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1.        Introduction 

Ion acoustic waves, which were first predicted by Tanks and Lcmgmuir [1929] using the 
fluid analysis, have been studied by a number of authors on the basis of the Vlasov 
equation. In 1946, Landau gave a method for solving the linearized Vlasov equation 
which indicated that the ion acoustic waves are damped [Landau, 1946]. This damping 
effect is caused by the negative slope of the ion distribution function for resonant 
velocities comparable to the phase velocity of the waves. Generally, ion acoustic waves 
are restricted to the long wavelength domain because of strong ion Landau damping at 
short wavelength. Ion Landau damping effects are, therefore, most important wherever 
the phase velocity of the ion acoustic wave is comparable to the ion thermal velocity. 
Experimentally, the ion acoustic waves were first observed by Revans [1933], and their 
Landau damping was measured by Wong et ah [1964]. 

The plasmas in the low attitude of the ionosphere and also in the experiments are usually 
collisional. There have been many investigations of a collisional plasma in the presence or 
absence of an external electric field. The collisional damping of the ion waves was studied 
by Bhadra and Varma [1964]; they used BGK equation to describe the ion-ion collisions. 
Stefant [1971] investigated the influence of electron-ion collisions on the ion acoustic 
waves in the present of a longitudinal current with a BGK collision integral and found that 
the electron-ion collisions facilitate the ion acoustic oscillations. Kulsrud and Shen [1966] 
and Ono and Kulsrud [1975] used a more accurate method for the collisional process and 
found that ion-ion collisions damped the ion-acoustic waves. In their method, the ions 
were described by the Fokker-Planck equation and the electrons were treated by a fluid 
equation. Buti [1968] presented a more realistic model and used complicated Fourier- 
Laplace transforms to study the ion acoustic waves in a collisional plasma. In the model, 
both the electron and the ions are treated by Fokker-Planck equation and it is found that 
the electron-ion collisional undamping was small compared to the ion-ion collisional 
damping for a wide range of wave numbers and particle temperature. Jasperse [1984] 
gave a general propagator expansion method for solving linearized plasma kinetic 
problems with collisions and Basu and Jasperse [1988] used this method to solve the 
collisional plasma based on linearized Balescu-Lenard kinetic equations, which shows that 
the electron-ion collisional undamping effect may overcome the ion-ion, electron-electron, 
and ion-electron collisional effects. So unlike a collisionless drift-free plasma, where the 
ion acoustic waves are always Landau damped and the plasma is stable, the collisional 
plasma may be unstable when the collisional undamping rate exceeds the electron and ion 
Landau damping rates. 

Plasma in planetary ionospheres consists of may kinds of ions, and the ion composition 
ratio changes with height. In the experiments, we have also the impurities in the plasma. 
To study the phonomena which are related to waves in the ionosphere as well as in the 
experiments, it is important to understand the nature of waves in the multi-ion species 
plasma. A multi-ion component plasma exhibits some phenomena which do not occur in a 



single ion plasma; one of these is the resonance of light ions with the heavier ion mode 
waves. Alexeff et al. [1967], Nakamura et al. [1975] and Nakamura et al. [1976] 
experimentally investigated the changes in wave properties of ion acoustic in multi-ion 
plasma with a variable composition ratio. Fried et al. [1971] analytically studied the 
properties of the ion acoustic waves in a multi-ion plasma by expanding the plasma 
dispersion function. Their studies have indicated that a small amount of light ion 
contamination will cause higher damping rate than that in single ion species plasma. 

In this report, I will study the effects of collisions and contamination on ion acoustic 
waves. The dispersion relation for collisional plasma will be given in Section 2. The 
general propagator expansion method presented by Jasperse [1984] will be used to solve 
kinetic dispersion equation with collisions. The collisional processes we consider here will 
include the collisions between charge neutral particles and between charged particles. The 
Fokker-Planck equation will be used. The contamination effect will be studied in Section 
3 with the consideration of a variety of ion composition ratio and ion- electron 
temperature ratio. In Section 4, all the effects considered in this report will be put 
together to analyze the data we measured in the experiments. 

2.        Dispersion Relation for Collisional Plasma 

The kinetic equation in the electrostatic approximation for a collisional plasma is 
dfi ai       df, 
jLL + y.Vf +«L.E-±- = Hf,\ (1) 
at nij       cv 

where E is electrostatic field, $ and /Wj are charge and mass of the particle, and i( ) is the 
(non-linear) collision operator that acts on the velocity-space coordinates of the particle 
distribution function^. We seek a perturbation solution of the form 

/,(r>v>0 = /,o(v) + /I(r,v), (2) 

Efc/^frO, (3) 
where /0 is the zero-order distribution function and fi and Ei are perturbed quantities. 
Using Eqs. (2) and (3) to Linearize Eq. (1), we get the first order approximation of the 
equation 

where Lja is the linearized collision operator on the crth particle and the summation is on 
all the particle species in the plasma. Assume that the waves are plane waves and all 
perturbation terms have the factor e'(k'r_a*). Then Eq. (4) becomes 

-W, +;(k.v)/, -Ju =^k.£ji (5) 
Define the collisional propagator operator as 

U={{-ia>+ik-v)l-[L}a]y\ (6) 
where I is the unit matrix and [LJa] represents a matrix with Lja as its element in rowy and 
column a. Then we can solve Eq. (5) for all the particle species as 



[ffi] = v- 
~«iA,, ^ 

m. 
jo 

^ 

where the symbol \xj[ stands for an array with Xj as its jth element. 
Using the Poisson's equation 

we then have 

^-TrrJ*'^]'^- g/6 k ff. ;o 

m. <3> 

(7) 

(8) 

(9) 

Since i,* is usually a comphcated integro-differential operator, it is difficult to get a 
closed-form solution for Eq. (9). Here we will use the general propagator expansion 
method [Jasperse, 1984]. The method can be applied to a wide class of collision 
operators and usually can produce closed-form results for Eq. (9). Here we assume the 
limit of weak collision i.e., for any./' and crfor the linearized collision operator, we have 

Lyff|«|ö)-k-v|. (10) 

Then the collision propagator operator can be expanded into the Taylor series 

C/ = X{(/ö)-/k-v)-1[z/ff]}  ■(-»+fc.v)-1. (11) 

Substituting Eq. (11) into Eq. (9), we get 

1 = 
m„     <D - k • v 

(12) 
-o »=o 

Neglect the high-order terms in Eq. (12) and consider the Maxwellian distribution for j^0, 
we get 
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1 

j k A j 
Wn 
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J fit — ]c . V 

a   m. 1 <r. <T0 
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= 0.(13) 

In this report, we will use Fokker-Planck collision operator for £( ).   For the collisions 
between charges and neutral particles, we use the Brownian form of Fokker-Plank 
equation [Fokker, 1914; Plank, 1917; Chandrasekhhar, 1943]. The collision operator for 
the Brownian form is 

4i)-?v!-H!K (l4) 

and linearized collision operator for the j-n collision is 

^-*4-H!) (15) 
For the collisions between charged particles, we use the Rosenbluth form of the Fokker- 
Planck equation [Rosenbluth et ah, 1957] which gives the following collision operator 
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and the linearized collision operator for the j-a collision is composed of four terms 
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Grewal [1964] gave the relationship between the Brownian form and the Rosenbluth form 
of the Fokker-Planck equation. Substitute Eq*. (15) and (17) into Eq. (13) and simplify 
the equation obtained. Since the algebra involved in the simplification is very lengthy, we 
put it in Appendix. The final result for the dispersion relation to the first order in 
collisionality for a collisional, two-constituent plasma is 
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Notice that the terms in the square bracket is caused by the collisions, in which the first 
term is from the collisions between charged and neutral particles and the second term from 
the collisions between charges particles. We also studied the simple BGK collision from 
the BGK equation is similar to what we get here and that the approximation of the general 
propagator expansion method is very good when the frequency co is much larger than 
collision frequency but becomes less accurate when the frequency © is less than several 
times of the collision frequency [Jin, 1995]. Basu andJasperse [1988] solved Eq. (13) 
with the Balescu-Lenard collision operator for the collisions between charges particles. 
By a comparison of our results with theirs, we find that the both results are exactly the 
same. This is because Basu andJasperse [1988] used approximation e(©,k) « 1 in their 
calculations. Liboff XI990] shows that the Balescu-Lenard equation will reduce to the 



Landau form of the Fokker-Planck equation when e(©,k) ->• 1 and the Rosenbluth form and the 
Landau form of the Fokker-Planck equation are equivalent to each other. Expanding the left 
side of Eq. (18), we get the analytic expressions for the phase velocity and the damping 
coefficient for the ion waves in a collisional plasma: 
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for the complex k case, where 
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(19b) 

(20a) 

(20b) 

The subscripts L in the equations stands for the Landau damping term, and en, in, ei, ee, ii, and 
ie stand for the e-n, i-n, e-i, e-e, i-i, and i-e collision terms, respectively. Usually, the en term 
is much less than the in term, and ee, ii, and ie terms are much less than the ei term. Note that, 
approximately, Landau damping coefficient is proportional to k or © and the damping 
coefficients from the collisions are independent of k or © for the lower k or © values. Figure \a 
shows the dispersion relation of ion acoustic waves with i-n collisions only while Figure \b 
shows the dispersion relation of ion acoustic waves with e-i collisions 



only. The e-i collisions contribute an undamping effect on the ion acoustic waves. If this 
effect is large enough to overcome the Landau damping and other collision damping, the 
collision-driven ion acoustic instability may occur. Since the Landau damping increases as 
wave frequency increases, this kind of instability may occur only in the low frequency,. 
From Eqs. (19b) and (20b) we can get the marginal stability condition for this instability: 

CO 

CO 
p> JlK 

_1 

-F~2 

CO 
i«(*)(£)- 

2v, _3 

-F~2 

p> 
CO 

<k){e) 
p 

GfW)        (21> 
3.   Contamination effect 

To study the basic characteristics of contamination effect on ion acoustic waves, we will 
not consider the collision effects here. We will combine the two effects in the next section 
when we analyze our experimental data. Expanding the plasma dispersion function in Eq. 
(13) without collisions (v;n = vjs = 0) to the first order, we can obtain 

„2 6^ 
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for the complex © case, and 
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(23b) 

for the complex k case. Since we consider the contamination effect, here, we have 
assumed n}« nt« ne, where the ith ion species is the dominant species and the/th ion 
species is the impurity, and cs is the acoustic velocity of the dominant ions. Notice that 
the contamination does not affect the phase velocity of waves very much but it may affect 
the damping property significantly. From Eqs. (226) and (23b), we find that the Landau 
damping is a summation of damping from electrons and all ion species. The ion Landau 
damping terms include the following function 

/W= xe 2 
JT m, 

_e i_ (24) 

Figure 2 shows the function ßx). Usually, the dominant ion species has x > 1. For the 
large TJTi ratio, the value of ßx) for the dominant ion species can be very small. The 
heavier ions (ions with masses greater than m,) will have even smaller values. However, 
for the lighter ions (ions with masses less than m,), the values of the function ßx) and the 
Landau damping caused by them may have the same order as or even be greater than the 
Landau damping caused by 



the dominant ions. Thus a small amount of light ion contamination may significantly affect the 
acoustic wave properties of a plasma. To study the contamination effect in detail, we consider 
the two-ion species plasma next. Assume that the contamination ion has mass mc < mi and 
density nc. Both ion species have the same temperature Tt. Following the method presented by 
Fried et al. [1979], we can get the approximate analytic expressions for the phase velocity and 
damping coefficient for the ion waves in the two-ion species plasma. For the high TJTt ratio, 
we can obtain 
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for the complex k case. 
For the medium TJTt ratio, we can obtain 
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for the complex k case. Note that Friedet al. [1971] only gave the analytic expression for 
the complex © case which approximately are Eqs. (25) and (27). Figure 3 shows the 
dispersion relations of the ion acoustic waves in the argon plasma with the different ratios 
of FT contamination. From the figure we know that the phase velocity of waves becomes 
larger and larger as the contamination increases when the temperature ratio is small and 
becomes smaller and smaller when the temperature ratio is larger than certain value (about 
0.011). The FT contamination has significant effect on the damping coefficient of the 
waves in the small temperature ratio region. It causes a peak in the damping curve of the 
waves. In the higher level of contamination, the situation becomes quite different. In 
Figure 3b, we show the case where the FT contamination is 1%. Now we find that at least 
two modes may exist for the waves: in the lower temperature ratio (the left side of the 
vertical dotted line), the mode 1 (solid line) has the lower damping coefficient and is the 
dominant mode; in the higher temperature ratio (the right side of the vertical dotted line), 
the mode 2 then has the lower damping coefficient and becomes the dominant mode. We 
also find that the dispersion relation of no H* contamination closes to the mode 2 in the 
high ion-electron temperature ratio and the mode 1 in the energy low temperature ratio. 
In the middle range of the temperature ratio , it gives neither approximate damping 
coefficient for the two modes. One interesting thing is that the wave phase velocity curves 
of the two modes have no intersecting point in this case. Thus, if we could control the 
temperature ratio of ion to electron, we might find that, at certain temperature, there will 
be two modes, with different phase velocity, propagate in the high FT contaminated 
plasma! 

Actually, in the lower level of contamination, again there are at least two modes that exist, 
as we show in Figure 3c for the 0.5% Ff contamination. The difference to higher 
contamination cases is that, now, the mode 1 (what we showed in Figure 3d) always has 
the lower damping coefficient than the mode 2 in the temperature range shown. From 
Figure 3d we know that the change from the lower-level contamination behavior to the 
higher-level one occurs around 0.65-0.7% of H1" contamination. 



The approximate formulas (25) and (27) are also as shown in Figure 3b and 3c. Eq. (25) 
does give a good approximation to the exact solution when the temperature ratio is very 
small but Eq. (26) does not when the temperature ratio is higher. 
Figure 4 shows the similar situation to Figure 3 but for the complex k case. All the 
conclusions above almost keep the same except that the dominant mode and the non- 
dominant mode in this case will exchange in the very high temperature ratio (the right side 
of the second dotted line in Figure 4b and the right side of the dotted line in Figure Ac) 

4.        Experiments on Ion Acoustic Waves 

The experiments of ion acoustic waves were performed in the double plasma chamber as 
shown in Figure 5. The typical plasma parameters used in the experiments are as follows: 
electron temperature Te = l~3eV, ion temperature T, « 0.05~0.ire, electron density 
ne=108 ~ 1010 cm"3, total neutral gas pressure p « (l~2)x 10"4 Torr, and base pressure 
pb<5x 10"6 Torr. In the experiments, the argon gas was used. Figure 6 shows the gas 
composition in our chamber in the situations of the bass pressure and the operating 
pressure. From Figure 6a we find that the hydrogen, vapor, nitrogen, and oxygen ions will 
be the major light ion contaminations. Since our previous analysis has focused on the 
two- ion species plasma and our numerical solutions would also become unstable when 
too many ion species were considered, here we will count all the effects of light ion 
contaminations into one ion species. From Eq. (24) we can find the ratios of effects of the 
ion contaminations: H: N or O or H20: N2: 02 « 0.5:0.08:0.014:0.007. So FT affects the 
most. Using these ratios and comparing he peak values of the various gases in Figure 6, 
we can get the equivalent FT contamination about 1.8%. In the experiments, waves were 
launched externally by the signal grid and were detected by the movable Langmuir probe. 
Figure 7 gives the waves we measured. 

Since the experimental situations are considered here, the best suited case will be that k is 
complex and © is real (complex k case). Figure 8 shows the results of wave number and 
damping coefficient obtained from the curve fitting. The solid lines in Figure 8 are the 
theoretical curves calculated from Eq. (13) with e-n, e-e, i-i, and i-e collision neglected. 
The parameters we used are: «e=2xl09 cm"3, Te = 1.4eV, T{ = 0.09eV, the neutral gas 
density «„=4.62x1012 cm"3, and the H* contamination 1.8%. From Figure 8 we find that 
the wave number is very close to the theoretical value. The damping coefficient is close to 
the theoretical value in the high frequency, but does not follow the theoretical predication 
when the frequency is less than 60kHz. Two reasons may contribute to this disagreement: 
first, the wavelength is near the size of our chamber; and second, this disagreement starts 
at the wave frequency which is only several times higher than the e-i collision frequency 
which is about 10kHz. We know that at low frequency the general propagator expansion 
method cannot give good approximation. 

Table 1 shows the distributions of the Landau damping and the collision damping (or 
undamping) effects in the lower frequency (o«©Pi). In the table we also show the 
approximate values, in which the Landau damping is from Eq. (28£), the i-n collision 
damping and the e-i collision growth is from Eq. (20b). From Table 1, we find that them 
approximate formulas for Landau damping and the i-n collision damping is not precise 



enough and from the discussion in the preceding section we know that the approximate 
formulas for the Landau damping is not good when the ion-to-electron temperature ratio 
is large. The approximate formula for the i-n collision damping is mainly affected by the 
contaminating effect. Note that, at lower frequency, the Landau damping coefficient is 
approximately proportional to the frequency and the damping coefficients of the e-i and 
i-n collision are approximately independent of the frequency. Since the e-i collisional 
growth is much higher than the i-n collisional damping for the plasma parameters we used, 
the theory predicates that the instability caused by the e-i collision might happen at low 
frequency as the solid line in Figure 8 showed. We did not find this instability in our 
experiment because of the reasons we mentioned before. This instability may be found in 
the experiment with low Landau damping. 

Table 1. Distributions of damping or undamping effect in lower frequency 
Actual values Approximate values 

Landau damping only 
e-i collision only 
i-n collision only 

0.064 (©Av) 
-lo-3 

10-4 

0.076(o/opi) 
-10-3 

4x10-5 

total -9xlO-4+0.064((D/op,) -10-3+0.076(o/(ap,) 

5. Conclusion 

In this report, we have studied the effects of collisions and contamination on the ion 
acoustic waves. 

When collisions are added to the ion acoustic waves, the characteristic of the ions acoustic 
waves may change. In this report, we consider the e-n, i-n, e-e, e-i, /-/', and i-e collisional 
effects on the ion acoustic waves. We find that the e-n collision is weak compared to i-n 
collision and the e-e, i-i, and i-e collisions are weak compared to the e-i collision. The i-n 
collision are damped but the e-i collision may grow. The growth of the waves may 
happen when the e-i collision growth overcomes the Landau damping and other collision 
dampings and then the waves are unstable. 

The contamination may have a significant effect on the ion acoustic waves. A small 
amount of light ion contamination can cause much higher damping and the wave property 
may be a very complicated function of ion composition and temperature. 

In our experiment on the ion acoustic waves in a drift-free plasma, the argon gas was 
used. The experimental results are explained with the theory discussed in this report and 
are very close to our theoretical results. 
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Figure la. Normalized damping coefficient versus (a) normalized wave number (complex 
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The values TJTe=Qm is used. 
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Figure 2. A function in the damping coefficient of ion acoustic waves in the multi-ion 
species plasma. 
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Figure 5. Schematic of two chambers and measuring systems, (a). Chamber I, the double 
plasma chamber; (b). Chamber II, the modified triple-layer plasma chamber. 
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(a) 

(b) 

Figure 6. The gas composition taken by MICROMASS. (a). In the situation of base 
pressure pb=4^l0~6 Torr; (b). In the situation of argon gas pressure p=l.32x\0'A Torr. 
Note that the argon gas also has a minor peak at 20AMU with height of 16% of its major 
peak. 
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Appendix A.   Special Functions for Dispersion Relations of Plasma Waves 

A.l.    Plasma Dispersion Function 

The plasma dispersion function is defined as 

for 3(Q > 0 and as the analytic continuation of Eq. (A. 1) for 3(Q < 0 [Fried and Conte, 

1961]. 

The plasma dispersion function satisfies the differential equation 

Z'(Q = -2[1+CZ(Q] (A.2) 

withZ(0)=z'V^. 

Z(Q can be expressed in terms of the error function 

Z (0 = ijne-f [l - erf(iC)] (A3) 

where 

2      f£     _,2 

«ftO-^.-* 

is the error function. It should be noted that Eq. (A.3) is analytically continuous in the 

whole complex plane. 

For the purpose of mathematical analysis, it is useful to find the series expansions of 

the plasma dispersion function for small and large arguments. For small arguments, Z(Q 

can be expressed in convergent series 

Z(0-/Ä---Z(-1)|^. (A,) 

and 

oo p2n+l 

n=0 ' 
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For large arguments, we have the asymptotic series 

i(r\   -r -?  v(2w_1)!! 

2»+l 
^2"C 

0,   3(0>0 

a = < 1,    3(£) = 0   onrf(-l)!! = l 
2,   3(0 <0 

The asymptotic series must be terminated when the terms no longer decrease. 

A.2.     W Function 

(A.6) 

An equivalent function to the plasma dispersion function is the W function, which is 

defined by Ichimaru [1973] 

1     r - &   2 

for 3(Q > 0 and as the analytic continuation of Eq. (A.7) for 3(Q < 0. 

(A.7) 

The W function satisfies the differential equation 

w0\c)=c-y0(t)-i]-civ0(t) 
withWo(0) = l. 

(A.8) 

The W function is related to the plasma dispersion function either by 

or by 

*®-Md9 

Z'(£) = -2W0(j2C). 

(A.9) 

(A. 10) 
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The higher order derivative of the W function is defined as 

d" Wn(C) = j^K(C) = i"[^eg~dt. (A. 11) 

Notice that the above definition is also valid when n=0. The higher order derivative of the 

W function can also be calculated from the lower order functions 

WO(C) = 1-0V_,(C), (A.12a) 

wn(c) = -nwn_2(Cj-gvU£)- (A-12b) 
In Eq. (A. 12a), we introduce W-1(Q. The function W-1(Q can be defined from 

Eq. (All) as 

Obviously, W0(Q  and W-1(Q satisfies 

wtä = ±wjg) 

(A 13) 

(A 14) 

and W(Q is related to Z(Q by 

W
-^ = -MT2. (A 15) 

Following are three series expansions for the W.i (Q which correspond to Eqs. (A.4), 

(A. 5), and (A 6) for the plasma dispersion function. They are 

(A 16) 

and 

W V-4 e 2 +e 2 £ ■2n+l 

n=0 (2w)!!(2n + l) 
(A.17) 

for small arguments, and 

W^) = -lA—oe 2 
+1 

n=0 

(2«-l)!! 
■2n+l       ' (A.18) 

for large arguments. 
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A.2     Modified Bessel Function of the First Kind 

The solution to the differential equation 

d w    „dw 
*   dC    ^ dC   y ' 

(A. 19) 

are I±V(C) and Kv(£).  The function Iv(g) is referred to as the modified Bessel function 

of the first order v [Abramowitz andStegun, 1972]. 

Some of the identities involving the modified Bessel function of the first kind are 

I.n(C) = IN(0,n = 0,1,2,3,... 

,£cos^ I'.fc> 
2v 

/vte)='*..ft)-'~i(A 

2/;(ö = U0+UÖ- 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

For small arguments the modified Bessel function of the first kind can be computed using 

the series of 
\2n+v 

A(ö=Z 
(C/2)2 

^n!r(» + v + l)' 
(A.24) 

and for large arguments, using the asymptotic expansion of 

K(() = firti 
l    y-l ^M-l)(ju-9)    {JU-1){JU-9){M-25) { 

K 2!(8£)2 3!(803 

n 
|arg<|<^,(A25) 

where 

u^v2. 
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