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Shear Rate Determination in a Concentric 
Cylinder Viscometer 

Executive Summary 

Materials with a complex rheology are often encountered during investigation 
of the flow behaviour of explosives. These materials may be studied with a 
concentric cylinder rotational viscometer. This type of viscometer allows ease of 
sample insertion and ease of cleaning after use. 

However, there is a problem associated with determining the true shear rate in 
a concentric cylinder viscometer. This is because the shear rate usually has to be 
calculated using a rheological model that describes the fluid under investigation. 
This fluid model is often unknown. In this paper a computational method is 
described. This method permits determination of the true shear rate from 
experimental data without recourse to a fluid model. 

The method consists of determining the shear rates from the measured values 
of the shear stress and angular velocity. The shear rate at each data point is 
determined from an integral equation using a technique outlined by 
MacSporran. A computer program based on this technique was written and 
tested on model fluids and real fluids and shown to be satisfactory. Shear rate 
determination in yield stress and time-dependent fluids is also discussed. 



Contents 

1. INTRODUCTION 1 

2. DESCRIPTION OF THE PROBLEM 1 

3. DETERMINATION OF THE SHEAR RATE BY SOLUTION OF AN INTEGRAL 
EQUATION 2 
3.1 Description of the Method 2 
3.2 The Computer Program 5 
3.3 Yield Stress Fluids 6 

PREFERENCES 7 



DSTO-GD-0093 

1. Introduction 

In examining the flow behaviour of explosives it is often necessary to make an 
assessment of mixtures that are Theologically complex - An example is the 
suspension of one explosive in another, as occurs with suspensions of either RDX 
[1,2] or TATB [3] in molten TNT. At AMRL such studies are carried out in a Haake 
RV2 viscometer which operates on the concentric cylinder principle [4]. Such 
geometry allows ease of sample insertion and, after use, ease of cleaning. However, 
there is a problem associated with determining the true shear rate at the spinning 
rotor. This arises because the true shear rate usually has to be calculated using a 
rheological model that describes the fluid under investigation. This fluid model is 
often unknown. 

In this paper a computational method is described. This method determines true 
shear rates from experimental data without recourse to a fluid model. 

2. Description of the Problem 

For any fluid the true shear rate j cannot easily be calculated unless there is only a 
very small gap between the bob and the cup. In this case the shear rate approaches a 
value given by 

V=Rl%-R W 

Where y is the shear rate, Rj is the bob radius, R? is the cup radius and Q is the 
angular velocity of the bob. This relationship is independent of fluid properties. 

Experimentally, however, it is impractical to use extremely small gaps, especially 
when suspensions of large particles are being investigated [4]. 

The problems associated with the determination of true shear rate are further 
exacerbated by the fact that many widely promoted, commercially available software 
packages sold by instrument manufacturers for automatic determination of shear 
rate erroneously employ the equation: 

:2QS (2) 

which is strictly only valid for the determination of shear rates in Newtonian fluids. 
Here s is the ratio of cup to bob radii. This equation is a special case of a more 
general equation 
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which is valid for any power-law fluid. For a Newtonian fluid, n = 1. 

Not all fluids can be described as "power-law fluids" whose behaviour follows 
equation (3). Some fluids exhibit a yield stress which can lead to incomplete 
shearing in the annular gap of the viscometer; a plot of measured rotational speed 
versus shear rate cannot always be described by a simple model and this is a further 
complication [6]. 

For some yield stress fluids the shear rate is given by a relationship such as 

i-fVY 
'yn y fc/*i) -1 H*'/**) 

(4) 

These are called "Bingham plastics" [5]. Here y „ is the apparent shear rate andRy is 

the yield radius. 

Krieger and Elrod [7] express the shear rate in a concentric cylinder viscometer in 
the form of an Euler-Maclaurin series, 

i'(%shMd,n%lnMM 
'3Q 

d2Q/ 
d(lnx)2 (5) 

Such an expression does not require any assumptions to be made about the fluid 
model and may be used as the basis for a technique to determine the true shear rate 
in a concentric cylinder viscometer. This method would require the determination of 
derivatives in the torque versus rotation speed curve that is obtained as raw data. 
Techniques involving differentiation have been used by e.g. Nguyen et al. [6] and 
Krieger and Maron [9]. However, differentiation of discrete data can be noisy and 
inaccurate, particularly when high order derivatives must be determined. This 
problem could be overcome if a technique involving integration could be used. 

3. Determination of the Shear Rate by Solution of an 
Integral Equation 

3.1 Description of the Method 

The approach followed is outlined by MacSporran in [8].   The shear rate is 
evaluated by solving the integral relationship 

12/ 

Q = 0.5 jl ;¥/«, dx       (6) 

Here T3 and x2 are the shear stresses at the inner and outer cylinders, respectively. 
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Experimental data is obtained in the form (Q„,xn), where Q„ is the angular 
velocity of the bob and xn is the shear stress at either the bob or the cup. In this case 
x„ will be the stress at the bob. Therefore the problem is to determine the shear rates 

/(x „) at each of the points (Q „ ,x „) by solution of the equation 

(7) 

Here  cn =   y2   represents the shear stress at the cup and   M?) = /2r   *s a 

'weighting function'. 

The integral in equation (7) is regarded as the contribution from a number of 

strips in (x, f(x )) space. For example, suppose we are testing a fluid in a viscometer 

that possesses a cup to bob radius ratio of e = 1.2 and that we obtain the following 
(Q, x) measurements: 

(1.4382 x 10-2, i), (5.7527 x 10-2,2), (0.1294,3), (0.2301,4). (See Table 1). 

The angular velocity at T„ = 4 Pa would consist of contributions from the 
following strips: 

strip 1: 2.78Pa<x<3Pa 
strip 2: 3Pa<x<4Pa 

Here 2.78 Pa is the stress at the cup when the stress at the bob is 4 Pa (i.e. 4P%   .,). 
/(L2)2 

In general, for a bob stress x = x „, the strips would possess the integration limits 
c„ andx,-, where the xt He between c„ and in. 

Table 1:  An explanation of the method of determining 
point. 

j the number of strips for each data 

Measured Q 

(Rad/s) 

Measured T  (at 
the bob) 

(Pa) 

x at the cup 

(Pa) 

No.     of     data 
points with bob 
x   values   lying 
between the cup 
and bob x values 
of     this     data 
point. 

No. of strips for 
this data point. 

1.4382 x 10-2 1 0.69 0 1 

5.7527 x 10-2 2 1.39 0 1 
0.1294 3 2.08 0 1 
0.2301 4 2.78 1* 2 

Meaning the data point for which the measured x value is 3 Pa. Because 2.78 < 3 < 4. 
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The shear rate f(x) is approximated in each strip by a cubic polynomial which 

interpolates to /(t) at four successive data points. Modifications are necessary to 

the interpolation points at the extremities of the data set [8]. In any event, the strip 

contribution, which is of the form  f2 w{x)f(x)dx , is rewritten (after approximating 

the shear rate by a cubic polynomial P3 (x)) in the form: 

[qw(x)P3(x)dx= fy/f, (8) 

where x is the shear stress, xv and xq are the strip integration limits and the^J are the 
desired shear rate values. Details of the method are given by MacSporran [8]. A 
brief summary is given below. 

After summing contributions for all strips (for a given data point), the following 
expression is obtained for Qn: 

k=n l=k+l l=n+\ 

k=j l=k-2 l=j-2 

(9) 

k=n 

Here Wnl = V W,k- are the composite weights. 

The integration weights for the individual strips are obtained from: 

(*i)     (*2)     (*s)     fa) 

.fa)3    fa)'    fa)'    fa)3J 

\wl~ \M1] 
w2 M2 

w3 M3 

[w4_ _M4_ 

(10) 

Here Mr = V'xr~lw(x)dx. 

Once the integration weights for the individual strips have been found they are 
used to calculate the composite weights. The shear rates /„ =/(T„) for the data 
points 1 to N are calculated from: 

IX Wl2 ->  w1N fx Q 

w2l w22 

1 
->  w2N f2 = 

Fm wN2 -> wm_ UN\ Q 

(11) 
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3.2 The Computer Program 

A BASIC computer program (called "SHEARE.RAT" ) has been written to 
perform the above calculations. The program requires input of the radius ratio for 
the concentric cylinder viscometer. The shear stress values at the viscometer bob 
and the rotation speed values are also input. The number of strips for each data 
point are determined by finding all the bob shear stress values that He between the 
cup shear stress value and bob shear stress value for the data point. The program 
then determines the moments and weights. 

In order to test the program, (Cl„ ,x „) pairs were generated for a power law fluid 

with a constitutive equation of the form x = 3y °5. These (Q„ ,X„) values were then 
used as 'data' for the program. The results are presented in Table 2. In this case 
perfect agreement was achieved between the actual shear rates and the shear rates as 
calculated by "SHEARE.RAT". Another test was conducted using the solids GR-S 
latex data of Krieger and Maron [9] and these results are presented in Table 3. For 
comparison, the shear rates as determined by the Tanner and Williams method [10, 
11] as well as by MacSporran [8] using the present method, are tabulated. Very good 
agreement is again obtained. 

Table 2:   A Comparison of the Actual Shear Rate with the Shear Rate as Calculated by 

"SHEARE.RAT" for a Power Law Fluid with Equation x = 3y °5. 

X 

(Pa) 

Q 

(Rad/s) 

y   Actual 

(s-1) 

y   Calculated 

(s-1) 
1 1.4382 x 10-2 0.1111 0.1111 

2 5.7527 x 10-2 0.4444 0.4444 

3 0.1294 1.000 1.000 
4 0.2301 1.778 1.778 
5 0.3595 2.778 2.778 
6 0.5177 4.000 4.000 
7 0.7047 5.444 5.444 
8 0.9204 7.111 7.111 
9 1.1649 9.000 9.000 
10 1.4381 11.11 11.11 
11 1.7402 13.44 13.44 
12 2.0710 16.00 16.00 
13 2.4305 18.78 18.78 
14 2.8188 21.78 21.78 
15 3.2359 25.00 25.00 
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Table 3: Shear rates calculated by the Tanner and Williams method [10,11], by MacSporran 
[8] and by "SHEARE.RAT" for the solids GR-S latex data of Krieger and Moron [9]. 

(Pa) 

Q 

(Rad/s) 

j Tanner & Williams y MacSporran 

(s-1) 

Y Present Work 

(s-1) 

3.807 0.03670 0.7283 0.7211 0.7211 

5.706 0.1310 2.611 2.528 2.528 

9.536 0.6020 11.43 11.40 11.40 

15.24 1.940 35.60 35.81 35.81 

19.03 3.120 57.61 57.17 57.17 

22.83 4.660 85.33 85.66 85.66 

26.65 6.410 116.7 116.3 116.2 

30.45 8.330 150.9 151.1 151.1 

34.25 10.45 187.5 188.1 188.1 

38.07 12.51 222.6 220.4 220.7 

53.27 21.70 385.4 387.2 387.0 

68.48 32.20 568.9 563.1 563.8 

The program was run on an IBM-compatible PC (80486 processor and 640k base 
memory) and it was found that there were restrictions, due to memory, on the 
number of data points that could be processed. The maximum number of points that 
could be analysed at a time was seventeen. The program required 4 seconds to 
analyse seventeen points. Improvements in the software and computer memory 
would increase the efficiency of this program. 

3.3 Yield Stress Fluids 

The program can be used to determine the shear rates for many types of fluids 
once adequate rotation speed and torque data have been obtained. However, care 
must be exercised when dealing with plastic fluids i.e. those exhibiting a yield stress. 
In such cases the integration method cannot always be used if a fixed viscometer 
radius ratio is assumed. 

If it is necessary to determine the shear rate in a non time-dependent yield stress 
fluid, the following procedure is recommended. The yield stress must first be 
accurately determined. A simple method for directly measuring the yield stress is 
described in [12]. The next step is to determine whether there is partial or complete 
shearing in the viscometer gap. Partial shear will occur when xjs2 <i y <xl and 

shear will only occur between the viscometer bob and a cylindrical surface at a radial 

distance Rp = R(-C ,/Ty) ' .  This distance is clearly less than the width of the entire 

gap. For the case of partial shear the shear rate may be precisely determined by 
means of the following equation [6]. 

-2Q\dlnxy d\nQ (12) 
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The derivative may be determined e.g. by graphical differentiation of a double log 
plot of the original stress versus rotation speed data. For the completely sheared 
situation of a time-independent yield stress fluid, the shear rate may be determined 
by means of the described computer program. 

The case of time-dependent fluids that also exhibit a yield stress is much more 
complex. An approximate procedure for shear rate determination in this case is 
presented in [6]. 
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