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1. Introduction 

This is the final technical report for the research program on 'Target identification 

and detection using impulse radars or ultra-wideband radars," supported by the Office of 

Naval Research under Grant N00014-93-1-1272. This grant consisted of two regular 

research grants and one ASSERT grant and covered the period of September 1, 1993 to 

August 31,1996. 

The objectives of this research program were to study the feasibility and to 

develop schemes for using an ultra-wideband or short-pulse (UWB/SP) radar to (1) detect 

a target in a sea clutter environment with the E-pulse technique and (2) identify airborne 

targets with the time-domain imaging, the E-pulse technique or the neural network 

method. Over the past three years, we have produced a great deal of significant results 

that were published in the forms of three technical reports, five progress reports and a 

number of technical journal and conference papers. However, we still have two unfinished 

studies in the areas of the E-pulse techniques for detecting a target in a sea clutter 

environment and the time-domain imaging for identifying the target. We plan to continue 

these studies in the future, hopefully under a new ONR support. 

In this report, we will summarize the research results by referring to the published 

technical reports, appendixing the published technical papers or presenting the study 

results still in progress. 

Overall, we feel that we have produced many significant results which will be 

useful in the design of future UWB/SP radars. 

2. Review of Accomplished Results 

2.1      Target Detection in a Sea Clutter Environment 

Two major studies on this topic are (1) the theoretical and experimental study of 

the transient scattering of a short pulse from sea surfaces of various models, and (2) the 

application of the E-pulse technique to detect a target flying above a disturbed sea surface. 



The first study was completed and the results were reported in Technical Report No. 3 

(281 pages) and also published in two journal papers given in Appendices 1 and 2. The 

second study is still in progress and some up to date results are reported in Appendix 3. 

2.2      Identification of Airborne Targets 

We have conducted three major studies on this topic. They are (1) the target 

identification using the E-pulse technique and other related schemes, (2) the target 

identification using the neural network method, and (3) the target identification using the 

time-domain imaging. 

The first study was completed and results were reported in Technical Report No. 1 

(296 pages) and also published in three journal papers given in Appendices 4, 5 and 6. 

The second study was also completed and the results were reported in Technical 

Report No. 2 (302 pages) and also published in a journal paper as given in Appendix 7. 
■\. 

X 

The third study on the time-domain imaging is still in progress. The results on the 

two-dimensional time-domain imaging based on physical optics were published in a journal 

paper given in Appendix 8, while the three-dimensional time-domain imaging is still under 

study and some results are given in Appendix 9. 

During the past three years, we have also published three papers reporting other 

study results generated under this research grant These papers are included in 

Appendices 10,11 and 12. 

It is noted that Technical Reports 1, 2 and 3 were prepared from Ph.D. theses 

submitted by Dr. Qing Li, Dr. C.Y. Tsai and Dr. Adam Norman, respectively. 



2.3      Publications 
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1. E.J. Rothwell, K.M. Chen, D.P. Nyquist, J. Ross and R. Bebermeyer, "A radar 
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storage," IEEE Trans, on Antennas and Propagation, vol. 42, no. 7, pp. 1034- 
1037, July 1994. 

2. E.J. Rothwell, K.M. Chen, D.P. Nyquist, P. Bavarasan, R. Bebermeyer, and Q. Li," 
"A general E-pulse scheme arising from the dual early-time/date-time behavior of 
random scatterers," IEEE Trans, on Antennas and Propagation, vol. 42, no. 9, pp. 
1336-1341, September 1994. 

3. E. Rothwell, K.M. Chen, D.P. Nyquist and J. Ross, 'Time-domain imaging of 
airborne targets using ultra-wideband or short-pulse radar," IEEE Trans, on 
Antennas and Propagation, vol. 43, No. 3, pp. 327-329, March 1995. 

4. K.M. Chen et al, "Radar identification and detection using ultra-wideband/short- 
puls^e radar," proceedings of ultra-wideband, short-pulse electromagnetics 2, pp. 
535-542, Edited by L. Carin and L.B. Felsen, Plenum Press, New York, 1995. 

5. E. Rothwell, K.M. Chen, D.P. Nyquist, J. Ross and Robert Bebermeyer, 
"Measurement and processings of scattered ultra-wideband/short-pulse signals," 
proceedings of SPIE Conference on Radar/Ladar processing and Applications, vol. 
2562, pp. 138-149, published by the International Society of Optical Engineering, 
Box 10, Bellingham, Washington, 98227. 

6. K.M. Chen et al, "Ultra-wideband/short-pulse radar for target identification and 
detection - Laboratory study," Record of IEEE 1995 International Radar 
Conference, pp. 450-455,1995. 

7. Qing Li, E. Rothwell, K.M. Chen and D.P. Nyquist, "Scattering center analysis of 
radar targets using fitting scheme and genetic algorithm," IEEE Trans, on 
Antennas and Propagation, vol. 44, No. 2, pp. 198-207, Feb. 1996. 

8. C.Y. Tsai, E. Rothwell and K.M. Chen, 'Target discrimination using neural 
network with time domain and spectrum magnitude response," J. of 
Electromagnetic Waves and Applications, vol. 10, No. 3, pp. 341-382,1996. 



9.        A. Norman, D.P. Nyquist, E. Rothwell, K.M. Chen, J. Ross and P. Ilavarasan, 
'Transient scattering of a short-pulse from a conducting sinusoidal surface," J. of 
Electromagnetic Waves and Propagations, vol. 10, No. 4, pp. 461-487, 1996. 

Conference Papers 

1. K.M. Chen, E.J. Rothwell, D.P. Nyquist, J. Ross, P. Ilavarasan, Q. Li, C.Y. Tsai, 
and A. Norman, "Radar identification and detection using ultra-wideband/short- 
pulse radars," presented at the Second International Conference on Ultra- 
wideband, short-pulse electromagnetics, Polytechnic University, New York, April 
5-7, 1994. 

2. A. Norman, J. Song, D.P. Nyquist, J. Ross, P. Ilavarasan, M. Seneski, K.M. Chen 
and E.J. Rothwell, "Scattering of transient radiation from an imperfectly- 
conducting infinite periodic sea surface," presented at the 1994IEEE/AP-S 
International Symposium, University of Washington, Seattle, June 19-24,1994. 

3. R. Bebermeyer, J. Ross, E.J. Rothwell, K.M. Chen, D.P. Nyquist, Polarization 
diversity for reduction of scattering from spatially periodic perfectly conducting 
surfaces," presented at the 1994 IEEE-APS International Symposium, University 
of Washington, Seattle, June 19-24,1994. 

4. Q. Li, E.J. Rothwell, K.M. Chen, D.P. Nyquist, J. Ross, and R. Bebermeyer, 
"Determination of radar target scattering center transfer function from measured 
data," presented at the 1994 IEEE-APS International Symposium, University of 
Washington, Seattle, June 19-24,1994. 

5. P. Ilavarasan, E.J. Rothwell, R. Bebermeyer, K.M. Chen, and D.P. Nyquist, 
"Natural resonance extraction from multiple data sets using a genetic algorithm," 
presented at the IEEE-APS International Symposium, University of Washington, 
Seattle, June 19-24,1994. 

6. C.Y. Tsai, K.M. Chen, and E.J. Rothwell, "Radar target discrimination using 
recurrent dynamic memory and noise tolerant multi-layer feedforward back 
propagation neural networks," presented at the 1994 URSI Radio Science 
Meeting, University of Washington, Seattle, June 19-24,1994. 

7. Q. Li, E.J. Rothwell, K.M. Chen, and D.P. Nyquist, "Data storage techniques for 
use in correlation based early-time radar target discrimination," presented at 1994 
URSI Radio Science Meeting, University of Washington, Seattle, June 19-24, 
1994. 

8. J. Ross, R. Bebermeyer, E.J. Rothwell, K.M. Chen, and D.P. Nyquist, "Aspect 
angle sensitivity of ultra-wideband target scattering data," presented at the 1994 



URSI Radio Science Meeting, University of Washington, Seattle, June 19-24, 
1994. 

9. K.M. Chen, E.J. Rothwell, D.P. Nyquist, R. Bebermeyer, Q. Li, C.Y. Tsai and A. 
Norman, "Ultra-wideband/short-pulse radar for target identification and detection- 
Laboratory study," presented at IEEE International Radar Conference Alexandria, 
Virginia, May 8-11, 1995. 

10. A. Norman, D.P. Nyquist, E.J. Rothwell and K.M. Chen, 'Transient scattering 
from a periodic sea surface," presented at 1995 IEEE/APS and Radio Science 
International Symposium, Newport Beach, California, June 18-23, 1995. 

11. Y. Dai, E.J. Rothwell, D.P. Nyquist and K.M. Chen, 'Time-domain imaging of 
radar target using ultra-wideband or short pulse radar," presented at 1995 
IEEE/APS and Radio Science International Symposium, Newport Beach, 
California, June 18-23,1995. 

12. G. Wallinga, E.J. Rothwell, D.P. Nyquist, K.M. Chen and A. Norman, "Enhanced 
detection of radar targets in a realistic sea clutter environment using E-pulse 
clutter cancellation," present at 1995 IEEE/APS and Radio Science International 
Symposium, Newport Beach, California, June 18-23, 1995. 

13. K.M. Chen, E.J. Rothwell, D.P. Nyquist, J. Ross and R. Bebermeyer, 
"Measurement and processing of scattered ultrawide-band/short-pulse signals," 
presented at SPIE's 1995 International Symposium, San Diego, CA, July 9-14, 
199"5. 
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4.        Future Plans 

We plan to continue the two unfinished studies on the target detection in a sea 

clutter environment using the E-pulse technique and on the target identification using 

three-dimensional time-domain imaging. Hopefully, a new ONR grant will be available to 

us in the future. If this is the case, we can initiate some new topics in addition to finishing 

the two unfinished studies. 
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Appendix 1 

Journal of Electromagnetic Waves and Applications. Vol. 10, No. 4> 461-487, 1996 

Transient scattering of a short pulse from a conducting 
sinusoidal surface 

A. Norman, D. Nyquist, E. Rothwell, K. M. Chen, J. Ross, and P. Ilavarasan 

Department of Electrical Engineering 
Michigan State University 
E. Lansing, MI 48824, USA 

Abstract-A study on the transient scattering of a short EM pulse from a conducting 
sinusoidal surface which simulates a sea surface has been conducted. Theoretical analyses 
were performed for an infinite sinusoidal surface as well as a finite sinusoidal surface for 
both TE and TM polarized illuminations. A series of experiments was also conducted 
on a finite sinusoidal surface model to verify the theory. There are some interesting 
observations due to cut-off and band-pass phenomena of the Floquet modes excited in 
the periodic surface. It is shown theoretically and experimentally that the backscattered 
response of a short EM pulse from a conducting sinusoidal surface is a series of periodic 
peaks representing the reflections of the pulse from the crests of the surface. 

I. INTRODUCTION 

With the advent of Ultra-Wide Band/Short Pulse (UWB/SP) radar, additional 
studies are needed to gain new insights into the scattering of transient electro- 
magnetic waves from targets in various environments. A two-dimensional perfectly 
conducting (PEC) sinusoid acting as a scatterer is one such environment. The 
scattering of continuous wave (CW) radiation from a perfectly conducting (PEC) 
sinusoidal surface has been analyzed by many authors, but transient scattering 
of UWB/SP radar signal from such a surface warrants further investigation. Few 
authors have produced results on transient scattering [19,21], but many have in- 
vestigated the CW scattering problem [1-17,22-28]. One of the reasons for such 
a great interest in this problem is that the PEC sinusoidal surface provides an 
approximation to a sea surface. 

Both finite and infinite PEC sinusoidal surfaces will be considered. In addition 
to theoretical results for both cases experimental results have also been obtained 
for the finite surface. Our approach will include two different polarization states 
(TE and TM) and will utilize an Integral Equation (IE) type formulation in con- 
junction with the Method of Moments. The infinite surface can also be analyzed 
more classically using the Rayleigh hypothesis, and results from this method will 
be included as a confirmation of the IE method. Both methods yield frequency 
domain solutions, therefore the transient results will be synthesized using the 
inverse Fourier transform (IFT). 
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Due to the periodicity of the infinite surface the analysis techniques for this 
surface are centered around Floquet's Theorem. The Rayleigh hypothesis method 
directly utilizes the theorem to expand the scattered fields, in the IE method the 
periodicity is embedded in the periodic Green's function. The infinite spatial 
extent of the surface can therefore be reduced to just one period. This truncation 
solves one problem (infinite surface), but it creates another problem in convergence 
[29]. The convergence problem of the PGF is accentuated for shallow (low height) 
sinusoids, this is one reason for the inclusion of the Rayleigh hypothesis method. 
The two methods also serve a check against each other. 

Research directed towards the finite surface has not been as active as the infinite 
surface, this is due in part to the strictly numerical nature of the problem, and the 
lack of apparent applications (sea surface, gratings, etc. can usually be considered 
infinite for most purposes). There are a few authors examining this and similar 
problems [21,26,27]. 

New insights are gained regarding the nature of scattering from a PEC periodic 
surface. For both TE and TM polarizations, the forward and backscattered time 
and spectral domain fields are calculated. For the backscatter case, which is 
of primary interest for many applications (sea clutter, etc) the results exhibit a 
periodic return of pulses dependent upon the period of the surface. Experimental 
results help to verify some of the theoretical findings. 

II. TE SCATTERING FROM CONDUCTING SINUSOIDAL SURFACE 

Scattering of a plane wave with transversely polarized electric field [ Ey ] as in- 
dicated in Fig. 1 is analyzed in the spectral domain. To simplify the problem 
the surface will be invariant along the y -direction. As stressed earlier the tran- 
sient response is to be obtained; this can be accomplished by utilizing the IFT on 
spectral results of appropriate bandwidth. 

II. 1 Infinite PEC Surface 

The classical method known as the Rayleigh hypothesis can be applied to this 
problem. Combining that with Floquet's Theorem to represent the scattered field 
yields a set of linear equations. The incident and scattered electric fields can be 
represented by 

Ei(x,z) = A0e-^x-^ (1) 

oo 
Es(x,z) =   Y,   e-JßnXfn(z) (2) 

n=-oo 

where ß = fcsinöj, q = A; cosöj, ßn = ß + 2mr/L, and Floquet's Theorem has 
been utilized in (2). 

Subjecting the fields to the homogeneous Helmholtz equation, and noting the 
simple periodic x -dependence, a set of differential equations for fn(z) can be ob- 
tained. Upon solving these equations the Rayleigh hypothesis is invoked, leaving 
only one unknown for each Floquet mode. Application of the boundary condi- 
tion at the conducting surface and using Galerkin's method provide the linear 
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equations needed to solve for the unknown Floquet mode coefficients. In order to 
utilize the Rayleigh hypothesis a restriction on the surface slope of the conductor 
must be met. That is, the surface should be smooth with no slope greater than 
0.448. This limits the usefulness of this technique. 

II.1.1 EFIE-MoM Analysis 

A more rigorous and general treatment for the scattering of plane waves from a 
PEC periodic surface, in which the surface need not be sinusoidal (or smooth) has 
been developed. An integral-operator-based analysis has been employed for this 
analysis, and will be referred to as EFIE-MoM method. The currents induced on 
the PEC surface are calculated as solutions to an EFIE with a periodic Green's- 
function (PGF) kernel. With the surface currents known, it is then possible to 
determine the scattered fields once again making use of the PGF. 

The same notation and configuration as employed for the Floquet mode-match- 
ing method will be used in the EFIE-MoM treatment. The scattered field can be 
solved for in the usual manner, once the induced surface currents are determined, 
as 

Es(x,z) = -jk71 [   Ky(x',z')G{x,z\x',z')dl' (3) 
JCP 

where Ky(x, z) is the unknown surface current and is the PGF given by [20] 

7        ~      e-jßn{x-x>)   -jqn\z-z!\ 
G(x,z\x',z') = -J-   £   I J.  (4) 

The PGF innately accommodates the periodicity of the scattered field and there- 
fore the integral in (3) need only be performed over one period of the surface. Of 
note in the equations above is the branch cut associated with qn = y/k2 — ß\, 
by enforcing 3{gn} < 0 an interesting cut-off phenomenon is created, this will 
be looked at later in Section IV. An IE for the induced surface current must be 
solved (via MoM), in order to calculate the field (3). The integral equation for 
Ky(x, z) is obtained by enforcing the boundary condition on the surface, 

L Ky{x',z')G{x,z\x',z')dl' = ^-e-iß*eß**        ...        V(x,z)eCp      (5) 
Cp JUV 

A MoM numerical solution is implemented by expanding the unknown current 
Ky(x, z) in a pulse basis set and point matching on the first surface period Cp. 

There are a number of interesting phenomena associated with this infinite case, 
both in the frequency and the time domains, and these are discussed in the results 
section. 
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A 
Held Point 

z = p = -h cos (2rcx/L) 

I«—L J x 

Figure la.    Infinite, conducting sinusoidal surface scattering geometry. 

Figure lb.    Finite, conducting sinusoidal surface scattering geometry. 

II.2 TE Scattering from a Finite Conducting Surface 

This section is devoted to describing the MoM solution to the EFIE for sur- 
face currents required to calculate the fields scattered from a finite-sized, two- 
dimensional PEC surface. There are no restrictions to the surface curvature (i.e. 
no slope limitations) the physical size of the scatterer is limited only by numeri- 
cal consequences (memory, and cpu time); this is due to the fact that the entire 
surface must be partitioned not just one period as in the PGF case. 

The general approach is very similar to the infinite-surface case, in that an IE 
for the induced surface current must be solved prior to the typical determination 
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of the scattered field using the 2-D free space Green's function. The configuration 
and the nomenclature is the same as the infinite case except that the surface is 
truncated as in Fig. lb. Since the E-field is polarized transversely, the induced 
surface current is also only transversely directed as K(x,z) = yKy(x,z). This 
current then can be used to find the scattered E-field [18] 

E.{x,z) = -y^^Ky(x',z')42)(k\p-i?\)dl' (6) 

where p is the position vector in the x-z plane, T describes the contour of the 
(2) surface, and HQ    is the second kind Hankel function of order zero. 

To obtain an integral equation for the currents, the boundary condition on the 
electric field is applied on the conductor surface. Substituting the scattered field 
into boundary condition equation yields the integral equation for the unknown 
surface current distribution Ky{x, z) as 

.  Kytf,2>)I$\k\p-f!\)tf = ±Aoe-lf>*J** (7) 
r Kv 

A MoM numerical solution is then implemented to solve the above integral equa- 
tion. The current is expanded in a set of pulse basis functions and point matching 
is implemented. This results in a square matrix equation for the unknown current 
coefficients. In typical fashion the scattered field (6) can be determined numeri- 
cally subsequent to evaluating the induced currents. For a far-zone scattered field, 
the asymptotic form of the Hankel function can be used to simplify the numerical 
integration [18]. Results comparing both cases are provided, and in addition direct 
comparisons with experimental results can be made, because the finite surface is 
physically realizable. 

III. TM POLARIZATION 

The configuration for this polarization state is the same [see Fig. la] except the H- 
field is now directed transversely as H(x, z) = yHy(x, z) with the E-field parallel 
to the plane of incidence. Therefore by using Hy(x, z) as the generating function 
in the same fashion as Ey(x, z) was used for the TE polarization, similar analysis 
techniques may be employed. The electric field components can be found simply 
utilizing Maxwell's equations for this two-dimensional problem. The infinite PEC 
surface will be considered first, and once again it is possible to utilize the Rayleigh 
hypothesis for an adequately shallow sinusoidal surface, while a magnetic field 
integral equation (MFIE) will be developed for the infinite case. 

III.1. MFIE-MoM 

The scattering of TM polarized plane waves by a perfectly conducting, periodic 
surface can also be analyzed using an integral-operator-based method. The gov- 
erning integral equation is in terms of the unknown H-field at the PEC surface, 
and the kernel consists of the normal derivative of the periodic Green's function 

H(x,z)     „Tr  /"   TT/ i   ,sdG(x,z\x',z') ...     __ ,      , %„     .      _    . . 
2 V    H(x',z')—v ^       'dl' = Hi(x,z)        ...V{x,z)eCp (8) 
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where the PGF G(x,z\x',zf) is given by (4), and Hi(x,z) is the incident plane 
wave. The notation PV indicates that the integral must be evaluated in the 
principal-value sense. The integration path Cp is one period of the surface, as 
justified in the Section II. 1, because the PGF accounts for the inherent periodicity 
of the solution. 

Subsequent to the solution of the MFIE (8) for the surface fields, the scattered 
fields away from the surface can be calculated in the usual manner as, 

H3(X,z) = jcH(X',z')9G^f^dl' (9) 

A MoM numerical solution is implemented by expanding the unknown surface 
magnetic field H(x, z), in a pulse-function basis set and point matching the MFIE 
at N points on the first surface period. Results and comparisons are presented in 
Section V. 

III.2. TM Finite Surface Scattering 

The analysis for the TM plane wave scattering from a finite PEC sinusoidal 
surface, follows closely to techniques employed for the other integral-operator 
methods. Considering the geometry in Fig. lb with an incident H-field in the 
transverse direction, the scattered H-field can be determined, if the induced sur- 
face fields are known, 

Hs(x, z) = J- f Ks(x', z') x VH^2)(kR)dc' (10) 

The contour needed for the MFIE is a closed contour and is denoted by C, and c 
is the unit vector tangential to the surface. The induced surface current Ks(x, z) 
can be rewritten as c(x, z)Kc(x, z) and the gradient of the second kind Hankel 
function can be evaluated (note R is distance between source and observation 
points) yielding, 

Hs(x,z) = i£- I Kc{x',z')Hf\kR)[c' xR]dc' (11) 
4 Jc 

In order to determine the induced current a MFIE is implicated of the form 
Kc(x,z)+Jkpv /Kc(x/2/)H(2)(A;i2)[£(x/)2/)><^dc/ = if.(Xj2) ...V(O:,2)GC 

* 4 Jc 
(12) 

where the boundary condition on the tangential H-field has been applied. 
A MoM numerical solution is then implemented to solve the above integral 

equation. The current is expanded in a set of pulse basis functions and point 
matching is implemented. This results in a square matrix equation for the un- 
known currents coefficients. The scattered fields (10) can numerically be de- 
termined subsequent to performing the MoM numerical solution to the induced 
surface currents. 

IV. CUT-OFF FREQUENCY PHENOMENA 

As alluded to in the previous sections, an interesting cut-off phenomena is as- 
sociated with the scattered fields of the infinite periodic surface.  The scattered 
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Floquet modes from the infinite surface become evanescent in nature if \ßn\ > k, 
there will be no real power flow away from the surface for such modes. This results 
in a cut-off frequency for each Floquet mode given as 

(fc)n = 
\n\c 

(13) L(l+sin#i) 

The n = 0 mode (the specular reflection) has no low frequency cutoff, but all the 
other Floquet modes will exhibit a low frequency cut-off. As more Floquet modes 
begin to propagate and carry real power, an interference pattern is generated in 
the spectrum. 

Also associated with the cut-off frequency is a maximal frequency for backscat- 
tered waves. For a Floquet mode to propagate backwards (-x direction) ßn < 0, 
and also the mode must be above cut-off frequency. Therefore, there exists a 
range of frequencies in which backward traveling Floquet modes can propagate. 
The maximal frequency is given by 

(/max)n — 
71 C 

(14) 

Of note in the above equations is the lack of dependence on surface shape 
or height, only the period of the surface and incidence angle are involved. For 
L=0.1016 m, and an incidence angle of 85° a table of maximal and cut-off fre- 
quency for the backward traveling Floquet modes has been provided, in Table 1. 
These phenomena as applied to results are discussed in the next section. 

n (fj. GHz (f.J« GHz 
-1 1.479 2.964 

-2 2.9S8 5.928 

-3 4.438 8.892 

-4 5.916 11.86 

-5 • 7.395 14.82 

Table 1.     Low frequency cutoff and maximal frequency of backward Floquet 
modes. L = .1016 m, 85° incidence angle. 

V. RESULTS AND EXPERIMENTS 

We are interested in the transient scattered field response of a sinusoidal surface. 
This can be obtained via a Fourier synthesis of the frequency domain results from 
the previous sections. Much physical insight is provided in the time domain that 
is not available in the frequency domain. 

The goal of the study is to not only understand the transient scattering from 
both types of surfaces, but to make a connection between the two. This connec- 
tion will serve as link between the experimental results for the finite surface to the 
hypothetical experimental results from an infinite surface. The theoretical finite 
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surface scattering and the experimental finite surface results can be directly com- 
pared, then the theoretical finite and infinite surfaces can be compared in order 
to establish this link. 

V.l Infinite Surface Results 

Two methods of analysis were employed for the infinite surface, the Floquet 
mode-matching and the integral equation (IE) method. As stated in the previous 
sections these methods have overlapping regimes of validity. The Floquet mode 
regime is limited by the surface slope being less than .448, meaning fairly smooth 
surfaces, this restriction should be strictly enforced for the near-zone fields, how- 
ever we have noted that the far-zone fields are less effected by this restriction. 
Extending the Rayleigh hypothesis regime is not the subject of this paper so we 
will stay within the strict limit set. The IE method has no theoretical limits on 
surface slope or period length, but there are computational Unfits, such as matrix 
size, and matrix ill-conditioning. 
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Figure 2.    Induced surface current on one period of infinite, conducting sinu- 
soidal surface for TE and TM excitation at 4 GHz. 

The induced surface currents on one period of the infinite, conducting sinu- 
soidal surface excited by a TE plane wave of 4 GHz at an incidence angle of 85° 
(near grazing) is shown in Fig. 2. The sinusoidal surface has a period length (L) 
of .1016m which is chosen to match that of the experimentally constructed surface 
model. In this figure the 'shadowing effect' is observed and the current is max- 
imum in front of the crest of the sinusoidal surface ( the plane wave is incident 
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from the left). The height (h) of the sinusoidal surface is chosen to be h/L= .0625 
so that both analytical methods can be applied. In effect, they produced almost 
identical results as seen in the figure. Figure 2 also shows the corresponding in- 
duced surface current excited by a TM plane wave of the same frequency and 
incident angle on the same surface. It is noted that the induced current in the 
TM case is in the direction (c) tangential to the sinusoidal surface. The same 
'shadowing effect' is observed for the TM case also. 

The spectral domain scattered fields from a conducting sinusoidal surface 
(L=0.1016m, h/L =0.03565) generated by a TE plane wave with an incidence 
angle of 85° are calculated at an off-surface field point (x/L =0, z/L= 20) as a 
function of frequency over the bandwidth of 1-7 GHz. The spectral amplitudes 
of the total scattered field are computed by summing all the Floquet modes and 
the result is shown in Fig. 3. The spectral amplitude of the backscattered field is 
computed by summing all Floquet modes propagating in the negative x-direction, 
and the result is shown in Fig. 4. There are some interesting phenomena in these 
results. First, there are the cut-off and band-pass phenomena for the backscat- 
tered field as discussed in Section IV. Also of note are the apparent nulls in the 
frequency domain of the total scattered field, demonstrating the frequency selec- 
tivity of the surface. The results shown in Figs. 3 and 4, are produced by the 
Floquet mode-matching and IE methods, and they give almost identical results. 
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Figure 3.     Magnitude of total scattered electric field from infinite, conducting 
sinusoidal surface as a function of frequency for TE excitation. 
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Figure 4.    Magnitude of backscattered electric field from infinite, conducting 
sinusoidal surface for TE excitation as a function of frequency. 

To find the time-domain, transient scattered field from the conducting sinu- 
soidal surface created by a short pulse, the spectral results of the scattered field 
are inversely Fourier transformed. The short pulse used in this study is synthesized 
by inverting a uniform spectral response over a bandwidth of 1-7 GHz with a 1/8 
cosine taper or a Gaussian Modulated Cosine (GMC) windowings. The shapes 
of these two short pulses are shown in Fig. 5. Consequently, the time-domain, 
transient scattered fields created by the short pulse can be obtained by inversely 
Fourier transforming the spectral results for the scattered field shown in Figs. 3 
and 4 with the same windowing. The total scattered transient field created by a 
short pulse consists of large specular reflection followed by a small non-specular 
reflection after a time delay, as shown in Fig. 6. For various incidence angles this 
time delay has been seen to change (see Figure 7). The non-specular reflections 
are stationary for the various incidence angles. This is because the reflections 
all originate from directly below the field point and are in fact backscatter. The 
specular reflection is similar to that generated by a flat surface, although not all 
the energy is reflected. 
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Figure 5.    Synthesized pulses used for interrogation of conducting sinusoidal 
surfaces. 
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Figure 6.    Total scattered electric field created by a GMC pulse from infinite, 
conducting sinusoidal surface for TE excitation. 
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Figure 7. Comparison of transient total scattered electric fields created by a 
GMC pulse for various incidence angles upon an infinite sinusoidal 
surface for TE excitation. 

The backscattered, transient field created by a short pulse, which is of major 
interest in this study, is shown in Fig. 8. It is observed in this figure that the 
backscatttered response of a short pulse exhibits an expected periodic nature with 
the period correlating to the two-way transit time of the reflected wave between 
two crests of the sinusoidal surface. This response is dominated by the reflections 
of the short pulse from crests of the sinusoidal surface. 
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Transient backscattered electric field created by a 1/8 cosine pulse 
from infinite, conducting sinusoidal surface for TE excitation. 

In Figure 9 a close up of the non-specular reflection referred to in the total scat- 
ter discussion (Figure 7), is actually backscatter. Very interesting is the noticeable 
change in return pulse periods; this can be explained geometrically by examining 
the path lengths to the crests nearest to the field point that are contributing to 
the backscatter. By increasing the height of the sinusoid the backscattered field 
is enhanced as expected and shown in Fig. 10. In addition, for the larger height 
sinusoids noticeable pulses are seen within the main crest pulses. This can be ex- 
plained by the Rayleigh hypothesis. As these sinusoids are outside of the regime 
of validity, there must be multiple reflections occurring in the trough. Therefore 
additional reflections can be seen. It is worth noting that the nature of the to- 
tal scattered field and the backscattered field are entirely different but they are 
consistent with physical intuition. 
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Figure 9. Comparison of transient backscattered electric fields created by a 
short pulse of various incidence angles upon an infinite sinusoidal 
surface for TE excitation. 
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Figure 10. Comparison of transient backscattered electric fields created by a 
short pulse from various height infinite sinusoidal surfaces for TE 
excitation. 
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The dependence on surface period length is examined in Fig. 11, where the 
transient backscattered fields from two surfaces of differing periods (L=.2032m 
and L=.4064m) and equal crest heights are compared. The separation distance 
between neighboring return pulses corresponds to the period length, but differing 
observation heights (z/L) lead to the unexpected return pulse period. Although 
the two surfaces have equal crest heights, it is interesting that the shorter period 
surface creates larger amplitude return pulses. This phenomena can also be ob- 
served in the frequency domain (not shown). The difference in surface slopes lead 
to a physical explanation. The backscattered field is enhanced with the increased 
surface slopes, also there is noticeable multiple reflections on the shorter period 
surface. 
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Figure 11. Comparison of transient backscattered electric fields created by a 
short TE pulse from infinite sinusoidal surfaces of differing peri- 
ods. 

Similar results are obtained for the TM excitation, including the Floquet modes 
cut-off frequencies, and the frequency selectivity. Only the transient results are 
shown in Figs. 12 and 13. Where the same phenomena discussed for the TE 
excitation is observable. 
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Figure 12.    Total scattered magnetic field created by a GMC pulse from infi- 
nite, conducting sinusoidal surface for TM excitation. 
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Figure 13. Transient backscattered magnetic field created by a 1/8 cosine 
pulse from infinite, conducting sinusoidal surface for TM excita- 
tion. 
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V.2 Finite Surface Results 

The finite surface analysis consisted of only the IE technique, which has the 
same shortcomings as the infinite IE method. Figure 14 shows the surface currents 
excited by a TE plane wave of 4 GHz at an incidence angle of —67° (i.e. from 
the right) on two finite sinusoidal surfaces, one with 5 periods and the other 
with 3 periods, and both have L=0.1016 and h/L=0.25. The induced current 
on one period of the corresponding infinite surface is also shown in comparison 
with that on the finite surfaces. Other than at the edges of the finite surfaces, 
there are similarities in the induced surface currents between the finite and infinite 
surface cases. The large spike in the surface currents at the edges of the finite 
surface is due to the edge effect. Figure 15 shows the surface current induced by 
a TM plane wave of 2 Ghz at an incidence angle of -60° (from the right) on 
a sinusoidal surface with 5 periods and L=.1016 and h/L=0.125. This surface 
current is compared with that induced on one period of the infinite surface in the 
same figure. Again there are strong similarities between the surface currents for 
the finite and infinite surface cases. Because of this agreement in surface currents 
it is expected that the scattered fields will also have some similarities. 
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Figure 14.    Comparison of induced surface currents on finite and infinite sur- 
faces for TE excitation. 



478 Norman et al. 

Surface Current for TM 
L=.1016 h/L = .125 
Frequency  =  2  GHz 

excitation 
0,= -6O° 

3 
o 
4> 
O 
a 
3 
in 

1.18 

0.98 ■= 

0.78 - 

0.58 -. 

0.38 -. 

0.18 ■= 

-0.02 

  Surface Contour 
  Surfoce  Field  (Finite-MFIE) 
»•oo« Surfoce Field (infinite—MFIE) 

1111111111 iVff rrrf TüTiirffff rrnHi^wiTrrrninTi 
-0.40   -0.30   -0.20   -0.10    0.00      0.10 

rrWfffffTTTTn 
0.20      0.30 

x location  (meters) 

Figure 15.   Comparison of induced surface currents on finite and infinite sur- 
faces for TM excitation. 

The spectral amplitudes of theoretical and experimental backscattered electric 
fields generated by a TE plane wave at an incidence angle of 67° from finite 
sinusoidal surfaces are shown in Fig. 16. The finite sinusoidal surface used in the 
experiment has 6.25 periods while that used in the theoretical calculations has 
only 5 periods. The dimension of the sinusoidal surface are the same as that used 
in Fig. 14. Theoretical and experimental results agree quite well, especially at the 
locations of frequency spikes. When the spectral results of Fig. 16 are inversely 
Fourier transformed with 1/8 cosine windowing, the time domain, transient re- 
sponses of theoretical and experimental backscattered electric fields created by a 
short pulse are obtained as shown in Fig. 17. The backscattered response of a 
short pulse from a finite sinusoidal surface is a number of peaks representing the 
specular reflections of the pulse from the crests of the surface. Theory and experi- 
ment agrees very well except in the number of peaks; theory has 5 and experiment 
has 6.25. 
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Figure 16.   Spectral amplitudes of theoretical and experimental backscattered 
electric fields from a finite surface for TE excitation. 
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Figure 17.   Theoretical and experimental transient backscattered electric fields 
created by a short pulse from a finite surface for TE excitation. 
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To seek a link between experimental results from a finite sinusoidal surface and 
theoretical results based on an infinite sinusoidal surface, an enlarged experimental 
model of a sinusoidal surface with 11 periods was constructed. There is also a 
problem in the definition of backscatter from the finite and infinite surfaces. For 
the finite surface the far-zone scattered fields can be calculated for any given angle 
in reference to the sinusoidal surface. By choosing this angle to be the same as 
the incidence angle a backscattered (monostatic) field can be specified. However, 
the infinite surface does not allow for such an arrangement. The scattered fields 
are infinitely periodic in the x-direction, therefore location of the field point is 
unimportant. What allows us to compare the backscattered fields is their transient 
nature. By geometrically choosing the correct angle from the field point to the 
surface the path length can be determined. This in turn can be thought of as a 
time-delay. If the transient backscattered fields from the infinite surface are time 
shifted by the correct amount a strong agreement should exist. Since this method 
will only work for one point in space, there will be noticeable differences in the 
periods of the return pulses. 
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Figure 18.    Comparison of experimental backscatter (finite surface) results to 
theoretical backscatter from an infinite surface for TE excitation. 
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Figure 19. Comparison of transient backscatter created by a short pulse from 
an infinite surface (theoretical) and a finite surface (experimental) 
for TE excitation. 

The theoretical results on the backscattered electric field in spectral domain 
and time domain derived on an infinite sinusoidal surface are compared with 
the corresponding experimental results obtained from the enlarged experimental 
surface in Figs. 18 and 19. A good qualitative agreement between theoretical 
results from an infinite surface and experimental results from a finite surface is 
observed in these figures. In Fig. 18, the frequency spikes observed both in theory 
and experiment occur at the cut-off frequencies of the Floquet modes signifying 
the excitation of those modes. In Fig. 19, both theory and experiment predict the 
backscattered response of a short pulse from a sinusoidal surface to be a series 
of peaks representing the specular reflections of the pulse from the crests of the 
sinusoidal surface. To further make a connection between the results of an infinite 
surface and a finite surface, the computed, transient backscattered electric fields 
from those two surfaces are compared in Fig. 20. The locations of the peak are 
completely matched while a minor discrepancy on the shape of the response is 
observed in Fig. 20. The results shown in Figs. 16 to 19 indicate the experimental 
verification of theoretical results derived in this paper. 
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Figure 20. Comparison of transient backscattered electric field created by a 
short pulse from an infinite surface and finite surface for TE exci- 
tation. 

For completeness, the results for the TM excitation are also included. Figure 
21 compares the spectral domain, backscattered magnetic fields obtained from the 
theory on an infinite surface and the experiment on a finite surface. Figure 22 
shows the comparison of the transient backscattered magnetic fields created by a 
short pulse obtained from the theory on an infinite surface and the experiment on 
an enlarged finite surface. Finally, theoretical, transient backscattered magnetic 
fields created by a short pulse from an infinite surface and a finite surface are 
compared in Fig. 23. From the results in Figs. 21 to 23, there are generally good 
agreements between experimental and theoretical results from an infinite surface 
and a finite surface. It is noted that the MFIE employed in the analysis of a finite 
surface requires a closed surface contour. This may degrade the accuracy of the 
results on a finite surface by TM excitation. 
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Figure 21. Comparison of spectral domain backscattered magnetic field from 
an infinite surface (theory) and a finite surface (experiment) for 
TM excitation. 
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Figure 22. Comparison of transient backscattered magnetic field created by 
a short pulse from an infinite surface (theory) and a finite surface 
(experiment) for TM excitation. 
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Figure 23. Theoretical transient backscattered magnetic field created by a 
short pulse from an infinite surface and a finite surface for TM 
excitation. 

VI. CONCLUSIONS 

Much has been learned regarding the nature of transient scattering of a short EM 
pulse from a conducting sinusoidal surface. In this study, theoretical analyses 
were conducted for an infinite sinusoidal surface and a finite sinusoidal surface for 
both TE and TM excitations. A series of experiments was also conducted on a 
finite surface model to verify the theory. There are some interesting observations 
due to the cut-off and band-pass phenomena of the Floquet modes excited by 
the periodic sinusoidal surface. It is shown theoretically and experimentally that 
the backscattered response of a short pulse from a conducting sinusoidal surface 
is a series of peaks representing the reflections of the pulse from the crests of 
the surface. A link between the finite and infinite surfaces was established. An 
argument for the validity of the Rayleigh hypothesis was made by observing the 
multiple scattering by the higher height sinusoids. 

The future extensions of this study is to consider the cases of non-sinusoidal and 
imperfectly conducting surfaces to better simulate a disturbed sea surface. The 
studies on those subjects are being conducted and the results will be presented in 
future publications. 
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I. Introduction 

The usage of Ultra-Wideband/Short Pulse radar in the ocean environment greatly 

enhances the range resolution of the radar and allows for "snap shot" type modelling of the 

ocean. Inherently the improved bandwidth of a radar implies that more information is available. 

Additional information not possible with conventional CW type radar is obtained in the transient 

return. There is also new and useful information by examining the spectral returns (via a FFT). 

This paper will consider transient scattering of short pulse from perfectly conducting (PEC) 

wave models. In this preliminary investigation the surfaces only contain one-dimensional 

roughness and are assumed to be infinite in the lateral direction (y). In order to perform a 

thorough investigation here, only TE (H-Pol.) incident waves are considered. The TM case has 

been examined and will be contained in a later publication. 

The wave models have been chosen to test a number of scattering mechanisms. There is 

a Stokes-type wave [1], that has a very large slope (at the crest), and double sinusoid wave that 

simulates two-scale roughness, and a realistic a-periodic Donelan-Pierson [2,3,4] wave. The 

Donelan-Pierson wave is constructed from actual ocean statistics and is a function of wind-speed, 

a periodic swell is superimposed upon the wind roughened waves. 

The experimental measurements consist of true time-domain interrogation with a high 

voltage PPL pulse generator, and of synthesized frequency domain excitation (via a HP 8720B 

Network Analyzer). The frequency domain synthesis method allows for a much wider bandwidth 

and a larger dynamic range, resulting in higher quality measurements. These experimental 

measurements will be examined in the time and frequency domains and will be compared to 

theoretical models previously developed. 



II. Theory 

Although the experimentally obtained results are of primary interest, it is necessary to 

provide a brief explanation of the theoretical techniques applied to the problem. In a previous 

publication [5] frequency domain integral equations have been developed for surface models that 

are either axially (i) finite or infinite (see Figure 1). The infinite surfaces require periodicity 

in order to numerically implement the integral equation solution. This periodicity allows the 

domain of the integral equation to be truncated to a single period, via the periodic Green's 

function. The finite case has no such restrictions (periodicity), but the numerics (CPU time and 

memory) limit the physical size of the interrogated surface. Since frequency domain techniques 

have been utilized, an IFFT is needed to yield the transient (time-domain) backscatter. 

Therefore, a wide-bandwidth (numerous iterations) of spectral returns is required to produce a 

short pulse interrogation. This method of solution is analogous to the experimental measurements 

that are performed in the frequency domain. 

The geometry of the problem is shown in Figure 1. The governing integral equation 

(EFIE) is derived in the standard fashion by applying the boundary condition at the PEC surface, 

E;(X,Z) = -E'y{x,z) (D 

where Ey(x£) is the y-component of the TE incident plane wave, and Efax) is the y- 

component of the scattered electric field. 

The scattered electric field can be found by the 2-D Green's function superposition 

integral [6], which states that the scattered electric field is produced by the induced surface 

current (Kz(x^)) excited on the PEC surface, See equation (4) below. Substituting the scattered 

field (4) into (1) results in an EFIE for the unknown current distribution, 



f KfrW H?\k01 p - p' | )dl' = -±-E;(X*) Vx,zer (2) 

where H® is the second kind Hankel function of order zero, and p is the position vector in the 

x-z plane, and T describes the contour of the surface. 

For the infinite case a periodic surface is required, this allows for the use of the periodic 

Green's function. Physically the induced current due to an incident plane wave will be identical 

on every period of surface, except for a phase shift. This allows for the reduction in the domain 

of integration to just one period, and a subsequent summation of the infinite contributions from 

every period (provided the phase shift is accounted for). The periodic Green's function kernel 

is given by [7], 

2   A  e*».fr-''>-'«."-'/l (3) G(x*\xU) = 7  £ - 

2      2       2 where L is period of the surface and ß„=fcosin(6.)+2nTC/I, and qn=k0-^n. 

The convergence of (3) is examined in [8,9,10] and can be accelerated for special cases. 

The EFIE (Eqn. (2)) is solved via the method of moments by expanding the unknown 

current distribution into pulse function basis set and then point matching is performed to create 

the typical MoM matrix solution. Subsequent to the solution of the current distribution the 

scattered electric field can be determined by, 

E;(X,Z) - -^ /r Ky(xi,zi)H?\k0\p-$>\) dl' (4) 

This integral is solved readily using standard techniques. 



in. Measurement Techniques 

As alluded to in the previous sections, frequency domain measurements as well as time 

domain measurements were performed on the ocean surface models. The measurements were 

all performed in the anechoic chamber at MSU (See Figure 2). The chamber is 24' x 12' x 12' 

which limits the physical size of the model waves. A bistatic horn arrangement was necessary 

[11] to produce high quality results. The horns were placed close enough so that comparison 

with monostatic theoretical results are applicable. Standard gain TEM pyramidal horns were used 

for transmission and reception in both the frequency domain and time domain techniques. 

The wave models were constructed by adhering aluminum foil to precision machined 

polystyrene. The physical size of the three wave models is 70" by 36". The Stokes wave 

consisted of 10 periods (L=7") and the double sinusoid had 10 periods with a shorter 

wavelength (50 periods) superimposed. The Donelan-Pierson wave was constructed with 10 

swells with a-periodic wind-driven wave superimposed, therefore the DP surface is not periodic. 

Figure 3 shows a comparison of all three wave types that will be investigated. 

The measurement techniques [11] will be described qualitatively for both the frequency 

domain synthesis method and the short/pulse time domain method. In the frequency domain 

method an HP 8720B Network analyser is used to perform the measurements (S21). The sending 

port is amplified with an HP 8349B wide band amplifier and then radiated by the transmitted 

horn. This creates the incident "plane" wave, which will scatter from the chamber and objects 

inside the chamber. The receiving horn is then fed into the network analyser's receiving port. 

The network analyser can very rapidly perform high quality measurements for a large number 

of frequencies. The speed of the network analyser allows for a great number of measurements 

to be performed in a relatively short time. Calibration is performed outside (post-processed) the 

network analyser, and is accomplished using a metallic calibrating sphere. There a four required 
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measurements. The first two are the measurement of the target (sea-surface model) and the 

background or target removed. The second set of measurements are of the sphere and the 

background of the sphere (note that one of the background measurements could be eliminated 

if there is no change between the target and sphere backgrounds). The background measurements 

are then subtracted in the frequency domain from the target and sphere measurements. The 

"corrected" sphere measurement is then utilized as a calibrator, this is accomplished by first 

computing the theoretical (Mie-Series) scattering from the sphere for the given horn arrangement 

(bi-static), and then dividing in the frequency domain the measured "corrected" sphere result by 

the theoretical sphere results. The resultant spectrum is the calibrator or the "system transfer 

function". The "corrected" target measurement can then be calibrated by dividing out (in the 

frequency domain) the system transfer function. All subsequent target measurements can by 

calibrated by this same system transfer function provided that the horns and chamber are not 

disturbed. 

The steps above provide a frequency domain description of the scattering of a plane wave 

from a target (sea-surface). It is still necessary to synthesis (IFFT) the transient results, a 

somewhat quicker, and more intuitive approach is to perform the measurements in the time 

domain. The time-domain measurements require a very high bandwidth sampling oscilloscope 

and a pulse generator. A PPL 1000B pulse generator and a Tektronix 7854 are used at MSU to 

perform the true time domain measurements. The pulse generator signal is directly sent to the 

transmitting horn, while the receiving horn is attached to the oscilloscope. The system used at 

MSU is far from ideal, and cannot match the performance of the frequency domain synthesis 

method, but the measurements provide validation of the frequency domain method and are quite 

instructional and intuitive. The draw backs of the time-domain system are many-fold, the pulse 

generator cannot produce as short a pulse as the synthesized, the oscilloscope is also limited in 
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bandwidth, and the horns perform poorly in the lower frequencies (less than .5 GHz). 

The time-domain measurement scheme is ideally much simpler than the frequency domain 

synthesis method, but due to the horn (system) characteristics a lengthier post-processing 

technique similar to the synthesis method is needed. The same set of four measurements are 

performed in the time-domain (target, background, sphere, background). The backgrounds are 

subtracted and the resultant transient waveforms (target and sphere) are transformed (FFT) into 

the frequency domain. The frequency domain waveforms are windowed (rectangular) to exclude 

the lower frequencies (horn difficulties) and an identical set of steps is performed as in the 

synthesis method. That is, the sphere is used to calibrate in the frequency domain, and the 

transient results are finally obtained following an IFFT. This roundabout method is post- 

processed therefore the actual measurements are performed very quickly. 

IV. Results/Comparisons 

In general there was very good agreement between the theoretical transient backscatter 

and measured backscatter from all the sea-surface models. It will be shown later that the 

theoretical backscatter from the infinite surface has an excellent agreement with the measured 

results, better than the theoretical finite surface. This was an unexpected results, and can be 

attributed to the far-field approximation made in calculating the backscatter from the finite 

surface. The theory for the infinite surface did not contain any such approximations and 

therefore could better model the cylindrical scattered waves (1/r loss) and the relative path length 

variation along the surface, which manifested itself in the spreading of the floquet mode spikes. 

a) Experimental Results 

The first results to be considered are a general type (qualitative) angular dependence of 

the scattered fields.   The normalized synthesized transient backscatter from the Stokes wave 



model is shown in Figure 4 for incidence angles ranging from near grazing to normal incidence. 

Normalization was required to enhance the near grazing backscatter, which contained far less 

energy than the normally incident backscatter. Observable in Figure 4 are the backscatter from 

each individual peak of the wave, and the change in the two-way transit time versus the 

incidence angle. The finer structure, such as multiple scatterings, are hard to discern in this plot. 

The remaining transient results should provide a better glimpse at individual incidence angles. 

Accompanying the transient results are the corresponding spectral returns (the actual 

measurements). In Figure 4 the Floquet mode spikes are evident, and the interference patterns 

for higher frequencies can be seen. Also of note is the spreading of the Floquet mode spikes as 

the incidence angle is rotated from near grazing to normal incidence. 

The transient scattering of a short pulse from the Double Sinusoid and the Stokes wave 

models are compared in Figure 5. In Figure 5, only a portion of the transient signal and only 

the near grazing angles are compared. There are notable differences between the two surface 

models the double sinusoid exhibits considerable more structure due to the two-scale roughness, 

however the Stokes wave model has a more pronounced multiple scatter, which is evident in the 

trough regions. These two observations are intuitively satisfying and will be shown later to agree 

with the numerical results. 

The scattering from the three waves at an incidence angle of 70° are compared in Figures 

6 and 7. In Figure 6 the measured frequency domain results are compared. The spikes in the 

spectral returns are due to periodicity of the surfaces and are called Floquet mode spikes. These 

spikes are dependent on incidence angle (See Figure 4) and period length, note also that the 

Donelan Pierson surface lacks the highly defined spikes, this can be attributed to the a-periodic 

nature of the surface. The overall strength of the returns at this incidence angle are greatest for 

the Stokes wave this is due to the large slope near the crest of the wave. Also of interest is the 
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higher frequencies where the spectrum become erratic, this indicates that small structures are 

nearing resonance or multiple scatterings are occurring. 

In Figure 7, the synthesized transient results are compared. The time-domain signals are 

obtained by IFFT after a Gaussian Modulated Cosine (GMC) window has been applied in the 

frequency domain. Only a portion of the transient results are shown in order to enhance the 

resolution of the plot. The plots reveal the differences between the three models. The Stokes 

wave has the largest return pulses (due to the large slope) and a multiple scatter can be observed 

in the trough. The multiple scatter spectral content is in the higher frequencies and could be 

enhanced in the time-domain with a different weighting function that emphasizes the higher 

frequencies. The double sinusoid wave exhibits the scattering centers from all of the non- 

shadowed crests, there is also a high frequency content multiple scatter that could be enhanced. 

The Donelan-Pierson wave has the smallest return amplitude, this is due to the orientation of the 

wave. The biggest crest was placed at the front edge (See Figure 3), which effectively shadows 

the remaining crests. The return from the first hump is not shown, but is much larger than the 

other crests. 

b) Comparison with Time-Domain Measurements 

The synthesized transient results that have been discussed, are all of very large bandwidth 

(i.e. very short pulse). The method of frequency domain synthesis works extremely well for 

stationary (non-time varying) targets, but is less effective for non-stationary targets. A true short 

pulse radar can be just as effective on non-stationary targets provided the bandwidth is the same. 

The time domain system at MSU lacks the large bandwidth of the synthesis system, but is large 

enough the make some useful and validating comparisons. 

In Figure 8 is comparisons of the transient and spectral returns for both the time-domain 

and frequency domain systems. The Stokes wave model was used for this comparison, although 
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not shown the other models were compared and similar agreements were observed. The effective 

bandwidth of the PPL pulse generator is from DC to roughly 2 Ghz, and the radar horns are 

effective down to around .5 Ghz. In Figure 8 the spectral returns are compared for both 

methods, note that the transient measurement had to be transformed (FFT). The agreement 

between the two methods is excellent over the bandwidth of 0.5-2.0 GHz. Similar agreement can 

be seen in the transient results. In this case a GMC window was applied to both spectrums and 

then transformed (IFFT) to time domain. The transient results are seen to contain 11 return 

pulses, the first pulse is due to the leading edge of the wave model and the remaining 10 pulses 

are from the wave crests and are separated by the two-way transit time between neighboring 

crests. These results help to confirm the validity of the synthesis method and provide hope for 

the future use of short pulse radar. 

c) Comparison with Theory 

As stated earlier, there was excellent agreement between the theoretical and the 

experimentally measured backscatter. In Figure 9 the transient backscatter from the Stokes wave 

model is examined. Only a few periods of the wave are shown, but there is very good agreement 

between the infinite theoretical backscatter and the measured. These results were obtained by 

weighting the spectral response with a GMC then transformed into the time-domain. 

Although not shown the theoretical transient backscatter from the finite model also matched well 

with the measured, except the two-way transit times did not vary as the do for the measured 

result. This was due to the far-field approximation. 

In Figure 10, the spectral returns are compared, once again there is excellent agreement. 

The peaks are due to the periodicity of the wave (Floquet Modes) and are slightly spread out due 

to the apparent period change as viewed from the field point. The theoretical backscatter from 

the finite length surface did not exhibit this spreading, and can be attributed to the far-field 
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approximation. 

The double sinusoid wave is considered next, and once again there is a strong agreement 

between the theory and the measurements. In Figure 11, the transient backscatter is compared. 

The additional wave structure is evident and accurately depicted by the theoretical results. The 

spectral returns are not shown but are also in good agreement. 

The transient backscatter from the Donelan Pierson wave is compared with the theoretical 

backscatter from a finite wave. The infinite (periodic) theory can not accurately model the 

backscatter due to the large shadow produced by the first crest. The finite theory does a fairly 

good job as seen in Figure 12, but due to the far field approximation the two-way transit times 

between crests are not correctly depicted. The spectral comparison is also hampered by the far- 

field approximation, but does show general agreement. 

The effects of spectral content are examined in Figures 13 and 14. The synthesized 

transient backscatter from the double sinusoid wave for an increasing GMC window are shown 

in Figure 13. The incident pulse can be seen to become very narrow as more T gets smaller, 

this results in a much enhanced resolution. In Figure 14, the effects of moving constant width 

GMC window (roughly 1.5 GHz Wide) through the spectral response is shown. Different parts 

of the wave are more active for different frequency bands, for example the lowest band can only 

"see" the main swell, but as the window is moved up in frequency (fc) the small ripple becomes 

more active. 

V. Conclusions 

The experimental measurements presented in this paper help to validate the theoretical 

techniques, and they offer new insights into the scattering from these surface models. The time- 

frequency nature of the scattering was only qualitatively discussed and will be examined in detail 
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in the future. The identification of scattering mechanisms helps to further the understanding of 

the underlying physics of the problem. These mechanisms include the scattering center (or 

specular reflection), the multiple scatterings, and the sub-structure scattering. 

The frequency domain synthesis technique, which was employed for the wide bandwidth 

measurements, was verified by the true time-domain short pulse method. This experiment reveals 

the future strengths of the short-pulse radar, which allows one the model the surface as 

stationary. 

Future work will consist of presenting the results for TM polarization and to consider 

imperfectly conducting ocean surfaces. 
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Figure 13       Theoretical Scattering from Double Sinusoid Wave at 85°, with the effect 
of GMC window width examined. 
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Appendix 3 

Enhanced detection of a target in a sea clutter environment using a stepped, 
ultra-wideband signal and E-pulse cancellation 

G.S. Wallinga, E.J. Rothwell, K.M. Chen, D.P. Nyquist 

A new ultra-wideband technique to detect a sea-skimming missile in a sea-surface clutter 

background is presented. This technique, based on the E-pulse concept, is shown to be effective 

in maximizing the target to clutter ratio. Results using both measured and theoretical data from 

scaled surfaces demonstrate the usefulness of this method. 

I.        Introduction 

A basic problem faced by on-board ship radar systems is the detection of a sea-skimming 

missile immersed in background clutter from the sea-surface. Interest in ultra-wideband (UWB) 

radar systems arise from their potential use for target detection. The use of an UWB system 

becomes more important when the signal returned by the target is small compared to the 

background clutter. Using the increased bandwidth (characteristic of UWB radar) and the 

periodic nature of sea swell one can create a clutter reducing transient waveform (CRTW) which 

can be used to eradicate the clutter return and enhance the target response.1 

A new technique, based upon E-pulse concepts2, has been devised which allows detection 

of low signal targets in a sea-clutter environment.  One of the inherent difficulties in using the 



was 

was 

classical E-pulse method is that when one tries to eradicate merely the sea-clutter return, both 

the sea-clutter and target response are attenuated, resulting in a poor target to clutter ratio. A 

new approach to the problem is not to eradicate the clutter altogether but to maximize the target 

to clutter energy ratio. 

Several examples will be presented showing the usefulness of this new CRTW technique. 

The first example uses the measured clutter return from a perfectly conducting (PEC) sea-surface 

model, in conjunction with the measured scattered return from a small missile model. A CRTW 

constructed and applied to a combined sea-surface/target return data set. This first example 

designed to show that this new technique works for a simple static situation. Since one is 

interested in the effect of a changing sea-surface, a second example considers a more realistic 

model that can evolve over time. In this case, a time-simulation of an evolving sea-surface was 

created and the scattered fields were numerically calculated. Using the measured missile model 

a CRTW was calculated for the initial sea-surface. A simulation was then performed in which 

a missile traveling over the evolving sea-surface was detected using the CRTW technique. 

Results of that simulation show the effects of an evolving sea-surface on the CRTW technique 

and the need for periodic updates to an initial CRTW. 

II. Theory 

Consider a UWB radar system illuminating a finite portion of the sea-surface where a 

target is anticipated. If the two-way transit time of the radar signal across the finite portion of 

the sea-surface is W, then the transient scattered field is available in the time range T < t < 

r+W, where T is the time of measurement.   A CRTW, based on E-pulse concepts, can be 



constructed if the clutter return from the sea-surface can be modeled as a series of complex 

exponentials 

c(t) =   £ Ane
Q*' T< t <x+W W 

where An and Qn are complex parameters appearing in complex-conjugate pairs. Furthermore, 

the CRTW e(t), like the E-pulse, is a waveform of finite duration TE which when convolved with 

the sea-clutter signal yields the null result 

r(t) = e(t)*c(t) =    [ c{t')e(t-t')dt' = 0        x+TE< t <x+W & 

Hence, only a small signal will be returned if the CRTW is radiated in the presence of sea- 

clutter. 

One of the problems arising in the construction of the CRTW is that a target signal 

embedded in the clutter return is also reduced, often to such a point that the target-to-clutter 

ratio is not really improved. An alternative to (2) is to construct a CRTW such that the 

following energy ratio is maximized 

f+A/2 

f   {e(x)*[c^+x)+T(t'+x)]}2dx 

p(tTt^ -   <-W  T+A<f<^-A (3) e(t,x,t ) - f+A/2 E   2 2 

f   {e(x)*c(i:+x)}2dx 
f-A/2 



In this case the energy ratio is computed in a window of length A centered at time t. T is the 

time response of an anticipated target and t' is a parameter which time shifts the target response 

within the time range bin of the clutter signal. A qualitative argument supporting the use of (3) 

can be made by observing that the term in the denominator should be quite small as give by (2). 

On the other hand, the numerator contains two terms: the convolution of the CRTW with the 

clutter return and the convolution of the CRTW with the time shifted target response. Once 

again we can consider the term involving the CRTW/clutter convolution to be small, but 

hopefully the second convolution will not be. The net result is that the energy ratio may be 

significant for the correct choice of e(t). 

To envision the detection process on must proceed in the following manner. First at 

some initial time T0 a measurement is made of the sea-clutter waveform c0(t) = c(r0+t). A pre- 

recorded response T(t) of the anticipated target is then added to the measured sea-clutter 

waveform. Next, a CRTW is constructed to maximize the energy ratio e(t,r0,t') in (3). In this 

case the energy ratio is a function of the parameters t and t' where t represents the position of 

the energy window and t' corresponds to the target time-shift. Careful observation of (3) also 

shows that the energy ratio is a function of the time window width A. The optimal positions of 

tm and tm' represent the window position for maximum energy and optimal target position for 

detection.   In most cases one can expect that tm = tm'. 

Once e(t) has been determined, detection can progress by measuring the sea-surface 

return at some later time T > r0.   At this time an energy ratio given by 



r+A/2 

f  {e(x)*c(x+x)}2dx 

I  {e{x)*c{TQ+x))2dx 
f-A/2 

is computed. If no target has entered the observation bin and the sea surface remains essentially 

stationary, the energy ratio will be unity for all t. Given that the denominator term in (4) 

remains small one should expect the value of e(f) to be significantly greater than unity when 

a target enters the range bin. The value of e(i) should be large for t corresponding to the target 

position and should reach a maximum value when the target reaches the position corresponding 

to tm. 

It is important to consider the effect of an evolving sea-surface on 1(0. For r > r0, the 

sea-surface will be different than that used to compute e(t) and the energy ratio computed using 

(4) will slowly change. As e rises above unity the ability to detect a target in the range bin will 

degrade. One then finds it necessary to periodically recompute e(t). Figure 1 shows a flowchart 

for the detection process. 

III.   Stationary Surface Demonstration 

To demonstrate some of the ideas presented in the preceding section the scattered fields 

from two PEC surfaces were measured. The surfaces are shown in figure 2. The scattered 

fields from the two-dimensional surfaces were measured within an anechoic chamber in the band 

1 to 17 GHz using 1601 frequency points. The data was then transformed into the time domain 

to give the clutter signal c0(t). The surfaces should be viewed as a scaled down version of a real 



surface.   The dimensions of the surface were chosen to allow measurements in the anechoic 

chamber. 

The first surface, known as a Stokes wave3, is characterized by steep slopes and is a 

simple model used to simulate periodic ocean waves.    Using an electric field parallel to the 

wave crest (TE polarization), and an incidence angle of 10° from the horizon, the scattered fields 

for the Stokes wave is shown in figure 3.   As can be seen the scattered field is dominated by 

reflection from the main crests of the Stokes wave. The second surface is a double sinusoid and 

was measured under the same conditions as the Stokes wave.  This surface is characterized by 

two scale roughness. The wave profile is give by y(x) - .025(1 -cos35.4x) +0.06sinl77x (m). 

The scattered field for this surface is shown in figure 4.   Once again the scattered fields are 

dominated by reflection from the sea-wave crests.   A scaled 8 cm long Phoenix missile model 

was used as the expected target.   The scattered field from this target is shown in figure 5.   In 

this measurement the electric field was anti-parallel to the long axis of the missile and the angle 

of incidence was again 10° with respect to the long axis of the missile. 

Using the target and clutter responses, scaled to unity, the CRTWs shown in figure 6 

were constructed by maximizing the ratio given in (3). The actual construction of the CRTW 

(maximization of (3)) was implemented using a genetic algorithm. To simulate the detection 

response, the missile scattered field was scaled by 20% of the clutter maximum value (target to 

clutter ratio of TCR = -14dB) and added to the sea-clutter surface response. For the Stokes 

wave the target response was added to the clutter response at two locations: t = 4.9 nsec and 

t= 7.8 nsec. For the double sinusoid surface the target response was added at locations t = 5.6 

nsec and t = 11.0 nsec. The energy ratio response given by (4) was computed for each surface. 



The results are shown in figures 7 and 8 for the Stokes and double sinusoid respectively. Also 

included in these figures is the summed target and clutter response give by C(T+X) in (4). 

Figure 7 shows that when the target is located at t = 5 nsec the energy ratio e reaches 22 dB 

and the target is easily detected. On the other hand a target located at t = 8 nsec has a lower 

value e = 3 dB indicating that this is not the best location to detect the target. The energy ratio 

corresponding to the double sinusoid ( fig. 8) shows similar patterns. At t = 11 nsec the ratio 

is 9 dB indicating a large jump and hence target detection. In contrast, at t = 6 nsec the value 

of e is much smaller and not the best location for a target to be detected. In both figures points 

outside the convolution window have a value of 1(f) equal to unity (0 dB). This follows since 

the summed signal used in the detection scenario is identical to that used to create e(t). 

IV.   Simulated Sea-Surface Demonstration 

A more realistic sea-surface profile has been proposed by Kinsman4.   An evolving sea 

surface profile y(x,t) can be computed using the stochastic model 

y(x,t) =   fcosi — x - at + O(o) V|>l(o)]2do 
iL8 

(5) 

where  $(o) is a phase shift arbitrarily equally distributed between 0 and 2x.    Here the 

Neumann spatial frequency spectrum is used 



2 _ r* „-6„-2g2°-2u-i (6) [A(o)]2 = C-o-°e 

where U is the wind speed in m/sec, g = 9.81 m/sec2 is the acceleration due to gravity, and C 

= 3.05 m2/sec5. A typical spectrum generated using 20 knot winds in shown in figure 9. A 

numerical measure of the sea-surface evolution can be obtained by calculated the covariance 

function at a fixed position on the surface.  The covariance function4 may be written *s 

H(t.,tk) = ±f[A(o)]2cos[o(tk-tp]do (7) 

In this case we are observing an ensemble of functions {y(t)} at times tj and tk at a fixed 

position. It is important to note that the covariance is only a function of the observation 

interval. This follows from the time-invariant statistics or stationarity of the process. For a 20 

knot wind, figure 10 shows the covariance function in terms of the observation interval T. For 

T = 0 the covariance can be written as 

H(trtk = tj) = \f[A(o)fdo (8) 

Integrating the spectrum over all frequencies gives a measure of the total energy in the wave 

field, i.e. 



"r , (9) 

E = J[A(a)]2do 

Comparing (8) and (9) we see that 

E - \mtJttk=tj) (10) 

In this case the covariance for a step interval of 0 is directly related to the wave energy through 

(10).  Since the energy can be calculated from (9) one sees that the energy is directly related to 

the wind speed through (6). The point corresponding to T = 0 in figure 10 coincides with twice 

the energy given by (10). Since the covariance function is an indicator of sea-surface evolution, 

figure 10 illustrates the progression of the sea as function of time separation T at a given point. 

As shown in this figure the covariance value decreases as a function of time separation.  From 

this figure we see that after about 2 seconds the covariance has dropped to about zero and never 

returns to its original value, although it does slowly creep up and then returns back to zero. 

With the covariance information it is possible to get some idea of how often the scattered field 

must be remeasured.   From figure 10 the measurement must certainly be updated more often 

than once every two seconds.    A better update rate would be at least once or twice a second. 

A typical surface profile and scattered field generated by the Kinsman model is shown 

in figure 11.  The scattered field for a PEC with this profile was computed using a 2-d Green's 

function and moment method solution.   The polarization is TE and the incidence angle is 10 

degrees from the horizon.   Due to computational constraints the sea-surface was scaled down 

by a factor of 50 (from 1000m total length to 20 meter total length) and the field solved for 

using 1000 segments. A total of 200 frequency points were computed in the band .5-1.5 GHz. 



To determine the effects of an evolving sea-surface on the CRTW detection technique the 

following scenario was devised.   A series of sea-wave profiles were generated using (5) at 

intervals of .25 seconds.    Each surface was scaled and the scattered field was calculated 

numerically as described above.   The response from the Phoenix missile model was scaled to 

match the clutter response and a CRTW was computed from the surface profile at T = 0 sec. 

Next, the missile response was amplitude scaled to a TCR of -14dB and added to the evolving 

sea surface response.  In this case the position of the missile with respect to the sea surface was 

determined by assuming that the missile was flying at 600 knots.  The left hand side of figure 

12 shows the evolving sea surface profile and the missile position (indicated by the small arrow). 

Using the summed response and the initial clutter capture the energy ratio e(t) was 

computed for each time step.   This is shown on the right hand side of figure 12 where it is 

assumed that the CRTW computed at T = 0 does not change during the simulation.   At t = 0 

the clutter signal has not changes and hence the energy ratio computed from (4) must be unity 

(0 dB).  At t = .25 sec the surface has evolved but no target has entered the range bin.  In this 

case the energy ratio is no longer unity but has reached a value of 3 dB.   As the sea surface 

continues to evolve the baseline energy ratio (max value) continues to rise.  At t = .75 sec the 

target enters the range bin and e(f) reaches a max value of 20 dB near the target.   Since the 

baseline value of 1(0 is about 5 dB at t = .75 sec, a target has been detected with a margin of 

about 15 dB above the baseline level.   Continuing with the simulation,   the effect of both the 

moving target and evolving sea surface can be seen. At t = 2.0 sec the sea surface has evolved 

to the point where only a 10 dB margin exists between the baseline clutter ratio and the target 

ratio. 
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V. Final Discussion 

The new CRTW technique, based upon the E-pulse concept, has been shown to be 

effective using the measured scattered responses from static surfaces and theoretical responses 

from more realistic sea wave surfaces. Although the static surfaces are not exact representations 

of ocean waves they are useful in showing the advantages of the CRTW technique. The 

evolving sea surface simulation shows that the new CRTW technique can be used in an 

environment that is constantly changing. One important result of this simulation is the need to 

update the CRTW periodically. Using the above simulation and actual sea surface data one 

should be able to determine the rate at which to update. 

Other items need to be addressed as a result of this study. First can the CRTW be used 

to detect other targets, i.e. target not used to generate the CRTW ? Second, what are the effects 

of the window size on the detection algorithm give by (4)? The third issue must address the 

actual construction of the CRTW. The author has used a genetic algorithm with good results. 

The advantages here are no initial guesses required for the solution but the disadvantage is the 

inefficiency of the algorithm. Fourth, this new technique should carefully be compared to some 

of the other detection algorithms currently being used. Finally, actual scattering data from a 

UWB radar system is needed to thoroughly test this technique. 
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Appendix 4 

A General E-pulse Scheme Arising from the Dual 
Early-Time/Late-Time Behavior of Radar Scatterers 

Edward J. Rothwell, Senior Member, IEEE, Kun-Mu Chen, Fellow, IEEE, 
Dennis P. Nyquist, Senior Member, IEEE, Ponniah Ilavarasan, 

Member, IEEE, John E. Ross, Member, IEEE, 
Robert Bebermeyer, Student Member, IEEE, and Qing Li 

Abstract—A duality between the temporal late-time response and the 
spectral early-time response of a radar target is used to form the basis 
for a general E-pulse technique. Examples, using the ultrawide-band 
measurements of an aircraft model, reveal that E-pulse cancellation is 
possible both in the time domain for the late-time component and in 
the frequency domain for the early-time component Applications to 
radar target discrimination and clutter cancellation are described, and 
the aspect dependence of early-time discrimination is investigated. 

I. INTRODUCTION 

The E-pulse radar target discrimination scheme is a resonance 
cancellation technique grounded in the late-time behavior of the 
transient scattered field [l]-[5]. It is based on the target natural 
frequencies, which form a global description of the scatterer, and is 
inherently aspect-independent. Unfortunately, this approach ignores 
the early-time behavior, which is dominated by localized specular 
reflections from target scattering centers. In this communication 
we will demonstrate a duality between the temporal behavior of 
the late-time component of the transient response and the spectral 
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The authors are with the Department of Electrical Engineering, Michigan 
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Fig. 1.   Fluency domain scattered-ndd response of B-58 aircraft model measured at nose-on incidence. Inset shows tow frequency behavior, with 
extracted resonant frequencies indicated by circles. 

behavior of the early-time component. Because of this duality, it is 
possible to devise a general E-pulse technique that can be applied 
to both the early- and late-time components. For the early time, 
this amounts to a cancellation of the frequency-domain sinusoidal 
functions arising from the aspect-dependent temporal positions of the 
specular reflections. 

II. MODELING OF EARLY- AND LATE-TIME TRANSIENT SCATTERING 

Assume a time-limited interrogating pulse is incident on a radar 
target and its scattered-field transient response is measured. Baum 
[6] has proposed a model of the late-time response using the aspect- 
independent natural resonance frequencies of the target {s„   = 

this response becomes 

äEM = F{rE(t)} =   £FmU')e^ 
M 

(3) 

In general, the spectral response of the mth scattering center can be 
represented as a series of Km real exponentials 

Fm(w)  =  f>n,*e°-*"' (4) 

where {bm,k} are complex amplitudes. Hurst and Mittra [8] suggest 
that the number of terms in the series (4) should not be too large for 
reasonable scattering shapes. Substituting (4) into (3) and redefining 
the summation index gives 

(5) 

rL(t)  =     £   A"e'nt    t>Tl- 

RE(») 5>«T" 
(i) 

n = -N 

Here TL designates the beginning of the late-time period, N modes 
are assumed excited by the incident pulse, and the aspect-dependent 
complex amplitudes {A„}, along with the natural frequencies, occur 
in complex-conjugate pairs (i.e., s-„ = s'n). This model has formed 
the basis for the aspect-independent late-time E-pulse technique. 

Altes [7] has proposed a simple model for the early-time response 

TE(t)  =   JT/m(t- Tm)u{t- Tm). (2) 

Here, fm is the localized pulse response originating at the mth 
scattering center at time Tm, u(t) is the unit step function, and M is 
the number of scattering centers considered. In the frequency domain, 

where T, = o, - jTi are complex times associated with the scattering 
center impulse responses. Note that this is essentially the model used 
by Carriere and Moses [9] in their Prony-method analysis of target 

scattering centers. 
It is readily seen that there is a duality between the temporal 

late-time response (1) and the spectral early-time response (5). This 
duality allows the direct application of E-pulse cancellation to spectral 

early-time data. 

m. E-PULSE TECHNIQUE FOR GENERAL EXPONENTIAL SIGNALS 

Consider an exponential signal of the form 

K 

}{X) = £CfceQfcI    A'i < x < X2 (6) 
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where {Ck} and {Qk} are complex constants, {A'i, A'2} represents 
the domain of the signal measurement, and x can represent frequency 
in the case of an early-time response and time in the case of a 
late-time response. An E-pulse e(x) is a real waveform of finite 
extent XE that upon convolution with f(x) eliminates a preselected 
component of the exponential series. In particular, the entire series 
can be eliminated, resulting in 

c(x) = e(x) * f(x) 
/ 
0 

= 0 

f(x )e{x — x )dx 

Xi + XE < x < A2 (7) 

The conditions for synthesizing such an E-pulse can be given in 
the context of resonance cancellation as [3] 

E(s = Qk) = 0    1 < k < K (8) 

where E(s) is the Laplace spectrum of e(x). If the complex numbers 
{Qk} are known, the E-pulse can be constructed by expanding e(jr) 
in a set of basis functions (often rectangular pulses) and using (7) 
to obtain the basis function amplitudes. If {Qk} are unknown, the 
E-pulse mode extraction technique [3], [10]—[12] can be used to find 
the basis function amplitudes, and {Qk} can then be found from (8). 

IV. DEMONSTRATION OF E-PULSE CANCELLATION USING 

EARLY- AND LATE-TIME TARGET RESPONSES 

The ultrawide-band measurement of a 1:48 scale B-58 aircraft 
model can be used to demonstrate E-pulse cancellation of both early 
and late-time scattered-field responses. Fig. 1 shows the magnitude of 
the scattered-field response of the B-58 measured at nose-on incidence 
in the Michigan State University free-field scattering range within 
the frequency band 0.2-7 GHz. (For more information about the 
measurement process, see [13]). The scattering is slightly bistatic, 
with the incident electric field polarized in the plane of the aircraft 
wings. An HP 8720B network analyzer was used to obtain the 
data, and the system response was removed using the theoretical 
response of a 14-in diameter calibration sphere. To reduce the effect 
of windowing, the magnitude of the response was quadratically 
interpolated to zero amplitude at zero frequency, and the phase was 
linearly interpolated. 

The spectral response of the B-58 is seen to be composed of two 
distinct regions. The lower frequencies clearly display a resonance 
behavior with several sharp peaks below 0.5 GHz. (The inset is an 
expansion of the region 0-1 GHz). A very rough approximation gives 
the fundamental resonance of a thin body of length L at f0 « c/2L. 
Using this, the first fuselage resonance is at roughly 0.23 GHz and 
the first wing resonance is at 0.42 GHz; the first and third peaks 
in the figure match these values fairly well, while the second may 
be a coupled wing-body resonance. Above 0.5 GHz the spectrum 
displays the typical interfering-sinusoid type pattern due to time- 
shifted specular reflections. Thus, low frequencies correspond to late 
time while higher frequencies are more involved in the early time. 

The transient response of the B-58 has been obtained by weighting 
the spectrum with a Gaussian function and then inverse transforming 
using the FFT. The result is shown in Fig. 2. Temporally, there 
is a clear demarcation between an early-time period dominated by 
specular reflections, during which the incident pulse crosses the 
aircraft, and a late-time period during which the target oscillates 
freely. In this synthesized situation, the equivalent incident pulse is 
the inverse transform of the Gaussian weighting function, as shown 
in Fig. 2; its width is roughly 0.3 ns—about 1/7 the one-way transit 
time of the B-58. The beginning of the late-time period occurs after 
the pulse has traversed the target and the information has returned to 
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Fig. 2. Transient response of B-58 aircraft model. Region f < 0 displays 
equivalent incident pulse. Dotted line indicates reconstruction of late-time 
period using extracted resonant frequencies. 

the receiver (approximately the two-way transit time of the target), 
at about 4.9 ns in Fig. 2. 

The late-time portion of the response can be canceled by con- 
structing an E-pulse based on the natural resonant frequencies, as 
described by (8). Since these frequencies are unknown, they are 
determined using the E-pulse mode extraction technique [11]. Four 
modes were extracted from the late-time signal. The imaginary parts 
of the resonant frequencies and the modal amplitudes are indicated 
by the positions and heights of the circles in Fig. 1. The frequencies 
are seen to match well with the peaks in the spectrum of the total 
response. The lowest mode at about 0.15 GHz is probably an anomaly 
due to a discontinuity introduced by the interpolation of the spectrum 
to zero frequency. A reconstruction of the late-time response using 
all four extracted modes is shown in Fig. 2 and is found to match 
the measured data quite well. The E-pulse constructed from these 
frequencies is shown in Fig. 3, and the convolution with the total 
response is shown in Fig. 4. It is seen that the E-pulse has annihilated 
the modal portion of the B-58 response so that the portion of the 
convolution at times greater than the beginning of late time plus the 
E-pulse duration (t > 14 ns) is null. Note that a forced dc-canceling 
E-pulse was used to eliminate a spurious dc level introduced by the 
inverse transform. This requires ten pulse basis functions to cancel 
four modes. 

The spectrum of the early-time portion of the response can be 
canceled by constructing an E-pulse based on the complex times 
determined by the specular points on the B-58. Extraction of thirteen 
complex times from the B-58 spectrum reveals the imaginary parts 
(corresponding to the temporal positions of the scattering centers) 
shown by the circles in Fig. 5; the amplitude of the exponential 
is indicated by the circle height. Also shown in this figure is an 
illustration of the B-58, scaled so that its length corresponds to the 
two-way transit time of the aircraft, and the early-time portion of 
the B-58 response. The extracted times are seen to correspond with 
important scattering events on the aircraft, with particularly large 
events occurring at the junctions of the engine mounts and the wing. 
Fig. 6 shows the real part of the spectrum of the early time and its 
reconstruction using the extracted complex times. The match is seen 
to be excellent. 
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The E-pulse constructed from the extracted complex times is 
shown in Fig. 7; again, a forced dc-canceling E-pulse has been used. 
Note that now the horizontal axis is frequency since this E-pulse 

will cancel the frequency-domain sinusoids arising from the early 
time. Convolution of this E-pulse with the real part of the early- 
time spectrum is shown in Fig. 8, revealing a null response in the 
frequency range greater than the E-pulse duration (/ > 3 GHz). 
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V. APPLICATIONS OF E-PULSE RESONANCE CANCELLATION 

The late-time E-pulse technique has formed the basis for a success- 
ful automated target discrimination scheme [5]. An E-pulse library 
is created for a set of targets and convolved with the measured 
response of an unknown target. The convolved response with the 
minimum late-time signal is then associated with the unknown target 
providing an identification. Since the E-pulses are based on target 
natural frequencies, they form an aspect-independent classifier. 

A similar technique is possible using the early-time signal. How- 
ever, since the specular response of a target is aspect dependent 
(because of the changing temporal positions and scattering char- 
acteristics of the scattering centers with aspect angle) each target 
requires a set of E-pulses for different aspect angles. Identification is 
then accomplished by convolving the global set of E-pulses with 
the spectrum of an unknown response. Thus, it is necessary to 
determine the number of E-pulses that must be retained for each 
target, i.e, the level of discretization of aspect angle required for 
accurate identification. 

A preliminary investigation into the aspect dependence of the early- 
time E-pulse technique is most easily accomplished using a simple 
set of targets, such as wire-stick aircraft models. To make the results 
easily verifiable, the elementary physical optics (PO) scattered field 
response of a wire segment will be employed. If a plane wave with 
electric field of the form S(r) = i?0e~-'E''f' is incident on a thin, 
straight wire segment of radius a and length 2d oriented along a unit 
vector ü, the physical optics current induced along its axis is given by 

I(u)  —    Ü-E (u) 
nr/o 

(9) 

where n is the length of the vector normal to the wire surface in the 
plane of the incident wave vector k\n = ü x (ü x k'). Substituting 
(9) into the standard formula for the far-zone electric field gives the 
scattered field 

E(f) = - 
ad Ü-E0 e-""(Tl - T° ) - e--""(Tl + T° : 

2r    n r, •fi(0,fl>)   (10) 

rVl/c, r,    =   [(?-*')• üd)/c, 
, r is the distance from the origin 

where T0 = [r — [f — k') 
Ü(e.ö) = 6(9-u) + 6(i- ü 
to the observation point, and fc is a vector from the origin to the 
center of the wire segment. Since PO scattering is purely specular, 
the scattered field (10) is seen to be composed of two undamped 
sinusoids, representing specular reflections from the wire ends. This 
is more easily seen if the inverse Fourier transform of (10) is taken, 
giving 

E(r,t) = 

ad v-Eo 6{t [To-Tip - 6(t - [Tg+T,]) 
2r    n Tx 

9.(9,0)    (11) 

The two simple wire-aircraft models shown in Fig. 10 will be used 
to test the aspect dependence of the early-time E-pulse technique. 
Responses for aspect angles of 1° increment have been created using 
superpositions of (10) for each wire segment, with the origin of 
coordinates shown in Fig. 10 as a solid circle, for the frequency range 
1-7 GHz. Note that the choice of r establishes a time reference that 
determines the E-pulse shape and that must be found in practice by 
detecting a certain temporal event (generally the largest portion of the 
response). Here, a distance of r = 1 m is chosen. Forced E-pulses of 
duration 0.72 GHz were then created for each response. Since there 
are four distinct scattering centers, nine pulses are required in each 
E-pulse expansion; dc E-pulses are not needed since the responses are 
computed exactly, and no spurious dc level is present. The E-pulses 
for the range of aspect angles 0 < a < 45° for the Y-wire model 
are shown in Fig. 9. The variation of the E-pulses with aspect angle 
is seen to be quite smooth, since the transit times to each scattering 
center are smoothly varying with aspect angle. 

To simulate a discrimination scenario, the frequency-domain re- 
sponse of the Y-wire at 15° is assumed to arise from an unknown 
target, and the E-pulses for both the Y-wire and T-wire models are 
convolved with the response. Fig. 10 shows the results, plotting the 
energy in the convolved response divided by the E-pulse energy (with 
the largest energy ratio normalized to unity.) Obviously, convolution 
with the 15° Y-wire E-pulse gives zero energy, but convolution 
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with E-pulses for angles near 15° also gives a small result. In 
contrast, convolution with any of the E-pulses for the T-wire gives a 
significantly larger result. Similar results are shown in Fig. 11 when 
the 30° T-wire response is assumed to arise from an unknown target. 
This suggests that the E-pulse technique may not be severely aspect 
dependent, and a relatively small number of E-pulses may be required 
to characterize a target over a wide range of aspect angles. Whether 
this observation holds for more complicated targets and under severe 
noise conditions must be tested. 

It must also be investigated whether the E-pulse technique gives an 
advantage over more standard waveform correlation approaches [14]. 
There is certainly a reduction of storage with the E-pulse technique, 
since only the amplitudes of a few pulses must be stored at each 
aspect, rather than the entire waveform. However, more advanced 
storage schemes using wavelets [15] or scattering center information 
[16] may also reduce the memory requirements. Another possible 
advantage of the E-pulse techniques lies in the combination of both 
early and late-time information into a more robust scheme. For 
example, the late-time response could be used to narrow the possible 
target choices followed by the early-time technique to provide a 
positive identification. Or, the information from both the early and 
late times could be combined into a single discrimination quantifier. 

Cancellation of frequency-domain sinusoids is possible for any re- 
sponse that is specular in nature. Thus, the general E-pulse technique 
is also applicable to the cancellation of transient clutter signals arising 
from the deterministic scattering from specular objects such as the 
sea surface. This cancellation would enhance target detection as long 
as the specular reflections from the target are not temporally aligned 
with those from the clutter. 

These applications will be addressed in future publications. 
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A Radar Target Discrimination Scheme Using the 
Discrete Wavelet Transform for Reduced Data Storage 

E. J. Rothwell, Senior Member. IEEE, K. M. Chen, Fellow, IEEE, 
D. P. Nyquist, Senior. Member. IEEE, J. E. Ross, Member, IEEE, 

and R. Bebermeyer, Student Member. IEEE 

Abstract—A correlative radar target discrimination scheme using the 
transient scattered-field response is proposed. This scheme uses a one- 
dimensional discrete wavelet transform on the temporal response to 
reduce the amount of data that must be stored for each anticipated aspect 
angle. Experimental results show that a reduction in stored data of sixteen 
to one still allows accurate discrimination in adverse noise situations with 
signal-to-noise ratios as low as -5 dB. 

I. INTRODUCTION 

A fascinating variety of radar target discrimination schemes 
have been proposed in the past several years. Each of these 
techniques must deal with the complicated dependence of scattered 
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Fi»  1     Scattered field response of B-52 aircraft model as a function of aspect     Fig. 2.   Nose-on (0°) response of B-52 aircraft model and 32 wavelet 
antie. reconstruction. 

field on aspect angle, frequency and polarization. Time-domain 
techniques often reduce the complexity by concentrating on either 
the late-time resonant response of the target, or the early-time 
specular response. If the discrimination algorithm is based on the 
target resonant frequencies, aspect-independent late-time schemes 
can be devised [l]-[6] which eliminate the need for storage of 
aspect-dependent information (since target natural frequencies are 
aspect-independent). When bandwidth restrictions preclude the 
use of low-frequency resonant information, the early-time portion 
of the transient response must be used. Since the early-time 
response is highly aspect-dependent, a large amount of information 
about the target signature must be stored. This communication 
describes how the discrete wavelet transform (DWT) can be 
used to reduce the amount of stored data required for accurate 
discrimination. 

II. A CORRELATIVE DISCRIMINATION SCHEME 

Several methods have been proposed for using the early-time 
information in a radar target discrimination scheme. Fig. 1 shows the 
experimental early-time response of a 1:72 scale B-52 aircraft model 
as a function of aspect angle, measured from nose-on. The response 
was measured in the frequency band 1-7 GHz using an HP 8720B 
network analyzer, calibrated, and inverse Fourier transformed into 
the time domain. (For more information regarding the experiment, 
see [7]). It is readily seen that the specular response of the target 
is highly aspect-dependent If discrimination schemes are based on 
the actual transient return, a large amount of information must be 
stored. Several techniques, such as the neural network approach [8], 
[9] and the early-time E-pulse method [10], seek to reduce the storage 
requirements through indirect methods. 

It has been suggested [8], [12] that direct correlation of target 
waveforms with their stored counterparts provides a simple, ro- 
bust, time-shift-insensitive method for discrimination. Unfortunately, 
storing complete waveforms for each target at many aspect angles 
requires extensive computer resources. Combining the DWT with 
correlative processing results in a robust technique requiring minimal 
computer resources. 

The DWT provides a linear transformation of a discretized signal 
into the "wavelet domain" much in the same manner as the discrete 
Fourier transform (DFT) [13], [16]. The signal is represented as a 
linear combination of wavelet basis functions (analogous to sinusoids 

for the Fourier transform) and can thus be reconstructed by 

•• = £ ajWij Ki < N. (1) 
J=I 

Here s, is the signal sampled at time t„ a} is the amplitude of the j' 
wavelet basis function, vnj is the j"1 wavelet basis function sampled 
at time t„ and N is the length of the signal (usually a power of 2). 
Wavelet basis functions are constructed so that the wavelet coefficient 
vector {o, (is sparse for a certain class of waveforms (polynomials of 
a chosen degree). Because of this sparseness, the DWT can be used 
to compress the signal. References [14], [15] give a good overview 
of wavelet transforms, while [17]-[19] demonstrate ways in which 
wavelets can be used for data compression. 

To perform target discrimination, the correlation of a received 
signal from an unknown target is performed with each of the stored 
target responses. This correlation is most efficiently computed using 
the fast Fourier transform (FFT). Let {r,} represent the sampled 
received signal and {R,} the DFT of the signal. Then the correlation 
{c,} is given by the inverse DFT as 

C; = DFT-'iSR"},    l<i<-V (2) 

where {S,} is the DFT of {s; }• Using (1), {S,} can be written as 

S, = £a,W,,, 1 < i < N (3) 

J=I 

where {Wi,j} is a matrix containing the DFT's of the wavelet basis 
functions. Thus, storage of a single wavelet transformation matrix 
[W,,:} along with some significant subset of the wavelet coefficients 
{en} for each target is required for this scheme. Experimentation- 
using measured target responses has shown that the number of 
wavelet coefficients required for successful discrimination can be 
reduced to a small fraction of N. 

m. DEMONSTRATION OF STORAGE REDUCTION 

To demonstrate the validity of storage reduction using the DWT, 
consider the nose-on (0°) response of the B-52 sampled at 256 
time points, as shown in Fig. 2. Fig. 3 shows the wavelet spec- 
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Fig. 3.   Wavelet spectrum of nose-on (0°) response of B-52 aircraft model.      Fig. 4.   Nose-on (0°) response of B-52 aircraft model with zero-mean white 
Gaussian noise added: SNR=10 dB. 

trum {a,} computed using a 256-point Lemarie DWT [13]. It is 
readily seen that only a small subset of the wavelet coefficients 
are significant. Note that the small values of coefficients a 129 
through a256 is due to an oversampling of the data by a factor of 
about 2. The DWT thus automatically compensates for frequency 
oversampling. 

Fig. 2 also shows the B-52 response reconstructed using only the 
32 largest wavelet coefficients. As expected, the reconstruction is not 
perfect, since some information has been omitted. However, each of 
the major scattering events is reproduced. Similar results are shown 
in Fig. 5 where only the largest eight wavelet coefficients are retained 
(representing a data reduction ratio of 32 to 1). In this case some of 
the smaller events, such as the initial reflection from the nose of the 
aircraft, are lost, but the largest events are retained. 

To see the effects of random noise on the wavelet reconstruction of 
data, zero-mean white Gaussian noise has been added to the nose-on 
response of the B-52; the resulting waveform, with a signal-to-noise 
ratio (SNR) of 10 dB, is shown in Fig. 4. Here, the SNR for a sampled 
transient waveform is defined by 

  Noie-on  response of B-52 
 Reconstruction (largest 8 wavelets) 
  Reconstruction (largest 8 wavelets) 

1 SNR«10dB 
-20] ■ i i ' l i i ' ' l ' ' ■ ■ i i i i i i i i 

0 12 3*56 

Time  (nsec) 

Fig. 5.   Nose-on (0°) response of B-52 aircraft model and 8 wavelet recon- 
struction. 

SNR = 107o<7io dB. (4) 

Fig. 3 shows the wavelet spectrum of the noisy response. Although 
there is a perturbation of each of the wavelet coefficients, the values 
of the larger coefficients are changed only slightly. Thus, when only 
a few coefficients are retained in reconstructing the response, the 
result is a much more faithful representation than the original noisy 
waveform. In other words, much of the noise is represented by 
perturbation of very small wavelet coefficients which are neglected 
(effectively filtered out) in the reconstruction. This is seen in Figs. 2 
and 5. 

IV. TARGET DISCRIMINATION USING WAVELET-REDUCED DATA 

To demonstrate target discrimination using wavelet-reduced data, 
the transient responses of a 1:72 scale model B-52 aircraft, a 1:48 
B-58 model, a 1:48 TR-1 model, a 1:48 F-14 model and a 1:48 
Mig-29 model have been constructed from measurements within the 
frequency band 1-7 GHz. Each model was measured at 68 aspect 
angles between 0 and 30.15°, in 0.45° increments. Because of the 
size of the models, no significant natural resonances were excited, 
and thus the data represents the specular early-time response. The 

wavelet coefficients of each of the 68 responses of the five aircraft 
models were found using a 256-point Lemarie transform and the 
largest 32 coefficients were then stored in a computer file to act 
as a waveform data base. One of the waveforms was assumed to 
arise from an unknown aircraft, and was reconstructed from its 
largest 32 coefficients. Identification of the unknown target is then 
accomplished by correlating the unknown aircraft response with 
the response of each target in the data base, reconstructed from 
its largest 32 wavelet coefficients. Note that the original measured 
data could also be used as the unknown target signal, as long as 
enough wavelet coefficients have been use to accurately reconstruct 
the stored waveforms. However, if only a few coefficients are used, 
the reconstructed data will not correlate well with the measured 
signal. 

It is convenient to normalize the correlation (2) using 

d = c? 
E7=,«?E^ ..i 

(5) 

Then, a maximum value of unity is achieved only when the correlated 
waveforms are identical to within a constant. 
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Fig. 7. Maximum correlation of 18° B-52 response with noisy responses 
from all targets. Target waveforms represented using 32 wavelets. SNR = 10 
dB. 

Fig. 6 shows the maximal normalized correlation as a function 
of aspect angle when the unknown aircraft is the B-52 at 18°. As 
expected, correlation with the 18° B-52 response gives an exact 
match (unity correlation) while other responses give a smaller result. 
Note that the B-S2 can be discriminated from the other targets over 
a range of aspect angles from about 17° to 20°. When noise is 
added to the unknown target response, performance degrades, as 
shown in Fig. 7, and the range of aspects over which the target can 
be discriminated is reduced. However, with a SNR of 10 dB the 
degradation is slight, since only the largest wavelet coefficients are 
used. 

A measure of the quality of the discrimination decision is given 
by the relative distance between the peak correlation and the next 
largest value. That is, in Fig. 7 the maximum correlation is about 
0.94 for the B-S2, while the TR-1 produces a maximal correlation 
of 0.69. Thus, a "discrimination ratio" can be defined as the ratio 
of these two values, or 1.36. The larger the ratio, the better the 
discrimination. If this number is close to unity, discrimination will 
not be reliable. Fig. 8 shows this ratio calculated as a function of 
added Gaussian noise level. One response from each target was in 
turn associated with an unknown aircraft. Each curve was generated 
by performing 20 correlations* using 20 different noise waveforms. 

and the results averaged. Since the correct response is known a priori, 
the numerator in the discrimination ratio is always taken to be that 
of the correct target Thus, when the discrimination ratio is less than 
unity, an incorrect decision is made. From this plot it is seen that 
while the level of discrimination varies significantly from response to 
response, each unknown aircraft can be correctly identified in adverse 
noise conditions of up to -5 dB SNR. In fact, identification at this 
level is possible using even fewer wavelet coefficients. Fig. 8 also 
shows the discrimination ratio for the 18° B-52 response when only 
eight wavelet coefficients are retained. As expected, the performance 
degrades, since less information about smaller specular reflections 
is retained, but correct identification is still possible up to a -5 dB 
SNR. 

V. CONCLUSION 

It has been shown that a significant reduction in the storage 
requirements for correlative discrimination of radar targets using 
transient responses is possible using the discrete wavelet transform. 
Experimental results demonstrate that a reduction of 16 to 1 (with 
no oversampling) is possible while still maintaining discrimination 
capabilities at SNR levels as low as -5 dB. Computation involves a 
reconstruction of waveforms using linear operations, and an inverse 
Fourier transform using the FFT. These calculations can be performed 
rapidly, providing a robust, efficient means of target discrimination. 
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Abstract— Development of successful radar target discrimi- 
nation schemes using ultrawideband signatures hinges on an 
accurate understanding of the scattering behavior of complex 
radar targets. Since it is very difficult to calculate the scattered 
field of complex targets theoretically, a mathematical model 
(Altes model) representing scattering center impulse response has 
been developed to describe the scattered field. The extraction 
of temporal positions, pulse responses, and transfer functions of 
target scattering centers is demonstrated using artificially created 
and measured responses. Two different scale aircraft models 
(B-58 and B-52) are utilized. The fitting scheme based on the least 
squares method is quite satisfactory but its accuracy deteriorates 
when the overlapping of scattering-center pulse responses is 
severe. To overcome this problem a genetic algorithm is used 
to improve the results. While the genetic algorithm gives much 
better accuracy, it consumes much more computer time due to 
its global nature and lack of derivative information. The purpose 
of this analysis is to provide a method to reduce data storage for 
ultrawideband signatures in target discrimination. 

I. INTRODUCTION 

DEVELOPMENT of successful radar target discrimination 
schemes using ultrawideband signatures hinges on an 

accurate understanding of the scattering behavior of complex 
radar targets. In the time domain, a target response consists 
of an early-time component, which is localized and specular 
in nature, followed by a late-time component. The temporal 
shape of specular responses depends on the localized geometry 
of the target. Many radar targets can be well approximated as 
consisting of a set of discrete scattering centers. 

One common approach to estimate a time-domain target 
scattering profile and to locate and characterize the discrete 
scattering centers is a parametric scattering model, such as 
the Prony model [l]-[3]. Although Prony's method is simple 
to use, it is extremely sensitive to random noise and the 
selection of the number of scattering centers present in the 
measured response waveform. The most important drawback 
is that the scattering center temporal positions determined by 
the above model do not correspond to the actual ones for 
a band-limited measurement system. These papers did not 
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present pulse responses and transfer functions of individual 
scattering centers on the target. 

This paper introduces a model suggested by Altes [4], which 
presents a more fundamental study of scattering properties of 
radar targets. The pulse responses and transfer functions of 
individual scattering centers have been identified using the 
early-time responses with temporally separated "hot spots." 
By understanding how these centers process the transmitted 
waveform, scattering center information is stored instead of 
the response. Thus, the data storage is reduced markedly. A 
correlation-based radar target discrimination scheme has been 
developed based on the scattering center information and will 
be presented in a future paper. 

The results of scattering center transfer functions obtained 
using the least squares method are quite satisfactory when 
scattering centers are widely separated, but the accuracy of the 
method deteriorates when the overlapping of scattering-center 
pulse responses is severe. To solve this problem, a genetic 
algorithm [5] which is based on the mechanics of natural 
selection and natural genetics is introduced. 

The outline of this paper is as follows—in Section II, 
we describe a scattering model (Altes model) and present 
the fitting scheme based on the least squares method and 
the genetic algorithm to determine scattering center temporal 
positions and amplitudes. In Section III, we test the Altes 
model using artificial pulse responses and determine the range 
of parameter values by comparing a theoretical result based 
on physics optics (PO) with that using Altes model. Two scale 
aircraft models of B-58 and B-52 are utilized in Section IV to 
illustrate the scheme performance for complex targets. 

n. SCATTERING MODEL 

A. Fitting Scheme 

Altes [4] suggests that the early-time scattered field re- 
sponse, so{t), consists of distinct specular reflections arising 
from scattering centers on the target. The response is assumed 
to be sampled at time U, i = 1,2, • • •, I. If Knit) represents 
impulse response of the mth scattering center at some aspect 
angle, then the early-time scattered field pulse response is 
modeled as 

s0(t)«P(t) * Y, M«) = S/m(t) (i) 

0018-926X/96S05.00 © 19% IEEE 
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where p(t) is the transmitted pulse waveform, and fm(t) is 
pulse response of the mth scattering center given by 

/m(t) = Pit) * fcm(t). (2) 

If the model (2) is taken to be an accurate physical description 
of early-time scattering, only the impulse response /im(t) 
needs to be determined to specify the scattered field response. 
If the scattering centers are purely specular, each impulse 
response will take the form of a delta function. 

Without loss of generality, the impulse response of the 
mth scattering center located at temporal position Tm can be 
expanded as [4] 

M')=   £  amn6{n)(t-Tm). (3) 

Here, a negative value of n refers to the nth integral of the 
delta function while a positive value of n refers to the nth 
derivative of the delta function. The case of n = 0 represents 
the delta function itself. This is equivalent to representing the 
transfer function of the mth scattering center as a polynomial 
function of w. Using the time shifting and differential theorem 
for Fourier transforms gives 

Hm(uj) = T{hm(t)} = £ am„e->wr» {ju)n.      (4) 
n 

Unfortunately, it is not possible to measure Hm{u) since 
only a finite portion of the spectrum can be covered in any 
measurement Thus, it is necessary to deal with the band- 
limited pulse response of the scattering centers. Let Fm{u) 
represent the band-limited frequency domain response of the 
mth scattering center 

Fm(u) = ?{fm{t)} = 2^amnGmn(u;) 

where 

Gmn{u) = P(«)e-^-w(i«)"- 

(5) 

(6) 

Thus, the pulse response of the mth scattering center can be 
written as 

where 

/"»(') = ^amnSmnW 

9mn(t) = F-l{Gmn(u>)}. 

(7) 

(8) 

When the response of a target is measured in the frequency 
domain, the scattering center transfer functions cannot be 
separated. However, if the frequency band is wide enough, the 
pulse responses found by windowing and inverse transforming 
the frequency domain target response will be temporally 
separated. Thus, computation of the scattering center transfer 
functions must be done in the time domain, by calculating 
the unknown amplitudes a™,,. These then give the transfer 
functions through (4). 

The procedure for computing the amplitudes Omn is as 
follows. The measured frequency domain scattered field re- 
sponse of a particular target is windowed with the incident 

pulse spectrum P(u) (to reduce unwanted truncation-induced 
oscillations) and inverse transformed into time domain using 
the fast Fourier transform (FFT). The early-time portion of the 
time-domain pulse response will consist of events representing 
the pulse responses of the scattering centers. If the equivalent 
pulse p(t) is wide, some of the pulse responses will overlap, 
and it is extremely difficult to separate scattering centers. 
However, if the pulse is narrow, the events will be temporally 
separated and can be easily analyzed using the least squares 
method. First, the first scattering-center pulse response fi(t) 
calculated from (7) is fit to the measured pulse response so(t) 
with the amplitudes, a\n, determined to provide a minimum 
error best fit. This best fit will match the scattering center with 
the largest energy. After the scattering-center pulse response 
has been determined, a signal, r2{t), is formed by subtracting 
off fi{t) from s0(t) (providing a signal with one less scattering 
center). Then a waveform f2(t) is fit to r2{t), determining the 
pulse response of the scattering center with the second highest 
energy. This response is then subtracted off to form a signal 
r3(t) and the process is repeated until all of the dominant 
scattering-center pulse responses have been determined. This 
process is called the "fitting scheme." 

In the process of determining the scattering-center pulse 
responses, it is necessary to find Tm, the mth temporal position 
of the scattering center. This is done by the least squares 
method during the minimization process which determines the 
amplitudes Omn- Define the error function to be minimized as 

«(Tm) = £ 
i 

*0(<t) - Yl 5Z a*«S*n(*t) 
fc=l 

rm(ti) -"Y^Omngrrmiti) (9) 

where 

rm{t) = s0(t) - 53 2 a^9kn(t)    m > 1 
fc=l    n "* 

r«(«) = s0(t) m = 1.       (10) 

In essence, the scattering-center pulse response is "placed" 
over the pulse response at Tm; and amn are determined to 
minimize the error for that choice of Tm. The proper Tm which 
describes the temporal position of the scattering center is that 
which produces the least minimized error. To determine the 
minimum, the entire early-time range of possible values of 
Tm is searched. 

Note that the error is minimized when 

de(Tm) 

damk —>E rm(ti) - 22 07nn9mn{ti) 9mk(ti) = 0 

Ä = 1,2,--,JV     (11) 

where N is the total number of n used in (4). The above 
equation can be written in linear equation form as 

£<wAnfc = 6fc       k = l,2,---,N (12) 
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where 

Ank = ^2gmn(ti)gmk(U) 
i 

bk = ^rm(ti)gmk{ti) 
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remainder sampling without replacement" to create a "pool" 
(population) of K (K is even) bit strings. Let 

(17) 

(18) 
(13) 

B. Genetic Algorithm 

Genetic algorithms are different from other methods in four 
ways [5]: 

1) Genetic algorithms work with a coding of the parameter 
set, not the parameters themselves. 

2) Genetic algorithms search from a population of points, 
not a single point. 

3) Genetic algorithms use objective function information, 
not derivatives or other auxiliary knowledge. 

4) Genetic algorithms use probalistic rules, not determin- 
istic rules. 

A simple genetic algorithm is composed of three operations: 
selection, crossover, and mutation. 

Consider the sampled early-time response T(U) created or 
measured at time U. The scattering-center pulse response 
amplitudes {amn} can be found by minimizing the residual 

R(Tm, amn) = ]T ±[r(i0 - so(U)}2 (14) 

where so(t) is fitting function given by (1). Here, e is the 
energy in the response. 

Once the time positions Tm are found by minimizing (14), 
the scattering center amplitudes, amn, are determined for given 
{Tm} using the least squares method. Then the mth scattering 
center transfer function can be reconstructed using (4). 

In the standard implementation of genetic algorithms [5], 
only a function maximization is defined. Thus, to minimize 
(14) we must maximize a fitness function defined as 

F(Tm) = C - R(Tm) (15) 

where F(Tm) must be greater than zero. The constant C is 
given by the user and can be updated to reduce max[F(Tm)] 
toward zero. 

F(Tm) is maximized by a repeated three-step process: se- 
lection, crossover, and mutation. The genetic algorithm mimics 
biological natural selection by encoding the parameters as 
binary strings, and then crossbreeding and mutating the strings 
using a survival rule. Let Tm be defined on [T^MT"] and 
be coded by 

Ti      _.. rpxi 
m  — -*-m ■ + ■ 

7>miuc _ Tin 

2L -1 
i=i 

<m,U 
,J-1 (16) 

where L is length of a bit string and bm,i is the bit pattern. 
The bit strings are then concatenated to form a single string 
B of length ML which represents all the variables. M is the 
total number of scattering centers assumed. There are many 
ways to choose offspring with appropriate bias toward the 
best [5]. One way is that breeding begins by using "stochastic 

Fk = F(T(Bk)) 

Pk = ^~ k     ZkF* 
and 

ek = KPk (19) 

where T includes 7i, T2, ■ ■ ■, TM, Pk is the probability of the 
fcth bit string, Bk is a bit string consisting of the concatenation 
of all the variable bit strings, and ek is the "expected" 
allocation of members to the pool. By applying a rule of 
survival, we place the integer part of ek copies of Bk into 
the pool; and fill the reminder of pool by selecting at random 
from {Bk} with probability 

Pk = ek-{ek) (20) 

where (efc) is integer part of ek. 
After the pool is filled, K/2 pairs of bit strings from the 

pool are selected at random. Pairs are bred with probability 
Pc (selected by the user, typically Pc = 0.5 to 0.6), a 
crossover point is chosen at random and bit string information 
is "swapped". After the population has been completely bred, 
one bit in Bk is chosen at random and is replaced with 
probability Pm by Not (bit) to mimic mutation. The probability 
Pm is selected by the user, but is generally chosen as 

p ~! Pm~ K- 
(21) 

To improve results, the three steps are repeated many times 
by creating a new population from the old one. Thus, more 
"fit" bit strings pass on their information with the greatest 
probability and, on the average, produce a larger value of 
the objective function. The process is terminated when the 
population becomes stable. 

We should regulate the level of competition among members 
of the population to achieve the performance we desire. At 
the start of the genetic algorithm, it is common to have a 
few extraordinary individuals in the population and, using 
the normal selection rule, these individuals would take over 
a significant proportion of the finite population in a single 
generation. This undesirable feature may be overcome using 
"fitness scaling." The scaling method used here is linear 
scaling 

F' =aF + b (22) 

where F is the raw-fitness function and F* is a scaled-fitness 
function. 

We choose the average scaled fitness F*vg to be equal 
to the average raw fitness Favg, because subsequent use of 
the selection procedure will insure that each average popu- 
lation number contributes one expected offspring to the next 
generation. To control the number of offspring given to the 
population member with maximum raw fitness, the maximum 
scaled fitness, F^, is taken as 

*max — Cmult-Ti avg (23) 
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Fig. 1. Artificial response and reconstructed response using genetic algo- 
rithm, three scattering centers, n = -2, —1, • ■ ■, 2, and A" = 200, L = 40, 
Pc = 0.6. Pm = 0.03, and 25 generations. 

where Cmuit is the scaling factor desired for the best population 
member, and is typically taken between 1.2 and 2. From the 
above two conditions, a and 6 are given by 

0. = (Cmult - 1)- 
■ avg 

-F, avg (24) 
b = (1 - a)F„s 

So, a few extraordinary individuals get scaled down and lower 
members of the population get scaled up. When some bad 
strings are far below the population average and maximum, 
using the above linear scaling may force lower fitness values to 
be negative. In this case, we still let the raw and scaled fitness 
average be the same, but map the minimum raw fitness f min 

to the scaled fitness F^ = 0. Then o and b are expressed as 

a = 
L avg 

**avg      fm (25) 
b = -aFa 

Generally the genetic algorithm is not likely to get stuck at a 
local minimum, since its random nature forces it to investigate 
a dense range of parameters simultaneously. However, there 
is no guarantee that the global maximum will be reached due 
to this random nature. 

Two methods to solve this problem are to increase the 
numbers L and K and improve the fitness scaling. The global 
nature of the algorithm and the lack of derivative information 
causes the genetic algorithm to converge very slowly compared 
to other nonglobal methods. However, these other methods 
might not converge at all. 

in. SIMPLE TESTS OF ALTES MODEL 

To test the Altes model, we created an artificial response 
with three scattering centers. If the scattering centers are 

3 

<0 > 

4) 
rr 

-1.0 

Time  (ns) 

Fig. 2.   Pulse responses of three specular points obtained using the genetic 
algorithm. 

temporally separated, the transfer functions can be determined 
accurately using both the fitting scheme and the genetic algo- 
rithm. When the pulse response overlapping due to relatively 
narrow bandwidth used in our measurement system is consid- 
erable, the transfer functions cannot be determined accurately 
using the fitting scheme. A genetic algorithm must then be uti- 
lized to extract scattering center information since the genetic 
algorithm considers all specular responses simultaneously. 
The genetic algorithm should provide better performance. 
Fig. 1 shows the artificially created pulse response which 
has considerable overlapping. Each scattering center impulse 
response is represented by an integral of a delta function, a 
delta function, and a derivative of a delta function, which 
have the amplitudes of 0.25, 1.0, and 0.5, respectively. They 
are created in the frequency band 1-7 GHz, windowed using 
a Gaussian modulated cosine (GMC) function centered at 4 
GHz and inverse transformed with a 40% point FFT [6]. 
Also shown in Fig. 1 is the reconstructed response found 
using the genetic algorithm. Here, K = 200,1 = 40, and 
25 generations were used, and n = -2, -1, • • •, 2 for a better 
fit The agreement is very good. The heights and positions of 
the stars (*) represent the relative energy in each response and 
the temporal positions of the three scattering centers. The pulse 
responses of the three scattering centers calculated using (2) 
are shown in Fig. 2. The scattering center transfer functions, 
calculated using (4) are shown in Fig. 3. As expected, the 
first, second, and third scattering centers are dominated by a 
constant, w, and 1/w, respectively. Note that to get the true 
transfer function, the spectrum of the pulse P(w) has been 
divided out. 

The genetic algorithm has many variables to consider. 
The accuracy of the results is highly dependent on both the 
initial population size K and the bit string length L. More 
bits give greater accuracy but slower convergence. A larger 
population provides a better sampling of the solution space 
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Fig. 3.   Transfer functions of three specular points obtained using genetic 
algorithm. 

but slower convergence too. Note that mutation guards against 
the algorithm getting stuck in a local minimum but results in 
slower convergence. The main impact of the options is on 
convergence speed. 

The drawback of the genetic algorithm is that it consumes 
far more computer time (about 30-40 times) than the fitting 
scheme. It takes about 10 min. using the fitting scheme while 
five hours are required using the genetic algorithm in the above 
example for a 486 DX-66 personal computer. If overlapping 
is not considerable, we prefer the fitting scheme to the genetic 
algorithm. 

The pulse response of a cylinder illuminated from the 
end was used as a test of the sensitivity of pulse-response 
reconstruction to the number of terms used in the polynomial 
expansion of the transfer function using the fitting scheme. 

Consider the excitation field incident on the end of a finite 
cylinder as shown in Fig. 4. The electric field in the far zone 
is given by [7], [8] 

e~jkr 1 
E = -j2TrE0—j—-^[e0x'yx + e0s72/ 

- {ae0x + ßeoy)z}V     (26) 

where 

/■*/2 

= 2a2 /       cos21 sine 
J — -1T/2 

2a(a + ao)cost 

x exp[jfca(/3 + ßo) sin t]dt (27) 

and the direction cosines Qo, ßo, 7o> <*, ß, 7 are given in terms 
of incident and reflection aspect angles #o,<£o and 0-<t>- The 
incident field vector eo can be written as 

eo = eoxx + eoyj/ + eozz 

= eoxx + eoyy — I —eox H eo« \z. 
\7o 7o 

(28) 

Fig. 4.    Excitation geometry for scattering from the end of a thick cylinder. 
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Fig. 5. Transfer function of single scattering center for cylinder with 
end-incident excitation determined using various numbers of terms in the 
polynomial expansion. 

The transfer function is defined by 

E-er      H ■ hr H(u,) = 
Eo Ho 

(29) 

where er and hr are the receiver polarization unit vectors. 
Fig. 5 shows the transfer function of the cylinder (4" in 

diameter and 12* in length) scattering center found using 
the fitting scheme and various number of terms. The circular 
cylinder is measured in the frequency band 1-7 GHz, win- 
dowed using a GMC function centered at 4 GHz and inverse 
transformed with a 4096 point FFT. For n = -1,0,1 the 
result is quite poor. As the number of terms increases, the 
agreement with PO improves. Note that incident and reflected 
aspect angles are taken as 0o Ä 0 « 3°,<£o « 45°,<£ « 225° 
due to a slightly bistatic setup in our measurement system. 
When the number of terms is increased too much, it will cost 
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Fig. 7.   Transfer functions of first, second, and third specular points obtained 
Fig. 6.   Response of 0° B-58 measured in the band 1-7 GHz, and recon-     „g^g genetic algorithm, 
structed response using genetic algorithm, and n =  —2,-1. •■•,2, and 
K = 600, L = 80, and 30 generations. 

1.0 -i 

more computer effort. In general, n is taken as — 2, — 1, • • •, 2 
or -3, -2, • • -, 3 according to our experience. 

IV. PERFORMANCE OF THE FITTING SCHEME 
AND GENETIC ALGORITHM USING MEASURED 

DATA OF B-58 AND B-52 AIRCRAFT 

Fig. 6 shows the nose-on pulse response of a B-58 measured 
in the frequency band 1-7 GHz, windowed using a GMC 
function centered at 4 GHz and inverse transformed with a 
40% point FFT as before. Since the bandwidth is limited, 
some pulse responses overlap. If accurate estimation of the 
number of scattering centers is not possible, we first use a 
lesser scattering center number and observe the scattering- 
center pulse responses and transfer functions. Second, if the 
reconstructed waveform does not match well, we then increase 
the estimation number until a better fit and reasonable larger 
responses are observed. Also shown in Fig. 6, are the temporal 
positions of six scattering centers found using the genetic 
algorithm outlined before. The transfer functions of these 
scattering centers have been found using n = -2, — 1, • • •, 2. 
The height of the stars shown in Fig. 6 represents the rela- 
tive energy in each pulse response. Obviously, the dominant 
specular reflection comes from the first engine mount and the 
next largest reflection comes from the second engine mount 
Note that each specular reflection matches quite well with a 
physical feature on the target, including the front stabilizer, 
and the inlets of the first and second engine. 

Once the scattering-center pulse responses have been deter- 
mined, the overall early-time pulse response of the target can 
be reconstructed using (1). This is shown in Fig. 6 as the dotted 
line. The reconstructed response matches extremely well. 

Fig. 7 shows the scattering center transfer functions found 
using (4). These waveforms are different from each other, indi- 

e-58 (0°) 

meosurement 
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relative energy 

lll| I I III II II | MM 
4.0 5.0 6.0 

Time  (ns) 

Fig. 8. Response of B-58 at 0° aspect angle measured in band 1-7 GHz, 
and reconstructed response using the fitting scheme, six scattering centers, 
n = -2. -1, • • •, 2, and GMC window with r = 0.3 ns, /c = 4 GHz. 

eating that different scattering centers lead to different transfer 
functions. The responses of the first and second scattering 
centers are dominated by a relatively flat shape, indicating 
a primarily impulsive response, and the third scattering center 
is dominated by the first integral of the equivalent pulse. 

As a comparison, the fitting scheme is applied to the early- 
time transient response shown in Fig. 6. Fig. 8 shows the 
reconstructed response of B-58 at the nose-on incidence. We 
notice that the temporal positions of the third, fifth, and sixth 
scattering centers are shifted somewhat due to pulse response 
overlapping. Consequencely, the responses are not as good as 
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Fig. 9.   Pulse response of the four largest specular points obtained using the 
fitting scheme. 
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Fig. 10.   Transfer functions of the four largest specular points obtained using 
the fitting scheme. 

those shown before, especially in the lower frequency region. 
These can be observed in Figs. 9 and 10. 

To test the effect of aspect angle on the performance, the 
pulse response of the B-58 model at 10° measured at 601 
points in the frequency band 1-7 GHz, with six scattering 
centers and n = -2, -1, • • • ,2, is shown in Fig. 11. At this 
aspect angle, the second inner engine inlet and first outer 
engine mount, the second inner engine mount, and second 
outer engine inlet are at almost at the same down range 
point. In Fig. 11, we see that the dominant specular reflection 
comes from the first inner engine mount and the next largest 
reflection comes from the second inner engine mount. The 

measurement 
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relative energy 
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Fig. 11. Response of B-58 at 10° aspect measured in band 1-7 GHz, 
and reconstructed response using six scattering centers, 4096 pt FFT, 
n = -2, -1, • ■ •, 2, and GMC window with T = 0.3 ns, fc = 4 GHz. 
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Fig. 12.   Transfer functions of first, second, third, and fourth specular points. 

front stabilizer and first inner engine inlet are also located 
at the expected place. Because of aspect angle variation, the 
transfer functions of associated scattering centers show some 
difference, as illustrated in Fig. 12. 

As another example, Fig. 13 shows the nose-on pulse re- 
sponse of a B-52 and the reconstructed waveform using nine 
scattering centers, and n = -2,-1,-",2 using the fitting 
scheme. The dominant specular reflection comes from the 
first engine mount (which coincides with the second engine 
inlet) and the next largest reflection comes from the second 
engine mount. Note that each specular reflection again matches 
quite well with a physical feature on the target, including the 
wing joint, trailing edges of the wing and rear stabilizer (rear 
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Fig. 13.   Response of B-52 at 0° aspect angle measured in band 1-7 GHz,     Fig. 14.   Transfer functions of the six largest specular points obtained using 
and reconstructed response using the fitting scheme, nine scattering centers,     the fitting scheme. 
n = —2, -1, •••,2 and GMC window with T = 0.3 ns, fc = 4 GHz. 

wing). It is also interesting to see that in terms of relative 
energy, the reflection from the nose of the aircraft is quite 
small. The first scattering center transfer function is dominated 
by a downward slope, indicating a 1/w or integral impulse 
response. The other responses are relatively flat, indicating a 
primarily impulsive response as shown in Fig. 14. Note that 
the nose response is quite close to a delta function over the 
measurement band. Again, each scattering center has different 
transfer function waveforms. We also notice from Figs. 6 and 
14 that the transfer function of a particular scattering center is 
also highly dependent on the physical properties of the surface 
at the specular point. 

To test the effects of random noise on the scheme, zero- 
mean white Gaussian noise is added. SNR for a sampled 
transient waveform is defined by [9] 

1.0 -i 

0.5 

9) 

0) 
> 

a 

o: -0.5 

B-52 (0°) 
SNR=10 dB 

tHWiMn 

SNK^O^jJ^} (30) 

where v(t) is the noise-free signal, Vo is the mean-square 
value of the noise voltage, and W is chosen as the minimum 
duration window that contains 99% of the total energy in the 
noise-free data. 

Fig. 15 shows the pulse response of the 0° B-52 scale 
aircraft model with zero-mean white Gaussian noise added 
with SNR = 10 dB. We notice that the response is slightly 
distorted due to this random noise. Fig. 16 shows the noise- 
free B-52 response, and the reconstructed waveforms from 
the noisy data found using nine scattering centers and n = 
-2,-1,•••,2. The five largest dominated scattering center 
temporal positions can be extracted, and their three largest 
scattering center transfer functions match quite well with the 
noise-free results as shown in Fig. 17. The smallest scattering 
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Fig. 15.   Response of B-58 aircraft model  at nose-on  incidence  with 
zero-mean white Gaussian noise added. SNR = 10 dB. 

centers do not represent physical features on the target, but 
correspond to noise realizations. 

Fig. 18 shows the reconstructed response of the noisy 0° B- 
52 measured in the frequency band 1-7 GHz with SNR = -5 
dB, using six scattering centers, and n = -1,0,1. It is 
interesting to note that the locations of first engine mount, 
the second engine mount, the wing joint and trailing edge of 
wings scattering centers match quite well. The reconstructed 
response is a much better representation than the original noisy 
waveform. We conclude that the determination of scattering 
center temporal positions is much less sensitive to noise than 
the transfer functions. 
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Fig. 18.    Response of B-52 at 0° aspect angle measured in band 1-7 GHz, 
Fig. 16.    Response of B-52 at 0°  aspect measured in band  1-7 GHz,     ■*« reconstructed response using 6 scattering centers withi SNR = -5 dB, 
and reconstructed response using 9 scattering centers with SNR = 10 dB,     « = -1.0- U and CMC window with r = 0.3 ns, fe = 4 GHz. 
n = -2. -1. • • •. 2, and GMC window with r = 0.3 ns, fc = 4 GHz. 
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Fig. 17.   Transfer functions of first, second, and third specular points. SNR 
=  10 dB. 

V. CONCLUSION 

The Altes model describing the transient early-time response 
is evaluated using both artificial data and measured data. The 
fitting scheme is good in the determination of scattering center 
temporal positions, pulse responses, and transfer functions 
with respect to the different targets if the overlapping of 
scattering-center pulse responses is not considerable. The 
range of powers on omega is always chosen as —2, —1, - • •, 2 
or -3, -2, • -,3 to obtain reasonable accuracy. A genetic 
algorithm provides better results, although it consumes far 
more computer time. There are many parameters to control 

and trade-offs to consider in using the genetic algorithm, such 
as population size, bit string length, etc. The transfer function 
of a particular scattering center is highly dependent on the 
physical properties of the surface at the specular point. When 
the signals are contaminated with noise the performance of 
the scheme is degraded, but the largest dominant scattering 
centers can be reproduced quite well with noise level as high as 
SNR = 10 dB, while the temporal positions of these scattering 
centers can still be extracted well with a noise level as high as 
SNR = -5 dB. We also show that varying the incident aspect 
angle by 10° for the B-58 leads to smooth and predictable 
changes in the reproduction of scattering centers. 
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Abstract-Several different memory-based neural networks are used to discriminate radar 
targets based on their early-time, aspect-dependent response. The beginning of the 
response is difficult to locate in practice, so we use only the magnitude of the time 
response's DFT Spectrum as input to the neural network, thus eliminating time-shift 
uncertainty. Especially promising is the Recurrent Correlation Accumulation Adaptive 
Memory-Generalized Inverse (RCAAM-GI) cascade neural network. Prom the simulation 
results, the network demonstrates a decision strategy which is flexible, parallel adaptive, 
computation space efficient, and highly noise tolerant. Performances of the networks 
presented in this paper are compared with those of existing networks. 

I. INTRODUCTION 

Many interesting schemes have been proposed for radar target discrimination 
[1-16]. Particularly fascinating are those which use the transient response of 
the target. These include methods based on the aspect-independent late-time 
response [1-9], time domain imaging techniques [10-12], correlation [13-15] and 
wavelet transforms [16]. Many of these schemes use only the early-time specular 
target response, or the late-time resonant portion. Of those techniques that use 
the entire waveform, problems arise in the amount of computer storage required 
and the time needed to process the measured response of an unknown target. 
Recently, neural networks have been used to perform target discrimination with 
reasonable storage requirements and rapid processing times [17,18]. Much of this 
effort was based on simple back-propagation networks. This paper will examine 
more sophisticated networks and demonstrate that target discrimination can be 
accomplished in a high-noise environment with great reliability. 

The transient scattered field response of a radar target is aspect sensitive, but 
for an interrogating pulse of a given bandwidth, a discretization of aspect angle 
can be found for which changes are gradual from angle to angle. Therefore, we 
can store some specified aspect responses as the reference patterns for each target, 
design a neural network to memorize the association among reference patterns and 
expect the network will correctly converge to some reference pattern when it is 
triggered at the input by a pattern that is sufficiently close to one of the reference 
patterns. 
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In the Michigan State University anechoic chamber, a HP-8720B network an- 
alyzer is used to perform stepped frequency measurements of four scale aircraft 
models, B-52 (1:72), B58 (1:48), F14 (1:48) and TR1 (1:48). The targets are 
measured from 0° to 28.8° with an azimuthal aspect increment of 0.9° , result- 
ing in 33 aspect measurements for each target. The frequency response spectra 
are calibrated using a 14" sphere as in [19] and taken into the time domain us- 
ing the inverse fast Fourier Transform (IFFT). We then select 17 time-domain 
responses from 0° to 28.8° with aspect increment 1.8° for each target as train- 
ing/stored patterns, and 16 responses as untrained/unstored network generality 
test patterns from 0.9° to 27.9° with the same increment. Therefore, every 
untrained/unstored test pattern resides at the middle of two training/stored pat- 
terns. Figure 1 shows all 68 patterns used for network training for four targets. 

10       20       30       40 

Time Samp»na 

80      90      100 

Figure 1. 68 aspect time response truncated patterns used for time process 
network trainings/storage. Time process networks simulate 4 tar- 
gets, each target has 17 trained/stored aspect time response pat- 
ters. Pattern 1-17 are B52, 18-34 are B58, 35-51 are F14 and 52-68 
are TR1. 
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We have used both time response patterns and Discrete Fourier Transform 
(DFT) spectrum magnitude patterns to simulate target discrimination for each 
neural network. In time response processing, the beginning response time has 
been assumed known, and we extract the next 100 response points as the aspect 
prototype from the assumed beginning point. Based on this assumed segment, 
noise is later added to test network noise tolerances. The difficulty of locating the 
beginning response point in practice prompts the use of DFT frequency spectrum 
magnitudes as aspect process patterns since a time shift is implicated in the phase 
of the spectrum. 

In binomial input simulations, we quantize each time response using 7 numerical 
levels and encode these 7 levels using 3 bits, while we quantize each DFT spectrum 
by 5 levels and encode these 5 levels by using 3 bits. More levels are used for the 
time responses, since they exhibit a much wider oscillation range than the spectral 
magnitudes. 

In section II through IV we present the theory for several different neural 
networks for target discrimination. In section II, the Generalized Inverse (GI) 
algorithm and its iterative network learning procedure are presented. In section 
III, we discuss Recurrent Correlation Associative Memories (RCAM), and analyze 
the High Order Recurrent Correlation Associative Memory (HCAM) and Expo- 
nential Correlation Associative Memory (ECAM). In section IV, we propose a 
new network structure, Recurrent Correlation Accumulation Adaptive Memory 
(RCAAM), which uses a dynamic memory structure to accumulate correlations 
and allows spurious states to either stay as unknown or converge to one of the 
stored patterns. We may call it a real-time adaptive learning network. The 
RCAAM performs discrimination equally well to the ECAM, always outperforms 
the HCAM, and requires much less processing space than the ECAM. In section 
V, we implement the backscattering time response process neural networks and 
DFT spectrum magnitude process neural networks, and then analyze the simula- 
tion results for different network architectures. A modified process is constructed 
for analog spectrum process networks.. In section VI, we briefly summarize and 
compare neural networks used in this paper to some popular ones, and also com- 
pare the spectrum magnitude network performances with different quantization 
levels (one for 5 levels and the other for 7 levels). We discuss implementation 
complexities and conclude in the section VII. 

II.   GENERALIZED INVERSE NETWORK 

Assume we have p aspect patterns to be stored in memory, X = {X1, X , v ., Xp} , 
where X* is an m -dimension column vector, i.e. X1 = [Xi1 X21.. • Xm1] , and 
assume Y = {Y1, Y2,..., Yp} are the associative code patterns corresponding 
to X, where Y1 is an n -dimension column vector, i.e. Y1 = [Y11 Y21.. • Yn

!]T . 
Then we can write an equation representing the above associations as 

WX = Y (1) 

where W is an n by m matrix. For our application, Y1 is the target associated 
to the stored aspect pattern X1. Typically, X is not a square matrix and m > P 
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is assumed. Thus a direct Generalized Inverse matrix computation can be used 
to solve the interconnection weight matrix W[22,23,30] as 

W = Y(XTX)~lXT = YX+ (2) 

where X+ is the generalized (or pseudo) inverse of X. The generalized inverse 
X+ exists only if m > P, but the direct computation of the generalized inverse 
becomes difficult or impractical if the dimension of m or P is too large. In addition, 
problems may occur when two adjacent aspect angle target responses are close 
enough to have very close or the same quantized sequence codes, causing the 
generalized inverse computation to become instable or singular. Therefore, instead 
of direct computation of the generalized inverse, we can use iterative training 
based on the gradient descent algorithm to solve for the interconnection matrix 
W. We iteratively train the network W and expect the network output to each 
trained pattern X1, WX1, will retrieve its associative pattern Y1. First, we can 
construct a cost (error) function J(W) as 

P    n 

j(w) = \\Y-wx\\2 = Y,T,Ph(wxi^2 W 
1=1.7=1 

where || || denotes the Euclidian L<i norm. To minimize the error function J(W), 
the gradient descent learning rule [22, 23, 27, 30] can be used 

W[k + 1] = W[k] - \*dJw[k]    = WW + W ~ W[k]X)XT (4) 

where W[k] is network weight matrix at learning iteration k, and f] is the "learn- 
ing rate" with 0 < r/ < 1. 

The above training algorithm is a batch mode learning by which each learning 
pattern adjusts the interconnection weights W without considering the adjust- 
ments done by the other learning patterns at the same learning iteration. The 
learning algorithm can be modified to asynchronously update for each training 
pattern, X1, and its associative pattern components, Yj1. Therefore, a current 
training pattern adjusts the W updated by the previous learning pattern. The 
asynchronous update rule gives 

Wj[k + 1] = Wj[k] + v(Y^ - Wj[k]X®)X®T (5) 

where Wj [k] denotes the jth row of W at update iteration k and Yj1' is the jth 

component of the desired pattern Y1 associated with X1. To train each pattern 
and component fairly, and avoid being trapped in a local minimum, the training 
pattern i and output component j are randomly selected. 

The binomial form can be introduced to the output stage to increase the noise 
tolerance, and therefore a nonlinear threshold function can be added to the net- 
work. Then we have 

Gß(WX) = Y (6) 

where 
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and then 

G(v)'ß = Z(l + Gß(v))(l-Gß(v)) (8) 

The asynchronous update rule for pattern X1 and its associative pattern compo- 
nent Yj1 is then 

Wj[k + 1] = Wj[k] + riG(u)'ß\Wj[k]xW{Y® - WjW^xVF (9) 

The equations related to each row of W indicate P associative equations and 
each has m variables. Therefore, for m > P , there are multiple exact solutions. 
If W is randomly initialized, then W may converge to some specific solution 
that has noise tolerance for some trained patterns, but low noise tolerance for 
others. To avoid the solutions being biased by some learning patterns and also to 
speed up trainings, we may initiate the weight matrix by W = YX . That is, we 
use the correlation recording matrix or Hopefield memory with nonzero diagonals. 
Therefore, the GI network is a multi-layer Feedfoward and Error-Backpropagation 
network without a hidden layer, if the network W is not initialized by the correla- 
tion recording matrix YXT . Thus the GI network can be considered as a hybrid 
network composed of an initial architecture of correlation associative memory and 
later learning-based backpropagation network. We may also say the GI network 
is a single layer net with initial weight matrix W = YXT . 

III. RECURRENT CORRELATION ASSOCIATIVE MEMORIES 

Assume we want p associative pattern pairs {(x\ y1 | i = 1,2,..., P} stored in 
memory, where x1 is an m -dimension column vector, and y1 is an n -dimension 
column vector associated to x1, so that X = {x1, x2,..., xp} and Y = {y , y ,... 
yp} . The recurrent correlation associative memories (RCAM) [20-29] are designed 
to recall the associative pattern y1 using recurrent correlation operations, for a 
given input u which is sufficiently close to x1. This type of neural network has 
application in pattern discrimination . If y1 = x1, i = 1,..., P, then the RCAM is 
called an autoassociative memory. In this section, we discuss this type of RCAM. 
Since the correlation of two normalized or bipolar signals is one measure of how 
close two signals are, RCAM can discriminate patterns based on this property. 

If x1 has binomial (binary or bipolar) components and s is an input or the 
current state with dimension m, then an RCAM has the evolutionary behavior 
[24,25] 

P T 

s'= G{(£/<(*(*) Vlx^)} (10) 
i=\ 

where s' is the next network state , i\ is a weighting function and G is a threshold 
(or activation) function. In bipolar processing, the Signum (Sign) function, 

f  1      , z/>0 
Sign{y) = { (11) 

[-1    ,u<0 
is used for the threshold function G . We see that the Hopfield network is a special 
case of the RCAM with weighting function f(c)=c and degenerated diagonals. The 
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network first computes the correlations between the given state s and each stored 
pattern, then processes each correlation by weighting function f to obtain the 
weighted correlation gain, and then multiplies each stored pattern by its weighted 
correlation gain. Finally, the network adds every amplified pattern together, and 
then manipulates the sum by the Sign threshold function to achieve the network 
output (next state). Since the correlation between two binomial vectors can be 
regarded as one similarity measurement, we could classify a given input to its 
stored prototype by appropriately using correlation gains. Generally, the larger a 
correlation value two vectors have, the closer they are. So the weighting function 
should be strictly increasing to assure the viability of the correlation-based retrieve 
algorithm. 

In the Hopfield net [20, 21, 25] with nonzero diagonals, 

P        T 

s1 = Sign {£(xW   s)x®} (12) 
2 = 1 

The network only considers a 1-dimension correlationship between the given state 
and the stored vector x1. Since the next state is generated by the sum of each 
amplified pattern, a pattern with a slightly larger correlation gain may be distorted 
by the sum of the others. Therefore, it wouldn't dominate the next state after 
the addition of all amplified patterns. If we compare the relationship between 
Xj^k' and SjSfc , where j = 1,..., m, and k = 1,..., m, then we can use more 

information to emphasize the correlation between these two vectors x1 and s 
before adding them to provide the next state. The one-dimension model (Hopfield 
net) compares two vector strings bit by bit to compute the number of identical 
bits, while the two-dimension model constructs the individual auto correlation 
planes for each stored pattern and the given input, i.e. x1(x1)J- and s(s)T , and 
then compares the input autocorrelation 2-d plane to each stored pattern 2-d plane 
to find the closest autocorrelation plane structure among all stored patterns. So 
it's clear that the 2-d model uses m times the information of the 1-d model to 
discriminate patterns. 

The use of a high dimensional autocorrelation hyperplane is called the High Or- 
der Correlation Associative Memory (HCAM). An HCAM [24,25] has the weight- 
ing function 

f(c) = (c + T0S)
r (13) 

where r > 1. Tos is some offset value designed to avoid amplifying negative 
correlation gains for even r. If (c + Tos) is positive or r is a positive odd integer, 
the weighting function f is strictly increasing, as required for correct retrieves. 

Another RCAM used for our target discrimination simulations is the Expo- 
nential Correlation Associative Memory (ECAM) [24,25] which has the weighting 
function 

/(c) = bc (14) 

where b > 1. Again, this weighting function f is strictly increasing. RCAM's 
with a continuous and strictly increasing weighting function f are asymptoti- 
cally stable in both synchronous and asynchronous update [25]. This means that 
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network recurrent operations will drive a given input state to some stable state, 
therefore ensuring that there is no oscillation cycle during the recurrent conver- 
gent iterations. Thus the RCAM will converge to either one of the stored patterns 
or some spurious (unknown) state when triggered at the input by a given pattern. 

The HCAM requires a predetermined fixed order r to proceed. A network with 
low order r can't retrieve correct associative patterns, while a high order r wastes 
computation space. When the ECAM exponentially amplifies the correlation 
gains, producing excellent discrimination resolution, it also exponentially expands 
the network computation space. It is not possible to physically realize an ECAM 
processing large dimension patterns. For example, in our simulations each bipolar 
stored pattern has 300 bits, so the maximum weighted correlation gain is 2300 

for the ECAM with the weighting function f (c) = 2C , i.e. b = 2. Therefore, a 
huge processing space is required to fulfill the hardware realization in chip design 
scale. 

IV. RECURRENT CORRELATION ACCUMULATION ADAPTIVE MEMORY 

When the recurrent update of RCAM amplifies individual correlations between 
the initial given input and stored patterns, it also introduces noisy crosscorrelation 
terms between any two stored patterns i and j with i ^ j. For example, given an 
initial input s, the HCAM of order r has output state s" after two synchronous 
updates 

P P 
s" = Sign {£ [x{j)TSign (^(x^1's)rx^)}rx^} (15) 

j=l i=l 

Therefore it did not purely amplify the correlations between the initial given in- 
put and stored patterns, and the nonlinear threshold function Sign prohibits the 
recurrent iterations from linearly accumulating the respective pattern correlation 
gains, [(x(i))Ts]r, produced by the last iteration. The recurrent feedbacks in- 
troduce noisy crosscorrelation terms. If the network can release the nonlinear 
interferences caused by the threshold function Sign and accumulate the previous 
respective correlation gains for each stored pattern, then the network will func- 
tion efficiently and stably. No nonlinear interference means there will be linear 
amplifications on respective (cross) correlation terms generated during the last 
iteration, and the accumulations of previous recurrent iterations will speed up the 
order of correlations. 

For HCAM, we need to guess for what order the network can discriminate well 
among all possible inputs before processing the input. Some inputs may be easily 
discriminated, while some may be more difficult. If a network can use flexible and 
sufficient orders of correlation to reach the same performance, then it will be a 
better choice. Thus we wish to use a dynamic order, dependent on the input, to 
discriminate among the stored patterns. 

We  propose  an  Recurrent  Correlation  Accumulation  Adaptive Memory 
(RCAAM) which uses dynamic memory structure to accumulate the correlation 
information between the input(s) and all stored patterns. Then the network dis- 
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crimination resolution (ability) to an input will increase as the recurrent iterations 
increase. Compared to the ECAM and HCAM, the RCAAM uses recurrent ac- 
cumulative and dynamic structures to gradually converge a given input to some 
(semi-)stable state(s). We may regard this network as a real time learning net- 
work. The network adjusts its real-time learning structure to converge the given 
input to the nearest stable state associated to the stored patterns as long as 
the recurrent operations continue. And, unlike Multi-layer Feedfoward Error- 
Backpropagation learning it can avoid being trapped in local minimum states. 
Suppose the stored associative pattern pairs are {(£*, C)\i = 1> • • • i P} > where g1 

is a column vector with length m and C is a column vector with length n. We 
intend to implement a neural network that can recall fl if given an input suffi- 
ciently close to C ■ If U is an n -dimensional column vector input and init is a 
positive initial order, then we can construct the initial RCAAM, M0 , as follows: 

•       M0 = £e(%(z) Vm'CWf = £#(4i}C(i))T (16) 
i=l i=l 

where w£/ is the dynamic weighting for the ith stored pattern at time 0. If 
init = 0, then M0 will degrade to the Hopfield memory with nonzero diagonal. 
Suppose the stored patterns C have bipolar form, then, with this initial memory 
matrix, the network output is given by 

P 

V0 = Sign {M0U} = Sign {£ [w^^fu]^} (17) 
i=l 

We have three versions of the RCAAM based on the recurrent updatings. The first 
version is RCAAM with fixed input (RCAAM/fi). Version 2 is RCAAM with dy- 
namic input connected to output (RCAAM/di). Version 3 is RCAAM with analog 
input/digital output (RCAAM/ad). Therefore, RCAAM/fi and RCAAM/di have 
binomial C and f* > while RCAAM/ad has analog C but binomial C . Suppose 
Ufc denotes the network input at time k and V^ denotes the network output at 
time k corresponding to the input U^. Then, the dynamic memory has U^ = U 
for RCAAM/fi and RCAAM/ad, and has Uk = Vk_! for RCAAM/di. The 
dynamic memory and the network output at time 1 are given by 

M!=j:^{[UkU)Tu}^T}=Ee(i)(-f)c(i))r 

*=i p  i=i (18) 

Vi = Sign {MiCM = Sign {£ [w^fUi]^} 

where the dynamic weighting for stored pattern   0   at time 1 has   w^^     = 

(WQ V)TU. Then the dynamic memory and network output at time k are given 
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by 

■ Mk = f;^){[(ti,«1cW)r^-i]c»r} = E^(-i2)c(l))T 

1=1
 p 

l=l (19) 

Vk = Sfcn {MkUk} = Sign {£ [^C^)^]^} 

where Uk = U for RCAAM/fi and RCAAM/ad, Uk = Vk_! for RCAAM/di, 
and wkW = (wk_1(1)(i)TUk_1 is the weighting matrix for the stored pattern C 
at time k. The algorithm shows the RCAAM has stored patterns weighted by 
wkW at time k, and each pattern weighting indicates the correlation accumula- 
tion through iterations between the network recurrent input states and the stored 
pattern itself. Therefore, the weightings of those stored patterns that are closer 
to the given input will become larger than the others, as long as the recurrent 
iterations increase. It is equivalent to say that by real-time adjustment of the 
individual pattern weightings of the dynamic memory, the recurrent outputs will 
gradually adapt to the closest stored pattern. Since the pattern weighting adjust- 
ments are parallel in each stored pattern vector direction at each iteration, there 
is no local minimum trap phenomenon in RCAAM. With its dynamical matrix 
structure, the dynamic accumulation will eliminate the oscillation phenomenon 
which occurs in recurrent Hopfield nets. Although it may have semi-stable states 
at which the network stays for a finite number of iterations, its dynamic accumu- 
lative memory will quickly function to leave those states. Therefore, the network 
updatings won't be trapped in an oscillation cycle. 

For   RCAAM/fi   and   RCAAM/ad,   the  pattern  weighting  iteration   wk 

— (wk-l^C1)TU doesn't introduce nonlinear threshold function Sign, and thus 
crosscorrelation interference terms are no more a problem to the networks. There- 
fore, the correlation accumulation becomes linear. This useful processing struc- 
ture is possible for RCAAM/fi and RCAAM/ad, but not for the RCAM's. And 
this advantage still benefits from the dynamically accumulative memory struc- 
ture. Compared to [29] which trains the associative memory off-line by Linear 
Programming or Sequential Multiple Training to guarantee the recall of stored 
patterns, the RCAAM learns on-line and adjusts the stored pattern weightings to 
converge the given input to the closest stored pattern. The RCAAM doesn't have 
predetermined order or a fixed memory matrix, so the network is quite flexible and 
applicable to any kind of distorted stored inputs. The network only takes a few 
recurrent iterations to recognize a slightly distored stored pattern, and requires 
more recurrent iterations to discriminate a more ambiguous input. 

V. IMPLEMENTATIONS AND SIMULATIONS 

A. Using Backscattering Time Responses as Network Process Patterns 

In this subsection, we use the sampled backscattering time responses of various 
aircraft models as the network processing information. For each target we select 
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17 aspect responses as the training/stored patterns from 0° to 28.8° with aspect 
angle spacing 1.8 ° , giving a total of 68 training/stored patterns. We pick the 
first 100 sample points as the aspect pattern, starting from the assumed target 
beginning time. Often the backscattering time responses are dominated by a 
few large specular reflections at a few specific aspect angles. If we normalize the 
responses to the largest value over all aspect angles, the small aspect responses will 
approach zero. Therefore the discrimination will concentrate on a few extremely 
large peaks and ignore the rest of the responses. This very biased concentration on 
a few extremely large peaks and ignore the rest of the responses. This very biased 
concentration will reduce the resolution and make the aspect differentiations of 
a target more inconsistent. Thus a normalization as described later for spectral 
signals is inappropriate. This will be especially true when a time shift is taken 
into consideration. Since we use the prior measured data patterns as the network 
stored patterns, we have prior knowledge to set a threshold for the targets which 
the network is designed to recognize. To balance those aspect responses that have 
large localized peaks, we set a maximum threshold value equal to the sum of all 
response amplitudes multiplied by 0.06, and then smooth the peak if a response 
peak amplitude is larger than the threshold value. Then, we allow an extra one 
fifth of the threshold value to smooth the excessive part, and normalize each 
balanced aspect pattern to unity energy. 

For binomial (binary or bipolar) processing, we quantize each time response 
sample by using 7 numerical levels and then use 3 bits to encode these 7 numeri- 
cal intervals. Therefore, each binomial aspect pattern has 300 bits as a processing 
pattern. To test the network noise tolerances, we add Gaussian noise to the same 
training/stored processing segment, then normalize the noisy response and encode 
it to a 300-bit processing pattern. The Gaussian noise used in the simulations was 
generated using the Matlab software package with zero mean and variances cor- 
responding to simulation SNR's. To test network generality performance, we use 
16 unstored (or untrained) patterns, whose aspect angles reside halfway between 
the two stored patterns, as test patterns for each target. 

The code for 7 levels coded with 3 bits is not exactly a linear code so that 
two close levels don't really result in two similar codes. But if we assign the 
code-to-level mapping as shown in the table below, the codes have a linear char- 
acteristic for the adjacent levels. This means that if the noise contamination 
range is smaller than ±1.5 level intervals, then the code linearity still functions 
statistically. Therefore the network discrimination won't be affected by the coding 
scheme. If the noise contamination is severe, then the linearity may not work for 
every response level. Under heavy noise conditions, some wrong or unrecognized 
discriminations may probably result from this nonlinear coding scheme. 

For example, if the true response is in level 3 (represented by 1-11), and 
contamination is in ±1.5 level intervals, then the contaminated signal will be in 
either level 2 (represented by -1 -1 1) or level 4 (represented by 1 -1 -1), and these 
two codes (-1 -1 1 and 1-1-1) still are the most similar codes to the true one (1 
-1 1). If the number of quantization levels is fixed, then the resolution will be the 
same quantization. The more digits we use, the more linearity the code mapping 
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has, but also the more process space is required. Therefore it becomes a trade-off 
problem, either save process space with less code bits, then process quickly but 
badly under heavy noises or expend more memory with more code bits , then 
process slowly but well under severe contamination. This problem can be solved 
by processing the analog (numerical) valued responses instead of binomial codes 
for digital computer simulation. But the problem will still remain the same for 
hardware realization. 

BitlBit2 

Bit3 

-1    -1 -1      1 1       1 1      -1 

-1 1 6 5 4 

1 2 7 3 

Table 1. Code assignment of 7 quantization levels coded by three bipolar bits. 

In the GI network simulation with bipolar processing, we initiate the weight 
matrix W with YXT divided by a sufficiently large scale factor to ensure that 
W won't lead to rough network outputs, WX1, deeply into the saturation region 
of the threshold function. For example, we use ß = 2 for the nonlinear threshold 
function G^ where G2(15) = 0.9526 and G2(v)'| V=1.5 = 0.0926. Therefore 
the learning (or adjusting) becomes nearly zero for a rough output (i.e. input to 
G2(v)) larger than 1.5. After the trainings converge to zero error, we continue 
training the network to let those marginally convergent patterns move deeply 
into the saturation region of the threshold (activation) function. Therefore, the 
network noise tolerance will be increased. 

Figure 2(a) shows the Generalized Inverse (GI) network performances for 68 
trained aspect patterns from the four target models described in section I, while 
figure 2(b) presents the GI network generality performances using 64 untrained 
patterns. Note that the GI network prefers to characterize an ambiguous pat- 
tern as unknown rather than wrong. This indicates that the GI network records 
many of spurious states (patterns) which will be retrieved as none or multiple 
stored patterns. The noise tolerance is not very high compared to the correlation- 
based associative memories described later, since the GI network usually regards 
a distorted pattern as a linear combination of multiple stored patterns. This 
ambiguous resolution can be improved by recurrent correlation processing, so re- 
current correlation-based memories have a greater discrimination resolution for a 
contaminated pattern. 
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Since the GI network prefers to leave heavily distorted states unknown rather 
than wrongly discriminated, we use it as a decoder cascaded to the correlation- 
based associative memories. The RCAM or RCAAM network first converges a 
given input to a stable state, then passes this stable state to the GI network to 
associate the final target code to the given aspect pattern input. Therefore, the 
stored bipolar patterns <f of the RCAM and RCAAM are the same as the trained 
input patterns of the GI network. 
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Figure 2. Generalized Inverse (GI) network performances vs. SNR for time 
domain in^. ts. (a) GI network performance for the 68 trained 
patterns, (1 GI network generality performance for 64 untrained 
patterns. 
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Figure 3(a) shows the HCAM (order 3)-GI cascade network performances for 
the 68 stored aspect patterns, and Figure 3(b) presents the network generality 
performances by testing 64 unstored aspect patterns. Figure 3(c) shows that 
for SNR greater than 10 db, the HCAM (order 5)-GI cascade network correctly 
discriminates all unstored testing patterns, while the HCAM (order 3)-GI cascade 
network still wrongly discriminates one unstored testing pattern. This shows that 
the predetermined order will affect the HCAM performances. 
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Figure 3. HCAM - GI cascade network performances vs. SNR for time do- 
main inputs, (a) HCAM (order 3)-GI cascade network performance 
for the 68 stored patterns, (b) HCAM (order 3)-GI cascade network 
generality performance for the 64 untrained patterns, (c) HCAM 
(order 5)-GI network generality performance for 64 unstored pat- 
terns. 
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This simulation implicitly proves two typical deficiencies of the RCAM's ana- 
lyzed in section III. First, the recurrent nonlinear threshold feedback has interfered 
with correlation gain amplifications between the given input and stored patterns 
by nonlinearly introducing crosscorrelation terms. Second, the network doesn't 
effectively accumulate the correlation gains generated by previous recurrent pro- 
cesses. This deficiency becomes apparent when the HCAM uses an insufficient 
order. Figure 4(a) shows the ECAM - GI cascade network performances for the 
68 stored aspect patterns, and Figure 4(b) presents the network generality per- 
formances by testing 64 unstored aspect patterns. 
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inputs, (a) ECAM-GI cascade network performance for the 68 
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The ECAM - GI cascade network shows the best performance among the three 
networks considered. This is expected, since the ECAM has exponentially ex- 
panded the distance between any two stored patterns. Because of the asymp- 
totically stable characteristic of RCAM with continuous and strictly increasing 
weighting function, the HCAM and ECAM will converge to an unique stable 
state if the network is activated. Therefore, as soon as V^ = Vk_i, V^ is the 
final state and won't change even recurrent updates continue. 

For easy implementation, the RCAAM can be further realized, then the initial 
memory M0 is 

P T 

M0=^£(%(i)  U)init^]T 

=E^}(42)c(i))T (20) 

i=l 

= t;-{Diag[(;T-U)A(inü)}-{T} 

= e • [Diag(W0)} ■ CT 

where 

and 

< = [c(1>c(2>.. •c(p)] 
f = K(1¥2).. • e(p)] 

W0 = [w0
lw0

2 .. ■ w0
p] 

AAq = [A^A2
q ■ ■ .AP*\T 

9(A) = 

~AX     0 
0     A2 

...     0 " 
0     ... 

_ 0     ... 0     AP_ 

if A = [Ai A2 • • • Ap]. Then the network output is 
P 

V0 = Sign {M0U} = Sign {£ {w^^fu}^} 
i=l 

= £.{[Diag(W0)}-((;TU)} 

Then the dynamic memory at recurrent time k is 

Mt=f;?«{[(4il1c»)rc/)c-i]<(i>T} 

= £ • [DiagiWk-i) ■ Diag^U^)] ■ CT 

= £^4W 
i=\ 

= £ • [Diag{Wk)\ ■ Cr 

(21) 

(22) 
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where 

and 

and the output is 

Wt = [wk
1wk

2---wki'] 

-«=W«I((BVI), 

P 

Vk = Sign {MkUk} = Sign {£ [m^)TUk]^} 
*=l (23) 

= £-{[Diag(Wk)(
T}-Uk} 

= t;-{[Diag(Wk)]-((TUk)} 

Again, RCAAM/fi and RCAAM/ad have Uk = U, while RCAAM/di has Uk = Vk_i J 
Therefore the dynamic memories Mk and the evolution outputs Vk for RCAAM/fi| 
and RCAAM/ad can be further simplified as 

Mk = z^m^-i^fw1^} 

= £ • [DiagiWk^) ■ Diag(CTU)] • CT 

= £ • {Diag[(CTU). A (tntt + *)]}• CT (24) 

Vfc = Sfcn {MfcC/} = Sign {£ [(^Ö^fu)^} 
i=l 

= £ • [£Kas(Wfc) • (CT • U)] 

= Z-[{tTU).A(init + k + l)) 

For heteroassociative memory (C is not equal to £*), we have 68 stored as- 
pect response patterns belonging to four different targets, so C has 68 columns. 
Suppose the B52 is encoded by [1 -1 -1 -1], the B58 by [-1 1 -1 -1], the F14 by [-1 
-1 1 -1] and the TRI by [-1 -1 -1 1], then £l ~ £17 = [1 - 1 - 1 - l]r, £18 ~ £34 = 
[-1 1 - 1 - 1]T,£35 ~ e1 = [-1 - 1 1 - 1]T and ^ ~ £68 = [-1 - 1 " 1 if- 
From the above realization algorithms, the network only requires storing mem- 
ories for P = 68 dynamically weighted stored patterns, 4 target group codes, 
one current input pattern and one output. Since RCAAM has a dynamic mem- 
ory structure, there may be semi-stable states at which the network stays un- 
til the correlation accumulation is high enough to escape the temporary spuri- 
ous state and move toward other states. We define the stable criterion sc by 
Vk = V^-i = ... = Vk_sc . Therefore, we regard the state Vk , which satisfies 
Vk = Vk_! = ... = Vk_sc , as the network discrimination pattern, if the stable 
criterion sc is adopted. This indicates the RCAAM has a flexible decision strat- 
egy for an ambiguous input, allowing us to either leave it unknown or force it to 
one of the stored patterns. To leave those spurious states as unknown the stable 
criterion can be set to a low value (eg., 1 or 2). The stable criterion can be set to 
a high value (eg., larger than 2) if a definite discrimination is required. 
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This allows convergence to one of the stored patterns. The RCAAM needs 
only the minimum computation scale space which the RCAM can possibly offer 
to discriminate an arbitrarily given input. Thus the RCAAM not only needs less 
processing space than the RCAM, but will perform the same or better. 

Figure 5(a) shows the RCAAM/fi-GI cascade network performance with sta- 
ble criterion sc = 2 for the 68 stored patterns, while Figure 5(b) presents the 
network generality performance by testing 64 unstored aspect patterns. Both 
performances are similar to the ECAM-GI cascade network performances, except 
for the unknown and wrong discriminations. Using the above analysis, the un- 
knowns can be eliminated by setting the stable criterion high, forcing them to be 
interpreted as a correct or incorrect decision. 
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Figure 5. RCAAM - GI cascade network performances vs. SNR for time 
domain inputs, (a) RCAAM/fi-GI cascade network performance 
for the 68 stored patterns, (b) RCAAM/fi-GI network generality 
performance for 64 unstored patterns, (c) RCAAM/ad-GI cascade 
network performance for the 68 stored patterns, (d) RCAAM/ad- 
GI network generality performance for 64 unstored patterns. 
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Since the discrete quantization to analog response may lose the resolution re- 
quired for ambiguous pattern discrimination, an analog process model is tried. 
We simulate the analog processing network using RCAAM/ad. The RCAAM/ad 
has an analog input dimension of 100 and a bipolar output dimension of 300, 
while the immediately following GI network has a bipolar input dimension of 300 
and a bipolar output dimension of 4. Thus the RCAAM/ad is a heteroassociative 
analog-digital hybrid memory. Figure 5(c) shows the RCAAM/ad-GI cascade 
network performance with a stable criterion sc = 2 for the 68 stored patterns, 
and Figure 5(d) presents the network generality performance by testing 64 un- 
stored patterns. Both performances demonstrate excellent noise tolerances for 
SNR as low as -3dB. 

B. Using FFT Spectrum Magnitude as Network Process Patterns 

In the previous subsection, we used the sampled backscatter time response as 
the network process information. In a practical noise-limited situation, finding 
the same beginning response time used in training is very difficult. Therefore 
the network must also store or train several time-shift neighborhoods of the time 
segment pattern for each aspect angle, to increase tolerance for time-shifted pat- 
terns. This is impractical, since it dramatically reduces the network capacity. 
In this subsection we use the spectral magnitude, which is time-shift invariant, 
as the network process information. Unfortunately, we use less information here 
than the time domain process since the phase is ignored. Also, the sharp specular 
peaks characteristic of a typical backscatter time response doesn't occur in the 
corresponding frequency spectrum. 

To simulate an actual situation, we measure the frequency responses of 4 targets 
in the frequency band 1-7 GHz, and then use a 8192 point inverse FFT to create 
scattering time responses. Then we regard these time responses as measured by 
a time-domain radar system. Therefore, we time-gate the responses to eliminate 
any spurious reflections within the measurement chamber, and use the DFT to 
transform the time responses back into the frequency domain. The spectral mag- 
nitudes then become the network processing patterns with each aspect frequency 
spectrum magnitude to energy 1. Figure 6 shows the 68 training/stored spectral 
magnitude patterns obtained from the 68 aspect time responses where sample 
point 1 corresponds to 1 GHz and point 100 to 7 GHz. Since the dynamical range 
of spectral magnitudes is much smaller than the time domain one, we can use 5 
numerical intervals to quantize each pattern for binomial processing. Then we use 
3 bits to binomially encode the 5 numerical intervals, so each binomial pattern 
has 300 bits. 

Target discrimination simulation proceeds as follows. First, Gaussian noise is 
added to the time responses reproduced by the inverse FFT from the measured 
frequency responses, and then transferred back to the frequency domain. Sec- 
ond, 100 samples are obtained within the band 1-7 GHz, and normalized to the 
maximum value. Lastly the spectra are encoded to 300 bits and presented at the 
network input. 
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Figure 7(a) shows the GI network performances for the 68 trained patterns, 
while Figure 7(b) presents the network generality performances from testing 64 
untrained aspect patterns. The GI network still prefers to categorize a response 
as unknown rather than wrong under severe noise conditions. 

Figure 6. 68 Aspect FFT spectrum response magnitude patterns used for 
spectrum process network trainings/storage. Spectrum process 
networks simulate 4 targets, each target has 17 trained/stored as- 
pect spectrum patterns. The truncation frequency band is 1-7 
GHz. 
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Figure 8(a), (b) and (c) respectively show the HCAM (orders 3, 5 and 7)-GI 
cascade network performances for the 68 stored patterns, while Figure 8(d), (e) 
and (f) respectively present the network generality performances with HCAM 
orders of 3, 5, and 7 from testing 64 unstored aspect patterns. Compared to 
the GI network, a low order HCAM produces much worse results. Again, the 
predetermined order of HCAM greatly affects the network performance. 
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Figure 8. Spectrum process HCAM-GI cascade network performances vs. 
SNR. (a) HCAM (order 3)-GI cascade network performance, (b) 
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Figure 9(a) shows the ECAM-GI cascade network performances for the 68 
stored patterns, and Figure 9(b) presents the network generality performances 
from testing 64 unstored aspect patterns. The ECAM-GI cascade network still has 
the best performance among the three networks. Since the ECAM exponentially 
amplifies the correlation gains, there are no spurious (or unknown) states left. 
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Figure 9. Spectrum process ECAM-GI cascade network performances vs. 
SNR. (a) ECAM-GI cascade network performance for the 68 stored 
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Figure 10(a) shows the RCAAM/fi-GI cascade network performances with fixed 
input, init = 1, and stable criterion sc = 2 for the 68 stored patterns, and Fig- 
ure 10(b) presents the network generality performances from testing 64 unstored 
patterns. Both performances are very similar to those from ECAM-GI. Again, a 
previously unknown pattern can be associated with one of the stored patterns by 
setting the stable criterion high. 
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Figure 10. Spectrum process RCAAM-GI cascade network performances vs. 
SNR. (a) RCAAM/fi-GI cascade network performance for the 68 
stored patterns, (b) RCAAM/fi-GI network generality perfor- 
mance for 64 unstored patterns, (c) RCAAM/ad-GI cascade net- 
work performance for the 68 stored patterns, (d) RCAAM/ad-GI 
network generality performance for 64 unstored patterns. 

There are some problems with analog spectrum process networks, since the 
spectral magnitude carries less information than the time response signal. In the 
time responses, the location of specular peaks is a good measurement for discrimi- 
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nation. In contrast, the spectral magnitude doesn't oscillate around its mean value 
nor have a lot of sharp peaks. Apparently, the frequency magnitude changes much 
slower than the time signal, and its variance is much less than its corresponding 
time response. Therefore, the spectral magnitude distribution is more uniform 
and discrimination among these spectrums becomes harder. Since the spectrum 
magnitude is positive, the correlation between any two stored spectrum patterns 
is always a positive value. If the network spectrum process patterns has analog 
form, a special normalization is required to satisfy the following two conditions: 

(1). Every stored pattern must be normalized to 0 mean value. 

(2). The energy of each pattern must be normalized to some uniform value. 

The above condition (1) makes recurrent correlation process with a nonlinear 
threshold function more efficient, while condition (2) enhances the linearity of the 
correlation operation. 

Suppose {A(i)|i = 1,..., n} is a stored spectral magnitude pattern with energy 
1. Then 

z=l 

Letting a denote mean of A, i.e., 

a = -f>(z) (26) 
i=l 

and E{A(i) — a} = 0, then we have two processes by which to produce the nor- 
malize pattern A 
(1). Prior Process 
For condition (2), we have 

J2[C-(A(i)-a)]2 = l (27) 
i=\ 

so that 

(28) 
1 — no? 

and 
A(i) = C ■ (A(i) - a) 

If A]vi(i) = A(i) - a has been calculated, then we use 
(2). Posterior Process 
Condition (2) gives 

A(i) =    , y{j)       = D ■ AM(i) (29) 

E AM«2 

i=l 
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where 

D = 

£ AM(i)2 

(30) 

Since we have assumed A has energy 1 
n 

Y,AM(i)2 = \-na2 (31) 
i=l 

and thus C = D . 
Thus, we now have the normalized spectrum magnitude pattern A satisfying 

both conditions (1) and (2) 
E{A(i)} = 0 (32) 

f>(t)2 = l (33) 

Although we have normalized the spectral magnitude to overcome the defi- 
ciency caused by disregarding phase, the analog correlation processing algorithm 
still requires further improvement. As analyzed previously, the frequency spectra 
are more similar to each other than the time responses, and thus the crosscor- 
relations between any two stored spectral patterns almost always have positive 
values, even after the above normalization. Therefore, we need an offset to further 
compensate. 

We statistically evaluate the crosscorrelations of all the stored spectral patterns 
to find out the average and the minimum, and then design the offset. Since 
the spectral patterns have been normalized, the maximum correlation gain, (i.e. 
autocorrelation), among all stored patterns is 1, provided the input is equal to 
some stored pattern. Let Cmin denote the minimum of crosscorrelations among 
all stored patterns. If a recurrent correlation associative network is to converge 
to the expected stored pattern, it needs to satisfy at least 

1 - Offset > - (C^n - Offset) (34) 

and thus 
Offset < Il^fin (35) 

Typically, C^n has a negative value. If -(Cmin - Offset) > 1 - Offset exists, 
there exists an input and one stored pattern that have negative normalized corre- 
lation gain and the gain scale is larger than the normalized input autocorrelation. 
Therefore, the stored pattern with minimum' correlation gain will overcome the 
others when the recurrent iterations are even. If we use the value of Offset just 
satisfying the above inequality margin, then the network may not converge or 
may converge very slowly. We evaluate the mean of all crosscorrelations, then 
statistically and experimentally find that 2/3 of the mean is good choice for the 
Offset. Therefore, the network processing algorithm for RCAAM/ad requires 
some modification to process the analog frequency spectrum magnitude. 
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Suppose {(£\C)N = l)---)-P} are the associative pattern pairs stored in 
RCAAM/ad, where £* is a bipolar column vector of length m and C is a normal- 
ized analog spectral magnitude vector of length n, given by £ = [£*, £ ,..., £ ] 
and £ = [C1, £2,..., C,p\, and let the offset vector F0ffset be a column vector of 
length P with each component value equal to the Offset. If U is an n-dimensional 
normalized analog spectral magnitude input, then we can construct the initial 
Analog-Digital RCAAM as follows: 

M0 = £ • {Diag [(CT • U - F0ffset) -A (mi*)] ■ CT} (36) 

OS0 = £ • {Diag {((TU - F0ffset) -A (init)} ■ Foffset} (37) 

where 0So is an m by 1 column vector. 
Then the current dynamic memory output is 

V0 = Sign (M0-U- OS0) (38) 

The initial order init is usually set to 0. Since the input has analog form (the 
same as C), and the output has binomial form (the same as £l), we have fixed 
input (Ufc = U), for this analog-digital hybrid memory. Then the dynamic mem- 
ory Mfc, the dynamic Offset vector OS^ and the evolution outputs V^ at the 
recurrent iteration time k have 

Mk = £ • {Diag {((TU - F0ffset) -A (init + k)] ■ CT} (39) 

OSk = £ ■ {Diag [((TU - F0ffset) -A (mü + k)] • Foffset} (40) 

Vk = Sign(Mk-U-OSk) (41) 

Figure 10(c) shows the analog RCAAM/ad performances with init = 0 and 
the stable criterion sc = 2 for the 68 stored patterns, while Figure 10(d) presents 
the network generality performances from testing 64 unstored patterns. Although 
this analog RCAAM/ad requires several complex preprocesses, its performance 
is apparently better than any of the bipolar networks examined. However, the 
spectrum processing RCAAM/ad performs worse than the time process version 
analyzed previously. 

We can summarize the architectures of the recurrent correlation associative 
networks used in Table 2. The computation space for RCAAM's is iteratively 
adaptive.: For lightly contaminated patterns, the computation space required for 
discrimination is small due to few iterations, while a larger space is required for 
highly distorted patterns. Row 5 presents the available knowledge observed from 
the network operations about contamination or similarity between input and the 
final stable output. The EC AM converges most distorted inputs to some stable 
states within 3 iterations since it greatly expands the discrimination space. There- 
fore, we are unable to determine contamination from the ECAM. The HCAM's 
with small order are usually trapped in some spurious stable states, while the 
RCAAM typically avoids that with its accumulatively dynamic memory and the 
adjustment of sc. The decisions are deterministic for both HCAM and ECAM, 
when their outputs don't change for one iteration, since their memories are fixed. 
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Network HCAM ECAM RCAAAM 

Input form Binomial Binomial Binomial or Analog 

Process structure/ 
Recurrent operation 

Fixed memory/ 
Adaptive 

Fixed memory/ 
Adaptive 

Dynamic memory/ 
Accumulatively adaptive 

Computation Space Small for small orders Extremely huge Fit for discrimination 

Observability about 
contamination or 

High for small orders; 
low for high orders 

Very little High 

similarity between input 
and the final output 

Possibility trapped in 
unknown stable states 

Very high for small 
orders 

Very little Adjustable 

Decision strategy Deterministic Deterministic Flexible 

Hardware Realization Capable for fair orders Nearly incapable Capable 

Table 2. Architecture summary of the current correlation associative net- 
works used. 

VI. NETWORK COMPARISONS 

Several bipolar/binary networks, the Hopfield recurrent net and BAM's, have been 
simulated to act as comparisons. ART(Adaptive Resonance Theory) [31, 32] nets 
also use binomial data, but they are not suitable for our application. The ARTs' 
architecture uses two layers, a bottom or input layer and a top or classification 
layer, totally interconnected to competitively learn and classify inputs. These 
kinds of networks are suitable for unsupervised self-organization or classification. 
They may be used for supervised learning, but require clear clusters so that the 
patterns belonging to same cluster will be closer (or more similar) to each other 
than ones belonging to any other cluster. For our applications, this is usually not 
true. For example, two responses of different targets with the same azimuthal 
aspect are usually more similar than two responses of a single target at different 
aspects. Therefore, if ART's are used, the unsupervised competitive learning will 
result in a wrong clustering and the ART's might become an azimuthal aspect 
discrimination net instead of a target discrimination net. If the supervised ART's 
are used, then the learnings might get confused from the ambiguous grouping and 
require careful manipulation of the vigilance parameter and learning rate. It is 
possible that the ART's will categorize a lot of groups, and then require another 
network to complete the target classification. 

To demonstrate the RCAAM's advantages over other popular networks, the fol- 
lowing neural networks have been simulated : Hopfield recurrent network, Bidi- 
rectional Associative Memories (BAM) and Multi-Layer feedfoward and error- 
BackPropagation (ML/BP) networks. Their architectures and performances are 
summarized in Table 3 for time domain process, in Table 4 for spectrum magni- 
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tude process with 5 quantization levels coded by 3 bits and in Table 5 for spectrum 
magnitude process with 7 quantization levels coded by 3 bits. All the networks 
listed in the tables have been simulated 10 times and each stored/trained or un- 
stored/untrained pattern is tested under 10 different SNR levels, [40, 30, 20, 14, 
10, 6, 3, 0, -3, -6] dB, in each simulation, and then the average results are given 
in three tables. 

Network 

[nput/ 
Output 
Form 

Memory 
Size 

Training 
Epoch/Error 

Recog. 
Iterations 

Trained; 
Untrained 

Min. dB 
w/95% 
Correct 
Recog. 

Trained; 
Untrained 

%of 
Correct 
Recog. at 
40/0 dB 

Trained; 
Untrained 

Max. 
Integer 
Comput. 
Scale 

Hopfield Net Bip/Bip 300x300 X 9.68; 
9.71 

None; 
None 

0/0; 
0/0 

3002 

BAM Bip/Bip 300x7 X 4.28; 
4.27 

None; 
None 

36.2/8.7; 
6.4/4.7 

30Ö2 

BAM using 
group code 

Bip/Bip 300x7 X 4.28; 
4.25 

20 dB; 
None 

96.0/63.6; 
78.1/54.8 

3002 

MUBPw/o 
hidden layer 

Analog/Bip 100x4 164+1012/0 X 10 dB; 
14 dB 

100/59.3; 
98.0/56.6 

Not 
Integer 

ML/BPw/1 
hidden layer 

Analog/Bip 100x25 
+25x4 

624+414/0 X 14 dB; 
14 dB 

100/56.6; 
99.5/54.2 

Not 
Integer 

GINet Bip/Bip 300x4 3+120/0 X 10 dB; 
14 dB 

100/42.4; 
100/42.3 

Not 
Integer 

HCAMw/ 
Order of 3 

Bip/Bip 68x300 X 5.02; 
6.07 

None; 
None 

80.6/52.5; 
63/47.2 

•$<XP"m 

ECAM-GI Bip/Bip 68x300 X 3.01; 
3.03 

3 dB; 
3 dB 

100/90.7; 
100/90.9 

2*° 

RCAAAM/di 
-GI 

Bip/Bip 68x300 X 4.38; 
5.12 

3 dB; 
3 dB 

100/90.9; 
100/91.7 

Adaptive 

RCAAAM/fi 
-GI 

Bip/Bip 68x300 X 5.99; 
7.27 

3 dB; 
3 dB 

100/89.6; 
100/89.4 

Adaptive 

RCAAAM/da 
-GI 

Analog/Bip 68x100 
+68x300 

X 6.99; 
8.16 

-6 dB; 
-6 dB 

100/100; 
100/100 

Adaptive 

Table 3.      Network architectures and performances summary for time domain 
target discrimination with 7 quantization levels coded by bits. 
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Input/ Memory Training Recog. Min. dB %of Max. 
Output Size Epoch/Error Iterations w/ 95% Correct Integer 
Form Correct Recog. at Comput. 

Network 

Trained; 
Untrained 

Recog. 

Trained; 
Untrained 

40/0 dB 

Trained; 
Untrained 

Scale 

Hopfield Net Bip/Bip 300x300 X 5.40; None; 0/0; 3002 

5.29 None 0/0 

BAM Bip/Bip 300x7 X 4.74; None; 8.8/4.9; 3002 

4.73 None 0/0.47 

BAM using Bip/Bip 300x7 X 4.73; None; 55.9/48.1; 3002 

group code 4.71 None 44.4/40.6 

ML/BPw/o Analog/Bip 100x4 1981+864/0 X 14 dB; 100/65.2; Not 
hidden layer None 87.5/64.4 Integer 

ML/BPw/1 Analog/Bip 100x25 1337+678/0 X 10 dB; 100/62.5; Not 
hidden layer +25x4 None 90.6/60.2 Integer 

GINet Bip/Bip 300x4 10+120/0 X 6 dB; 100/75.3; Not 
20 dB 95.3/73.4 Integer 

HCAMw/ Bip/Bip 68x300 X 
Order of 3 6.56; 

6.22 
None; 
None 

2.79/0; 
0/0; 

300» 

Order of 5 4.51; 
7.71 

None; 
None 

94.9/57.2; 
32.5/28 

300* 

ECAM-GI Bip/Bip 68x300 X 2.95; -3 dB; 100/100; 2*» 
3.05 •3 dB 100/98.3 

RCAAAM/di Bip/Bip 68x300 X 7.12; 3 dB; 100/88.1; Adaptive 
-GI 9.42 None 87.5/79.2 

RCAAAM/fi Bip/Bip 68x300 X 5.24; -3 dB; 100/100; Adaptive 
-GI 8.21 -3 dB 98.9/97.2 

RCAAAM/da Analog/Bip 68x100 X 12.31; OdB; 100/99.3; Adaptive 
-GI +68x3001 15.93 3 dB 98.8/94.5 

Table 4.      Network architectures and performances summary for spectrum 
magnitude target discrimination with 5 quantization levels coded 
b y 3 bits. 

/ 
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Network 

Input/ 
Output 
Form 

Memory 
Size 

Training 
Epoch/Error 

Recog. 
Iterations 

Trained; 
Untrained 

Min. dB 
w/95% 
Correct 
Recog. 

Trained; 
Untrained 

%of 
Correa 
Recog. at 
40/0 dB 

Trained; 
Untrained 

Max. 
Integer 
Comput. 
Scale 

HopfieldNet Bip/Bip 300x300 X 6.37; 
6.19 

None; 
None 

0/0; 
0/0 

3002 

BAM Bip/Bip 300x7 X 4.17; 
4.13 

None; 
None 

22.5/11.2; 
0/1.72 

3002 

BAM using 
group code 

Bip/Bip 300x7 X 4.17; 
4.13 

None; 
None 

83.4/70; 
77.7/59.5 

3002 

ML/BPw/o 
hidden layer 

Analog/Bip 100x4 1981+864/0 X 14 dB; 
None 

100/65.2; 
87.5/64.4 

Not 
Integer 

ML/BPw/1 
hidden layer 

Analog/Bip 100x25 
+25x4 

1337+678/0 X 10 dB; 
None 

100/62.5; 
90.6/60.2 

Not 
Integer 

GINet Bip/Bip 300x4 10+156/0 X 10 dB; 
None 

100/66.3; 
89.5/63.4 

Not 
Integer 

HCAMw/ 
Order of 3 

Bip/Bip 68x300 X 5.18; 
9.38 

40 dB; 
None 

96.5/59.9; 
48.6/33.1 

300» 

ECAM-GI Bip/Bip 68x300 X 2.96; 
3.05 

OdB; 
OdB 

100/99.9; 
97.5/95.3 

2M0 

RCAAAM/di 
-GI 

Bip/Bip 68x300 X 4.06; 
5.83 

OdB; 
14dB 

100/99.6; 
95.6/90.3 

Adaptive 

RCAAAM/fi 
-GI 

Bip/Bip 68x300 X 4.09; 
6.10 

OdB; 
OdB 

100/99.7; 
98.4/95.2 

Adaptive 

RCAAAM/da 
-GI 

Analog/Bip 68x100 
+68x300 

X 12.3; 
16.45 

OdB; 
3 dB 

100/99.3; 
100/94.8 

Adaptive 

Table 5. Network architectures and performances summary for spectrum 
magnitude target discrimination with 7 quantization levels coded 
by 3 bits 

Column 4 in each table presents the training epochs and final errors for ML/BPs 
and GI networks. The first number in this column presents the training epochs 
with which network trainings converge to 0 error, while the second number de- 
notes the extra training cycles made to ensure all training pattern outputs deeply 
enter the saturation regions of the sigmoid function. Theoretically, this will in- 
crease noise tolerances and decrease the biased learnings. Column 5 presents the 
average iterations which the recurrent networks require to reach the stable state 
adopted for target discrimination. The upper number in every row correspond- 
ing to 'Trained' means the result obtained by testing the trained/stored patterns, 
while the lower number corresponding to 'Untrained' indicates the result obtained 
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by testing the untrained/unstored patterns. Column 6 presents the minimum SNR 
in dB at which the network still performs 95 % correct discrimination. Column 7 
shows the correct discrimination rates in percentage respectively at 40 and 0 dB. 
Finally, column 8 presents the maximum integer computation scale required for 
processing one stored pattern. 

The autoassociative Hopfield net always goes to some undefined states and 
leaves nothing discriminated. The BAM also has bad performances and always 
converges to the wrong heteroassociative partners. We have altered the BAM 
process strategy by using target group code in its heteroassociative partners, and 
then we only discriminate the target group code portion of the final stable state 
and ignore the rest of the code. This effort has greatly improved its correct recog- 
nition rate and also reduced the wrong rate in simulations. In our simulations, 
we design a set of 7-bit heteroassociative codes corresponding to the 68 300-bit 
stored patterns. The first two bits are designed as a target group code for four 
different targets, i.e. [-1 -1] for B52, [-1 1] for B58, [1 -1] for F14 and [1 1] for 
TR1, and then the next five bits are coded to represent 17 azimuthal responses 
of each target. Therefore, this altered BAM will discriminate an input as a cor- 
rect target or wrong target, and leave none unknown. For example, the BAM 
using group code has 36.2% and 8.7% correct discriminations respectively at 
40 and 0 dB; therefore the remaining 63.8% and 91.3% all contribute to wrong 
discriminations. 

High resolution and linearity are the most important advantages gained from 
using analog networks. The high resolution will expand the differences between 
any two trained/stored patterns and then increase the discrimination accuracy, 
while the linearity between an input and the stored patterns can greatly increase 
the confidence in network performances. But analog data are hard to use in a 
recurrent associative update, therefore the analog networks can't iteratively adapt 
to the final stable state. So it may be difficult to determine the contamination or 
the similarity between an input and the network output. Also an analog network 
can't be cascaded to a high performance and high dimension recurrent autoas- 
sociative network as a group decoder. Unless an analog network is capable of 
hardware realization, it can't take advantage of today's digital computer tech- 
nologies. Binomial data only have two states by which an artificial neuron model 
emulates the bi-state, activated and inactive, of a biological neuron. Therefore, 
the binomial data format is well qualified for use in recurrent and cascade opera- 
tions, like complicated biological neural nets. Binomial data use much less space 
than continuous data in a digital computer process, and it can be more further 
compressed. Quantizing continuous data by finite discrete levels can also result 
in a tolerance of light contamination in a way. And the binary data are easy and 
safe to store for long periods of time. 

We also simulate two ML/BPs, one without a hidden layer and another with 
one hidden layer containing 25 neurons, to compare their performances to the 
networks we used. We use the uncoded 100 analog responses as training inputs 
for each training pattern, and use the same output target set used by the GI net. 
Therefore, they have analog inputs and bipolar outputs. The initial weights are 
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randomly initiated, and a momentum has been used to reduce being trapped in 
local minima. Compared to the GI net, ML/BPs require more training epochs 
and manipulations to converge all training patterns to their desired targets with 
zero error. Although a momentum has been used, the trainings still get trapped 
in local minima a number of times. The ML/BP nets have a similar performance 
phenomenon to the GI net. As expected, they prefer to leave ambiguous inputs 
unknown rather than discriminate wrongly. The HCAM's with small order have 
a low correct discrimination rate in the generality performance, but, compared to 
the BAM's discussed above, they converge to undefined states instead of wrong 
stored patterns. 

We have used two different numbers of discrete levels to quantize an analog 
spectrum magnitude, 5 levels and 7 levels. The codes generated by coding 5 levels 
with 3 bits are more linear than the codes generated by coding 7 levels, explained 
in section V, subsection A. Less quantization levels give not only higher linearity 
but also lower noise sensitivity, although they may lose resolution. In a badly 
noisy condition, the coding's linearity and noise tolerance will become important. 
Prom the Figure 1 and 6, it is easy to see that the time responses oscillate with a 
much larger range than the frequency spectral magnitudes. Therefore 7 levels are 
used in the time responses for accurately representing its large oscillation range. 
Different factors prevail in different networks. 

The noise tolerance and linearity factors prevail in training-based convergent 
networks, i.e. the GI net, while the resolution factor prevails in correlation-based 
recurrent memories under fair noise conditions. If a GI net, trained with patterns 
of few quantization levels, can converge with zero error, then well trained GI net 
can discriminate all the training patterns under this low resolution. When a GI 
net trained with high resolution patterns suffers from noise sensitivity, a GI net 
trained with low resolution patterns may still work very well. This issue can be 
proved by comparing the GI net's performances in table 4 (using 5 quantization 
levels) and table 5 (using 7 quantization levels). For correlation-based recurrent 
memories, more quantization levels will, slightly affect the correlation gain of two 
similar patterns but greatly reduce the gain of two unlike patterns. This two-side 
effect greatly increases the discrimination resolution, so the recurrent network 
performance will increase. As discussed in section V, subsection A, the linearity 
still exists within ± 1.5 quantization levels for the 7-level coding scheme we use, so 
the nonlinearity may bother the recurrent memories only if the noise amplitude 
is larger than 1.5 quantization levels. This resolution prevalence can be seen 
by comparing the recurrent memories in table 4 to those in table 5, especially 
the BAM's and HCAM's. Since the BAM's only converge to correct or wrong 
patterns, increasing the correct rate will reduce the the wrong rate. The average 
number of recognition iterations decrease when the pattern resolution becomes 
high. Another apparent change is that the minimum SNR with 95% correct 
recognition increases, as expected, since the larger the number of quantization 
levels, the lower the noise tolerance. The ML/BP nets use continuous data, and 
are listed there only for comparison. 
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PIU8+:RCAAAM/da-GI 
Point.: RCAAAM/dl-GI 
Solid -: RCAAAM/fl-GI 
Dashed -: ECAM-GI 
Oashdot-.: HCAM with order of 3 
Dotted :: Ql Net 
Star *: Continuous ML/BP w/ or» hidden layer 
x-MarK x: Continuous ML/BP w/o hidden layer 
Circle o : BAM using target group code 

10 15        20 
SNR (dB) 

40 

Figure 11.    Correct discriminations of different time domain process networks 
vs. SNR for 68 trained/stored patterns. 

To illustrate in detail 9 different network performances under 10 different SNR 
levels, six figures are plotted. Figure 11 shows the time domain network correct 
discrimination performances, while Figure 12 presents the time domain network 
generality performances of correct discrimination. Figure 13 shows the spectrum 
magnitude network correct discrimination performances with 5 quantization levels 
coded by 3 bits, and Figure 14 presents their generality performaces. Figure 15 
shows the spectrum magnitude network correct discrimination performances with 
7 quantization levels coded by 3 bits, while Figure 16 presents their generality 
performances of correct discrimination. 
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Figure 12.    Correct discriminations of different time domain process networks 
vs. SNR for 64 untrained/unstored patterns. 
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Figure 13. Correct discriminations of different spectrum magnitude process 
networks with 5 quantization levels coded by 3 bits vs. SNR for 
68 trained/stored patterns. 
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Figure 14. Correct discriminations of different spectrum magnitude process 
networks with 5 quantization levels coded by 3 bits vs. SNR for 
64 untrained/unstored patterns. 
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Figure 15. Correct discriminations of different spectrum magnitude process 
networks with 7 quantization levels coded by 3 bits vs. SNR for 
68 trained/stored patterns 
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Figure 16. Correct discriminations of different specrtum magnitude process 
networks with 7 quantization levels coded by 3 bite vs. SNR for 
64 untrained/unstored patterns. 

VII. CONCLUSION 

We have used several different neural network architectures to discriminate among 
radar targets at a wide variety of aspect angles. Prom the simulations, it appears 
that correlation-based neural networks have powerful and effective problem solving 
abilities. Comparing the GI network to the recurrent correlation-based associa- 
tive memories, we find the GI network has a smaller stored pattern attraction 
region within which the GI net can correctly converge from an input to its asso- 
ciative stored pattern. Therefore, the GI network noise tolerance is inferior to the 
correlation-based associative memories. Typical RCAM's have off-line predeter- 
mined fixed memory, limiting the network flexibility and adaptability. Therefore, 
some RCAM networks may need a large computation space to operate, and some 
may not work well if used with insufficient predetermined order. 



ggO Tsai et al. 

We have proposed a flexible and highly adaptive real-time learning network, 
RCA AM, which has dynamic memory to allow the given input to parallel adapt to 
all stored patterns, and an adjustable stabel criterion to observe those semi-stable 
states. The network may have several semi-stable states corresponding to various 
inputs if the criterion is set low. The spurious (unknown) semi-stable states will 
be transferred to one of the stored patterns if the criterion is set high. Thus, the 
discrimination decision strategy is flexible : 3 phases, correct/wrong/unknown, or 
2 phases, correct/wrong. We have simplified the RCAAM iteration to an easily 
realizable implementation form, which speeds up the dynamic memory computa- 

tions. 
We have also used the spectral magnitudes as the network processing pat- 

terns. The simulations reveal excellent results for ECAM-GI, HCAM-GI with 
order higher than 5, and RCAAM-GI. After some modifications for analog applica- 
tion, the spectrum process RCAAM/ad-GI has a performance almost competitive 
to that using time responses. The RCAAM has the same or better performances, 
but much great space saving compared to the ECAM and the implementation 

complexity similar to the HCAM. 
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Appendix 8 

Time-Domain Imaging of Airborne Targets 
using Ultra-Wideband or Short-Pulse Radar 

E. J. Rothwell. K. M. Chen. D. P. Nyquist. and J. E. Ross 

Abstract—A time-domain physical optics inverse scattering identity is 
derived for real-time use in ultra-wideband radar systems. It is shown 
that using the band-limited impulse response of a radar target provides 
an edge-enhanced image. A simulation based on stepped-frequency, multi- 
aspect measurements of aircraft models produces clear images with 
highly-defined edges. 

I. INTRODUCTION 

Microwave imaging of airborne radar targets has received con- 
siderable interest in recent years. Most attention has focused on 
the use of inverse synthetic aperture radar (ISAR) [1], [2] where 
the target is modeled as a collection of scattering centers, and the 
image is constructed from an inverse Fourier transform of multi- 
aspect, frequency-domain data. The advent of viable ultra-wideband, 
time-domain radars with a baseband spectrum extending well into 
the microwave regime [3] precipitates the need of an imaging 
identity which can be used directly in the time-domain. Several time- 
domain techniques have been proposed including those using ramp 
illumination [4], [5] to determine projected area and chirp-FM [6] 
to determine the target characteristic function. This communication 
presents a simple time-domain inverse scattering identity, easily 
derivable from Bojarski"s physical optics (PO) technique [7], which 
provides the target thickness function. 

II. TIME-DOMAIN IDENTITY 

Consider a plane wave of constant amplitude En and polarization c 
incident upon a perfectly conducting scatterer along an incident wave 
vector P. If E"(k-'.r) is the back-scattered field (monostatic case) 
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at a distance ;■ in the far zone of the target, then Bojarski [7] shows 
that the characteristic function of the taraet is given bv 

-(/) = 2Re^ &lii E'(K') 
.,,?■..-''*A"' 

(1) 

where A"' = 2k'. K = |A''| = 2_/r. and E' is the transmit- 
polarization component of the phase and range normalized scattered 
field 

,k,-\ 

E'(K') = <■■ E'(k'.r) 
Eg fj 

(2) 

Because the characteristic function is unity for all points r within 
the domain of the scatterer and zero without. - (f) reproduces the 
scatterer geometry. 

For measurements made in a sectional plane, the thickness of the 
scatterer in a direction normal to the plane is given by 

T(p)=2Re- 
^// 

£"(A';,.A";..O)P
J il-K' 

(3) 

where p is the position vector in the sectional [u. r) plane. To convert 
this identity into time-domain form, a polar-coordinate representation 
is used (analogous to the projection-slice theorem of tomographic 
reconstruction [8]) 

2V)=2Re — f r (2-)-' Jo-0 ./,=o 
E'(k.o,) 

■2 k;,' — 
k 

'lo, (4) 

where o, is the incidence angle in the sectional plane, and (p'.o') 
is the position of a point in polar coordinates in the sectional plane. 
Substituting for E" from (2) gives 

2V -If "    ./o,=0 
Re FUV "'"-} do, 

where 

and 

F(- 
E* 

JE0 

(5) 

(6) 

(7) cos (o  — o,). 
c c 

Since the thickness function must be real, the inner integral is 
recognized as a temporal Fourier transform [9] and thus the thickness 
function can be written as 

T( 
Jo 

f{[p - 2p  cos (o - o, )]/<-■} do, (8) 

where /(f) is the inverse Fourier transform of F{^). 
The thickness function (8) is seen to be a superposition over 

incidence angle of values of the waveform f(t). Because of the *• 
in the denominator of F(^). the appropriate waveform to use for 
reconstructing the target thickness is the step response (or a related 
function). The time at which the waveform is evaluated is the two- 
way transit time to the point (p'.o') along the angle o,, and is thus 
consistent with the scattering-center interpretation used in ISAR. 

Note that an identity equivalent to (8) can be obtained directly 
in the time domain by beginning with the formula for the projected 
area [4] as a function of aspect angle, and using the inverse radon 
transform [11] and the physical-optics approximation. 

'.SO -.20 -.10 .00 .10 .30 .30 .10 

x-position (m) 

(a) 

a 
O       -00' 

-.«0      -.10      -.30      -.30      -.10        .00        ,10        .30        .30        .10        .«0 

x-position (m) 
(b) 

Fig. 1. Images of aircraft models created from measured data using the 
time-domain physical optics inverse scattering identity, (a) 1 : 32 scale F-14. 
(b) I : 72 scale B-52. 

III. IMAGING SIMULATION 

The time-domain identity (8) can be used in real time to construct 
an image from ultra-wideband radar measurements. A simulation 
of time-domain imaging is carried out using data measured in 
the Michigan State University free-field scattering range. The field 
scattered from several aircraft models was measured in the plane 
of the aircraft wings in the frequency band 2-18 GHz at 200 
aspect angles from 0 degrees (nose-on) to 180 degrees, using an 
HP 8720B network analyzer. The data from the nonilluminated side 
was provided through symmetry. Each scattered field response was 
deconvolved using a 14-inch diameter sphere as a reference target and 
inverse transformed into the time domain using the FFT to provide 
a band-limited impulse response [10]. Rather than forming the step 
response, the measured impulse response data was used directly in 
(8). This is equivalent to using a derivative of the step response, 
and thus a sharpening of the target edges is provided—a technique 
common to image processing [8]. 
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Fig. 1 shows the images of a 1 : 32 scale model F-14 aircraft 

and a 1 : 72 scale model B-52 aircraft. The edges of the aircraft are 

clearly visible, with the fuselage and vertical stabilizers producing the 
largest thickness values, as expected. There is some distortion in the 

aircraft shapes due to a slightly bistatic antenna arrangement and an 
inaccurate estimate of target range. Note that the PO approximation 
used to derive (8) does not include information about shadowing, 

and thus shadowed edges, such as the rear of the F-14 wing and the 
inner sides of the B-52 engines, are not clearly visible. Note also that 
images can be obtained using data from a restricted range of aspect 

angles (e.g.. 0-90°). albeit of reduced fidelity. 
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Time-Domain Imaging of Radar Targets Using Short Pulse 
Radars and Algorithms for Reconstruction from Projections 
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Abstract-A time-domain bistatic inverse scattering identity based on the Radon transform 
and the space-time magnetic integral equation is derived for real-time use in short pulse 
radar systems. It is shown that using a Sine-Modulated Exponential Pulse (SMEP) and 
algorithms for reconstruction from projections provides an edge-enhanced image. A 
simulation based on stepped-frequency, multi-aspect measurements of aircraft models 
produces clear images with highly-defined edges. Images using data from a restricted range 
of aspect angles are also demonstrated. 
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I.      Introduction 

Target imaging and identification using electromagnetic responses in the time and 

frequency domains has attracted increasing interests, with most methods carried out in the 

frequency domain. The use of time domain techniques was first discussed by Kennaugh and 

Cosgroff in 1957 [1]. Since then many researchers have developed approaches to the inverse 

scattering problem [2-7]. They have shown that the target impulse, step, and ramp responses are 

related to the target geometry based on physical optics principles. Under the physical optics 

approximation Bojarski has established a Fourier transform relationship between the conducting 

scatterer and a form of the scattering cross section [9]. Since this approach is based on the 

physical optics approximation, it is valid only in the limit of high frequency. When the size of 

the scatterer is comparable to the incident pulsewidth, the physical optics solution is inadequate 

for this scattering problem. Furthermore, the impulse, step, or ramp response of the target is hard 

to obtain in practice. 

In this paper we start from the space-time magnetic field integral equation, and by using 

a Sine-Modulated Exponential Pulse (SMEP) waveform as the incident field, an exact two- 

dimensional time-domain bistatic inverse scattering identity can be obtained based on the inverse 

Radon transform. The details are carried out in section III. In section IV, the reconstruction 

algorithm is developed and discussed. Numerical verification is carried out for a test sphere in 

section V. Experimental results and some images of aircraft models are shown in section VI. 



II.        The Radon Transform 

The Radon transform of a function at a given hyperplane is defined as the integral of the 

function over that hyperplane [6-8]. For a hyperplane in «-dimensional Euclidean space defined 

by 

*.*-p '   (') 

where x is the spatial position vector. \ is a unit vector orthogonal to the hyperplane, and p is 

the Euclidean distance from the origin, the Radon transform F(l,p) of a function f(x) over the 

hyperplane is given by 

F(lp) =  f.     J{x)ds (2) 

The above equation may be expressed more conveniently in the following form by using 

the Dirac delta function 5: 

F&p) = fm*(p-i-x)ds <3) 

The inversion of the Radon transform consists of expressing f(x) in terms of its integrals F(l,p) 

over the hyperplanes. The inversion formula for odd dimension in n is 

where F{"'1) is the (n-l)th derivative of F with respect to p. For even n, the inversion formula 

is 

m = —J-—f. HF(;-X\iix)di (5) 
2(2n/)"-lJ!«l"1 



where H denotes Hüben transform. 

Radon transform theory has become a very important mathematical operation and its 

applications are well known. They include computerized tomography (CT) applications in, for 

example, diagnostic medicine, radio astronomy, electron microscopy, optical interferometry, and 

geophysical exploration. These well-established concepts can be extended and applied to the radar 

inverse scattering problem. 

III.      Derivation of Space-time Integral Equations and Inverse Scattering Identity 

When an electromagnetic field is incident upon an object, currents and charges are 

induced on and in the object. The induced currents and charges will then maintain a scattered 

electromagnetic field. Once the induced currents flowing on the conducting scatterer surface and 

the scatterer geometry are given, the scattered field can be calculated directly. 

The expression for the surface currents is derived from an expression for the total field 

at an arbitrary point in space [4]. This arbitrary point is specialized to a point on the scatterer 

surface, and the appropriate boundary conditions are applied. This yields an equation for the 

surface current J at the point r on the scatterer surface and at the time t as 

Jif,t) 
2nxh\r,t) +Jc(r,t)   n-q>0 

Jc(r,t) n-q<0 
(6) 

where 

Jc{r,t) = -L( rix- 
2nJ* p2 + R dx 

J(r',z)xaR ds (7) 

where h\r,t) is the incident magnetic field, n is the unit vector normal to the scatterer surface, 



r is the position vector to the observation point,   r' is the position vector to the integration 

point. R =  'r-r'l, aR = {r-r')jR,q is the unit vector to the transmitting antenna, and t denotes 

normalized time in meters. 

From equation (6), we can see that the first term of the right-hand side represents the 

direct influence of the incident field on the current at the observation point. When applied to the 

illuminated side of the scatterer, it yields the familiar physical optics approximation for the 

surface current. The second term on the right-hand side of (6) represents the influence of currents 

at other surface points on the current at the observation point. 

Once the surface current density has been obtained, the far scattered field of the scatterer 

shown in Figure 1 can be calculated by the expression 

h\rj) 
4TT 

(8) 

Where Rs =  \fs-f'\, and z' = t-Rs 

Assuming that the observation point rs is not on S,   the curl operator may be carried 

inside the integral. Using the far-field approximations and standard vector identities, we have 

s'w ■ h, $KJ s 
a/>V>xA+J(FV)x5 

RI dx1       R 
ds< 

(9) 

-_Lfäx^iV 
47UJV» 

where R< = (r-r')l\r-f> 



In the far zone, we can use the approximations Rs = rs-rs-r' for the phase term and 

Rs ~ rs and Rs = r, for the amplitude term. Then (9) becomes 

h'ir.,0 -  --i-j^x^lV (10) 

Now. we define the aperture function 

i4(r,,n) = 
1 rrn(r)>0 (H) 

0        ri-n(F')<0 

which is unity on the illuminated region of scatterer surface, and zero on the shadow region. 

Substituting (6) into (10). we have 

5 2nrjss dx 4«rJ* 8T' 

where T = r-Ä,.-/?, = t-r-r^if^r^-r',   x' = f-/?5 » t-rs+rs-r' 

Using the vector identity 

r^/i'xÄ')  = «'(r//J')-/J'(r,-n') (13) 

and letting h"(rs,t) = h'-h\rs,t), then 

-*'•£ 

where AT = fs-(rs-h')h' 

(14) 

Then (12) can be written as 



, ,._  ,         1    r ., pdh'(r',x) ...  „. , ,       1     r 
hs(rs,t) = -—   « -AT J-A(ritn)ds'--  

■5 -5 L 

i   ,    aJjrW).].; 
r x—: ds Vh 

dx        ^ '' ' 4rcrJJ* *       aT' j 
(15) 

Now. letting the same incident pulse illuminate the shadow region of the scatterer. we have 

A,(r,r) =     /i -K —^-A,(r n)ds'-- j 
"   s 2nr J s dx        - 4Tzr\J- 

i Ir.v^x')^ 
r x—: ds' 

dx' 
-h'     <16> 

Combining (15) and (16) yields 

h s(rs,t) + h, (rs,t) = -—   n 'K K—^ s        ' 2nr Js dx 
[A(rpn) ^A^Mds'-h^t) -hc\(rs,t) 

2izrs
J * ox 

(17) 

where 

h5
clifs,t) 

hS
C2irs,t) = 

lnrs\J ' 
r x as 

x        dx1 

— I V 
dJJrW)^ 

dx' 
ds' 

hl 

•hl 

(18) 

Using Gauss' law. (17) becomes 

h\rj)+ht(rj) = K dh '(r',T) 

ÖT 
dv'-hs

cl{rs,t)-h
5

c2{fs,t) 

1     f ?.   ^ r^fci/s-. l_r^.^V//i'(rV-r,-r^(r,+gTyv/-^(r;,r)-/J;,(rs,r) 
7i r J "     ox 

(19) 

_L f (K-r)cosl ^1)dw '-/*>>) -V-(V) 
trc

J K 2      a2! 

where r +r   = 2cos—r. ß is the bistatic anale 
2 ■ 



Assuming the incident magnetic field is a SMEP defined by 

h'(t) = sin(o> t)e-a'U(t) (2°) 

the derivative of h(t) is 

^-^ = [a)fcos(o)c.r)-asin(a)/)]e"°'f/(f) (21) 
dt 

and the second derivative of h(t) is 

^-^ = :(a2-a);)sin(cocr)-2aa)rcos(a)cr)le-aff/(r)+a)c6(r) (22) 
d2t 

Now. let's write equation (19) in the forms 

f ^LiEldv' =  ^ W^tiirJ+htfj+h&A - __^ H\Tj) (23) 
iv     ÖT2 (Kf)cos(ß/2)L " J      (Kr)cos(ß/2) 

where tf '(^r) = h s(rs,t) - hl(fs,t) - h^t) - hr2{rs,t) 

The left hand side of equation (23) can be written as 

(24) 

Then, we can obtain two equations from (23) and (24): 

f M'^W =  ^£ r,H'(r,f)ift4f Ml^rf/i 
J"     ox (K-r)cos(ß/2)Jo r"     ox !f=0 (25) 

 *- f Hs(r,t)dt 
<r)cos(PI2Y0 

and 



]v (Kr)cos(ß/2)J°Jo J°lJv     dz U     - " *■« (Kr)cos(ß/2) 

irr 

(Kf)cos(ß/2) z^/o'/.'"'^2 

(26) 

Substitutine (20) into (26), we have 

fsin(a) T)e-"Tt/(T)dv' 
J K c 

rcr 

(£r)cos(ß/2) IXH'<rJ*2 (27) 

Substitutine (21) into (25), we have 

f   a) cos(co T) -asin(o)r-)'e'aTU(z)dv' 
J V-    c c ■ 

rcr 

(£r)cos(ß/2) 
('Hs(rj)dt (28) 
Jo 

Substituting (22) into (23), we get 

f 8(x)dv 
rcr. 

(Jf-f)urcos(P/2) 
Hs(rs,t)-f — [(o2-uJ)sinufT-2ourcoso»cTe-"tl/(T)dv/    (29) 

Combining (27) and (28) then yields 

u>ccos(a>fT)e "^[/(-Odv' 
nr. 

(Kf)cos(ß/2) 
' [ 'H s(r ,t)dt + a['('H s(rj)dt2}        (30) 
Jo * Jo Jo 

Substitutine (27) and (30) into (29), we have 

f b(T)dv' 
J V 

izr_ 

(Kf)cos(ß/2)cv 
Hs{f j) *2a f 'Hs(rs,t)dt + (o2 + a2) f T 'Hs(rs,t)dt2}   (31) 

JO J 0 J 0 j 

Now. define the characteristic function 

Y^) 
1 
0 

r'eK (32) 



Then (31) becomes 

f f [y(FWt-r -r -2cos(^)rr'Wv = ^ .'//'(rf,r) -2a \'Hs(rj)dt Mo! -a:) ('f'H'(rj)dr (33) 
. J JJ '    J 2 Kfcos(ß/2)av -° "° ° 

Using the properties of the Delta function 

6(x) = 6(-T) 

ß 1 (34) 

S(2cos-^t) =  - 6(T) 
2 2cos(ß/2) 

(33) becomes 

fjfv(f)ö(ts-rr)dv< = i^[ff'(F,f)+2a/V(^ <35> 
c 

Where L = 
2cos(ß/2) 

It can be seen from equation (35) and Figure 2 that the right hand side of (35) is the 

Radon transform of y(r') [6], [7], [8]. It denotes the projected area function at the plane 

ts = rr' 

A(f,t) = \^y(r')b(ts-r-r)dv' <36> 
-00 

Here A{r,t) is the projected area onto ts for the particular aspect direction r along ts. 

Note that the cross sectional area A(r,t) is formed with a time scale such that the cutting 

plane rs = rr used to determine A{r,t) moves with l/(2cos(ß/2)) (one half for the monostatic 

case) the velocity of the incident SMEP. 



If the view angles are available only in the x-y plane (6; = TI/2, 0<<t>'<2x), then the 

body geometry can be related to the cross-sectional areas A(f,ts) through 

A(r,ts) = fffyix^y'-'^ts-ix'cosV+y'smVydx'dy'dz' <37) 

Integrating with respect to z. (37) becomes 

A(r,ts) = [ fT(x\y )b(ts-(x'cos*' + y 'sin<|>0)dr'dy' (38) 

Where   T(x,y) = f"y(x,y,z)dz is the "thickness function" of the target in the z direction. 
J   -co 

Taking the two-dimensional inverse Radon transform of equation (38),  we can get the 

thickness function [6-8]. 

r(p') = __Lr^fdA(^      dtsd(b 
A-2J0   J- 
4lz2Jo   J-      dts       t -p'cOS^'-ij)) 

1    -2-1 A(f,ts) 

.zJo 47t2 °  ! r?-p cos(cj) -$) 

-n )„2Jo J 

-/: 

A(f,t) 

• (t - p cos(<t> '-<|))) 
Jr !# 

2     " 

A(f,t) 
dtM 

27i2JoJ-~(fi-p'cos((j)/-(t)))2 

1   -„ rao             cos(ß/2)/i(r,0 
-— dtdfy 

u2joJ-(r-p...+2p'c '      ' /   A\-»2 ,(r-piI+2p'cos(ß/2)cos(<|>,-(|))) 

(39) 

where p" = x'x+y'y = p cos^'i + p sincj/y, PiJ
=Pi 

+ Ps 
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Substituting (35) into (39). we have 

2p,cos(ß/2) ., f. //-(P,0-2a/o
f//-(p^r^co^a^Q7;//-(p^^f^ (4Q) 

(^•p)itcof J°J— [r-p,5-2pcos(ß/2)cos(<j>-(t>)]2 

From equation (40). we know $ depends on <j)\ <j>* and ß. Here we only consider the 

special case when both transmitting and receiving antennas are fixed and the target rotating or 

the scatterer is static and the transmitting and receiving antennas are moving around the scatterer 

with bistatic angle <t>'-<|)s=constant ß. Then 

2cos(-£)p-p'=2p/cos(-£)cos(4>/-<l>) 

fl ß (41> 
= 2p/cos(-)cos«J>/-(|)' + -^) 

2 2 

and from (40). we have 

=    2p^(ß/2)r.ßff      tf'^O^ 
P     "       (K-p)iru    'm     '- [f-p(r2p'cos(ß/2)cos(4)'-(t)'-ß/2)l2 

r (42) 

=     2p;cos(ß/2) f, f. ff'(p>)-2a/;/y'(ß^^M^«2)/Jo
,|y'(p^^^| 

(K-p)nu   -'0-'-~ [r-p„-2p'cos(ß/2)cos((t)'-(t)'-ß/2)]2 

This is the complete solution to the two-dimensional bistatic problem of recovering a body 

from its scattered field: it needs the reflected fields and the correction term from all possible 

directions in the x-y plane. The next step is to solve equation (42). We can use an iterative 

approach to get the 2-dimensional target geometry [4]. First, neglect the correction termsh*,(p',t) 

and ///■,( p',r) in equation (42). This is the time domain physical optics inverse problem. We can 

thus obtain an initial estimate of T^p), and the correction terms. h*,(p',t) and hc
s

2(p',t). in (42) 
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can be obtained by solving Jc(r,t), Jc2(r,t) in (6) using the marching on in time method, and then 

used in (18). Then the correction terms can be used in (42) to obtain a new estimate of I\(p). 

Then T (p) and I\(p) can be compared to see if the change is less than some small number, and 

the procedure continued until this convergence criterion is satisfied. The numerical results' for a 

sphere of 14 inch radius using those procedures will be shown in section V. 

Note that from (23) we can see when the incident magnetic field is a ramp, use physical 

optics approximation by dropping the correction terms, and using ß=0.ATr=l for the monostatic 

case, then the backscattered ramp response is proportional to the cross-sectional area of the target 

as a function of the distance along the line of incident direction [10]. This is the same result 

which Kennaugh, Cosgriff. and Moffatt had obtained [1], [2]. Das and Boerner [7] have shown 

that the size and shape of an object can be obtained from its area functions, and the problem can 

be reduced to the classical Radon problem. 

IV.      Reconstruction algorithm 

The basic idea of reconstruction of an image from a series of its projections appears to 

have been first discussed by Radon [11]. The techniques that exist for reconstruction fall into two 

directions. The whole operation can be done in frequency space directly, or the equivalent of 

these expressions can be transformed in the spatial domain. Whether implemented in the spatial 

domain or in the frequency domain, the reconstruction algorithms can be conveniently interpreted 

13 



by means of a straightforward and interesting theorem, which is the projection-slice theorem. This 

theorem states that the Fourier transform of a projection is a center-cross-section of the Fourier 

transform of the projected object. Most of the modern tomographic systems are based on this 

theorem. 

The algorithm that is currently being used in almost all applications of straight ray 

tomography is the filtered backprojection algorithm. It has been shown to be extremely accurate 

and amenable to fast implementation. We will extend this approach to our radar inversion 

problems. 

Let's start with the thickness function T(p'). It can be written as 

r(p'} = _J_pr M^W  (43) 
2nlJo J- [r-p^p'cosCß^jcosC^-^ + ß/^]2 

where 

(44) 

From   equation   (43).   we   know   that   the   inner   integral   is   the   convolution   of 

/(pis-2p/cos(ß/2)cos(<t)'-({)' + ß/2)y and l/tp^-Zp'cosfß^cos^'-tf' + ß^)]2. Equation (43) thus 

can be written as 

F(p') =  [*[' — |a)iF(Q)exp[/a)(pu-2p/cos(-^)cos((|)/-(J),+|-))]do)ci(t)' (45) 
Jo J — 2TI 2 2 

Since the Fourier transform of l/[piI-2p'cos(ß/2)cos((|>/-<|>,'-'-ß/2)]2 is -7t:uj, and the 
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Fourier transform of/(pw-p'cos(ß/2)cos(<|>/-<|)'J-ß/2) is F(w). and the convolution is the Fourier 

transform of a product. We can see from equation (45) that the inner integral represents a 

filtering operation, where the frequency response of the filter is given by -7t iu i. Therefore the 

inner integral part is called a "filtered projection". The resulting projections for different angles 

are then added to form the estimate of T(p'). 

When the projections are bandlimited by the highest frequency B, the projection data are 

collected at the Nyquist frequency, with a sampling interval of a = I/C2B). Equation (45) may 

be expressed as 

T(p') =  f"r°°(?(a))F((o)exp[/a)(p[5-2p/cos(ß/2)cos((|)/-(t)' + ß/2))]rfa)J(J)' (46) 

where 

<?(to) = — \u\rect(u) <47) 
2* 

and 

,1    iui<2nJJ (48) 
««(co) =    0   otherwise 

O(oii. shown in Figure 3. represents the transfer function of a filter with which the 

projections must be processed. The impulse response, q(t), of this filter is given by the inverse 

Fourier transform of 0(<s>) and is 

1   r°°  1 q(t) = —I   —;o) \rect(u)exp(jiot)dus 
271

J
-°°2TI (49) 

= 2B2sinc(2xBt)-B2sinc2(nBt) 

This function is shown in Figure 4. Since the projection data are measured with a 
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sampling interval of 1/(2B), for digital processing the impulse response needs only be known with 

the same sampling interval. The samples. q(n), of q(t) are given by 

JL     „-o 
4a2 

0 n =even t50' 
1 

q(n) = 

2    2    ~> TZ n a 
n=odd 

This filter was first discussed by Ramachandran and Lakshminarayanan [12]. We can 

replace integrals in (43) by sums and obtain the approximate reconstruction formula given by 

,V-1 

r(;c,y) = — V yf(^,tk)q(tk-p^2p'cos^l2)cos^'-^^l2)) <51) 
2N„0 t... 

where there are N angles 4>' for which the scattered fields are known 

V.       Numerical Results and Images for Metal Sphere 

A metal sphere is the simplest target which can be used to validate the formulas 

developed in the previous sections. We use SMEP as the incident magnetic field pulse. Figure 

5 shows the theoretical SMEP generated by taking a=8xl0" and f=\0GH: in (20) and the 

synthesized SMEP using the frequency band 4-16GHz. Both figures have been moved to right 

by 1 ns. The spectrum' of the synthesized SMEP is shown in Figure 6. Figure 7 shows far-zone 

scattered field of a 14 inch sphere computed by using the Mie series and the marching on in time 

method, respectively. The cross-sectional areas obtained using equation (35) is shown in Figure 
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8. Note in Figure 8 that the cross-sectional area A(r,tJ is plotted with a time scale such that the 

cutting plane t   = rr used to determine A(r,ts) moves with l/(2cos(ß/2)) (one half for the 

monostatic case) the velocity of the incident SMEP. Figure 9 shows the images of the sphere 

using the time domain identity (51) with the PO approximation. Figure 10 shows the image of 

the same sphere when the correction terms are considered. We can see that the correction term 

provides only a small contribution to the reconstruction. 

VI.      Experimental Results and Images for Aircraft 

The time-domain identity (51) can be used in real time to construct an image from short 

pulse radar measurements. A simulation of time-domain imaging is carried out using data 

measured in the Michigan State University free-field scattering range. The field scattered from 

several aircraft models was measured in the plane of the aircraft wings in the frequency band 4- 

16GHz at 200 aspect angles from 0° (nose-on) to 180°. using an HP8720B network analyzer. The 

bistatic angle is ß=10". The data from the non-illuminated side was provided through symmetry. 

Each scattered field response was first calibrated using a 14 inch diameter sphere as a reference 

target, multiplied by the SMEP window, and then inverse transformed into the time-domain using 

the FFT to provide a SMEP response. The data we used are the derivative of the measured SMEP 

response data, and thus a sharpening of the target edges is provided. 

Two different frequency truncated SMEPs haven been used in our radar target imaging. 

Figures 11.12 and 13 show the images of a 1:48 scale model TR-1 aircraft, a 1:32 scale model 
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F-14 aircraft and a 1:72 scale model B-52 aircraft, respectively, using the synthesized SMEP 

shown in Figure 5. The edges of the aircraft are clearly visible, with the fuselage and vertical 

stabilizers producing the largest thickness values, as expected. There is some distortion in the 

aircraft shapes due to the use of PO approximation and an inaccurate estimate of target range. 

The image obtained using data from the restricted range of aspect angles 0-90° is shown in figure 

14. It can be seen that the shadowed edges of the target are invisible due to the limited view- 

angles and use of the physical optics approximation. Figure 15 shows another theoretical SMEP 

generated by taking a=4xlOg and f=\0GHz in (20) and the synthesized SMEP for the frequency 

band 7-13GHz. Again, both figures have been moved to right by 1 ns. Figure 16 shows the 

spectrum of the synthesized SMEP. Figure 17 shows the image of the same 1:72 scale model B- 

52 aircraft by using the second SMEP. We can see that the edges of the aircraft are not as clear 

as in Figure 13 because the pulsewidth is bigger than that of the first SMEP. We can improve 

the quality of the picture by adding a proper window to the SMEP response data in time-domain. 

This window is formed by two steps. First, the biggest points in each SMEP response data are 

found by comparing the values of the data: these biggest points actually are the responses from 

the scattering centers of the target. Then the values in a small range around the biggest point are 

set to unity and to 0.5 within the two next biggest point ranges. Note that different data sets have 

different windows. Figure 18 is a SMEP response data before windowing, the window produced 

based on Figure 18 is shown in figure 19. Figure 20 is the SMEP response data after windowing. 

The image of the same B52 aircraft model by using windowed data is shown in figure 21. By 

using windowing we have increased the resolution of the SMEP and obtained clear images with 

hiahlv-defined edaes. 
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VII.    Conclusions 

A time-domain approach to the inverse scattering problem has been provided and 

demonstrated. In this approach, starting with the exact space-time magnetic integral equation, and 

by using Radon's theory and a SMEP as the incident pulse, we obtained the complete inverse 

scattering identity which considers both illuminated and shadowed range contributions. The 

reconstruction algorithm based on the projection theory and the inverse scattering identity was 

developed. By using SMEP response data and the reconstruction algorithm, we have obtained 

very good images of several aircraft models. This approach is more practical than methods using 

impulse, step, or ramp responses of the target since the SMEP can be directly transmitted in time- 

domain. Ways to obtain quality images using limited viewing aperture and frequency bandwidth 

data will be investigated in the future. 

19 



References 

[1] E. M. Kennaugh and R. L. Cosgriff, "The use of impulse response in 
electromagnetic scattering problem." IRE National Convention Record, part I. 
PP 72-77.^1958. 

[2] E. M. Kennaugh and D. L. Moffart. "Transient and impulse response 
approximations", Proc. IEEE. vol. 53. pp.893-901, Aug. 1965. 

[3] J. D. Young. "Radar imaging from ramp response signatures". IEEE Trans. Antennas 
Propagat. vol AP-24 no. 3, pp.276-282, May 1976. 

[4] C. L. Bennett. "Time domain inverse scattering", IEEE Trans. Antennas 
propaga   vol. AP-29, no. 2, pp.213-219, Mar. 1981. 

[5] E. J. r iwell. K. M. Chen, D. P. Nyquist. J. E. Ross, "Time domain imaging 
of airborne targets using ultra-wideband or short-pvise radar". IEEE Trans. Antennas 
propagat. vol. AP-43, no. 3. pp.327-329. Mar. 1995. 

[6] D. Ludwig. "The Radon transform on Euclidean spaces". Comm. Pure and 
Applied Math., vol. XIX,  pp.49-81, 1966. 

[7] Y. Das and W. M. Boeraer, "On radar target shape estimation using algorithm for 
reconstruction from projections", IEEE Trans. Antennas Propagat.. vol AP-26, no. 
2, pp.274-279, Feb. 1978. 

[8] S. R. Deans, The Radon transform and some of its applications. John Wiley & 
Sons, 1983. 

[9] N. N. Bojarski, "A survey of the physical optics inverse scattering identity". IEEE 
Trans. Antennas Propagation, vol. AP-30, No. 5, September 1982. 

[10] Y. Dai, E.J. Rothwell, D.P. Nyquist and K.M. Chen, "Time-domain imaging of 
radar targets using ultra-wideband or short pulse radars", IEEE APS International 
Symposium and URSI Radio Science Meeting, 1995. 

[11] J. Radon, "On the Determination of Function from their Integrals Along certain 
Manifolds", Ber. Saechs. Akad. Wiss. Leipzig, Math. Physics Kl, vol. 69, pp. 262- 
277, 1917. 

[12] G. N. Ramachandran and A. V. lakshminarayanan, "Three dimensional 
reconstruction from radiographic and electron micrographic application of 
convolutions instead of Fourier transforms," Pr< Nat.Acad. Sei. U.S., vol.68, 
pp. 21-24,1974. 

20 



shadow region 
i ,z 

J 
/        ^ /\ ^ 

1   ° //P/21 / 

transmitting 
direction 

Ri 

lit region 

y 
ß/2. A 

f   bisector 
direction 

Rs 

receiving 
direction 

Figure 1 Geometry of the scatterer and graphic view of space parameters. 

21 



e1 
A 
/  i 

/      i 

/         i 

~^>r/ ^    rs 

^V\ »' r'ts j y\,^"   \ 
T                            j       1 

' ^*<.-i 
0^''^^^"'^ .^                         1 

• X \"~~"~-4 

*i 

Y(?) 

J-.      transmitting 
direction 

section cut 
by f T/-ts 

A   bisector 
1* direction 

fs receiving 
direction 

Figure 2        Geometry of 3-D body reconstruction problem 

22 



Q(ü) 

1/(2a) 

 0) 
-1/(2a) l/(2a) 

Figure 3 The filter response for the filtered backprojection algorithm.  It has been 
bandlimited to l/2a. 
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Figure 4 The impulse response of the filter shown in Figure 3. 
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Figure 5 Comparison of theoretical (a=8xl09, f=10GHz in (20)) and synthesized (4- 
16GHz) SMEP. Both figures have been moved to the right by 1 ns. 
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Figure 9 Upper surface image of the 14 inch diameter sphere using PO approximation. 
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Figure 10 upper surface image of the 14 inch diameter sphere considering the correction terms. 
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Figure 18. B-52 SMEP response (nose-on) before windowing. 

38 



1.00 - 

(D 

ö 

o 
> 

0.50 

0.00 - 

■0.50 -Li 1111111111111111111111 M 11 111111111111111111111111111 
5.00       7.00       9.00       11.00      13.00      15.00 

Time (ns) 

Figure 19.      Window produced based on Figure 18. 

39 



1.00 -i 

0.50 - 

£    0.00 

o 
> 

1.00 

— 1.50   1111111111111111111111111111 ii 11 ii 11 M 111111111111111 
5.00 7.00 9.00        11.00       13.00       15.00 

Time  (ns) 

Figure 20.      B-52 SMEP response (nose-on) after windowing. 

40 



,H0 

.30 

.20 ■ 

,10 

■1.0 

,10 

-.20 

-.30 

,H0 

W- -V&r '-:? •.'•'. ,o I 
35 

$*; 

y.-< 
X-: 

. • * *-*   -tlii 

..^.-%-:* ;••*' •■'*'• %.r ^.- '-   •■•-*'"'■ 

|! ;v ; •.■.■'?'VäSr-"'-J&'r':.-- ■. i-I 

^1 

,50 .HO -.30 -,20 .10 .00 .10 .20 ,30 ,M0 ,50 

Figure 21.      Image of B-52 from 0°-180° data in band 7-13 GHz (after windowing). 

41 



Appendix 10 

RADAR IDENTIFICATION AND DETECTION USING 

ULTRA-WIDEBAND/SHORT-PULSE RADARS 

K.M. Chen, E. Rothwell, D. P. Nyquist, J. Ross, P. Ilavarasan, 
R. Bebermeyer, Q. Li, C. Y. Tsai, and A. Norman 

Department of Electrical Engineering 
Michigan State University 
East Lansing, MI 48824 

INTRODUCTION 

An ultra-wideband/short-pulse (UWB/SP) radar has promising potential for target identification 
due to its ultra-high resolution capability and for target detection due to its clutter-suppression 
capability. This paper describes various research topics studied at Michigan State University on 
target identification and detection using a UWB/SP radar. 

First the measurement of transient responses of airplane models illuminated by a short EM 
pulse is described. Then target identification schemes using these primarily early-time target 
responses are discussed These target ID schemes include a time-domain imaging technique, a 
wavelet-transform technique and a neural network technique. Finally, schemes for detecting a target 
in a severe sea clutter environment using the E-Pulse technique or using the relative motion of the 
target are presented. 

MEASUREMENT OF SHORT-PULSE TARGET RESPONSES 

Michigan State University has a ground-screen-based time-domain scattering range and a free- 
field, anechoic chamber scattering range. The latter is used to measure high-resolution, early time 
responses of airplane models illuminated by a short EM pulse (about 60 ps width) which is 
synthesized from swept frequency measurements in the range of 2 to 18 GHz. A computer- 
controlled rotatable target positioner is capable of orienting the target to a precision of 0.15° in 
aspect angle. The data acquisition procedure is fully computer controlled, with the system transfer 
function deconvolved using a metallic sphere as a known calibration target. A typical set of 
synthesized target pulse responses is given in Figure 1, which shows the transient response of a 
1:48 scale model B-58 (63 cm from nose to tail, and 36 cm from wing-tip to wing-tip) for aspect 
angles between 0 to 90 degrees, stepped in a 0.45° increment. 

Using these measured target pulse responses, several schemes for target identification have 
been developed. These include the E-Pulse technique12, a correlation scheme3, a time-domain 
imaging technique, a wavelet transform technique and a neural network technique. The latter three 
are described in this paper. 
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Transient Qesponse Synthesized 

angle (degrees) 

Figure 1.   Transient response of 1:48 scale B-58 aircraft 

TIME-DOMAIN IMAGING TECHNIQUE FOR TARGET IDENTIFICATION 

The short-pulse response of a radar target provides significant information about the positions 
and strengths of scattering centers. If observations are made over a wide range of aspect angles, 
sufficient information is gained to obtain an image of the target. 

Bojarski4 proposed a simple inverse scattering identity based on the physical optics 
approximation. He showed that the characteristic function of a conducting scatterer (which is unity 
within the target geometry and zero elsewhere) is given by the three-dimensional inverse Fourier 

transform of the scattered field as a function of the incident plane-wave wave vector k'. If 
scattered field information is only available within a plane, then the two-dimensional inverse 
transform yields the thickness of the scatterer as a function of position in that plane. 

In the MSU free-field scattering range, aspect angle variation is obtained by target rotation. 
It is thus convenient to write the inverse scattering identity in polar coordinates. The thickness is 
then shown to be proportional to the function 

ru(p)=Re(/   ] E'iW^^^dA (1) 

where p is the position vector in the plane of the measurements, cj», is the plane wave incidence 

angle, E' is the back-scattered field measured at frequency cd and aspect angle <J>., and 

K0 = 2kg = 2(o/c. By performing the integral over KQ and recognizing this as the temporal inverse 
transform, the thickness function is proportional to 

r,(p) = /r^cos^-«.,.),^)^ (2) 

where rtt) is the time-integral of the inverse transform of E', i.e. the step response of the target. 
This time-domain physical optics inverse scattering identity has a very clear physical interpretation. 

The quantity -2pcos(4» -<t>,)/c is the two way transit time from the origin of coordinates to the point(p,<J>) 
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along a plane wave incident at angle *,. Thus, the integral (2) is the sum over all aspect angles 

of the step response value corresponding to scattering from the point (p,<|>) 
It is possible to enhance the edges of the image by merely using the impulse response (inverse 

transform of E1) rather than the step response, since this corresponds to a derivative of the 
thickness response. This has been done in the examples shown in Figure 2 A distinct imaee of 
each target results, with the edges of the fuselage, wings, etc., being clearly displayed. Note that 
the physical optics approximation does not accommodate the shadowed regions and thus hidden 
edges such as the rear of the forward wings are not strongly present. 
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WAVELET-TRANSFORM TECHNIQUES FOR TARGET IDENTIFICATION 

The sparse nature of the discrete wavelet transform (DWT) of SP scattering signals allows for 
a significant reduction in the storage of early-time signals. The DWT provides a linear 
transformation of a d.scretized signal into the "wavelet domain" much in the same manner as the 
discrete Fourier transform3.  The signal is represented as a linear combination of wavelet basis 
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functions (analogous to sinusoids for the Fourier transform) and can thus be reconstructed by 

N 
lsis/V (3) 

Here s; is the signal sampled at time tj, % is the amplitude of the j* wavelet basis function, wg is 
the j* wavelet basis function sampled at time ti; and N is the length of the signal (usually a power 
of 2). Wavelet basis functions are constructed so that the wavelet coefficient vector {&} is sparse 
for a certain class of waveforms (polynomials of a chosen degree). Because of this sparseness, the 
DWT can be used to compress the signal. 

As an example, consider the nose-on (0°) response of a 1:72 scale B-52 sampled at 256 time 
points, as shown in Figure 3. Figure 4 shows the wavelet spectrum {aj computed using a 256- 
point Lemarie DWT5. It is readily seen that only a small subset of the wavelet coefficients are 
significant. Note that the small values of coefficients a129 through a^ is due to an oversampling 
of the data by a factor of about 2. The DWT thus automatically compensates for frequency 
oversampling. 

To see the effects of random noise on the wavelet reconstruction of data, zero-mean white 
Gaussian noise has been added to the nose-on response of the B-52, resulting in a waveform with 
a signal-to-noise ratio (SNR) of 10 dB. Figure 4 shows the wavelet spectrum of the noisy response. 
Although there is a perturbation of each of the wavelet coefficients, the values of the larger 
coefficients are changed only slightly. Thus, when only a few coefficients are retained in 
reconstructing the response, the result is a much more faithful representation than the original noisy 
waveform, as seen in Figure 3. In other words, much of the noise is represented by perturbation 
of very small wavelet coefficients which are neglected (effectively filtered out) in the 
reconstruction. 

To provide an example of target identification using wavelet-stored data, the SP responses of 
five aircraft models -- B-52 (1:72 scale), B-58 (1:48), TR-1 (1:48), F-14 (1:48) and Mig-29 (1:48) 
- were synthesized from frequency-domain measurements at 68 angles between 0° and 30 °. The 
resulting signals were transformed using a 512 point Lemarie DWT and the spectra truncated to 
the largest 32 components. An identification scenario assumes that the 18° B-52 response arises 
from an unknown target. The measured response of the B-52 is correlated with the responses of 
all the other targets, at all aspects, reconstructed from their stored, truncated wavelet spectra. The 
result, shown in Figure 5, provides a correct identification, since the largest correlated output arises 
from the B-52. Also note that the target can be correctly identified over about a 3° range of angles. 
This gives a measure of the necessary aspect angle discretization needed when storing target SP 
signatures. 

Finally, Figure 6 shows that contaminating the measured target signal with random noise at 
an SNR of 10 dB does not significantly reduce the identification capabilities of this technique. 

so-on response ot 9-52 
■  Reconstruction  (lorgest  32  «ovetets) 

Reconstruction   (largest   32   «ovt 

Time  (nsec) 

Figure 3.    Nose-on (0°) response of B-52 aircraft 
model and 32 wavelet reconstruction. 

100 150 200 

Wavelet  number 

Figure 4. Wavelet spectrum of nose-on (0°) response 
of B-52 aircraft model. 

538 



Aspect  angle   (deg) 

Figure 5. Maximum correlation of 18° B-52 response 
with responses from all targets. Target waveforms 
represented using 32 wavelets. 

Aspect  angle  (deg) 

Figure 6. Maximum correlation of 18° B-52 noisy 
response with responses from all targets. Target 
waveforms represented using 32 wavelets. SNR= 10 
dB. 

NEURAL NETWORK TECHNIQUES FOR TARGET IDENTIFICATION 

Neural networks have great potential for storing and retrieving the large number of target 
signatures needed to perform aspect-dependent target identification (i.e., identification based on the 
early-time SP response). A number of neural network architectures for target identification were 
simulated, including feed-forward networks trained using back-propagation, and Hopfield networks. 
Particularly good success was observed with correlation associative memories, including generalized 
inverse networks (GI), exponential correlation associative memory networks (ECAM), and cascades 
of these networks (ECAM-GI). The wavelet transform technique described in the previous section 
has also been employed to reduce network size. 

As an example, Figure 7 shows simulation results for the ECAM-GI cascaded network, 
designed to recognize three aircraft (F-14, B-58 and B-52) each at 19 different aspect angles 
between 0° and 90°. The results show that for low noise conditions, each of the 57 responses is 
correctly recognized.  In fact, accurate identification is possible at noise levels of 0 dB SNR. 
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Figure 7. Overall performance of ECAM-GI cascade 
network, designed to recognize 3 aircraft at 19 aspect 
angles each. 
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Figure 8. Performance of RDM-GI cascaded 
networks trained to recognize five target models each 
at 19 aspect angles.   Analog inputs used. 

More sophisticated networks are also being investigated, including recurrent dynamic 
correlation associative memory networks6-7 (RDM). The performance of a network using the RDM 
technique cascaded with the Generalized-Inverse method (RDM-GI) with fixed analog input is 
shown in Figure 8. This network was trained to recognize five targets (B-52, B-58, F-14, Mig-29, 
TR-1), each at 19 different aspect angles. Superior performance is seen in these figures, with 
better than 95% correct identification at SNR levels as low as -5 dB. 
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DEFECTION OF TARGETS IN A SEA CLUTTER ENVIRONMENT USING UWB/SP 

RADAR 

The detection of radar targets near the sea surface using transient signals is made difficult by 
the p^enctof a strong clutter return from the disturbed sea.   However, ,f the scattenng from 
wLr wave crL« is primarily specular within the band of the interrogatmg signal, the E-puls 
SSLITcicell-ttef technique can be used to eliminate the Cutter return, thus mcreasmg the 

Pf0b Assum^alt^ surface consists of wave crests of nonuniform heights separated by water 
wavelengtiTx; If the scattering from these wave crests is nearly specular, the transient back- 
rCattered elemic field response will be a series of peaks separated in t.me by approximately 
SoseJc where 6 is the incidence angle measured from grazing incidence. Because this is 
SZttT-dyto response from a radar target, a frequency-domain E-pulse can be 
SS£> eliminate the sea clutter as a post-processing step. This enhances the ratio of energy 
to ftTsS to the energy in the clutter and improves the probability of detecting the target 

uX certain circumstances the clutter cancellation can also be accomplished in the time 
domain through direct transmission of an appropriate "clutter reducing transmit waveform 
CCMW)   If the wave crests are fairly similar in height, the time domain scattered field respone 
wiU be «striy periodic, and can be approximated by a sum of complex exponentials    It s then 
no sible to create an E-pulse to eliminate the sea clutter directly in the time domain. /w*e™we. 
STs poss bleTo shape the E-pulse such that its energy is concentrated within the band of maximum 
a^etC^ 0«tap. near the dominant target resonance) so that the radar return when rh, 
pu£ is^Ei contaL both an enhanced target response and an eliminated clutter.  Since thi 
?s not a Post-processing step, both the target-to-clutter ratio and the s,gnal-to-noise ratio are 
nhÜP7f^rSulse8 wav'eform is too complicated for direct transmission, a simplified vers.on 
c^e synthesized and transmitted using a superposition of short-pulse CW waveforms 

T sLulate the potential of the time-domain approach, an aluminum missile model has been 
placJaböTa conducting aluminum sinusoidal surface, as shown in Figure 9, and '»uminated by 
a SzSly-polarized EM wave. The backscattered field has been measured for an aspect ang e 
££^*X«i*»»A in the frequency band 1-7 GHz both with and without me mu.de 
n esent T^e resulting time-domain waveforms, obtained through Fourier inversion, are shown in 
F gSe 10 As can be seen, the missile response is embedded within the strong clutter «pud and 
dEl to detect. To eliminate the clutter, a CRTW has been constructed using the clutte 
response and convolved with the clutter+missile response to simulate its transmission. Figure 11 
snls^Tllt, indicating that the clutter has been reduced significantly, and the target response 
(appearing after about 2 ns) is easily detected. 

lncMME-Md(ouloli»g» 
madantWmOMM" 

Figure 9.      Simulated   experimental   sea   surface 
environment. 

Time   (ns) 

Figure 10.     Measured response of simulated sea 
surface with and without 5 inch missile present. 
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In an actual application, it would not be known if the target was present, and thus the CRTW 
might be constructed using both target and clutter information. However, it is speculated that if 
the missile response is small, the resulting CRTW will eliminate the clutter without reducing the 
target response. To test this, a CRTW was created using the clutter+missile response of Figure 10 
and convolved with the same response. The result, shown in Figure 12 demonstrates that while 
the clutter cancellation is not quite as good as when the CRTW was constructed from a pure clutter 
response, the missile response is still detectable over the clutter. 

seo  clutter 
sum   signal 

CRTW of  seo  clutter 
CRTW of seo  clutter 

Time   (ns) 

Figure 11. Convolution of measured response of sea 
surface with and without 5 inch missile with CRTW 
created from sea clutter response. 

seo  clutter 
sum   signal 

CRTV/  of  sum  signal 
CRTW   of   sum   signol 

Time   {ns) 

Figure 12. Convolution of measured response of sea 
surface with and without 5 inch missile with CRTW 
created from missile plus clutter response. 

SEPARATION OF TARGETS FROM CLUTTER USING UWB/SP RADAR AND RELATIVE 
TARGET MOTION 

A UWB/SP radar can be used to detect targets which move with different velocities than that 
of the ocean waves. 

Consider a situation where a fast-moving target (e.g., a missile) and a stationary target (e.g., 
a periscope) are in the presence of a slow-moving ocean wave. If the sea surface is interrogated 
by a short EM pulse, the radar return will consist of a periodic series of peaks (the sea clutter from 
the ocean wave) and two peaks representing responses of the moving and stationary targets. When 
another interrogating pulse is sent out after a time interval, the new radar return will have a series 
of peaks shifted slightly due to the slow moving ocean wave, while the peak of the moving target 
will have moved a much larger amount, and the peak of the stationary target will not have moved. 
With repetitive interrogating pulses and each subsequent radar return recorded, a diagram such as 
shown in Figure 13 can be constructed. The horizontal axis is a fast time scale (ns) representing 
the location of targets and ocean wave crests. The vertical axis is a slow time scale (s) representing 
the time when the radar return is received. This diagram clearly shows the traces of moving and 
stationary targets and ocean wave crests. Using this relative motion scheme, targets can be 
separated from clutter, thus facilitating their detection. 

This detection scheme was recently studied by the Naval Command, Control and Ocean 
Surveillance Center using actual measurements. 
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Figure 13.    Traces of targets and ocean wave crests constructed using radar returns  from repetitive 
interrogating EM pulses.   Ocean wave velocity: 1 m/s, missile velocity: 100 m/s. 
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Appendix 11 

Measurement and processing of scattered ultrawide-band/short-pulse signals 

Edward Rothwell, Kun-Mu Chen, Dennis Nyquist, John Ross, and Robert Bebermeyer 

Department of Electrical Engineering, Michigan State University 
East Lansing, MI 48824 

ABSTRACT 

High quality ultrawide-band measurements provide a basis for understanding the transient scattering phenomena 
necessary for the development of short-pulse radar target identification and detection schemes. This paper describes several 
techniques used at Michigan State University (MSU) for the acquisition, processing and interpretation of ultra-wideband 
scattering data. By performing measurements over a sufficiently large bandwidth, the early-time specular nature of a radar 
target and the late-time resonant behavior can be observed simultaneously within a single target signature. Special attention 
has been given at MSU to enhancing the equivalent bandwidth of the measurement system through a spectral splicing and 
extrapolation method. Observation and interpretation of the various scattering phenomena and their dependence on target aspect 
are then interpreted through several visualization techniques, including scattering plots, frequency-time plots and images. 

Key words — impulse radar, ultrawide-band radar, electromagnetic scattering measurements 

1. INTRODUCTION 

The development of viable short-pulse radar target identification systems1 has prompted a need for understanding the 
basic phenomena of transient electromagnetic scattering from realistic targets. This is most easily accomplished through 
laboratory measurements over ultrawide frequency bandwidths. If the bandwidth is large enough, a target signature can be 
measured which contains both the early-time specular target response (a high frequency effect), and the late-time natural 
resonance response (a low frequency effect). Each of these components has been suggested for use in target identification 
schemes2, and with sufficient bandwidth both could be used in a single technique3. 

A scattering range has been developed at Michigan State University (MSU) which allows calibrated measurements of 
the near backscattering properties of scale model targets over the effective frequency range of 0-18 GHz for all linear 
polarization combinations (hh, hv, vh, w). The bandwidth is achieved through a combination of frequency scaling, splicing 
and extrapolation techniques which employ a genetic algorithm to enforce the causality of the equivalent time-domain signature. 
Details of the bandwidth enhancement are given in Section 2, along with a description of the range calibration technique. A 
computer controlled target rotator capable of a positioning accuracy of 0. IS" allows a detailed study of the variation of target 
scattering as a function of aspect angle. The wide bandwidth combined with the fine angular resolution of the measurements 
results in a large amount of data for each target, the physical interpretation of which is facilitated by various visualization 
techniques. Several methods for visualizing the data are presented in Section 3, including scattering plots, frequency-time plots, 
and imaging based on physical optics. Images and scattering plots are useful for interpreting the early-time specular behavior 
of targets as a function of aspect angle, while frequency-time plots allow the identification of such interesting physical 
phenomena as the resonance of target substructures. The late-time behavior is described best through plots of the aspect 
variation of the late-time modal amplitudes. 

2. MEASUREMENT TECHNIQUES 

The free-field scattering measurement system at MSU is a swept-frequency system utilizing a Hewlett-Packard HP- 
8720B vector network analyzer. While the network analyzer is capable of performing measurements over the band 0.13-20 
GHz, the practical measurement band is controlled by the rated antenna bandwidth. Two sets of TEM horn antennas are 
available for use, American Electronic Laboratories model AEL H-1734 (0.5-6 GHZ rated bandwidth) and AEL-1498 (2-18 
GHz). The first set of antennas is combined with a Picosecond Pulse Labs broadband amplifier (11 dB gain) to give a viable 
0.4-7 GHz measurement band, while the second set of antennas is combined with a Hewlett Packard HP-8349B amplifier (20 
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dB gain) to give a viable measurement band of 2-18 GHz. By combining measurements from both bands, and using algorithms 
described in Section 2 to scale, splice and extrapolate the spectrum, an equivalent measurement bandwidth of 0-18 GHz is 
obtained. 

The horn antennas are mounted within portholes cut into one wall of a 24x12x12 foot anechoic chamber which is lined 
with 6 inch pyramidal absorber. Scale model targets are placed on a low density foam pedestal mounted on an Arrick Robotics 
MD-2 Dual Stepper Motor computer controlled rotator located in the center of the chamber. The rotator is capable of 0 15 
degree positioning accuracy from 0 to 360 degrees. At each aspect angle, the network analyzer acquires the data and sends 
it to a personal computer for processing and analyse 

A diagram of the measurement system is shown in Figure 1. As in any scattering system, the effects of the 
transmit/receive^system transfer function, clutter, and target to chamber interactions must be removed to obtain accurate 
measurements. The calibration procedure is similar to that used by Morgan4 except that the initial raw measurements are 
performed m the frequency domain. The methodology is sufficiently different to merit a detailed description. 

2.1. Calibration Procedure 

Theraw measured response of a target obtained with the anechoic chamber system differs from the actual res^ 
for two distinct.reasons. First, the response of the measurement system (network analyzer, cables, amplifiers, anteanT 
propagation path) wilI modify the actual response through a convolution process. Second, there will be systematic errors' 
introduced through reflections from the chamber walls (clutter) and interactions between the target and the chamber Each of 
these effects is modeled in the measurement system diagram shown in Figure 2. 

The first step in the calibration procedure is to make a background measurement of the empty chamber This 
measured response is modelled as *«•—•««.    m 

**(/) = 5(/) {HJJ)+HJJ)) ♦ N><J) (1) 

where H.(/) describes die transfer function of the direct cc^lmg from tte transnut antenna to 
the transfer function of the coupling from the transmit antenna to receive antenna via the anechoic chamber, antennaimports 
and target mount, A»</) is random noise and S(f) is the system transfer function -w™» 

*/) • Htf)HJLf)E(J) (2) 

Here Htf) and H(fli are the transfer functions of the receive and transmit antennas from the transmission line into the free-field 
environment while E(f) represents the spectral content of the CW source. 

Next,a^braticmobjectwimalaK>wnrespoi^^^ 
is used, with a known response calculated theoretically using Ü* Mie series. For cross-rxdarizad™ 
circular wire loop is used. This measurement gives ^^ 

*"*(/) - S(J){HJJ) +Bt(f) +H;<J) +/£(/)} - N<*(f) (3) 

where N<"(f) is random noise, #/(/) is the known transfer function of the calibration object, and H'<J) is the transfer 
function of the interaction of the calibration object with the anechoic chamber. Note that the interaction term is causal in the 
time domain; ,t cannot not occur prior to the time required for the wave scattered from the target to reach the chamber waUs 
and return to the receiving antenna. Note also that the interaction term is represented here as an additive effect. 

The last measurement is of the target, giving 

*'**(/) = S(J) [HJJ) +He(f)♦#,«(/) +H'K{f)} + JTty) (4) 

where AT'fl) is nmdom noise, #,'(/) is the desired transfer function of the target and H±{f) is the transfer function due to 
the interaction of the target with the anechoic chamber. Again, this term is causal in the time domain. 
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Once these three measurements have been completed and stored in the computer, data processing to obtain the actual 
target scattered field response can be undertaken. First, the background measurement is subtracted from the measurements 
of the calibration object and the target. Subtracting (1) from (3) and (4) gives the clutter-free responses 

R'if) - $(/){#/(/)+*&/)) * N'if) (5) 

with the noise terms Ne(f) = N'*(f) - Nb(f), N'(f) = #***(/) - Nb(f). The next step in the calibration process depends on 
the quality of the anechoic chamber. If the anechoic chamber is of very high quality, then the interaction terms are small and 
can be neglected along with the noise terms giving 

R'if) « S(/)ff/(/) (6) 

RKD - s(f)H;<j) 
Thus, the system transfer function can be determined from the know calibration response as 

SCO - ¥& (7) 

Finally, the actual target response is given through 

For anechoic chambers of lesser quality, the interaction terms may be too large to be neglected. To solve mis problem, R e(f) 
can be transformed to the time domain and time gating can be used to eliminate any interaction terms that are sufficiently 
delayed beyond the end of the calibration object response. Define the time response of the calibration measurement as 

re(») - ^-'{«'(Z)} (9) 

Time gating with a window function w(t) effectively excludes the interaction terms, giving 

r~(fi = re(iM») <*•> 

Assuming that w(t) excludes all of the interaction terms, and that ^~'(S(/)£f/(/)} is approximately time limited and not 
truncated by the window function, then 

**"(/) - 5(/)fl/(/) (I« 

where /£""(/) - &fytw(t)) • From this, the system transfer function S(f) can be obtained as 

S(f) = *ÜLQ (12) 

Then, from (5) 

BlV)+H&) - 4^£ (13) 

Finally to isolate /?,'(/) the inverse Fourier transform is applied to obtain 

Bto+n&> - ^l{^\ (14) 

If the target response is approximately time limited, and the interaction term is causal and delayed beyond the end of the target 
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response, then the actual target response can be isolated using time gating to eliminate H^t). 

To validate the calibration process, the response of a 0.0381 m diameter conducting sphere was measured using a 
0.1778 m diameter sphere as a calibration object. The measured transfer function of the sphere is compared with its theoretical 
response in Figure 3 for the frequency band 2-18 GHz.  Good agreement is seen throughout the band. 

12 Splicing and extrapolation algorithm 

If a target is measured within the two bands 0.4-7 and 2-18 GHz, die results can be combined to give an overall 
bandwidth of 0.4-18 GHz. It is found that if large scale model targets are used, good spatial resolution is obtained from the 
specular portion of the target response, but the major target resonances occur below 0.4 GHz. On the other hand, if a small 
target is used, the resonances are present but the spatial resolution is poor. This problem can be overcome by measuring a 
small target in the low frequency band and a larger version of the same target in the high frequency band. Assume the larger 
model, denoted A, has a scale of 1:A and the smaller model, denoted B, has a scale of 1:B. Then, frequency scaling for 
conducting targets allows the expression 

*v>-©*'(i/) «* 
where RA(f) and RB(fy are the measured responses of model A and B respectively. By using the above relation, R'(fi is 
converted to the same scale as model A. Thus, by combining both measurements, the response of the larger model is obtained 
within the effective bandwidth (0.4A/B-18 GHz). Typically, a ratio of 2:1 is used between the two targets, giving an equivalent 
frequency range of 0.2-18 GHz. 

The splicing of the two target spectra RA(f) and RK(f) = (RjA)RM(J*JB) in a way that permits accurate 
determination of the transient response via the inverse FFT is somewhat difficult due to unavoidable phase differences between 

RA(f) and Ru(f). These phase differences are primarily due to variations in the effective range to models A and B. Any 
discontinuity in phase at the splicing frequency results in a non-causal, oscillatory signal being introduced into the transient 
response. A related problem arises from the abrupt termination of the band edges. If the data is inversely transformed into 
the time domain, oscillatory signals will again be introduced. The oscillation can be reduced by using an appropriate 
windowing function which tapers smoothly to zero at the band edges, but this will seriously reduce the presence of the low 
frequency resonances, resulting in a transient response with minimal late-time component. 

To overcome these problems, Ru(f) is extrapolated to zero frequency with a linear phase, polynomial spectral 

function Rc(f)e~i*, and then is multiplied by a progressive phase shift factor exp(->ß/)- The optimal values of o andß 
are determined by minimizing the non-causal signal present before the beginning of the target response, t0. A genetic 
algorithm5 is used to minimize the energy 

E =  / [^{Wif)(RA(f) + [RE(f)e-* + *»(/)]e-»f)}]2* d«) 
t.-A 

where W(f) is a weighting function which rolls off only at high frequency (typically a Gaussian function). 

As an example, consider a B-S8 model with scales of 1:48 and 1:96 measured at wing-on incidence with the electric 
field polarized in the plane of the aircraft. The spectral magnitude of the spliced and extrapolated spectral scattered field 
response is shown in Figure 4. There is clearly a low-frequency resonant region with sharp spectral peaks, followed by a high- 
frequency specular region.  The inset shows an expanded version of the lower frequencies, showing the resonances and the 

extrapolation to zero frequency (using a function proportional to to2). Figure 5 shows the time-domain response obtained via 
the inverse FFT. Here there is a clear distinction between the early-time specular response, occurring as the incident field 
passes across the target, and the late-time resonant response. The solid line in Figure 5 is a result of using the genetic 
algorithm to minimize the oscillating precursor signal.  If splicing is done without this minimization, the unacceptably poor 
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signal shown as the dotted line is obtained. 

3. TRANSIENT DATA ANALYSIS AND VISUALIZATION 

It is evident from the above description that several steps are required to obtain an ultrawide-band, transient target 
response. To minimiTe the required amount of human effort, the system has been automated to the greatest extent possible. 
At the beginning of each measurement process a calibration object and the empty chamber are measured, and the results 
transferred to a computer via an HPIB interface bus. A target is then placed upon a computer controlled rotatable platform, 
and the raw target response is automatically measured over a desired range of aspect angles with a step as fine as 0.15°. This 
data is sent to the computer and each set is processed to obtain a calibrated target response. The measurement process is 
repeated with a target of a different scale and the two sets of data are automatically spliced, extrapolated, and inverse 
transformed to give the final time-domain target responses. 

A great deal of data can be rapidly accumulated for each target. To help understand the phenomenology of the 
scattering process, as is required before a successful target discrimination scheme can be developed, a significant effort must 
be put into analyzing the measured data. This encompasses two tasks: understanding the physics of the scattering process as 
a function of time, and understanding the dependence of the scattered field on aspect angle. To this end, several schemes have 
been developed to process the data and improve the visualization of the scattering effects. 

Traditionally, the transient response of a radar target has been decomposed into two parts, an early-time specular 
response which occurs as the incident field waveform passes across the target, followed by a late-time natural mode response 
after the field has completely traversed the target. However, the measured data shows a more ambiguous delineation, 
complicated by the fact that small substructures may resonate during the period usually designated as early time, and global 
resonances may begin to be established before the onset of the late-time period. This effect can be observed quite clearly in 
Figure 6. Here the measured wing-on responses of 1:72 and 1:144 scale model B-52 aircraft have been combined together 
to obtain the short-pulse response. Overlaid with the response is the outline of the B-52. Clearly, there are specular reflections 
arising from the tip of the wing, the two engines, and the fuselage. Note also that the specular response is followed by a late- 
time natural mode response. However, an interesting effect is created by the shadowing of the leeward wing by the fuselage. 
There are no distinct specular reflections after, the incident wave has passed the fuselage, but the natural mode series has 
obviously begun before the wave has completely passed the target. At this aspect angle, the natural response of the target is 
dominated by a fuselage resonance which begins to be established immediately after the incident wave has passed the fuselage. 
This is one instance of a natural response being imbedded within traditional early time. Examples of substructure resonances 
are also apparent. Plotted on the same graph is the transient response obtained using only the high-band (2-18 GHz) data. 
This data has no resonance information, which is easily seen by examining the difference between the curves in the late-time 
region. Note that there is also a difference following the specular reflection from the wing tip and from each engine. Since 
the difference is only due to low frequency information, there is a substructure resonance building after each specular reflection 
— the resonances of the wingtip and the engines. 

The confusing mixture of specular and resonant information can be sorted out and more easily visualized using a 
frequency-time plot. These plots have been used recently as a visual aid in many areas of electromagnetic scattering*. The 
plot is usually created by sliding a windowing function though the waveform and Fourier transforming the product of the 
waveform and the window. Often the window is allowed to expand as it moves (wavelet concept). For a narrow window, 
specular events are more evident; a wider window reveals resonant events. Since there is a combination of both types of 
events at many points within the target data, it is necessary to use a window with an adaptable window width. Figure 8 shows 
the plot generated using a rectangular window whose right side progresses uniformly in time through the waveform (shown 
at the bottom) and whose left side is allowed to expand at the same rate until either side encounters a large slope. At that point 
a specular reflection is detected and the width is reduced to a minimum value of 0.05 ns. When the window moves into a 
region of resonance, it expands to encompass the entire resonance until another specular reflection is encountered. The vertical 
axis is a plot of the spectrum within the window when the right side is at a given value of time (shown as the curve on the left 
for the largest time plotted). Specular reflections appear as dark stripes with wide bandwidth, while resonances appear as 
horizontal stripes. Thus, the substructure resonances are seen beginning to form after each specular reflection, and then finally 
progressing into two very strong body resonances in late time. This plot allows a visualization of the onset and behavior of 
both specular reflections and target resonances of all types. 
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Once there is an understanding of the complexity of each target response, it is not surprising that there are many way; 
to view the aspect dependence of the data. A very straightforward approach is to view the data as a three-dimensional plo 
of amplitude vs. aspect angle. This is shown in Figure 7 for the B-58 aircraft, measured from 0M80" with a 0.9° step size. 
It is easily seen that both the early and late-time components are highly aspect dependent. By separating early and late times 
more physical insight is provided. For instance, Figure 9 is a scattering plot showing the log amplitude of the response of th< 
B-S8 vs. aspect angle. Here the variation of the specular reflections are more easily seen. For example, at nose-on incideno 
(0°), the first reflection is from the nose, and later reflections come from the engine mounts, horizontal stabilizer, etc. As du 
aspect progresses toward wing-on (90°) the nose and tail reflection move inward to coincide with the fuselage, and the engin« 
mounts move outward.   This aspect dependent information can be amimnlatfri and used to produce a spatial plot of ai 

aircraft's specular points. For each spatial point (p',4') *» accumulation over aspect angles is given through 

2« 

Tip',*') - //{[p -2p'cas(*'-4)]lc)d4t <17> 
0 

where [p -2p'cos(4'-$j)]/c is the time delay to the point (p',6')-  Figure 10 shows the result for a 1:48 model TR-1, ant 
an obvious image is created.  Formula (17) is directly related to the time domain physical-optics imaging identity7. 

Finally, the late-time data is most easily interpreted as a sum of body resonances with aspect independent natura 
frequencies and aspect dependent amplitudes and phases. By extracting these resonances using a genetic algorithm, i 
description of the aspect dependence is provided by plotting the variation of amplitude and phase vs. aspect angle. Figur 
Figure 11 shows the modal amplitudes of the B-58 model. It is seen that the first dominant mode (perhaps a wing resonance; 
is very constant with aspect angle while the second mode (perhaps a fuselage resonance) shows a variation similar to thin win 
structures. 

4. ACKNOWLEDGEMENT 

This work is supported by the Office of Naval Research under Grant No. N00014-93-1-1272. 

5. REFERENCES 

1. C. Phillips, P. Johnson, K. Gamer, G. Smith, A. Shek. R.C. Chou and S. Leong, "Ultra-high-resolution rada 
development and test,* in Second Conference on Ultra-Wideband, Short-Pulse Electromagnetics, New York, April 5-7, 1994 

2. Edward J. Rothwell, Kun-Mu Chen, Dennis P. Nyquist, Ponniah Ilavarasan, John E. Ross, Robert Bebermeyer 
and Qing Li, "A general E-pulse scheme arising from the dual early-time/late-time behavior of radar scatterers," IEEE Trans, 
on Ant. Propagat., vol. 42, no. 9,. pp. 1336-1341, Sept. 1994. 

3. J. Ross, P. Ilavarasan, E. Rothwell, R. Bebermeyer, K. M. Chen, D. Nyquist, and Q. Li, "Radar targe 
discrimination using E-pulses with early-time and late-time responses," IEEE AP-S International Symposium and URSI Radi< 
Science Meeting, Ann Arbor, MI, June 28-July 2, 1993. 

4. M.A. Morgan, "Ultra-wideband impulse scattering measurements," IEEE Trans. Ant. Propagat., vol. 42, no. 6 
pp. 840-846, June 1994. 

5. David E. Goldberg, Genetic Algorithms, Addison-Wesley, Reading, MA, 1989. 
6. Lawrence Carin and Leopold B. Felsen, "Wave-oriented data processing for frequency- and time-domain scatterinj 

by nonuniform truncated arrays," IEEE Antennas and Propagation Magazine, vol. 36, no. 3, pp. 29-43, June 1994. 
7. E.J. Rothwell, K.M. Chen, D.P. Nyquist and J.E. Ross, "Time-domain imaging of airborne targets using ultra 

wideband or short-pulse radar," IEEE Trans. Ant. Propagat., vol. 43, no. 3, pp. 327-329, March 1995. 

SPIEVol. 2562/ h 



£ 
HP AMPLIFIER 

1      * 
CH1      CH2 

Mifi s21 
HP8720 Analyzer 

Figure 1. MSU ultrawide-band scattering range. 

COMPUTER 

(STORAGE & 

PROCESSING) 

Transmitted Field 
 > 

V    Coupling ^  Scotterer \l   Interactions        ^  Clutter 

Received Field 

Receiver 

Figure 2. 

QJN(f) 
Noise 

Block diagram model of measurement system. 

Chanber 

144/SPIEVol. 2562 



0.001 

Figure 3. 

T—i—r—i—i—i   i   |—i—i—i—i   i   i—r-|—i   i   i   i—i—i—i—|—i—i   i   i—i   i   i—i 
2.00 6.00 10.00 14.00 18.00 

Frequency (GHz) 

Measured response of 0.0381 m diameter conducting sphere, and comparison with 
theory. 

Frequency  (GHz) 
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frequency region.  Wing-on (90°) incidence. 
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Figure 6. Transient response of B-52 showing specular reflections and substructure 
resonances.  Wing-on (90°) incidence. 
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figure 8. Frequency-time plot of transient B-52 response. Scale is in dB. Wing-on (90") incidence. 
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figure 9. Scattering plot of B-58 showing variation of transient response with aspect angle. 
Scale is in dB. 
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Appendix 12 

Ultra-Wideband/Short-Pulse Radar for Target Identification and Detection - Laboratory Study 

K.M. Chen, E.J. Rothwell, D.P. Nyquist, R. Bebermeyer, Q. Li, C.Y. Tsai and A. Norman 
Department of Electrical Engineering 

Michigan State University 
East Lansing, MI 48824 

Abstract - A laboratory study was conducted to investigate 
the schemes of radar target identification and detection using an 
ultra-wideband/short-pulse    (UWB/SP)    radar. In    target 
identification, a correlation/wavelet transform scheme, a neural 
network technique and a time-domain imaging scheme were 
.studied. To detect a target in a sea clutter environment, the E- 
pulse technique was utilized to minimize the sea clutter while 
enhancing the target response, thus facilitating its detection. It 
appears that a UWB/SP radar may provide higher resolution for 
target ID and more effective clutter suppression for target detection 
compared with conventional radars. 

1.   INTRODUCTION 

We have undertaken a study in our laboratory at Michigan 
State University into various topics regarding the identification (ID) 
of complex targets and their detection in a sea clutter environment, 
using an ultra-wideband, short-pulse (UWB/SP) radar. In our 
experimental study, we have found that a UWB/SP radar can 
provide higher resolution for target ID and more effective clutter 
suppression for target detection compared with conventional radars. 
The baseband pulse used in our experiments has a temporal width 
in the order of 100 ps, or about one tenth of the dimension of our 
experimental target models. This short pulse has frequency 
components in the band 2-18 GHz. 

A UWB/SP radar provides a unique capability for the 
identification of complex targets. When a target is illuminated by 
a short baseband pulse, the return consists of an early-time 
response which has a series of peaks representing the specular 
reflections from the scattering centers of the target, and a late-time 
response which represents the resonant response of the target The 
early-time response can be used to identify the target if the 
locations and the transfer functions of the target scattering centers 
are known as functions of the aspect angle of the incident short 
pulse. We have developed various target ID schemes based on the 
early-time response, including a correlation/wavelet transform 
scheme and a neural network technique. If the early-time response 
of a target can be measured over a range of aspect angles, a sharp, 
clear target image can be created using a time-domain imaging 
scheme. 

A UWB/SP radar can be used to detect targets in a severe 
clutter environment due to the significant difference in the short- 
pulse responses of the target and the environment; this allows the 
clutter to be suppressed. We have studied the case of a target 
airborne above a disturbed sea surface where the sea clutter 
overwhelms the target response. The E-pulse concept [1,2] can be 
used to minimize the sea clutter while at the same time enhancing 
the target response, thus increasing the probability of detection. 
We have also studied the detection technique based on separating 
the target response from the sea clutter by making use of the 
relative motion of the target with respect to the ocean wave. These 
schemes and laboratory test results will be briefly described. 

2. TARGET IDENTIFICATION USING A UWB/SP RADAR 

The interrogating baseband pulse used in our study, as 
shown in Fig. 1, has a temporal width of about 100 ps with 
frequency components covering the range of 2-18 GHz. When the 
short pulse illuminates a 1:48 scale model B-58 aircraft (63 cm 
fuselage length and 36 cm wingspan) over a range of aspect angles 
form 0°-90°, stepped in a 0.45° increment, the early-time responses 
produce the 3-D diagram shown in Fig. 2. It is seen that the early- 
time response of a complex target is strongly dependent on the 
illumination angle of the interrogating pulse. 
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Figure 1.    Incident short pulse waveform 
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Figure 2.    Early-time response of 1:48 scale B-52 aircraft 



Using sets of early-time responses of all relevant targets, we 
have developed various target ID schemes which include the 
correlation/wavelet transform technique, the neural network 
scheme, and the time-domain imaging technique. Brief 
descriptions of these schemes follow. 

2.1.      Correlation/Wavelet 
Identification 

Transform   Technique   for   Target 

Since the early-time response of a target is a strong function 
of the aspect angle, responses from many aspect angles are needed 
to perform target ID. If many different targets are to be 
discriminated, a burdensome amount of computer storage space is 
required. This difficulty can be overcome by using the sparse 
nature of the discrete wavelet transform [3,4] to compress the 
early-time data. For example. Fig. 3 shows the early-time response 
of the B-52 model measured at the nose-on (0°) aspect angle and 
sampled at 256 time points. However, using a 256-point Lemarie 
discrete wavelet transform [31, the wavelet spectrum of this 
response can be found as shown in Fig. 4. It is seen that only a 
small subset of the wavelet coefficients are significant Figure 3 
also shows the B-52 response reconstructed using only the 32 
largest wavelet coefficients. With the early-time target responses 
for a range of aspect angles stored in terms of wavelet basis 
function amplitudes, a correlation of measured and stored 
waveforms provides an efficient means of target ID. The unknown 
target is identified with the target whose stored response produces 
the maximal (unity, for no noise) correlation. 

15- 
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 Reconstruction  (largest  32  wavelets) 
  Reconstruction  (largest  32 wavelets) 
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Figure 3.      Nose-on (0°) response of B-52 aircraft model 
and 32 wavelet reconstruction. 

As an example of target ED using wavelet-stored data, the 
early-time responses of five aircraft models - B-52 (1:72 scale), B- 
58 (1:48), TR-1 (1:48), F-14 (1:48), and Mig-29 (1:48) -- were 
stored at 68 aspect angles between 0° and 30°. An identification 
scenario assumes that the 18° B-52 response arises from an 
unknown target This response is correlated with the responses of 
all targets at all aspect angles, reconstructed from their stored, 
truncated wavelet spectra. The result shown in Fig. 5, provides a 
correct identification since the largest correlation output arises from 
the B-52. Figure 6 shows that contaminating the measured target 
signal with white Gaussian noise at an SNR of 10 dB does not 
significantly reduce the identification capability of this technique. 
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Figure 4.      Wavelet spectrum of nose-on (0°) response of B- 
52 aircraft model. 
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Figure 5. Maximum correlation of 18" B-52 response with 
responses from all targets. Target waveforms 
represented using 32 wavelets. 
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Figure 6. Maximum correlation of 18° B-52 noisy 
response with responses from all targets. Target 
waveforms represented using 32 wavelets. 
SNR=10dB. 



2.2.       Neural Network Techniques for Target Identification 

Neural networks have great potential for storing and 
retrieving a large number of target signatures needed to perform 
aspect-dependent target identification. A number of neural network 
architectures for target ID have been simulated, including feed- 
forward networks trained using back-propagation, and' Hopfield 
networks. Particularly good success has been obtained using 
correlation associative memories, including generalized inverse (GI) 
networks, exponential correlation associative memory (ECAM) 
networks, and cascades of these networks (ECAM-GI). The 
performance of a network using the ECAM cascaded with the 
generalized-inverse network (ECAM-GI) is shown in Fig. 7. This 
network was trained to recognize four targets (B-52, B-58, F-14 
and TRI) each at 17 different aspect angles with a total of 68 
patterns. Good performance is seen in this figure with nearly 
100% correct identification at a SNR level of 5 dB. 
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Figure 7. Performance of ECAM-GI cascaded networks trained to 
recognize four target models each at 17 aspect angles (total 
of 68 patterns). 

More sophisticated networks have also been investigated, 
including recurrent dynamic correlation associative memory (RDM) 
networks [5,6]. The performance of a network using the RDM 
technique cascaded with the generalized-inverse method (RDM-GI) 
with fixed analog input is shown in Fig. 8 when it was trained to 
recognize the same patterns used in Fig. 7. Excellent performance 
is seen in this figure, with nearly 100% correct identification at 
SNR levels as low as -5 dB. This network not only has excellent 
performance, but also offers the flexible decision strategy and less 
computation scale space. 
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Figure 8.     Performance of RDM-GI cascaded networks trained to 
recognize four target models each at 17 aspect angles (total 
of 68 patterns). Analog inputs used. 

In a practical noise-limited situation, finding the same 
beginning response time used in training is very difficult. 
Therefore, the network must also store or train several time-shift 
neighborhoods of the time segment pattern for each aspect angle to 
increase tolerance for time-shifted patterns. This is impractical, 
since it dramatically reduces the network capacity. To overcome 
this difficulty, we have used spectral magnitude of the target 
response, which is time-invariant, as the network process 
information. The performance of a spectrum process RDM-GI 
cascade network with fixed analog input for the same 68 stored 
aspect patterns used in Figs. 7 and 8 is shown in Fig. 9. In this 
case, nearly 100% correct identification can be achieved at a SNR 
level of 0 dB. Although we used less information here than the 
time domain process, we have found this alternative process 
technique to be effective after some extra processes [7]. 
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Figure 9. Spectrum process performance of RDM-GI cascaded 
networks trained to recognize four target models each at 17 
aspect angles (total of 68 patterns). Analog inputs used. 

2.3.       Time-Domain Imaging Technique for Target Identification 

The short-pulse response of a radar target provides 
significant information about the positions and strengths of 
scattering centers. If observations are made over a wide range of 
aspect angles, sufficient information is gained to obtain an image 
of the target. 

Bojarski [8] proposed a simple inverse scattering identity 
based on the physical optics approximation. He showed that the 
characteristic function of a conducting scatterer (which is unity 
within the target geometry and zero elsewhere) is given by the 
three-dimensional inverse Fourier transform of the scattered field 
as a function of the incident plane-wave vector S1. If scattered 
field information is only available within a plane, then the two- 
dimensional inverse transform yields the thickness of the scatterer 
as a function of position in that plane. 

In the MSU free-field scattering range, aspect angle 
variation is obtained by target rotation. It is thus convenient to 
write the inverse scattering identity in polar coordinates, The 
thickness is then shown to be proportional to the function 

ru(p)  = Rej / E' <*„.♦,) e^™'*^' -^dM(l). 

where p is the position vector in the plane of the measurements,(j^ 

is the plane wave incidence angle, Es is the back-scattered field 

measured at frequency u and aspect angle 4>it and K0=2k0=2o)/c. 



By performing the integral over Kn and recognizing this as the 

temporal inverse transform, the thicK, .^ function is proportional 

to 

Tt{9)  = jrl-2£ cos (+-*,) .^je»,        <2> 
o    * 

.where r(t) is the time-integral of the inverse transform of E3, i.e.. 
'the ramp response of the target This time-domain physical optics 
inverse scattering identity has a very clear physical interpretation. 

The quantity -2pcos («fr-^) / c is the two-way transit time from 

the origin of coordinates to the point (p, $) along a plane wave 

incident at angle $v Thus, the integral (2) is the sum over all 
aspect angles of the ramp response value corresponding to 
scattering from the point (p,4>) . 

It is possible to enhance the edges of the image by merely 

using the impulse response (inverse transform of E") rather than 
the ramp response, since this corresponds to a derivative of the 
thickness response. This has been done in the examples shown in 
Figs. 10 and 11. A distinct image of each target results, with the 
edges of the fuselage, wings, etc., being clearly displayed. Note 
that the physical optics approximation does not accommodate the 
shadowed regions, and thus hidden edges such as the rear of the 
forward wings are not strongly present 

It seems that the target images created by a UWB/SP radar 
are sharper and clearer than those created by other microwave 
imaging techniques with other types of radars. 
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Figure 10. Image of F-14 aircraft model found using time- 
domain, physical optics inverse scattering 
identity. 2-18 GHz band, 201 aspect angles. 
Gray scale is in dB. 
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Figure 11. Image of B-S2 aircraft model found using time- 
domain, physical optics inverse scattering 
identity. 2-18 GHz band, 201 aspect angles. 
Gray scale is in dB. 

3. TARGET DETECTION IN A SEA CLUTTER ENVIRONMENT 
USING A UWB/SP RADAR AND THE E-PULSE TECHNIQUE 

The detection of a target near the sea surface using 
conventional radar is difficult because the target response is usually 
overwhelmed by the strong sea clutter signal. This difficulty may 
be reduced if a UWB/SP radar is used, because the sea clutter 
created by a short pulse is a periodic series of peaks which can be 
suppressed using the E-pulse technique [1.2]. On the other hand, 
if the short pulse is properly shaped the target response can be 
enhanced, and thus the probability of target detection is increased. 

When a short pulse illuminates a sea surface which is 
represented by a periodic ocean wave, the backscattered field (sea 
clutter) consists of a periodic series of peaks representing the 
reflections from the ocean wave crests. We have theoretically 
calculated the sea clutter created by a short pulse illuminating two 
models of the sea surface: (1) a sinusoidally-varying perfectly 
conducting surface, and (2) a sinusoidal interface between air and 
the imperfectly conducting sea. The theoretical results for the first 
model are shown in Fig. 12 and for the second model in Fig. 13. 
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Figure 12.    Transient backscattered H-field from simulated 
sea surface for TE excitation. 



c-80.0 t)-85.0' 
7 = *.0   S/m        u= 1016   m 

n/L   =0.0625 

180.00      181.00       182.00       183.00      184.00       185.00 

Time   (ns) 

Figure 13. Comparison of Rayleigh and MFIE-PGF 
methods for computing backscattered transient 
response of imperfectly conducting surface. 

The physical dimensions of the sea surface model are those of the 
scale model used in our experiment. The incidence angle of the 
short pulse illumination is 5° from grazing.   For the imperfectly 

conducting sea surface, a conductivity of 4 S/ra and a relative 
permittivity of 80 were used. From the results shown in Figs. 12 
and 13, the sea clutter created by a short pulse illuminating a 
disturbed sea is a series of peaks representing the specular 
reflections from the ocean wave crests. Note that because the 
illumination of the sea surface occurs over an extremely short 
period of time, the random nature of the ocean wave is neglected. 

To demonstrate the E-pulse scheme to detect a target in a 
sea clutter environment, we have constructed a conducting sea 
surface by milling a sinusoidal surface into a styrofoam block (48 
x 22 x 2.5 inches, 11 wave crests) and attaching aluminum foil to 
the surface, as shown in Fig. 14. The ocean wavelength is 4 inches 
and the Ocean wave height is 1 inch. A 2 inch long missile is 
placed 1.5 inches above the sea surface. 
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Figure IS.     Measured transient response of sea surface with 
missile. 

Based on the measured transient response of Fig. 15 and 
using the E-pulse technique, a "clutter-reducing transmit waveform" 
(CRTW) can be synthesized as shown in Fig. 16. When this 
CRTW is convolved with the sea clutter, the output is nearly zero 
(solid line in Fig. 17). If this same CRTW is convolved with a 
clutter plus missile response, the output (dotted line in Fig. 17) 
reveals the clear presence of the missile within the suppressed sea 
clutter. It is evident that if an interrogating pulse such as the 
CRTW can be transmitted, the return response from the sea surface 
with a target present will be like that shown in Fig. 17. 

sea surface CRTW 
sea surface/missile CRTW 

Figure 14.    Conducting periodic surface with missile model. 
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Figure 16.     Clutter reducing transmit waveforms for sea 
surface with and without missile. 

When this sinusoidal surface with a missile present is 
illuminated by a short pulse, the measured transient response is 
shown in Fig. 15, where the target response is superimposed with 
the measured clutter in the middle of the response. Note that the 
large response at the beginning is the reflection from the front edge 
of our finite sea surface model, and it should be ignored. 
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Figure 17.     Simulated response of the sea surface, with and 
without missile, to the sea surface CRTW. 

4. SEPARATION OF TARGETS FROM CLUTTER USING UWB/SP 
RADAR AND RELATIVE TARGET MOTION 

A UWB/SP radar can be used to detect targets which move 
with different velocities than the ocean waves. 

Consider a situation where a fast-moving target (e.g., a 
missile) and a stationary target (e.g., a periscope) are in the 
presence of a slow-moving ocean wave. If the sea surface is 
interrogated by a short EM pulse, the radar return will consist of 
a periodic series of peaks (the sea clutter from the ocean wave) and 
two peaks representing responses of the moving and stationary 
targets. When another interrogating pulse is sent out after a time 
interval, the new radar return will have a series of peaks shifted 
slightly due to the slow moving ocean wave, while the peak of the 
moving target will have shifted a much larger amount, and the peak 
of the stationary target will not have shifted at all. With repetitive 
interrogating pulses and each subsequent radar return recorded, a 
diagram such as that shown in Fig. 18 can be constructed. The 
horizontal axis is a fast time scale (ns) representing the location of 
the targets and the ocean wave crests. The vertical axis is a slow 
time scale (s) representing the time when the radar return is 
received. This diagram clearly shows the traces of moving and 
stationary targets and ocean wave crests. Using this relative 
motion scheme, targets can be separated from clutter, thus 
facilitating their detection. 
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Figure 18. Traces of targets and ocean wave crests 
constructed using radar returns from repetitive 
interrogating EM pulses. Ocean wave velocity: 
1 m/s;   missile velocity: 100 m/s. 


