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Abstract 

Learning from experimentation allows a system to acquire planning domain knowledge by cor- 
recting its knowledge when an action execution fails. Experiments are designed and planned to 
bring the world to a state where a hypothesis (e.g., that an operator is missing a precondition) 
can be tested. When planning an experiment, the planner must take into account the interactions 
between the execution of the main plan and the execution of the experiment plans, since after the 
experiment it must continue to carry on its main task. In order for planners to work in such environ- 
ments where they can be given several tasks, they must take into account the interactions between 
them. A usual assumption in current planning systems is that they are given a single task (or set of 
goals to achieve). However, a plan that may seem adequate for a task in isolation may make other 
tasks harder (or even impossible) to achieve. Different tasks may compete for resources, execute 
irreversible actions that make other tasks unachievable, or set the world in undesirable states. This 
paper discusses what these interactions are and presents how the problem was adressed in EXPO, 
an implemented system that acquires domain knowledge for planning through experimentation. 

In Proceedings of the Third International Conference on Artificial Intelligence Planning 
Systems (AIPS-96), May 29-31, 1996, Edinburgh, Scotland. 



1    Introduction 
Planning systems often make the assumption that omniscient world knowledge is available. 
Our approach makes the more realistic assumption that the initial knowledge about the 
actions is incomplete, and uses experimentation as a learning mechanism when the miss- 
ing knowledge causes an execution failure. In a planning system, the inaccuracies of the 
knowledge base may render problems unsolvable or produce plans that yield unsuccessful 
executions. The imperfections of the domain knowledge have been closely related to plan- 
ning and/or execution failures [Hammond, 1986, Huffman et al, 1992], but they can also 
cause unexpected successful executions [Gil, 1994]. Planning systems that model a physical 
system and are given the ability to interact with it can directly examine the actual behavior 
of the physical system that the domain is supposed to model. This presents an opportu- 
nity for autonomous refinement of the imperfections of the domain model. Our approach 
combines selective and continuous monitoring of the environment to detect knowledge faults 
with directed manipulation through experiments that lead to the missing knowledge. 

The first part of this paper summarizes our work on autonomous refinement of incomplete 
planning domains through experimentation [Gil, 1994, Gil, 1993, Gil, 1992] and presents em- 
pirical results of its effectiveness and efficiency in improving the planner's domain knowledge 
when initial domain knowledge is up to 50% incomplete. Learning is selective and task- 
directed: it is triggered only when the missing knowledge is needed to achieve the task 
at hand. Our approach is based on continuous and selective interaction with the environ- 
ment that leads to identifying the type of fault in the domain knowledge that causes any 
unexpected behavior of the environment, and resorts to experimentation when additional 
information is needed to correct the fault. The new knowledge learned by experimentation 
is incorporated into the domain and is immediately available to the planner. The planner in 
turn provides a performance element to measure any improvements in the knowledge base. 
This is a closed-loop integration of planning and learning by experimentation. 

Research in the area of acquiring action models is mostly subsymbolic [Mahadevan and 
Connell, 1992, Maes and Brooks, 1990]. An important component of our approach is the 
ability to design experiments to gather additional information that is not available to the 
learner and yet is needed to acquire the missing knowledge. Experimentation is vital for 
effective learning and is a very powerful tool to refine scientific theories [Cheng, 1990, 
Rajamoney, 1993], but other research on learning planning knowledge from the environ- 
ment does not address the issue of experiment formulation and design [Shen, 1993, Kedar 
et al, 1991]. Previous work on learning by experimentation has not addressed the issue of 
how to choose good experiments, and much research on learning from failure has relied on 
background knowledge to build explanations that pinpoint directly the causes of failures. We 
want to investigate the potential of a system for efficient learning by experimentation with- 
out such background knowledge. Our approach uses domain-independent heuristics that 
compare possible hypotheses and choose the ones most likely to cause the failure. These 
heuristics extract information solely from the domain operators initially available for plan- 
ning (incapable of producing such explanations) and the planner's experiences in interacting 

with the environment. 
Planning experiments may interact with the main planning task that triggers learning. 



In the second part of the paper we describe how we handle these interactions: by giving the 
planner explicit guidance about how to conduct the experiment planning search. This is a 
general problem for planners that can be given two or more different tasks and must take 
into account the interactions between several planning search spaces. 

Our approach to learning by experimentation has been implemented in a system called 
EXPO. EXPO's underlying planning architecture is the PRODIGY system [Carbonell et a/., 
1991] which provides a robust, expressive, and efficient planner. EXPO was tested with a 
complex process planning domain of dozens of operators, and a STRIPS-like robot planning 
domain that is widely used by planning researchers (both domains are described in [Gil, 
1992]). 

2    Learning from the Environment by Experimenta- 
tion 

This section describes how EXPO detects that it is missing domain knowledge, then con- 
structs a set of hypotheses of possible fixes, determines the more promising ones, and finally 
designs and executes experiments to determine the fix needed by its domain theory. More 
details can be found in [Gil, 1994, Gil, 1993, Gil, 1992]. 

2.1    Detecting the Need to Learn 

EXPO is given a suite of representative planning problems in the domain. This provides a 
purpose for learning: EXPO acquires knowledge that is needed to solve these kinds problems, 
instead of exploring the environment's behavior under various conditions. In a process 
planning domain, representative problems are to produce a part with a certain size, to give 
the surfaces of a part a certain degree of smoothness, to produce a part with a hole of 
specific diameter, depth, and position, etc. For each of these problems, EXPO creates a plan 
that solves the problem and starts executing the plan and collecting observations. EXPO 
monitors the external world selectively and continuously. Before the execution of an operator, 
EXPO expects the operator's known preconditions to be satisfied, so it checks them in the 
external world. If they are indeed satisfied, then EXPO executes the corresponding action. 
The operator's known effects are now expected to have occurred in the world, so EXPO 
checks them in the external world. For example, before executing grinding, EXPO would 
check the operator's known conditions, e.g., that the part is being held by a holding device, 
that there is a grinding tool installed in the grinder, and so on. After executing the action, 
EXPO checks that the part is of a smaller size and has a finished surface. Whenever its 
observations disagree with its expectations, EXPO concludes that it needs to learn in order 
to fix its knowledge about the operator so that observations and expectations coincide the 
next time the operator is used. This is the case in our grinding example if the surface is 
observed to be rough. After learning, EXPO's internal model should reflect more accurately 
the actual behavior of its environment. 



what triggers 
learning 

general 
hypothesis 

particular 
hypothesis 

state to execute 
experiment 

operator in 
experiment 

observations 
in experiment 
before after 

unexpected 
outcome 
ofO 

0 has an 
unknown 
precondition 

The unknown condition is 
one of the predicates 
{P,} that were true in 
previous executions 

Preconditions 
of 0 and 
Pi are 
satisfied 

0 effects 
ofO 

unexpected 
value 
ofP 

P is an unknown 
effect of a 
previously executed 
operator 

P is the unknown effect of 
one of the operators {0;} 
executed since last time 
P was observed 

Preconditions 
ofOj 
are satisfied 

Oi P P 

Table 1: The design of experiments to learn new preconditions and new effects of operators. 

2.2    Formulating Hypotheses 

Next, EXPO hypothesizes a cause for the unexpected observation in terms of a fix to its 
knowledge base. Several possible categories of fixes to the domain knowledge can be consid- 
ered, including the following: 

• Missing preconditions: When an operator 0 is executed in state S and not all its 
known effects take place, EXPO considers the general hypothesis that the precondi- 
tions of 0 are incomplete and triggers learning to discover the missing condition C. 
Notice that C must have been true (by coincidence) every time that 0 was executed 
before. In our running example, suppose that the operator for grinding is missing a 
precondition to have cutting fluid in the machine (to absorb the heat produced by 
friction). Without fluid, the execution of grinding will produce a rough surface finish. 
When past executions of grinding succeeded, the machine had cutting fluid. But in 
those occasions the part had no holes in it, had a smooth surface, and was made of 
wood. Any of those could be a necessary condition for grinding to succeed. EXPO 
then engages in an experimentation process to discern which of those predicates is the 
missing condition. 

• Missing effects: When a predicate P is found to have a value different than expected, 
EXPO considers the general hypothesis that some operator that was applied since the 
last time P was observed had the unknown effect of changing P. EXPO retrieves 
all operators executed since P was last observed, and considers them candidates for 
having incomplete effects. For example, if EXPO takes a part with a smooth surface 
and after grinding and drilling the part it notices that the surface is not smooth, then 
it will consider that either the grinding or the drilling operator is missing the effect of 
changing the surface quality. Experiments with these operators let EXPO observe P 
before and after each execution and determine which operator changes P. 

Table 1 summarizes hypothesis generation for these two cases. Other possible fixes to the 
domain knowledge include acquiring data about the state of the external world and acquiring 
new operators [Gil, 1992, Gil, 1994]. 



heuristic description 
locality of actions objects affected by the action are likely to be already 

present in the operator's parameters 
structural similarity similar operators are likely to have similar preconditions 
generalization of experience necessary conditions have been present in all past 

successful executions of the action 

Table 2: Domain-independent heuristics for suggesting better experiments. 

2.3    Selecting Promising Hypotheses 

Once the possible hypotheses are generated, EXPO needs to determine which one is re- 
sponsible for the unexpected observation. The number of possible hypotheses may be quite 
large, and many may be ruled out by careful acquisition of informative instances through 
experimentation. In the process planning domain, the typical size of the hypothesis set is 50 
to 100. In the grinding example, possible experiments are to try grinding a part that has a 
different number of holes, grinding a part that has a different surface finish, and grinding a 
part made of a different material. 

Minimizing the number of experiments is important, not only because of the large num- 
bers of hypotheses, but because there is a significant cost associated with each experiment. 
For each experiment the planner has to build a plan to set the environment in a state that 
satisfies many predicates. For example, in an experiment to try to grind a part with two 
holes the planner must select a part, make two holes in it, and then set it up in the grind- 
ing machine. Apart from the planning effort involved, the execution of those plans raises 
additional issues. Plan execution may use up valuable resources (including time), produce 
non-desirable changes in the environment that are hard (or impossible) to undo, and interfere 
with the goals of the system's main task. These issues are discussed briefly here to motivate 
the need to reduce the number of experiments, but they are central to the experiment search 
space and are discussed in more detail below. 

The key to EXPO's efficient experimentation are a set of heuristics that help it concen- 
trate on promising hypotheses. These heuristics, summarized in Table 2, are derived from the 
descriptions of other operators and of the operator in question. The locality heuristic points 
out, for example, that facts about the machine and tool used and the part being ground are 
more likely to be relevant to the failure. The presence of a steel part somewhere else in the 
machine shop is not likely to have affected the grinding operation. The similarity heuristic 
makes EXPO consider adding cutting fluid as a more plausible precondition of grinding than 
having holes in the part, because in this domain many operators that also reduce the size of 
a part require cutting fluid. Generalization of experience takes advantage of the fact that the 
conditions of the action must have been present in all past successful executions of it. For 
each operator, EXPO maintains a generalization of all the states where the execution was 
successful. The generalization is done using the operator's parameter bindings. Such gener- 
alization of the planner's past experience is useful to guide our search for the missing condi- 
tion, because it contains the conditions that were common to all the states when the action 



was successfully executed before. The heuristics are described in more detail in [Gil, 1992, 
Gil, 1993]. 

2.4    Designing and Executing Experiments 

Each hypothesis is tested with an experiment. When the hypothesis is that the operator 
is missing a precondition P, an experiment is designed to test whether the operator will 
be successfully executed in a state where P and every precondition of O are satisfied, as 
shown in Table 1. This effectively becomes a goal for the planner, since a plan needs to be 
constructed to achieve the situation desired. This experiment search space is different from 
the main search space used to create the original plan that triggered learning. In searching 
for a plan, the planner must take into account the interactions with the experiment. This 
process is described in more detail below. 

After the execution of this plan and of the experiment itself, observations are collected 
to determine what should be learned. If the hypothesis is confirmed, the domain knowledge 
is adjusted accordingly. Otherwise, the experimentation process is iterated until success or 
until no more hypotheses are left to be considered. Additional candidate hypotheses can be 
formed with the differences between S and a past state where 0 was successfully applied. If 
all those are also ruled out, the learner may still need to look for additional candidates (for 
example, predicates that are not included in the state S because they were never observed), 
and even go back and consider an alternative general hypothesis, for example that 0 has 
conditional effects instead of a missing precondition. 

After the operator is corrected, it will be used in any future planning. The main planning 
task can now be continued, and EXPO continues to watch for learning opportunities to 

correct its domain knowledge. 

3    Empirical Results 

EXPO was tested in two different domains: a robot planning domain frequently used in the 
planning literature, and a complex process planning domain with dozens of operators and 
states of large size. [Gil, 1992] describes these domains in detail as well as other empirical 
results not shown here. 

To control the amount of missing knowledge that EXPO was given in the tests, we first 
wrote a complete domain D with all the operators with all their corresponding conditions 
and effects. With this complete domain, we artificially produced domains D' with certain 
percentages of incompleteness (e.g., 20 percent of the preconditions are missing) by randomly 
removing preconditions or effects from D that EXPO could learn. Note that EXPO never 
has access to D, only to some incomplete domain D'. 

Training problem sets and test problem sets were generated randomly. At certain points 
during learning, we ran the test set with learning turned off, and when EXPO made a 
wrong prediction the internal state was corrected to reflect the observations but no learning 
occurred (i.e., the domain operators were not changed.) 

To show that EXPO is effective, i.e., that it can acquire new knowledge that is useful 
to the planner, we measured the cumulative number of wrong predictions (i.e., learning 



opportunities for EXPO). We also measured the number of problems in the test set that could 
be executed successfully to completion at several points during training. The following tables 
show results in the process planning domain, where the training sets had 100 problems and 
the test sets had 20 problems. Each problem required achieving several goals. The results 
are shown as cumulative round averages. In the process planning domain with 10 percent 
incompleteness the results were as follows: 

training learning test plans 
problems opportunities successfully executed 

0 0 5 
10 0 16 
30 8 17 
50 10 19 
100 10 19 

and with 30 percent incompleteness: 

training learning test plans 
problems opportunities successfully executed 

0 0 1 
10 '17 8 
30 23 13 
50 29 18 
100 30 19 

EXPO always acquired a new precondition in every learning opportunity. Although 
EXPO did not acquire all the missing domain knowledge after learning, it learned in some 
trial runs the knowledge necessary to execute successfully the solutions to all the problems in 
the test set. In some cases, EXPO acquired knowledge that did not cause any improvement 
in the performance for the problems in the test sets. The number of test problems that were 
successfully completed always increased as learning progressed. 

To measure the efficiency of EXPO, we measured the number of experiments that were 
needed using different strategies to select heuristics. We ran EXPO using each heuristic 
alone, using different combinations, and using no heuristics. When no heuristics were used, 
EXPO tried the candidate predicates in sequence.1 

The results shown for this test are for the robot planning domain. The heuristics used 
are represented by a letter: g for generalization, s for structural similarity, and / for locality. 
Even though this domain is much smaller in size than the process planning domain, the 
number of possible hypotheses that EXPO could consider for each failure ranged between 50 
and 85. With 20 percent of the preconditions missing, the cumulative number of experiments 
needed was as follows: 

*We considered a divide-and-conquer strategy that recursively splits the candidate set, using login) 
experiments to isolate the correct hypothesis (n being the number of hypotheses). The number of experiments 
needed with this strategy is comparable to (but still larger than) the number needed for our combined 
heuristics. However, for each experiment the planner must achieve many more additional goals because 
more conditions are tested in each experiment setup [Gil, 1992, Gil, 1993]. 

6 



failures none 9 / s gls 
5 
10 

215 
332 

168 
172 

50 
90 

94 
110 

10 
17 

With 50 percent of the preconditions missing, the cumulative number of experiments 
needed was: 

failures none 9 / s gls 
5 205 172 27 118 40 
10 460 276 102 177 71 
17 728 370 201 325 89 

In all cases, the combination of the three heuristics reduced dramatically the number 
of experiments required, and yielded significantly better performance. Notice also that the 
number of experiments needed decreases as EXPO acquires more knowledge, because the 
heuristics are more effective when there is more knowledge about the domain available. 

4    Planning and Executing Experiments 

In order to perform an experiment, the world must be brought to a state where the conditions 
of the experiment are satisfied. For example, if the hypothesis is that the grind operator is 
missing the condition that the grinder has cutting fluid, we must reach a state where the 
current known preconditions of grinding and the hypothesized new condition are satisfied. 

The planner must first come up with a plan to achieve this state from its current state, 
which is the state in which the failure that triggered experimentation occured. We call this 
process pre-experiment planning. 

Once the pre-experiment plan is executed, the experiment can be carried out. In our 
example, we grind and check if this time the effects of the grind operator are obtained. If 
not, other hypotheses must be tested with other experiments. But if grinding works now, 
then the missing condition must be that the grinder has cutting fluid. The new condition 
is added to the operator GRIND. Then, the original plan that failed must be continued in 
order to achieve the original goal. If the pre-experiment plan has undone any of the facts 
necessary for the original plan, then a post-experiment plan is needed to restore those facts 
and continue with the main plan. Whether a post-experiment plan is used to enable the 
continuation of the original plan or replanning is done to achieve the original goals is not the 
issue here. The issue is that there is some effort needed to restore facts that were undone 
during pre-experiment planning. 

Some pre-experiment plans are better than others depending on the criteria that are 
used. For example, minimal interference with the main plan may be an important concern. 
Suppose that learning was triggered when grinding parti in the machine grinderl with visel 
as a holding device and wheell as a tool. Then it would be better to use grinder2, wheel2, 
and vise2 with part2 in the experiments since visel is already holding parti. But perhaps 
we are more concerned with making the pre-experiment plan as short as possible, so we can 
learn as quickly as possible and go on with our main plan. If this is the case, using grinderl, 



wheell, and visel would be better since they are already set up and ready for grinding 
operation. So, one experiment may be better than another one depending on what criteria 
are preferred. 

EXPO designs experiments following a set of policies chosen by the user from a pre- 
defined pool. An example of a policy is to avoid using irreversible operators, since they 
can bring the world to a state where the main task cannot be achieved. Each policy in 
EXPO is implemented as a control rule in PRODIGY's language [Carboneil et a/., 1991, 
Gil, 1992]. Control rules are used during the search at each decision point: to choose a node 
to expand, to choose a goal to achieve, to choose an operator to achieve a goal, and to choose 
bindings for the operator's parameters. Control rules can express prefereces among options, 
rejections of options, or select an option as the only possibility for a decision. The control 
rule that represents the policy to avoid irreversible operators is: 

(RULE--REJECT-IRREVERSIBLE-OPERATORS 
(lhs  (and  (current-node <node>) 

(candidate-op <node> <operator>) 
(is-irreversible <operator>))) 

(rhs  (reject operator <operator>))) 

Each policy defines a preference to be used for decision making and can be thought of 
as a piece of control knowledge to be used during experimentation planning. Policies are 
grouped together to define overall strategies that the learner follows to plan experiments. 
We describe now EXPO's policies and strategies in detail. 

4.1    Planning Experiments 

All the policies that the user may define for the main planning task are also applicable 
to experiment planning. These policies correspond to the control knowledge (be it domain 
independent or not) given to the planner to be used for decision making in the domain. They 
can be considered universal policies, since they apply in both the main and the experiment 
search spaces. For example, we would consider an experiment that uses cheap materials to be 
better than another one that uses expensive materials. But the same principle applies in the 
main planning space. The quality of the experiment plans is determined in many dimensions 
by these universal policies that are to be addressed by research on how to measure plan 
quality, and are not discussed here. Experiment policies and universal policies may be in 
conflict. When this is the case, EXPO gives priority to universal policies unless indicated 
otherwise by the user. 

The experiment policies defined for EXPO can be grouped under four topics: goal inter- 
actions, operator properties, binding interactions, and plan characteristics. The policies are 
cast in domain independent terms. They are summarized in Figure 1. 

4.1.1    Goal Interactions 

The goal interaction policies refer to the interactions between the goals in the experimen- 
tation space and goals in the main search space.    They are different from the types of 



• Goal interactions 
• Avoid main goal protection violation: If a search path clobbers a goal previ- 

ously achieved by the main plan that is still needed to achieve the main goals, then 
prefer other search paths over this one. 

• Avoid main prerequisite violation: If a search path undoes a fact that the 
remaining main plan requires to be true, then prefer other search paths to this one. 

• Support main goal concord: If a search path achieves a goal that remains to 
be achieved by the main plan, prefer it over other paths. 

• Operator properties 

• Avoid irreversible operators: Never use irreversible operators. 
• Prefer easily reversible operators: Prefer operators whose effects are easier to 

undo. 
• Prefer operators that minimize state changes: Prefer operators that have 

less effects. 
• Prefer more reliable operators: Prefer operators that have a higher rate of 

successful executions. 
• Avoid unreliable operators: If an operator's rate of failure is over a user-defined 

threshold, do not use it. 

• Binding interactions 
• Avoid objects of very high protection: Never use objects that are used in the 

main plan and whose type is classified as very high protection. 
• Prefer objects of lower degree of protection: If two objects used in the main 

plan are being considered for binding the same variable, prefer the object with a 
lower degree of protection. 

• Prefer least number of protected objects: If several objects used in the main 
plan are being considered for binding different variables, prefer the set of objects 
that minimizes the total degree of protection. 

• Plan characteristics 
• Avoid long plans: Never choose plans that are longer than a given length. 
• Prefer short plans: Prefer plans that are shorter. 
• Avoid deep nodes: Never expand nodes below a given depth. This maximum 

depth for the experimentation search must be given a value. 
• Prefer shallow nodes: Prefer expanding shallower nodes. 
• Avoid plans with too many state changes: Never choose plans that cause 

changes in the external world over a user-given number. 
• Prefer plans with fewer state changes: Prefer plans that cause a smaller 

amount of changes in the external world. 

Figure 1: EXPO's experimentation policies. 

interactions within a search space. Here, a search path is preferred over another one it 
minimizes negative interference (or maximizes positive interference) with the top level goals. 
Notice that the preference is over which search paths to pursue, not over which goals. 

4.1.2    Operator Properties 

One policy is to avoid irreversible operators. Determining that an operator is irreversible 
requires proving that there is no plan that can undo its effects, which is undecidable. Also, 
the irreversibility of operators is not a binary feature: the same operator may be irreversible 



in some states and reversible in others. Because of these and other issues that make the 
automatic determination of irreversibility very complex, EXPO relies on a user-defined clas- 
sification of operator's reversibility. 

A second policy states that if the effects of operator 0\ are easier to undo than the effects 
of operator 02, prefer 0\ over 02. Determining the degree of reversibility of an operator is 
not a simple matter, so EXPO relies on an ordered list of operators defined by the user. 

Another policy is to prefer operators that minimize state changes. If an operator 0\ 
has less effects than operator 02, prefer 0\ over 02. This policy is a more local version of 
another policy that prefers plans with fewer state changes (described below). 

The next policy says that if an operator 0\ has a higher rate of success (based on the 
number of times that it has been used) than operator 02, then prefer Ox over 02. The last 
policy avoids operators that have a rate of failure over a user-defined threshold. Notice that 
both policies try to use operators that have good models in the planner's knowledge base in 
order to avoid obtaining execution failures during the experiments. 

4.1.3    Binding Interactions 

During planning, the parameters of each operator are given values by binding them to objects 
in the current state. Some bindings ma}' be preferable to others. For example, we may prefer 
to use in the experiments a different machine than the one that is being used in the main 
plan, since the machine used in the main plan is probably all set up for the operation. 
Other objects may not bring up such preferences. For example, if a brush is being used in 
the main plan to clean the metal burrs in the part we may not mind using it during the 
experiment planning. In summary, there may be different binding preferences for different 
types of objects. 

One interesting case in the process planning domain is the object part. Suppose that 
the main goal is to drill a hole of a certain width and depth in the part. Now suppose 
that the drilling operation fails because of a missing precondition, and experiments with the 
drilling operator are needed. If the experiments are done by drilling that part, we may not 
interfere with the main goal, but we would violate an implied goal: "Do not drill other holes 
in the part other than the ones specified in the goal". In fact, when we specify a goal to the 
planner in this domain (and many others) many such explicit goals are also desired but too 
complex to specify. A planner works by default on building a plan to achieve each of its given 
goals, so by default it would not interfere with these kinds of implicit goals. But since the 
experimentation process requires producing plans for other goals, such implicit goals may 
be violated by default. Notice that since the implicit goals are not part of the main goal 
description, they are not protected by the goal interaction policies. We have addressed this 
problem through policies for binding preferences as follows. 

When a domain is denned, each type of object is assigned to one of the following classes: 

• Very high protection:  The instances of these types that are being used in the 
main plan are never to be used for the experiments. 

• High protection:  During experiment planning, other instances are preferred to 
instances of these types that are being used for the main plan. 

• Low protection: During experimentation planning, other instances are preferred 
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to instances of these types that are being used for the main plan, but instances 
of high or very high protection are never preferred. 

• Very low protection: The instances of these types can be used any time during 
experiment planning. 

In the robot planning domain there are only four types of objects, classified as follows: 

• High protection: boxes 
• Low protection: doors, keys 
• Very low protection: rooms 

The process planning domain is more complex, and has 33 types of objects, grouped as 

follows: 

• Very high protection: parts 
• High protection: holding devices 
• Low protection: machines, machine tools, objects consumed during an operation. 
• Very low protection: objects not consumed during an operation. 

If necessary, the number of degrees of protection may be augmented, but the mechanism 

would be the same. 
Once the protection classes have been defined, they are used to determine the policies that 

EXPO can use for choosing bindings: avoiding objects of very high protection, preferring 
objects of lower degree of protection, and preferring the least number of protected objects. 

4.1.4    Plan characteristics 

One criteria is to prefer shorter plans for the experiments. In PRODIGY, each level of 
a search involves the application of an operator or an inference rule. An inference rule 
represents a deduction from the current state, whereas an operator represents an externally 
executable action. The final plan is composed only of actions. This is why the depth of 
the search does not correspond to the length of the plan, and although they are related we 
may wish to control them separately. This is why four different policies are used to express 
preferences regarding the search depth and the plan length. 

The last two policies prefer plans that minimize the number of state changes. The amount 
of changes that a plan produces in the sum of the effects of the operators that compose it. 
This policy is related to the policy that prefers operators that minimize state changes. 

4.2    The Learner-at-Heart and the Planner-at-Heart 

The experiment policies described in the previous section express different criteria that an 
experimenter may consider to design and choose experiments. Some of these policies may 
be conflicting, but the experimenter must have some overall, global strategy that determines 
which policies serve the strategy best. 

With these policies, many different overall strategies may be designed. The following two 
strategies lie in opposite sides of the spectrum: 

• The Learner-at-Heart strategy. This strategy has a more exploratory flavor and 
focuses on acquiring new knowledge. Novel situations are preferred over ones already 
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experienced, and short experiment plans are preferred over longer ones that may delay 
learning. 

• The Planner-at-Heart strategy. The main concern of this strategy is to accomplish 
the main planning task, acquiring new knowledge only if necessary to solve the problem 
at hand. Consequently, interactions with the main plan are avoided when possible, and 
using reliable operators is preferred over trying new ones. 

The Leamer-at-Heart strategy: 

• Avoid deep nodes 
• Prefer shallow nodes 
• Avoid long plans 
• Prefer short plans 
• Prefer unreliable operators 

The Planner-at-Heart strategy: 

• Support main goal concord 
• Avoid main goal protection violation 
• Avoid main prerequisite violation 
• Avoid irreversible operators 
• Prefer reversible operators 
• Prefer more reliable operators 
• Avoid unreliable operators 
• Prefer plans with fewer state changes 
• Avoid plans with too many state changes 
• Prefer operators that minimize state changes 
• Avoid objects of very high protection 
• Prefer objects of lower degree of protection 
• Prefer least number of protected objects 

Figure 2: Policies for two different experimentation strategies. 

Figure 2 summarizes the policies used to define each strategy. 

5     Conclusion 

Learning from the environment is a vital capability for an autonomous agent. The lack of 
knowledge affects the planner's capabilities, and learning requires both detecting a knowledge 
gap and determining a correction of the knowledge base. Experimentation is a powerful 
tool for gathering additional information from the environment that helps determine the 
appropriate correction. Our approach combines selective and continuous monitoring of the 
environment to detect knowledge faults with directed manipulation through experiments that 
lead to the missing knowledge. Our approach improves a planner's prediction accuracy and 
reduces the amount of unreliable action outcomes in several domains through the acquisition 
of new preconditions and effects of operators. 

This work is applicable to a wide range of planning tasks, but there are some limita- 
tions. The state of the world must be describable with discrete-valued features, and reliable 
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observations must be available on demand. Actions must be axiomatizable as deterministic 
operators in terms of those features. Another assumption is the absence of exogenous events 
or other agents in the environment that can change the state of the external world. Our 
work also assumes an initially incomplete knowledge base. Future work is needed to address 
other types of imperfections, including incorrectness of planning domain knowledge. 
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