
University

of Southern

California

Planning Experiments:
Resolving Interactions Between

Two Planning Spaces

YolandaGil

USC/Information Sciences Institute

May 1996

ISI/RS-96-447

'TJfflC Q-OiOJTY
IN! SPECIBDÄ

DISTRIBUTION STATEMENT A

Approved for public release;
Diatributiog Unlimited 19961001 024

INFORMATION
SCIENCES

INSTITUTE •inr. 3 JO/822-1511

4676 Admiralty Way/Marina del Rey/California 90292-6695

Planning Experiments:
Resolving Interactions Between

Two Planning Spaces

YolandaGil

USC/Information Sciences Institute

May 1996

ISI/RS-96-447

In Proceedings of the Third International Conference on Artificial Intelligence Planning
Systems (AIPS-96), May 29-31, 1996, Edinburgh, Scotland.

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

REPORT DOCUMENTATION PAGE
FOMAPPROVED
OMB NO. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching exiting data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimated or any
other aspect of this collection of information, including suggestings for reducing this burden to Washington Headquarters Services, Directorate for Information Operations
and Reports, 1215 Jefferson Davis highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 1996
3. REPORT TYPE AND DATES COVERED

Research Report

4. TITLE AND SUBTITLE

Planning Experiments: Resolving Interactions
Between Two Planning Spaces

6. AUTHOR(S)

Yolanda Gil

5. FUNDING NUMBERS

F33615-90-C-1465, ARPA
Order No. 7597

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC INFORMATION SCIENCES INSTITUTE
4676 ADMIRALTY WAY
MARINA DEL REY, CA 90292-6695

8. PERFORMING ORGANIZATON
REPORT NUMBER

ISI/RS-96-447

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Advanced Research Projects Agency
3701 N. Fairfax Drive
Arlington, VA 22203-1714

AFSC
U.S. Air Force, Wright-Patterson AFB,
Ohio 45433-6543

11. SUPPLEMENTARY NOTES

In Proceedings of the Third International Conference on Artificial Intelligence
Planning Systems (AIPS-96), May 29-31, 1996, Edinburgh, Scotland.

12A. DISTRIBUTION/AVAILABILITY STATEMENT

UNCLASSIFTED/UNLIMrTED

12B. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Learning from experimentation allows a system to acquire planning domain knowledge by correcting its knowledge
when an action execution fails. Experiments are designed and planned to bring the world to a state where a hypothe-
sis (e.g., that an operator is missing a precondition) can be tested. When planning an experiment, the planner must
take into account the interactions between the execution of the main plan and the execution of the experiment plans,
since after the experiment it must continue to carry on its main task. In order for planners to work in such environ-
ments where they can be given several tasks, they must take into account the interactions between them. A usual
assumption in current planning systems is that they are given a single task (or set of goals to achieve). However, a
plan that may seem adequate for a task in isolation may make other tasks harder (or even impossible) to achieve. Dif-
ferent tasks may compete for resources, execute irreversible actions that make other tasks unachievable, or set the
world in undesirable states. This paper discusses what these interactions are and presents how the problem was
adressed in EXPO, an implemented system that acquires domain knowledge for planning through experimentation.
14. SUBJECT TERMS

learning by experimentation, learning from the environment, planning experiments,
planning for several tasks, planning search control

15. NUMBER OF PAGES

17

16. PRICE CODE

17. SECURITY CLASSIFICTION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OFABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF298
The Report Documentation Page (RDP) is used in announcing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
including day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If
applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides the most
meaningful and complete information. When a
report is prepared in more than one volume,
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification
in parentheses.

Block 5. Funding Numbers. To include contract
and grant numbers; may include program

element numbers(s), project number(s), task
number(s), and work unit number(s). Use the
following labels:

C - Contract
G - Grant
PE - Program

Element

PR - Project
TA -Task
WU - Work Unit

Accession No.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number. Enter the unique alphanumeric report
number(s) assigned by the organization
performing the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address(es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Number. (If known)

Block 11. Supplementary Notes. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans, of...; To be
published in... When a report is revised, include
a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any
availability to the public. Enter additional
limitations or special markings in all capitals (e.g.
NOFORN, REL, ITAR).

DOD

DOE
NASA
NTIS

- See DoDD 5230.24, "Distribution
Statements on Technical
Documents."

- See authorities.
- See Handbook NHB 2200.2.
- Leave blank.

Block 12b. Distribution Code.

DOD
DOE

NASA
NTIS

- Leave blank.
- Enter DOE distribution categories

from the Standard Distribution for
Unclassified Scientific and Technical
Reports.

- Leave blank.
- Leave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory. Enter U.S. Security Classification in
accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must
be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

Planning Experiments:
Resolving Interactions between Two Planning Spaces

Yolanda Gil

USC/Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292
email: gil@isi.edu

Abstract

Learning from experimentation allows a system to acquire planning domain knowledge by cor-
recting its knowledge when an action execution fails. Experiments are designed and planned to
bring the world to a state where a hypothesis (e.g., that an operator is missing a precondition)
can be tested. When planning an experiment, the planner must take into account the interactions
between the execution of the main plan and the execution of the experiment plans, since after the
experiment it must continue to carry on its main task. In order for planners to work in such environ-
ments where they can be given several tasks, they must take into account the interactions between
them. A usual assumption in current planning systems is that they are given a single task (or set of
goals to achieve). However, a plan that may seem adequate for a task in isolation may make other
tasks harder (or even impossible) to achieve. Different tasks may compete for resources, execute
irreversible actions that make other tasks unachievable, or set the world in undesirable states. This
paper discusses what these interactions are and presents how the problem was adressed in EXPO,
an implemented system that acquires domain knowledge for planning through experimentation.

In Proceedings of the Third International Conference on Artificial Intelligence Planning
Systems (AIPS-96), May 29-31, 1996, Edinburgh, Scotland.

1 Introduction
Planning systems often make the assumption that omniscient world knowledge is available.
Our approach makes the more realistic assumption that the initial knowledge about the
actions is incomplete, and uses experimentation as a learning mechanism when the miss-
ing knowledge causes an execution failure. In a planning system, the inaccuracies of the
knowledge base may render problems unsolvable or produce plans that yield unsuccessful
executions. The imperfections of the domain knowledge have been closely related to plan-
ning and/or execution failures [Hammond, 1986, Huffman et al, 1992], but they can also
cause unexpected successful executions [Gil, 1994]. Planning systems that model a physical
system and are given the ability to interact with it can directly examine the actual behavior
of the physical system that the domain is supposed to model. This presents an opportu-
nity for autonomous refinement of the imperfections of the domain model. Our approach
combines selective and continuous monitoring of the environment to detect knowledge faults
with directed manipulation through experiments that lead to the missing knowledge.

The first part of this paper summarizes our work on autonomous refinement of incomplete
planning domains through experimentation [Gil, 1994, Gil, 1993, Gil, 1992] and presents em-
pirical results of its effectiveness and efficiency in improving the planner's domain knowledge
when initial domain knowledge is up to 50% incomplete. Learning is selective and task-
directed: it is triggered only when the missing knowledge is needed to achieve the task
at hand. Our approach is based on continuous and selective interaction with the environ-
ment that leads to identifying the type of fault in the domain knowledge that causes any
unexpected behavior of the environment, and resorts to experimentation when additional
information is needed to correct the fault. The new knowledge learned by experimentation
is incorporated into the domain and is immediately available to the planner. The planner in
turn provides a performance element to measure any improvements in the knowledge base.
This is a closed-loop integration of planning and learning by experimentation.

Research in the area of acquiring action models is mostly subsymbolic [Mahadevan and
Connell, 1992, Maes and Brooks, 1990]. An important component of our approach is the
ability to design experiments to gather additional information that is not available to the
learner and yet is needed to acquire the missing knowledge. Experimentation is vital for
effective learning and is a very powerful tool to refine scientific theories [Cheng, 1990,
Rajamoney, 1993], but other research on learning planning knowledge from the environ-
ment does not address the issue of experiment formulation and design [Shen, 1993, Kedar
et al, 1991]. Previous work on learning by experimentation has not addressed the issue of
how to choose good experiments, and much research on learning from failure has relied on
background knowledge to build explanations that pinpoint directly the causes of failures. We
want to investigate the potential of a system for efficient learning by experimentation with-
out such background knowledge. Our approach uses domain-independent heuristics that
compare possible hypotheses and choose the ones most likely to cause the failure. These
heuristics extract information solely from the domain operators initially available for plan-
ning (incapable of producing such explanations) and the planner's experiences in interacting

with the environment.
Planning experiments may interact with the main planning task that triggers learning.

In the second part of the paper we describe how we handle these interactions: by giving the
planner explicit guidance about how to conduct the experiment planning search. This is a
general problem for planners that can be given two or more different tasks and must take
into account the interactions between several planning search spaces.

Our approach to learning by experimentation has been implemented in a system called
EXPO. EXPO's underlying planning architecture is the PRODIGY system [Carbonell et a/.,
1991] which provides a robust, expressive, and efficient planner. EXPO was tested with a
complex process planning domain of dozens of operators, and a STRIPS-like robot planning
domain that is widely used by planning researchers (both domains are described in [Gil,
1992]).

2 Learning from the Environment by Experimenta-
tion

This section describes how EXPO detects that it is missing domain knowledge, then con-
structs a set of hypotheses of possible fixes, determines the more promising ones, and finally
designs and executes experiments to determine the fix needed by its domain theory. More
details can be found in [Gil, 1994, Gil, 1993, Gil, 1992].

2.1 Detecting the Need to Learn

EXPO is given a suite of representative planning problems in the domain. This provides a
purpose for learning: EXPO acquires knowledge that is needed to solve these kinds problems,
instead of exploring the environment's behavior under various conditions. In a process
planning domain, representative problems are to produce a part with a certain size, to give
the surfaces of a part a certain degree of smoothness, to produce a part with a hole of
specific diameter, depth, and position, etc. For each of these problems, EXPO creates a plan
that solves the problem and starts executing the plan and collecting observations. EXPO
monitors the external world selectively and continuously. Before the execution of an operator,
EXPO expects the operator's known preconditions to be satisfied, so it checks them in the
external world. If they are indeed satisfied, then EXPO executes the corresponding action.
The operator's known effects are now expected to have occurred in the world, so EXPO
checks them in the external world. For example, before executing grinding, EXPO would
check the operator's known conditions, e.g., that the part is being held by a holding device,
that there is a grinding tool installed in the grinder, and so on. After executing the action,
EXPO checks that the part is of a smaller size and has a finished surface. Whenever its
observations disagree with its expectations, EXPO concludes that it needs to learn in order
to fix its knowledge about the operator so that observations and expectations coincide the
next time the operator is used. This is the case in our grinding example if the surface is
observed to be rough. After learning, EXPO's internal model should reflect more accurately
the actual behavior of its environment.

what triggers
learning

general
hypothesis

particular
hypothesis

state to execute
experiment

operator in
experiment

observations
in experiment
before after

unexpected
outcome
ofO

0 has an
unknown
precondition

The unknown condition is
one of the predicates
{P,} that were true in
previous executions

Preconditions
of 0 and
Pi are
satisfied

0 effects
ofO

unexpected
value
ofP

P is an unknown
effect of a
previously executed
operator

P is the unknown effect of
one of the operators {0;}
executed since last time
P was observed

Preconditions
ofOj
are satisfied

Oi P P

Table 1: The design of experiments to learn new preconditions and new effects of operators.

2.2 Formulating Hypotheses

Next, EXPO hypothesizes a cause for the unexpected observation in terms of a fix to its
knowledge base. Several possible categories of fixes to the domain knowledge can be consid-
ered, including the following:

• Missing preconditions: When an operator 0 is executed in state S and not all its
known effects take place, EXPO considers the general hypothesis that the precondi-
tions of 0 are incomplete and triggers learning to discover the missing condition C.
Notice that C must have been true (by coincidence) every time that 0 was executed
before. In our running example, suppose that the operator for grinding is missing a
precondition to have cutting fluid in the machine (to absorb the heat produced by
friction). Without fluid, the execution of grinding will produce a rough surface finish.
When past executions of grinding succeeded, the machine had cutting fluid. But in
those occasions the part had no holes in it, had a smooth surface, and was made of
wood. Any of those could be a necessary condition for grinding to succeed. EXPO
then engages in an experimentation process to discern which of those predicates is the
missing condition.

• Missing effects: When a predicate P is found to have a value different than expected,
EXPO considers the general hypothesis that some operator that was applied since the
last time P was observed had the unknown effect of changing P. EXPO retrieves
all operators executed since P was last observed, and considers them candidates for
having incomplete effects. For example, if EXPO takes a part with a smooth surface
and after grinding and drilling the part it notices that the surface is not smooth, then
it will consider that either the grinding or the drilling operator is missing the effect of
changing the surface quality. Experiments with these operators let EXPO observe P
before and after each execution and determine which operator changes P.

Table 1 summarizes hypothesis generation for these two cases. Other possible fixes to the
domain knowledge include acquiring data about the state of the external world and acquiring
new operators [Gil, 1992, Gil, 1994].

heuristic description
locality of actions objects affected by the action are likely to be already

present in the operator's parameters
structural similarity similar operators are likely to have similar preconditions
generalization of experience necessary conditions have been present in all past

successful executions of the action

Table 2: Domain-independent heuristics for suggesting better experiments.

2.3 Selecting Promising Hypotheses

Once the possible hypotheses are generated, EXPO needs to determine which one is re-
sponsible for the unexpected observation. The number of possible hypotheses may be quite
large, and many may be ruled out by careful acquisition of informative instances through
experimentation. In the process planning domain, the typical size of the hypothesis set is 50
to 100. In the grinding example, possible experiments are to try grinding a part that has a
different number of holes, grinding a part that has a different surface finish, and grinding a
part made of a different material.

Minimizing the number of experiments is important, not only because of the large num-
bers of hypotheses, but because there is a significant cost associated with each experiment.
For each experiment the planner has to build a plan to set the environment in a state that
satisfies many predicates. For example, in an experiment to try to grind a part with two
holes the planner must select a part, make two holes in it, and then set it up in the grind-
ing machine. Apart from the planning effort involved, the execution of those plans raises
additional issues. Plan execution may use up valuable resources (including time), produce
non-desirable changes in the environment that are hard (or impossible) to undo, and interfere
with the goals of the system's main task. These issues are discussed briefly here to motivate
the need to reduce the number of experiments, but they are central to the experiment search
space and are discussed in more detail below.

The key to EXPO's efficient experimentation are a set of heuristics that help it concen-
trate on promising hypotheses. These heuristics, summarized in Table 2, are derived from the
descriptions of other operators and of the operator in question. The locality heuristic points
out, for example, that facts about the machine and tool used and the part being ground are
more likely to be relevant to the failure. The presence of a steel part somewhere else in the
machine shop is not likely to have affected the grinding operation. The similarity heuristic
makes EXPO consider adding cutting fluid as a more plausible precondition of grinding than
having holes in the part, because in this domain many operators that also reduce the size of
a part require cutting fluid. Generalization of experience takes advantage of the fact that the
conditions of the action must have been present in all past successful executions of it. For
each operator, EXPO maintains a generalization of all the states where the execution was
successful. The generalization is done using the operator's parameter bindings. Such gener-
alization of the planner's past experience is useful to guide our search for the missing condi-
tion, because it contains the conditions that were common to all the states when the action

was successfully executed before. The heuristics are described in more detail in [Gil, 1992,
Gil, 1993].

2.4 Designing and Executing Experiments

Each hypothesis is tested with an experiment. When the hypothesis is that the operator
is missing a precondition P, an experiment is designed to test whether the operator will
be successfully executed in a state where P and every precondition of O are satisfied, as
shown in Table 1. This effectively becomes a goal for the planner, since a plan needs to be
constructed to achieve the situation desired. This experiment search space is different from
the main search space used to create the original plan that triggered learning. In searching
for a plan, the planner must take into account the interactions with the experiment. This
process is described in more detail below.

After the execution of this plan and of the experiment itself, observations are collected
to determine what should be learned. If the hypothesis is confirmed, the domain knowledge
is adjusted accordingly. Otherwise, the experimentation process is iterated until success or
until no more hypotheses are left to be considered. Additional candidate hypotheses can be
formed with the differences between S and a past state where 0 was successfully applied. If
all those are also ruled out, the learner may still need to look for additional candidates (for
example, predicates that are not included in the state S because they were never observed),
and even go back and consider an alternative general hypothesis, for example that 0 has
conditional effects instead of a missing precondition.

After the operator is corrected, it will be used in any future planning. The main planning
task can now be continued, and EXPO continues to watch for learning opportunities to

correct its domain knowledge.

3 Empirical Results

EXPO was tested in two different domains: a robot planning domain frequently used in the
planning literature, and a complex process planning domain with dozens of operators and
states of large size. [Gil, 1992] describes these domains in detail as well as other empirical
results not shown here.

To control the amount of missing knowledge that EXPO was given in the tests, we first
wrote a complete domain D with all the operators with all their corresponding conditions
and effects. With this complete domain, we artificially produced domains D' with certain
percentages of incompleteness (e.g., 20 percent of the preconditions are missing) by randomly
removing preconditions or effects from D that EXPO could learn. Note that EXPO never
has access to D, only to some incomplete domain D'.

Training problem sets and test problem sets were generated randomly. At certain points
during learning, we ran the test set with learning turned off, and when EXPO made a
wrong prediction the internal state was corrected to reflect the observations but no learning
occurred (i.e., the domain operators were not changed.)

To show that EXPO is effective, i.e., that it can acquire new knowledge that is useful
to the planner, we measured the cumulative number of wrong predictions (i.e., learning

opportunities for EXPO). We also measured the number of problems in the test set that could
be executed successfully to completion at several points during training. The following tables
show results in the process planning domain, where the training sets had 100 problems and
the test sets had 20 problems. Each problem required achieving several goals. The results
are shown as cumulative round averages. In the process planning domain with 10 percent
incompleteness the results were as follows:

training learning test plans
problems opportunities successfully executed

0 0 5
10 0 16
30 8 17
50 10 19
100 10 19

and with 30 percent incompleteness:

training learning test plans
problems opportunities successfully executed

0 0 1
10 '17 8
30 23 13
50 29 18
100 30 19

EXPO always acquired a new precondition in every learning opportunity. Although
EXPO did not acquire all the missing domain knowledge after learning, it learned in some
trial runs the knowledge necessary to execute successfully the solutions to all the problems in
the test set. In some cases, EXPO acquired knowledge that did not cause any improvement
in the performance for the problems in the test sets. The number of test problems that were
successfully completed always increased as learning progressed.

To measure the efficiency of EXPO, we measured the number of experiments that were
needed using different strategies to select heuristics. We ran EXPO using each heuristic
alone, using different combinations, and using no heuristics. When no heuristics were used,
EXPO tried the candidate predicates in sequence.1

The results shown for this test are for the robot planning domain. The heuristics used
are represented by a letter: g for generalization, s for structural similarity, and / for locality.
Even though this domain is much smaller in size than the process planning domain, the
number of possible hypotheses that EXPO could consider for each failure ranged between 50
and 85. With 20 percent of the preconditions missing, the cumulative number of experiments
needed was as follows:

*We considered a divide-and-conquer strategy that recursively splits the candidate set, using login)
experiments to isolate the correct hypothesis (n being the number of hypotheses). The number of experiments
needed with this strategy is comparable to (but still larger than) the number needed for our combined
heuristics. However, for each experiment the planner must achieve many more additional goals because
more conditions are tested in each experiment setup [Gil, 1992, Gil, 1993].

6

failures none 9 / s gls
5
10

215
332

168
172

50
90

94
110

10
17

With 50 percent of the preconditions missing, the cumulative number of experiments
needed was:

failures none 9 / s gls
5 205 172 27 118 40
10 460 276 102 177 71
17 728 370 201 325 89

In all cases, the combination of the three heuristics reduced dramatically the number
of experiments required, and yielded significantly better performance. Notice also that the
number of experiments needed decreases as EXPO acquires more knowledge, because the
heuristics are more effective when there is more knowledge about the domain available.

4 Planning and Executing Experiments

In order to perform an experiment, the world must be brought to a state where the conditions
of the experiment are satisfied. For example, if the hypothesis is that the grind operator is
missing the condition that the grinder has cutting fluid, we must reach a state where the
current known preconditions of grinding and the hypothesized new condition are satisfied.

The planner must first come up with a plan to achieve this state from its current state,
which is the state in which the failure that triggered experimentation occured. We call this
process pre-experiment planning.

Once the pre-experiment plan is executed, the experiment can be carried out. In our
example, we grind and check if this time the effects of the grind operator are obtained. If
not, other hypotheses must be tested with other experiments. But if grinding works now,
then the missing condition must be that the grinder has cutting fluid. The new condition
is added to the operator GRIND. Then, the original plan that failed must be continued in
order to achieve the original goal. If the pre-experiment plan has undone any of the facts
necessary for the original plan, then a post-experiment plan is needed to restore those facts
and continue with the main plan. Whether a post-experiment plan is used to enable the
continuation of the original plan or replanning is done to achieve the original goals is not the
issue here. The issue is that there is some effort needed to restore facts that were undone
during pre-experiment planning.

Some pre-experiment plans are better than others depending on the criteria that are
used. For example, minimal interference with the main plan may be an important concern.
Suppose that learning was triggered when grinding parti in the machine grinderl with visel
as a holding device and wheell as a tool. Then it would be better to use grinder2, wheel2,
and vise2 with part2 in the experiments since visel is already holding parti. But perhaps
we are more concerned with making the pre-experiment plan as short as possible, so we can
learn as quickly as possible and go on with our main plan. If this is the case, using grinderl,

wheell, and visel would be better since they are already set up and ready for grinding
operation. So, one experiment may be better than another one depending on what criteria
are preferred.

EXPO designs experiments following a set of policies chosen by the user from a pre-
defined pool. An example of a policy is to avoid using irreversible operators, since they
can bring the world to a state where the main task cannot be achieved. Each policy in
EXPO is implemented as a control rule in PRODIGY's language [Carboneil et a/., 1991,
Gil, 1992]. Control rules are used during the search at each decision point: to choose a node
to expand, to choose a goal to achieve, to choose an operator to achieve a goal, and to choose
bindings for the operator's parameters. Control rules can express prefereces among options,
rejections of options, or select an option as the only possibility for a decision. The control
rule that represents the policy to avoid irreversible operators is:

(RULE--REJECT-IRREVERSIBLE-OPERATORS
(lhs (and (current-node <node>)

(candidate-op <node> <operator>)
(is-irreversible <operator>)))

(rhs (reject operator <operator>)))

Each policy defines a preference to be used for decision making and can be thought of
as a piece of control knowledge to be used during experimentation planning. Policies are
grouped together to define overall strategies that the learner follows to plan experiments.
We describe now EXPO's policies and strategies in detail.

4.1 Planning Experiments

All the policies that the user may define for the main planning task are also applicable
to experiment planning. These policies correspond to the control knowledge (be it domain
independent or not) given to the planner to be used for decision making in the domain. They
can be considered universal policies, since they apply in both the main and the experiment
search spaces. For example, we would consider an experiment that uses cheap materials to be
better than another one that uses expensive materials. But the same principle applies in the
main planning space. The quality of the experiment plans is determined in many dimensions
by these universal policies that are to be addressed by research on how to measure plan
quality, and are not discussed here. Experiment policies and universal policies may be in
conflict. When this is the case, EXPO gives priority to universal policies unless indicated
otherwise by the user.

The experiment policies defined for EXPO can be grouped under four topics: goal inter-
actions, operator properties, binding interactions, and plan characteristics. The policies are
cast in domain independent terms. They are summarized in Figure 1.

4.1.1 Goal Interactions

The goal interaction policies refer to the interactions between the goals in the experimen-
tation space and goals in the main search space. They are different from the types of

• Goal interactions
• Avoid main goal protection violation: If a search path clobbers a goal previ-

ously achieved by the main plan that is still needed to achieve the main goals, then
prefer other search paths over this one.

• Avoid main prerequisite violation: If a search path undoes a fact that the
remaining main plan requires to be true, then prefer other search paths to this one.

• Support main goal concord: If a search path achieves a goal that remains to
be achieved by the main plan, prefer it over other paths.

• Operator properties

• Avoid irreversible operators: Never use irreversible operators.
• Prefer easily reversible operators: Prefer operators whose effects are easier to

undo.
• Prefer operators that minimize state changes: Prefer operators that have

less effects.
• Prefer more reliable operators: Prefer operators that have a higher rate of

successful executions.
• Avoid unreliable operators: If an operator's rate of failure is over a user-defined

threshold, do not use it.

• Binding interactions
• Avoid objects of very high protection: Never use objects that are used in the

main plan and whose type is classified as very high protection.
• Prefer objects of lower degree of protection: If two objects used in the main

plan are being considered for binding the same variable, prefer the object with a
lower degree of protection.

• Prefer least number of protected objects: If several objects used in the main
plan are being considered for binding different variables, prefer the set of objects
that minimizes the total degree of protection.

• Plan characteristics
• Avoid long plans: Never choose plans that are longer than a given length.
• Prefer short plans: Prefer plans that are shorter.
• Avoid deep nodes: Never expand nodes below a given depth. This maximum

depth for the experimentation search must be given a value.
• Prefer shallow nodes: Prefer expanding shallower nodes.
• Avoid plans with too many state changes: Never choose plans that cause

changes in the external world over a user-given number.
• Prefer plans with fewer state changes: Prefer plans that cause a smaller

amount of changes in the external world.

Figure 1: EXPO's experimentation policies.

interactions within a search space. Here, a search path is preferred over another one it
minimizes negative interference (or maximizes positive interference) with the top level goals.
Notice that the preference is over which search paths to pursue, not over which goals.

4.1.2 Operator Properties

One policy is to avoid irreversible operators. Determining that an operator is irreversible
requires proving that there is no plan that can undo its effects, which is undecidable. Also,
the irreversibility of operators is not a binary feature: the same operator may be irreversible

in some states and reversible in others. Because of these and other issues that make the
automatic determination of irreversibility very complex, EXPO relies on a user-defined clas-
sification of operator's reversibility.

A second policy states that if the effects of operator 0\ are easier to undo than the effects
of operator 02, prefer 0\ over 02. Determining the degree of reversibility of an operator is
not a simple matter, so EXPO relies on an ordered list of operators defined by the user.

Another policy is to prefer operators that minimize state changes. If an operator 0\
has less effects than operator 02, prefer 0\ over 02. This policy is a more local version of
another policy that prefers plans with fewer state changes (described below).

The next policy says that if an operator 0\ has a higher rate of success (based on the
number of times that it has been used) than operator 02, then prefer Ox over 02. The last
policy avoids operators that have a rate of failure over a user-defined threshold. Notice that
both policies try to use operators that have good models in the planner's knowledge base in
order to avoid obtaining execution failures during the experiments.

4.1.3 Binding Interactions

During planning, the parameters of each operator are given values by binding them to objects
in the current state. Some bindings ma}' be preferable to others. For example, we may prefer
to use in the experiments a different machine than the one that is being used in the main
plan, since the machine used in the main plan is probably all set up for the operation.
Other objects may not bring up such preferences. For example, if a brush is being used in
the main plan to clean the metal burrs in the part we may not mind using it during the
experiment planning. In summary, there may be different binding preferences for different
types of objects.

One interesting case in the process planning domain is the object part. Suppose that
the main goal is to drill a hole of a certain width and depth in the part. Now suppose
that the drilling operation fails because of a missing precondition, and experiments with the
drilling operator are needed. If the experiments are done by drilling that part, we may not
interfere with the main goal, but we would violate an implied goal: "Do not drill other holes
in the part other than the ones specified in the goal". In fact, when we specify a goal to the
planner in this domain (and many others) many such explicit goals are also desired but too
complex to specify. A planner works by default on building a plan to achieve each of its given
goals, so by default it would not interfere with these kinds of implicit goals. But since the
experimentation process requires producing plans for other goals, such implicit goals may
be violated by default. Notice that since the implicit goals are not part of the main goal
description, they are not protected by the goal interaction policies. We have addressed this
problem through policies for binding preferences as follows.

When a domain is denned, each type of object is assigned to one of the following classes:

• Very high protection: The instances of these types that are being used in the
main plan are never to be used for the experiments.

• High protection: During experiment planning, other instances are preferred to
instances of these types that are being used for the main plan.

• Low protection: During experimentation planning, other instances are preferred

10

to instances of these types that are being used for the main plan, but instances
of high or very high protection are never preferred.

• Very low protection: The instances of these types can be used any time during
experiment planning.

In the robot planning domain there are only four types of objects, classified as follows:

• High protection: boxes
• Low protection: doors, keys
• Very low protection: rooms

The process planning domain is more complex, and has 33 types of objects, grouped as

follows:

• Very high protection: parts
• High protection: holding devices
• Low protection: machines, machine tools, objects consumed during an operation.
• Very low protection: objects not consumed during an operation.

If necessary, the number of degrees of protection may be augmented, but the mechanism

would be the same.
Once the protection classes have been defined, they are used to determine the policies that

EXPO can use for choosing bindings: avoiding objects of very high protection, preferring
objects of lower degree of protection, and preferring the least number of protected objects.

4.1.4 Plan characteristics

One criteria is to prefer shorter plans for the experiments. In PRODIGY, each level of
a search involves the application of an operator or an inference rule. An inference rule
represents a deduction from the current state, whereas an operator represents an externally
executable action. The final plan is composed only of actions. This is why the depth of
the search does not correspond to the length of the plan, and although they are related we
may wish to control them separately. This is why four different policies are used to express
preferences regarding the search depth and the plan length.

The last two policies prefer plans that minimize the number of state changes. The amount
of changes that a plan produces in the sum of the effects of the operators that compose it.
This policy is related to the policy that prefers operators that minimize state changes.

4.2 The Learner-at-Heart and the Planner-at-Heart

The experiment policies described in the previous section express different criteria that an
experimenter may consider to design and choose experiments. Some of these policies may
be conflicting, but the experimenter must have some overall, global strategy that determines
which policies serve the strategy best.

With these policies, many different overall strategies may be designed. The following two
strategies lie in opposite sides of the spectrum:

• The Learner-at-Heart strategy. This strategy has a more exploratory flavor and
focuses on acquiring new knowledge. Novel situations are preferred over ones already

11

experienced, and short experiment plans are preferred over longer ones that may delay
learning.

• The Planner-at-Heart strategy. The main concern of this strategy is to accomplish
the main planning task, acquiring new knowledge only if necessary to solve the problem
at hand. Consequently, interactions with the main plan are avoided when possible, and
using reliable operators is preferred over trying new ones.

The Leamer-at-Heart strategy:

• Avoid deep nodes
• Prefer shallow nodes
• Avoid long plans
• Prefer short plans
• Prefer unreliable operators

The Planner-at-Heart strategy:

• Support main goal concord
• Avoid main goal protection violation
• Avoid main prerequisite violation
• Avoid irreversible operators
• Prefer reversible operators
• Prefer more reliable operators
• Avoid unreliable operators
• Prefer plans with fewer state changes
• Avoid plans with too many state changes
• Prefer operators that minimize state changes
• Avoid objects of very high protection
• Prefer objects of lower degree of protection
• Prefer least number of protected objects

Figure 2: Policies for two different experimentation strategies.

Figure 2 summarizes the policies used to define each strategy.

5 Conclusion

Learning from the environment is a vital capability for an autonomous agent. The lack of
knowledge affects the planner's capabilities, and learning requires both detecting a knowledge
gap and determining a correction of the knowledge base. Experimentation is a powerful
tool for gathering additional information from the environment that helps determine the
appropriate correction. Our approach combines selective and continuous monitoring of the
environment to detect knowledge faults with directed manipulation through experiments that
lead to the missing knowledge. Our approach improves a planner's prediction accuracy and
reduces the amount of unreliable action outcomes in several domains through the acquisition
of new preconditions and effects of operators.

This work is applicable to a wide range of planning tasks, but there are some limita-
tions. The state of the world must be describable with discrete-valued features, and reliable

12

observations must be available on demand. Actions must be axiomatizable as deterministic
operators in terms of those features. Another assumption is the absence of exogenous events
or other agents in the environment that can change the state of the external world. Our
work also assumes an initially incomplete knowledge base. Future work is needed to address
other types of imperfections, including incorrectness of planning domain knowledge.

Acknowledgment s
This work was done while the author was at Carnegie Mellon University. I would like to
thank Jaime Carbonell, Tom Mitchell, Herb Simon, and Nils Nilsson for their suggestions
and support throughout my thesis work. Thanks also to all the members of the PRODIGY
group for many helpful suggestions. This research was supported by the Avionics Laboratory,
Wright Research and Development Center, Aeronautical Systems Division (AFSC), U.S. Air
Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract F33615-90-C-1465, ARPA
Order No. 7597. The view and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or
implied, of ARPA or the U.S. government.

References
[Carbonell et al, 1991] Carbonell, Jaime G-, Craig A. Knoblock, and Steven Minton. 1991.

PRODIGY: An integrated architecture for planning and learning. In Architectures for
Intelligence, ed. Kurt VanLehn. Hillsdale, NJ: Lawrence Erlbaum Associates.

[Cheng, 1990] Cheng, Peter C-H. 1990. Modelling Scientific Discovery. PhD thesis, The
Open University, Milton Keynes, England.

[Gil, 1992] Gil, Y. Acquiring Domain Knowledge for Planning by Experimentation. PhD
thesis, Carnegie Mellon University, School of Computer Science, 1992.

[Gil, 1993] Gil, Y. Efficient domain-independent experimentation. In Proceedings of the
Tenth International Conference on Machine Leaning, Amherst, MA. Morgan Kaufmann,

1993.

[Gil, 1994] Gil, Y. Learning by Experimentation: Incremental Refinement of Incomplete
Planning Domains. In Proceedings of the Eleventh International Conference on Machine
Leaning, New Brunswick, N.J. Morgan Kaufmann, 1994

[Hammond, 1986] Hammond, Chris J. 1986. Case-based Planning: An Integrated Theory of
Planning, Learning, and Memory. PhD thesis, Yale University, New Haven, CN.

[Huffman et al, 1992] Huffman, Scott B., Douglas J. Pearson, and John E. Laird. 1992.
Correcting imperfect domain theories: A knowledge-level analysis. In Machine Learning:
Induction, Analogy and Discovery. Boston, MA: Kluman Academic Press.

13

[Kedar et al, 1991] Kedar, Sraadar T., John L. Bresina, and C. Lisa Dent. 1991. The blind
leading the blind: Mutual refinement of approximate theories. In Proceedings of the Eight
Machine Learning Workshop. Evanston, IL.

[Kulkarni, 1988] Kulkarni, Deepak S. 1988. The Process of Scientific Research: The Strategy
of Experimentation. PhD thesis, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA.

[Maes and Brooks, 1990] Maes, Pattie and Rodney A. Brooks. 1990. Learning to coordinate
behaviors. In Proceedings of the Eight National Conference on Artificial Intelligence.
Boston, MA.

[Mahadevan and Connell, 1992] Mahadevan, S. and Connell, J. Automatic programming of
behavior-based robots using reinforcement learning. Artificial Intelligence 55(2-3):311-
365, 1992.

[Minton et al, 1989] Minton, Steve, Craig A. Knoblock, Dan R. Kuokka, Yolanda Gil,
Robert L. Joseph, and Jaime G. Carbonell. 1989. PRODIGY 2.0: The Manual and Tu-
torial. Technical Report CMU-CS-89-146, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA.

[Rajamoney, 1993] Rajamoney, Shankar A. 1993. The design of discrimination experiments.
Machine Learning, 12(1/2/3), 1993.

[Shen, 1993] Shen, W. M. Discovery as autonomous learning from the environment. Machine
Learning, 12(1/2/3), 1993.

14

