 
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Fig. 9—The effect of volume percent on the normal stresses distributions, 
<r„ of epoxy/Al composites with small particles of the second phase: (a) 
12.5 vol pet of aluminum particles in the epoxy matrix (corresponds to 
mesh in Fig. 3(a)) and (6) 12.5 vol pet of epoxy particles in the aluminum 
matrix (corresponds to mesh in Fig. 3(c)). 

oxy. This is due to the higher stiffness of aluminum. It 
should be noted that the mesh size corresponding to Figure 
3(b) is not fine enough to comment about stress gradients. 
However, the mesh shown in Figure 4 is sufficient to show 
the stress gradient. Comparison of maximum and minimum 
stresses in Figures 10(a) and (b) shows that hydrostatic 
stress gradients increase with an increase in particle size. 
Further, Figure 10(b) also shows high hydrostatic stresses 
inside the alumina phase, at the interphase interfaces, which 
are approximately parallel to the loading direction, and the 
regions where the coarse particles come together. These are 
the preferred sites for initiation of voids or cracks. In ad- 

TT! 

Fig. 10—The effect of particle size on the hydrostatic stress distribution, 
(a; + <7,)I2, of epoxy/Al composite with 50 vol pet of each phase: (a) 
small-sized particle, four elements per particle, corresponds to Fig. 3(b): 
and (b) medium-sized particle, 81 elements per particle, corresponds to 
Fig. 4. 

dition, from Figures 10(a) and (b), it can be concluded that 
the propensity for formation of voids or cracks increases 
with an increase in particle size. 

V.    CONCLUSIONS 

4. 

1. The loss factors of the composites with parallel and per- 
pendicular fibers calculated by FEM were found to be 
close to those obtained by analytical methods based on 
the constant strain and constant stress assumptions. 

2. For a given volume percent of Al or epoxy, the loss 
factor increased with an increase in relative particle size. 
This is attributed to the ability of the high damping ep- 
oxy phase to damp/deform relatively freely when the 
particle size is increased. 

3. A 3-D plot with loss factor, relative particle size, and 
volume percent of Al as the parameters was constructed 
for the epoxy/Al composites, which clearly demonstrates 
the effect of particle size and volume percent of phases 
on the damping behavior. 
For a composite with 50 vol pet of each phase, the loss 
factor of the composite when the Al phase was embed- 
ded as a single particle in the epoxy matrix was found 
to be much higher than when the phases were reversed. 
This is attributed to the ability of the epoxy to 
damp/deform relatively independently when it is the ma- 
trix phase. 
For various epoxy/Al composites, normal stress distri- 
butions were also studied. They show that in general, 
the stresses are higher in the suffer aluminum phase 
whether aluminum is in the form of particles or matrix. 
The extent of stress gradients depended on the volume 
fraction and particle size. 
Two-dimensional hydrostatic stress distributions were 
also calculated for various epoxy/Al composites. It was 
found that the magnitude of stress gradients increases 
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with an increase in particle size for a given volume per- 
cent of phases. These results suggest that the propensity 
for void or crack formation increases with an increase 
in particle size. 
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4. APPENDIX : SAMPLE INPUT AND OUTPUT FOR A 50 

VOLUME PERCENT Al - EPOXY COMPOSITE 



/batch 

/prep7 
/show,xll-gray 
/TITLE, EPOXY-AL, 50 VOL.%  PARALLEL FIBERS - ETA 

k, 1,0,0,0 
k,2,0.1905,0,0 
kgen,13,l,2, ,0, 0.00733, , 2 
kplot 
112 
Igen,13,1, ,, ,0.00733,,2 
lplot 
ldvs,all,,24,1,1 
1,1,3 
Igen,12, 14,,,,0.00733,,2 
lplot 
1,2,4 
Igen,12,26,,,,0.00733,,2 
ldvs,all,,1,1,0 
lplot 
A,l,2,4,3 
AGEN,12,1,,,,0.00733,,2 
APLOT 
!! APPLYING THE MATERIAL PROPERTIES 

KAN, 6 

ET,1,42,0,1,3,,0,0,0 
MP,EX,1,6.9E10 
MP,EY,1,6.9E10 
,NUXY,1,0.34 
,DENS,1,2700 
,DAMP,1,0.0159E-02 
,EX,2,6.9E09 
,EY,2,6.9E09 
,NUXY,2,0.34- 
,DENS,2,1194.2 
,DAMP,2,0.0159 
R,1,0.0203 
AATT,1,1,1,0 
AMESH,1,11,2 
AATT,2,1,1,0 
AMESH,2,12,2 
WAVES 
/PNUM,KPOI,0 
/PNUM,ELEM,0 
/PNUM,NODE,l 

!CPSIZE,25 
CP,1,UX,2,26,52,76,102,126,152,176,202 
CP,1,UX,226,252,27 6,301 

FINISH 
; 

! APPLY LOADS AND OBTAIN THE SOLUTION 

/SOLU 

ANTYPE,HARMIC iHARMONIC ANALYSIS 
HROPT,FULL 1FULL METHOD 
HROUT,OFF 



32. 

D,1,ALL,0,,251,50 
D,27,ALL,0,,277,50 
D,302,ALL,0 

M,2,UX 
TOTAL,50 
F,2,FX,40.08 

ITER,2,1 
HARFRQ,0,2 
KAY,3,1 
KBC,1 
SAVE 

/PBC,ALL,1 
/PNUM,ELEM,0 
/PNUM,KPOI,0 
/SHOW,PLOTSl,GRPH 
/PNUM,MAT,1 
/NUMBER,1 

SAVE 
/output,prob50,out 
/nerr 
SOLVE 
FINISH 

/STRESS 
ITER,2,1 
HARFRQ,0,2 
NSTRESS,1 
END 
FINISH 

! REVIEW THE RESULTS 
/POST1 
SET,1,1 
/PNUM,MAT,1 
/NUMBER,0 
PLNSTR,SX 
PLDISP,1 
FINISH 



1 

NUMBER OF DISPLAYED ERRORS ALLOWED PER COMMAND= 200 
NUMBER OF ERRORS ALLOWED PER COMMAND BEFORE ANSYS ABORT=  10000 

*****  ANSYS SOLVE    COMMAND  ***** 

*** NOTE *** CP=     11.320   TIME= 15:03:36 
All shape tests were bypassed for elements associated with the solid 
model, because most of them were already done at AMESH or VMESH.  Use 
CHECK if desired to perform all of the element tests. 

***** ANSYS - ENGINEERING ANALYSIS SYSTEM  REVISION 5.0  24 ***** 
UNIV. MARYLAND    VERSION=SUN4SPARC     15:03:36  MAR 15, 1995 CP=     11.330 
FOR SUPPORT CALL DOUG MOHNEY      PHONE (301) 405-5317   FAX 

EPOXY-AL, 50 VOL.%  PARALLEL FIBERS - ETA 

**ANSYS VERSION FOR EDUCATIONAL PURPOSES ONLY** 

SOLUTION   OPTIONS 

PROBLEM DIMENSIONALITY 2-D 
DEGREES OF FREEDOM UX   UY 
ANALYSIS TYPE HARMONIC 

SOLUTION METHOD FULL 
COMPLEX DISPLACEMENT PRINT OPTION AMPLITUDE AND PHASE ANGLE 

LOAD   STEP   OPTIONS 

LOAD STEP NUMBER      1 
FREQUENCY RANGE        0.     TO   2.0000 
NUMBER OF SUBSTEPS      2 
STEP CHANGE BOUNDARY CONDITIONS     YES 
PRINT OUTPUT CONTROLS 

ITEM     FREQUENCY   COMPONENT 
BASI        ALL 

DATABASE OUTPUT CONTROLS 
ITEM     FREQUENCY   COMPONENT 
ALL       LAST 

***** CENTROID, MASS, AND MASS MOMENTS OF INERTIA ***** 

CALCULATIONS ASSUME ELEMENT MASS AT ELEMENT CENTROID 

TOTAL MASS =  0.66231 

CENTROID 

XC = 0.95250E-01 
YC = 0.42563E-01 
ZC =       0. 

MOM. OF INERTIA MOM. OF INERTIA 
ABOUT ORIGIN ABOUT CENTROID 

IXX = 0.1623E-02 IXX = 0.4227E-03 
IYY = 0.8008E-02 IYY = 0.1999E-02 
IZZ = 0.9631E-02 IZZ = 0.2422E-02 
IXY = -0.2685E-02 IXY = -0.4770E-17 
IYZ - 0. IYZ = 0. 
IZX = 0. IZX = 0. 

*** MASS SUMMARY BY ELEMENT TYPE *** 

TYPE      MASS 
1  0.662315 



-DT 

Range of element maximum matrix coefficients in global coordinates 
Maximum» 732565196. at element 144. 
Minimum» 73256519.6 at element 284. 

*** ELEMENT MATRIX FORMULATION TIMES 
TYPE  NUMBER   ENAME      TOTAL CP  AVE CP 

1     288  PLANE42       1.850    0.006 
Time at end of element matrix formulation CP= 13.64 99997. 

Estimated number of active DOF= 612. 
Maximum wavefront= 38. 

Time at end of matrix triangularization CP= 15.5099994. 
Equation solver maximum pivot= 9.129143316E+09 at node 2 UX. 
Equation solver minimum pivot= 68 660137.7 at node 301 UY. 

I 

***** ANSYS - ENGINEERING ANALYSIS SYSTEM  REVISION 5.0  24 ***** 
UNIV. MARYLAND    VERSION=SUN4SPARC     15:03:48  MAR 15, 1995 CP= 
FOR SUPPORT CALL DOUG MOHNEY      PHONE (301) 405-5317   FAX 

EPOXY-AL, 50 VOL.%  PARALLEL FIBERS - ETA 

**ANSYS VERSION FOR EDUCATIONAL PURPOSES ONLY** 

15.660 

***** COMPLEX DEGREE OF FREEDOM SOLUTION *****    FREQUENCY 
LOAD STEP=     1  SUBSTEP =   1   CUM. ITER.=     1 

1.0000 

***** AMPLITUDE AND PHASE ANGLE (DEGREES) ***** 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

0 
UX 

0. 
0.112179E-06 -0.581567 
0.547tü^E-08 -0.3T3"5r8 
0.102441E-07 -0.505779 
0.146852E-07 -0.570727 
0.191211E-07 -0.587649 
0.236076E-07 -0.591640 
0.281479E-07 -0.593419 
0.327291E-07 -0.594809 
0.373399E-07 -0.595646 
0.419721E-07 -0.595780 
0.466199E-07 -0.595295 
0.512791E-07 -0.594374 
0.559466E-07 -0.593195 
0.606202E-07 -0.591896 
0.652984E-07 -0.590575 
0.699799E-07 -0.589292 
0.746640E-07 -0.588085 
0.793501E-07 -0.586970 
0.840377E-07 -0.585952 
0.887264E-07 -0.585029 
0.934160E-07 -0.584195 
0.981062E-07 -0.583441 
0.102797E-06 -0.582757 
0.107488E-06 -0.582136 
0.112179E-06 -0:581567 

0. 0. 
,381279E-08 -0.560028 
,863000E-08 -0.466690 
.135666E-07 -0.487771 
.184419E-07 -0.530275 

UY 
0. 0 

0 
0 
0 
0 

0.486703 
0.865926E-01 

0.232230E-07 -0.562596 

0.836666E-08 -0.469408 
0.275602E-08 0.793089 
0.477911E-08 
0.638244E-08 
0.734330E-08 -0.180039 
0.788894E-08 -0.334874 
0.817936E-08 -0.413716 
0.832561E-08 -0.449175 
0.839248E-08 -0.462939 
0.841734E-08 -0.467112 
0.842131E-08 -0.467683 
0.841600E-08 -0.467327 
0.840753E-08 -0.467069 
0.839881E-08 -0.467160 
0.839108E-08 -0.467536 
0.838471E-08 -0.468042 
0.837967E-08 -0.468541 
0.837579E-08 -0.468947 
0.837285E-08 -0.469228 
0.837067E-08 -0.469389 
0.836908E-08 -0.469457 
0.836796E-08 -0.469463 
0.836722E-08 -0.469442 
0.836680E-08 -0.469418 
0.689374E-08 -0.448225 

0. 0. 
0.108769E-08   3.18870 
0.337992E-08  0.950052 
0.491897E-08  0.300277 
0.588982E-08 -0.659664E-01 
0.643479E-08 -0.265082 



33 0.279396E-07 -0.581674 
34 0.326212E-07 -0.591252 
35 0.372877E-07 -0.595277 
36 0.419497E-07 -0.596358 
37 0.466127E-07 -0.595967 
38 0.512790E-07 -0.594881 
39 0.559494E-07 -0.593509 
40 0.606237E-07 -0.592061 
41 0.653016E-07 -0.590644 
42 0.699826E-07 -0.589310 
43 0.746661E-07 -0.588080 
44 0.793517E-07 -0.586957 
45 0.840388E-07 -0.585941 
46 0.887272E-07 -0.585021 
47 0.934166E-07 -0.584191 
48 0.981066E-07 -0.583439 
49 0.102797E-06 -0.582757 
50 0.107488E-06 -0.582136 
51 0. 0. 
52 0.112179E-06 -0.581567 
53 0.469594E-08 -0.663400 
54 0.931184E-08 -0.704802 
55 0.138627E-07 -0.676015 
56 0.184402E-07 -0.646782 
57 0.230522E-07 -0.624986 
58 0.276981E-07 -0.610716 
59 0.323686E-07 -0.602018 
60 0.370542E-07 -0.596882 
61 0.417476E-07 -0.593785 
62 0.464443E-07 -0.591769 
63 0.511419E-07 -0.590306 
64 0.558394E-07 -0.589132 
65 0.605363E-07 -0.588123 
66 0.652326E-07 -0.587224 
67 0.699283E-07 -0.586409 
68 0.746236E-07 -0.585665 
69 0.793185E-07 -0.584984 
70 0.840132E-07 -0.584360 
71 0.887077E-07 -0.583789 
72 0.934021E-07 -0.583265 
73 0.980964E-07 -0.582785 
74 0.102791E-06 -0.582344 
75 0.107485E-06 -0.581939 
76 0.112179E-06 -0.581567 
77 '0. 0. 
78 0.394759E-08 -0.736900 
79 0.847414E-08 -0.673200 
80 0.131680E-07 -0.633260 
81 0.179496E-07 -0.614791 
82 0.227421E-07 -0.606684 
83 0.275173E-07 -0.602770 
84 0.322693E-07 -0.600021 
85 0.370020E-07 -0.597511 
86 0.417211E-07 -0.595166 
87 0.464313E-07 -0.593080 
88 0.511357E-07 -0.591301 
89 0.558365E-07 -0.589807 
90 0.605349E-07 -0.588552 
91 0.652318E-07 -0.587484 
92 0.699278E-07 -0.586561 
93 0.746231E-07 -0.585752 
94 0.793181E-07 -0.585034 
95 0.840128E-07 -0.584389 
96 0.887073E-07 -0.583806 
97 0.934017E-07 -0.583276 
98 0.980961E-07 -0.582792 

0.672530E-08 -0.366087 
0.686975E-08 -0.412998 
0.693414E-08 -0.432765 
0.695641E-08 -0.440159 
0.695800E-08 -0.442563 
0.695066E-08 -0.443360 
0.694049E-08 -0.443913 
0.693041E-08 -0.444622 
0.692159E-08 -0.445477 
0.691436E-08 -0.446345 
0.690864E-08 -0.447102 
0.690422E-08 -0.447677 
0.690087E-08 -0.448053 
0.689837E-08 -0.448256 
0.689654E-08 -0.448328 
0.689524E-08 -0.448321 
0.689439E-08 -0.448280 
0.689390E-08 -0.448241 

0. 0. 
0.541935E-08 -0.413690 
0.160672E-08 0.239459 
0.270546E-08 0.425068 
0.379201E-08 0.183320 
0.453923E-08 -0.360391E-01 
0.500664E-08 -0.199671 
0.526648E-08 -0.302816 
0.539737E-08 -0.359193 
0.545513E-08 -0.386076 
0.547474E-08 -0.397471 
0.547602E-08 -0.402119 
0.546954E-08 -0.404423 
0.546064E-08 -0.406158 
0.545181E-08 -0.407823 
0.544407E-08 -0.409423 
0.543769E-08 -0.410843 
0.543262E-08 -0.411988 
0.542870E-08 -0.412822 
0.542572E-08 -0.413360 
0.542349E-08 -0.413655 
0.542185E-08 -0.413774 
0.542070E-08 -0.413786 
0.541993E-08 -0.413748 
0.541949E-08 -0.413707 
0.394526E-08 -0.354136 

0. 0. 
0.166556E-09 14.9872 
0.142433E-08 1.65411 
0.238476E-08 0.707572 
0.309802E-08 0.230489 
0.354179E-08 -0 .427582E-01 
0.379215E-08 -0.198871 
0.391907E-08 -0.280732 
0.397576E-08 -0.319026 
0.399556E-08 -0.334916 
0.399755E-08 -0.341039 
0.399193E-08 -0.343746 
0.398383E-08 -0.345637 
0.397569E-08 -0.347477 
0.396849E-08 -0.349303 
0.396253E-08 -0.350958 
0.395778E-08 -0.352306 
0.395410E-08 -0.353284 
0.395128E-08 -0.353904 
0.394918E-08 -0.354225 
0.394763E-08 -0.354331 
0.394654E-08 -0.354308 



J)to 

33 0.279396E-07 
34 0.326212E-07 
35 0.372877E-07 
36 0.419497E-07 
37 0.466127E-07 
38 0.512790E-07 
39 0.559494E-07 
40 0.606237E-07 
41 0.653016E-07 
42 0.699826E-07 
43 0.746661E-07 
44 0.793517E-07 
45 0.840388E-07 
46 0.887272E-07 
47 0.934166E-07 
48 0.981066E-07 
49 0.102797E-06 
50 0.107488E-06 
51 0. 
52 0.112179E-06 
53 0.469594E-08 
54 0.931184E-08 
55 0.138627E-07 
56 0.184402E-07 
57 0.230522E-07 
58 0.276981E-07 
59 0.323686E-07 
60 0.370542E-07 
61 0.417476E-07 
62 0.464443E-07 
63 0.511419E-07 
64 0.558394E-07 
65 0.605363E-07 
66 0.652326E-07 
67 0.699283E-07 
68 0.746236E-07 
69 0.793185E-07 
70 0.840132E-07 
71 0.887077E-07 
72 0.934021E-07 
73 0.980964E-07 
74 0.102791E-06 
75 0.107485E-06 
76 0.112179E-06 
77 ' 0. 
78 0.394759E-08 
79 0.847414E-08 
80 0.131680E-07 
81 0.179496E-07 
82 0.227421E-07 
83 0.275173E-07 
84 0.322693E-07 
85 0.370020E-07 
86 0.417211E-07 
87 0.464313E-07 
88 0.511357E-07 
89 0.558365E-07 
90 0.605349E-07 
91 0.652318E-07 
92 0.699278E-07 
93 0.746231E-07 
94 0.793181E-07 
95 0.840128E-07 
96 0.887073E-07 
97 0.934017E-07 
98 0.980961E-07 

-0.581674 
-0.591252 
-0.595277 
-0.596358 
-0.595967 
-0.594881 
-0.593509 
-0.592061 
-0.590644 
-0.589310 
-0.588080 
-0.586957 
-0.585941 
-0.585021 
-0.584191 
-0.583439 
-0.582757 
-0.582136 

0. 
-0.581567 
-0.663400 
-0.704802 
-0.676015 
-0.646782 
-0.624986 
-0.610716 
-0.602018 
-0.596882 
-0.593785 
-0.591769 
-0.590306 
-0.589132 
-0.588123 
-0.587224 
-0.586409 
-0.585665 
-0.584984 
-0.584360 
-0.583789 
-0.583265 
-0.582785 
-0.582344 
-0.581939 
-0.581567 

0. 
-0.736900 
-0.673200 
-0.633260 
-0.614791 
-0.606684 
-0.602770 
-0.600021 
-0.597511 
-0.595166 
-0.593080 
-0.591301 
-0.589807 
-0.588552 
-0.587484 
-0.586561 
-0.585752 
-0.585034 
-0.584389 
-0.583806 
-0.583276 
-0.582792 

0.672530E-08 -0.366087 
0.686975E-08 -0.412998 
0.693414E-08 -0.432765 
0.695641E-08 -0.440159 
0.695800E-08 -0.442563 
0.695066E-08 -0.443360 
0.694049E-08 -0.443913 
0.693041E-08 -0.444622 
0.692159E-08 -0.445477 
0.691436E-08 -0.446345 
0.690864E-08 -0.447102 
0.690422E-08 -0.447677 
0.690087E-08 -0.448053 
0.689837E-08 -0.448256 
0.689654E-08 -0.448328 
0.689524E-08 -0.448321 
0.689439E-08 -0.448280 
0.689390E-08 

0. 
0.541935E-08 

-0.448241 
0. 

-0.413690 
0.160672E-08 0.239459 
0.270546E-08 0.425068 
0.379201E-08 0.183320 
0.453923E-08 -0.360391E-01 
0.500664E-08 -0.199671 
0.526648E-08 -0.302816 
0.539737E-08 -0.359193 
0.545513E-08 -0.386076 
0.547474E-08 -0.397471 
0.547602E-08 -0.402119 
0.546954E-08 -0.404423 
0.546064E-08 -0.406158 
0.545181E-08 -0.407823 
0.544407E-08 -0.409423 
0.543769E-08 -0.410843 
0.543262E-08 -0.411988 
0.542870E-08 -0.412822 
0.542572E-08 -0.413360 
0.542349E-08 -0.413655 
0.542185E-08 -0.413774 
0.542070E-08 -0.413786 
0.541993E-08 -0.413748 
0.541949E-08 -0.413707 
0.394526E-08 

0. 
0.166556E-09 

-0.354136 
0. 

14.9872 
0.142433E-08 1.65411 
0.238476E-08 0.707572 
0.309802E-08 0.230489 
0.354179E-08 -0.427582E-01 
0.379215E-08 -0.198871 
0.391907E-08 -0.280732 
0.397576E-08 -0.319026 
0.399556E-08 -0.334916 
0.399755E-08 -0.341039 
0.399193E-08 -0.343746 
0.398383E-08 -0.345637 
0.397569E-08 -0.347477 
0.396849E-08 -0.349303 
0.396253E-08 -0.350958 
0.395778E-08 -0.352306 
0.395410E-08 -0.353284 
0.395128E-08 -0.353904 
0.394918E-08 -0.354225 
0.394763E-08 -0.354331 
0.394654E-08 -0.354308 


