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PILE NEUTRON PHYSICS 

By A. M. Weinberg 

THE TRANSPORT KERNELS 

It is possible to write the Boltzmann equation as an integral equation whenever the scattering and 
the source are isotropic. To do this we return to equation 1-50 (report M-3336) in which F(X,V,M) is 
expressed as an integral over F0 and S, the source distribution. Since we assume S is isotropic, we 
may put S(x,v,ju) = S0(x,v) /2: where So is the total number of neutrons produced per cu cm per sec- 
ond. As it stands equation 1 -50 is not quite an integral equation because the total F(x,v) appears 
outside, and both functions are unknown. If, however, we integrate over ß, we then obtain an integral 
equation in F0(x,v): 

F0(x,v) =   / F(x,v,M) dM = ^} / F0(x',v) e-(N"/M)(x-xO ^Jü + 

-1 l    o— ß 

i}/  S0(x',v)e-(N^)(x-x') ^.' + ^ // Fo(x,v)e-(Na/M)(x-xO t'^ + 

\   // S0(x',v)e(N°/M)(x-xO^: 
2-l 

and by interchanging order of integration, 

Nff„n    ~ i   » 
F0(x,v) = -^- f F0(x',v) E^Nalx-x'l) dx'+g  / S0(x',v) E^Nalx-x'l) dx' (1-151) 

where 

E,(y) = / e-y/M & = f e-V f- (1-152) 

is the exponential integral [denoted by -Ei(-x) in Jahnke-Emde]. The total number of neutrons which 
start fresh flights per second in each cubic centimeter is NaSoF0(x,v) +S0(x,v); this quantity, which we 
shall call Q(x,v), may be viewed as the source which furnishes neutrons for the remainder of the me- 
dium. Hence the integral equation 1-51 (in report M-3336) may be written: 

F0(x,v)_= | f Q(x',v) E^Nalx-x'l) dx', (1-153) 
— CO 

Q(x', v) = N(jS0F0 (x,v) S0(x,v). 
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In this form the integral equation of isotropic transport theory resembles very much the integral 
equation 1-135 (in MDDC - 1023) of diffusion theory. However, the plane transport kernel [which we 
denote by Kpl(x,x')l is 1/2 Ex(Na|x-x'| ), while the plane diffusion kernel is 1/(2KDO) e-K1x~x'l. The 
two are related by the formula 

K^x.x'^Do  /   Gpl(K,x,x')dK 
Na 

(1-154) 

The transport kernel gives the flux in a unit volume at r' due to a unit source at r'. 
The transport kernels in the other geometries can be obtained similarly from the diffusion ker- 

nels by integrating with respect to K from No- to *> and multiplying by D0. The results are tabulated 
in Table 1. 

Table 1. Transport kernels. 

Source 
Geometry Notation Normalization K = flux at r' 

Point Kp(r,r') 1 neut/sec 
1   e-Na|r-r'| 

4TT    |r —r'| 2 

Plane Kpl(x,x') 1 neut/sq cm/sec 1/2 E0(Ncr|x-x'|) 

Spherical 
Shell 

Ks(r,r') 1 neut/shell/sec 8jrrr, |E0(Na]x   x|) 

E0(Ncr|r-r'|) 

Line K^r^.r',^ ) 1 neut/cm/sec 
^ / K0(Napy) dy, 
in    1 

P=Jr2 + r'2 2rr' cos{(j>-<j>) 

Cylindrical Kp(r.r') 1 neut/cm/sec 
\T/T        - 

Shell 
277 

/ K0(Na ry) I0(Ncr r >y) dy,   r > V 

^ / K0(Na r'y) I0(Na ry) dy,   r < r * 

The equivalence between a spherical shell and a point, or a cylindrical shell and a line, which 
hold for the diffusion and the potential kernels, does not hold for the transport kernels. 

As an example of the use of a transport kernel we calculate, according to transport theory, the 
depression in neutron density caused by a thin foil which is introduced into an infinite medium in 
which monoenergetic neutrons are being produced everywhere at the constant rate q. This problem 
was treated by diffusion theory in a preceding paragraph, and here we use the same notation. The 
discussion which follows is in part due to Skyrme. 

The integral equation for F0(r,v) in the absence of the foil, is 

/ F0(r,v)-      d _So.0 

all space 

e-Ncr|r-r'| r 
NaRnFn(r', v)   ,_,     ~   I    dr' +       J 

47T | r — r' all space 

e-NtT|r-r'| 
q   dr' 

4TT |r-r' |2 
(1-155) 



and this has the solution 
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F0(r,v)=^, (1-156) 

as can be verified by substitution into equation 1-155. If the foil is present, then it absorbs (Naa)FF0 

neutrons per cu cm per second; this acts as a negative source. Further if we assume that the neutron 
makes no collisions in traversing the foil, except absorptions, so that the one-medium transport ker- 
nel is applicable, then the integral equation for F0 must be 

F0(r,v) =      / [NaSoF0(r,v)+q] ^J'^ dr '-(Nga)F /F0(r,v) g^jV1*'   d"157* 
all space V 

Again, if the foil is so small that it hardly absorbs any neutrons, we can solve this equation by 
successive approximations, the first approximation being to put F0= q/(Naa). The result is 

while the diffusion theory result (we replace $0 of equation l-133b, in MDDC -1023, by F0) is 

*°(I''    Naa\      47rDo      v       lr_I"' ' 

If the foil is a small sphere of radius r0, center at r =0, these integrals are easily evaluated. The 
results for the density at the center of the sphere are 

F°(D'V) = N?: 
(Ng^F (1_e-Nffr0) 

Ncr 
by transport theory (1-159) 

Fo(°'V)=^ 
1 JLZ(l-eNar°(l+Naro) by diffusion theory. (1-160) 

Evidently, since the kernels used in this and in the diffusion calculation applied only to a single 
medium, the equations 1-159 and 1-160 will not give the depression in the interior of the foil correctly. 
This correction may be comparable to the depression outside the foil, especially if the foil absorbs 
neutrons heavily. We will calculate it later. 

If the foil is so small that Naro « 1, then the depressions at the center are 

F„ 
l-(N<ja)F r o by transport theory 

q/Nffa 

F„ 
l-3(Naa)F (Na)r^   by diffusion theory. 

q/Naa 

The difference between the two results is by no means negligible. 

SOLUTION OF THE STEADY-STATE DIFFUSION EQUATION IN VARIOUS GEOMETRIES; MEASURE- 
MENT OF DIFFUSION LENGTH 

In this section we give a few examples of the calculation of the thermal neutron distribution in 
systems of particular shape and with certain source distributions. 

We shall consider a rectangular parallelopiped of size x = a, y = b, z=«=, with the source in the 
z = 0 plane, distributed like f(x,y). 
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The neutron flux in this case is the solution of 

4#0-K
2
4>O=0 (1-161) 

with the initial condition 

and the boundary conditions 

3  8z 
= -l/2f(x,y), (1-162) 

z = 0 

<P0 = 0, x = a, y = b, (1-163) 

where a and b are the geometric sides, a, b, augmented by twice the extrapolation distance (.7Utr in 
a weakly absorbing medium). The solution of equation 1-161 which satisfies all boundary and initial 

conditions is 

*   ,        v        2                    ,     T               (2m+l)7TX „„(2n+ l)7rv„-z/Lmn .    .... 
*o (x,y,z) = 5-^   F.    E   fmnLmnCos  ; cos s e (1-164) 

where 

^2 + (2m+l)27T2 + (2n+l)27T2 (1-185) 

Lmn 
a2 b2 

and 
b/2     a/2 

fmn=     I       I   f(x,y) cos (2m+l)IZcos(2n+l)^dxdy (1-166) 
-b/2 -a/2 a 

The neutron flux falls off from the source as a sum of exponentials with relaxation lengths Lmn 

given by equation 1-165. The relaxation length of each harmonic decreases as the order m,n of the 
harmonic increases. Far from the source only the 0,0 harmonic remains. 

The measurement of the diffusion length of a substance is usually done by measuring the distri- 
bution along the z direction of thermal neutrons in a .Aock of the material in which a source of thermal 
neutrons has been placed. Since the actual distribution in the z direction is a sum of many harmonics, 
in order to deduce to relaxation length from the observed neutron distribution, it is necessary to take 
measurements far from the source, if intensity permits, or else to correct the observed relaxation 
length to the 0,0 relaxation length by subtracting the effect of the higher harmonics. The diffusion 
length is obtained from the observed LL by equation 1-165; i.e. 

K2=± =_L _± ll (1-167) 
L2      L?o      a2    b2 

If the absorber is weak the diffusion length is long. Hence unless the sides of the block are very 
large (7r2/a2, 7r2/b2«l/L0), the reciprocal diffusion length appears as the small difference of two rela- 
tively large numbers. In order to obtain results which are meaningful it is therefore necessary to 
measure L», a, and b with extreme accuracy. 

The technique which has generally been used on the Plutonium project for reducing the data in a 
diffusion length measurement has been the following: 

1. From a knowledge of the source disposition the strength of the higher harmonics is estimated. 
These are subtracted from the observed neutron distribution to give the 0,0 harmonic. By a judicious 
choice of x,y coordinates for the neutron detectors it is possible to eliminate a few of the important 
harmonics. For example, in a square block, the (l,n) and (m,l) harmonic vanish at x = a/6, y = a/6. 

2. Since the block is always of finite length, it is necessary to add an "end correction" to the 
observed intensities close to the end of the block. Suppose the extrapolated length of the block is z0. 
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Then the neutron distribution which is zero at z   and z0 and satisfies equation 1-162 in the source 
plane is 

2       „    „  fmnLmn 
I    I 
m    n *°(W)=^£    $I^2*o 

-z/Lmn . „(z-2z0)/Lr 
«I       ,i'x     _ (2n+l)7ry cos (2m+ 1) — cos -        (1-168) 

a. D 

The reflected "wave" e       Z°      mn> which can be considered to arise from a negative image source 
in the plane z = 2z0, is negligible compared to the incident wave, e'z'   mn, unless z is close to the 
extrapolated edge of the block. The end correction is made by subtracting the reflected wave, as 
estimated by the expression 1-168, from the observed distribution near the boundary. 

3. After the harmonic and end corrections have been made it is customary to make a least 
squares fit to the longitudinal (z) distribution. The relaxation length of the best fitting exponential is 
used as L«= in equation 1-167, and from this L is determined. 

4. Since the results are very sensitive to the values of a and b, transverse (x,y) neutron distri- 
butions are usually taken. If only one harmonic is present then the transverse distribution is strictly 
the product of two cosines, the half wave length of which are the extrapolated dimensions of the block. 
The strength of higher harmonics can be estimated from a harmonic analysis of the transverse distri- 
bution, although usually it is sufficiently accurate to compute these from a knowledge of the source 
distribution. 

The most convenient source for a diffusion length measurement is a large block of graphite set 
on top of a chain reacting pile. Such a graphite block is called a thermal column, since neutrons from 
the pile are practically all reduced to thermal energy in the block, provided it is large enough. If the 
block whose diffusion length is to be measured is placed on top of the thermal column, then the neutrons 
impinging on it will all be thermal, and the theory outlined is immediately applicable. 

Before chain reacting piles were available, thermal columns as neutron sources were impractical 
because neutron intensities were never high enough. Diffusion length measurements were performed by 
first measuring the thermal neutron distribution when an uncovered Ra-Be source (of fast neutrons) 
was in the source position, and then when the Ra-Be source was covered by a Cd sheet which absorbs 
all thermal neutrons. The difference between the thermal neutron densities in the two cases is just the 
thermal neutron distribution due to a source of pure thermal neutrons at the position of the Cd sheet. 
This can be seen by writing down the equations for the thermal neutron density in the two cases. With- 
out the Cd sheet the flux *0' satisfies 

where q(x,z) is the number of neutrons which become thermal per second in the block. With the Cd 
sheet in place the flux $0' satisfies the equation 

A<P'0'-K* *'o' + q/D0 = 0 

but with the boundary condition* '0' = 0 at z = 0, the extrapolated position of the Cd sheet. The difference 
0O = *„'—$o' satisfies 

A*0 - K 
2 <P0 = 0 

with the boundary condition 

#o(x,y,0) = * I (x,y,0), 

where $0(x,y,0) is the measured distribution at z = 0 without the Cd sheet. 
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THE TIME-DEPENDENT DIFFUSION EQUATION 

The diffusion problems considered in the previous section have all been stationary problems. 
The neutron density was considered to be independent of time, and only the stationary spatial and angu- 
lar distributions were sought. In this section we consider the nonstationary neutron diffusion problem 

from the elementary standpoint. 
We consider an infinite plane system in which monoenergetic neutrons diffuse. According to ele- 

mentary diffusion theory, the equation satisfied by n0, the neutron density of speed v, is 

Do ^ (x,v,t)-N<ravn0(x,v,t) + S0(x,v,t) = ^° (x,v,t), (1-169) 

where S0(x,v,t) is the number of neutrons of speed v produced per cu cm per second at (x,t). Equation 
1-169 is the same as the heat equation with leakage. Its solution for an instantaneous unit source at 
the origin, which emits one neutron per sq cm, S0(x,v,t) = «(x) ö(t), is found by the usual Fourier 
transform method. Thus putting 

6(x)5(t) = ^j ffeiut eiwc d udu, n0 = -^-ffA(u),v) e1«* eivx dudu 

and substituting into equation 1-169 we obtain 

1 
A = D(i/2 + K 2 + iw/D) 

where as usual D = D0V,K
2
 =      a   ; hence 

D 

,iwt „iwc 1    rr e      e 
n° = ^JJ D(V>+K> + iu>/D)dU>dU 

This integral can be evaluated readily by integrating first over w and then over v. The integrand 
has a simple pole at w= iD(i;2+K2), and its residue there is(l/i)e-D(i'2+*:2)t. Hence the integral over 
v has the value 2TT e-D^ + ^H. The integral over v is just the Fourier transform of a Gaussian 
function, and this is another Gaussian. Hence 

x2 2 
- — - K    Dt 

4Dt 
n[jVt)=  . (1-170) "0^X,V,l>   - 1/2 » 

(4lTDt) ' 

which is the well-known one dimensional nonsteady diffusion kernel. The properties of this function 
are very familiar since it also represents the temperature distribution from an instantaneous unit 
heat source. At any given time, the neutron distribution is Gaussian with a range V2Dt, and an ampli- 

-DKH 2 

k-Hg ?       Tne attenuation factor e"DK * of course arises from the absorption by the medium. At 
(4?r Dt)1/2 

-K2X2-- 
any given point the neutron intensity waxes and wanes, reaching a maximum at time . If there 

x2 

is no absorption, the maximum is reached at time t = —. For thermal neutrons diffusing in graphite, 

X = 2.7 cm, v = 2.2 x 105 cm/sec , 2D = 39.6 x 104 sq cm/sec , and the time for the neutron intensity 
to reach its maximum at a distance of 100 cm is about 25 milliseconds. Such a time lag is easily 
observable with standard electronic equipment. 

According to equation 1-170, the effect of an instantaneous neutron source is felt everywhere 
immediately, although (except at the source) with small intensity. Evidently this cannot be quite correct 
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since a neutron burst requires at least the time x/v to travel the distance x from the source. During 
this "retarded time" no neutrons can appear at x. It will be shown later that the correct elementary 
theory time-dependent neutron-diffusion equation is really the equation of telegraphy (whose solutions 
are in fact retarded), rather than the equation 1-169 of heat conduction. 

The retardation time is tret = x/v, while the time tdiffusion for a neutron burst to reach a maxi- 
mum at x is x2/2D. The ratio of the two times is 

 tret 2D _ 2 Ad 
: " 3  x ' tdiffi usion 

At distances from the source that are large compared with a diffusion mean free path, the retarded 
time is negligible compared to the diffusion time. Since most experiments involve the neutron distri- 
bution far from the source, it is permissible to ignore the retardation and to describe time-dependent 
diffusion by means of the heat equation instead of the telegrapher's equation. 

It is convenient at this point to give the nonstationary diffusion kernels, G(r,t',r',t) in various 
geometries (see Table 2). The method of deriving these kernels from the corresponding plane kernel 
is exactly the same as that used in a previous section for the steady-state diffusion kernels. 

Table 2. Time-Dependent Diffusion Kernels 

Notation Normalization Geometry 

Gpl(x,t',x',t') 

Gp(r,t',r',t') 

Gjtr^.t'.r'.^t') 

1 neut/sq cm at 
(x',f) 

1 neut/cm at 
(r',0',f) 

plane 

1 neut at (r',f) point 

line 

lx-x'l 2 
4D(t- 

^-K2D(t-t') 

[47TD(t-t')|1/2 

I r-r'l 2 

[47TD(t-t 'jj 

\P-P'\2 

e" 4D(t-t') 

3/2 

K2D(t-t') 

47TD(t-t ') 

p2   = j.2 +   r,2 _2rr>   cos   ($-<(,>) 

Gs(r,t',r',t') 1 neut at r', per 
shell of radius 

spherical 
shell 

e   "    u\\.-\.   ;      g-  |i—i-   |    / *L>\l-l ■ 1 

4irrr'               4?7D(t-t')1/2 

at time t' 
e   |r+r'| 2/4D(t-t') 

477D(t-t')1/2 

Gc(r,t',r',t') 1 neut/ cm of shell cylindrical e-V-tV21*^      /   rr'    \ 

r' at time t' shell 4*D(t-t')                     ^Dft-t')) 

It is useful to observe that the point, line and plane kernels differ only by powers of 
..«.xxv. r47rD(t-t'Sl/2' 

and that the power of this quantity which appears in the kernel is just equal to the number of dimensions 
involved; eg., the point kernel (3 dimensions) has the factor (47rD(t-f) 3/2 in the denominator. 
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PROPAGATION OF NEUTRON WAVES 

Suppose that instead of an instantaneous source of monoenergetic neutrons at x = 0, there is a 
localized source whose intensity oscillates with angular frequency w: 

S0(x,v,t)=ö(x)eiwt, 

where it is understood here, and in the following, that only the real part of a complex function is to be 
used. The neutron intensity at (x,t) is found, exactly as in the previous paragraph to be 

iwt °°r      e
iwcdy eiwt    /• 

^(x.v.t) = -^r J 
-ooD(V2 + K2+^) 

The integrand has a pole above the real axis at * -±vV«»+doi/D), and its residue there is just 

(e-xV«2+ (iw/D)\ /(2D1VV+ (iw/D)). Hence the value of n0, which is 2iri times the residue, is 

.      e-xV*2 + (WD)" (1-171) 
n0(x,v,t) = eiwt 2DyK2 + (iw/D) 

i.e., the distribution at time t is the same as from a stationary source of strength eiwt, but the relax- 
ation distance is the complex numberV*f2+ (iw/D). 

In order to understand the physical significance of the complex relaxation distances we wrzte 

V*2 + (iw/D)=V * j"3  2 

Substituting into equation 1-171 

i(fa,t-I^K2
+/>2X     )-ig 

no(x,v,t) = ~ 
SDV K

2
 + (iw/D) 

where 
p2= VK

4
 + (w/D)2 

According to equation 1-172 the neutron density from an oscillating source is propagated as a damped 
wave; the velocity vw of the wave is 

„        ,\l    2 (1-173) 

its wave length lw is 

,    _2]<l_2l\fllir (1-174) 

and its attenuation distance a, which is the distance over which its intensity falls by a factor e, is 

■■V? 
(1-175) 

P2 

The propagation velocity depends on the frequency, becoming larger as the frequency Increases. 
Thus the medhfm in which th'e neutron waves travel is dispersive. The amplitude and the wave length 
of the wave fall off with increasing o) (cf. equation 1-172). 
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In the extreme cases =• »x2 and ^ « *r2 the formulas for the velocity, etc. become quite simple. 
D 

We tabulate them below. 
D 

5»"2 D«K 

Lw 

V 2DW/[1-(K
2
D/W)] 

/2(D/W)/[l + U2D/w)] 

2KD 1 + 8 \DK2/ J 

(^D/W)[l+|(^): 

8\DK2/ J 

The complete analogy between the propagation of neutron waves and the propagation of heat waves 
is evident from the foregoing discussion. The analogy was first pointed out by Wigner, who proposed 
that such basic constants as the thermal diffusion length, 1/K , and diffusion constant, D, could be de- 
termined by measuring the wave length and attenuation constant of neutron waves in a weakly absorbing 
medium. Such experiments would be completely analogous to the famous Angstrom method for meas- 
uring thermal conductivity. With the high neutron intensities available from a chain reacting pile such 
experiments should now be feasible. 

We list below representative values of vw, lw, and a for thermal neutrons in graphite (D0 = 0.9 cm, 
v = 2.2 x 105 cm/sec, K = .02 cm-1). 

10/sec w = 1000/sec 

2 x 104 cm/sec 

w- 

»w 

lw 

a 

6 x 103 cm/sec 

3.8 x 103 cm 

50 cm 

126 cm 

20 cm 
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