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Abstract 
This article provides an overview of state-of-the-art technologies relevant to dynamic 
transportation planning problems that involve the reactive routing and scheduling of a fleet of 

vehicles in response to dynamically changing transportation demands. Specifically, we focus on 
a new class of complex transportation planning problems, which we refer to as the "Dynamic 
Dial-A-Ride Problem with Multiple Acceptable Destinations and/or Origins" (D-DARP- 
MADO). While this class of dynamic problems is representative of a number of practical 

transportation problems, it does not appear to have been the object of prior studies. This is not to 
say that techniques proposed for simpler routing and scheduling problems cannot be brought to 
bear on this problem. To the contrary, our survey shows that a number of techniques developed 

in the fields of vehicle routing and scheduling, including reactive techniques proposed in the 
constraint-directed scheduling and manufacturing scheduling literature, appear quite relevant and 

can be adapted and/or combined to design effective solution procedures for the D-DARP- 

MADO. 
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1. Objective and Scope 
This article provides an overview of state-of-the-art technologies relevant to dynamic 
transportation planning problems that involve the reactive routing and scheduling of a fleet of 
vehicles in response to dynamically changing transportation demands. Specifically, we focus on 
a new class of complex transportation planning problems, which we refer to as the "Dynamic 
Dial-A-Ride Problem with Multiple Acceptable Destinations and/or Origins" (D-DARP- 
MADO). While this class of dynamic problems is representative of a number of practical 

transportation problems, it does not appear to have been the object of prior studies. This is not to 
say that techniques proposed for simpler routing and scheduling problems cannot be brought to 
bear on this problem. To the contrary, our survey shows that a number of techniques developed 
in the fields of vehicle routing and scheduling, including reactive techniques proposed in the 
constraint-directed scheduling and manufacturing scheduling literature, appear quite relevant and 
can be adapted and/or combined to design effective solution procedures for the D-DARP- 

MADO. 

This paper is organized as follows. In the next section, we introduce the Aeromedical 
Regulation and Evacuation problem faced by the US Transportation Command when planning 
the evacuation of patients to adequate Medical Treatment Facilities during both wartime and 
peace. We show that this problem is in a number of ways more complex than dynamic Vehicle 
Routing Problems (VRPs) and dynamic Dial-A-Ride Problems (DARPs) considered in the 
transportation literature. Section 3 provides a more formal taxonomy of modeling assumptions 
considered in the VRP/DARP literature and provides a formal definition of the D-DARP-MADO 
problem by abstracting some of the added sources of complexity found in the Aeromedical 
Regulation and Evacuation problem. The second part of this section provides a broad taxonomy 
of techniques proposed in the literature for solving complex routing and scheduling problems. In 
Section 4, we review a number of relevant replanning/rescheduling techniques for the D-DARP- 
MADO, distinguishing between approaches relying on constructive techniques and approaches 
relying on iterative repair techniques. The review attempts to discuss the merits and advantages 
of each approach, often drawing on examples from the the Aeromedical Regulation and 
Evacuation domain to illustrate how these techniques can be generalized and/or combined to 
solve D-DARP-MADO problems. We argue that constructive and iterative repair techniques can 
be seen as complementary and that practical solutions to D-DARP-MADO can be devised that 
combine the strengths of both approaches. A summary and some concluding remarks are 

provided in Section 5. 

2. Motivation and a Problem Example 
Research in dynamic demand-responsive transportation planning is generally inspired and 
supported by application development in such domains as dynamically dispatched deliver}' of 
cargo by trucks and chartered planes or passenger delivery by demand-responsive bus and van 



companies. 

Although this survey is not limited to a particular problem instance, it was particularly motivated 

by an application domain in which transportation planning is highly dynamic, complex and 
critical: the military Aeromedical Regulation and Evacuation (ARE) of patients to medical 
treatment facilities. A complex version of the well-known Dial-A-Ride-Problem (DARP), to 
these authors the ARE problem became an important measuring stick for determining viability 
and practicality of models and techniques proposed in the literature. Below, we summarize, 
some of the major characteristics of this problem. On numerous occasions in this survey, we 
will draw on examples taken from this domain. It should be emphasized that the ARE domain is 
but an instance of the much broader class of DARP-MADO transportation problems we define in 

Section 3. 

2.1. The Aeromedical Evacuation Problem in Armed Services 
U.S. Transportation Command (USTRANSCOM) is the DoD agency responsible for evacuating 

patients during both wartime and peace. Doctrinally, patients requiring extended treatment must 
be evacuated by air to a suitable Medical Treatment Facility (MTF). The process of identifying 
an MTF that constitutes a suitable destination for a given patient (based on consideration of a 
match between patient's condition and MTF's capability, and also based on economics and 
transportation availability) is called regulating. The process of routing and scheduling the 
required aeromedical evacuation flights (missions) and assigning patients to suitable missions is 

a part of the evacuation planning and execution. 

There has been very limited experience with this approach to handling patients other than in 
peace time. The Persian Gulf war was the first significant armed conflict in which this concept 
has been put to a serious test. The results were far from satisfactory - about 60% of the patients 

ended up at the wrong destinations and half in the wrong country [29]. 

In early 1993, the Department of Defense tasked USTRANSCOM to consolidate the command 
and control of medical regulation (i.e. assignment of patients to suitable medical treatment 
facilities) and aeromedical evacuation operations during peace, war and projected contingencies. 
The ensuing analysis led to TRAC2ES (TRANSCOM Regulating and Command and Control 
Evacuation System), a decision support system under development for USTRANSCOM [39]. 

The integrated medical regulation/evacuation problem requires the dynamic identification of 
appropriate Medical Treatment Facilities (MTFs) for new patients and the planning/scheduling 
of aeromedical evacuation operations to transport these patients from their current locations to 
the selected MTFs. This is a large-scale, highly dynamic planning and scheduling problem that 
can involve hundreds or even thousands of simultaneous patient movement requests. Each 
patient has one or several medical requirements that constrain the type of MTF to which he or 



she can be evacuated and a ready-time prior to which evacuation cannot start. Additional 
constraints can include a maximum altitude above which the evacuation aircraft cannot take the 
patient, a maximum number of hours that a patient can spend in a flight before requiring an 
overnight rest, a maximum number of stops the patient can tolerate during evacuation, etc. 
Planning/scheduling   operations   in   this   domain   require   the   dynamic   coordination   and 
(re)allocation of a large number of resources subject to a wide variety of constraints.   Key 
assets/resources and associated constraints include aircrafts and their different characteristics 
(e.g. capacity, refueling requirements, etc. ), air and medical crews and restrictions on the 
number of hours they can work in any given day, airports and their different characteristics (e.g. 
capacity, types of aircraft they can accommodate, etc.), hospital beds at MTFs located all around 
the globe and the types of patients each MTF can accommodate, etc.    Probably the most 
challenging aspect in planning and scheduling medical evacuation operations has to do with the 

dynamics of a domain in which requirements and constraints continuously change over time. 
New patient requests come in, others get canceled. Patient conditions change over time, both 
prior and during evacuation, possibly requiring the delay, acceleration or cancellation of a 
patient's evacuation or a change in the patient's destination. Availability of key assets is also 
subject to unpredictable events (e.g. aircraft maintenance problems, hospital beds not getting 
freed on time, airfield attrition, etc.). Further complicating the problem, weather conditions can 
affect evacuation plans at anytime, requiring that a mission be delayed, rerouted or simply 

scrapped. 

In building and revising evacuation plans a number of objectives and preferences need to be 
taken into account. The number of patients evacuated to adequate MTFs has to be maximized, 
with urgent patients given priority over routine ones. The time to pickup and deliver patients to 
their MTFs, especially urgent ones, also has to be as short as possible. Simultaneously, the time 
each patient flies and the number of stops during his/her evacuation have to be minimized. Other 
important considerations include minimizing the number of missions, maximizing aircraft 

capacity utilization, etc. 

2.2. General Features of Dynamic Transportation Problems 
The ARE problem exhibits a number of features commonly found in dynamic transportation 

problems: 
• There are multiple demands to transport commodities or entities (in our example -- 

patients) from/to origin or destination points (e.g., airports and hospitals); 

• Multiple vehicle resources (e.g., planes) are to be routed and scheduled to meet the 
demands; 

• Each demand (e.g., patient) is to be assigned to one or more vehicles (e.g., a patient 
may have to be transported via one or several missions); 

• The destination and/or origin points may have to be determined dynamically, e.g., 
patient's destination may be determined based on the available missions. 



• There are time window constraints, e.g., in our example a patient cannot be picked 
up at the origin point until he/she is prepared for departure and delivered to the 
airport; 

• There are constraints on the vehicle capacity, e.g., an aeromedical evacuation 
mission has a limited number of seats available; 

• There are multiple other constraints of varied nature, such as constraints on duration 
of tours associated with vehicles and/or with particular requests (e.g., aeromedical 
mission durations have limits and a patient's allowable flying time is also limited by 
his specific medical condition); 

• The demands can change dynamically while the schedule is executing, e.g., new 
patients may need to be evacuated, or medical condition of a patient may change; 

• The resources may also change dynamically, e.g., a mission can be delayed or 
cancelled, or an airport may be closed due to the weather. 

A number of these problem features are found in Dial-A-Ride Problems studied in the vehicle 

routing literature. Others, particularly the dynamic changes in demands and resources, and the 
dynamic determination of origin and destination points, are not reflected in any canonic models. 
In Section 3, we briefly review major modeling assumptions considered in the Vehicle 
Routing/Dial-A-Ride literature and introduce a new canonic model, which we refer to as the 
Dynamic Dial-A-Ride Problem with Multiple Acceptable Destinations and/or Origins(D-DARP- 
MADO). This model, which attempts to capture some of the major sources of difficulty found in 
a number of practical dynamic transportation domains, such as the ARE problem, is shown to be 
in a number of ways more complex than models traditionally considered in the literature. 

3. A Taxonomy of Models and Techniques 
This section briefly reviews major Vehicle Routing/Dial-a-Ride models studied in the literature, 
introducing some basic terminology and identifying sources of complexity associated with 
dynamic transportation problems. The section proceeds with the introduction of a simple 

taxonomy which is used to categorize techniques discussed in Section 3. 

3.1. A Taxonomy of Models 
In its canonical form, the Vehicle Routing Problem (VRP) requires the design of a set of 
minimum cost routes originating and terminating at a central depot for a fleet of vehicles that has 
to service a set of customers with known demands. The problem can easily be seen to be NP- 
hard. For instance, the single uncapacitated vehicle version of the problem with the objective of 
minimizing total travel time reduces to a Traveling Salesman Problem (TSP), a well-known NP- 

hard problem (e.g. [50]). 

Comprehensive surveys of VRP models and techniques include [7, 1, 101]. In many practical 

situations, as illustrated by  the ARE problem,  assumptions made in the canonical VRP 



formulation are too simplistic and a variety of additional considerations need to be taken into 
account. The following is a brief summary of more complex modeling assumptions considered 

in the literature: 
• Time Windows: In the VRP with Time Windows (VRPTW), customers impose 

earliest/latest possible service time windows. Examples of similar constraints in the 

ARE problem include a patient's earliest ready-to-move time or a latest acceptable 

arrival time at a MTF .  A good review of techniques for VRPTWs is provided in 

[101] (see also [100, 105, 14, 86]). 

• Capacitated Vehicles: When servicing a customer/location involves picking up or 

delivering goods or people, vehicle capacities restrict the number of 

customers/locations or the number of demands that can be serviced by a given 

vehicle (e.g. [64]). For example, in ARE problem, planes can carry particular 

number of patients, depending on plane type and configuration. 

• Multiple Depots: In a number of environments, not all vehicle routes originate from 

the same depot. Work on VRPs with Multiple Depots includes [32, 5, 99, 96]. In 

ARE domain, evacuation missions may originate from numerous airfields around 

the world. 

• Constraints on Lengths and/or Durations of Vehicle Tours: Some VRP 

formulations also allow for constraints on the lengths and/or durations of vehicle 
tours. For example, in the ARE domain, such considerations arise from constraints 

on the range of a given aircraft, refueling requirements, restrictions on the crew duty 

day (the maximum number of hours a crew is allowed to work without an extended 

rest), and others. 

• Multiple Types of Vehicles: In many actual VRPs, not all vehicles are the same and 

some customer requests can only be serviced by some vehicles (e.g. different 

aircraft types can be used in the ARE domain to meet specific demands). 

• Pickup and Delivery (Dial-A-Ride) Problems arise when a vehicle is required to 

pickup an entity (e.g., a passenger or a parcel) at one location and then deliver it to 

another location. In this case, the pickup location must precede the dropoff location. 

Thus, Dial-A-Ride Problems are equivalent to VRPs with the addition of precedence 

constraints between pickup and dropoff locations. Early work on the Dial-A-Ride 

Problem (DARP) has been reported in [25, 111, 112, 113]. Work on the single 



vehicle DARP includes [71, 72, 15]. Techniques for the multi-vehicle DARP, 

which are more relevant to this survey, include those described in [79, 80, 36, 19]. 

It should be noted that multi-vehicle DARP does not capture the added complexity 

of many practical dynamic transportation problems which require matching 

demands with appropriate origin or destination points. In other words, there may be 

more than one pickup locations (e.g., when the customer will accept delivery of a 

commodity from any warehouse where it can be found) or there may be more than 

one acceptable dropoff location to choose from (e.g., a patient can be delivered to 

any hospital with suitable medical capability). 

• Dynamic Models: Static formulations assume that customer demand is known 

ahead of time (i.e. models assuming "advance reservations") and that vehicle routes 

have to be optimized once and for all (e.g. School Bus problem). In contrast, in 

dynamic models, new customer requests are eligible for immediate consideration 

(e.g. [71,43, 5]) and in general require revisions of already established routes and 

schedules. For example, the ARE problem is an instance of a dial-a-ride problem 

that includes a mix of both advance and immediate reservations. 

From the above discussion, it should be clear that the dynamic transportation problem domain is 
in many ways more complex than VRPs/DARPs traditionally discussed in the literature. Using 
the VRP/DARP terminology, one can characterize a broad class of dynamic transportation 
planning and scheduling problems as a Dynamic Dial-A-Ride Problem with Multiple Acceptable 
Destinations/Origins (D-DARP-MADO). The D-DARP-MADO model expands DARP along 

two directions: 
1. there may be multiple acceptable destination and/or origin locations for a given 

demand; the solution to this problem must include assignment of each demand to a 
destination and/or origin location; 

2. both the demands and the resources can change dynamically, while the initial 
plan/schedule is being executed; the solution must include reactive revision of 
routes and schedules of resources, and of assignments of demands to origins, 
destinations and resources. 

D-DARP-MADO captures some but by no means all the complexities found in practical dynamic 
transportation problems. Different domains present a great variety of domain-specific constraints 
which are not treated in literature and which are difficult to generalize. For example, in the ARE 
domain we find refueling constraints, overflight restrictions, maximum number of flying hours 
before a mandatory overnight rest for different patients, altitude restrictions on a patient's 
itinerary, etc. Similarly, different domains present a great variety of domain-specific preferences 
and objectives, which must be simultaneously considered. Again using the ARE problem 
example, we can find preferences and objectives such such as maximizing the number of patients 



delivered to appropriate treatment facilities, while giving a higher weight to urgent patients, 
minimizing disruptions and maximizing notification time for new missions/itineraries, 
minimizing delivery time especially for urgent patients, minimizing number of missions, etc. 

By listing these complexities we do not intend to say that techniques proposed for simpler 
VRPs/DARPs cannot be brought to bear on more complex, real-world problems. To the 
contrary, this survey attempts to show that a number of insights and techniques proposed for 
simpler problems can in fact be extended, refined and combined to support realistic dynamic 

transportation planning and scheduling problems. 

3.2. A Taxonomy of Techniques 
Because the general VRP and DARP are NP-hard, attempts at developing optimal solutions to 
variations of these problems have been limited to fairly simple models and problems of relatively 
small size (e.g. see [7,74, 1, 14]) This survey deliberately focuses on more pragmatic 
approaches that have emphasized the development of heuristic procedures capable of supporting 

the dynamic requirements of the ARE domain. 

Heuristic search procedures developed for the VRP/DARP and related routing and scheduling 
problems can be categorized along a number dimensions. In particular, we distinguish between 

the following three basic dimensions: 
• Constructive versus Iterative/Repair Procedures: Constructive techniques build 

solutions by incrementally instantiating decision variables (e.g. assignment of 

patients to missions) until a complete feasible and satisfactory solution is obtained. 

In contrast, iterative procedures evolve in a (search) space of complete solutions (i.e. 

solutions in which all decision variables have been instantiated), using 

transformation operators to move from one complete solution to another until a 

feasible and satisfactory solution has been found or until, some predetermined 

condition becomes satisfied (e.g. a time limit has been reached). Simple examples 

of transformation operators in the ARE domain could include reassigning a patient 

from one mission to another or modifying the itinerary of a mission. A number of 

constructive and iterative procedures have been proposed in the literature to solve 

various routing and scheduling problems. They include simple one-pass 

constructive procedures which stop as soon as a first satisfactory solution has been 

obtained (e.g. [36]) as well as more expensive constructive procedures such as 

enumerative procedures described in [72, 98]. Iterative/repair procedures developed 

for routing and scheduling problems include simulated annealing procedures (e.g 

[109, 70, 87, 86]), Tabu search procedures (e.g. [64, 49, 62]) and genetic algorithm 

procedures (e.g. [106, 110]). As it turns out, generative and iterative techniques are 

not necessarily incompatible but can sometimes be viewed as complementary: 



simpler constructive approaches can provide a basis for quickly producing new 

though potentially highly sub-optimal solutions while iterative techniques offer a 

way to spend additional time post-processing these solutions to improve their 

quality. 

• Informed versus Brute Force Search: Another useful dimension along which to 

differentiate between techniques for routing and scheduling problems involves 

looking at the amount of analysis performed by a procedure before making a 

decision. At one extreme of the spectrum, we find brute-force techniques such as 

branch-and-bound or simulated annealing, which attempt to rapidly cover wide areas 

of the search space but spend very little time deciding which area to explore next, At 

the other extreme sit more sophisticated techniques, which emphasize more selective 

(and hence slower) exploration of smaller areas in the search space (e.g. [96]). In 

between, some techniques rely on constraint propagation to quickly prune 

unpromising areas of the search space but spend little time differentiating between 

remaining alternatives (e.g. [98]). 

• Adaptive versus Fixed Search Procedures: The adaptability of a search procedure 
refers to its ability to gather information as it searches for a solution and exploit this 

information to improve search performance. This is also referred to as the ability of 

a procedure to "learn" as it goes. Learning can be used in many different ways to 

enhance search efficiency. Tabu Search, e.g., [26, 64] relies on simple short-term 

and long-term memories to dynamically adapt its behavior. Learning mechanisms 

have also been developed to enhance the performance of fast brute force search 

techniques such as Simulated Annealing (e.g. [60, 86]) or to determine how to best 

select among a set of repair operators (e.g. [57, 58]) 

Clearly, these three dimensions are not the only ones along which one can classify routing and 
scheduling techniques. In fact, at times in the following sections, we will either have to refine 
this taxonomy or discuss aspects of proposed solutions that are orthogonal to the dimensions 
identified above. Nevertheless, this simple 3-dimensional taxonomy provides a useful starting 
point for differentiating among the many techniques discussed in the following section. 

4. A Selective Overview of Dynamic Replanning/Rescheduling Techniques 
While considerable efforts have been expended developing optimal algorithms and heuristic 
procedures for the static version of the Vehicle Routing Problem and its many variants (VRPTW, 
DARP, etc), work on dynamic versions of these problems has been rather scarce. In the opening 
of his 1988 survey of dynamic vehicle routing problems [74],. Psaraftis noted: "For all the 



explosive growth in the vehicle routing literature over the past several years,.., very little has 
been published on dynamic variants of the vehicle routing problems. Of the 62 references cited 
in [28], only three include phrases such as 'dynamic', 'real-time' or 'on-line' in their titles". 
Even though the body of research in dynamic vehicle routing problems has grown significantly 
since the time these observations were made, dynamic aspects still occupy a relatively small 

fraction of the overall research in VRP. 

As already stated, our objective in this survey is to focus on dynamic routing and scheduling 
approaches and discuss their merits in light of the dynamic planning and scheduling 

requirements of D-DARP-MADO domains such as the ARE domain. 

Requirements of dynamic problems differ from those of static ones in a number of ways (e.g. 
"real-time" requirements, higher criticality of near-term decisions, open-ended problems, 
uncertain requirements, etc.). As a result, solutions to static problems are often difficult to adapt 
to dynamic situations. When it comes to building solutions to dynamic problems, it is important 
to distinguish between procedures that rely on constructive techniques and those that rely on 

iterative techniques: 
1. Dynamic Replanning and Rescheduling Using Constructive Techniques: In 

this class of techniques, the process begins with an incomplete or even empty 

solution and constructs the missing elements of the solution. Typically, this 

process proceeds through a path which does not include infeasible solutions. When 

relying on constructive search procedures, reactive functionalities require 

techniques that help determine which part of the solution to undo before invoking 

the constructive procedure to rebuild a new solution. This is a critical barrier to 

adapting constructive techniques to replanning and rescheduling tasks. An extreme 

variant of this approach involves freezing all decision variables associated with 

those parts of the solution that have already been executed, while rebuilding a 

brand new solution for the remaining decision variables (e.g. [71]). Rebuilding 

brand new solutions in this fashion raises two concerns. One concern is that in 

large-scale domains, such as the ARE domain, the computational requirements of 

such an approach could be prohibitive. By the time a new solution has been 

constructed, additional contingencies may have occurred, rendering the new 

solution obsolete. Another and a more profound concern is that in situations where 

it is possible to build a brand new solution each time a contingency occurs, this 

approach may still be undesirable because it introduces too many disruptions. 

Often it is preferable to restrict solution revisions to small parts of the solution (e.g. 

to avoid creating confusion, account for difficulties in communicating new 

solutions in real-time or difficulties in adapting to new solutions). Below, we 

discuss a number of approaches that have been proposed to determine which part 
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of a routing/scheduling solution to revise, including matchup approaches [3], 

conflict    propagation    approaches [83]    and    truth    maintenance    approaches 

[17,21,69,41]. 

2. Dynamic Replanning and Rescheduling Using Iterative Repair Techniques: 

Iterative repair techniques traverse a path of complete solutions, both feasible and 

infeasible, eliminating constraint violations and improving the quality of the 

solution. In theory, these techniques can directly support reactive capabilities, 

provided one can ensure they eventually extricate themselves from infeasible 

regions and converge to a feasible solution. Examples of such techniques include 

genetic algorithm procedures such as the one described in [106, 105], simulated 

annealing procedures such as the ones described in [114, 86] or constraint-directed 

repair procedures such as the ones described in [55, 93, 58]. Iterative improvement 

techniques that do not allow for infeasible solutions can still be used to reoptimize 

solutions when favorable contingencies occur that make the problem easier and 

offer opportunities for improving the quality of the existing solution (e.g. 

cancellation of a request, addition of a new vehicle, duration of a trip is shorter 

than expected, etc.). In the face of contingencies that invalidate an existing 

solution (e.g. a transportation asset becoming unavailable for some period of time), 

iterative techniques require heuristics that can decide which part of the solution to 

undo, just like constructive techniques. 

Instances of each approach are further discussed below. 

4.1. Dynamic Rescheduling Using Constructive Techniques 

4.1.1. Rebuilding New Solutions From Scratch 
When relying on a constructive planning/scheduling procedure, the most obvious approach to 
dynamic replanning/rescheduling involves rerunning the procedure from scratch while freezing 
decision variables corresponding to activities that have already been executed or can no longer 
be replanned (e.g. because they are already executing or because of difficulties in replanning 

those activities). 

An example of a technique based on this approach is described in [71] for the single vehicle 
DARP with many-to-many immediate requests. The technique is based on a dynamic 
programming solution to the static version of the problem. Under the dynamic scenario, the 
technique is generalized by (1) imposing constraints that reflect the state of affairs when the 
contingency occurs (i.e. customers already serviced and customers currently on board of the 
vehicle), and (2) rebuilding a new solution that satisfies these added constraints. 
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In complex highly dynamic environments such as the ARE domain, such an approach, at least in 
its pure form, is impractical, due to the significant solution modifications it would continuously 
introduce (e.g. continuous changes in mission assignments and times would make effective 
command and control impossible). However, a modification of this approach reported in 
[46] appears to be promising. This commitment-constrained technique uses the most recent 

solution as a constraint on the new solution. This minimizes the differences between the new 

solution and the preceding solution. 

4.1.2. Insertion Techniques 
The next most obvious approach to handling dynamic events such as the arrival of a new move 
request is to incrementally insert new requests into existing vehicle routes. A similar approach 
can be used when requests are canceled: simply deleting the corresponding stops from existing 
vehicle routes1. This approach can be simpler and faster than one that rebuilds brand new 
solutions. It was first considered by Wilson et al. [Ill, 112, 113]. More recent work using 
insertion techniques is described in [100, 36, 43]. In particular, Kikuchi and Rhee describe an 
insertion procedure for the many-to-many pickup and dropoff problem with multiple vehicles, 
time windows and advance reservations [43]. Their approach builds vehicle routes one vehicle at 
a time, using a two-step procedure in which an initial vehicle route is first constructed and then 
additional requests are inserted in the vehicle route. The approach uses a tree search technique to 
identify the maximum number of requests that can be inserted in a given vehicle route. This 
amounts to a local optimization procedure where vehicles are considered one by one and 
requests are optimally assigned to the vehicle under consideration. Prior to inserting a request, 
the procedure checks for feasibility using time window updating mechanisms reminiscent of the 
earliest/latest start time propagations found in constraint-directed scheduling systems (e.g. 
[51,81,59]). Like other insertion approaches, this technique can be generalized to handle 

dynamic requests. The new requests are simply inserted into existing vehicle routes, and, new 
routes are initiated when none of the existing routes can accommodate a new request. 

Insertion techniques are generally quite fast, e.g., [36]. 

However, when used in dynamic contexts where new requests are incrementally inserted into 

existing solutions, insertion techniques are likely to produce highly sub-optimal solutions. This is 
because these techniques do not take advantage of reoptimization opportunities, namely 
opportunities to produce better solutions by resequencing trips/stops already assigned to vehicle 
routes or reassigning requests to different vehicles. As with all constructive approaches, this 
problem can be alleviated, using local reoptimization procedures to post-process the resulting 
solution. This can be done using local interchange and reassignment operators (e.g. [73, 64, 86]), 

'in the ARE domain, multiple patients may be picked and dropped off at the same locations.  In this case, stops 
are only eliminated if there are no other patients requiring them. 



12 

as discussed below in our subsection on iterative improvement/repair techniques. 

4.1.3. Partial Revision 
Insertion/deletion procedures are relatively narrow in scope. They are mainly intended to handle 

the arrival of new requests or the cancellation of existing ones2. Short of rebuilding brand new 
solutions each time a contingency occurs, a more general approach involves rebuilding a portion 
of the existing solution. Clearly, reconstructing a large portion of the existing solution is likely to 
yield a new high quality solution (assuming a good constructive procedure), but it can also be 
time consuming. In the extreme case, this approach actually reduces to rebuilding an entirely 
new solution. Generally, when deciding how much of the current solution and which specific 

part(s) of the solution to be rebuild, a number of factors need to be considered: 

• solution feasibility: when new conditions need to be accommodated (e.g. new 

requests with tight time windows or an important loss of capacity), undoing too few 

decisions may cause the resulting problem to be infeasible; 

• disruptions: as already indicated, important changes in the current solution can be 

detrimental even if apriori resulting in a "better" solution. This is due to the added 
difficulty in communicating the new solution to all the players involved, difficulties 

in adapting to the requirements of the new solution, etc. In general, there is a 
tradeoff between obtaining a highly optimized solution and maintaining stability in 

the system. 

• >solution quality: a large enough number of decisions should be undone to provide 

sufficient opportunities for reoptimization (e.g. opportunities to come up with new 

sequencing decisions on a given vehicle route or different vehicle assignments); 

• real-time requirements: The computation time necessary to rebuild a solution should 

not exceed the amount of time available; 

Below, we discuss different approaches proposed in the literature to determine which part of a 

scheduling/routing solution to revise, given a new situation. 

The Matchup Scheduling Approach: 

Bean et al. describe a "matchup" procedure to determine which part of a production schedule to 
rebuild, given contingencies such as machine breakdowns [3].  They consider a manufacturing 

2They can possibly also be used to react to contingencies involving a loss of capacity by deleting trips that relied 
on the lost capacity and assigning them to different vehicles (or to the same vehicle but at a different time). 
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facility in which a set of jobs needs to be processed on a set of resources with some degree of 
processing compatibility. Different jobs have different release dates at which they become 
available for processing and different due dates by which they need to be completed. Tardiness 
costs are incurred for finishing a job past its due date and earliness costs (e.g. inventory costs) for 
finishing it too early. Jobs in this model require two resources, a machine and a tool. The 
machines are subject to stochastic breakdowns, requiring that the schedule be revised. 
Additionally, switching production from one job to another on a given resource requires a setup 
whose duration may be sequence-dependent (i.e. whose duration may depend on the previous job 

processed on the same resource). 

Matchup scheduling is based on the assumption that, given a long enough scheduling horizon 
and a small enough disruption (e.g. a small enough machine breakdown), it is possible to find a 
matchup time beyond which an optimal solution to the scheduling problem before the disruption 
occurred remains optimal with the disruption. However, rather than looking for an optimal 
solution, which is typically impractical, matchup scheduling looks for satisfactory solutions. A 
solution is considered satisfactory when the sum of tardiness and inventory costs of all jobs on 
any given machine is below some acceptable value. Given a contingency involving one or 
several machine breakdowns, matchup scheduling picks a matchup time and rebuilds new 
schedules for each of the machines involved up to the selected matchup time. If the resulting 
machine schedules are not considered satisfactory, the procedure increments the value of the 
matchup time by some prespecified duration and tries again. If in the process of revising 
machine schedules, the matchup time comes to exceed some predetermined value, the procedure 
attempts to reallocate jobs across machines so as to reduce the number of setups and achieve a 

better balance between the loads of the different machines. 

The procedure has the merit of being relatively fast, provided that matchup times are properly 
selected and that the underlying constructive procedure used to rebuild new solutions is not too 
time consuming. Selecting too tight a matchup time can potentially result in a number of 
iterations before the procedure finally finds a new satisfactory solution. Selecting too large a 
matchup time could force the procedure to revise a large portion of the solution and, hence, 
could also prove computationally expensive. Ideally, selection of a matchup point should 
account for the severity of the disruption at hand, the amount of time available to come up with a 
new solution, and the tightness of the existing solution or more specifically the ease/difficulty 
with which the new disruption could be absorbed by the existing solution. For instance, a 
breakdown on a bottleneck resource is likely to be more difficult to absorb than one on an 
underutilized resource. Unfortunately, these issues are not explicitly addressed in [3]. 

The Conflict Propagation Approach: 

The concept of Conflict Propagation was first introduced in the context of the Micro-Boss 
scheduling system [83]. Conflict Propagation is somewhat similar to Matchup scheduling but is 
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more selective in the way it determines which part of the solution to rebuild, because it adapts to 
the severity of the disruption. Rather than using a common matchup time for all resources 
affected by a contingency, Conflict Propagation analyzes the impact of the disruption on 
individual operations. The result typically amounts to unscheduling operations with different 
"matchup times" on different resources or even unscheduling multiple non-contiguous groups of 
operations on the same resource. The approach can also account for precedence constraints such 
as those found between related operations in a manufacturing job. Specifically, given a 
constraint violation such as a machine breakdown, Conflict Propagation considers dependencies 
in the original schedule (e.g. precedence constraints between multiple operations) and propagates 
the conflict at hand until it is totally absorbed by slack and/or resequencing opportunities present 
in the schedule. Conflict Propagation unschedules all the operations it traverses, then rebuilds a 

new solution for these operations. In the Micro-Boss system, a micro-opportunistic search 

procedure is used to rebuild the new solution [84]. In general, any constructive procedure could 

possibly be used, though the quality of the resulting solution will depend on how good a 
procedure is used. Conflict Propagation is guaranteed to always unschedule enough operations 
to restore integrity in the solution, though it will sometimes unschedule more than the strict 
minimum. Because it is more selective than matchup scheduling, Conflict Propagation is 
expected to generally reschedule fewer operations and does not need multiple trials to identify 
the set of operations to be rescheduled. Conflict propagation can also be complemented with 
heuristics that selectively unschedule additional reservations to provide more flexibility to the 
constructive procedure used to rebuild a new solution, and, hence, allow for the construction of a 
higher quality solution. [83] provides examples of such heuristics in the factory scheduling 

domain. 

Truth/Reason Maintenance Approaches: 

Truth/Reason Maintenance Systems (TMS/RMS) [17] and their breadth-first counterpart, 

Assumption-based Truth Maintenance Systems (ATMS) [13], provide yet an alternative 
approach to determining which part of the solution to modify. The idea here is that, during the 
construction of a solution, one should record the impact of each decision on the domain of 
possible values of other decision variables. If later a contingency invalidates assignments in the 
current solution, this information can be used to help determine the minimum set of earlier 
decisions that needs to be undone to restore integrity in the solution. For instance, in the ARE 
domain, one could record the impact of the assignments of new patients to a given mission on 
the time window for pickup and delivery of a particular patient already assigned to that mission, 
say patient j (i.e. as new patients are assigned to the mission, we would record for each one of 
them whether they caused the time windows for pickup and delivery of patient, to shrink and if 
so, which specific time intervals became unavailable). If during execution of the evacuation 
plan, the mission gets delayed to the point that patient, may not longer be delivered on time to 
his/her destination MTF (Medical Treatment Facility), the recorded information could be used to 
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help identify patients within the same mission, which if reassigned to other missions would allow 
patient j to be delivered on time. More complex dependencies between missions could possibly 
be recorded as well. Clearly, recording these dependencies and updating them over time as the 

solution evolves can become rather complex and time consuming3. 

Early work using truth maintenance in reactive scheduling systems includes that of Elleby et al. 
[21, 22]. Prosser reported using a TMS approach to keep track of dependencies in dynamic 

single-resource scheduling problems found in the context of a larger distributed scheduling 
system called DAS [69, 9]. Prosser's approach combines truth maintenance with a simple 
shallow learning mechanism [12] that can dynamically identify more complex dependencies as 
conflicts arise and help determine which scheduling decisions to undo. More recently, Kelleher 
et al. have developed a Lazy/Focused RMS approach to tackle factory scheduling problems at 

Pirelli and airline scheduling problems at Iberia [40,41]. In Kelleher's Lazy RMS approach, 
bookkeeping activities are performed on demand to answer specific queries. The authors report 

two-order of magnitude speedups over standard ATMS bookkeeping mechanisms. 

To the best of our knowledge, the application of truth maintenance concepts to dynamic 
scheduling problems has only considered the problem of building feasible solutions. Ideally, in 
domains such as ARE where a number of preferences and objectives have to be taken into 
account, one should also keep track of optimization-related dependencies. Consider the 

following situation. Suppose that, based on proximity considerations, our transportation 
scheduling system has determined that aircraftx would be ideal to evacuate patienty. However, 
because aircra% is temporarily out of service, the current best solution involves introducing a 
detour in the route of a second aircraft, say aircraftz, to come and pick up patienty. An 
interesting dependency to record would be that the assignment of patientY to aircraftz and the 
detour in aircraft's original route are motivated by the fact that aircraftx is temporarily out of 
service. Later, if aircraftx happens to be fixed faster than originally anticipated, this information 
could be used to reassign patienty to aircraftx. In practice, keeping track of such dependencies 
and using this information in an effective manner is far from trivial. For instance, suppose that, 
following the decision to introduce a detour in aircraft's original route, new patients in the 
vicinity of patienty also get assigned to aircraftz. Aircraftx may not have sufficient capacity or 
meet other requirements to transport these new patients and patienty. Given this new situation, 
aircraftz may now be a better choice for patienty. A similar condition could also arise if, by the 
time aircraftx is fixed, aircraftz is already en-route to patienty's location. Keeping track of 
dependencies required to recognize these conditions could become extremely complex and time 

consuming in a highly dynamic domains such as the ARE domain. 

3For instance, it is easy to show that in its general form the process of creating labels required for keeping track of 
dependencies in an ATMS has an exponential worst-case complexity. 
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4.2. Dynamic Rescheduling Using Iterative/Repair Techniques 
In   contrast   to   dynamic   rescheduling   approaches   relying   on   constructive techniques, 

iterative/repair approaches navigate in a search space of complete, though possibly infeasible, 
solutions.   These procedures move from one complete solution to another, while trying to 
eliminate constraint violations and improve the overall quality of the solution.  Several 
approaches to dynamic rescheduling using iterative/repair techniques, are discussed below. 

4.2.1. Interchange Approaches 
Over the years, interchange procedures have been successfully used to solve a number of routing 
and scheduling problems (e.g. [72]). These procedures are based on the concept of "k- 
interchange" introduced by Lin and Kernighan in the context of the Traveling Salesman Problem 
[53]. In general, interchange procedures can be used to resequence vehicle trips or reassign trips 

between multiple vehicles (e.g. lambda-interchange [64]). In its simplest form, an interchange 

procedure iteratively considers possible interchanges in the neighborhood of the current solution. 

If a given interchange improves the quality of the solution, it is performed and a new solution is 

obtained. The procedure can be applied until the solution that can no longer be improved (local 
optimum). Alternatively, it can be run for some predetermined amount of time. Interchange 
procedures can be used to post-process solutions obtained using other techniques, whether 
dealing with static or dynamic problems. For instance, a simple insertion procedure can be used 
to handle incoming requests and the resulting solution can be further optimized, using an 
interchange procedure. In their simplest form, interchange procedures are only allowed to move 
from one feasible solution to another. An example of such a procedure is the one developed by 
Psaraftis for precedence constrained routing problems [72]. Sometimes, by allowing the 
procedure to wander into infeasible regions of the search space, it is possible to eventually reach 
better solutions. While attractive, this approach is far from straightforward. It requires ensuring 
that the procedure eventually extricates itself from infeasible regions and converges towards a 
feasible solution. One approach here involves introducing cost penalties in the objective function 
to account for constraint violations in the solution. When properly adjusted, these cost penalties 
can help find feasible solutions, though some infeasibilities are more difficult to get rid of than 

others. As a result, interchange procedures may allow for some constraint violations that are easy 

to get rid of but not others. 

Interchange procedures that allow for infeasible solutions can be used to directly support 
dynamic reactive capabilities. Contingencies causing one or more constraints to be violated 
introduce cost penalties in the objective function. The iterative procedure then works on trying to 
get rid of these penalties, moving the solution back into a feasible region. 

As already indicated earlier, in their simplest form, interchange procedures generally get stuck in 
local optima. This can be particularly annoying if the local optimum is infeasible. One way of 
alleviating this problem is to sometimes allow the procedure to transition to neighboring 
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solutions that are not as good as the current one in the hope of eventually reaching better 
solutions. A number of techniques have been developed to do just that. They include Simulated 
Annealing procedures [114, 70] and adaptive enhancements of Simulated Annealing procedures 
relying on speedup learning mechanisms [86], Genetic Algorithm procedures such as the one 

used in the Gideon system [106], as well as Tabu Search procedures [64]. 

4.2.2. Constraint-Directed Repair 
Interchange procedures typically rely on brute force search. They attempt to find better solutions 
and/or eliminate constraint violations by rapidly covering large areas of the search space, while 
spending little time deciding which interchange to try next. An alternative approach is to spend 
more time'analyzing the problem at hand and deciding how to modify/repair the current solution. 
This "informed" approach to solution repair, which is more selective in deciding what to do next 
and tends to cover smaller areas of the search space has been emphasized in constraint-directed 
repair work, including work on the Opis factory scheduling system [93] and its transportation 
scheduling counterpart, DITOPS [96]. Work in this area also includes that of Miyashita et al. in 
the context of Cabins [56, 58], work by Minton et al. on the Min-Conflict repair heuristic [55], 

and work by Hildum in the context of the DSS system [34]. 

In the Opis scheduling system, a number of metrics are used to analyze flexibility of the solution 
and opportunities for improvement. Given one or more constraint violations such as those caused 
by a temporary loss of capacity on a resource, the system evaluates these metrics in the vicinity 
of the conflict to select among a set of alternative repair operators (e.g. whether to right shift the 
current solution to absorb the conflict at hand, or reassign conflicting operations to other 
equivalent resources, or resequence operations involved in the current conflict, etc. or some 
combination of the above). Examples of useful metrics include resource utilizations in the 
vicinity of the conflict, fragmentation of reservations on different resources, amount of 
downstream and possibly upstream slack within different jobs affected by the conflict at hand, 
variance in these metrics, etc. Based on these metrics, an initial repair operator is selected. 
Application of the operator may introduce new conflicts, which in turn need to be repaired. The 
process goes on until all conflicts have been eliminated and a satisfactory solution has been 
obtained. An agenda-based mechanism is used to keep track of new conflicts as they arise and to 
help the system sequence the application of multiple repair operators. As with other repair 
procedures, special care must be taken to ensure that the procedure eventually converges to a 
feasible solution. A somewhat similar approach is also described in [34], in the context of the 
DSS system, though here the author places a higher emphasis on search flexibility, allowing the 
repair procedure to continuously revise its search strategy in a way reminiscent of the micro- 

opportunistic search procedures described in [81, 84]. 

Miyashita and Sycara have reported using Case-Based Reasoning (CBR) to train a scheduling 
system to recognize situations where one repair operator is preferable to others [58]. This is used 
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in their Cabins system. Cabins computes metrics similar to those found in Opis and relies on 
earlier experience gathered in the form of cases to decide which repair operator to apply next. 
Given a new domain, this system would have to be retrained, a process which could possibly be 

tedious and time consuming. 

5. Conclusions 
Relatively little work has been done on the class of problems that involve routing and scheduling 
of multiple vehicles responding to dynamically changing transportation demands. However, a 
number of techniques developed for related factory scheduling problems (e.g. matchup 
scheduling) and/or developed in Artificial Intelligence (e.g. conflict propagation, constraint- 

directed repair) can be also brought to bear on this challenging class of problems. 

Broadly speaking, we have distinguished between two main lines of approach to react to 
contingencies such as the arrival of a new patient request (or its cancellation), a loss in available 

capacity, a variation in the expected duration of a particular activity (e.g. aircraft maintenance, 

trip, etc.). One approach -- partial revision -- involves identifying ahead of time a group of 
decision variables affected by the contingency and relying on a constructive technique to rebuild 
a solution for these decision variables. Examples of such techniques include matchup scheduling, 
conflict propagation and truth maintenance. A second approach -- iterative/repair -- relies on 
techniques where a complete, though possibly infeasible solution, is iteratively manipulated 
using (local) transformation operators until all constraint violations have been removed and a 
satisfactory solution has been obtained. Examples of this approach include interchange 
techniques and other brute force variations of these techniques such as Simulated Annealing, 
Genetic Algorithms or Tabu Search, as well as more knowledge-intensive approaches such as the 

ones implemented in constraint-directed repair techniques. 

These two  lines  of approach  are not incompatible.     In  fact,  they  can  be viewed, as 
complementary.   For instance, a solution obtained by using constructive techniques for partial 
revision can be further optimized using an iterative repair procedure.   Similarly, a solution 
invalidated by dynamic disruptions can be first repaired partially with simple repair operators 

and then further improved by reconstructing a significant part of the solution. 
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