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1.    Introduction 

In this section the requirements for reliable image transmission over narrow bandwidth, 
noisy channels are presented. The compromise associated with source coding and channel 
coding as well as the traditional methods of image coding for transmission is then discussed. 
Finally, the subject research of this report is outlined. 

1.1    Image Transmission 

Many communication functions require the transmission of images over narrow bandwidth 
channels in a noisy environment. Radio, telephone, and satellite communications are all 
representative of narrow bandwidth channels. Noise can be generated by many sources, a 
few being electronic noise, cochannel interference, rhultipath interference, and intentional 
jamming. Applications for the capability of image transmission are limitless. They range 
from industrial to military applications including tele-medicine, digitization of the battlefield, 
weather services, and robotics. Of course one of the most difficult challenges is mobile 
communications, where restrictions are placed on the capabilities and size of the transmitter 
and the receiver. It is imperative that image integrity be preserved as much as possible 
during transmission. For instance, corruption of an image used for remote diagnosis could 
be a life-or-death situation. Öf equal importance in wartime is a decision made from an 
image transmitted for identification of friend or foe to prevent an incident of friendly fire. 
The use of both compression and error protection is needed for image transmission over 
narrow bandwidth noisy channels. 

The fact that images contain large amounts of data causes compression to be an important 
objective. In order to put into perspective the actual amount of data that an image contains, 
the following example is provided. An image obtained from a Charged Coupled-Device 
(CCD) camera and frame grabber contains 512 x 512 pixels. Each pixel has a dynamic 
range of 0-255, symbolizing gray scale values. This translates to 8 bits/pixel x 262,144 
pixels for a total of 2,097,152 bits or approximately 2 megabits. For a narrow bandwidth 
channel of 16 kilobits/second, it would take a minimum of 2 minutes to transmit this image. 
In many applications this delay is neither practical nor acceptable. Therefore, it is necessary 
to compress the image data before transmission. 

There are two categories of compression, lossless and lossy. Lossless compression implies 
that the reconstructed image will be an exact replica of the original. Two common types of 
lossless compression are Huffman coding and Ziv-Lempel coding. Lossy compression discards 
some nonredundant information to provide a greater reduction of data. This is accomplished 
at the cost of distortion in the reconstructed image. The Discrete Cosine Transform and 
Wavelet transform coding are lossy coding schemes. In many applications a certain amount 
of distortion is acceptable, in return for greater compression performance. 

An image can become corrupted when transmitted over a noisy channel. Depending 
upon the form of the data during transmission, a small amount of noise can be catastrophic, 
causing the received image to be distorted such that it is rendered useless. If an image were 



encoded utilizing a variable-length prefix code, a single bit error could cause the remaining 
data to be decoded incorrectly. Consequently, an effort must be made to prevent or minimize 
the effects of channel noise. 

It is also desirable for the algorithm that processes the images to be of minimal compu- 
tational complexity. In the application of mobile communications, this is particularly vital 
due to the constraints of the field transmitter/receiver. A less intensive algorithm allows real 
time or near real time processing and transmission of imagery. This aspect is very desirable 
in an image transmission system. 

1.2    Joint Source Channel Coding 

C. E. Shannon wrote his definitive paper on the mathematical theory of communica- 
tion in 1948 [1]. In this paper, he defined the capacity of a channel to be the maximum 
rate, bits/symbol, at which information could be transmitted reliably through a channel. 
Shannon's source coding theorem states that if a channel is noiseless, it is possible to com- 
pact the information to the size of the source entropy, the minimum average word length 
in bits/symbol, by coding infinitely long extensions of the source. If the channel is noisy, 
the interest shifts from representing information as compactly as possible to encoding it so 
that reliable communication is possible. By sending information in a redundant form over 
a noisy channel, the probability that an error will occur can be reduced. Rate distortion 
theory states that the distortion incurred by the information is a decreasing function of the 
information rate. In addition, the rate is upper-bounded by the capacity of the channel. 
The capacity is a function of the channel bandwidth, noise properties of the channel and 
the intended signal. Therefore, one must compromise between rate and distortion over the 
noisy channel. This balance between source coding to minimize rate and channel coding to 
minimize distortion is dependent upon the application. 

A source and channel coding system is depicted in Figure 1. In this example, x is the 
original image. It is compressed by the source encoder, which outputs y, then protected 
from errors by the channel encoder, which produces z. During transmission over a narrow 
bandwidth noisy channel, z is exposed to various forms of noise and enters the receiver as 
z. The channel decoder exploits the redundancy in z to produce an estimate, y, of y. The 
source decoder then constructs x, a possibly distorted version of x. 

It has been a long standing practice to treat source and channel coding separately. This 
practice was motivated by Shannon's joint source channel coding theorem [2]. This theory 
states that source coding followed by channel coding can be made to perform as well as 
any single- stage source channel coding procedure. In this scenario of separation, the source 
coding can be designed to suit the source, and the channel coding can be designed for good 
performance in a particular channel. The drawback to this method is high computational 
complexity and long delay. In contrast, joint source channel coding lessens the computational 
burden by performing both as a single process [3], as depicted in Figure 2. 

In many ways source and channel coding form a duality. Source coding removes unstruc- 
tured redundancy from the data — data compression — while channel coding introduces 
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FIGURE 2.—Joint Source/Channel Coding System 

structured redundancy to the data to combat errors caused by noise — error correction. If 
the source coding method is lossy, the cost for the compression is distortion. The expense 
for the protection provided by channel coding is more data and less distortion. The tradeoff 
one is willing to make between distortion and rate depends primarily on the application. As 
an example, little compression and high data protection may be desired for medical images 
transmitted on a wide bandwidth channel. Conversely, compression may be of the utmost 
concern for the transmission of satellite imagery over a narrow bandwidth channel. The ideal 
situation is efficient compression with low distortion, along with resilience to channel noise. 

1.3    Subject Research 

In this research, the robust source coding of images for transmission over noisy chan- 
nels is presented. By providing source coding with good channel response, we address the 
source/channel coding problem using an algorithm of modest computational complexity. 
This coding is accomplished by utilizing Predictive Trellis-Coded Quantization (PTCQ) in- 
corporating various prediction filters. The prediction filters are designed to mitigate the 
effect of errors caused by the the imperfect channel, thereby providing an image with low 
distortion. The structure of this report is as follows: essential knowledge is presented in sec- 



tion 2, where background is provided for the Viterbi algorithm, Trellis-Coded Modulation, 
and predictive coding along with the design of optimal quantizers. Once these preliminaries 
have been addressed, section 3 delves into the details of PTCQ, and discusses modifications 
for the noisy channel and the incorporation of the linear and nonlinear filters. Section 4 
presents the performance of PTCQ, incorporating the various prediction filters in both a 
noiseless and noisy environment. The PTCQ systems that provide good noise mitigation 
will be future evaluation for differing PTCQ configurations. Section 5 presents conclusions 
as well as recommendations for future work. 



2.    Preliminaries 

Fundamental to the formulation of PTCQ are Viterbi decoding, TCM, predictive coding, 
and optimal quantizers. The PTCQ algorithm utilizes a trellis that is a redundant state 
machine mapped out in time. The use of a trellis, whose output is determined by a max- 
imum likelihood algorithm called the Viterbi algorithm [4], results in low bit rate output 
with minimal distortion. The design of the trellis stems from the channel coding technique 
of TCM. PTCQ also incorporates the concept of lossy predictive coding to encode the im- 
age. Optimal quantizers designed using the Lloyd-Max algorithm are used to quantize the 
prediction error. 

This section begins by explaining the trellis structure and its origin, then demonstrates 
how the Viterbi algorithm is used to find the path of minimum distortion through the 
trellis. TCM is then overviewed as the original channel coding dual from which the source 
coding method Trellis-Coded Quantization (TCQ) was derived. The theory and methods 
of predictive coding are then presented, followed by the design of optimal quantizers. The 
following section incorporates all of these techniques in order to formulate PTCQ. 

2.1    Viterbi Algorithm 

The Viterbi algorithm was developed in 1967 by Andrew Viterbi as a method for decoding 
convolutional codes [4]. A convolutional code is a discrete finite state Markov process that 
can be represented as a state transition diagram. The algorithm that optimally finds the 
shortest path through a directed graph is analogous to forward dynamic programming [5]. 
The recursive algorithm is a maximum likelihood decoding algorithm, which locates the most 
likely path through the encoder's state diagram and therefore minimizes the probability of 
error [6]. 

A convolutional code can be described by a state transition diagram, or state machine, 
as shown in Figure 3. In this figure the possible state progression is depicted by the directed 
graph. A more redundant description of the process can be constructed from this state 
machine by adding a time axis; the resulting structure is referred to as a trellis. Each node 
or state within the trellis represents a distinct state at a given time. Each branch of the 
trellis indicates a time-dependent state transition. The Viterbi algorithm takes advantage of 
the state nature of the code by tracing a path from state to state though the trellis diagram 
in an optimal fashion, thus decoding the output of the convolutional encoder. The trellis 
corresponding to the state transition diagram of Figure 3 is displayed in Figure 4. 

A sequence x = (x0,..., xn) is encoded using a convolutional encoder which outputs 
z = (z0, • • •, zn). The sequence z is sent over a channel and received as z; the sequence z 
which may be corrupted by noise. The Viterbi algorithm is used to decode z, such that 
P = (z was sent\z was received) is maximized. 

We now explain the Viterbi algorithm. Let p represent the cost function or metric that 
we are trying to minimize, and let k and j represent the states of the trellis. 



FIGURE 3.—State Transition Diagram 

Initialize pk = 0, state k=l, and time=0 

1. Compute the current cost for all paths entering each state, j, by adding the cost metric, 
Pk, of the previous state to the cost incurred traversing the branch to this state j 

2. For each state, j, save the path entering this state with the lowest cost metric (this 
becomes the survivor path), 
update metric pj — pk + p (traversing branch from k to j), and 
eliminate all other branches entering this state 

3. Increment time and repeat from step 1. 

When the entire sequence has been processed, select the state at time n that has the minimum 
cost, pk. Reconstruct the output sequence by following the path back to time 0 through this 
maximum likelihood path. An example is provided in Appendix A. 

In the following sections the cost function is the Euclidean distance, defined in (1). 

P(x,x) = yf(x-xy. (1) 

The Viterbi algorithm is an integral portion of many digital communication techniques; a 
few, namely TCQ and TCM, are covered in the following sections and subsections. 

2.2    Trellis Coded Modulation (TCM) 

Ungerboeck developed channel coding for multilevel/phase signals by combining channel 
coding and modulation [7]. This technique, known as TCM, can be described by a trellis 
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FIGURE 4.—Corresponding Trellis 

diagram and uses maximum likelihood decoding, as in subsection 2.1. We begin with the 
simple case of a four-state trellis and confine our example to eight-level Phase-Shift Keying 
(PSK) to illustrate this concept. Eight PSK is a two-dimensional modulation scheme where 
symbols are mapped to discrete phases of a sinusoidal carrier. A block diagram of this TCM 
system is shown in Figure 5. Two input bits, x = (x1,x2), determine the phase modulated 
waveform at the output of the encoder. The first bit, Xi, is used as input to a binary 
convolutional encoder with rate 1/2. The output of this encoder along with the second 
input bit, x-2, is used to select one of the eight phase signals. The mapping and selection 
process of these phases are the unique design property of TCM. 

C». Convolutional 

Code with 

Feedback 

Phase Modulation 
Encoder xl           » 

"2, 

c3 

• - 

X» 

- 

Phase Modulated 
Waveform 

FIGURE 5.—Block Diagram of the Eight-PSK TCM System 

Since the unquantized demodulator output is input directly into the maximum likelihood 
algorithm, it is implied that to provide low probability of error at the decoder, the signals 
must have a large Euclidean distance. The minimum Euclidean distance of a code is the 
free distance, dfree, defined in (2), where d is the Euclidean distance between signal xn and 
xn. Coding and signal mapping are designed together to maximize djree between all code 
sequences, Ungerboeck defines this process as mapping by set partition. 

dfree =      niin 22 d (xn,xn) 
1/2 

(2) 



One of the ways that TCM maximizes dfree is by expanding the signal set; when transmit- 
ting m bits/symbol, a signal set, or alphabet, of size 2m+1 is used. This technique provides 
redundancy for coding with little to no bandwidth expansion. Set partitioning divides the 
signal constellation into subsets that maximize dfree. The guidelines for set partitioning are 
as follows: 

1. Maximize distance between parallel transitions, 

2. Maximize distance between transitions originating or ending at the same state, 

3. Use all symbols with equal frequency. 

In Figure 5, the input vector is x = (xi,Xi), where xj is the input to a convolutional 
encoder whose output selects the one of four possible signal subsets and £2, which selects the 
signal within that subset. TCM's typical convolutional encoder is designed with feedback 
and rate equal to 1/2. 

For the eight-level phase modulation system in this example, there are four possible 
signal subsets that maximize dfree, each containing two symbols with maximum Euclidean 
distance. These subsets are shown in Figure 6. 

/ft' 

W- 
FIGURE 6.—Example of Set Partitioning 

The two symbols within each subset represent the parallel transition in the trellis diagram. 
Corresponding to the example in Figure 6, xi selects subset A, B, C, or D based on the output 
of the convolutional encoder, and 22 selects the 0 or 1 signal within the selected subset. 

The trellis diagram for the described system is shown in Figure 7. The path from state 
1 to state 1, is the parallel path representing signals AO and Al, respectively. Adhering to 
the first set-partitioning guideline, parallel path symbols are selected from the same signal 
set, as shown in Figure 8. By mapping AO and Al as parallel paths the signals have the 
maximum distance possible, 180° apart. As specified by the second set-partitioning guideline, 
transitions originating or ending at the same state are assigned in order to maximum dfTee. 
Subset A and subset C originate at the same state as do subsets B and D; these signal subsets 
are 90° degrees apart, as is evident in Figure 8. 



FIGURE 7.—Example of Trellis States 

FIGURE 8.—Adherence to Set-Partitioning Guidelines 

The fundamental concept of TCM, namely mapping by set partition, has been demon- 
strated using eight-PSK TCM. TCM offers high-spectral efficiency to operate within a few 
decibels of channel capacity with only moderate complexity. For a more detailed explanation 
of the TCM algorithm, we refer the reader to the subsequent paper by Ungerboeck [8]. 

2.3    Predictive Coding 

Predictive coding is one of the many methods of compression. As with most types of 
compression, it can be lossy or lossless. The principle of predictive coding is based on 
eliminating the interpixel redundancy that exists between adjacent pixels. The redundancy 
is removed by taking the difference between the predicted value of the pixel and its actual 
value. This difference is the prediction error, or the residual, which constitutes the new 
information in the pixel. Only this new information is encoded in the compressed image. 
In this section, we begin by describing the lossless method of predictive coding, and then 
proceed to lossy predictive coding, which is the method used for PTCQ. 



An image has high spatial correlation due to the physical system used to acquire it. For 
example, a CCD camera, which is used to obtain the image, consists of an array of photo- 
cell elements that leak energy into one another. This physical phenomenon is evident in the 
gradual change of pixel values throughout the image. To illustrate this fact, an example is 
provided by extracting a row of pixels from an image (shown in Figure 9). Here it is evident 
that the change from one pixel to the next is subtle. 
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FIGURE 9.—A Row of Pixels Extracted From an Image 

2.3.1    Lossless Predictive Coding 

The basic components of a lossless predictive coding encoder are presented in Figure 10 
[9]. For each pixel, un, of the input image, the predictor utilizes the weighted sum of 
neighboring pixel intensities to generate an estimate, un. A prediction error, vn, is then 
computed by subtracting the estimate from the corresponding pixel intensity. The residual 
is then encoded in some fashion using the symbol encoder. 

Original % v. Symbol 
Encoder 

Compressed 
Image 

\ ) 
, . 

Predictor Round 
\ 

FIGURE 10.—Predictive Encoder 
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The decoder of Figure 11 performs the inverse operation utilizing the same prediction 
component of the encoder. The encoded residual, vn, is received. It is decoded and added 
to the result of the predictor. The result is the reconstructed value, un = vn + un. 

Compressed 
Image — Symbol 

Decoder 

vn 
s 

^ 
un 

'r 
• 

Predictor 
n 

Original 
Image 

FIGURE 11.—Predictive Decoder 

There are many types of predictors including local, global, linear, and nonlinear. The 
focus of this section is linear prediction, which is accomplished via a linear combination of 
past pixel values, as specified in (3). The raster scan method defines the concept of the past, 
and image can be thought of as a sequence in time, where pixels are encoded row by row, 
left to right, and top to bottom. 

un = Round[^2 a,-un_,-]. (3) 
»=i 

The order of the predictor is m, and a,-, where i = {1,2,... ,m}, represents the prediction 
coefficients. For lossless coding the first m pixels must be encoded using other methods since 
all subsequent values depend on the value of the first m pixels. 

As an example of the compression obtainable through lossless predictive coding, the 
most basic linear predictor, the difference filter, is used to demonstrate. This is a first-order 
prediction filter, m = 1 and a = 1. Therefore, the difference between pixel n and pixel n — 1 
becomes the residual. In Figure 12a, the histogram represents the distribution of the Lena 
(256 x 256) image, with mean, fj, = 123, standard deviation, a = 47.92, and an entropy 
rate of 7.45 bits/pixel. After applying the linear prediction utilizing the difference filter, 
the distribution becomes more compact with a smaller dynamic range, with fx = 0.002, 
a = 19.12, and an entropy rate of 5.66 bits/pixel, as shown in Figure 12b. 

Using the lossless encoder/decoder, the original image can be reconstructed from this 
compressed image without incurring any distortion. The prediction error is usually well 
modeled by a zero mean, variance <r2, uncorrelated Laplacian probability distribution func- 
tion, as given by (4). 

Pu(u) = — exp (—a | u — fi |),  where a2 = —. 
I a (4) 

This function is very similar in shape to the residual histogram of Figure 12b and is in fact 
typical of prediction errors for all images. It is for this reason that the residual of predictive 
coding can be modeled as a Laplacian random process. 
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FIGURE 12.—Histogram of (a) Lena Image and (b) Residual 

2.3.2    Lossy Predictive Coding 

The model for lossy predictive coding is similax to that of the lossless model with the 
addition of a Quantization step and feedback as shown in Figure 13. 

Original   i^ 
Image     Pi   Vn Symbol 

Encoder 
Compressed 

V Vuaiiuzcr Image 

n Predictor .4. c 

FIGURE 13.—Lossy Predictive Encoder 

As for all lossy compression schemes, there is a compromise between distortion and 
compression. The quantization in the lossy scheme maps the prediction error to a limited 
number of outputs, denoted v. Along with the predictor, the quantizer defines the amount 
of compression and distortion associated with this lossy system. 

In this system, un is the input pixel and wn is the prediction of u„, as determined by the 
prediction filter. The prediction error, vn, is the difference between the actual pixel value un 

and the predicted value wn. The prediction error is then quantized to vn and is added with 
the prediction wn to form un, the estimated value of un. Then un is used as the input to the 
prediction filter, which produces wn+i, the predicted value of un+i. The feedback loop for 
the predictor is added so the inverse operation can be performed at the decoder stage and 
to compensate for the distortion induced by the quantizer. This closed loop configuration 
also prevents error buildup at the decoder's output [9]. 

The decoder for lossy predictive coding is identical to that of the lossless scheme of 
Section 2.3.1, shown in Figure 11. Assuming a perfect noiseless channel, vn is received and 
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wn is added, producing un, the reconstructed pixel.  The only distortion in this noiseless 
system is that caused by the quantizer. 

Optimal predictors axe used to minimize the distortion produced by lossy predictive 
coding. The distortion measure is the mean squared error, which is given by (5). 

E{v2
n} = E{{un-un}2}. (5) 

The optimizing criterion is chosen to minimize the mean squared prediction error. The 
quantizer error is assumed negligible (v « v). The prediction is constrained to a linear 
combination of m previous pixels. These constraints allow simplification of the analysis and 
decrease the computational complexity of the predictor. The optimal predictor design is 
reduced to the process of selecting the a that minimizes (6). 

E{vl} = E{[un-J2aun.if}. (6) 
t=i 

After differentiating with respect to each coefficient a:;, equating the derivatives to zero, 
and solving the set of simultaneous equations under the assumption that u has zero mean 
and variance, a2, the resulting equation is (7). 

-l. a = R-1r, (7) 

where R * is the inverse of the m x m autocorrelation matrix R, as indicated below. 

R 

£{un_iun_i}     jE{un_iun_2} 
E{un-2un - 1} 

r = 

E{unun-m) 

and 

a = 

Oil 

ct2 

£{un_iun_ro} 

E{un-mun-i}    E{un-mun-2}   ■■■   E{un-mun-m} 

and r and a are the m-element vectors: 

£{unun_i} 
E{unun„2} 

(8) 

(9) 

(10) 

For any input image, the coefficients of a that minimize (6) can be determined using (7). 
The coefficients depend only on the autocorrelation of the pixels in the original image. As 
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in any system with feedback, the sum of the coefficients is typically restricted to less than 
or equal to one, as exhibited in (11). 

m 

]>><i. (ii) 
t=l 

This constraint ensures that the propagation of error caused by transmission errors will be 
reduced and that the prediction output falls within the allowable range for gray scale values. 
This restriction also prevents the decoder's output from becoming unstable. Depending on 
the configuration of the filter, transmission errors will appear as streaks propagating and 
diminishing in the direction of the filter as it slides across the image. 

The following prediction filters contain a relatively robust set of coefficients that provide 
satisfactory performance over a wide range of images [9]. The filters are specified in (12) - 
(14). 

u. hi =   Wluij-i. (12) 

uitj   =   0.5«ij_i +0.5«i_ij. (13) 

■ «,j   =   0.75uy_i +0.75ui_1j -0.5uj_i,j_i. (14) 

Predictive coding utilizing the optimal filter method, as described previously, is commonly 
known as Differential Pulse Code Modulation (DPCM). In this section we have covered the 
major concepts of predictive coding. The optimal predictor is revisited in the following 
sections. 

2.4    Lloyd-Max Quantizers 

Quantizers map a range of values within the input alphabet to a limited set of values in 
the output alphabet. Analog-to-digital converters are quantizers, as are math functions such 
as the rounding function. To describe a quantizer, let u be a real scalar random variable 
with continuous probability density function pu(u)- An L-level quantizer is desired whose 
thresholds are ifc, where (k = 1, • • •, L) and the quantization or reconstruction levels are r^, 
where (k = 1, • • •, L). Let g(u) be the mapping function, input to output, of the quantizer as 
defined in (15). The quantizer error, the distortion introduced by quantization, is computed 
in (16). The diagram describing a uniform quantizer is shown in Figure 14. 

g(u) = n    ifti<u<U + A. (15) 

>*1 

D = E[(u - rf] = ftL+1 (u - rfpJu)du. (16) 

This is the simplest form of a quantizer that uniformly maps the input to the output. The 
distortion, as defined in (16), introduced during uniform quantization of a source with a 
uniform probability density function is (17), where A is the distance between the thresholds, 
1/L. 

A2 

D = L-. (17) 
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FIGURE 14.— Uniform Quantizer 

When a uniform quantizer is used to quantize a source whose distribution is not uniform, 
the quantization distortion increases. A method of quantizing a nonuniform source with a 
uniform quantizer and minimizing this increase in distortion is companding. Any random 
variable can be converted to a uniform random variable using a nonlinear transformation, 
/(•). Companding, depicted in Figure 15, is the process of transforming the nonuniform 
source into a uniform source, quantizing using a uniform quantizer and inversing the trans- 
formation to result in a variable with the initial probability density function. However, 
this transformation is nonlinear in nature, the original sequence may not be recoverable, 
and the transformation introduces its own distortion. Consequently, quantizers are designed 
optimally to minimize the distortion when processing a nonuniform source. 

Compressor 

f(-) 
zu     , Uniform 

Quantizer 
£>   , Expander 

FIGURE 15.—Companding 

To minimize quantizer distortion, Lloyd [10] and Max [11] designed an algorithm to 
iteratively find the thresholds and reconstruction levels that minimize the mean squared 
quantization distortion [12]. The following describes the Lloyd-Max algorithm. Again, let u 
be a real scalar random variable with continuous probability density function, pu(u). If an 
L-level quantizer is desired, the thresholds, tk, (k = 1, • • •, L), and the reconstruction levels, 
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rjfc,   (k ,!>), which minimize the mean squared error, must be determined.   The 
quantizer error, as defined in (16), is minimized over all reconstruction levels: 

D = J2J      (u~ ri)2pu(u)du. (18) 

Equations (19) and (20) display the results, after differentiating with respect to tk and rk, 
equating to zero and simplifying. 

tk 

and 

Tk 

{rk + rk+i) 

Iti+1 upu(u)du 

i:rpu(u)du- 

(19) 

(20) 

Based on this result, the optimal thresholds lie halfway between the optimal reconstruction 
levels, which lie at the center of the mass of the probability density function, pu(u). Both 
(19) and (20) are nonlinear equations and must be solved simultaneously, given the boundary 
values, ti and <L+I5 which specify the dynamic range of the quantizer. The equations can be 
solved by an iterative scheme such as Newton's method. 

It is sufficient to design a optimal quantizer with \i = 0 and a = 1 for all sources with 
the same probability density function [12]. If rk and tk are the reconstruction and threshold 
levels for a zero mean and unity variance random variable u with probability density function 
pu(u), a source with mean //, variance <r2, and the same probability density function can be 
transformed to zero mean and unity variance using the linear transformations specified in 
(21). 

rk = fi + crrk and tk = \i + crtk. (21) 

A diagram of this optimal quantizer system can be viewed in Figure 16. 

ar. , 
U=(?L+\L)/O 

w       , 
Optimal 

Quantizer 
u 

FIGURE 16.—Optimal Quantization 

For the purpose of quantizing the prediction error for predictive coding, as in section 2.3.2, 
the random variable pu(u) is modeled by a Laplacian random process, and we assume u is a 
Laplacian random variable, as specified in (4). 

In this section, necessary background for PTCQ — specifically, the Viterbi algorithm, 
set partitioning for TCM, lossy predictive coding, and the design of Lloyd-Max Optimal 
quantizers — has been provided. All of which are relevant to the formulation of PTCQ. 
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3.    Predictive Trellis-Coded Quantization 

The fundamental concepts presented in section 2 will now be integrated to formulate 
PTCQ as a robust source coding scheme. The source coding dual of TCM — namely, 
TCQ — as well as the modifications necessary for good performance over noisy channels 
is described. Lossy predictive coding is then added to the TCQ structure. Finally, the 
prediction filters that will be incorporated into PTCQ are detailed. 

3.1    Trellis Coded Quantization (TCQ) 

TCQ combines the optimal quantizers designed using the Lloyd-Max Algorithm with 
TCM. For a memoryless source, this method of quantization outperforms the optimal scalar 
quantizer and comes within 0.21 dB of the distortion rate lower bound. TCQ exploits 
the duality between modulation for digital communication systems and source coding while 
following the general principles of TCM signal expansion described in subsection 2.2 [13]. 

To encode a memoryless source at the rate of R bits/sample, the output alphabet is 
chosen at the rate R + 1, similar to TCM's signal expansion of m + 1. The Lloyd-Max 
Quantizer presented in subsection 2.4, is used to generate a quantizer with 2H+1 levels. 
These scalar quantizer points are partitioned according to the set-partitioning guidelines of 
subsection 2.2, and the number of subsets is specified by the number of states in the trellis. 
As an example, we use the case of a four-state trellis with rate, R = 3. The optimal quantizer 
with 23+1 = 16 levels is partitioned into four subsets. Beginning at the left-most point, the 
quantization points are sequentially labeled with subsets as demonstrated in Figure 17. 

FIGURE 17.—Partitioned Scalar Quantizer 

The trellis diagram is generated from the output of a convolutional encoder with feed- 
back, as shown in Figure 18. The resulting trellis is also depicted in Figure 18. The parallel 
paths that represent the quantization levels within the subset are drawn as single lines for 
readability. The branches are labeled with the appropriate input bit, xx, which symbol- 
izes the branch taken from a state. This is termed the branch bit. In addition the trellis 
branches are labeled with subsets following the set-partition guidelines; therefore, quanti- 
zation points along parallel paths and subsets entering or leaving a state should have the 
maximum Euclidean distance possible. Figure 19 demonstrates the adherence of the trellis 
to the set-partitioning guidelines of subsection 2.2. 

To encode a source using TCQ, the Viterbi algorithm is used, as described in subsec- 
tion 2.1. The algorithm determines the sequence of allowable output symbols that minimizes 
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FIGURE 18.—Convolutional Encoder With Feedback, TCQ Trellis 
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FIGURE 19.—TCQ Partitions 

the distortion, p(x,x), as defined in (22). 

p(x,x) = ^f(x-x)2. (22) 

This output sequence can be represented by a bit sequence specifying the path through the 
trellis. This path is indicated by using the branch bit to stipulate the the branch taken from 
a state, thereby determining the subset, and the remaining R — 1 bits are used to designate 
the quantization level selected within this chosen subset. 

3.2    Trellis Modification for the Noisy Channel 

When Ungerboeck designed the trellis for TCM, he utilized convolutional encoders with 
feedback. For TCQ on the other hand, using a feedback encoder causes difficulties. If the 
TCQ encoder output sequence is sent over a noisy channel, a single bit error can result 
in the TCQ decoder diverging indefinitely from the intended trellis path.   This is a form 
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of catastrophic failure and should be avoided. A demonstration of this event is shown in 
Figure 20. The four-state, four-stage trellis is produced by the convolutional encoder with 
feedback given previously in Figure 18. For this example only, the branch bits which specify 
the path through the trellis will be provided. Suppose the sequence of branch bits sent is 
x = (0,0,0,0). A bit error occurs as a result of the noisy channel, and the sequence is 
received as x' = (1,0,0,0). In Figure 20, the correct path, x, is symbolized by the solid line 
and the path resulting from receiving x' rather than x is indicated by the dashed line. 

State 0^ o o n 
l  • ^ *\  

^ N      Branch 
1 ^r-~ 

*0 

FIGURE 20.— TCQ Trellis Error 

As shown in this example, a single bit error, which appears in the received branch bit se- 
quence, causes a diversion from the intended maximum likelihood path that is not recovered. 
The error could propagate throughout the remaining sequence, causing increased distortion 
due to a single channel error. 

To remedy this catastrophic failure, a convolutional encoder without feedback can be used 
to specify the branch selection. Fortunately, for every convolutional encoder with feedback, 
there exists a feedback-free encoder, for which any given input bit can affect no more that 
1 + log2(N) outputs, where N is defined as the number of trellis states [13]. One such 
convolutional encoder is shown in Figure 21 [14]. 

This feedback-free convolution encoder produces a similar trellis but with the branch bits 
labeled differently, as illustrated in Figure 21. Using the new trellis produced from this 
feedback-free encoder, let us recreate the previous example where x = {0,0,0,0}. This 
intended branch bit sequence is corrupted by noise, and the received sequence is again 
x' = {1,0,0,0}. The ensuing path through the trellis is displayed in Figure 22. This example 
demonstrates that the intended path through the trellis is recoverable after a bounded delay 
when transmission errors occur. 
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FIGURE 21.—Convolutional Encoder Without Feedback, Modified TCQ Trellis 

3.3    Combining TCQ and Predictive Coding 

Lossy predictive coding utilizing a scalar "quantizer performs well at compressing highly 
correlated data. As stated in subsection 3.1, TCQ outperforms scalar quantization and comes 
closer to the distortion rate lower bound. Given this fact, a logical extension is to incorporate 
the quantization method of least distortion into the predictive coding configuration. This 
will achieve lower distortion than traditional lossy predictive coding of subsection 2.3.2. 

Recall the Viterbi algorithm described in subsection 2.1. At each stage in time, each 
survivor path at a state indicates a sequence of output symbols. At time of transmission, the 
survivor path of minimum distortion is chosen as the output sequence. Also recall the lossy 
predictive coding of subsection 2.3.2, where previous values of the data are used as input to 
the predictor. For PTCQ, the survivor path at each state specifies these previous values of the 
data. The prediction residual is formed at each state as the difference between the predicted 
value, calculated at each state from its own survivor path, and the current data sample. 
For each branch emanating from a state, a scalar quantization is performed to determine 
the best quantization point associated with the prediction residual within the subset of this 
branch. Cumulative distortion is computed at each state by adding the distortion for the 
survivor path to the distortion incurred by the scalar quantization. A single path entering 
the next state is selected based on the cumulative distortion, while the other path entering 
this state is discarded. This now becomes the survivor path for this state at this stage in 
time. The new survivor path specifies the previous values to be input into the prediction, 
and the entire procedure is repeated. 

To explain the algorithm further, consider the following example from a paper by Mar- 
cellin and Fischer [15]. Given a sequence to be encoded, x = {x\,X2,... ,xn}, the ith. step 
in the encoding process is as such. Let the survivor path at state k at stage i — 1 be called 
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FIGURE 22 —Modified TCQ Trellis Error 

survivor-fc, and let x^, k = 1,2,..., N, be the encoded value of xtW j = 1,2,3,..., associ- 
ated with survivor-A;, where N is the number of trellis states. Let x^_x denote the predicted 
value of the current data sample xt, given the survivor path, and let dk = (st- - xt^) be the 
prediction residual associated with survivor-&. Furthermore, let pi_i(x,xk) be the distortion 
associated with survivor-/?. For the PTCQ trellis, there are two branches entering and leaving 
each state. Denote the subset associated with the branch leaving state k and entering state / 
as Df. For each subset, a scalar quantization operation is performed to determine the subset 
element closest to d1?. This element is denoted Df. All elements of each subset are discarded 
except for the one selected by the scalar quantization. This process is performed for all N 
states. At the next stage i, there are two branches entering each state, these branches are 
labeled Dx 

1 and Df2, corresponding to the from states of which these branches emanate. At 
this time, the cumulative distortion is computed for each branch as specified in (23). 

Pi(x, xl) = k mm ^(s, xk) + (dk - Dkf). (23) 

The survivor path at state / now becomes 

4i = *i|i-i + Dk\ (24) 

where k' is the value of k that achieves the minimum in (23). This recursion is carried out 
until the end of the data sequence (i = n). 

An abstract diagram of the PTCQ algorithm is shown in Figure 23; a two-state trellis is 
used for simplicity. 

It should be noted that the PTCQ algorithm is suboptimal [15].   This suboptimality 
arises from the prediction. Future prediction values depend greatly on the quantization of 
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FIGURE 23.—Abstract Diagram of PTCQ 

the past prediction values. Since a path is eliminated in favor of the survivor path at each 
stage in time, it is reasonable to assume that the eliminated path may have produced a lower 
overall distortion than the survivor path. However, results will show that the effect of the 
suboptimality is negligible. 

3.4    Prediction Filters 

There are various types of prediction filters available for predictive coding. The filters that 
will be incorporated into the PTCQ structure are the difference, flat, fixed, optimal linear, 
and nonlinear prediction niters. To describe these filters, the filter window is provided, as 
shown in Figure 24, along with the filter coefficients an where n = (1,..., m) where m is the 
order of the filter. The variable u>0, represents the predicted value of the next pixel indicated 
by the zeroth. element within the filter window. All of the niters used for PTCQ are causal; 
image reconstruction incurs no delay because reconstructed pixels depend only on the past 
pixel values. 

1 

1 1 2 2 3 

1 0 2 0 3 0 4 5 0 

(a) (b) (c) 

FIGURE 24.—Filter Windows 

(d) 

The difference filter, TO = 1, Figure 24a, as mentioned in subsection 2.3.1, is represented by 
the following equation: 

wo = .97üi,  where üi = üjj-i. (25) 

22 



The flat filter, m = 2, Figure 24b, applies equal weights to the surrounding pixel values to 
formulate the prediction value. 

w0 — 0.5ui + 0.5&2,   where üi = u;_i,j and u2 = «ij-i- (26) 

Two three-point filters will be used, namely the fixed and optimal linear filters. In theses 
cases m = 3 and the filter window is shown in Figure 24c, where the one-dimensional elements 
represent: 

ui=üi-i,j-u  «2 = «t-i,j,  and Ü3 = üij-i. (27) 

The three-point fixed filter of subsection 2.3.2 applies the following coefficient to produce 
the prediction value: 

w0 = -0.5«i + .75u2 + .75u3. (28) 

The optimal linear filter is computed based on the autocorrelation of the three surround- 
ing pixel values as specified in subsection 2.3.2, which details optimal prediction. Using the 
following matrix operation to compute a. 

where 

R = 

a = R-V 

E{uiUi}   £{uiu2}   E{uxUz} 
E{u2ui}   E{u2u2}   E{u2u3} 

m E{u3ui}   E{u3u2)   E{u3u3] 

(29) 

(30) 

and 

r = 
E{u0ui} 
E{u0u2} 
E{u0u3} 

(31) 

a = 
Oil 

oc3 

(32) 

In these equations, E{-} is the empirical average obtain from the observed pixels values in 
each image. By computing R and r for the entire image, a constant a. is determined using 
(29). 

The nonlinear filter utilized in the PTCQ scheme is a simple case of the LI filter [16]. 
The nonlinear filter coefficients, a*, are selected based on the ranking of the elements, üj. 
The elements of the five-point window are shown in Figure 24d. 

w0 = afui + ak
2ü2 + CX3W3 + aju4 + aju6, (33) 

where üx = Ui_2j,    u2 = üi-ij-i,    u3 - itj-u,    uA = Uij_2,  and u5 = «u_i. 

The filter coefficients for the minimum and maximum values within the filter window are set 
to zero, while a linear filter is invoked for the three remaining elements in the window. There 
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are yjj = 10 filters, indicated by ak, (k — 1,..., 10), since the minimum and maximum of 
the window elements are discarded. The coefficients of the 10 filters are calculated by taking 
the autocorrelation of the three remaining pixels. The linear filter is selected using the 
coefficients of the filter that minimizes mean squared error, namely the filter that solves 
(29). 

As an example, the following window of data is provided in Figure 25. In the example, 
pixels j = 1 and j = 5 form the set J = {1,5}, which indicates the indices of the minimum 
and maximum pixel values. The remaining elements result in the configuration shown in 
Figure 26. 
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FIGURE 25.—Example of Ll-Filter Implementation 
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FIGURE 26.—Resulting Ll-Filter Window 

In this particular case where J = {1,5}, the 3x3 autocorrelation matrix R along with r are 
the empirical average of the remaining surrounding pixels with the filter window as specified 
in (34) and (35), respectively. 

R = 

and 

E{U2U2}    E{u2U3}     E{U2U4} 
E{u3u2}   E{uzuz}   E{uzui) 
E{u4u2}   E{u4u3}   E{u3u4} 

r = 
E{u0u2} 
E{u0u3} 
E{u0u4} 

(34) 

(35) 

For the instance where the minimum and maximum values are located at J = {1,4}, 
the resulting filter coefficients are identical to those used for optimal linear prediction filter, 
(29)-(32). 

All of the prediction filters described in this subsection will be utilized within the PTCQ 
structure. In the following section, a comparison of the compression performance of these 
filters is presented in addition to their ability to mitigate the effects of channel errors. 
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4.    Performance of PTCQ 

In this chapter PTCQ performance is demonstrated through the evaluation of various 
configurations. The configuration variables are the number of states in the trellis, bit rate 
in bits/pixel (bpp), and prediction filter selection. To begin, the PTCQ quantizer error, the 
distortion introduced by the algorithm, is computed for each prediction filter. To evaluate 
the various prediction filters in a noisy environment, the channel is represented as a binary 
symmetric channel while the rate and number of states are held constant. The prediction 
filters which display the best noise immunity are further evaluated by varying the rate and 
the number of states. Finally, the encoded data is exposed to multiple levels of noise to 
establish the performance achievable over noisy channels. 

The fidelity criteria for comparison are the mean squared error (MSE), and the power 
to signal noise ratio (PSNR), as indicated in (36) and (37), respectively. The variable re,- 
represents the pixels from the input image and iti represents the corresponding pixel values 
after a process. Accompanying these error measurements, a qualitative comparison is also 
used to assess performance. 

M$E   =   4i>-2<)2, (36) 

and 

OKK2 

PSNR   =   I01og10]j^. (37) 

Three different images are used throughout this chapter to evaluate the PTCQ systems. 
For future reference, the original images are displayed in Figure 27. The MSE and PSNR 
are used to assess quantizer error, channel error, and total system error. The quantizer error 
is the error incurred by the utilization of the PTCQ system alone, the error between the 
original image, and the quantized image that has been encoded and then decoded by the 
PTCQ algorithm. The channel error is the error introduced by the channel, the error of 
the quantized image to the image that has been encoded, exposed to a noisy channel and 
decoded. The total system error is the error of the original image to the PTCQ resultant 
image, the image encoded, exposed to a noisy channel and then decoded. 

4.1    Quantizer Error 

To determine the quantization error, the image is encoded and then decoded utilizing 
the PTCQ algorithm, as if it were passed through a noiseless channel. For this example, 
the image data are processed using a four-state PTCQ scheme with a bit rate of 3 bpp 
for each prediction filter. The resultant image is used to compute the distortion caused 
by the utilization of PTCQ. Appendix B contains tables of optimal linear and nonlinear 
filter coefficients for the subject images. Table 1 reflects the MSE and the PSNR for each 
prediction filter. All resultant images compare reasonably well with the original images; as 
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a matter of fact, is is difficult to tell the result of one prediction filter implementation from 
another. A sampling of the decoded images using the various prediction filters is displayed 
in Figure 28. The distortion incurred by the PTCQ algorithm is negligible. It can therefore 
be concluded that all of the prediction filters perform well over the noiseless channel. 

TABLE 1.—Quantizer Error: Four-State PTCQ, Rate = 3 bpp 

Filter 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
Difference 19.12 35.31 83.63 28.90 46.78 33.39 

Flat 12.74 37.07 57.08 30.56 33.91 32.82 
Fixed 11.83 37.39 84.13 28.88 51.72 30.99 

Linear (?) 11.43 37.55 54.74 30.74 31.78 33.11 
Nonlinear (LI) 14.69 36.47 55.82 30.66 31.58 33.14 

4.2    Performance Over the Noisy Channel 

The encoded images of subsection 4.1 are used to demonstrate each filter's response to 
a noisy channel. A binary symmetric channel with crossover error probability, e = .00316, 
is simulated. The channel error, the distortion introduced by the channel, is exhibited in 
Table 2, and the total system error is indicated in Table 3. Figures 29 through 31 display the 
PTCQ output for each image. It is apparent from the error measurement and the resulting 
images that the difference, fiat and fixed prediction filters have very low noise immunity 
properties. The difference filter provides the worst results in a noisy environment. Channel 
errors appear as horizontal streaks because only the previous pixel is used in the prediction, 
and the error propagates throughout the row of pixels in which the error occurred. Both the 
fiat and fixed linear filters perform in a mediocre fashion; channel errors are very evident 
and appear as large blocky diagonal streaks on the resulting images. The performance of 
the linear and nonlinear filters is much better than the other three filters. The increase in 
performance is attributed to the optimal design technique by which the filter coefficients 
are defined to suit each image. The nonlinear filter performs visually better than the linear 
filter. This filter reduces the propagation of error because outliers, which may be caused by 
channel errors, are removed from the prediction when the coefficients of the maximum and 
minimum pixel values within the filter window are set to zero. In the succeeding subsections, 
the linear and nonlinear filters are further evaluated by varying the number of states in the 
trellis, the bit rate of the encoded image, and the channel noise. 

4.3    Variations in PTCQ Configuration 

This subsection begins by altering the number of trellis states in the PTCQ scheme, 
incorporating the better performing prediction filters, linear (/-PTCQ) and nonlinear (LZ- 
PTCQ), as determined in subsection 4.2. Figures 32 through 34 display the resultant images 
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Difference Prediction Filter Flat Prediction Filter 

i%*4 
Fixed Prediction Filter Linear Prediction Filter 

Nonlinear L/ Prediction Filter 

FIGURE 28.—Sampling of PTCQ Systems, Rate = 3 bpp 
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Nonlinear LI Prediction Filter 

FIGURE 29.—PTCQ Systems With e = 0.00316, Lena Image 
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Difference Prediction Filter Flat Prediction Filter 

^fei 

Fixed Prediction Filter Linear Prediction Filter 

Nonlinear L/ Prediction Filter 

FIGURE 30.—PTCQ Systems With e = 0.00316, M2 Bradley Image 
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Difference Prediction Filter Flat Prediction Filter 

Fixed Prediction Filter Linear Prediction Filter 

Nonlinear L/ Prediction Filter 

FIGURE Sl.—PTCQ Systems With e = 0.00316, Earth Image 
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TABLE 2.—Channel Error: Four-State PTCQ, Rate = 3 bpp, e = 0.00316 

Filter 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
Difference 302.67 23.32 2082.70 .0149 989.55 18.18 

Flat 95.39 28.34 1190.80 .0174 700.28 19.68 
Fixed 240.07 24.33 4736.50 .0114 1785.70 .0156 

Linear (I) 51.95 30.97 261.51 23.96 128.27 27.05 
Nonlinear (LI) 55.99 30.65 587.07 20.44 69.21 29.72 

TABLE 3.— Total Error: Four-State PTCQ, Rate = 3 bpp, e = 0.00316 

Filter 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
Difference 320.84 23.07 2164.70 .0148 1035.20 .018 

Flat 108.58 27.77 1246.40 .0172 735.22 19.46 
Fixed 253.51 24.09 4818.60 .0113 1837.70 .0155 

Linear (I) 63.21 30.12 313.63 23.17 160.59 26.07 
Nonlinear (LI) 70.89 29.62 638.38 20.08 100.49 28.11 

of the two-, four- and eight-state PTCQ system at rate 3 bpp for both prediction niters 
with noise level e = 0.00316. Tables 4 and 5 reflect the channel error and total system 
error, respectively. It is apparent from the channel error and the images that the two-state 
system performs better in a noisy environment than the eight-state system. This is due to 
the use of a feedback free convolutional encoder. This guarantees that an error in the branch 
bit is limited to 1 + log2 N outputs, where N is the number of trellis states. Therefore, a 
diversion from the correct path would affect more output symbols as the number of trellis 
states increase. 

TABLE 4.—Channel Error: Two-, Four-, and Eight-State PTCQ, Rate = 3 bpp 

Configuration 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
2-/-PTCQ 34.39 32.76 177.50 25.63 95.52 28.33 
4-/-PTCQ 51.95 30.97 261.51 23.95 128.27 27.05 
8-Z-PTCQ 70.60 29.64 340.57 22.81 173.43 25.74 

2-L/-PTCQ 52.75 30.91 99.75 28.14 56.46 30.61 
4-L/-PTCQ 55.99 30.65 128.19 27.05 69.21 29.73 
8-L/-PTCQ 66.33 29.91 155.31 26.22 80.54 29.07 

The bit rate is now be altered within the PTCQ scheme. For simplicity, the number 
of states is fixed at two trellis states. Figures 35 through 37 display the resulting images 
encoded at rates 2, 3, 4, and 5 bpp, alternating between /-PTCQ and L/-PTCQ. Tables 6 
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Two-State /-PTCQ 

?"1 

Four-State /-PTCQ 

Eight-State /-PTCQ 

Two-State L/-PTCQ 

Four-State L/-PTCQ 

Eight-State L/-PTCQ 

FIGURE 32.—PTCQ System: Two-, Four-, and Eight-States, Lena Image 
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Two-State /-PTCQ 

Four-State /-PTCQ 

Two-State L/-PTCQ 

Four-State L/-PTCQ 

Eight-State /-PTCQ Eight-State L/-PTCQ 

FIGURE 33.—PTCQ System: Two-, Four-, and Eight-States, M2 Image 

34 



Two-State /-PTCQ 

Four-State /-PTCQ 

Two-State L/-PTCQ 

Four-State L/-PTCQ 

Eight-State /-PTCQ Eight-State L/-PTCQ 

FIGURE 34.—PTCQ System: Two-, Four-, and Eight-States, Earth Image 
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TABLE 5.—Total Error: Two-, Four-, and Eight-State PTCQ, Rate = 3 bpp 

Configuration 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
2-/-PTCQ 59.85 30.36 246.75 24.21 143.08 26.57 
4-/-PTCQ 63.21 30.12 313.63 23.17 160.59 26.07 
8-/-PTCQ 78.01 29.21 395.43 22.16 203.86 25.04 

2-L/-PTCQ 82.36 28.87 172.70 25.76 104.84 27.93 
4-L/-PTCQ 70.89 29.62 183.00 25.50 100.49 28.11 
8-L/-PTCQ 76.37 29.30 209.56 24.92 110.66 27.69 

and 7 indicate the channel error and total system error. From the images in Figure 35 
through 37 along the channel and total error, it is evident that a lower bit rate leads to 
better performance over the noisy channel. This is attributed to the simple fact that there 
are fewer bits subject to corruption at the lower bit rate. 

TABLE 6.—Channel Error: Two-State PTCQ, Rate = 2, 3, 4, and 5 bpp 

Configuration 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
/-PTCQ, rate = 2 24.59 34.22 101.27 28.07 48.69 31.25 
/-PTCQ, rate = 3 34.39 32.76 177.50 25.63 95.51 28.32 
/-PTCQ, rate = 4 51.01 31.05 251.19 24.13 130.28 26.98 
/-PTCQ, rate = 5 69.38 29.71 326.75 22.98 165.67 25.93 

L/-PTCQ, rate = 2 36.96 32.45 69.54 29.70 33.18 32.92 
L/-PTCQ, rate = 3 52.74 30.90 99.75 28.14 56.46 30.61 
L/-PTCQ, rate = 4 68.51 29.77 124.54 27.17 68.94 29.74 
L/-PTCQ, rate = 5 68.28 29.78 157.96 26.14 87.97 28.68 

TABLE 7.— Total Error: Two-State PTCQ, Rate = 2, 3, 4, and 5 bpp 

Configuration 
Lena M2 Bradley Earth 

MSE PSNR MSE PSNR MSE PSNR 
/-PTCQ, rate = 2 104.10 27.95 347.55 22.72 208.93 24.93 
/-PTCQ, rate = 3 59.84 30.36 246.75 24.20 143.08 26.57 
/-PTCQ, rate = 4 60.03 30.34 272.77 23.77 143.31 26.56 
/-PTCQ, rate = 5 71.82 29.56 332.27 22.91 169.19 25.84 

L/-PTCQ, rate = 2 135.04 26.82 320.16 23.07 192.07 25.29 
L/-PTCQ, rate = 3 82.35 28.97 172.70 25.75 104.84 27.92 
L/-PTCQ, rate = 4 78.24 29.19 144.85 26.52 82.63 28.95 
L/-PTCQ, rate = 5 71.23 29.60 163.38 25.99 90.99 28.54 

The PTCQ performance for variations in the number of states and bit rate has been 

36 



Two-State /-PTCQ, rate = 2 bpp 

ft 

Two-State l-PTCQ, rate = 4 bpp 

I»*   WmSSSm 

Two-State L/-PTCQ, rate = 3 bpp 

Two-State L/-PTCQ, rate = 5 bpp 

FIGURE 35.—l-PTCQ and Ll-PTCQ System, Two-State, Varying Rates, Lena Image 

37 



IPt 

m^mM^tämi. 

Two-State L/-PTCQ, rate = 2 bpp Two-State /-PTCQ, rate = 3 bpp 

Two-State L/-PTCQ, rate = 4 bpp Two-State /-PTCQ, rate = 5 bpp 

FIGURE 36.—l-PTCQ and Ll-PTCQ System, Two-State, Varying Rates, M2 Image 
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Two-State Z-PTCQ, rate = 2 bpp Two-State L/-PTCQ, rate = 3 bpp 

Two-State /-PTCQ, rate = 4 bpp Two-State L/-PTCQ, rate = 5 bpp 

FIGURE Zl.—l-PTCQ and Ll-PTCQ System, Two-State, Varying Rates, Earth Image 
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presented utilizing the output images and error tables. However, a more composite evaluation 
can be performed utilizing graphical representation of the error measurements for each test 
image. Figures 38 through 40 display distortion vs. rate for the two-, four-, and eight-state 
/-PTCQ system for each image. Figures 41 through 43 display distortion versus rate for 
the two-, four-, and eight-state L/-PTCQ system. As expected, the quantizer distortion is 
inversely proportional to the bit rate as indicated in each Quantizer Distortion graph. The 
relationship between the channel distortion and the bit rate demonstrates that the distortion 
increases as the bit rate increases. This phenomenon is due to the fact that as the bit rate 
increases, there are more bits to be subjected to channel errors. The total system error curves 
reflect an operating point for each image where the total system error is minimized. These 
graphs indicate that the best performing system for the subject images is the two-state PTCQ 
system operated at a bit rate of about 3 or 4 bpp. This particular system demonstrates the 
necessary tradeoff between rate and the two cases of quantizer and channel distortion. The 
two-state system generally outperforms the other systems because of the branch bit error 
limitation of 1 + log2 N, where N is the number of trellis states. The performance at 3 and 
4 bpp demonstrates the balance between increasing the bit rate for lower quantization error 
and decreasing the bit rate for decreased channel distortion. When viewing the system as a 
whole by comparing the resultant images to the originals, the product of the best-performing 
system is obvious. 

4.4    Performance Over Very Noisy Channels 

In the previous subsections, it has been shown that /-PTCQ and L/-PTCQ provide good 
performance in noisy channels. In addition, results indicate that the two-state systems 
operating at rate of 3 or 4 bpp provide the best overall performance of all configurations 
in the noisy channel. This subsection explores the noise mitigation capabilities of these 
systems at high noise levels, namely e = 0.01 and e = 0.05. Figure 44 and 45 represent the 
channel distortion and total distortion vs. rate when the channel noise level is e = 0.01, for 
both /-PTCQ and L/-PTCQ. From these graphs, the best operating point remains the two- 
state PTCQ system at rate 3 bpp. However, when the noise level is increased to e = 0.05, 
the best performing system is the two-state PTCQ system with a bit rate of 2 bpp as 
demonstrated in Figures 46 and 47. Figure 48 displays the best resultant images in the 
very noisy environments. It can be further concluded from the images in subsection 4.3 and 
Figure 48 that the nonlinear L/-PTCQ is the most effective of the two systems in combating 
the effects of a noisy environment. This is due largely to the L/ filter's nonlinear properties, 
which eliminate outliers caused by channel errors, thereby minimizing error propagation. 
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FIGURE 38.—l-PTCQ, Lena Image 
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FIGURE 39.—1-PTCQ, M2 Image 
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FIGURE Ah.—Ll-PTCQ Performance Earth Image e = 0.01 
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Two-State Z-PTCQ 3 bpp, 
e = 0.01, Lena 

Two-State /-PTCQ 2 bpp, 
e = 0.05, M2 

Two-State L/-PTCQ 3 bpp, 
e = 0.01, Earth 

Two-State L/-PTCQ 3 bpp, 
e = 0.05, Earth 

FIGURE 48.— Very Noisy PTCQ Performance 



5.    Conclusions 

This technical report has presented PTCQ with linear and nonlinear prediction filters as 
a method for robust source coding. This technique provides both the compression and noise 
mitigation necessary for image transmission over noisy channels. TCQ has been reviewed, 
and it has been demonstrated that when feedback-free convolutional encoders are employed, 
error propagation is limited. By evaluating PTCQ systems of various configurations, it has 
been determined that all prediction filters perform well in a noiseless environment. How- 
ever, when the image is transmitted over a noisy channel, the optimal-linear and nonlinear 
PTCQ systems demonstrate the most noise immunity. Variations in the PTCQ configura- 
tion, namely changing bit rate and the number of trellis states, further exhibit that the best 
configuration for the noisy channel is the two-state PTCQ with rates of 3-4 bpp. When the 
noise was increased to a high level, it was shown that the better performing configuration is 
the two-state PTCQ algorithm operating at a bit rate of 2 bpp. Judging from the quality of 
the images, the LZ-PTCQ system provides better noise mitigation over the /-PTCQ system 
with identical configuration variables. The LI filter provides the nonlinearity necessary to 
conceal the effects of noise and minimize the propagation of error. 

As recommendations for future work to provide even more robust source coding, the 
following avenues could be pursued. An error-correcting code could be employed to protect 
the encoded bit stream from corruption by noise. Since errors in the branch bit result in more 
serious repercussions than the scalar quantizer bits, an error correcting code that protects the 
branch bit more than the other bits, such as the (3,5;2) code could be used with a modest 
increase in bit rate [17]. A further enhancement of the algorithm would be the mapping 
of scalar quantization points so that the Euclidean distance and Hamming distance were 
proportional. This would cause quantization points that are close to one another to have a 
small Hamming distance. Conversely, quantization points that are far apart would have a 
large Hamming distance. A single bit error would cause a quantization point to be mapped 
to a close neighbor quantization point and therefore minimize the magnitude of error [18]. 
L/-PTCQ incorporating these design criteria would possess an improved noise immunity. 
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Appendix A: 

Example of the Viterbi Algorithm 
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As a description of the Viterbi algorithm, the following example is provided. By assuming 
the code is linear, we can begin in state 1 and end in state 1. The cost incurred traversing a 
branch is indicated in the parentheses, (•), and the cumulative costs is labeled at each state. 
The cost, p, is defined as the Euclidean distance (38), where x is the output bits generated 
by the convolutional code and x is the received sequence from a noisy channel. 

/>(x,x) = y/(x-x)2. (38) 

* l 

T- 

FlGURE A-l.— Viterbi Algorithm - First Stage. (Compute the cost, p, incurred traversing 
the branches that emanate from state 1. This cost becomes the cumulative 
cost at Stage two for states 1 and 2, respectively.) 

(1)    2 

FIGURE A-2.— Viterbi Algorithm - Second Stage. (Compute p for each branch and add to 
the cumulative cost. This is now the cumulative cost at Stage three.) 
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1       (1)    2     (1)     1 

T-        1 

FIGURE A-3.— Viterbi Algorithm - Third Stage. (Repeat process performed at state two. 
Select branch entering a state with the least cumulative distortion as the 
survivor and discard all other branches. If the entering branches have 
equivalent cumulative distortion, the survivor can be selected arbitrarily.) 

T-        1 

1      (1)    2    (1)    1     telkrg 

4      4 

FIGURE A-4.— Viterbi Algorithm - Fourth Stage. (Repeat as in Stage three.) 

T- 1 

1       (1)    2     (1)     1 (1)   4 

«     4      5    6 

FIGURE A-5.— Viterbi Algorithm - Fifth Stage. (Repeat as in Stage three.) 
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FIGURE A-8.— Viterbi Algorithm - Maximum Likelihood Path. (At this final step, select the 
branch with minimum cumulative cost. Trace path backward to state one. 
The resultant path is the maximum likelihood path.) 
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Appendix B: 

Linear and Nonlinear Filter Coefficients 
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TABLE B-l.—Linear Filter Coefficients - All Images 

Image <*i <*2 «3 

Lena -.1713 .7632 .3850 
M2 Bradley .1365 .4020 .4127 

Earth .1871 .3441 .4202 

TABLE B-2.—Nonlinear Ll-filter Coefficients - Lena Image 

i J <*1 «2 <4 «4 «5 * 
1 {1,2} 0 0 .7158 -.0828 .3411 
2 {1,3} 0 .2767 0 -.1751 .8240 
3 {1,4} 0 -.1713 .7632 0 .3850 
4 {1,5} 0 .0432 .8643 .0668 0 
5 {2,3} .4290 0 0 -.1607 .6901 
6 {2,4} -.1610 0 .8620 0 .2738 
7 {2,5} -.1702 0 1.0318 .1083 0 
8 {3,4} .4750 -.1866 0 0 .6799 
9 {3,5} .5254 .3625 0 .0621 0 
10 {4,5} -.1996 .1581 1.0059 0 0 

TABLE B-3.—Nonlinear Ll-filter Coefficients - M2 Image 

i J «4 <4 <*3 04 "5 

1 {1,2} 0 0 .4154 .1769 .3666 
2 {1,3} 0 .2866 0 .2215 .4285 
3 {1,4} 0 .1365 .4020 0 .4127 
4 {1,5} 0 .2100 .4443 .2956 0 
5 {2,3} .2957 0 0 .2147 .4429 
6 {2,4} .1493 0 .3733 0 .4340 
7 {2,5} .1788 0 .4425 .3312 0 
8 {3,4} .2649 .2191 0 0 .4640 
9 {3,5} .2948 .3148 0 .3361 0 
10 {4,5} .1906 .3002 .4407 0 0 
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TABLE B-4.—Nonlinear Ll-filter Coefficients - Earth Image 

i J a[ <4 «4 < <4 
1 {1,2} 0 0 .3963 .1567 .4010 
2 {1,3} 0 .3245 0 .1605 .4515 
3 {1,4} 0 .1871 .3441 0 .4202 
4 {1,5} 0 .2544 .4152 .2770 0 
5 {2,3} .2833 0 0 .1868 .4814 
6 {2,4} .1473 0 .3449 0 .4624 
7 {2,5} .1788 0 .4374 .3332 0 
8 {3,4} .2193 .2551 0 0 .4758 
9 {3,5} .2663 .3567 0 .3198 0 
10 {4,5} .1647 .3462 .4146 0 0 
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