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FINAL TECHNICAL REPORT: AFOSR-F49620-93-1-0269 

MULTI-AGENT REINFORCEMENT LEARNING AND ADAPTIVE NEURAL NETWORKS 

Principal Investigator: Andrew G. Barto 

Abstract-This project investigated learning systems consisting of multiple interacting con- 
trollers, or agents, each of which employed a modern reinforcement learning method. The 
objective was to study the utility of reinforcement learning as an approach to complex decen- 
tralized control problems. The major accomplishment was a detailed study of multi-agent 
reinforcement learning applied to a large-scale decentralized stochastic control problem. This 
study included a very successful demonstration that a multi-agent reinforcement learning 
system using neural networks could learn high-performance dispatching of multiple elevator 
cars in a simulated multi-story building. This problem is representative of very large-scale 
dynamic optimization problems of practical importance that are intractable for standard 
methods. The performance achieved by the distributed elevator controller surpassed that 
of the best of the elevator control algorithms accessible in the literature, showing that re- 
inforcement learning can be a useful approach to difficult decentralized control problems. 
Additional empirical results demonstrated the performance of reinforcement learning sys- 
tems in the setting of nonzero-sum games, with mixed results. Some progress was also made 
in improving theoretical understanding of multi-agent reinforcement learning. 

EXECUTIVE SUMMARY 

Reinforcement learning (RL) is emerging as a promising method for approximating op- 
timal policies for large-scale stochastic optimal control problems. RL algorithms work by 
incrementally estimating optimal value functions from samples of control experience^often 
using artificial neural networks to represent the value-function information. This project 
investigated learning systems consisting of multiple interacting controllers, or agents, each 
of which employed an RL method based on the principles of dynamic programming (DP). 
The objective was to study RL as an approach to complex decentralized control problems. 

The major accomplishment was a detailed study of a multi-agent RL system applied 
to a large-scale decentralized stochastic control problem. This study included a very suc- 
cessful demonstration that a decentralized RL system using neural networks could learn 
high-performance dispatching of multiple elevator cars in a simulated multi-story building. 
The performance achieved by the distributed elevator controller surpassed that of the best 
of the elevator control algorithms accessible in the literature, showing that reinforcement 
learning can be a useful approach to difficult distributed control problems. Although not 
of obvious direct relevance to the Air Force mission, the elevator dispatching problem was 
selected because: 1) it is representative of a class of very large-scale stochastic dynamic 
optimization problems that have practical significance; 2) it is intractable for standard solu- 
tion methods, such as stochastic DP (it was formulated as a semi-Markov decision process 

1 
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with 1022 states, which is decisively beyond-the capabilities of conventional DP); and 3) 
it is naturally formulated as a distributed problem: each elevator had its own controller. 
Other instances of such problems are relevant to control strategies for reducing computa- 
tional overhead, to distributed communication strategies, and to other problems relevant to 
cost-containment in large-scale operations. All of these problems have in common a high 
degree of computational complexity that rules out exact solution methods. 

A simulator for a lO-floor/4-elevator system was used. The control actions of the elevator 
cars were executed asynchronously in continuous time. The performance objective was to 
minimize the sum of the squared wait times of all waiting passengers. Table compares the 
average waiting time, the average squared waiting time, and the average system time (sum 
of waiting and travel time) averaged over 30 simulated hours of down-peak operation, for a 
number of controllers. The two bottom rows give the performances of two RL controllers 
(RLd and RLp) that we developed. The remaining rows give performances of a number 
of other controllers, including controllers that are the best of which we are aware from 
the literature. Significant performance improvement was achieved by the RL controllers 
using policies learned through approximately 60-thousand hours of simulated operation, 
taking several days on a 100 MIPS workstation. Although this is a considerable amount of 
computation, it is negligible-compared to what any conventional DP algorithm would require 
(thousands of years). 

Table 1:   Comparative Elevator Dispatching Results for Down-Peak Traffic.   (AvgWait = 
-Average Wait Time. SqWait = Squared Wait Time, and SysTime = System Time) 

Algorithm AvgWait SqWait SysTime 
SECTOR 21.4 674 47.7 

DLB 19.4 658 53.2 
BASIC HUFF 19.9 580 47.2 

LQF 19.1 534 46.6 
HUFF 16.8 396 48.6 
FIM 16.0 359 47.9 

ESA/nq 15.8 358 47.7 
ESA 15.1 338 47.1 
RLd 14.9 326 41.8 
RLp 14.4 296 42.1 

The details of this study will be available in the Ph.D. dissertation of R. H. Crites, one of 
the computer science graduate students supported by this grant. At the time of writing this 
report, however, this dissertation was not yet complete (although several short conference 
papers had appeared). A technical summary of this work is provided below. 

Most RL research has been confined to single agent settings or to multi-agent settings 
where the agents receive identical rewards (team problems like the elevator dispatching 
problem). RL has also been studied in the setting of zero-sum games [12]. However, very little 
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research exists on RL applied to nonzero-sum'games, which are substantially more difficult 
than the other cases. An empirical study was conducted of RL applied to the nonzero-sum 
game known as the iterated prisoner's dilemma (IPD). We investigated the ability of a variety 
of RL agents to play the IPD game against an unknown opponent. In some experiments, the 
opponent was the fixed strategy Tit-for-Tat, while in others it was another RL agent. All 
the RL agents learned to play optimally against Tit-for-Tat. Playing against other learning 
agents was more difficult due to their nonstationary, and because they were not given an 
a priori policy designed to encourage cooperation. The learning agents that were studied 
varied along three dimensions: the length of history they received as context, the type of 

. memory they employed (lookup tables based on restricted history windows versus recurrent 
neural networks that can theoretically store features from arbitrarily deep in the past), and 
the exploration schedule they followed. Although all the learning agents faced difficulties 
when playing against other learning agents, agents with longer history windows, lookup- 
table memories, and longer exploration schedules fared best in the IPD games. Details of 
this research are provided below and in refs. [15; 16]. 

Although the results obtained with the elevator dispatching problem provide evidence 
that multi-agent RL can be very successful in practice, multi-agent RL is not well understood 
theoretically. Researchers studying learning automata [12] have developed a number of 
convergence results for single-stage multi-agent RL tasks, where the objective for a team 
of agents is to learn a mapping from situations to actions that maximizes their expected 
immediate rewards. We worked toward extending this theoretical framework to the more 
difficult case of sequential tasks, where the objective is to maximize the expected long-term 
reward. We developed a multi-agent policy improvement algorithm which we conjectured 
is guaranteed to cause the agents to monotonically improve their expected infinite-horizon 
discounted reward from every state. We were unable to prove this conjecture by the end of 
the period being reported but are continuing this line of investigation. 

In work funded by a previous AFOSR grant (AFOSR-89-0526) we developed an RL 
algorithm applicable to problems with continous action spaces (most RL algorithms apply 
to discrete-action problems). A neuron-like unit, called a Stochastic Real-Valued'fSRV) 
unit, embodies this algorithm and has been used in artificial neural networks that learn by 
reinforcement feedback. We developed a network using SRV units to learn how to insert a 
peg into a hole using a Zebra Zero robot arm. This approach was very successful, resulting 
in a system that learned how to perform insertions in the champherless case with very small 
clearances despite large uncertainties introduced by this rather imprecise robot arm. Work 
under the present grant successfully extended this system to the three-dimensional case and 
to a square-peg/square-hole case. Details of this work are contained in ref. [8]. 

In summary, the results obtained using the elevator dispatching testbed provide evidence 
that multi-agent RL can be useful in large-scale decentralized stochastic control problems. 
In fact, because the elevator dispatching problem is intractable for standard methods, this 
study is being cited as a major example showing the utility of RL, whether multi-agent or 
not. Problems in which the agents do not receive identical rewards, however, are more dif- 
ficult for RL as illustrated by our study of the iterated prisoner's dilemma game. Although 
RL agents always learned optimal policies against fixed opponents, they did not perform 
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consistenty against other learning agents." These results show that more sophisticated RL 
algorithms are required for multi-agent learning in the setting of nonzero-sum games and 
suggest features that more successful algorithms should have. 
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1    Distributed Elevator Dispatching 

The problem of efficiently dispatching elevators in multi-story buildings is an example of a 
stochastic optimal control problem that is well beyond the capabilities of classical stochastic 
DP due to the curse-of-dimensionality. It is relevant to the Air Force mission because it is 
representative of a class of large-scale scheduling and resource allocation problems that can 
have economic significance in large organizations. Elevator dispatching is a familiar problem 
to anyone who has used an elevator system, but in spite of its conceptual simplicity, it 
poses significant difficulties. Elevator systems operate in high-dimensional continuous state 
spaces and in continuous time as discrete-event dynamic systems. Their states are not fully 
observable and they are nonstationary due to changing passenger arrival rates. Because an 
optimal policy for elevator group control is not known, existing control algorithms were used 
as standards for comparison. The elevator problem also provided an opportunity to develop 
and compare several contol architectures, and to monitor the amount of degradation that 
occurs as the controllers faced decreasing levels of state information. 

Elevator systems are driven by passenger arrivals. Arrival patterns vary during the course 
of the day. In a typical office building, the morning rush hour brings a peak level of up traffic, 
while a peak in down traffic occurs during the afternoon. Other parts of the day have their 
own characteristic patterns. Different arrival patterns have very different effects, and each 
pattern requires its own analysis. (Up-peak and down-peak elevator traffic are not simply 
equivalent, patterns in opposite directions.) Up-peak traffic is the easiest to analyze because 
all passengers enter cars at the lobby, their destination floors are serviced in ascending order, 
and empty cars then return to the lobby. The optimal policy for handling pure up-peak traffic 
is thought to involve closing the doors of a car stopped at the lobby after an optimal number 
of passengers have entered the car or an optimal amount of time has elapsed [18]. Two-way 
and down-peak traffic patterns require many more decisions in a wider variety of contexts 
than does pure up traffic. For this reason, a down-peak traffic pattern was used as a testbed 
for our investigations of distributed RL in this domain. Before describing the testbed in 
detail, the various approaches to elevator control are brieflv discussed. 

1.1     Elevator Control Strategies 

The oldest relay-based automatic controllers used the principle of collective control [18; 
17], where cars always stop at the nearest call in their running direction. One drawback 
of this scheme is that there is no means to avoid the phenomenon called bunching, where 
several cars arrive at a floor at. about the same time, making the interval, and thus the average 
waiting time, much longer. Advances in electronics, including the advent of microprocessors, 
made possible more sophisticated control policies. 

Zoning Approaches—The Otis Elevator Company has used zoning as a starting point in 
dealing with various traffic patterns [18]. Each car is assigned a zone of the building. It 
answers hall calls within its zone, and parks there when it is idle. The goal of zoning is to 
keep the cars reasonably well separated and thus keep the interval down. The drawback of 
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this approach seems to be a significant loss of flexibility [2; 3].   Sakai & Kurosawa [14] of 
Hitachi describe a related approach called area, control. 

Search-Based Approaches—Another strategy is to search through the space of all possible 
car assignments, selecting the one that optimizes some criterion such as the average waiting 
time. Tobita et al. [19] of Hitachi describe a system using a fuzzy rule-based system to pick 
the coefficients and estimating functions by which wait time, travel time, and riding ratio 
are predicted. Receding horizon controllers are also examples of search-based approaches. 
After every event, they perform an expensive search for the best assignment of hall calls 
assuming no new passenger arrivals. Closed-loop control is- achieved by re-calculating a 
new open-loop control sequence after every event. The weaknesses of this approach are 
its computational demands and its lack of consideration of future arrivals. Examples of 
receding horizon controllers are Finite Intervisit Minimization (FIM) and Empty the System 
Algorithm (ESA) [2]. which we used for comparative purposes. FIM attempts to minimize 
squared waiting times and ESA attempts to minimize the length of the current busy period, 
the same objective as Levy et al [9]. 

Rule-Based Approaches—Ujihara and Tsuji [20] of Mitsubishi describe a system that uses 
expert-system and fuzzy-logic technologies. They claim that experts in group-supervisory 
control have the experience and knowledge necessary to shorten waiting times under various 
traffic conditions, but admit that expert knowledge is fragmentary, hard to organize, and 
difficult to incorporate. 

Other Heuristic Approaches—The Longest Queue First (LQF) algorithm assigns upward 
moving cars to the longest waiting queue, and the Highest Unanswered Floor First (HUFF) 
algorithm assigns upward moving cars to the highest queue with people waiting [2]. Both 
of these algorithms are designed specifically for down-peak traffic. They assign downward 
moving cars to any unassigned hall calls they encounter. The Dynamic Load Balancing 
(DLB) algorithm attempts to keep the cars evenly spaced by assigning contiguous non- 
overlapping sectors to each car in a way that balances their loads [10]. We also use these 
heuristic algorithms for comparative purposes. 

Adaptive and Learning Approaches—A variety of adaptive and learning approaches have been 
proposed for the elevator dispatching problem. The most relevant of these is by Levy et al. 
[9], who use dynamic programming (DP) offline to minimize the expected time needed for 
completion of the current busy period. The trouble with using DP to calculate an optimal 
policy is that the state space is very large, requiring drastic simplification. Levy et al. use 
several methods to keep the size of the state space manageable: they consider a building 
with only 2 cars and 8 floors, where the number of buttons that can be on simultaneously 
is restricted, the state of the buttons are restricted to binary values (i.e., elapsed times are 
discarded), and the cars have unlimited capacity. Zoning is also mentioned as a way to reduce 
the number of states in higher buildings. Construction of the transition probability matrix 
is the principle part of the procedure, and it assumes that the intensity of Poisson arrivals 
at each floor is known. Value iteration or policy iteration is then performed to obtain the 
solution. However, it seems doubtful that their minimization procedure could be effective if 
the number of cars were increased from 2 to 4, or if the elapsed times of the hall buttons 
were taken into account. 
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1.2    The Elevator Testbed 

The particular elevator system we examined was a simulated 10-story building with 4 
elevator cars. The simulator was a discrete-event simulator written by Lewis [10]. Passenger 
arrivals at each floor were assumed to be Poisson, with arrival rates that vary during the 
course of the day. Our simulations used a traffic profile [2] that dictated arrival rates for 
every 5-minute interval during a typical afternoon down-peak rush hour. Table 1 shows the 
mean number of passengers arriving at each floor (2-10) during each 5-minute interval who 
were headed for the lobby. In addition, there was inter-floor traffic which varied from 0% to 
10% of the traffic to the lobby. 

Table 2: The down-peak traffic profile. 

Time 00 05 10 15 20 25 30 35 40 45 50 55 
Rate 1 2 4 4 18 12 8 7 18 5 3 2 

The system dynamics were approximated using the following parameters: 

• Floor time (the time to move one floor at the maximum speed): 1.45 sees. 

• Stop time (the time needed to decelerate, open and close the doors, and accelerate 
again): 7.19 sees. 

• Turn time (the time needed for a stopped car to change direction): 1 sec. 

• Load time (the time for one passenger to enter or exit a car): random variable from a 
20th order truncated Erlang distribution with a range from 0.6 to 6.0 sees and a mean 
of 1 sec. 

• Car capacity: 20 passengers. 

Although the simulator was quite detailed, a few minor deviations from reality should 
be noted. In the simulator, a car could accelerate to full speed or decelerate from full speed 
in a distance of only one half of a floor, while the distances would be somewhat longer in a 
real system. Thus, the simulated acceleration and deceleration times were always the same, 
whereas in a real system they vary depending on the speed of the elevator. For example, an 
express car descending from the tenth floor at top speed takes longer to decelerate at the first 
floor than a car that is descending from the second floor. The simulator also allowed the cars 
to commit to stopping at a floor when they are only one half of a floor away. Although this 
is not realistic for cars moving at top speed, the concept remains valid of making decisions 
regarding the next floor where a car can commit to stopping. 

State Space:—The state space was continuous because it included the elapsed times since any 
hall calls were registered, which were real-valued. Even if these real values were approxi- 
mated as binary values, the size of the state space would still be immense. Its components 



———wu.iiM^tp..m.ji,mi.»uj.. un. . mmm-jjui u*.n>.< »j.u „j, Al^'..^^^^^^L^n^^^JJ.^^^^,^■^■l^^^■■■i^'J^^^w^^-w-»■'<■.^t^.«^^-'■^i.■«^<J■<■T.■■^w->J-: :.--^r: 

include 218 possible combinations of the 18 hall call buttons (up and down buttons at each 
landing except the top and bottom), 240 possible combinations of the 40 car buttons, and 184 

possible combinations of the positions and directions of the cars (rounding off to the nearest 
floor). Other parts of the state were not fully observable, for example, the exact number 
of passengers waiting at each floor, their exact arrival times, and their desired destinations. 
Ignoring everything except the configuration of the hall and car call buttons and the ap- 
proximate position and direction of the cars, we obtain an extremely conservative estimate 
of the size of a discrete approximation to the continuous state space: 

218 • 240 • 184 « 1022 states." 

Performing any of the classical DP algorithms on a problem of this size is effectively impos- 
sible. 

Control Actions—Each car had a small set of primitive control actions. If it was stopped 
at a floor, it must either "move up" or "move down". If it was in motion between floors, 
it must either "stop at the next floor" or "continue past the next floor". Due to passenger 
expectations, there were two constraints on these actions: a car could not pass a floor if a 
passenger wanted to get off there and could not turn until it had serviced all the car buttons 
in its present direction. We added three additional action constraints in an attempt to build 
in some primitive prior knowledge: a car could not stop at a floor unless someone wanted 
to get on or off there, it could not stop to pick up passengers at a floor if another car was 
already stopped there, and given a choice between moving up and down, it should prefer 
to move up (since the down-peak traffic tended to push the cars toward the bottom of the 
building). Because of this last constraint, the only choices left to each car were the stop and 
continue actions. The actions of the elevator cars were executed asynchronously since they 
could take different amounts of time to complete. 

Performance Criteria—One possible objective is to minimize the average wait time, which 
is the time between the arrival of a. passenger and his entry into a car. Another possible 
objective is to minimize the average system, time, which is the sum of the wait time and the 
travel time. A third possible objective is to minimize the percentage of passengers that wait 
longer than some dissatisfaction threshold (usually 60 seconds). Another common objective 
is to minimize the sum of squared wait times. We focused on this latter performance objective 
since it tended to keep the wait times low while also encouraging fair service. 

1.3    The Algorithm and Network Architecture 

Here we describe the multi-agent reinforcement learning algorithm that was applied to 
elevator group control. In our scheme, each agent was responsible for controlling one ele- 
vator car. Each agent learned via a modification of Q-learning for discrete-event systems. 
Together, they employed a collective form of reinforcement learning. We begin by describing 
the modifications needed to extend Q-learning to a discrete-event framework, and derive a 
method for determining appropriate reinforcement signals in the face of uncertainty about 
exact passenger arrival times.   Then we describe the algorithm, the feedforward networks 
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used to store the Q-values, and the distinction between parallel and distributed versions of 
the algorithm. is>v- 

Discrete-Event Reinforcement Learning—Elevator systems can be modeled as discrete event 
systems [5], where significant events (such as passenger arrivals) occur at discrete times, but 
the amount of time between events is a real-valued variable. In such systems, the constant 
discount factor 7 used in most discrete-time reinforcement learning algorithms is inadequate. 
This problem can be approached using a variable discount factor that depends on the amount 
of time between events [4]. In this case, returns are defined as integrals rather than as infinite 
sums, as follows: 

v~* f°° 2j7Vt    becomes     /   e~0TrTdr, 

where rt is the immediate cost at discrete time t, rT is the instantaneous cost at continuous 
time r (e.g., the sum of the squared wait times of all waiting passengers), and ß controls the 
rate of exponential decay. 

Because elevator system events occur randomly in continuous time, the branching factor 
is effectively infinite, which complicates the use of algorithms that require explicit lookahead. 
Therefore, we employed a discrete event version of the Q-learning algorithm since it considers 
only events encountered in actual system trajectories and does not require an explicit model 
of the state transition probabilities. The Q-learning update rule [21] takes on the following- 
discrete event form [4]: 

AQ(x, a)=a-[f'J e^"'* VTdr H- e^'»"^ min Q(y, b) - Q(x, a)], 
Jtx b 

where action a is taken from state x at time tx, the next decision is required from state y at 
time ty, a is the learning rate parameter, and rr and ß are defined as above. e~0^y~tx%) acts 
as a variable discount factor that depends on the amount of time between events. Unless 
otherwise noted, ß = 0.01 in the simulations described below. 

Bradtke and Duff [4] consider the case where rT is constant between events. We extended 
their formulation to the case where rT is quadratic, since our goal was to minimize squared 
wait times. The integral in the Q-learning update rule then takes the form: 

fty — tx     

JO p 

where wp is the amount, of time each passenger p has already waited at time tx. 

A difficulty arises in calculating this integral since it requires knowledge of the waiting 
times of all waiting passengers. However, only the waiting times of passengers who press hall 
call buttons will be known in a real elevator system. The number of subsequent passengers 
to arrive and their exact waiting times will not be available.   We examined two ways of 
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dealing with this problem. The simulator has access to the waiting times of all passengers. 
We can use this information to produce the" necessary reinforcement signals. We called this 
omniscient reinforcement since it requires information that would not be available in a real 
system. Omniscient reinforcement can be used during the off-line design phase of an elevator 
controller. Once the controller is installed in a real system, however, any fine tuning would 
have to be done without the benefit of this extra knowledge. 

The other possibility is to use only information that would be available to a real system 
on-line. Such on-line reinforcement assumes only that the waiting time of the first passenger 
in each queue is known (which is the elapsed button time). If the Poisson arrival rate A for 
each queue is known or can be estimated, the Gamma distribution can be used to estimate the 
arrival times of subsequent passengers. The time until the nth subsequent arrival follows the 
Gamma distribution T(n, \). For each queue, subsequent arrivals will generate the following 
expected penalties during the first b seconds after the hall button has been pressed: 

Y^   /    (prob nth arrival occurs at time r) ■ (penalty given arrival at time r) dr 
71=1     J0 

~       fb \nTn-l   -AT     .b_r ,6    rb-r 

=   £   /      ,„     n,     /     w'e-^^dwdr  = Xw2e-^+^dwdr. 
n=\   7o        ("'- !)•'      J0 JO   JO 

This integral can be solved by parts to yield expected penalties. Using on-line reinforce- 
ment produces results that are almost as good as those obtained with omniscient reinforce- 
ment. 

Collective Discrete-Event Q-Learning— Elevator system events can be divided into two types. 
Events of the first type are important in calculating waiting times and therefore also reinforce- 
ments. These include passenger arrivals and transfers in and out of cars in the omniscient 
case, or hall button events in the online case. The second type are car arrival events, which 
are potential decision points for the RL agents controlling each car. A car that is in motion 
between floors generates a car arrival event when it reaches the point where it must decide 
whether to stop at the next floor or continue past the next floor. In some cases, cars are 
constrained to take a particular action, for example, stopping at the next floor if a passenger 
wants to get off there. An agent faces a decision point only when it has an unconstrained 
choice of actions. 

The algorithm used by each agent is as follows: 

1. At time tXl observing state x, car c arrives at a decision point.   It selects an action 
using the Boltzmann distribution over its Q-value estimates: 

pQ(x,cont)/T 
Pr(stop) = 

eQ{x,stop)/T _|_ eQ(x,cont)/T 

where T is a positive "temperature" parameter that is decreased during training. Call 
the action selected action a. 
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2. Let the next decision point for car c be at time ty in state y. It adjusts its estimate of 
Q(x,a) toward the following target value: 

fV e-0{T-^rTdr + e^'»-'-* minQ(y, b), 
JtT b 

where rT and ß are defined as above. 

3. Let x <— y and tx <— ty. Go to step 1. 

The Networks Used to Store the Q- Values—Using lookup tables to store the Q-values was 
ruled out for such a large system. Instead, we used feedforward neural networks trained with 
the error backpropagation algorithm [13]. The networks receive some of the state information 
as input, and produce Q-value estimates as output. Some of our experiments used separate 
single-output networks for each action-value estimate, while others used one network with 
multiple output units. Our basic network architecture for pure down traffic has 47 input 
units, 20 hidden sigmoid units, and 1 or 2 linear output units. The input units are as follows: 

• 18 units: Two units encode information about each of the nine down hall buttons. A 
real-valued unit encodes the elapsed time if the button has been pushed and a binary 
unit is on if the button has not been pushed. 

• 16 units: Each of these units represents a possible location and direction for the car 
whose decision is required. Exactly one of these units will be on at any given time. 

• 10 units: These units each represent one of the 10 floors where the other cars may 
be located. Each car has a "footprint" that depends on its direction and speed. For 
example, a stopped car causes activation only on the unit corresponding to its current 
floor, but a moving car causes activation on several units corresponding to the .floors 
it is approaching, with the highest activations on the closest floors. 

• 1 unit: This unit is on if the car whose decision is required is at the highest floor with 
a waiting passenger. 

• 1 unit: This unit is on if the car whose decision is required is at the floor with the 
passenger that has been waiting for the longest amount of time. 

• 1 unit: The bias unit is always on. 

Parallel and Distributed Implementations—-Each elevator car is controlled by a separate 
Q-learning agent. We experimented with several different control architectures. All were 
decentralized in the sense that the control decisions were made separately for each elevator 
car: although using information about the states of the other cars. The parallel architecture 
consisted of a single two-output network, or a single pair of one-output networks, that 
learned from the experiences of all the cars and that were consulted by all the cars for 
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decision making. This architecture forces the cars to learn identical policies. What we call 
the decentralized architecture, on the other hand, consisted of four two-output networks, 
or four pairs of one-output networks, one for each elevator car. The network (or network 
pair) for each car learned only from the experience of that car and was consulted for decision 
making by that car. This architecture allowed each controller to learn a specialized policy. In 
either case, none of the controllers had explicit access to the actions of the other controllers. 
Cooperation had to be learned indirectly via the global reinforcement signal. All of the 
control architectures produced policies that would be simple to implement and execute in 
real-time on an actual elevator installation, although this step has not yet been taken. 

1.4    Main Results 

Since an optimal policy for the elevator dispatching problem is unknown, we measured 
the performance of our algorithm against other algorithms, including the best of which we 
were aware. The algorithms were: SECTOR, a sector-based algorithm similar to what is 
used in many actual elevator systems; DLB, Dynamic Load Balancing, attempts to equalize 
the load of all cars; HUFF, Highest Unanswered Floor First, gives priority to the highest floor 
with people waiting; LQF, Longest Queue First, gives priority to the queue with the person 
who has been waiting for the longest amount of time; FIM, Finite Intervisit Minimization, a 
receding horizon controller that searches the space of admissible car assignments to minimize 
a. load function; ESA. Empty the System Algorithm, a receding horizon controller that 
searches for the fastest way to "empty the system" assuming no new passenger arrivals. " 
FIM is very computationally intensive, and would be difficult to implement in real time in 
its present form. ESA uses queue length information that would not be available in a real 
elevator system. ESA/nq is a version of ESA that uses arrival rate information to estimate 
the queue lengths. For more details, see [2]. 

RLp and RLd denote the RL controllers, parallel and decentralized. In each case, single- 
output networks were used. The RL controllers were each trained on 60,000 hours of sim- 
ulated elevator time, which took four days on a 100 MIPS workstation. The results are 
averaged over 30 hours of simulated elevator time. Table (above) shows the results for the 
traffic profile with down traffic only. Table 3 shows the results for the down-peak traffic 
profile with up and down traffic, including an average of 2 up passengers per minute at the 
lobby. The algorithm was trained on down-only traffic, yet it generalizes well when up traffic 
is added and upward moving cars are forced to stop for any upward hall calls. Table 4 shows 
the results for the down-peak traffic profile with up and down traffic, including an average 
of 4 up passengers per minute at the lobby. This time there is twice as much up traffic, and 
the RL agents generalize extremely well to this new situation. 

One can see that both RL systems achieved very good performance, most notably as 
measured by system time (the sum of the wait and travel time), a measure that was"not 
directly being minimized. Surprisingly, the decentralized RL system was able to achieve 
nearly as good a level of performance as the parallel RL system. We also note that these 
results, which were produced using separate networks for each action, are better than those 
obtained for two-output networks [6]. For example, in the case of down traffic only, the best 
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Table 3: Results for Down-Peak Profile with Up and Down Traffic. 

Algorithm AvgWait SqWait SysTime %>60s 

SECTOR 27.3 1252 54.8 9.24 
DLB 21.7 826 54.4 4.74 

BASIC HUFF 22.0 756 51.1 3.46 
LQF 21.9 732 50.7 2.87 

HUFF 19.6 608 50.5 1.99 
ESA 18.0 524 50.0 1.56 
FIM 17.9 476 48.9 0.50 
RLd 16.9 465 42.5 1.29 
RLp 16.8 454 42.8 1.20 

Table 4: Results for Down-Peak Profile with Twice as much Up Traffic. 

Algorithm AvgWait SqWait SysTime %>60s 
SECTOR 30.3 1643 59.5 13.50 

HUFF 22.8 884 55.3 5.10 
DLB 22.6 880 55.8 5.18 
LQF 23.5 877 53.5 4.92 

BASIC HUFF 23.2 875 54.7 4.94 
FIM 20.8 685 53.4 3.10 
ESA 20.1 667 52.3 3.12 
RLd 19.0 614 45.8 2.71 
RLp 18.7 583 45.6 2.29 
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average waiting time, average squared waiting time, and system time achieved by the parallel 
architecture using two-output networks are respectively 14.8, 320, and 41.8 (compare with 
the last line of Table ). 

In view of the outstanding success of the decentralized RL algorithm on this problem, we 
conducted a large number of additional experiments designed to help us better understand 
the nature of the decentralized results. Results of these experiments will be availabe in 
Crites' dissertation. 

1.5    Summary of Elevator Dispatching Studies 

Although we do not know how the results described above compare to optimal elevator 
dispatching performance (because no optimal policy is known), they show that RL is capable 
of producing high-performance control of this large-scale stochastic system. Moreover, they 
provide evidence that RL can be useful in certain large-scale distributed control problems. 
The chief difficulty with problems of this kind lies not in the creation of an accurate sim- 
ulation model, but rather in using conventional stochastic DP solution methods, which are 
intractable for problems of this complexity due to the large number of states. By using a 
simulation model to produce a large number of sample trajectories, RL avoids exhaustive 
sweeps of the state set. Computation is successively focused onto more and more relevant 
subsets of states because the control policy being learned is used to generate control decisions 
during the simulation. Additionally, by storing information using parameterized function ap- 
proximation methods, here, artificial neural networks, RL avoids the need to maintain large 
lookup tables. Finally unlike conventional stochastic DP, this approach does not require 
access to an explicit representation of the probability structure of the controlled system. 
The simulation model is simply a source of sample experience. It is often much easier to 
construct a simulation model than it is to provide an explicit probabilistic description of the 
svstem. 

2    Multi-agent RL in the Iterated Prisoner's Dilemma 

Most RL research has been confined to single agent settings or to multi-agent settings 
where the agents have totally positively correlated payoffs (team problems) or totally nega- 
tively correlated payoffs (zero-sum games). We conducted an empirical study of RL in the 
iterated prisoner's dilemma (IPD), where the agents' payoffs are neither totally positively 
nor totally negatively correlated. RL is considerably more difficult in such a domain. We 
investigated the ability of a variety of Q-learning agents to play the IPD game against an 
unknown opponent. In some experiments, the opponent was the fixed strategy Tit-for-Tat, 
while in others it was another Q-learning agent. The learning agents that were studied varied 
along three dimensions: the length of history they received as context, the type of memory 
they employed (lookup tables based on restricted history windows versus recurrent neural 
networks that can theoretically store features from arbitrarily deep in the past), and the 
exploration schedule they followed. 
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2.1    Prisoner's Dilemma 

The prisoner's dilemm.a (PD) game is an abstraction of social situations where each agent 
is faced with two alternative actions: cooperating, i.e., doing the socially responsible thing, 
and defecting, i.e., acting according to self-interest regardless of how harmful this might 
be to other agents. We concentrated on the 2-agent PD game, where the agents' payoffs 
for different action combinations are common knowledge. Characteristically, each agent is 
better off defecting regardless of the opponent's choice, but the sum of the agents' payoffs is 
maximized if both agents choose to cooperate—thus the dilemma. In game theoretic terms, 
defecting is a dominant strategy of the game and so the defect-defect action combination is 
the only dominant strategy equilibrium, (and therefore also the only Nash equilibrium). On 
the other hand, social welfare is maximized at the cooperate-cooperate action combination, 
if social welfare is defined to be the equiweighted sum of the agents' payoffs. The payoff 
matrix of Table 5 defines a PD game if the following inequalities hold: 

T> R> P> S,     2R>T + S>2P. 

The PD game is noncooperative: no pregame negotiation is allowed, the agents cannot bind- 
ingly commit to any action, no enforced threats can be made, and no transfer of payoff is 
possible. 

column player 
cooperate (C) defect (D) 

row 
player 

cooperate (C) R = 0.3. R = 0.3 S = 0.0, T = 0.5 
defect (D) T = 0.5. S = 0.0 P = 0.1, P = 0.0 

Table 5: Payoff Matrix with Row Player's Payoffs Shown First. The numerical values are 
the ones used in the experiments. In general. T, R, P, and S could differ between the agents 
as long as they define a PD game. 

In practical situations, agents often encounter each other more than once. Correspond- 
ingly, some social interactions can be modeled by a sequence of PD games. This supergame 
of the PD game is called the iterated prisoner's dilemma (IPD) game. In supergames, an 
agent's policy (strategy) is a mapping from the entire history (all of its own and its oppo- 
nent's moves) to an action. Because fixed horizon IPD games have this characteristic, we 
focused on IPD games with an indefinite horizon, i.e., the agents do not know how many 
iterations are still to come. In such IPD games, it may be beneficial even for a selfish agent 
to cooperate on some iterations in the hope of invoking cooperation from its opponent. The 
goal of an agent at iteration n is to select actions that will maximize its infinite-horizon 
discounted return. 

Describing an intelligent strategy for a supergame is difficult because arbitrarily long 
input histories must be considered. Strategy designers have used two main approaches to 
address this problem: 

• use only a fixed number of previous moves as the context upon which the choice of 
next action is based, and 

16 



■^ia»iHMo^^WjMM«a»««wa^ai'»;^ ,ffJ!&V^-^y.:^ta^:;^:r.;&^^ 

• iteratively keep a tally of some (numeric) features that provide an abstract character- 
ization of the entire history. 

An example of the first approach is the pure strategy Tit-for-Tat (TFT), which cooperates on 
the first move and then does whatever the opponent did on the previous move. An example 
of the second approach is to compute at each time step the opponent's discounted cumulative 
score. A strategy has the desired property of being collectively stable if and only if it defects 
when that score exceeds a threshold [1]. Both approaches to the problem of growing context 
suffer from the hidden state problem:, the first approach ignores the older history, and the 
second approach can only give an abstraction of the true state. 

There is no single best strategy for the IPD game. Which strategy is best depends on 
the opponent's strategy, which the player obviously does not know. TFT was chosen as an 
opponent for the RL players not only because it has performed well in IPD tournaments 
and evolutionary IPD experiments [1], but also because the optimal way to play against 
TFT is completely known. There are three different optimal ways to play against TFT 
depending on the discount factor 7 [1]. For the payoff matrix of the PD game we used 
(T = 0.5, R = 0.3, P — 0.1,5 = 0.0), optimal play is achieved by always cooperating if 
7 > §V alternating between defection and cooperation if | < 7 < |, and always defecting if 
7 < |. Each of the three ways of playing can be achieved by a number of strategies. For 
example, cooperation with TFT is realized by another TFT strategy or by a strategy that 
always cooperates no matter what the opponent does. 

2.2     Q-Learning Players In The IPD 

We generated a number of different types of Q-learning agents to challenge TFT and 
each other in IPD games. In each pairing of players in each experiment, the whole learning- 
session was one long trial (300,000 PD iterations), i.e. the agent had only one chance to 
learn and evaluation took place during the last 100 iterations. The results were averaged 
over 100 IPD games for each pairing. Unless otherwise stated, the experiments were run 
with discount factor 7 = 0.95 (high to promote cooperation). The agents differed in the way 
they stored Q-values. 

The first set of RL agents used lookup tables to store their Q-values. These agents had 
access only to w previous moves—i.e., w of their own moves and w of their opponent's moves. 
For example, given a window of only the last move (w — 1), four different inputs would be 
possible (CC, CD. DC, and DD). For each possible input, two Q-values needed to be stored 
(corresponding to actions C and D). 

The second set of agents had the same inputs, but they stored the Q-values in a recurrent 
neural network (RNN) that can (at least in theory) store information of arbitrarily old actions 
and automatically learn which history features are important. Inputs were presented to the 
net in four bits because a unary encoding resulted in faster learning than a two bit binary 
encoding. The first bit was on if the opponent's previous action was C, and the second bit 
was on if the action was C. The third bit was on if the agent's own previous action was C, 
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and the fourth bit was on if its action was C. We used a separate net for both actions, which 
has been shown empirically to enhance learning speed [11]. Each net was constructed along 
the lines of Elman [7]: the net was a normal feedforward net except that the hidden-unit 
outputs were copied into context units, whose activations were fed back to the normal hidden 
units on the next forward sweep. The copy connections from the normal hidden units to 
the context units were fixed to one. This allowed the use of the standard backpropagation 
learning algorithm. 

In our experiments, each learning agent's exploration policy was a function of the number 
n of PD games played so far. This was used to decrease the temperature for Boltzmann 
exploration: 

t = 5 • 0.999n. 

If t < 0.01 then no exploration was performed, i.e. the certainty equivalence action (the 
action with the highest Q-value estimate) was always chosen. The constants for the annealing 
schedule (5,0.999,0.01) were chosen experimentally. 5 and 0.01 are specific to the range of 
Q-values defined by the payoff matrix. The parameter a referred to below is the step-size 
parameter of the Q-learning algorithm. 

2.3    Experiments 

Learning Against TFT—This experiment was designed to see how the different learning 
agents performed against a player that used a fixed strategy (TFT). Lookup-table Q-learning 
agents using only the last move as the input consistently learned to cooperate with TFT for 
a variety of parameter settings. RNN-based Q-learners also learned to cooperate with TFT. 
as did a learner that had the same neural-net architecture as the RNN but with no context 
units and no feedback connections. Lookup-table learners learned to cooperate with TFT in 
thousands of iterations, while RNN players required tens of thousands of iterations. 

We also examined whether a lookup-table Q-learner could learn the optimal strategy 
against TFT for values of 7 other than 0.95. At each setting of 7, we ran 100 IPD with 
100,000 iterations each. For 7 = 0.05, 7 = 0.1, 7 = 0.15, and 7 = 0.2, the agent consistently 
learned to defect. For 7 = 0.25, 7 = 0.3,..., 7 = 0.65, the agent learned to alternate 
between defecting and cooperating. For 7 = 0.7, 7 = 0.75,..., 7 = 0.95, the agent learned 
to cooperate. Thus, the agent learned to play optimally against TFT in all of the hundred 
IPD games at each setting of 7. 

Q-learning, though relatively slow, works extremely well against stationary policies such 
as TFT, which take into account a short window of previous moves. Playing against an 
agent with a stationary policy is analogous to single agent learning, because the learning 
agent perceives a stationary environment. The next experiments addressed harder cases, 
where both agents learn simultaneously. 

Simultaneous Learning—Two types of learning agents were studied in the context of simul- 
taneous learning: lookup-table Q-learners and RNN Q-learners. All three pairings of these 
agents were tested. When two lookup-table players played each other, one never totally took 
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advantage of the other, but asymmetric loops did occur (e.g. CC, CD, CC, CD, ...). Between 
RNN players, neither total advantage taking nor asymmetric loops occurred. When lookup- 
table learners played against RNN learners, surprisingly asymmetric loops only occurred to 
the advantage of the lookup table player. 

The sum of the agents' payoffs was much higher in the game between lookup-table learners 
than in the other cases. If even one of the players used a RNN as its Q-value storage, the 
outcome of the game was significantly less cooperative. This somewhat surprising result may 
be because the neural-net players need more training examples than the lookup table players 
and thus may require a longer exploration phase than lookup-table players. 

We also explored the impact of turning off the exploration. The results of games where at 
least one agent does no exploration depend heavily on the initialization of the Q-values. For 
example, if all Q-values are initialized with the same non-positive number, a non-exploring 
agent will always pick the action that it first picked in that state. This is because the Q-value 
corresponding to that action will be reinforced by a positive number (and thus exceed any 
other action's Q-value in that state), because the payoffs in the game are positive. In the 
experiments, the Q-values were initialized randomly from a uniform distribution from 0 to 
1.These results suggest that exploration is crucial to avoid being taken advantage of by an 
exploring opponent. Yet if neither agent explores, the Q-value initializations determine the 
outcome, and cooperation occurs frequently. 

We also investigated what happens when learners having different inputs play each other. 
The joint behavior of the agents was very sensitive to the annealing schedule (rates 0.999 and 
0.9999 tested). Slower annealing tended to produce significantly more cooperation and other 
semi-cooperative loops and a wider variety of final looping patterns, while the faster annealing 
schedule increased defection. Agents with history windows of 1, 2, and 3 moves were tested. 
With longer histories, a wider variety of patterns developed, and longer patterns developed. 
In the asymmetric contests, the agent with the longer history tended to fare slightly better 
than the agent with the shorter history, but not as much as had been expected. Overall, 
there was clearly more cooperation when both agents used a history of one move. 

2.4    Summary of Iterated Prisoner's Dilemma Results 

Both lookup-table Q-learners and recurrent neural-net Q-learners learned to play opti- 
mally against a fixed policy (TFT) for all settings of the discount factor. Having multiple 
agents learning simultaneously without communication, however, makes the learning pro- 
cess considerably more difficult due to the nonstationarity that each agent faces. In our 
experiments with two learning systems, clear cooperation seldom emerged, although the 
discount factor was set very high to stimulate cooperation. Recurrent-net learners played 
non-cooperatively, and the resulting plays were always equal among the players. Lookup- 
table learners played more cooperatively, but asymmetric loops occurred. When a recurrent 
neural-net learner played a lookup-table learner, the outcomes were non-cooperative, and 
the asymmetric loops were always to the lookup-table learner's advantage. Surprisingly, 
increasing the learning rate a from 0.2 to 1 enhanced cooperation between recurrent net 
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players. Lookup-table learners with memories of different lengths were tested. With longer 
histories, a wider range of interaction patterns occurred, and longer loops developed. With 
asymmetric memories, the agent with a longer memory did slightly better on average. With 
asymmetric and long symmetric memories, the outcomes were less cooperative than when 
both agents had a memory of length one. 
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